The effects of different types of investments on the alpha-case layer of titanium castings.
Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang
2007-03-01
Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface microhardness of titanium castings, MgO-based investment materials may be the best choice for casting these materials.
Grindability of alpha-case formed on cast titanium.
Koike, Marie; Jacobson, David; Chan, Kwai S; Okabe, Toru
2009-09-01
The hardened alpha-case (alpha-case) layer inevitably forms on the surface of titanium castings when prepared by investment casting. Because the hardness of the alpha-case is incomparable to that of the interior structure, the perception exists that the alpha-case is difficult to remove during cutting, grinding and polishing. Grindability (ease of grinding) of cast cpTi and cast Ti-6Al-4V was evaluated by grinding cast specimens incrementally using a SiC abrasive wheel. The present study revealed that the presence of the brittle alpha-case with lower fracture toughness is beneficial in grinding titanium. The alpha-case on the ductile cpTi can be ground much easier than its bulk interior structure. In less ductile Ti-6Al-4V, the grinding rate is much higher than that of cpTi, and the alpha-case and its interior structure are at similar levels since the fracture toughness of its alpha-case and the bulk material is not large enough.
Sato, Kei; Sekiguchi, Takashi; Ishihara, Takashi; Konno, Tsutomu; Yamanaka, Hiroki
2004-07-23
The reductive coupling reaction of N-methoxy-N-methyl-2-bromo-2,3,3,3-tetrafluoropropanamide (Weinreb amide) with various aldehydes under the influence of the combined reagent, 1.2 equiv each of triphenylphosphine and titanium(IV) isopropoxide, took place smoothly at ambient temperature to give the corresponding alpha-fluoro-alpha-(trifluoromethyl)-beta-hydroxy amides in a highly erythro-selective manner. The high erythro selectivity was also obtained even by employing a combination of triphenylphosphine (1.2 equiv) and a catalytic amount of titanium(IV) isopropoxide.
Gas phase hydrogen permeation in alpha titanium and carbon steels
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.
1980-01-01
Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.
2012-08-01
AFRL-RX-WP-TP-2012-0372 FORMATION OF EQUIAXED ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES...ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b...distribution of TiN precipitates, as revealed by TEM studies. 15. SUBJECT TERMS Ti-6Al-4V; TiB; TiN; Spark Plasma Sintering ; Composite; α/β phase
The effect of microstructure on the fracture toughness of titanium alloys
NASA Technical Reports Server (NTRS)
Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.
1974-01-01
The microstructure of the alpha titanium alloy Ti-5Al-2.5Sn and the metastable beta titanium alloy Beta 3 was examined. The material was from normal and extra low interstitial grade plates which were either air-cooled or furnace-cooled from an annealing treatment. Beta 3 was studied in alpha-aged and omega-aged plates which were heat treated to similar strength levels. Tensile and plane strain fracture toughness tests were conducted at room temperature on the alpha-aged material. The microstructure and fracture mechanisms of alloys were studied using optical metallography, electron microscopy, microprobe analyses, and texture pole figures. Future experiments are described.
Effect of surface reaction layer on grindability of cast titanium alloys.
Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya
2006-03-01
The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.
Method of making nanocrystalline alpha alumina
Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.
1992-01-01
Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.
2007-07-01
primary and secondary alpha in micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ...Following electropolishing , the sample was mounted 7/3/2007 6 on the tilting stage inside an XL30 field-emission-gun scanning-electron-microscope (FEG...AFRL-RX-WP-TP-2008-4338 A COUPLED EBSD/EDS METHOD TO DETERMINE THE PRIMARY–AND SECONDARY–ALPHA TEXTURES IN TITANIUM ALLOYS WITH DUPLEX
2011-03-01
Hall. Fatigue crack initiation in alpha-beta titanium alloys, International Journal of Fatigue, 31 (Suppl. 1), (1997) S23–S37. [ 4 ] G. Lutjering...Power Research Institute - October 1983. [ 6 ] F. Larson, A. Zarkades. Properties of Textured Titanium Alloys, MCIC Report - MCIC·74- 20 – Metals and...Figure 3 and 4 . Table II. The cycle count and relative rankings of fatigue crack growth rates measured from the cracks shown in Figure 5 and 6
NASA Technical Reports Server (NTRS)
Shanabarger, Mickey R.
1994-01-01
The goal of this program has been to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. During the present program, the interaction of hydrogen with the surfaces of alpha-2 (Ti3Al) titanium aluminide, gamma (TiAl) titanium aluminide, and beryllium were studied. The interaction of low pressure hydrogen with gamma titanium aluminide and beryllium was found to be relatively weak. Weak in the sense that adsorption leads to a low surface concentration of dissociated hydrogen, i.e., the chemisorption process is reversible at room temperature (300 K) for gamma titanium aluminide and the sticking coefficient for chemisorption is extremely small for beryllium. Hydrogen was found to interact readily with alpha-2 titanium aluminide to form a stable surface hydride at 300 K. These results correlate well with other recent studies which show that the mechanical properties for alpha-2 titanium aluminide are readily degraded in hydrogen while gamma titanium aluminide exhibits less degradation and beryllium essentially no degradation. The interaction of oxygen with the surface of several of these materials was studied. More recently, preliminary hydrogen permeation studies were completed for three high temperature alloys, Incoloy 909, Mo-47.5Re (wt. %), and this past year, Haynes 188.
The machinability of cast titanium and Ti-6Al-4V.
Ohkubo, C; Watanabe, I; Ford, J P; Nakajima, H; Hosoi, T; Okabe, T
2000-02-01
This study investigated the machinability (ease of metal removal) of commercially pure (CP) titanium and Ti-6Al-4V alloy. Both CP Ti and Ti-6Al-4V were cast into magnesia molds. Two types of specimens (with alpha-case and without alpha-case) were made for CP Ti and Ti-6Al-4V. Machinability (n = 5) was evaluated as volume loss (mm3) by cutting/grinding the 3.0 mm surface using fissure burs and silicon carbide (SiC) under two machining conditions: (1) two machining forces (100 or 300 gf) at two rotational speeds (15000 or 30000 rpm) for 1 min, and (2) constant machining force of 100 gf and rotational speed of 15000 rpm for 1, 2, 5, 10, and 30 min. As controls, conventionally cast Co-Cr and Type IV gold alloys were evaluated in the same manner as the titanium. When fissure burs were used, there was a significant difference in the machinability between CP titanium with alpha-case and without alpha-case. On the other hand, there was no appreciable difference in the amount of metal removed for each tested metal when using the SiC points.
Balan, Daniela; Adolfsson, Hans
2002-04-05
The direct formation of alpha-methylene-beta-amino acid derivatives is achieved using the aza version of the Baylis-Hillman protocol. The products are readily formed in a three-component one-pot reaction between arylaldehydes, sulfonamides, and alpha,beta-unsaturated carbonyl compounds. The reaction is efficiently catalyzed by titanium isopropoxide and 2-hydroxyquinuclidine in the presence of molecular sieves. The protocol allows for structural variation of the substrates, tolerating electron-poor and electron-rich arylaldehydes and various Michael acceptors.
NASA Technical Reports Server (NTRS)
Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.
1972-01-01
The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.
Spherical nanoindentation stress-strain curves of commercially pure titanium and Ti-6Al-4V
Weaver, Jordan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Priddy, Matthew W. [Georgia Inst. of Technology, Atlanta, GA (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidindi, Surya R. [Georgia Inst. of Technology, Atlanta, GA (United States)
2016-07-27
Spherical nanoindentation combined with electron back-scattered diffraction was employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti for commercially pure (CP-Ti) and alloyed (Ti-64) titanium. In addition, alpha-beta Ti (single colony) grains were characterized. The data set includes the nanoindentation force, displacement, and contact stiffness, the nanoindentation stress-strain analysis, and the alpha-Ti crystal orientations. Details of the samples and experimental protocols can be found in Weaver et al. (2016) Acta Materialia doi:10.1016/j.actamat.2016.06.053.
NASA Astrophysics Data System (ADS)
Chuvil'deev, V. N.; Kopylov, V. I.; Nokhrin, A. V.; Bakhmet'ev, A. M.; Sandler, N. G.; Kozlova, N. A.; Tryaev, P. V.; Tabachkova, N. Yu.; Mikhailov, A. S.; Ershova, A. V.; Gryaznov, M. Yu.; Chegurov, M. K.; Sysoev, A. N.; Smirnova, E. S.
2017-05-01
The influence of severe plastic deformation on the structural-phase state of grain boundaries in a Ti-4Al-2V (commercial PT3V grade) pseudo-alpha-titanium alloy has been studied. It is established that increase in the strength, plasticity, and corrosion resistance of this alloy is related to the formation of an ultrafine- grained structure. In particular, it is shown that an increase in the resistance to hot-salt intergranular corrosion is due to diffusion-controlled redistribution of aluminum and vanadium atoms at the grain boundaries of titanium formed during thermal severe plastic deformation.
2008-07-01
Tailoring the Properties of Aluminum and Titanium Alloys", Deformation, Processing, and Structure , G. Krauss, ed., ASM International, Materials Park, OH...1984, pp. 279-354. 51. G.W. Kuhlman, "A Critical Appraisal of Thermomechanical Processing of Structural Titanium Alloys", Microstructure/ Property ... titanium alloys is heavily dependent on the allotropic transformation from a hexagonal-close-packed crystal structure (denoted as alpha phase) found at
Very Long Term Oxidation of Ti-48Al-2Cr-2Nb at 704 C In Air
NASA Technical Reports Server (NTRS)
Locci, I. E.; Brady, M. P.; MacKay, R. A.; Smith, J. W.
1997-01-01
Introduction Titanium aluminides are of great interest for intermediate-temperature (600 C - 850 C) aerospace and power generation applications because of their high specific properties. Replacement of conventional superalloys by titanium aluminides offers the potential of significant weight savings. Extensive development efforts over the past IO years have led to the identification of y (TiAl) + alpha(sub 2) (Ti3Al) alloys, such as the G.E. alloy Ti48Al-2Cr-2Nb (all composition in at. %), which offer a balance of room temperature mechanical properties and high-temperature strength retention. The two phase gamma + alpha(sub 2) class of titanium aluminides also offers superior oxidation and embrittlement resistance compared to the alpha(sub 2) and orthorhombic classes of titanium aluminides. However, environmental durability is still a major concern. Significant progress has recently been made in understanding the fundamental aspects of the oxidation behavior of binary gamma + alpha(sub 2) Ti-Al alloys. However, most of this work has concentrated on short term (less than 1000 hours), high temperature (900 C - 1000 C) exposures. Also little data are available in the literature regarding the oxidation behavior of the quaternary and higher order gamma + alpha(sub 2) engineering alloys. This is especially true for the very long-term, low temperature conditions likely to be experienced during engineering applications. The present work addresses this regime to fill this gap by characterizing the oxidation behavior of Ti48Al-2Cr-2Nb for periods up to 9000 h at 704 C in air.
Lu, Chong-Dao; Liu, Hui; Chen, Zhi-Yong; Hu, Wen-Hao; Mi, Ai-Qiao
2005-05-28
The rhodium(II)-catalyzed three-component reaction of diazoacetates, titanium alkoxides and aldehydes is shown to give alpha-alkoxyl-beta-hydroxyl acid derivatives; the novel C-C bond formation reaction is proposed to occur through oxonium ylides derived from diazo compounds and titanium alkoxides, and followed by intermolecular trapping by aldehydes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchi, C.L.; Ragaini, V.
1997-05-01
Fischer-Tropsch synthesis seems to develop the following two consecutive paths: a primary process that involves the formation of {alpha}-olefin products and a secondary process leading to the production of branched isomers and paraffins and requiring the readsorption of primary {alpha}-olefin products. It was already shown by Iglesia et al. that such readsorption steps are of fundamental importance for Ru catalysts and that they occur due to the slow diffusive removal of {alpha}-olefins when the molecular size increases, this resulting in a long intraparticle residence time. In the present paper {alpha}-olefins readsorption was enhanced by changing the metal distribution inside themore » pores of a titanium silicate (ETS-10), modified by ion exchange with alkali metal ions, used as a support for Ru-based catalysts. 24 refs., 5 figs., 3 tabs.« less
Research to Conduct an Exploratory Experimental and Analytical Investigation of Alloys
1980-11-01
Properties of Forged and Heat 31 Treated Alpha-Two Titanium Aluminide Alloys 10 Effect of Interstitial Elements on Room 33 Temperature Notched (Kt-3.9...percent (three to five percent of engine weight) would be achieved with widespread application of the titanium aluminides in rotating hardwarei...vanadium substitution effect was also undertaken. One of the inconsistencies in the previous titanium aluminide investigations has been the poorer
Two-Phase (TiAl+TiCrAl) Coating Alloys for Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P. (Inventor); Smialek, James L. (Inventor); Brindley, William J. (Inventor)
1998-01-01
A coating for protecting titanium aluminide alloys, including the TiAl gamma + Ti3Al (alpha(sub 2)) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C. is disclosed. This protective coating consists essentially of titanium, aluminum. and chromium in the following approximate atomic ratio: Ti(41.5-34.5)Al(49-53)Cr(9.5-12.5)
Modeling of Texture Evolution During Hot Forging of Alpha/Beta Titanium Alloys (Preprint)
2007-06-01
treatment. The approach was validated via an industrial -scale trail comprising hot pancake forging of Ti- 6Al-4V. 15. SUBJECT TERMS titanium... industrial -scale trial comprising hot pancake forging of Ti-6Al-4V. Keywords: Titanium, Texture, Modeling, Strain Partitioning, Variant Selection... industrial -scale forging of Ti- 6Al-4V. 2. Background A brief review of pertinent previous efforts in the area of texture modeling is presented below
NASA Technical Reports Server (NTRS)
Shanabarger, M. R.
1990-01-01
The surfaces of selected uncharged and hydrogen charged alpha-2 and gamma titanium aluminide alloys with Nb additions were characterized by Auger electron (AES) and reflected electron energy loss (REELS) spectroscopy. The alloy surfaces were cleaned before analysis at room temperature by ion sputtering. The low energy (500 eV) ion sputtering process preferentially sputtered the surface concentration. The surface concentrations were determined by comparing AES data from the alloys with corresponding data from elemental references. No differences were observed in the Ti or Nb Auger spectra for the uncharged and hydrogen charged alloys, even though the alpha-2 alloy had 33.4 atomic percent dissolved hydrogen. Also, no differences were observed in the AES spectra when hydrogen was adsorbed from the gas phase. Bulk plasmon energy shifts were observed in all alloys. The energy shifts were induced either by dissolved hydrogen (alpha-2 alloy) or hydrogen adsorbed from the gas phase (alpha-2 and gamma alloys). The adsorption induced plasmon energy shifts were greatest for the gamma alloy and cp-Ti metal.
NASA Astrophysics Data System (ADS)
Kodli, B. K.; Saxena, K. K.; Dey, S. R.; Pancholi, V.; Bhattacharjee, A.
2015-04-01
IMI 834 Titanium alloy is a near alpha (hcp) titanium alloy used for high temperature applications with the service temperature up to 600°C. Generally, this alloy is widely used in gas turbine engine applications such as low pressure compressor discs. For these applications, good fatigue and creep properties are required, which have been noticed better in a bimodal microstructure, containing 15-20% volume fraction of primary alpha grains (αp) and remaining bcc beta (β) grains transformed secondary alpha laths (αs). The bimodal microstructure is achieved during processing of IMI 834 in the high temperature α+β region. The major issue of bimodal IMI 834 during utilization is its poor dwell fatigue life time caused by textured macrozones. Textured macrozone is the spatial accumulation of similar oriented grains in the microstructure generated during hot processing in the high temperature α+β region. Textured macrozone can be mitigated by controlling the hot deformation with certain strain rate under stable plastic conditions having β grains undergoing dynamic recrystallization. Hence, a comprehensive study is required to understand the deformation behavior of α and β grains at different strain rates in that region. Hot compression tests up to 5°% strain of the samples are performed with five different strain rates i.e. 10-3 s-1, 10-2 s-1, 10-1 s-1, 1 s-1 and 10 s-1 at 1000°C using Gleeble 3800. The resultant bimodal microstructure and the texture studies of primary alpha grains (αp) and secondary alpha laths (αs) are carried out using scanning electron microscopy (SEM)-electron back scattered diffraction (EBSD) method.
Weaver, Jordan S.; Priddy, Matthew W.; McDowell, David L.; ...
2016-09-01
Here, spherical nanoindentation combined with electron back-scattered diffraction has been employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti of two different compositions (in two different titanium alloys). Data analyses protocols needed to reliably extract the desired properties of interest are extended and demonstrated in this paper. Specifically, the grain-scale mechanical response is extracted in the form of indentation stress-strain curves for commercially pure (CP-Ti) alpha-Ti and alloyed (Ti-64) titanium from measurements on polycrystalline samples. The results are compared with responses of single crystals and nanoindentation tests (hardness and modulus) from the literature, and the measuredmore » indentation moduli are validated using crystal-elastic finite element simulations. The results obtained in this study show that (i) it is possible to characterize reliably the elastic and plastic anisotropy of alpha-Ti (hcp) of varying alloying contents with spherical nanoindentation stress-strain curves, (ii) the indentation modulus of alpha-Ti-64 is 5–10% less than CP-Ti, and (iii) the indentation yield strength of alpha-Ti-64 is 50–80% higher than CP-Ti.« less
A film-rupture model of hydrogen-induced, slow crack growth in alpha-beta titanium
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1975-01-01
The appearance of the terrace like fracture morphology of gaseous hydrogen induced crack growth in acicular alpha-beta titanium alloys is discussed as a function of specimen configuration, magnitude of applied stress intensity, test temperature, and hydrogen pressure. Although the overall appearance of the terrace structure remained essentially unchanged, a distinguishable variation is found in the size of the individual terrace steps, and step size is found to be inversely dependent upon the rate of hydrogen induced slow crack growth. Additionally, this inverse relationship is independent of all the variables investigated. These observations are quantitatively discussed in terms of the formation and growth of a thin hydride film along the alpha-beta boundaries and a qualitative model for hydrogen induced slow crack growth is presented, based on the film-rupture model of stress corrosion cracking.
2008-04-01
Hot Working of Titanium 5a. CONTRACT NUMBER F33615-03-D-5801-0043 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61202F 6 . AUTHOR(S) A.A...micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ] linked local orientations...microstructures can be developed in alpha/beta titanium alloys by TMP [2- 4 ], namely, fully lamellar, fully equiaxed, and duplex (bi-modal). A mixture
Impurities block the alpha to omega martensitic transformation in titanium.
Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W
2005-02-01
Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.
Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)
1996-01-01
A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.
2008-02-01
three broad types of microstructures can be developed in alpha/beta titanium alloys by TMP [2- 4 ], namely, fully lamellar, fully equiaxed, and...32-45. 4 . M. Peters, G. Luetjering, in: Titanium 80: Science and Technology, ed. H. Kimura and O. Izumi, Kyoto, Japan, 1980, pp. 925-938. 5. G...Lutjering, J.C. Williams, in: Titanium , Springer-Verlag, Berlin, Germany, 2003, pp.220- 224. 6 . A.A. Salem, M.G. Glavicic, S.L. Semiatin, Materials
NASA Astrophysics Data System (ADS)
Nag, Soumya
Microstructural evolution in beta Titanium alloys is an important factor that governs the properties exhibited by them. Intricate understanding of complex phase transformations in these alloys is vital to tailor their microstructures and in turn their properties to our advantage. One such important subject of study is the nucleation and growth of alpha precipitates triggered by the compositional instabilities in the beta matrix, instilled in them during non equilibrium heat treatments. The present work is an effort to investigate such a phenomenon. Here studies have been conducted primarily on two different beta-Titanium alloys of commercial relevance- Ti5553 (Ti-5Al-5Mo-5V-3Cr-0.5Fe), an alloy used in the aerospace industry for landing gear applications and, TNZT (Ti-35Nb-7Zr-5Ta), a potential load bearing orthopedic implant alloy. Apart from the effect of thermal treatment on these alloys, the focus of this work is to study the interplay between different alpha and beta stabilizers present in them. For this, advanced nano-scale characterization tools such as High Resolution STEM, High Resolution TEM, EFTEM and 3D Atom Probe have been used to determine the structure, distribution and composition of the non equilibrium instabilities such as beta' and o, and also to investigate the subsequent nucleation of stable alpha. Thus in this work, very early stages of phase separation via spinodal decomposition and second phase nucleation in titanium alloys are successfully probed at an atomic resolution. For the first time, atomically resolved HRSTEM 'Z'-contrast image is recorded showing modulated structures within the as-quenched beta matrix. Also in the same condition HRTEM results showed the presence of nanoscale alpha regions. These studies are revalidated by conventional selected area diffraction and 3D atom probe reconstruction results. Also TEM dark field and selected are diffraction studies are conducted to understand the effect of quenching and subsequent aging of o precipitates. Using 3D atom probe tomography, the elemental partitioning involved in coarsening of o is investigated in detail. Finally by performing a series of well planned heat treatments, an effort is made to reason out the influence of these instabilities on the morphology, volume fraction and nucleation site of alpha.
Silicon and Titanium Correlation in Selected Rocks at Gale Crater, Mars
2015-12-17
The yellow triangles on this graph indicate concentrations of the elements titanium and silicon in selected rock targets with high silica content analyzed by the Alpha Particle X-ray Spectrometer (APXS) instrument on NASA's Curiosity rover in Mars' Gale Crater. The pattern shows a correlation between enriched silicon content and enriched titanium content. Titanium is difficult to mobilize in weathering environments, and this correlation suggests that both titanium and silicon remain as the residue of acidic weathering. Ongoing research aims to distinguish between that possible explanation for silicon enrichment and an alternative of mobilized silicon being added to the site (see PIA20275). As a general comparison with these selected high-silica targets in Gale Crater, the gray dots in the graph show the range of titanium and silicon concentrations in all Martian targets analyzed by APXS instruments on three Mars rovers at three different areas of Mars. http://photojournal.jpl.nasa.gov/catalog/PIA20274
Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides
Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles
1998-01-01
Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.
Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides
Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.
1998-01-20
Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.
Component Activity Measurements in the Ti-Al-O System by Knudsen Cell Mass Spectrometry
NASA Technical Reports Server (NTRS)
Copland, Evan; Jacobson, Nathan S.
2003-01-01
Titanium-aluminides (containing (alpha)2-Ti3Al and gamma-TiAl intermetallic phases) have received continued research focus due to their potential as low-density materials for structural applications at intermediate temperatures. However their application above about 850C is hindered by poor oxidation resistance, characterized by the formation of a non-protective TiO2+Al2O3 scale and an oxygen-enriched subsurface zone. Consistent with this are measured titanium and aluminum activities in "oxygen-free" titanium-aluminides, which indicate Al2O3 is only stable for aluminum concentrations greater then 54 atom percent at 1373 K. However, the inability to form a protective Al2O3 scale is in apparent conflict with phase diagram studies, as experimental isothermal sections of the Ti-Al-O system show gamma-TiAl + alpha2-Ti3Al structures are in equilibrium only with Al2O3. The apparent resolution to this conflict lies in the inclusion of oxygen effects in the thermodynamic measurements
COMMERCIALLY PURE TITANIUM-ARSENIC ALLOYS. CONSTITUTION AND ROOM- TEMPERATURE TENSILE PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, R.
1960-02-01
Titanium--arsenic alloys undergo a peritectoid reaction at approximately 900 deg C, in which beta solid solution reacts with a compound, shown to be Ti/sub 4/As, to form alpha phase containing approximately 0.05 wt.% (0.03 at.%) arsenic. Solubility of arsenic in beta phase increases slowly with temperature, reaching a maximum of approximately 1.6 wt.% (1 at.%) at the eutectic temperature, 1351 plus or minus 15 deg C. The eutectic composition is approximately 17.5 wt.% (12 at.%) arsenic. Up to 1 wt.% arsenic exerts only a slight strengthening effect on commercially pure titanium, accompanied by a small loss in ductility. Solution-treatment atmore » temperatures in the beta field increases the strength above the level obtained by annealing in the ( alpha + Ti/ sub 4/As) field and this strengthening can be further enhanced by ageing at 550 deg C. Optimum properties obtainable are similar to those of low-strength titunium alloys. (auth)« less
2011-10-01
crack growth, microstructure, EBSD, fractography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR NUMBER OF PAGES 6 19a...differences in thermomechanical processing routes have been correlated with variations in fatigue life through the use of quantitative fractography ...Keywords: fatigue, crack initiation, crack growth, microstructure, EBSD, fractography 1. Introduction Two-phase titanium alloys have the unique
Producing Foils From Direct Cast Titanium Alloy Strip
NASA Technical Reports Server (NTRS)
Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.
1996-01-01
This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.
2012-01-01
submitted to Metallurgical Transactions. This document contains color. 14. ABSTRACT While the role of borides on the microstructure of titanium...Ohio, U.S.A. Abstract While the role of borides on the microstructure of titanium alloys has been discussed in many previous reports, this paper...morphology of precipitates nucleating from boride precipitates present in the matrix of a titanium alloy; and (b) to investigate the role of presence or
Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.
Gronostajski, Zbigniew; Bandoła, P; Skubiszewski, T
2010-01-01
The paper presents the method of the argon - shielded hot pressing of titanium alloy (Ti6A14V) powder (used in medical industry). The powders produced in the GA (gas atomization) process and in the HDH (hydride - dehydride) process were used in the experiments. A pressing process was conducted at a temperature of 800-850 degrees C for different lengths of time. An unoxidized sintered material, nearly as dense as a solid material and having a lamellar structure (alpha+beta), was obtained from the titanium alloy powder produced in the HDH process.
Preliminary Material Properties Handbook, SI Units
1999-12-01
5.5 Beta, Near-Beta, and Metastable Titanium Alloys 5-11 References 5-17 Chapter 6. Heat-Resistant Alloys 6.1 General 6-1 6.2 Iron- Chromium ...elements as vanadium, molybdenum, iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be...ALLOYS Heat-resistant alloys are arbitrarily defined as iron alloys richer in alloy content than the 18 percent chromium , 8 percent nickel types
Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M
2012-12-01
To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.
In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding
NASA Astrophysics Data System (ADS)
Savalani, M. M.; Ng, C. C.; Li, Q. H.; Man, H. C.
2012-01-01
Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.
An Oxidation-Resistant Coating Alloy for Gamma Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P.; Smialek, James L.; Brindley, William J.
1997-01-01
Titanium aluminides based on the g-phase (TiAl) offer the potential for component weight savings of up to 50 percent over conventional superalloys in 600 to 850 C aerospace applications. Extensive development efforts over the past 10 years have led to the identification of "engineering" gamma-alloys, which offer a balance of room-temperature mechanical properties and high-temperature strength retention. The gamma class of titanium aluminides also offers oxidation and interstitial (oxygen and nitrogen) embrittlement resistance superior to that of the alpha(sub 2) (Ti3Al) and orthorhombic (Ti2AlNb) classes of titanium aluminides. However, environmental durability is still a concern, especially at temperatures above 750 to 800 C. Recent work at the NASA Lewis Research Center led to the development of an oxidation-resistant coating alloy that shows great promise for the protection of gamma titanium aluminides.
NASA Astrophysics Data System (ADS)
Pan, Ling
Motivated by the great potential applications of gamma titanium aluminide based alloys and the important effect of diffusion on the properties of gamma-TiAl/alpha2-Ti3Al two-phase lamellar structure, we conduct this thesis research to explore the microstructural evolution and interdiffusion behavior, and their correlations in multi-phase solid state diffusion couples made up of pure titanium and polysynthetically-twinned (PST) Ti-49.3 at.% Al "single" crystal, in the temperature range of 973--1173 K. The diffusion couples are prepared by high vacuum hot-pressing, with the diffusion direction parallel to the lamellar planes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) are employed to observe the microstructure at various interfaces/interphases. A reaction zone (RZ) of polycrystalline alpha 2-Ti3Al phase forms along the PST Ti-Al/Ti bonding interface having a wavy interface with the PST crystal and exhibits deeper penetration in alpha2 lamellae, consisting of many fine alpha2 and secondary gamma laths, than in primary gamma lamellae. Direct measurement of the RZ thickness on SEM back-scattered electron images reveals a parabolic growth of the RZ, indicating a macroscopically diffusion-controlled growth. Concentration profiles from Ti, through the RZ, into the alpha2 lamellae of the PST crystal are measured by quantitative energy-dispersive x-ray spectroscopy (EDS) in a scanning transmission electron microscope (STEM). A plateau of composition adjacent to the RZ/(mixed alpha2 lath in PST) interface forms in the deeply penetrated RZ grains, implying a diffusion barrier crossing the interface and some extent of interface control in the RZ grain growth. The interdiffusion coefficient is evaluated both independent of composition and as a function of composition. No significant concentration dependence of the interdiffusion coefficients is observed using Boltzmann-Matano analysis. The temperature dependence of the interdiffusion coefficients obeys the Arrhenius relationship with a pre-exponential factor of D 0 = (7.56 +/- 7.14) x 10-5 m2/s and an activation enthalpy of Q = 255.6+8.9-8.3 kJ/mol = (2.65 +/- 0.09) eV/atom. The initial nucleation stage of the RZ grains plays an important role in the later microstructural evolution as does the local mass balance. The interfacial energy and the strain energy in the deeply penetrated RZ grains are possible reasons for the plateau.
Correlation of creep rate with microstructural changes during high temperature creep
NASA Technical Reports Server (NTRS)
Young, C. T.; Sommers, B. R.; Lytton, J. L.
1977-01-01
Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.
Wang, Zhenlin; Hu, Zhiqiang; Zhang, Dawei; Zhuo, Mengchuan; Cheng, Jiwei; Xu, Xingping; Xing, Yongming; Fan, Jie
2016-01-01
Titanium implants are known for their bone bonding ability. However, the osseointegration may be severely disturbed in the inflammation environment. In order to enhance osseointegration of the implant in an inflamed environment, the small interfering RNA (siRNA) targeting tumor necrosis factor alpha (TNF-α) was used to functionalize titanium surface for gene silencing. The chitosan-tripolyphosphate-hyaluronate complexes were used to formulate nanoparticles (NPs) with siRNA, which were adsorbed directly by the anodized titanium surface. The surface characterization was analyzed by scanning electron microscope, atomic force microscopy, as well as contact angle measurement. The fluorescence microscope was used to monitor the degradation of the layer. The coculture system was established with mesenchymal stem cells (MSCs) grown directly on functionalized titanium surface and RAW264.7 cells (preactivated by lipopolysaccharide) grown upside in a transwell chamber. The transfection and knockdown efficiency of TNF-α in RAW264.7 cells were determined by fluorescence microscope, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. The cytoskeleton and osteogenic differentiation of MSCs were also analyzed. Regular vertical aligned nanotubes (~100 nm diameter and ~300 nm length) were generated after anodization of polished titanium. After loading with NPs, the nanotubes were filled and covered by a layer of amorphous particles. The surface topography changed and wettability decreased after covering with NPs. As expected, a burst degradation of the film was observed, which could provide sufficient NPs in the released supernatant and result in transfection and knockdown effects in RAW264.7 cells. The cytoskeleton arrangement of MSCs was elongated and the osteogenic differentiation was also significantly improved on NPs loading surface. In conclusion, the siRNA decorated titanium implant could simultaneously suppress inflammation and improve osteogenesis, which may be suitable for peri-implant bone formation under inflammatory conditions.
HCP to FCT + precipitate transformations in lamellar gamma-titanium aluminide alloys
NASA Astrophysics Data System (ADS)
Karadge, Mallikarjun Baburao
Fully lamellar gamma-TiAl [alpha2(HCP) + gamma(FCT)] based alloys are potential structural materials for aerospace engine applications. Lamellar structure stabilization and additional strengthening mechanisms are major issues in the ongoing development of titanium aluminides due to the microstructural instability resulting from decomposition of the strengthening alpha 2 phase. This work addresses characterization of multi-component TiAl systems to identify the mechanism of lamellar structure refinement and assess the effects of light element additions (C and Si) on creep deformation behavior. Transmission electron microscopy studies directly confirmed for the first time that, fine lamellar structure is formed by the nucleation and growth of a large number of basal stacking faults on the 1/6<112¯0> dislocations cross slipping repeatedly into and out of basal planes. This lamellar structure can be tailored by modifying jog heights through chemistry and thermal processing. alpha 2 → gamma transformation during heating (investigated by differential scanning calorimetry and X-ray diffraction) is a two step process involving the formation of a novel disordered FCC gamma' TiAl [with a(gamma') = c(gamma)] as an intermediate phase followed by ordering. Addition of carbon and silicon induced Ti2AlC H-type carbide precipitation inside the alpha2 lath and Ti 5(Al,Si)3 zeta-type silicide precipitation at the alpha 2/gamma interface. The H-carbides preserve alpha2/gamma type interfaces, while zeta-silicide precipitates restrict ledge growth and interfacial sliding enabling strong resistance to creep deformation.
Walker, Mary P; White, Richard J; Kula, Katherine S
2005-06-01
Titanium-based alloys have high corrosion resistance because they form a thin, stable oxide layer. Nevertheless, fluoride prophylactic agents can cause corrosion and associated discoloration of titanium-based orthodontic wires. The purpose of this investigation was to study the effects of fluoride prophylactic agents on the mechanical properties of nickel-titanium (Ni-Ti) and copper-nickel-titanium (Cu-Ni-Ti) orthodontic archwires. Preformed rectangular Ni-Ti and Cu-Ni-Ti wires were immersed in either an acidulated fluoride agent, a neutral fluoride agent, or distilled water (control) for 1.5 hours at 37 degrees C. After immersion, the loading and unloading elastic modulus and yield strength of the wires were measured with a 3-point bend test in a water bath at 37 degrees C, in accordance with the criteria in the current American National Standard/American Dental Association Specification No. 32 for Orthodontic Wires (2000). Scanning electron microscopy was also used to characterize the effects of the fluoride treatment on the wire topography. Unloading mechanical properties of Ni-Ti orthodontic wires were significantly decreased after exposure to both fluoride agents (1-way analysis of variance [ANOVA] and Dunnett's post hoc, alpha =.05); however, Cu-Ni-Ti wire mechanical properties were not significantly affected by either fluoride agent (1-way ANOVA, alpha =.05). Corrosive changes in surface topography were observed for both wires, with Cu-Ni-Ti appearing to be more severely affected. The results suggest that using topical fluoride agents with Ni-Ti wire could decrease the functional unloading mechanical properties of the wire and contribute to prolonged orthodontic treatment.
2007-07-01
damage totally. 15. SUBJECT TERMS Ti- 6Al - 4V , strain, stress, cavity closure, hot working, titanium alloy 16. SECURITY CLASSIFICATION OF: 17...stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed-torsion tests...strain path and stress state on deformation and cavitation during hot working of Ti- 6Al - 4V was established via torsion-compression and reversed
2007-06-23
6 %AI-2%Sn- 4 %Zr- 6 %Mo in the very high cycle regime. The microstructure is a two-phase structure with primary a grains (ap grains) in a transformed [3...aluminum [2], magnesium [3], nickel-based [ 4 ], and titanium [5,6] alloy systems. Fatigue crack initiation is known to consume the majority of fatigue...microstructural neighborhood affects this process. In fatigue studies of alpha + beta titanium alloys, [ 6 -9] cyclic deformation localization is first observed in
Thermal coatings for titanium-aluminum alloys
NASA Technical Reports Server (NTRS)
Cunnington, George R.; Clark, Ronald K.; Robinson, John C.
1993-01-01
Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.
NASA Astrophysics Data System (ADS)
Bachri, A.; Elmhamdi, A.; Hawron, M.; Grant, P.; Zazoum, B.; Martin, C.
2017-10-01
The xenon time projection chamber (TPC) promises a novel detection method for neutrinoless double-beta decay (0ν β β ) experiments. The TPC is capable of discovering the rare 0ν β β ionization signal of a distinct topological signature, with a decay energy Qββ = 2.458 MeV . However, more frequent internal (within TPC) and external events are also capable of depositing energy in the range of the Qβ β -value inside the chamber, thus mimicking 0ν β β or interfering with its direct observation. In the following paper, we illustrate a methodology for background radiation evaluation, assuming a basic cylindrical design for a toy titanium TPC that is capable of containing 100 kg of xenon gas at 20 atm pressure; we estimate the background budget and analyze the most prominent problematic events via theoretical calculation. Gamma rays emitted from nuclei of 214Bi and 208Tl present in the outer-shell titanium housing of the TPC are an example of such events for which we calculate probabilities of occurrences. We also study the effect of alpha-neutron (α-n)-induced neutrons and calculate their rate. Alpha particles which are created by the decay of naturally occurring uranium and thorium present in most materials, can react with the nucleus of low Z elements, prompting the release of neutrons and leading to thermal neutron capture. Our calculations suggest that the typical polytetrafluoroethylene (PTFE) inner coating of the chamber would constitute the primary material for neutron production, specifically; we find that the fluorine component of Teflon is much more likely to undergo an (α-n) reaction. From known contamination, we calculate an alpha production rate to be 5.5 × 107 alpha/year for the highest-purity titanium vessel with a Teflon lining. Lastly, using measurements of neutron flux from alpha bombardment, we estimate the expected neutron flux from the materials of the proposed toy TPC and identify all gamma rays (prompt or delayed, of energies comparable to the Qβ β -value) originating from thermal neutron capture with all stable elemental isotopes present in the TPC. We show that to limit the most probable reactions to a rate of one event per year or less, the neutron flux would have to be reduced to (3-6) × 10-10 cm-2ṡs-1. The predictions of our crude theoretical calculation are in good agreement with full simulation of TPC radiation background by existing experimental collaboration using xenon for 0ν β β experiment.
The Origins of Microtexture in Duplex Ti Alloys (Preprint)
2008-06-01
To) June 2008 Journal Article Preprint 4 . TITLE AND SUBTITLE THE ORIGINS OF MICROTEXTURE IN DUPLEX Ti ALLOYS (PREPRINT) 5a. CONTRACT NUMBER In...house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) M.G. Glavic (UES, Inc.) B.B. Bartha (United Technologies Corporation...applicable to duplex alpha/beta titanium microstructures. The crystallographic coherency of the primary and secondary alpha phase with the prior beta
Low-Temperature Forming of Beta Titanium Alloys
NASA Technical Reports Server (NTRS)
Kaneko, R. S.; Woods, C. A.
1983-01-01
Low cost methods for titanium structural fabrication using advanced cold-formable beta alloys were investigated for application in a Mach 2.7 supersonic cruise vehicle. This work focuses on improving processing and structural efficiencies as compared with standard hot formed and riveted construction of alpha-beta alloy sheet structure. Mechanical property data and manufacturing parameters were developed for cold forming, brazing, welding, and processing Ti-15V-3Cr-3Sn-3Al sheet, and Ti-3Al-8V-6Cr-4Zr on a more limited basis. Cost and structural benefits were assessed through the fabrication and evaluation of large structural panels. The feasibility of increasing structural efficiency of beta titanium structure by selective reinforcement with metal matrix composite was also explored.
Environmental Studies on Titanium Aluminide Alloys
NASA Technical Reports Server (NTRS)
Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.
2005-01-01
Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Been, J.
1999-07-01
Ti-5Al-1Sn-1Zr-1V-O.8M0 is a near alpha titanium alloy of intermediate strength, designed for high toughness, good weldability, stress-corrosion cracking resistance, and room temperature creep resistance. Ideally suited for marine environments, Ti 5111 offers the means to aid the navy in fulfilling their goals of reducing maintenance and life cycle costs, reducing topside and overall weight, improve survivability and increase reliability. The alloy was recently included in the ASTM bar and plate specifications as ASTM Grade 32.
Anisotropy of the Hot Plastic Deformation of Ti-6Al-4V Single-Colony Samples (Preprint)
2009-04-01
April 2009 Journal Article Preprint 01 April 2009- 01 April 2009 4 . TITLE AND SUBTITLE ANISOTROPY OF THE HOT PLASTIC DEFORMATION OF Ti-6Al-4V SINGLE...COLONY SAMPLES (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) A.A. Salem and S.L...resistance, and low density, Ti-6Al-4V is the most commonly used alpha/beta titanium alloy. It accounts for approximately 80% of the total titanium used in
Fundamental Studies of Beta Phase Decomposition Modes in Titanium Alloys
1989-01-31
and H. I. Aaronson, "The Carbon-Carbon Interaction Energy in Alpha Fe- C Alloys", Acta Met., in press. Raju V. Ramanujan , H. I. Aaronson and P. H. Leo...ACCESSIO% %. C 20332 61102F 2306 Al 11 TITLE (Include Security Classification) FUNDAMENTAL STUDIES OF BETA PHASE DECOMPOSITION MODES IN TITANIUM ALLOYS 12...SECUR1Tv CLASSiI-CAtION M) UNCLASSIFIED/UNLIMITED C SAME AS RPT C ] YfC ’SERS UNCLASSIFIED 22a NAME OF RESPONSIBLE INOI’JIDUAL 22b TELEPwONE (Include Area
An X-ray fluorescence spectrometer and its applications in materials studies
NASA Technical Reports Server (NTRS)
Singh, J. J.; Han, K. S.
1977-01-01
An X-ray fluorescence system based on a Co(57) gamma-ray source has been developed. The system was used to calculate the atomic percentages of iron implanted in titanium targets. Measured intensities of Fe (k-alpha + k-beta) and Ti (k-alpha + k-beta) X-rays from the Fe-Ti targets are in good agreement with the calculated values based on photoelectric cross sections of Ti and Fe for the Co(57) gamma rays.
Dielectronic satellite spectra of hydrogen-like titanium (Ti XXII)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitter, M.; von Goeler, S.; Cohen, S.
High resolution spectra of the Ly ..cap alpha../sub 1/ and Ly ..cap alpha../sub 2/ lines of hydrogenlike titanium, TiXXII, and the associated dielectronic satellites which are due to transitions 1snl-2pnl with n greater than or equal to 2, have been observed from tokamak discharges with auxiliary ion cyclotron heating (ICRH) with central electron temperatures of 2 keV and central electron densities of 8 x 10/sup 13/ cm/sup -3/ on the Princeton Large Torus (PLT). The data have been used for a detailed comparison with theoretical predictions based on the Z - expansion method and Hartree - Fock calculations. The resultsmore » obtained with the Z - expansion method are in excellent agreement with the observed spectral data except for minor discrepancies between the theoretical and experimental wavelengths of 0.0003 A for the n = 2 satellites and of 0.0001 A for the separation of the Ly ..cap alpha../sub 1/ and Ly ..cap alpha../sub 2/ lines. Very good agreement with the experimental data is also obtained for the results from the Hartree - Fock calculations though somewhat larger discrepancies (approx. = 0.0009 A) exist between experimental and theoretical wavelengths which are systematically too small. The observed spectra are used for diagnosis of the central ion and electron temperatures of the PLT discharges and for a measurement of the dielectronic recombination rate coefficient of TiXXII.« less
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush; ...
2016-01-20
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Environmental protection to 922K (1200 F) for titanium alloys
NASA Technical Reports Server (NTRS)
Groves, M. T.
1973-01-01
Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.
NASA Astrophysics Data System (ADS)
Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo
2015-07-01
The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The immersion test in the culture medium suggested that one of causes be probably more proteins adsorbed on TNT than on pTi.
Fundamental Studies of Beta Phase Decomposition Modes in Titanium Alloys.
1988-01-31
to support the P.l.’s accelerating paperwriting activities on the bainite reaction in steel . This ,# ferrous-oriented effort is being actively aided by...kinetics of the proeutectoid alpha, the massive alpha and the bainite reactions in Ti-X alloys. Because that portion of the beta matrix which is not...allotriomorphs will be completed at the same time. During the latter portion of Mr. Furuhara’s research, this program will re-enter bainite studies as he
NASA Technical Reports Server (NTRS)
Mendiratta, M. G.
1973-01-01
Appreciable strength levels were retained to 650 C in a Ti-10Al-1Si alloy aged in the (alpha + alpha sub 2) phase field to yield optimum room temperature strength and ductility. The aging treatment precipitated a uniform distribution of alpha sub 2-particles such that, at room temperature, dislocations bypassed instead of shearing the particles at low strains. Specimens fractured at room temperature exhibited fine uniform dimples even for those aging conditions that imparted no macroscopic ductility. The main crack appeared to propagate through the planar slip bands that had cut through the alpha sub 2-particles. A two-step aging process produced a higher volume fraction of bimodally distributed alpha sub 2-particles that led to higher strength levels at elevated temperatures. Both for the single size and the bimodal alpha sub 2-particle distributions, elevated-temperature deformation structures consisted mainly of planar slip bands that sheared through the alpha sub 2-particles.
Investigation of Deuterium Loaded Materials Subject to X-Ray Exposure
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.; Steinetz, Bruce M.; Hendricks, Robert C.; Martin, Richard E.; Forsley, Lawrence P.; Daniels, Christopher C.; Chait, Arnon; Pines, Vladimir; Pines, Marianna; Penney, Nicholas;
2017-01-01
Results are presented from an exploratory study involving x-ray irradiation of select deuterated materials. Titanium deuteride plus deuterated polyethylene, deuterated polyethylene alone, and for control, hydrogen-based polyethylene samples and nondeuterated titanium samples were exposed to x-ray irradiation. These samples were exposed to various energy levels from 65 to 280 kV with prescribed electron flux from 500 to 9000 µA impinging on a tungsten braking target, with total exposure times ranging from 55 to 280 min. Gamma activity was measured using a high-purity germanium (HPGe) detector, and for all samples no gamma activity above background was detected. Alpha and beta activities were measured using a gas proportional counter, and for select samples beta activity was measured with a liquid scintillator spectrometer. The majority of the deuterated materials subjected to the microfocus x-ray irradiation exhibited postexposure beta activity above background and several showed short-lived alpha activity. The HPE and nondeuterated titanium control samples exposed to the x-ray irradiation showed no postexposure alpha or beta activities above background. Several of the samples (SL10A, SL16, SL17A) showed beta activity above background with a greater than 4s confidence level, months after exposure. Portions of SL10A, SL16, and SL17A samples were also scanned using a beta scintillator and found to have beta activity in the tritium energy band, continuing without noticeable decay for over 12 months. Beta scintillation investigation of as-received materials (before x-ray exposure) showed no beta activity in the tritium energy band, indicating the beta emitters were not in the starting materials.
Szmukler-Moncler, S; Bischof, M; Nedir, R; Ermrich, M
2010-09-01
Acid etching is a popular method to texture the surface of dental implants. During etching, the titanium oxide protective layer is dissolved and small native hydrogen ions diffuse into the unprotected implant surface. They enrich the implant surface with hydrogen and precipitate into titanium hydride (TiH). The aim of this study was to measure the concentration of TiH at the implant surface and the total concentration of Hydrogen at five commercially available implant systems, made of either commercially pure (cp) titanium or titanium alloy. X-Ray diffraction (XRD) was conducted on each implant system to determine the compounds present at the implant surface. Following a TiH(2)/Ti calibration curve, the concentration of TiH was determined. Concentration of hydrogen in the implants was measured by the inert gas fusion thermal conductivity/infrared detection method. XRD data showed that TiH was present on all cp titanium implants but not on the alloyed implants. TiH concentration varied between 5% and 37%. Hydrogen concentration varied between 43 and 108 ppm, no difference in uptake was found between the cp titanium and alloyed implants. Low solubility of hydrogen in alpha-titanium is responsible for precipitation into TiH. Stronger etching conditions led to higher concentration of TiH2-x. High solubility of hydrogen in the beta-phase of the alloy is preventing hydrogen from precipitating into TiH. All implants, even those lacking TiH at the surface, were enriched with hydrogen. In all implants, hydrogen concentration was within the normative limit of 130 ppm.
The fractography-modeling link in cleavage fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, A.W.
1997-12-31
Cleavage fracture has historically been modelled, out of necessity, in rather idealized terms. In real materials, however, there are a number of difficulties in linking such models with metallographic and fractographic observations. Some of the most vivid examples occur for {alpha}{sub 2} titanium aluminide alloys, in which, when the microstructure contains primary {alpha}{sub 2} particles, the primary particles crack first. When basketweave or Widmanstaetten structures of {alpha}{sub 2} laths comprise the microstructure, it appears that individual laths crack first. And in colony structures, cracking occurs first across the {alpha}{sub 2} lath colonies. Both detailed fractographic observations, and also a statisticalmore » model for brittle fracture by failure of weakest links, have been developed. The extent to which this can be interpreted in classical cleavage terms will be discussed.« less
Micromechanical Characterization and Texture Analysis of Direct Cast Titanium Alloys Strips
NASA Technical Reports Server (NTRS)
2000-01-01
This research was conducted to determine a post-processing technique to optimize mechanical and material properties of a number of Titanium based alloys and aluminides processed via Melt Overflow Solidification Technique (MORST). This technique was developed by NASA for the development of thin sheet titanium and titanium aluminides used in high temperature applications. The materials investigated in this study included conventional titanium alloy strips and foils, Ti-1100, Ti-24Al-11Nb (Alpha-2), and Ti-48Al-2Ta (Gamma). The methodology used included micro-characterization, heat-treatment, mechanical processing and mechanical testing. Characterization techniques included optical, electron microscopy, and x-ray texture analysis. The processing included heat-treatment and mechanical deformation through cold rolling. The initial as-cast materials were evaluated for their microstructure and mechanical properties. Different heat-treatment and rolling steps were chosen to process these materials. The properties were evaluated further and a processing relationship was established in order to obtain an optimum processing condition. The results showed that the as-cast material exhibited a Widmanstatten (fine grain) microstructure that developed into a microstructure with larger grains through processing steps. The texture intensity showed little change for all processing performed in this investigation.
Isotopic analysis of uranium in natural waters by alpha spectrometry
Edwards, K.W.
1968-01-01
A method is described for the determination of U234/U238 activity ratios for uranium present in natural waters. The uranium is coprecipitated from solution with aluminum phosphate, extracted into ethyl acetate, further purified by ion exchange, and finally electroplated on a titanium disc for counting. The individual isotopes are determined by measurement of the alpha-particle energy spectrum using a high resolution low-background alpha spectrometer. Overall chemical recovery of about 90 percent and a counting efficiency of 25 percent allow analyses of water samples containing as little as 0.10 ?g/l of uranium. The accuracy of the method is limited, on most samples, primarily by counting statistics.
1994-02-15
Solutions [49] A-Etch 25 (mL) Hydrofluoric Acid (HF 50%) 25 Nitric Acid Cone (HN03) 50 Glycerine R-Etch 18.5 gm (17 mL) Benzalkonium Chloride 35 (mL... Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 1994 3. REPORT TYPE AND DATES COVERED Final 4...K and a 60% reduction in area was given for all of the alloys. This work was found to be sufficient to recrystallize all of the alloys within 12
Microstructural Evolution During Friction Stir Welding of Near-Alpha Titanium
2009-02-01
completion of the weld and the weld end was quenched with cold water. This process was intended to preserve the microstructure surrounding the...limited the statistics supporting this result. 16 Mironov et al. [31] also measured the texture developed from friction stir processing of pure iron
Sittig, C; Textor, M; Spencer, N D; Wieland, M; Vallotton, P H
1999-01-01
The biocompatibility of commercially pure titanium and its alloys is closely related to their surface properties, with both the composition of the protecting oxide film and the surface topography playing an important role. Surfaces of commercially pure titanium and of the two alloys Ti-6Al-7Nb and Ti-6Al-4V (wt %) have been investigated following three different pretreatments: polishing, nitric acid passivation and pickling in nitric acid-hydrogen fluoride. Nitric acid treatment is found to substantially reduce the concentration of surface contaminants present after polishing. The natural 4-6 nm thick oxide layer on commercially pure titanium is composed of titanium oxide in different oxidation states (TiO2, Ti2O3 and TiO), while for the alloys, aluminium and niobium or vanadium are additionally present in oxidized form (Al2O3, Nb2O5 or V-oxides). The concentrations of the alloying elements at the surface are shown to be strongly dependent on the pretreatment process. While pickling increases the surface roughness of both commercially pure titanium and the alloys, different mechanisms appear to be involved. In the case of commercially pure titanium, the dissolution rate depends on grain orientation, whereas in the case of the two alloys, selective alpha-phase dissolution and enrichment of the beta-phase appears to occur. Copyright 1999 Kluwer Academic Publishers
Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels
NASA Technical Reports Server (NTRS)
Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.
1983-01-01
The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.
The Oxidation and Protection of Gamma Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P.; Brindley, William J.; Smialek, James L.; Locci, Ivan E.
1996-01-01
The excellent density-specific properties of the gamma class of titanium aluminides make them attractive for intermediate-temperature (600-850 C) aerospace applications. The oxidation and embrittlement resistance of these alloys is superior to that of the alpha(sub 2) and orthorhombic classes of titanium aluminides. However, since gamma alloys form an intermixed Al2O3/TiO2 scale in air rather than the desired continuous Al2O3 scale, oxidation resistance is inadequate at the high end of this temperature range (i.e., greater than 750-800 C). For applications at such temperatures, an oxidation-resistant coating will be needed; however, a major drawback of the oxidation-resistant coatings currently available is severe degradation in fatigue life by the coating. A new class of oxidation-resistant coatings based in the Ti-Al-Cr system offers the potential for improved fatigue life.
Evaluation of Lubrication Systems for Isothermal Forging of Alpha-Beta and Beta Titanium Alloys.
1977-11-01
in u i u , ’ F~~~U BEVCSR E CC’W11F.TJNG PORNI ~\\ ~ - I~JI~*lNUllS1IIl a, AccI$$IOM N ICIPIENT - ~~~~~~~~~ I _ _ _( 4 T ITL E (~~~ AOlIU ~J
Standard methods for chemical analysis of steel, cast iron, open-hearth iron, and wrought iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-01-01
Methods are described for determining manganese, phosphorus, sulfur, selenium, copper, nickel, chromium, vanadium, tungsten, titanium, lead, boron, molybdenum ( alpha -benzoin oxime method), zirconium (cupferron --phosphate method), niobium and tantalum (hydrolysis with perchloric and sulfurous acids (gravimetric, titrimetric, and photometric methods)), and beryllium (oxide method). (DHM)
Origin of Surface Irregularities on Ti-10V-2Fe-3Al Beta Titanium Alloy
NASA Astrophysics Data System (ADS)
Utama, Muhammad Iman; Ammar, Abdul Aziz; Park, Nokeun; Baek, Eung Ryul
2018-03-01
We studied the origin of different characteristics and properties of a Ti-10V-2Fe-3Al beta (β) titanium alloy with surface height irregularities that occurred during machining. The height differences were observed in two different regions, labeled as "soft region" and "hard region." The present study showed a higher Fe and a lower Al content in the hard region, which resulted in higher β-phase stability to resist primary alpha (αp) phase precipitation caused by a failure of the solution treatment process. In contrast, the soft region contained a higher volume fraction of αp phase and a lower volume fraction of the matrix, which consisted of a combination of β and secondary alpha (αs) phase. A high number of αs/β interface in the matrix with a predicted hardness of 520 HV generated an improvement of hardness in the hard region. Therefore, the hard and the soft regions had different abilities to resist wear during machining process, resulting in surface height irregularities.
1984-07-01
phase. The second step, swabbing with a 1 ml HF, 2 ml HN0 3 , 97 ml water solution, removed the stain, leaving a light field of alpha phase material in...microscope (SEM), the beta phase appeared as finely dispersed light lines in a dark - field of alpha phase material. 4.2 Ultrasonic Measurements The...appropriate couplants were used in this research. Aerotech couplant • (a light oil) was used for the wave velocity measurements. A 2 mm thick elastomer
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
Microstructural stability and thermomechanical processing of boron modified beta titanium alloys
NASA Astrophysics Data System (ADS)
Cherukuri, Balakrishna
One of the main objectives during primary processing of titanium alloys is to reduce the prior beta grain size. Producing an ingot with smaller prior beta grain size could potentially eliminate some primary processing steps and thus reduce processing cost. Trace additions of boron have been shown to decrease the as-cast grain size in alpha + beta titanium alloys. The primary focus of this dissertation is to investigate the effect of boron on microstructural stability and thermomechanical processing in beta titanium alloys. Two metastable beta titanium alloys: Ti-15Mo-2.6Nb-3Al-0.2Si (Beta21S) and Ti-5Al-5V-5Mo-3Cr (Ti5553) with 0.1 wt% B and without boron additions were used in this investigation. Significant grain refinement of the as-cast microstructure and precipitation of TiB whiskers along the grain boundaries was observed with boron additions. Beta21S and Beta21S-0.1B alloys were annealed above the beta transus temperature for different times to investigate the effect of boron on grain size stability. The TiB precipitates were very effective in restricting the beta grain boundary mobility by Zener pinning. A model has been developed to predict the maximum grain size as a function of TiB size, orientation, and volume fraction. Good agreement was obtained between model predictions and experimental results. Beta21S alloys were solution treated and aged for different times at several temperatures below the beta transus to study the kinetics of alpha precipitation. Though the TiB phase did not provide any additional nucleation sites for alpha precipitation, the grain refinement obtained by boron additions resulted in accelerated aging. An investigation of the thermomechanical processing behavior showed different deformation mechanisms above the beta transus temperature. The non-boron containing alloys showed a non-uniform and fine recrystallized necklace structure at grain boundaries whereas uniform intragranular recrystallization was observed in boron containing alloys. Micro-voids were observed at the ends of the TiB needles at high temperature, slow strain rates as a result of decohesion at the TiB/matrix interfaces. At low temperatures and faster strain rates micro voids were also formed due to fracture of TiB needles. Finite element analysis on void formation in TiB containing alloys were in agreement with experimental observations. Microhardness and tensile testing of as-cast + forged and aged Beta21S and Ti5553 alloys with and without boron did not show any significant differences in mechanical properties. The primary benefits of boron modified alloys are in as-cast condition.
Chemical Analysis of the Moon at the Surveyor VII Landing Site: Preliminary Results.
Turkevich, A L; Franzgrote, E J; Patterson, J H
1968-10-04
The alpha-scattering experiment aboard Surveyor VII has provided a chemical analysis of the moon in the area of the crater Tycho. The preliminary results indicate a chemical composition similar to that already found at two mare sites, but with a lower concentration of elements of the iron group (titanium through copper).
Vaudt, J; Bitter, K; Neumann, K; Kielbassa, A M
2009-01-01
To investigate instrumentation time, working safety and the shaping ability of two rotary nickel-titanium (NiTi) systems (Alpha System and ProTaper Universal) in comparison to stainless steel hand instruments. A total of 45 mesial root canals of extracted human mandibular molars were selected. On the basis of the degree of curvature the matched teeth were allocated randomly into three groups of 15 teeth each. In group 1 root canals were prepared to size 30 using a standardized manual preparation technique; in group 2 and 3 rotary NiTi instruments were used following the manufacturers' instructions. Instrumentation time and procedural errors were recorded. With the aid of pre- and postoperative radiographs, apical straightening of the canal curvature was determined. Photographs of the coronal, middle and apical cross-sections of the pre- and postoperative canals were taken, and superimposed using a standard software. Based on these composite images the portion of uninstrumented canal walls was evaluated. Active instrumentation time of the Alpha System was significantly reduced compared with ProTaper Universal and hand instrumentation (P < 0.05; anova). No instrument fractures occurred in any of the groups. The Alpha System revealed significantly less apical straightening compared with the other instruments (P < 0.05; Mann-Whitney U test). In the apical cross-sections Alpha System resulted in significantly less uninstrumented canal walls compared with stainless steel files (P < 0.05; chi-squared test). Despite the demonstrated differences between the systems, an apical straightening effect could not be prevented; areas of uninstrumented root canal wall were left in all regions using the various systems.
[Effect of surface modification using laser on wear resistance of titanium].
Sato, Yohei
2005-02-01
Severe wear of cast commercial pure (CP) titanium teeth was observed in a clinical survey. This study evaluated the wear resistance of cast CP titanium and titanium alloy teeth after the surface was modified using laser technology. Teeth patterns were duplicated from artificial first molars (Livdent FB30, GC, Japan). All teeth specimens were cast with CP Ti grade 3 (T-Alloy H, GC) and Ti-6Al-7Nb (T-Alloy Tough, GC). After the occlusal surface was blasted with Al(2)O(3), the occlusal contact points were modified using a laser (Neo laser L, Girrbach, Germany) at the following irradiation conditions (voltage: 260 V; pulse: 7 ms; focus: 1.5 mm). These parameters were determined by preliminary study. As a control, Type IV gold alloy (PGA-3, Ishifuku, Japan) was also cast conventionally. Both maxillary and mandibular teeth were worn using an in vitro two-body wear testing apparatus that simulated chewing function (60 strokes/min; grinding distance: 2 mm under flowing water). Wear resistance was assessed as volume loss (mm(3)) at 5 kgf (grinding force) after 50,000 strokes. The results (n=5) were analyzed by ANOVA/Scheffé's test (alpha=0.05). The gold alloy showed the best wear resistance of all the metals tested. Of all the titanium specimens tested, the modified surface indicated significantly greater wear resistance than did conventional titanium teeth without surface modification (p<0.05). Wear resistance was increased by modification of the surface using a laser. If severe wear of titanium teeth was observed clinically, little wear occurred when the occlusal facets were irradiated using a laser.
Khan, Razia; Fulekar, M H
2016-08-01
The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%). Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hess, D. W.
1986-05-01
Radiofrequency (rf) discharges have been used to deposit films of tungsten, molybdenum and titanium silicide. As-deposited tungsten films, from tungsten hexafluoride and hydrogen source gases, were metastable (beta W), with significant (>1 atomic percent) fluorine incorporation. Film resistivities were 40-55 micro ohm - cm due to the beta W, but dropped to about 8 micro ohm cm after a short heat treatment at 700 C which resulted in a phase transition to alpha W (bcc form). The high resistivity (>10,000 micro ohm) associated with molybdenum films deposited from molybdenum hexafluoride and hydrogen appeared to be a result of the formation of molybdenum trifluoride in the deposited material. Titanium silicide films formed from a discharge of titanium tetrachloride, silane, and hydrogen, displayed resistivities of about 150 micro ohm cm, due to small amounts of oxygen and chlorine incorporated during deposition. Plasma etching studies of tungsten films with fluorine containing gases suggest that the etchant species for tungsten in these discharges are fluorine atoms.
Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis
NASA Astrophysics Data System (ADS)
Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.
2016-01-01
The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.
Tritium and tritons in cold fusion
NASA Astrophysics Data System (ADS)
Wolf, K. L.; Whitesell, L.; Jabs, H.; Shoemaker, J.
1991-05-01
An analysis is conducted on reports of tritium production and of charged-particle emission from deuterated palladium and titanium. Possible sources of error are outline and the lack of definitive experiments is discussed. Extensive sets of experiments are reported in which two previously reported results are checked in detail. A search for charged-particle emission was conducted on deuterated titanium and 6-6-2 titanium alloy that was subjected to cryogenic cycling. Two delta E-E silicon telescopes were used to count 42 samples for 3-4 cycles each from 84K to room temperature. No charge-one particles were detected and alpha particle yields of a few counters per day corresponded to background levels. A search for tritium production from 1 mm diameter palladium wire was conducted on 130 electrolytic cells in D2O and H2O, and in 250 metal samples. Several samples associated with one lot of palladium stock showed latent tritium levels well above background. No evidence was obtained for the occurrence of nuclear reactions in the electrolytic cells.
PHYSICOCHEMICAL INTERACTION OF MANGANESE WITH NIOBIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savitskii, E.M.; Kopetskii, Ch.V.
1960-03-01
Microstructural, x-ray phase, and thermal analyses as well as hardness and microhardness determinations were performed on different manganese alloys containing 2.26, with a small Nb content have a two-phase structure characteristic of a eutectic. With increasing Nb content, an increasing amount of an intermetallic compound is formed. With a 2.98 wt.% Nb alloy interference lines of only alpha -Mn with a lattice parameter a = 8.892 kX in the annealed state or of ore resistant t -Mn with a lattice parameter a = 6.290 kX in the molten state can be detected by x-ray analysis. With 5.64 wt.% Nb, linesmore » of a new phase can be detected whose intensities increase with increasing Nb content. This new phase is an intermetallic compound Mn/sub 2/Nb Laves phase with a structure of the MgZn/sub 2/ type. The lattice parameters of the Mn/sub 2/Nb phase are: a = 4.881 kX, c = 7.953 kX, c/a = 1.629. With increasing niobium content the hardness values fall from 900 to 950 hg/mm/sup 2/ for pure manganese to 650 to 700 kg/mm/sup 2/ for the 29.85 wt.% niobium alloy. The hardness of the intermetallic compound is less than the hardness of the alpha -Mn. Thermal analysis showed that additions of niobium to manganese significantly increased the temperature of the alpha = ore resistant t transition which is shifted from 727 tained C for pure manganese to 800 tained C for the alloys. A ore resistant t transition takes place at 1135 tained C by a peritectic reaction. Fusion of a eutectic mixture of -Mn and Mn/sub 2/ Nb occurs at 1220 tained C. The intermetallic compound MnNb melts at 1500 tained C. A phase diagram for the Mn-Nb system is constructed on the basis of these resuits. (TTT) Iodide-derived titanium (99.97%) and neodymium (99.8%) were fused in an electric arc furnace in a helium atmosphere to prepare nine alloys with a necdymium content of 0 to 10%. Smelted and forged samples were annealed in evacuated quartz ampoules for 25 hours at 1000 tained C and 100 hours at 850 tained C. Samples of alloys were quenched in water from temperatures of 600, 800, 850, 890, 920, 1000, and 1100 tained C to determine the state of the system at higher temperatures. Microscopic analyses of phases showed that addition of neodymium stabilizes the alpha -phase. The microhardness of the phase is about 70 kg/mm/sup 2/. Apparently, no intermetallic compounds are formed in the Ti-Nd system. The limiting saturation of the alpha -solid solution at 600 tained C is 1.8 wt.% Nd, as determined from microhardness values on quenched samples of variable neodymium composition. The solubility of neodymium is somewhat greater than the solubility of lanthanum and cerium in alpha -titunium because of the lanthanide contraction. Brinnell hardness values, yield strength, elongation, and reduction in cross- section area were also determined at room temperature. Neodymium is more effective than lanthanum or cerium in increasing the handness and strength of titanium. Small additions of Nd(0.5%) decrease the plasticity slightly. The addition of 1.2 wt.% Ce increases the yield strength of titanium from 32 to 38 to 40 hg/mm/sup 2/, while the same amount of neodymium increases the yield strength to 48 to 50 kg/mm/sup 2/. The strength of Ti-Nd alloys continues to increase even with the appearance of a second phase in the alloy, while in the TiLa and Ti- Ce systems a decrease in strength and a sharp drop in plasticity occurs upon the appearance of a second phase. The solubility of neodymium in alpha -titanium varies considerably with temperature. Hence, a noticeable aging effect can be expected, but this must be confirmed by experiment. (TTT)« less
Observations on the Role of Hydrogen in Facet Formation in Near-alpha Titanium (Preprint)
2011-05-01
using quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning...quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning electron...tilt fractography / electron backscatter diffraction (EBSD) technique in which both the crystallographic orientation of the fractured grain and the
NASA Technical Reports Server (NTRS)
Shanabarger, Mickey R.
1993-01-01
The goal of this program was to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. Although hydrogen degradation of metallic materials is believed to result from dissolved protonic hydrogen, the heterogeneous hydrogen interface transport processes often dominate the kinetics of degradation. The initial step in the interface transport process is the dissociative chemisorption of the molecular species at the metal surface followed by hydrogen absorption into and transport through the bulk. The interaction of hydrogen with the surfaces of alpha-2(Ti3Al) titanium aluminide, gamma(TiAl) titanium aluminide, and beryllium were studied.
Design and Manufacture of a Highly Reliable, Miniaturized and Low Mass Shutter Mechanism
NASA Technical Reports Server (NTRS)
Manhart, M.; Zeh, T.; Preibler, G.; Hurni, A.; Walter, I.; Helbert, J.; Hiesinger, H.
2010-01-01
This paper describes the development, manufacturing and testing of a lightweight shutter mechanism made of titanium for the MERTIS Instrument. MERTIS is a thermal infrared imaging spectrometer onboard ESA's future BepiColombo mission to Mercury. The mechanism is built as a parallelogram arrangement of flexible hinges, actuated by a voice coil. In a first test run, it was shown that the selected EDM processing led to the generation of titanium oxides and an oxygen-enriched surface layer on the substrate (so called alpha-case layer). In the revised version of the shutter, it was possible to manufacture the complex geometry by micro-milling and an adjacent pickling procedure. The adequacy of this approach was verified by lifetime and vibration testing.
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Shenoy, R. N.; Unnam, J.
1987-01-01
Standards were prepared for calibrating microanalyses of dissolved oxygen in unalloyed alpha-Ti and Ti-6Al-2Sn-4Zr-2Mo. Foils of both of these materials were homogenized for 120 hours in vacuum at 871 C following short exposures to the ambient atmosphere at 854 C that had partially oxidized the foils. The variation of Knoop microhardness with oxygen content was calibrated for both materials using 15-g and 5-g indentor loads. The unit-cell lattice parameters were calibrated for the unalloyed alpha-Ti. Example analyses demonstrate the usefulness of these calibrations and support an explanation of an anomaly in the lattice parameter variation. The results of the calibrations have been tabulated and summarized using predictive equations.
PHASE DIAGRAM FOR THE SYSTEM TITANIUM-TIN (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornilov, I.I.; Nartova, T.T.
1960-03-01
Differential thermal analysis, microstructural analyses, and determinations of hardness values and electric resistance were used to construct a diagram of state for the binary system Ti-Sn up to the composition of the compound Ti/sub 3/Sn (from 0 to 25 at.% Sn). Analyses of the thermograms showed that all conversions proceeding with the absorption of heat could be detected on the heating curves. Tin lowers the temperature of conversion of titunium with 5.0 at.% tin first to a minimum at 860 tained C which then increases to 890 tained C at higher tin contents. A peritectoid reaction ( alpha / submore » 2/ were ob ore resistant t + ) takes place with a conversion temperature at 890 tained C. A HF-HNO/sub 3/-glycerin etch showed a single-phase homogeneous structure of an alpha -solid solution with alloys containing up to 9 at.% Q. The amount of a second -phase increases with increasing tin content until a single-phase structure of a -solid solution of the compound Ti/sub 3/Sn is noted with alloys containing 23 to 25 at.% Sn. Alloys containing 8 to 22.5 at.% Sn undergo a peritectoid reaction, at a temperature of 890 tained C as shown by thermal analyses and by microstructural analyses of samples quenched frorn above and below the conversion temperature. A study of the microstructure of quenched alloys showed that the solubility of tin in ore resistant t -titanium increases from 8 at.% Sn at 890 tained C to 10.5 at.% Sn at 1100 tained C. X-ray analyses of annealed samples of alloy showed only the lines of an alpha solid solution for 5, 8, 9 at.% Sn, a -solid solution for 23 at.% Sn (close to the composition Ti/sub 3/Sn), and an alpha and mixed phase for a 15 at.% Sn. Vickers hardness numbers were determined with a diamond pyramid at a loading of 10 kg. The hardness increases smoothly with increasing tin content to a maximum at the saturation solubility of the tin in the alpha - or ore resistant t -solid solution. The hardness decreases smoothly with the appearance of the -phase until it attains a minimum at the composition of the compound Ti/sub 3/Sn. The specific electric resistance increases with an increase of tin in the solid solution of alpha -titanium. The rate of increase of the specific electric resistance decreases markedly with the appearance of the -phase. The electric resistance of an alloy with 14.3 at.% Sn was studied as a function of temperature from room temperature to 1100 tained C in special vacuum equipment. A sharp drop in electric resistance a; 890 tained C confirmed the existence of a peritectoid reaction in the system Ti-Sn. (TTT)« less
Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment
NASA Astrophysics Data System (ADS)
Xu, Jianwei; Zeng, Weidong; Jia, Zhiqiang; Sun, Xin; Zhao, Yawei
2016-03-01
The effects of alpha/beta heat treatment on microstructure evolution of Ti-17 alloy with a lamellar colony structure are established. Heat treatment experiments are conducted at 1103 or 1063 K for times ranging from 10 min to 8 h. The main features of microstructure evolution during heat treatment comprise static globularization and coarsening of primary alpha phase. Such behaviors can be accelerated by higher heat treatment temperature. Furthermore, globularization and coarsening behaviors show a faster rate at higher prestrain. In order to better understand the microstructure evolution of Ti-17 alloy during alpha/beta heat treatment, static globularization and coarsening behaviors are modeled in the theoretical frame of the Johnson-Mehl-Avarmi-Kolmogorov (JMAK) and Lifshitz-Slyozov-Wagner (LSW) theories, respectively. The JMAK and LSW kinetics parameters are derived under different experimental conditions. Agreements between measurements and predictions are found, indicating that the JMAK and LSW theories can be used to predict and trace static globularization and coarsening processes of Ti-17 alloy during alpha/beta heat treatment.
Grain-Structure Development in Heavily Cold-Rolled Alpha-Titanium (Postprint)
2014-04-01
H.P. Lee, C. Esling , H.J. Bunge, Textures Microstruct. 7 (1988) 317–337. [10] S. Nourbakhsh, T.D. O’Brien, Mater. Sci. Eng. 100 (1988) 109–114. [11...2010) 4536–4548. [20] Y. Zhong, F. Yin, K. Nagai, J. Mater. Res. 23 (2008) 2954–2966. [21] M.J. Philippe, M. Serghat, P. Van Houtte, C. Esling , Acta
Spontaneous Differentiation of Dental Pulp stem cells on Dental polymers
NASA Astrophysics Data System (ADS)
Bherwani, Aneel; Suarato, Giulia; Qin, Sisi; Chang, Chung-Cheh; Akhavan, Aaron; Spiegel, Joseph; Jurukovski, Vladimir; Rafailovich, Miriam; Simon, Marcia
2012-02-01
Dental pulp stem cells were plated on two dentally relevant materials i.e. PMMA commonly used for denture and Titanium used for implants. In both cases, we probed for the role of surface interaction and substrate morphology. Different films of PMMA were spun cast directly onto Si wafers; PMMA fibers of different diameters were electro spun onto some of these substrates. Titanium metal was evaporated onto Si surfaces using an electron beam evaporator. In addition, on some surfaces, P4VP nanofibers were spun cast. DPSC were grown in alpha-MEM supplemented with 10% fetal bovine serum, 0.2mM L-ascorbic acid 2-phosphate, 2mm glutamine and 10mM beta-glycerol phosphate either with or without 10nM dexamethasone. After 21 days samples were examined using confocal microscopy of cells and by scanning electron microscopy (SEM) and Energy dispersive X-ray Analysis (EDAX). In the case of Titanium biomineralization was observed independent of dexamethasone, where the deposits were templated along the fibers. Minimal biomineralization was observed on flat Titanium and PMMA samples. Markers of osteogenesis and specific signaling pathways are being evaluated by RT-PCR, which are up regulated on each surface, to understand the fundamental manner in which surfaces interact with cell differentiation.
Effects of anodic oxidation parameters on a modified titanium surface.
Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Seol, Kyeong Won
2008-02-01
Anodic oxidation is an electrochemical treatment that can be used to control the thickness of an oxide layer formed on a titanium surface. This procedure has the advantage of allowing the ions contained in an electrolyte to deposit onto the oxide layer. The characteristics of a layer treated with anodic oxidation can vary according to the type and concentration of the electrolytes as well as the processing variables used during anodic oxidation. In this study, the constant electrolyte for anodic oxidation was a mixed solution containing 0.02 M DL-alpha-glycerophosphate disodium salt and 0.2M calcium acetate. Anodic oxidation was carried out at different voltages, current densities, and duration of anodic oxidation. The results showed that the current density and variation in the duration of anodic oxidation did not have a large effect on the change in the characteristics of the layer. On the other hand, the size of the micropores was increased with increasing voltage of anodic oxidation, and anatase and rutile phases were found to co-exist in the porous titanium dioxide layer. In addition, the thickness of the oxide layer on titanium and the characteristic of corrosion resistance increased with increasing voltage. The MTT test showed that the cell viability was increased considerably as a result of anodic oxidation. The anodizing voltage is an important parameter that determines the characteristics of the anodic oxide layer of titanium. (c) 2007 Wiley Periodicals, Inc.
A generalized expression for lag-time in the gas-phase permeation of hollow tubes
NASA Technical Reports Server (NTRS)
Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.
1975-01-01
A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.
Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T
2000-09-01
Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.
Note: Development of target changeable palm-top pyroelectric x-ray tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imashuku, Susumu; Kawai, Jun
2012-01-15
A target changeable palm-top size x-ray tube was realized using pyroelectric crystal and detachable vacuum flanges. The target metals can be exchanged easily by attaching them on the brass stage with carbon tape. When silver and titanium palates (area: 10 mm{sup 2}) were used as targets, silver L{alpha} and titanium K lines were clearly observed by bombarding electrons on the targets for 90 s. The intensities were the same or higher than those of previously reported pyroelectric x-ray tubes. Chromium, iron, nickel, copper, and zinc K lines in the x-ray tube (stainless steel and brass) disappeared by replacing the brassmore » stage and the stainless steel vacuum flange with a carbon stage and a glass tube, respectively.« less
Manufacturing techniques for titanium aluminide based alloys and metal matrix composites
NASA Astrophysics Data System (ADS)
Kothari, Kunal B.
Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.
Preliminary Material Properties Handbook. Volume 2: SI Units
2000-07-01
6-1 6.2 Iron- Chromium -Nickel-Base Alloys...iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be further strengthened by heat...6.3.3 6.3.4 6.3.5 6.4 6.5 6.5.1 Iron- Chromium -Nickel-Base Alloys Nickel-Base Alloys AEREX® 350 alloy HAYNES® 230® alloy HAYNES® HR-120® alloy Inconel
Effect of Stress-Strain Behavior on Low-Cycle Fatigue of Alpha-Beta Titanium Alloys.
1980-11-21
and strain excursion, such a curve would appear to fit much of the high temperature hold-time data compiled by Krempl and Wundt [21]. Thus, it might...34Mechanische Relaxation von Kupfer-Einkristallen," Phys. Stat. Sol. 3, 111-120. 21. Krempl, E. and Wundt , B. M., (1971), Hold-Time Effects in High- Temperature Low-Cycle Fatigue, ASTM STP 489. 26 Low
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Hoffman, Eric K.
1998-01-01
The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.
Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2006-07-01
This study investigated the effect of alloying titanium with gold, silver, or copper on the elastic properties of the alloys. A series of binary titanium alloys was made with four concentrations of gold, silver, or copper (5, 10, 20, and 30 mass%) in an argon-arc melting furnace. The Young's moduli and Poisson's ratios of the alloy castings were determined with an ultrasonic-pulse method. The density of each alloy was previously measured by the Archimedes' principle. Results were analyzed using one-way ANOVA and the Scheffé's test. The densities of Ti-Au, Ti-Ag, and Ti-Cu alloys monotonically increased as the concentration of alloying elements increased. As the concentration of gold or silver increased to 20%, the Young's modulus significantly decreased, followed by a subsequent increase in value. As the concentration of copper increased, the Young's modulus monotonically increased. The Young's moduli of all the Ti-Cu alloys were significantly higher than that of the titanium. The density of all the experimental alloys was virtually independent of the alloy phases, while the Young's moduli and Poisson's ratios of the alloys were dependent. The addition of gold or silver slightly reduced the Young's modulus of the titanium when the alloy phase was single alpha. The increase in the Young's modulus of the Ti-Cu alloys is probably due to the precipitation of intermetallic compound Ti2Cu. Copper turned out to be a moderate stiffener that gains a Young's modulus of titanium up to 20% at the copper concentration of 30 mass%.
NASA Astrophysics Data System (ADS)
Schrock, David James
The objective of this work is to identify some of the tool wear mechanisms at the material level for the machining of titanium and to provide some understanding of these mechanisms for use in physics based tool wear models. Turning experiments were conducted at cutting speeds of 61m/min, 91m/min, and 122m/min on Ti-6Al-4V, an alloy of titanium, using two different grades of tungsten carbide cutting inserts and one grade of polycrystalline diamond inserts. Three-dimensional wear data and two-dimensional wear profiles of the rake face were generated using Confocal Laser Scanning Microscopy to quantify the tool wear mechanisms. Additionally, the microstructure of the deformed work material (chip) and un-deformed parent material (work piece) were studied using Orientation Imaging Microscopy (OIM). Observations from tool wear studies on the PCD inserts revealed the presence of two fundamentally different wear mechanisms operating at the different cutting speeds. Microstructural analyses of the chip and the work material showed phase dependent tool wear mechanisms for machining titanium. There is a high likelihood of phase change occurring in the work material during machining, with a transformation from the alpha phase to the beta phase. The observed dramatic increase in wear is attributed to a combination of increased diffusivity in the beta phase of the titanium alloy in conjunction with a higher degree of recrystallization of the prior beta phase upon cooling. Results of other observations such as the influence of carbide grain size on tool wear are also discussed.
NASA Astrophysics Data System (ADS)
Mamor, M.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.; Myburg, G.
1998-06-01
Titanium (Ti) Schottky barrier diodes on epitaxially grown boron-doped p-type Si films with a free carrier density of 6-8×1016cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. We report the electronic and transformation characteristics of an α-particle irradiation-induced defect Hα2 in epitaxially grown p-Si with metastable properties. The energy level and apparent capture cross section, as determined by deep-level transient spectroscopy, are Ev+0.43 eV and 1.4×10-15 cm2, respectively. This defect can be removed and re-introduced using a conventional bias-on/off cooling technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.H.
1992-12-01
The effects of microstructure and temperature on tensile and fracture behavior were explored for the titanium aluminide alloy Ti-25Al-lONb-3V-lMo (atomic percent). Three microstructures were selected for this study in an attempt to determine the role of the individual microstructural constituents. the three microstructures studied were an alpha-2 + beta processed microstructure with a fine Widmanstaetten microstructure, a beta processed microstructure with a fine Widmanstaetten microstructure, and a beta processed microstructure with a coarse Widmanstaetten microstructure. Tensile testing of both round and flat specimens was conducted in vacuum at elevated temperature and in air at room and elevated temperatures. Extensive fractographymore » and specimen sectioning were used to study tensile deformation and the effects of environment on this alloy. Room temperature fracture toughness testing using compact tension specimens was conducted. Elevated temperature toughness testing was performed using J-bend bar specimens in an air environment. Again, extensive fractography and specimen sectioning were used to study the elevated temperature toughening mechanisms of this alloy.... Titanium, Titanium aluminide, Intermetallic, Fracture toughness, Tensile behavior, Fractography environmental interaction.« less
Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslova, Marina V.; Rusanova, Daniela; Naydenov, Valeri
2008-12-15
Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formationmore » of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.« less
Small Crack Growth and Its Influence in Near Alpha-Titanium Alloys
1989-06-01
geometries via finite element and boundary-collocation analysis 8 , 9 . Elastic plastic fracture mechanics ( EPFM ) 1 0 , 1 1 and local crack tip field...correlation was found between experimental and predicted data, general application of the model is not possible as both 0 and rp are sensitive to changes in...cracks at low AK the load reduction schemes should be altered to remove the residual deformations, perhaps via machining or the application of large
Preliminary Material Properties Handbook, English Units
1999-12-01
References 5-17 Chapter 6. Heat-Resistant Alloys 6.1 General 6-1 6.2 Iron- Chromium -Nickel-Base Alloys 6-3 6.3 Nickel-Base Alloys 6-3 6.4...elements as vanadium, molybdenum, iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be...alloys are arbitrarily defined as iron alloys richer in alloy content than the 18 percent chromium , 8 percent nickel types, or as alloys with a base
Yanagida, Hiroaki; Tanoue, Naomi; Ide, Takako; Matsumura, Hideo
2009-07-01
We evaluated the effects of two dual-functional primers and a tribochemical surface modification system on the bond strength between an indirect composite resin and gold alloy or titanium. Disk specimens (diameter, 10 mm; thickness, 2.5 mm) were cast from type 4 gold alloy and commercially pure titanium. The specimens were wetground to a final surface finish using 600-grit silicone carbide paper. The specimens were then air-dried and treated using the following four bonding systems: (1) air-abrasion with 50-70 mum alumina, (2) system 1 + alloy primer, (3) system 1 + metal link primer, and (4) tribochemical silica/silane coating (Rocatec). A light-polymerizing indirect composite resin (Ceramage) was applied to each metal specimen and polymerized according to the manufacturer's specifications. Shear bond strengths (MPa) were determined both before and after thermocycling (4 degrees C and 60 degrees C for 1 min each for 20 000 cycles). The values were compared using analysis of variance, post hoc Scheffe tests, and Mann-Whitney U tests (alpha = 0.05). The strengths decreased after thermocycling for all combinations. For both gold alloy and titanium, the bond strength with air-abrasion only was statistically lower than that with the other three modification methods after thermocycling. Titanium exhibited a significantly higher value (13.4 MPa) than gold alloy (10.5 MPa) with the air. abrasion and alloy primer system. Treatment with the tribochemical system or air abrasion followed by treatment with dual-functional priming agents was found to be effective for enhancement of the bonding between the indirect composite and gold alloy or titanium.
Kloss, Frank R; Steinmüller-Nethl, Doris; Stigler, Robert G; Ennemoser, Thomas; Rasse, Michael; Hächl, Oliver
2011-07-01
Connective tissue in contact to transgingival/-dermal implants presents itself as tight scar formation. Although rough surfaces support the attachment they increase bacterial colonisation as well. In contrast to surface roughness, little is known about the influence of surface wettability on soft-tissue healing in vivo. We therefore investigated the influence of different surface wettabilities on connective tissue healing at polished implant surfaces in vivo. Three polished experimental groups (titanium, titanium coated with hydrophobic nano-crystalline diamond (H-NCD) and titanium coated with hydrophilic nano-crystalline diamond (O-NCD) were inserted into the subcutaneous connective tissue of the abdominal wall of 24 rats. Animals were sacrificed after 1 and 4 weeks resulting in eight specimen per group per time point. Specimen were subjected to histological evaluation (van Giesson's staining) and immunohistochemistry staining for proliferating cell nuclear antigen (PCNA), fibronectin and tumour necrosis factor-alpha (TNF-α). Histological evaluation revealed dense scar formation at the titanium and H-NCD surfaces. In contrast, the connective tissue was loose at the O-NCD surface with a significantly higher number of cells after 4 weeks. O-NCD demonstrated a strong expression of PCNA and fibronectin but a weak expression of TNF-α. In contrast, the PCNA and fibronectin expression was low at the titanium and H-NCD, with a strong signal of TNF-α at the H-NCD surface. Hydrophilicity influences the connective tissue healing at polished implant surfaces in vivo positively. The attachment of connective tissue and the number of cells in contact to the surface were increased. Moreover, the inflammatory response is decreased at the hydrophilic surface. © 2010 John Wiley & Sons A/S.
Pelsoczi, Kovács István; Bereznai, Miklós; Tóth, Zsolt; Turzó, Kinga; Radnai, Márta; Bor, Zsolt; Fazekas, András
2004-12-01
The biointegration of dental and orthopaedic implants depends mainly on the morphology and physical-chemical properties of their surfaces. Accordingly, the development of the desired microstructure is a relevant requirement in the bulk manufacture. Besides the widely used sandblasting plus acid etching and plasma-spray coating techniques, the laser surface modification method offers a plausible alternative. In order to analyze the influence of the laser treatment, the surfaces of titanium samples were exposed to excimer laser irradiation. The aim of this study was to develop surfaces that provide optimal conditions for bone-implant contact, bone growth, formation and maintenance of gingival attachment. For this purpose, holes were ablated on the surface of samples by nanosecond (18 ns, ArF) and also sub-picosecond (0,5 ps, KrF) laser pulses. Using pulses of ns length, due to melt ejection, crown-like protrusions were formed at the border of the holes, which made them sensitive to mechanical effects. To avoid these undesirable crown-like structures ultrashort KrF excimer laser pulses were successfully applied. On the other hand, titanium samples were laser-polished in favour of formation and connection of healthy soft tissues. Irradiation by a series of nanosecond laser pulses resulted in an effective smoothening as detected by atomic force microscopy (AFM). By inhibiting plaque accumulation this favours formation of gingival attachment. X-ray photoelectron spectroscopy (XPS) studies showed that laser treatment, in addition to micro-structural and morphological modification, results in decreasing of surface contamination and thickening of the oxide layer. X-ray diffraction (XRD) analysis revealed that the original alpha-titanium crystalline structure of the laser-polished titanium surface was not altered by the irradiation.
Impact of high-pressure coolant supply on chip formation in milling
NASA Astrophysics Data System (ADS)
Klocke, F.; Döbbeler, B.; Lakner, T.
2017-10-01
Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.
Dodo, Cindy Goes; Meirelles, Luiz; Aviles-Reyes, Alejandro; Ruiz, Karina Gonzalez Silvério; Abranches, Jacqueline; Cury, Altair Antoninha Del Bel
2017-01-01
During insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS). THP-1 cell were used and treated for 12, 24 and 48 h following 6 groups: Control(C), PgLPS (L); Microparticles (M); Nanoparticles (N); PgLPS and microparticles (LM); PgLPS and nanoparticles (LN). The following assays were carried out: i) cell viability using MTS, ii) cell morphology by SEM and iii) expression of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by qRT-PCR and ELISA. For statistics two-way ANOVA followed by Tukey's test was used (p<0.05). After treatment, cells presented similar viability and morphology demonstrating that the treatments were not able to induce cell death. Gene expression was significantly higher for TNF-α and IL1-β after 12 h, and for IL-6 after 24 h in the N and LN groups. Cytokine production over time was an ascending curve for TNF-α with the peak at 48 h and IL1-β and IL-6 had a straight line among the time points, although cells from N group presented a significant production of IL-6 at 48 h. In conclusion, these results suggest that titanium nanoparticles stimulate stronger pro-inflammatory response in macrophages, independent of their association with LPS from P.gingivalis.
Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar
2008-02-01
This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.
The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties
NASA Technical Reports Server (NTRS)
Gold, T.; Bilson, E.; Baron, R. L.
1976-01-01
The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.
Machinability of cast commercial titanium alloys.
Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T
2002-01-01
This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.
Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.
Segal, Nadav; Hell, Jess; Berzins, David W
2009-06-01
The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P < 0.05) in OCP with deflection were found for the TMA and the Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P < 0.05) in i(corr) with deflection were also observed. All 3 wire groups had their lowest mean i(corr) values when not deflected. The i(corr) for superelastic Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase transformation.
Sartori, Ivete Aparecida de Mattias; Ribeiro, Ricardo Faria; Francischone, Carlos Eduardo; de Mattos, Maria da Gloria Chiarello
2004-08-01
For implant-supported prostheses, passive fit is critical for the success of rehabilitation, especially when alternative materials are used. The purpose of this study was to compare interfacial fit of implant-supported prostheses cast in titanium to those cast in gold alloy. Five 3-unit fixed partial dentures were fabricated in gold alloy (Degudent U) as 1-piece castings, and 5 others were similarly cast in commercially pure titanium (Grade 1). The interfacial gaps between the prostheses and the abutments were evaluated with an optical microscope, before and after electroerosion. Readings were made with both screws tightened (10 N.cm torque), and with only 1 side tightened, so as to also evaluate the passive fit of the prostheses. Data were compared statistically by 2-way analysis of variance and the post hoc Tukey multiple range test (alpha=.05). Before electroerosion, the interfacial gaps for the 1-piece prostheses were significantly smaller (P<.001) in the gold alloy group when the screws were tightened (Au=12.6 +/- 3.0 microm, compared to Ti=30.1 +/- 6.4 microm). When the side opposite the tightened side was analyzed, there was no significant difference between the gold alloy and titanium groups (Au=69.2 +/- 24.9 microm and Ti=94.2 +/- 39.6 microm). The electroerosion procedure significantly (P<.001) reduced the gaps at the interfaces for both groups under all conditions. Comparison between groups after electroerosion did not present significant differences when the side opposite the tightened side was analyzed, but the gold alloy group showed better fit when the tightened side was analyzed (12.8 +/- 1.4 microm for gold alloy; 29.6 +/- 4.4 microm for titanium) and when both screws were tightened (5.4 +/- 2.3 microm for gold alloy; 16.1 +/- 5.5 microm for titanium). Cast titanium prostheses, despite showing larger interfacial gaps between the prosthesis and abutment than those obtained with gold alloy, had improved fit after being subjected to electroerosion.
NASA Astrophysics Data System (ADS)
Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.
2017-05-01
In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.
Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.
Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos
2003-10-01
Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on the elemental composition. The CTE of titanium can be considerably changed by alloying. Two-phase alloys were developed when alloying elements were added in concentrations greater than the maximum solubility limit in alpha-titanium phase.
Pod of Ultrasonic Detection of Synthetic Hard Alpha Inclusions in Titanium Aircraft Engine Forgings
NASA Astrophysics Data System (ADS)
Thompson, R. B.; Meeker, W. Q.; Brasche, L. J. H.
2011-06-01
The probability of detection (POD) of inspection techniques is a key input to estimating the lives of structural components such as aircraft engines. This paper describes work conducted as a part of the development of POD curves for the ultrasonic detection of synthetic hard alpha (SHA) inclusions in titanium aircraft engine forgings. The sample upon which the POD curves are to be based contains four types of right circular SHAs that have been embedded in a representative titanium forging, as well as a number of flat bottomed holes (FBHs). The SHAs were of two sizes, ♯3 and ♯5, with each size including seeds with nominal nitrogen concentrations of both 3 and 17 wt. %. The FBHs included sizes of ♯1, ♯3, and ♯5. This discreteness of the data poses a number of challenges to standard processes for determining POD. For example, at each concentration of nitrogen, there are only two sizes, with 10 inspection opportunities each. Fully empirical, standard methodologies such as â versus a provide less than an ideal framework for such an analysis. For example, there is no way to describe the beam limiting effect whereby the signal no longer increases the flaw grows larger than the beam, one can only determine POD at the two concentration levels present in the block, and confidence bounds tend to be broad because of the limited data available for each case. In this paper, we will describe strategies involving the use of physics-based models to overcome these difficulties by allowing the data from all reflectors to be analyzed by a single statistical model. Included will be a discussion of the development of the physics-based model, its comparison to the experimental data (obtained at multiple sites with multiple operators) and its implications regarding the statistical analysis, whose details will be given in a separate article by Li et al. in this volume.
Hot Deformation of Ti-6Al-4V Single-Colony Samples (Preprint)
2008-02-01
Journal Article Preprint 4 . TITLE AND SUBTITLE HOT DEFORMATION OF Ti-6Al-4V SINGLE-COLONY SAMPLES (PREPRINT) 5a. CONTRACT NUMBER In-house 5b...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) A.A. Salem (Universal Technology Corp.) S.L. Semiatin (AFRL/RXLMP) 5d. PROJECT...strength, corrosion resistance, and low density, Ti-6Al-4V is the most commonly used alpha/beta titanium alloy. It accounts for approximately 80
Investigation of High Temperature Ductility Losses in Alpha-Beta Titanium Alloys
1988-04-01
Gleeble simulation of GTAW thermal _ cycles, Figure 1.1 (6). They found that Ti-6AI-4V (Ti-64), Ti-6A1-2Nb-lTa-0.8Mo (Ti-6211), and Ti-6AI suffered...or weak beta stabilizers depending on the other alloying elements present. Vanadium, molybdenum, tantalum, niobium, chromium , silicon, copper...elements. Chromium , - silicon, copper, manganese, cobalt, iron, and hydrogen are all eutectic formers. A schematic binary phase diagram of a 0 beta
Additive Manufacturing of Metastable Beta Titanium Alloys
NASA Astrophysics Data System (ADS)
Yannetta, Christopher J.
Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.
Evaluation of the new TAMZ titanium alloy for dental cast application.
Zhang, Y M; Guo, T W; Li, Z C
2000-12-01
To reveal the potential of the new titanium alloy as dental prosthodontic materials. Dental castings of TAMZ alloy were investigated in the casting machine specially designed for titanium. A mesh pattern was used to count the castability value. The mechanical properties were measured by means of a universal testing machine. Optical micrography was done on the exposed cross-section of TAMZ alloy casting. From the surface to the inner part the Knoop hardness in reacted layer of TAMZ alloy casting was measured. The structure and elemental analyses of the reacted layer were made by SEM and element line scanning observation. The castability value (Cv = 98%) and the tensile test (sigma b = 850 Mpa, sigma 0.2 = 575 Mpa, delta = 7.33%) data were collected. The castings microstructure showed main alpha phase and small beta phase. Knoop hardness in the surface reacted layer was greater than that in the inner part. From the SEM and element line scanning observation, there are three different layers in the surface reacted layer of the TAMZ alloy castings, and higher level of element of O, Al, Si and Zr were found in the reacted layer while the Si permeated deeper than others. TAMZ alloy can be accepted as a material for dental alloy in prosthodontics.
Corrosion characteristics of alpha-Ti and Ti2Cu composing Ti-Cu alloys.
Takada, Yukyo; Okuno, Osamu
2005-12-01
A series of binary Ti-Cu alloys containing 5-20 mass% Cu was prepared, and the corrosion behavior of alpha-Ti and Ti2Cu composing the Ti-Cu alloys were examined based on the anodic polarization curves and released ions in 0.9% NaCl and 1% lactic acid solutions. In both solutions, the Ti-Cu alloys showed the same anodic polarization curves as titanium in the condition below 1.4 V. However, precipitation of Ti2Cu contributed to a small increase in current densitiy in the transpassive region beyond 1.4 V. The amount of Cu ions released from Ti2Cu was 0.260 and 1.003 (microg/cm2/7 days) in 0.9% NaCl and 1% lactic acid solutions respectively. Although these values were larger than those from alpha-Ti (0.0379 +/- 0.0041 and 0.0962 +/- 0.0327 (microg/cm2/7days) in NaCl and lactic acid solutions respectively), they were not greater than those from type 4 gold alloy under the same conditions.
Thermohydrogen processing (THP) of titanium alloy and titanium-aluminum alloys
NASA Astrophysics Data System (ADS)
Qazi, Javaid Iqbal
The microstructures, phases and phase transformations occurring in cast and Hot Isostatic Pressed (HIP'd) Ti-6Al-4V-H and the blended elemental (BE) TiAl-H systems were investigated. In this work, the existing Ti-6Al-4V-H phase diagram was revised and the time-temperature-transformation (TTT) diagrams for beta-phase (isothermal) and martensite (quench plus aging) decomposition were determined at different hydrogen concentrations. Alloying with hydrogen decreases the nose temperatures for the start of both the beta/martensite decompositions in a linear fashion and increases the nose times for both of these in a non-linear fashion. During aging at temperatures below the beta transus temperature, the martensite decomposes into alpha+betaM (metastable beta) and on quenching, from the aging temperature, the betaM transforms to martensite + beta R (residual beta) with the amount of latter increasing with increasing hydrogen content. Microstructures varying from alpha-lamellar laths to fine equiaxed alpha-grains were produced in the Ti-6Al-4V alloy, by using different thermohydrogen processing (THP) treatments. A microstructure consisting of mixed equiaxed and elongated alpha-grains were only produced in samples containing 30at.%H after the complete decomposition of the beta/martensite below a critical temperature (Tc), followed by dehydrogenation. A mixture consisting of partially equiaxed alpha-grains thus produced by THP, increased the tensile strength from 841MPa (starting Ti-6Al-4V) to 965MPa after THP and also increased the % elongation from 7.5% to 10.5%. In addition to other THP parameters, the final microstructure also depends on the starting microstructure and recommendations are made for future work in this regard. Initial results of temperature cycling treatments, which involved heat treating of Ti-6Al-4V samples containing 30at.%H at 680°C for 5 minutes followed by water quenching and repetition of the same treatment for 10 cycles, did not show a decrease in the average prior beta grain size; recommendations have been made for future work in this area. Fully dense hydrogenated nano-crystalline TiAl compacts were produced from BE powders. HIP'ing of the mechanically alloyed hydrogenated powders at 850°C resulted in a homogenous microstructure, whereas prior powder particle boundaries were visible in the samples produced from non-hydrogenated powders. The hydrogen was removed by vacuum annealing resulting in nano-size gamma-TiAl.
Recrystallization and Grain Growth Kinetics in Binary Alpha Titanium-Aluminum Alloys
NASA Astrophysics Data System (ADS)
Trump, Anna Marie
Titanium alloys are used in a variety of important naval and aerospace applications and often undergo thermomechanical processing which leads to recrystallization and grain growth. Both of these processes have a significant impact on the mechanical properties of the material. Therefore, understanding the kinetics of these processes is crucial to being able to predict the final properties. Three alloys are studied with varying concentrations of aluminum which allows for the direct quantification of the effect of aluminum content on the kinetics of recrystallization and grain growth. Aluminum is the most common alpha stabilizing alloying element used in titanium alloys, however the effect of aluminum on these processes has not been previously studied. This work is also part of a larger Integrated Computational Materials Engineering (ICME) effort whose goal is to combine both computational and experimental efforts to develop computationally efficient models that predict materials microstructure and properties based on processing history. The static recrystallization kinetics are measured using an electron backscatter diffraction (EBSD) technique and a significant retardation in the kinetics is observed with increasing aluminum concentration. An analytical model is then used to capture these results and is able to successfully predict the effect of solute concentration on the time to 50% recrystallization. The model reveals that this solute effect is due to a combination of a decrease in grain boundary mobility and a decrease in driving force with increasing aluminum concentration. The effect of microstructural inhomogeneities is also experimentally quantified and the results are validated with a phase field model for recrystallization. These microstructural inhomogeneities explain the experimentally measured Avrami exponent, which is lower than the theoretical value calculated by the JMAK model. Similar to the effect seen in recrystallization, the addition of aluminum also significantly slows downs the grain growth kinetics. This is generally attributed to the solute drag effect due to segregation of solute atoms at the grain boundaries, however aluminum segregation is not observed in these alloys. The mechanism for this result is explained and is used to validate the prediction of an existing model for solute drag.
Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso
2006-04-01
Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.
A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeslack, W.A. III; Hurley, J.; Paskell, T.
1994-12-31
Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less
NASA Astrophysics Data System (ADS)
Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang
2009-12-01
Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.
NASA Astrophysics Data System (ADS)
Parada-Gamboa, N. J.; Pedraza-Avella, J. A.; Meléndez, A. M.
2017-01-01
To investigate whether different metal surface treatments, performed on meshes of stainless steel 304 and titanium, affect the photocatalytic activity (PCA) of supported modified anodic TiO2 films, metallic substrates were coated with titanium isopropoxide sol-gel precursor modified with thiourea. Substrates were pretreated by some of the following techniques: a) sandblasting, b) pickling, c) hydroxylation and d) passivation. The as-prepared electrode materials were characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and voltammetry in the dark and under light UVA irradiation. PCA of modified N-S-TiO2 electrodes was evaluated by electrochemically assisted photocatalytic degradation of methyl orange. The results of XPS revealed that N and S were incorporated into the lattice of TiO2. FESEM showed that surface roughness and thickness of films varies depending on surface treatment. Voltammetric and XPS characterization of N-S co-doped TiO2 films supported on stainless steel revealed that their surface contains alpha-Fe2O3/FeOOH. Accordingly, iron contamination of the films coming from stainless steel was detrimental to the degradation of methyl orange. Prior to sol-gel coating process, sandblasting followed by nitric acid passivation for stainless steel or hydrofluoric acid pickling process in the case of titanium improved the PCA of N-S co-doped TiO2 films.
The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire.
Kasuya, Shugo; Nagasaka, Satoshi; Hanyuda, Ai; Ishimura, Sadao; Hirashita, Ayao
2007-12-01
This study examined the effect of ligation on the load-deflection characteristics of nickel-titanium (NiTi) orthodontic wire. A modified three-point bending system was used for bending the NiTi round wire, which was inserted and ligated in the slots of three brackets, one of which was bonded to each of the three bender rods. Three different ligation methods, stainless steel ligature (SSL), slot lid (SL), and elastomeric ligature (EL), were employed, as well as a control with neither bracket nor ligation (NBL). The tests were repeated five times under each condition. Comparisons were made of load-deflection curve, load at maximum deflection of 2,000 microm, and load at a deflection of 1,500 microm during unloading. Analysis of Variance (ANOVA) and Dunnett's test were conducted to determine method difference (alpha = 0.05). The interaction between deflection and ligation was tested, using repeated-measures ANOVA (alpha = 0.05). The load values of the ligation groups were two to three times greater than the NBL group at a deflection of 1,500 microm during unloading: 4.37 N for EL, 3.90 N for SSL, 3.02 N for SL, and 1.49 N for NBL (P < 0.01). For the EL, a plateau region disappeared in the unloading curve. SL showed the smallest load. The ligation of the bracket wire may make NiTi wire exhibit a significantly heavier load than that traditionally expected. NiTi wire exhibited the majority of its true superelasticity with SL, whereas EL may act as a restraint on its superelasticity.
Experimental observations of transport of picosecond laser generated electrons in a nail-like target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasley, J.; Wei, M.; Shipton, E.
2007-12-15
The transport of relativistic electrons, generated by the interaction of a high intensity (2x10{sup 20} W/cm{sup 2}) laser, has been studied in a nail-like target comprised of a 20 {mu}m diameter solid copper wire, coated with {approx}2 {mu}m of titanium, with an 80 {mu}m diameter hemispherical termination. A {approx}500 fs, {approx}200 J pulse of 1.053 {mu}m laser light produced by the Titan Laser at Lawrence Livermore National Laboratory was focused to a {approx}20 {mu}m diameter spot centered on the flat face of the hemisphere. K{sub {alpha}} fluorescence from the Cu and Ti regions was imaged together with extreme ultraviolet (XUV)more » emission at 68 and 256 eV. Results showed a quasiexponential decline in K{sub {alpha}} emission along the wire over a distance of a few hundred microns from the laser focus, consistent with bulk Ohmic inhibition of the relativistic electron transport. Weaker K{sub {alpha}} and XUV emission on a longer scale length showed limb brightening suggesting a transition to enhanced transport at the surface of the wire.« less
2015-09-30
for public release 4 /25 PROJECT DETAIL In this research, fatigue crack formation and growth in the near alpha titanium alloy Ti- 6242S...MM-YYYY) 31-03-2016 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15-08-2012 to 14-08-2015 4 . TITLE AND SUBTITLE A New Approach...PROGRAM ELEMENT NUMBER 61102F 6 . AUTHOR(S) Samantha Daly 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, X.; Rungger, I.; Zapol, P.
Understanding electronic properties of substoichiometric phases of titanium oxide such as Magneli phase Ti 4O 7 is crucial in designing and modeling resistive switching devices. Here we present our study on Magneli phase Ti 4O 7 together with rutile TiO 2 and Ti 2O 3 using density functional theory methods with atomic-orbital-based self-interaction correction (ASIC). We predict a new antiferromagnetic (AF) ground state in the low temperature (LT) phase, and we explain energy difference with a competing AF state using a Heisenberg model. The predicted energy ordering of these states in the LT phase is calculated to be robust inmore » a wide range of modeled isotropic strain. We have also investigated the dependence of the electronic structures of the Ti-O phases on stoichiometry. The splitting of titanium t 2g orbitals is enhanced with increasing oxygen deficiency as Ti-O is reduced. Furthermore, the electronic properties of all these phases can be reasonably well described by applying ASIC with a "standard" value for transition metal oxides of the empirical parameter alpha of 0.5 representing the magnitude of the applied self-interaction correction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, X.; Rungger, I.; Zapol, P.
Understanding electronic properties of substoichiometric phases of titanium oxide such as Magneli phase Ti4O7 is crucial in designing and modeling resistive switching devices. Here we present our study on Magneli phase Ti4O7 together with rutile TiO2 and Ti2O3 using density functional theory methods with atomic-orbital-based self-interaction correction (ASIC). We predict a new antiferromagnetic (AF) ground state in the low temperature (LT) phase, and we explain energy difference with a competing AF state using a Heisenberg model. The predicted energy ordering of these states in the LT phase is calculated to be robust in a wide range of modeled isotropic strain.more » We have also investigated the dependence of the electronic structures of the Ti-O phases on stoichiometry. The splitting of titanium t(2g) orbitals is enhanced with increasing oxygen deficiency as Ti-O is reduced. The electronic properties of all these phases can be reasonably well described by applying ASIC with a "standard" value for transition metal oxides of the empirical parameter alpha of 0.5 representing the magnitude of the applied self-interaction correction.« less
Production of UT Reference Blocks Containing Artificially Introduced Defects
NASA Astrophysics Data System (ADS)
Kaya, A. A.; Ucuncuoglu, S.; Kurkcu, N.; Kandemir, A.; Arslan, H.
2007-03-01
Metallic blocks of Inconel 718 and Ti-6A1-4V alloys that contain artificially introduced defects of known type, size, shape and location were prepared to serve as calibration standards in ultrasonic inspection. The synthetic defects employed to serve as reflectors were all pertinent to the specific alloy systems used, i.e. compositional defects termed as `dirty white' `white spot' and `freckle' for Inconel 718; `hard-alpha' for titanium alloy. Furthermore, as a defect type common to all three materials, spherical voids of various sizes were also incorporated into these calibration blocks. The aim of this study is to introduce defects of known type and size into metallic blocks made of superalloy Inconel 718 and titanium Ti-6A1-4V alloy. The scope of the study entailed determination of the correct parameters for manufacturing processes involved. Based on the results of the preceding phases of this study, it was decided that the method of Vacuum Hot Pressing (VHP) was to be used in this project to manufacture the metallic block containing artificial defects.
Rainer, Matthias; Sonderegger, Harald; Bakry, Rania; Huck, Christian W; Morandell, Sandra; Huber, Lukas A; Gjerde, Douglas T; Bonn, Günther K
2008-11-01
The potential of an organic monolith with incorporated titanium dioxide (TiO(2)) and zirconium dioxide (ZrO(2)) nanoparticles was evaluated for the selective enrichment of phosphorylated peptides from tryptic digests. A pipette tip was fitted with a monolith based on divinylbenzene (DVB) of highly porous structure, which allows sample to pass through the monolithic bed. The enrichment of phosphopeptides was enhanced by increasing the pipetting cycles during the sample preparation and a higher recovery could be achieved with adequate buffer systems. A complete automated process was developed for enrichment of phosphopeptides leading to high reproducibility and resulting in a robust method designed to minimize analytical variance while providing high sensitivity at high sample throughput. The effect of particle size on the selectivity of phosphopeptides was investigated by comparative studies with nano- and microscale TiO(2) and ZrO(2) powders. Eleven phosphopeptides from alpha-casein digest could be recovered by an optimized mixture of microscale TiO(2)/ZrO(2) particles, whereas nine additional phosphopeptides could be retained by the same mixture of nano-structured material. When compared to conventional immobilized metal-ion affinity chromatography and commercial phosphorylation-enrichment kits, higher selectivity was observed in case of self fabricated tips. About 20 phosphopeptides could be retained from alpha-casein and five from beta-casein digests by using TiO(2) and ZrO(2) based extraction tips. Further selectivity for phosphopeptides was demonstrated by enriching a digest of in vitro phosphorylated extracellular signal regulated kinase 1 (ERK1). Two phosphorylated peptides of ERK1 could be identified by MALDI-MS/MS measurements and a following MASCOT database search.
Jakobsen, Stig S; Larsen, A; Stoltenberg, M; Bruun, J M; Soballe, K
2007-09-11
Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10) and proteins known to induce proliferation (M-CSF), chemotaxis (MCP-1) and osteogenesis (TGF-beta, OPG) were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR). Lactate dehydrogenase (LDH) was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.
Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng
2015-10-01
Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones.
Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H
2000-11-01
Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. Copyright 2000 Kluwer Academic Publishers
Microstructurally based variations on the dwell fatgue life of titanium alloy IMI 834
NASA Technical Reports Server (NTRS)
Thomsen, Mark L.; Hoeppner, David W.
1994-01-01
An experimental study was undertaken to determine the role of microstructure on the fatigue life reduction observed in titanium alloy IMI 834 under dwell loading conditions. The wave forms compared were a trapezoid with 15 and 30 second hold times at the maximum test load and a baseline, 10 Hertz, haversine. The stress ratio for both loading wave forms was 0.10. The fatigue loading of each specimen was conducted in a vacuum within a scanning electron microscope chamber which minimized the possibility that the laboratory environment would adversely affect the material behavior. Two microstructural conditions were investigated in the experimental program. The first involved standard 'disk' material with equiaxed alpha in a transformed beta matrix. The second material was cut from the same disk forging as the first but was heat treated to obtain a martensitic alpha prime microstructure. Tensile tests were performed prior to the onset of the fatigue loading portion of the study, and it was determined that the yield strengths of the specimens from both material conditions were within ten percent. The maximum fatigue loads were chosen to be 72 percent of the average yield strength for both materials as determined from the tensile tests. It was found that the cycles to failure from the 10 Hertz loading wave form were reduced by a factor of approximately five when the loading was changed to the trapezoidal wave form for the standard 'disk' material. The fatigue life reduction for the martensitic structure under identical test conditions was approximately 1.75. The improvement observed with the martensitic structure also was accompanied by an increase in overall fatigue life for the wave forms tested. This paper will review the results and conclusions of this effort.
2008-04-01
lamellae which had not fully globularized by the warm working operation. These ‘dog- leg ’ shaped particles (e.g., those marked by arrows in Figure 1c...the micrograph. Those particles consisting of a ‘dog- leg ’ geometry were counted as being 1.5 particles in number to provide an approximate estimate...0.95 1.00 1.05 1.10 1000/T(K) Beta Transus (995C) lo g (A D , m 2 / s) d = d d = d Q=160 kJ/mol Q=284 kJ/mol n=1.67 p=2 DV DAl DTi 47
On the red giant titanium oxide bands
NASA Astrophysics Data System (ADS)
Hanni, L.; Sitska, J.
1985-12-01
The dependence of TiO absorption in cool oxygen-sequence giant stars on the Teff and log g of their atmospheres is investigated theoretically on the basis of spectra simulated using the computer program described by Hanni (1983) and the giant model atmospheres of Johnson et al. (1980). The temperature dependence of the intensity jumps at the head of the alpha(1.0) band is determined from simulated spectra, and the jumps are related to spectral types using the calibration of Ridgway et al. (1980). The results are presented in tables and graphs and shown to be in good agreement with the empirical Teff/intensity-jump correlation of Boyarchuk (1969).
Continuous fiber-reinforced titanium aluminide composites
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Brindley, P. K.; Froes, F. H.
1991-01-01
An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.
Lee, Jae Hyup; Kong, Chang-Bae; Yang, Jae Jun; Shim, Hee-Jong; Koo, Ki-Hyoung; Kim, Jeehyoung; Lee, Choon-Ki; Chang, Bong-Soon
2016-11-01
The CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics spacer generates chemical bonding to adjacent bones with high mechanical stability to produce a union with the end plate, and ultimately stability. The authors aimed to compare the clinical efficacy and safety of CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics with a titanium cage that is widely used for posterior lumbar interbody fusion (PLIF) surgery in the clinical field. This is a prospective, stratified randomized, multicenter, single-blinded, comparator-controlled non-inferiority trial. The present study was conducted in four hospitals and enrolled a total of 86 patients between 30 and 80 years of age who required one-level PLIF due to severe spinal stenosis, spondylolisthesis, or huge disc herniation. The Oswestry Disability Index (ODI), Short Form-36 Health Survey (SF-36), and pain visual analog scale (VAS) were assessed before surgery and at 3, 6, and 12 months after surgery. The spinal fusion rate was assessed at 6 and 12 months after surgery. The spinal fusion rate and the area of fusion, subsidence of each CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics and titanium cage, and the extent of osteolysis were evaluated using a dynamic plain radiography and a three-dimensional computed tomography at 12 months after surgery. The present study was supported by BioAlpha, and some authors (JHL, C-KL, and B-SC) have stock ownership (<10,000 US dollars). From the plain radiography results, the 6-month fusion rates for the bioactive glass ceramics group and the titanium group were 89.7% and 91.4%, respectively. In addition, the 12-month fusion rates based on CT scan were 89.7% and 91.2%, respectively, showing no significant difference. However, the bone fusion area directly attached to the end plate of either bioactive glass ceramics or the titanium cage was significantly higher in the bioactive glass ceramics group than in the titanium group. The ODI, SF-36, back pain, and lower limb pain in both groups significantly improved after surgery, with no significant differences between the groups. No significant differences between the two groups were observed in the extent of subsidence and osteolysis. In lumbar posterior interbody fusion surgery, CaO-SiO 2 -P 2 O 5 -B 2 O 3 glass ceramics spacer showed a similar fusion rates and clinical outcomes compared with titanium cage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi
2010-01-01
Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (P<.001), and there was interaction between the 2 variables (P<.001). Student-Newman-Keuls multiple comparison tests showed that there were significant differences between any 2 metals compared, at each stage of measurement. Paired t tests showed that significant changes in marginal discrepancy occurred with opaque firing on milled CP Ti (P=.017) and cast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Eliades, Theodore; Pratsinis, Harris; Kletsas, Dimitris; Eliades, George; Makou, Margarita
2004-01-01
The purpose of this study was to qualitatively and quantitatively characterize the substances released from orthodontic brackets and nickel-titanium wires and to comparatively assess the cytotoxicity of the ions released from these orthodontic alloys. Two full sets of stainless steel brackets of 20 brackets each (weight 2.1 g) and 2 groups of 0.018 x 0.025 Ni-Ti archwires of 10 wires each (weight 2.0 g) were immersed in 0.9% saline solution for a month. The immersion media were analyzed with inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the ionic content was statistically analyzed with 1-way analysis of variance (ANOVA). Human periodontal ligament fibroblasts and gingival fibroblasts were exposed to various concentrations of the 2 immersion media; nickel chloride was used as a positive control for comparison purposes. The cytotoxic or cytostatic activity of the media was investigated with the MTT and the DNA synthesis assays. The results of the cytotoxicity assay were analyzed with 2-way ANOVA and the Tukey test with solution and concentration variants as discriminating variables (alpha=0.05). The results indicated no ionic release for the nickel-titanium alloy aging solution, whereas measurable nickel and traces of chromium were found in the stainless steel bracket-aging medium. Concentrations of the nickel chloride solution greater then 2 mM were found to reduce by more than 50% the viability and DNA synthesis of fibroblasts; however, neither orthodontic materials-derived media had any effect on the survival and DNA synthesis of either cells.
Spazzin, Aloísio Oro; Henrique, Guilherme Elias Pessanha; Nóbilo, Mauro Antônio de Arruda; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz
2010-01-01
This study evaluated the influence of retorque on loosening torque (Lt) of prosthetic screws in implant-supported dentures with different fit levels. Ten mandibular implant-supported dentures were fabricated and then 20 cast models were then prepared using prosthetic structures to create 2 fit levels: passive fit (Pf) and misfit (Mf). Two tightening techniques were also evaluated: initial torque only (T1); and initial torque and retorque after 10 min (T2). Gold or titanium screws were used, resulting in 4 groups to each one: Pf/T1, Pf/T2, Mf/T1, Mf/T2. The Lt was measured 24 h after the tightening torque using digital torque meter. Data were analyzed statistically by two-way ANOVA and Tukey's test (alpha=0.05), separately for each screw material. For titanium screws, no significant difference (p>0.05) was found between Pf/T1 and Pf/T2, or between Pf/T2 and Mf/T2. However, statistically significant difference (p<0.05) was found between Pf/T1 and Mf/T1, and between Mf/T1 and Mf/T2. Mf reduced the Lt using T1, while and T2 increased the Lt for Mf. Retorque and fit were shown to have no significant influence on the Lt of the gold screws. Retorque application made insignificant the misfit effect on the Lt of the titanium screws, suggesting that this procedure should be performed routinely during the screw tightening in multi-unit dentures.
NASA Astrophysics Data System (ADS)
Bhola, R.; Bhola, S. M.; Mishra, B.; Ayers, R. A.; Olson, D. L.
2011-06-01
Electrochemical characterization of the low modulus Ti-35.5Nb-7.3Zr-5.7Ta beta alloy (TNZT) has been performed in phosphate buffer saline solution at 37 °C using the non destructive electrochemical impedance spectroscopy technique. Measurements were performed at various immersion intervals at the open circuit potential (OCP), which was also monitored with time. Results obtained for TNZT alloy have been compared with those for the commercially used Ti-6Al-4V mixed alloy (Ti64) and the commercially pure titanium (Ti2) alpha alloy. Potentiodynamic polarization was performed to supplement the data obtained from EIS analysis. The TNZT alloy exhibits a two time constant impedance response, whereas the Ti64 and Ti2 alloys display a one time constant behavior. Human fetal osteoblast cells show a better adhesion and a higher cell count for the TNZT alloy compared to the other two alloys. The present investigation is an effort to understand the correlation between the electrochemical, morphological and cellular characteristics of titanium alloys to qualify them for implant applications.
Effect of laser welding on the titanium composite tensile bond strength.
Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Pagnano, Valéria de Oliveira; de Mattos, Maria da Glória Chiarello
2009-01-01
The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al(2)O(3)) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al(2)O(3) grain size: A - 250 microm; B - 180 microm; C- 110 microm; and D - 50 microm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (alpha=0.05). The highest bond strength means were recorded in 250 microm group without laser welding. The lowest shear bond strength means were recorded in 50 microm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al(2)O(3) particle size decreased. Shear bond strength decreased in the laser welded specimens.
Mohammadi, Zahed
2009-04-01
The aim of this study was to evaluate the number of bacteria extruded apically from extracted teeth ex vivo after canal instrumentation using two engine-driven nickel-titanium instruments (Flex Master and V-Taper). Seventy extracted maxillary central incisor teeth were used. After preparing access cavities, root canals were contaminated with a suspension of Enterococcus faecalis, then dried. The contaminated roots were divided into two experimental groups of 30 teeth each and one control group of 10 teeth. Bacteria extruded from the apical foramen during instrumentation were collected into vials. The microbiological samples from the vials were incubated in culture media for 24 hours. Colonies of bacteria were counted, and the results were given as number of colony-forming units. The data obtained were analyzed using the Kruskal-Wallis one-way analysis of variance and Mann-Whitney U-tests, with alpha = 0.05 as the level for statistical significance. Results showed that there was no significant difference as to the number of extruded bacteria between the two engine-driven systems (P > 0.05). Both engine-driven nickel-titanium systems extruded bacteria through the apical foramen.
Ning, C Q; Zhou, Y
2002-07-01
Traditionally, hydroxyapatite was used as a coating material on titanium substrate by various techniques. In the present work, a biocomposite was successfully fabricated from hydroxyapatite and titanium powders by powder metallurgy method. Bioactivity of the composite in a simulated body fluid (SBF) was investigated. Main crystal phases of the as-fabricated composite are found to be Ti2O, CaTiO3, CaO, alpha-Ti and a TiP-like phase. When the composite is immersed in the simulated body fluid for a certain time, a poor-crystallized, calcium-deficient, carbonate-containing apatite film will form on the surface of the composite. The time required to induce apatite nucleation is within 2 h. In addition, the apatite is also incorporated with a little magnesium and chlorine element. It is found that Ti2O has the ability to induce the formation of bone-like apatite in the SBF. And a dissolve of the CaO phase could also provide favorable conditions for the apatite formation, by forming open pores on the surface of the composite and increasing the degree of supersaturation of the SBF with respect to the apatite.
Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.
Guitar, A; Vigna, G; Luppo, M I
2009-04-01
Thermohydrogen processing (THP), a technique in which hydrogen is used as a temporary alloying element, can refine the microstructure and improve the final mechanical properties of the Ti-6 Al-4V alloy. THP allows microstructural modification of titanium alloys near net shape such as biomaterial components obtained by powder metallurgy and castings, since it does not require mechanical working. Two THP, called THP-A and THP-B, have been evaluated in samples of Ti-6Al-4V with a coarse and lamellar microstructure typical of castings and powder metallurgy. The THP-A is based in the eutectoid decomposition of the beta(H) phase to alpha phase and hydride phase. The THP-B is based in the isothermal decomposition of alpha('') martensite phase, obtained by quenching of hydrogenated samples. The refinement of the microstructure due to THP has been evaluated by means of optical and electron microscopy. Tensile tests showed that while both processes were able to increase the strength of the alloy as compared with the starting material, the ductility in samples subjected to THP-B was severely reduced.
Binding of environmental carcinogens to asbestos and mineral fibres.
Harvey, G; Pagé, M; Dumas, L
1984-01-01
A rapid method has been developed for measuring the binding capacity of asbestos and other mineral fibres for environmental carcinogens. Benzo(alpha)pyrene (B(alpha)P), nitrosonornicotine (NNN), and N-acetyl-2-aminofluorene (NAAF) were assayed in the presence of Canadian grade 4T30 chrysotile, chrysotile A, amosite, crocidolite, glass microfibres, glasswool, attapulgite, and titanium dioxide. Chrysotile binds significantly more carcinogens than the other mineral fibres. This binding assay is reproducible with coefficients of variation of less than 8% and 6% respectively for inter and intra assay. The influence of pH was also studied, and there is good correlation between the carcinogen binding and the charge of the tested mineral fibres. The in vitro cytotoxicity on macrophage like cell line P388D1 and the haemolytic activity of various mineral fibres were also measured; a good correlation was found between the binding capacity and the cytotoxicity of tested mineral fibres on P388D1 cells. These results give some explanations for the reported synergism between exposure to asbestos and the smoking habits of workers. PMID:6331497
Solid State Joining of Dissimilar Titanium Alloys
NASA Astrophysics Data System (ADS)
Morton, Todd W.
Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of recrystallization is tied to the localized thermal profile in the weld nugget as well as the heating rates of a given set of weld parameters. Slow kinetics of alpha dissolution relative to the heating rate and process times of friction stir welding suggest an alpha-particle assisted super-transus recrystallization process contributes to a refined grain size in weld parameters utilizing high travel speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Kalidindi, Surya R.
Recent advances in spherical indentation stress-strain protocols and analyses have demonstrated the capability for measuring reliably the local mechanical responses in polycrystalline metal samples at different length scales, ranging from sub-micron (regions within individual grains) to several hundreds of microns (regions covering several grains). These recent advances have now made it possible to study systematically the mechanical behavior of a single material system at different length scales, with tremendous potential to obtain new insights into the role of individual phases, interfaces, and other microscale constituents on the macroscale mechanical response of the material. In this paper, we report spherical indentationmore » stress-strain measurements with different indenter sizes (microns to millimeters) on Ti-6Al-4V (Ti-64) which capture the mechanical response of single phase alpha-Ti-64, single colony (alpha-beta), few colonies, and many colonies of Ti-64. The results show that the average mechanical response (indentation modulus and yield strength) from multiple indentations remains relatively unchanged from single phase alpha to many colonies of Ti-64, while the variance in the response decreases with indenter size. In conclusion, the work-hardening response in indentation tests follows a similar behavior up to indentation zones of many colonies, which shows significantly higher work hardening rates.« less
Weaver, Jordan S.; Kalidindi, Surya R.
2016-12-01
Recent advances in spherical indentation stress-strain protocols and analyses have demonstrated the capability for measuring reliably the local mechanical responses in polycrystalline metal samples at different length scales, ranging from sub-micron (regions within individual grains) to several hundreds of microns (regions covering several grains). These recent advances have now made it possible to study systematically the mechanical behavior of a single material system at different length scales, with tremendous potential to obtain new insights into the role of individual phases, interfaces, and other microscale constituents on the macroscale mechanical response of the material. In this paper, we report spherical indentationmore » stress-strain measurements with different indenter sizes (microns to millimeters) on Ti-6Al-4V (Ti-64) which capture the mechanical response of single phase alpha-Ti-64, single colony (alpha-beta), few colonies, and many colonies of Ti-64. The results show that the average mechanical response (indentation modulus and yield strength) from multiple indentations remains relatively unchanged from single phase alpha to many colonies of Ti-64, while the variance in the response decreases with indenter size. In conclusion, the work-hardening response in indentation tests follows a similar behavior up to indentation zones of many colonies, which shows significantly higher work hardening rates.« less
Grindability of cast Ti-Cu alloys.
Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru
2003-07-01
The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.
Modeling the investment casting of a titanium crown.
Atwood, R C; Lee, P D; Curtis, R V; Maijer, D M
2007-01-01
The objective of this study was to apply computational modeling tools to assist in the design of titanium dental castings. The tools developed should incorporate state-of-the-art micromodels to predict the depth to which the mechanical properties of the crown are affected by contamination from the mold. The model should also be validated by comparison of macro- and micro-defects found in a typical investment cast titanium tooth crown. Crowns were hand-waxed and investment cast in commercial purity grade 1 (CP-1) titanium by a commercial dental laboratory. The castings were analyzed using X-ray microtomography (XMT). Following sectioning, analysis continued with optical and scanning electron microscopy, and microhardness testing. An in-house cellular-automata solidification and finite-difference diffusion program was coupled with a commercial casting program to model the investment casting process. A three-dimensional (3D) digital image generated by X-ray tomography was used to generate an accurate geometric representation of a molar crown casting. Previously reported work was significantly expanded upon by including transport of dissolved oxygen and impurity sources upon the arbitrarily shaped surface of the crown, and improved coupling of micro- and macro-scale simulations. Macroscale modeling was found to be sufficient to accurately predict the location of the large internal porosity. These are shrinkage pores located in the thick sections of the cusp. The model was used to determine the influence of sprue design on the size and location of these pores. Combining microscale with macroscale modeling allowed the microstructure and depth of contamination to be predicted qualitatively. This combined model predicted a surprising result--the dissolution of silicon from the mold into the molten titanium is sufficient to depress the freezing point of the liquid metal such that the crown solidifies the subsurface. Solidification then progresses inwards and back out to the surface through the silicon-enriched near-surface layer. The microstructure and compositional analysis of the near-surface region are consistent with this prediction. A multiscale model was developed and validated, which can be used to design CP-Ti dental castings to minimize both macro- and micro-defects, including shrinkage porosity, grain size and the extent of surface contamination due to reaction with the mold material. The model predicted the surprising result that the extent of Si contamination from the mold was sufficient to suppress the liquidus temperature to the extent that the surface (to a depth of approximately 100 microm) of the casting solidifies after the bulk. This significantly increases the oxygen pickup, thereby increasing the depth of formation of alpha casing. The trend towards mold materials with reduced Si in order to produce easier-to-finish titanium castings is a correct approach.
Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy
NASA Astrophysics Data System (ADS)
Wierenga, Mark
Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018" round and 0.019" x 0.025" rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (alpha= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (alpha= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P <0.0001). The CuAlNi wire exhibited significantly lower loading and unloading forces than any other wire tested. In round wire tensile tests, loading force at all deflections was significantly lower for CuAlNi than CuNiTi or NiTi (P <0.0001). In tensile testing, the CuAlNi alloy was able to recover from a 7 mm extension (10% elongation) without permanent deformation and with little to no loss in force output. In large-deflection bend tests at 4, 5, and 6 mm deflection, CuAlNi showed the significantly lowest loading forces across the three wire materials (P <0.0001). The NiTi wires showed up to 12 times the amount of energy loss due to hysteresis compared to CuAlNi. CuAlNi showed a hysteresis loss that was significantly less than any other wire tested in this study (P <0.0001). Conclusions: The relatively constant force delivered for a long period of time during the deactivation of this wire, the minimal hysteresis loss, the low force output in deflection, and the relatively low modulus of elasticity suggest that CuAlNi wires should be considered an important material addition to orthodontic metallurgy.
Ghamarian, I.; Samani, P.; Rohrer, G. S.; ...
2017-03-24
Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less
NASA Technical Reports Server (NTRS)
Smith, Stephen W.; Piascik, Robert S.
2001-01-01
To study the effects of atmospheric species on the fatigue crack growth behavior of an a+B titanium alloy (Ti 6-2-2-2-2) at room temperature and 177 C, fatigue tests were performed in laboratory air, ultrahigh vacuum, and high purity water vapor, oxygen, nitrogen and helium at various partial pressures. Accelerated fatigue crack growth rates in laboratory air compared to ultrahigh vacuum are linked to the damaging effects of both water vapor and oxygen. Observations of the fatigue crack growth behavior in ultrahigh purity environments, along with surface film analysis using X-ray photoelectron spectroscopy (XPS), suggest that multiple crack-tip processes govern the damaging effects of air. Three possible mechanisms are proposed: 1) at low pressure (less than 10(exp -1) Pa), accelerated da/dN is likely due to monolayer adsorption on crack-tip surfaces presumably resulting in decreased bond strengths at the fatigue crack tip, 2) for pressures greater than 10(exp -1) Pa, accelerated da/dN in oxygen may result from oxidation at the crack tip limiting reversible slip, and 3) in water vapor, absorption of atomic hydrogen at the reactive crack tip resulting in process zone embrittlement.
Stress corrosion behavior of Ru-enhanced alpha-beta titanium alloys in methanol solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutz, R.W.; Horrigan, J.M.; Bednarowicz, T.A.
1998-12-31
Conservative, practical guidelines for the minimum water content required to prevent methanolic stress corrosion cracking (SCC) of Ti-6Al-4V-Ru and Ti-3Al-2.5V-Ru alloy tubulars have been developed from slow strain rate testing in plain and acidified NaCl-saturated methanol-water solutions at 25 C. A minimum methanol water content of 10 wt.% is proposed for Ti-6Al-4V-Ru, whereas 2-3 wt.% is sufficient for the lower strength Ti-3Al-2.5V-Ru alloy. Although HCl-acidification aggravated methanolic SCC, intermixing of methanol with crude oil or pure hydrocarbons, H{sub 2}S gas saturation, and/or increasing temperature diminished cracking susceptibility in these alloy tubulars.
Goonan, Thomas G.
2010-01-01
As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.
Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride
Koc, Rasit; Glatzmaier, Gregory C.
1995-01-01
A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.
Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride
Koc, R.; Glatzmaier, G.C.
1995-05-23
A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.
Structure and Properties of Titanium Tantalum Alloys for Biocompatibility
NASA Astrophysics Data System (ADS)
Huber, Daniel E.
In this thesis, the phase stability and elastic modulus of Ti-Ta simple binary alloys as well as alloys with small additions of ternary elements have been studied. The binary alloy from a nominal 8 to 28 wt.% Ta was first explored using a combinatorial approach. This approach included Laser Engineered Net Shape (LENSTM) processing of materials and subsequent characterization by instrumented indentation and site specific Transmission Electron Microscopy (TEM). The composition range of 15 to 75 wt.% Ta was further explored by more traditional methods that included vacuum arc melting high purity elements, X-Ray Diffraction (XRD) and modulus measurements made by ultrasonic methods. Beyond the simple binary, alloys with low levels of ternary elements, oxygen, aluminum, zirconium and small additions of rare earth oxides were investigated. The crystal structure with space group Cmcm was chosen for it applicability with P63/mmc and Im-3¯m sub group / super group symmetry. This provides a consistent crystal structure framework for the purpose of studying the alpha to beta transformation pathway and associated alpha' and alpha'' martensitic phases. In this case, the pathway is defined by both the lattice parameters and the value of the parameter "y", where the parameter "y" describes the atomic positions of the [002]alpha plane. It was found that the lattice parameter changes in the Ti-Ta binary alloys are similar to structures reported for compositions in the Ti-Nb system of similar atomic percentages. Although samples produced by the LENSTM; process and characterized by instrumented indentation demonstrated the correct trends in modulus behavior, absolute agreement was not seen with modulus values published in literature. Alloys of the binary Ti-Ta system produced from high purity materials do indeed show close agreement with literature where there exist two minima of modulus near the compositions of Ti-28Ta wt.% and Ti-68Ta wt.%. These two minima occur at the discreet boundary between alpha' / alpha'' and alpha'' / beta respectively. The role of oxygen as an alloying addition was studied as it relates to the stability of alpha' and alpha'' martensite, here it was found that oxygen will stabilize alpha' yet cause an increase in the Young's modulus. Rare earth additions to getter interstitial oxygen in the high purity materials show no further reduction in modulus. Conversely, additions of another alpha stabilizer, Al, proved to lower the alpha' stability, with one composition exhibiting a modulus as low as 53 GPa. Zirconium being a neutral element regarding alpha and beta stability slightly changed the structure and lattice parameter, while making a little or no difference in the observed modulus. Observations by TEM of quenched specimens indicate the rise in modulus observed between the two minima is not caused the appearance of o. Rather weak o reflections were observed in Ti-65Ta wt.% in the as arc-melted condition and on annealing for 450°C for 24 hours. Precipitates of o were not clearly identified by dark-field TEM imaging. High Resolution Scanning Transmission Electron Microscopy (HRSTEM) of the aged specimen indicated that o might exist as 3-5nm particles.
NASA Astrophysics Data System (ADS)
Kesler, Michael Steiner
Titanium aluminides are of interest as a candidate material for aerospace turbine applications due to their high strength to weight ratio. gamma-TiAl + alpha2-Ti3Al alloys have recently been incorporated in the low pressure turbine region but their loss of strength near 750C limits their high temperature use. Additions of Nb have been shown to have several beneficial effects in gamma+alpha2 alloys, including enhancements in strength and ductility of the gamma-phase, along with the stabilization of the cubic BCC beta-phase at forging temperatures allowing for thermomechanical processing. In the ternary Ti-Al-Nb system at high Nb-contents above approximately 10at%, there exists a two-phase gamma-TiAl + sigma-Nb2Al region at and above current service temperature for the target application. Limited research has been conducted on the mechanical properties of alloys with this microstructure, though they have demonstrated excellent high temperature strength, superior to that of gamma+alpha2 alloys. Because the sigma-phase does not deform at room temperature, high volume fractions of this phase result in poor toughness and no tensile elongation. Controlling the microstructural morphology by disconnecting the brittle matrix through heat treatments has improved the toughness at room temperature. In this study, attempts to further improve the mechanical properties of these alloys were undertaken by reducing the volume fraction of the sigma-phase and controlling the scale of the gamma+sigma microstructure through the aging of a meta-stable parent phase, the beta- phase, that was quenched-in to room temperature. Additions of beta-stabilizing elements, Cr and Mo, were needed in order to quench-in the beta-phase. The room temperature mechanical properties were evaluated by compression, Vickers' indentation and single edge notch bend tests at room temperature. The formation of the large gamma-laths at prior beta- phase grain boundaries was found to be detrimental to ductility due to strain localization in this coarsened region of the microstructure. Furthermore, samples aged from beta- phase single crystals proved to have excellent combinations of strength and ductility under compression. In the single crystals, microcracking did not develop until much larger plastic strains were reached. Lowering the volume fraction of the sigma-phase proved to enhance the fracture toughness in these alloys. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J
2018-04-01
In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in young patients. In this work, α-TCP/Fe composites are studied for the first time in a wide range of compositions, showing not only higher degradation rate in vitro than pure components, but also good cytocompatibility and mechanical properties controllable with the Fe content. Ceramic matrix composites show high specific strength and low elastic modulus, thus better fulfilling the requirements for bone fractures fixation. A significant advance over previous works on the topic is the use of pulsed electric current assisted sintering together with α-TCP, convenient to improve the mechanical performance and degradation rate, respectively. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Production of Titanium Metal by an Electrochemical Molten Salt Process
NASA Astrophysics Data System (ADS)
Fatollahi-Fard, Farzin
Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.
Tensile properties of titanium electrolytically charged with hydrogen
NASA Technical Reports Server (NTRS)
Smith, R. J.; Otterson, D. A.
1971-01-01
Yield strength, ultimate tensile strength, and elongation were studied for annealed titanium electrolytically charged with hydrogen. The hydrogen was present as a surface hydride layer. These tensile properties were generally lower for uncharged titanium than for titanium with a continuous surface hydride; they were greater for uncharged titanium than for titanium with an assumed discontinuous surface hydride. We suggest that the interface between titanium and titanium hydride is weak. And the hydride does not necessarily impair strength and ductility of annealed titanium. The possibility that oxygen and/or nitrogen can embrittle titanium hydride is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majumdar, P., E-mail: m.pallab@gmail.com; Singh, S.B.; Chakraborty, M.
2010-12-15
Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedicalmore » Ti-alloys.« less
Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys
NASA Technical Reports Server (NTRS)
Gray, H. R.
1975-01-01
Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.
a Study of Dilute Aluminum and Vanadium NMR in Alpha-Titanium and in Hydrogen Doped Alpha-Titanium
NASA Astrophysics Data System (ADS)
Chou, Lih-Hsin
Nuclear magnetic resonance was used to investigate Ti-1 at.% V, Ti-2 at.% V, Ti-1 at.% Al, Ti-2 at.% Al and in addition samples of these alloys containing 1 and 2 at.% H. Computer simulation of the absorption curves incorporates the effects of nuclear quadrupole and anisotropic shift interactions, dipolar broadening, and inhomogeneous Knight shift distribution. From the simulation work, experimental parameters such as electric field gradient (EFG), axial anisotropic Knight shift K(,ax), and isotropic Knight shift are obtained. In addition to shedding light on certain features of bonding of V and Al in Ti, this information is used to discuss the trapping of hydrogen in these systems. The resonance of a simple metal (Al) and transition metal (V) at low concentration in a transition metal (Ti) matrix are compared. The localized states of an Al impurity appear to differ radically from the host Ti atomic structure; V present as a dilute solute appears to join the Ti lattice smoothly. Very small isotropic and anisotropic Knight shifts were observed for ('27)Al in Ti. This implies an absence of an orbital contribution and a small value for the s conduction electron density at the local Fermi surface in the vicinity of Al in Ti. A sizeable isotropic and anisotropic Knight shift was observed for ('51)V in Ti. This is thought to be the result of a large orbital contribution. The substitutional vanadium retains much of the character of V, but experiences the symmetry of the Ti lattice. Four outer electrons of V may form nearest neighbor bonds similarly to those between Ti atoms in pure titanium. The one extra electron on the V may be more s-like in character. Measurement of the temperature dependence of K(,ax) and EFG values at V solute atoms in a Ti matrix show that both K(,ax) and EFG increase as temperature decreases. The local electric field gradient contribution from non-s-electrons q(,non -s-el) is about 2 to 5 times larger than the q(,ion) values in magnitude. Because the sign of the EFG is not determined, the validity of the so called "universal correlation" could not be tested. For hydrogen charged Ti-2V alloys, a line shape change was observed at both room and liquid nitrogen temperatures. Thermodynamic and kinetic arguments which include the presence of hydride, dissolved hydrogen, and trapped hydrogen (trapping enthalpy 0.05 eV or greater) are offered to explain the data. No change in the solute resonance line was detected for hydrogen charged Ti-1V, or for hydrogen charged Ti-1Al and Ti-2Al.
Phase transformation changes in thermocycled nickel-titanium orthodontic wires.
Berzins, David W; Roberts, Howard W
2010-07-01
In the oral environment, orthodontic wires will be subject to thermal fluctuations. The purpose of this study was to investigate the effect of thermocycling on nickel-titanium (NiTi) wire phase transformations. Straight segments from single 27 and 35 degrees C copper NiTi (Ormco), Sentalloy (GAC), and Nitinol Heat Activated (3M Unitek) archwires were sectioned into 5mm segments (n=20). A control group consisted of five randomly selected non-thermocycled segments. The remaining segments were thermocycled between 5 and 55 degrees C with five randomly selected segments analyzed with differential scanning calorimetry (DSC; -100<-->150 degrees C at 10 degrees C/min) after 1000, 5000, and 10,000 cycles. Thermal peaks were evaluated with results analyzed via ANOVA (alpha=0.05). Nitinol HA and Sentalloy did not demonstrate qualitative or quantitative phase transformation behavior differences. Significant differences were observed in some of the copper NiTi transformation temperatures, as well as the heating enthalpy with the 27 degrees C copper NiTi wires (p<0.05). Qualitatively, with increased thermocycling the extent of R-phase in the heating peaks decreased in the 35 degrees C copper NiTi, and an austenite to martensite peak shoulder developed during cooling in the 27 degrees C copper NiTi. Repeated temperature fluctuations may contribute to qualitative and quantitative phase transformation changes in some NiTi wires. Copyright 2010 Academy of Dental Materials. All rights reserved.
Er, K; Sümer, Z; Akpinar, K E
2005-12-01
To evaluate the number of bacteria extruded apically from extracted teeth ex vivo after canal instrumentation using the two engine-driven techniques utilizing nickel-titanium instruments (ProTaper and System GT). Forty extracted single-rooted human mandibular premolar teeth were used. Access cavities were prepared and root canals were then contaminated with a suspension of Enterococcus faecalis and dried. The contaminated roots were divided into two experimental groups of 15 teeth each and one control group of 10 teeth. Group 1, ProTaper group: the root canals were instrumented using ProTaper instruments. Group 2, System GT group: the root canals were instrumented using System GT instruments. Group 3, control group: no instrumentation was attempted. Bacteria extruded from the apical foramen during instrumentation were collected into vials. The microbiological samples from the vials were incubated in culture media for 24 h. Colonies of bacteria were counted and the results were given as number of colony-forming units. The data obtained were analysed using the Kruskal-Wallis one-way analysis of variance and Mann-Whitney U-tests, with alpha = 0.05 as the level for statistical significance. There was no significant difference as to the number of extruded bacteria between the ProTaper and System GT engine-driven systems (P > 0.05). Both engine-driven nickel-titanium systems extruded bacteria through the apical foramen.
Ehrensberger, Mark T; Gilbert, Jeremy L
2010-05-01
The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Anil, E-mail: anilkantikumar@rediffmail.com; Kumar, Vipin; Gupta, Merry
2015-08-28
Efforts have been made to ease process of producing widely used multilayered ceramics of Barium Zirconium Titanium Oxides and study their dielectric behaviour and structural properties. For this purpose, adequate proportions of Barium Carbonate, Zirconium Oxide and Titanium Oxide were taken and hand milled for 2 hours. Neodymium composition of the order of 0.1% and 0.2% was used for doping to weight percentage of BaZr0.2Ti0.8O3. The samples were authenticated using raw data obtained from Bruker AXS D8 advance Copper KL alpha source XRD equipment. Further, the samples were studied for their phase transition, composition, single phase perovskite structure using XRDmore » technique. The technique has also been applied to know formation of stable homogeneous solid solution from XRD parameters. The other physical parameters like the morphology, micro structural information, crystal arrangements and topography have also been observed through SEM. The SEM has revealed information related to grain size development and composition of sample with fine agglomerates. For complete study of the compounds the atomic and weight composition has also been examined by Electron Dispersive Spectroscopy patterns. The comparison has been made with other works on ceramics at various frequencies and has yielded very interesting results.« less
Preparation of titanium diboride powder
Brynestad, Jorulf; Bamberger, Carlos E.
1985-01-01
Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.
Method for preparing hydrous titanium oxide spherules and other gel forms thereof
Collins, J.L.
1998-10-13
The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.
Method for preparing hydrous titanium oxide spherules and other gel forms thereof
Collins, Jack L.
1998-01-01
The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.
Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne
2017-02-01
To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.
Rough titanium alloys regulate osteoblast production of angiogenic factors.
Olivares-Navarrete, Rene; Hyzy, Sharon L; Gittens, Rolando A; Schneider, Jennifer M; Haithcock, David A; Ullrich, Peter F; Slosar, Paul J; Schwartz, Zvi; Boyan, Barbara D
2013-11-01
Polyether-ether-ketone (PEEK) and titanium-aluminum-vanadium (titanium alloy) are used frequently in lumbar spine interbody fusion. Osteoblasts cultured on microstructured titanium generate an environment characterized by increased angiogenic factors and factors that inhibit osteoclast activity mediated by integrin α2β1 signaling. It is not known if this is also true of osteoblasts on titanium alloy or PEEK. The purpose of this study was to determine if osteoblasts generate an environment that supports angiogenesis and reduces osteoclastic activity when grown on smooth titanium alloy, rough titanium alloy, or PEEK. This in vitro study compared angiogenic factor production and integrin gene expression of human osteoblast-like MG63 cells cultured on PEEK or titanium-aluminum-vanadium (titanium alloy). MG63 cells were grown on PEEK, smooth titanium alloy, or rough titanium alloy. Osteogenic microenvironment was characterized by secretion of osteoprotegerin and transforming growth factor beta-1 (TGF-β1), which inhibit osteoclast activity and angiogenic factors including vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), and angiopoietin-1 (ANG-1). Expression of integrins, transmembrane extracellular matrix recognition proteins, was measured by real-time polymerase chain reaction. Culture on titanium alloy stimulated osteoprotegerin, TGF-β1, VEGF-A, FGF-2, and angiopoietin-1 production, and levels were greater on rough titanium alloy than on smooth titanium alloy. All factors measured were significantly lower on PEEK than on smooth or rough titanium alloy. Culture on titanium alloy stimulated expression of messenger RNA for integrins that recognize Type I collagen in comparison with PEEK. Rough titanium alloy stimulated cells to create an osteogenic-angiogenic microenvironment. The osteogenic-angiogenic responses to titanium alloy were greater than PEEK and greater on rough titanium alloy than on smooth titanium alloy. Surface features regulated expression of integrins important in collagen recognition. These factors may increase bone formation, enhance integration, and improve implant stability in interbody spinal fusions. Copyright © 2013 Elsevier Inc. All rights reserved.
Electrospinning of ceramic nanofibers
NASA Astrophysics Data System (ADS)
Eick, Benjamin M.
Silicon Carbide (SiC) nanofibers of diameters as low as 20 nm are fabricated. The fibers were produced through the electrostatic spinning of the preceramic poly(carbomethylsilane) with pyrolysis to ceramic. A new technique was used where the preceramic was blended with polystyrene (PS) and, subsequent to electrospinning, was exposed to UV to crosslink the PS and prevent fibers flowing during pyrolysis. Electrospun SiC fibers were characterized by FTIR, TGA-DTA, SEM, TEM, XRD, and SAED. Fibers were shown to be polycrystalline and nanograined with alpha-SiC 15R polytype being dominant, where commercial fiber production methods form beta-SiC 3C. Pyrolysis of the bulk polymer blend to SiC produced alpha-SiC 15R as the dominant polytype with larger grains showing that electrospinning nanofibers affects resultant crystallinity. Fibers produced were shown to have a core-shell structure of an oxide scale that was variable by pyrolysis conditions. Metal oxide powders (chromium oxide, cobalt oxide, iron oxide, silicon oxide, tantalum oxide, titanium oxide, tungsten oxide, vanadium oxide, and zirconium oxide), were converted to metal carbide powders and metal nitride powders by the process of carbothermal reduction (CTR). Synthetic pitch was explored as an alternative to graphite which is a common carbon source for CTR. It was shown via characterization with XRD that pitch performs as well and in some cases better than graphite and is therefore a viable alternative in CTR. Conversion of metal oxide powders with pitch led to conversion of sol-gel based metal oxide nanofibers produced by electrospinning. Pitch was soluble in the solutions xv that were electrospun allowing for intimate contact between the sol-gel and the carbon source for CTR. This method became a two step processing method to produce metal carbide and nitride nanofibers: first electrospin sol-gel based metal oxide nanofibers and subsequently pyrolize them in the manner of CTR to transform them. Results indicate that this method was capable of transforming hafnium, niobium, tantalum, titanium, vanadium, and zirconium sol-gel nanofibers to metal carbides and nitrides.
2013-01-01
Background Efforts to improve the performance of rotary NiTi instruments by enhancing the properties of NiTi alloy, or their manufacturing processes rather than changes in instrument geometries have been reported. The aim of this study was to compare in-vitro the shaping ability of three different rotary nickel-titanium instruments produced by different manufacturing methods. Methods Thirty simulated root canals with a curvature of 35˚ in resin blocks were prepared with three different rotary NiTi systems: AK- AlphaKite (Gebr. Brasseler, Germany), GTX- GT® Series X (Dentsply, Germany) and TF- Twisted Files (SybronEndo, USA). The canals were prepared according to the manufacturers’ instructions. Pre- and post-instrumentation images were recorded and assessment of canal curvature modifications was carried out with an image analysis program (GSA, Germany). The preparation time and incidence of procedural errors were recorded. Instruments were evaluated under a microscope with 15 × magnifications (Carl Zeiss OPMI Pro Ergo, Germany) for signs of deformation. The Data were statistically analyzed using SPSS (Wilcoxon and Mann–Whitney U-tests, at a confidence interval of 95%). Results Less canal transportation was produced by TF apically, although the difference among the groups was not statistically significant. GTX removed the greatest amount of resin from the middle and coronal parts of the canal and the difference among the groups was statistically significant (p < 0.05). The shortest preparation time was registered with TF (444 s) and the longest with GTX (714 s), the difference among the groups was statistically significant (p < 0.05). During the preparation of the canals no instrument fractured. Eleven instruments of TF and one of AK were deformed. Conclusion Under the conditions of this study, all rotary NiTi instruments maintained the working length and prepared a well-shaped root canal. The least canal transportation was produced by AK. GTX displayed the greatest cutting efficiency. TF prepared the canals faster than the other two systems. PMID:24341354
Microstructure and corrosion behavior of porous coatings on titanium alloy by vacuum-brazed method.
Lee, T M; Chang, E; Yen, C H
2006-05-01
The microstructural evolution and electrochemical characteristics of brazed porous-coated Ti-6Al-4V alloy were analyzed and compared with respect to the conventionally 1300 degrees C sintering method. The titanium filler metal of low-melting-point (934 degrees C) Ti-15Cu-15Ni was used to braze commercially pure (CP) titanium beads onto the substrate of Ti-6Al-4V alloy at 970 degrees C for 2 and 8 h. Optical microscopy, scanning and transmission electron microscopy, and X-ray diffractometry (XRD) were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that the bead/substrate contact interface of the 970 degrees C brazed specimens show larger contact area and higher radius curvature in comparison with 1300 degrees C sintering method. The microstructure of brazed specimens shows the Widmanstätten structure in the brazed zone and equiaxed alpha plus intergranular beta in the Ti-6Al-4V substrate. The intermetallic Ti2Ni phase existing in the prior filler metal diminishes, while the Ti2Cu phase can be identified for the substrate at 970 for 2 h, but the latter phase decrease with time. In Hank's solution at 37 degrees C, the corrosion rates of the 1300 degrees C sintering and the 970 degrees C brazed samples are similar at corrosion potential (E(corr)) in potentiodynamic test, and the value of E(corr) for the brazed sample is noble to the sintering samples. The current densities of the brazed specimens do not exceed 100 microA/cm2 at 3.5 V (SCE). These results suggest that the vacuum-brazed method exhibits the potentiality to manufacture the porous-coated specimens for biomedical application. (c) 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Winter, S.; F-X Wagner, M.
2016-03-01
A combination of good ductility and fatigue resistance makes β-titanium alloys interesting for many current and potential future applications. The mechanical behavior is primarily determined by microstructural parameters like (beta phase) grain size, morphology and volume fraction of primary / secondary α-phase precipitates, and this allows changing and optimizing their mechanical properties across a wide range. In this study, we investigate the possibility to modify the microstructure of the high-strength beta titanium alloy Ti-10V-2Fe-3Al, with a special focus on shape and volume fraction of primary α-phase. In addition to the conventional strategy for precipitation of primary α, a special thermo-mechanical processing is performed; this processing route combines the conventional heat treatment with incremental forming during the primary α-phase annealing. After incremental forming, considerable variations in terms of microstructure and mechanical properties can be obtained for different thermo-mechanical processing routes. The microstructures of the deformed samples are characterized by globular as well as lamellar (bimodal) α precipitates, whereas conventional annealing only results in the formation of lamellar precipitates. Because of the smaller size, and the lower amount, of α-phase after incremental forming, tensile strength is not as high as after the conventional strategy. However, high amounts of grain boundary α and lamellar αp-phase in the undeformed samples lead to a significantly lower ductility in comparison to the matrix with bimodal structures obtained by thermo-mechanical processing. These results illustrate the potential of incremental forming during the annealing to modify the microstructure of the beta titanium Ti-10V-2Fe-3Al in a wide range of volume fractions and morphologies of the primary α phase, which in turn leads to considerably changes, and improved, mechanical properties.
Lang, Melissa S; Cerutis, D Roselyn; Miyamoto, Takanari; Nunn, Martha E
2016-01-01
The aim of this study was to evaluate the surface characteristics and gingival fibroblast adhesion of disks composed of implant and abutment materials following brief and repeated instrumentation with instruments commonly used in procedures for implant maintenance, stage-two implant surgery, and periimplantitis treatment. One hundred twenty disks (40 titanium, 40 titaniumzirconium, 40 zirconia) were grouped into treatment categories of instrumentation by plastic curette, titanium curette, diode microlaser, rotary titanium brush, and no treatment. Twenty strokes were applied to half of the disks in the plastic and titanium curette treatment categories, while half of the disks received 100 strokes each to simulate implant maintenance occurring on a repetitive basis. Following analysis of the disks by optical laser profilometry, disks were cultured with human gingival fibroblasts. Cell counts were conducted from scanning electron microscopy (SEM) images. Differences in surface roughness across all instruments tested for zirconia disks were negligible, while both titanium disks and titaniumzirconium disks showed large differences in surface roughness across the spectrum of instruments tested. The rotary titanium brush and the titanium curette yielded the greatest overall mean surface roughness, while the plastic curette yielded the lowest mean surface roughness. The greatest mean cell counts for each disk type were as follows: titanium disks with plastic curettes, titanium-zirconium disks with titanium curettes, and zirconia disks with the diode microlaser. Repeated instrumentation did not result in cumulative changes in surface roughness of implant materials made of titanium, titanium-zirconium, or zirconia. Instrumentation with plastic implant curettes on titanium and zirconia surfaces appeared to be more favorable than titanium implant curettes in terms of gingival fibroblast attachment on these surfaces.
Curtin, Justin Paul; Wang, Minji
2017-08-01
Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.
Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium mining are minimal; however, the processes required to extract titanium from titanium feedstock can produce industrial waste.
Grafting strategy to develop single site titanium on an amorphous silica surface.
Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G
2009-06-16
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.
Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J
2009-01-01
Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less
Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn.
NASA Technical Reports Server (NTRS)
Williams, D. P.; Nelson, H. G.
1972-01-01
Study of the kinetics of hydrogen-induced cracking in the Ti-5Al-2.5Sn titanium alloy, which has a structure of acicular alpha platelets in a beta matrix. The crack-growth rate at low stress-intensity levels was found to be exponentially dependent on stress intensity but essentially independent of temperature. The crack-growth rate at intermediate stress-intensity levels was found to be independent of stress intensity but dependent on temperature in such a way that crack-growth rate was controlled by a thermally activated mechanism having an activation energy of 5500 cal/mole and varied as the square root of the hydrogen pressure. The crack-growth rate at stress-intensity levels very near the fracture toughness is presumed to be independent of environment. The results are interpreted to suggest that crack growth at high stress intensities is controlled by normal, bulk failure mechanisms such as void coalescence and the like. At intermediate stress-intensity levels the transport of hydrogen to some interaction site along the alpha-beta boundary is the rate-controlling mechanism. The crack-growth behavior at low stress intensities suggests that the hydrogen interacts at this site to produce a strain-induced hydride which, in turn, induces crack growth by restricting plastic flow at the crack tip.
Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.
Stengl, V; Ageorges, H; Ctibor, P; Murafa, N
2009-05-01
The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.
Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers
NASA Astrophysics Data System (ADS)
Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.
2014-09-01
The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.
Research on tool wearing on milling of TC21 titanium alloy
NASA Astrophysics Data System (ADS)
Guilin, Liu
2017-06-01
Titanium alloys are used in aircraft widely, but the efficiency is a problem for machining titanium alloy. In this paper, the cutting experiment of TC21 titanium alloy was studied. Cutting parameters and test methods for TC21 titanium alloy were designed. The wear behavior of TC21 titanium alloy was studied based on analysis of orthogonal test results. It provides a group of cutting parameters for TC21 titanium alloy processing.
[Cr-Ti-Al-N complex coating on titanium to strengthen Ti/porcelain bonding].
Zhang, Hui; Guo, Tian-wen; Li, Jun-ming; Pan, Jing-guang; Dang, Yong-gang; Tong, Yu
2006-02-01
To study the feasibility of magnetron sputtering Cr-Ti-Al-N complex coating as an interlayer on titanium to enhance the titanium-ceramic binding strength. With a three-point bending test according to ISO 9693, the binding strength of Duceratin (Degussa) to titanium substrate prepared with 4 different surface treatments (polishing, polishing and megnetron sputtering Cr, Ti, Al, and N complex coating, sandblasting, sandblasting and coating) was evaluated. Ti/porcelain interface and fractured Ti surface were examined using scanning electron microscopy with energy-dispersive spectrometry (EDS). The binding strength of polished and coated titanium/Duceratin was significantly higher than polished titanium group (P<0.05). The binding strength of sandblasted and coated titanium/Duceratin did not differ significantly from that of sandblasted titanium group (P>0.05), and the strength in the two sandblasted titanium groups was significantly higher than that in polished and coated titanium group (P<0.05). Megnetron sputtering Cr-Ti-Al-N complex on polished titanium can increase the titanium/porcelain binding strength. Megnetron sputtering coating is a promising Ti/porcelain interlayer.
Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching
NASA Astrophysics Data System (ADS)
Zhao, Longsheng; Wang, Lina; Qi, Tao; Chen, Desheng; Zhao, Hongxin; Liu, Yahui; Wang, Weijing
2018-05-01
Acid-leaching behaviors of the titanium slag obtained by selective reduction of vanadium-bearing titanomagnetite concentrates were investigated. It was found that the optimal leaching of titanium and silicon were 0.7% and 1.5%, respectively. The titanium and silicon in the titanium slag were firstly dissolved in the acidic solution to form TiO2+ and silica sol, and then rapidly reprecipitated, forming hydrochloric acid (HCl) leach residue. Most of the silicon presented in the HCl leach residue as floccules-like silica gel, while most of the titanium was distributed in the nano-sized rod-like clusters with crystallite refinement and intracrystalline defects, and, as such, 94.3% of the silicon was leached from the HCl leach residue by alkaline desilication, and 96.5% of the titanium in the titanium-rich material with some rutile structure was then digested by the concentrated sulfuric acid. This provides an alternative route for the comprehensive utilization of titanium and silicon in titanium slag.
Preparation of metal diboride powders
Brynestad, J.; Bamberger, C.E.
Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.
Cytotoxicity of titanium and titanium alloying elements.
Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C
2010-05-01
It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.
The hydrogen embrittlement of titanium-based alloys
NASA Astrophysics Data System (ADS)
Tal-Gutelmacher, Ervin; Eliezer, Dan
2005-09-01
Titanium-based alloys provide an excellent combination of a high strength/weight ratio and good corrosion behavior, which makes these alloys among the most important advanced materials for a variety of aerospace, marine, industrial, and commercial applications. Although titanium is considered to be reasonably resistant to chemical attack, severe problems can arise when titanium-based alloys come in contact with hydrogen-containing environments, where they can pick up large amounts of hydrogen, especially at elevated temperatures. The severity and the extent of the hydrogen interaction with titanium-based alloys are directly related to the microstructure and composition of the titanium alloys. This paper addresses the hydrogen embrittlement of titanium-based alloys. The hydrogen-titanium interaction is reviewed, including the solubility of hydrogen in α and β phases of titanium and hydride formation. Also, the paper summarizes the detrimental effects of hydrogen in different titanium alloys.
Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh
Rostampour, Masoumeh; Roayaei, Mahnaz
2014-01-01
Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a 16% decrease in dose. For both 6 and 10 MeV, before the titanium mesh, there was always an increase in dose. If titanium mesh is placed in buildup region, it causes an increase of the dose and could lead to overdose of the adjacent tissue, whereas if titanium mesh is placed beyond the buildup region, it would lead to a decrease in dose compared to the homogenous tissue. PACS number: 87.53.Bn PMID:25207397
NASA Astrophysics Data System (ADS)
Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.
2015-02-01
The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.
UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium
Saita, Makiko; Ikeda, Takayuki; Yamada, Masahiro; Kimoto, Katsuhiko; Lee, Masaichi Chang-Il; Ogawa, Takahiro
2016-01-01
Background Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV) light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability. Methods and results Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light) were immersed in simulated body fluid (SBF) for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition in the valleys and at the inclines of micro-roughened structures without affecting the existing micro-configuration. Micro-roughened titanium and apatite-deposited titanium surfaces had similar roughness values. The attachment, spreading, settling, proliferation, and alkaline phosphate activity of bone marrow-derived osteoblasts were promoted on apatite-coated titanium with photofunctionalization. Conclusion UV-photofunctionalization of titanium enabled faster deposition of nanoscale biomimetic apatite, resulting in the improved biological capability compared to the similarly prepared apatite-deposited titanium without photofunctionalization. Photofunctionalization-assisted biomimetic apatite deposition may be a novel method to effectively enhance micro-roughened titanium surfaces without altering their microscale morphology. PMID:26834469
Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng
2012-04-01
To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P < 0.05]. The surfaces of titanium cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.
[Effects of laser welding on bond of porcelain fused cast pure titanium].
Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi
2006-04-01
To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.
The crevice corrosion of cathodically modified titanium in chloride solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingen, E. van der
1995-12-01
The susceptibility of titanium to crevice corrosion in low-pH chloride solutions at elevated temperatures can result in major practical problems. Although Grade 7 titanium is considered the most crevice-corrosion resistant material available for these environments, the price increase of palladium has limited the utilization of this alloy. A cost-effective titanium alloy, containing 0.2% ruthenium by mass, has been developed for use in environments of increased chloride concentration and temperature. The crevice corrosion resistance of the Ti-0.2% Ru alloy has been evaluated and compared with that of ASTM commercially pure Grade 2 titanium, Grade 7 titanium (Ti-0.12 to 0.25% palladium bymore » mass) and Grade 12 titanium (Ti-0.8% Ni-0.3% Mo). The results indicated that the cathodically modified titanium alloys, Ti-0.2% Ru and Grade 7 titanium, showed similar resistance to crevice corrosion attack in all the solutions tested, and that their behavior was significantly better than that of Grade 2 and Grade 12 titanium.« less
Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert
1999-01-01
A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.
Cachinho, Sandra C P; Pu, Fanrong; Hunt, John A
2013-04-01
The failure of implanted medical devices can be associated with changes in the production of cytokines by cells of the immune system. Cytokines released by peripheral blood mononuclear cells upon contact with metal particles were quantified to understand their role in implantation intergration and their importance as messengers in the recruitment of T-lymphocytes at the implantation site. Opsonization was utilised to understand the influence of serum proteins on particle-induced cytokine production and release. Different metal compositions were used in the particulate format, Titanium (Ti), Titanium alloy (Ti6Al4V), and Stainless Steel 316L (SS), and were cultured in vitro with a mixed population of monocytes/macrophages and lymphocytes. The cells were also exposed to an exogenous stimulant mixture of phytohemagglutinin-P and interferon-gamma (IFN-γ) and opsonized particles with human serum. Interleukins, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IFN-γ, and tumor necrosis factor-alpha (TNF-α) were investigated using enzyme-linked immunosorbent assay as they are an indicator of the inflammation evoked by particulate metals. It has been experimentally evidenced that metal particles induced higher amounts of IL-6 and IL-1 but very low amounts of TNF-α. T-lymphocyte activation was evaluated by the quantification of IL-2 and IFN-γ levels. The results showed that nonopsonized and opsonized metal particles did not induce the release of increased levels of IL-2 and IFN-γ. Copyright © 2013 Wiley Periodicals, Inc.
Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shipilov, S.A.
1998-01-01
The corrosion fatigue crack growth (FCG) behavior, the effect of applied potential on corrosion FCG rates, and the fracture surfaces of VT20 (near-{alpha}) and TS6 (near-{beta}) titanium alloys were studied. Environments were aqueous solutions of sodium chloride (NaCl), sodium hydroxide (NaOH), potassium hydroxide (KOH), ferric chloride (FeCl{sub 3}), and chromic acid (H{sub 2}CrO{sub 4}) with and without NaCl. Depending upon solution composition, corrosion FCG rates were found to be higher or lower than those in air. Cathodic polarization retarded the corrosion FCG, while anodic polarization accelerated insignificantly or almost did not influence it in most of the solutions investigated. However,more » cathodic polarization accelerated corrosion FCG in 0.6 M FeCl{sub 3} and 0.5 M to 2 M H{sub 2}CrO{sub 4} + 0.01 M to 0.1 M NaCl solutions by a dozen times when the maximum stress intensity (K{sub max}) exceeded certain critical values. When K{sub max} was lower than the critical values, the same cathodic polarization (with all other /conditions being equal) retarded corrosion FCG. Results suggested the accelerated crack growth at cathodic potentials resulted from hydrogen-induced cracking (HIC). Therefore, critical values of K{sub max}, as well as the stress intensity range ({Delta}K) were regarded as corresponding to the beginning of corrosion FCG according to a HIC mechanism and designated as K{sub HIC} and {Delta}K{sub HIC}.« less
The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue.
Zinelis, Spiros; Darabara, Myrsini; Takase, Toshiyuki; Ogane, Kaoru; Papadimitriou, George D
2007-06-01
The purpose of this study was to determine the effect of various thermal treatments on the fatigue resistance of a nickel-titanium (NiTi) engine-driven endodontic file. Fifteen groups of 5 files each of ISO 30 and taper .04 were tested in this study. The cutting tip (5 mm from the end) of files from 14 groups were heat treated for 30 minutes in temperatures 250 degrees C, 300 degrees C, 350 degrees C, 375 degrees C, 400 degrees C, 410 degrees C, 420 degrees C, 425 degrees C, 430 degrees C, 440 degrees C, 450 degrees C, 475 degrees C, 500 degrees C, and 550 degrees C, respectively, while 1 group was used as reference. The files were placed in a device that allowed the instruments to be tested for rotating bending fatigue inside an artificial root canal. The number of rotations to breakage was recorded for each file. The mean values of all groups were statistically analyzed using 1-way analysis of variance and Student Newman Keuls multiple comparison test at alpha = .05. The 430 degrees C and 440 degrees C groups showed the highest values, with fatigue resistance decreasing for thermal treatment at lower and higher temperatures. This may be the result of metallurgical changes during annealing. Within the limitations of the low sample size and the specific instrument size tested, it appears that the appropriate thermal treatment may significantly increase the fatigue resistance of the NiTi file tested.
Mantero, J; Gazquez, M J; Bolivar, J P; Garcia-Tenorio, R; Vaca, F
2013-06-01
A study about the distribution of several radionuclides from the uranium and the thorium series radionuclides along the production process of a typical NORM industry devoted to the production of titanium dioxide has been performed. With this end the activity concentrations in raw materials, final product, co-products, and wastes of the production process have been determined by both gamma-ray and alpha-particle spectrometry. The main raw material used in the studied process (ilmenite) presents activity concentrations of around 300 Bq kg(-1) for Th-series radionuclides and 100 Bq kg(-1) for the U-series ones. These radionuclides in the industrial process are distributed in the different steps of the production process according mostly to the chemical behaviour of each radioelement, following different routes. As an example, most of the radium remains associated with the un-dissolved material waste, with activity concentrations around 3 kBq kg(-1) of (228)Ra and around 1 kBq kg(-1) of (226)Ra, while the final commercial products (TiO2 pigments and co-products) contain negligible amounts of radioactivity. The obtained results have allowed assessing the possible public radiological impact associated with the use of the products and co-products obtained in this type of industry, as well as the environmental radiological impact associated with the solid residues and liquid generated discharges. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel antioxidant capability of titanium induced by UV light treatment.
Ueno, Takeshi; Ikeda, Takayuki; Tsukimura, Naoki; Ishijima, Manabu; Minamikawa, Hajime; Sugita, Yoshihiko; Yamada, Masahiro; Wakabayashi, Noriyuki; Ogawa, Takahiro
2016-11-01
The intracellular production of reactive oxygen species (ROS) is a representative form of cellular oxidative stress and plays an important role in triggering adverse cellular events, such as the inflammatory reaction and delayed or compromised differentiation. Osteoblastic reaction to titanium with particular focus on ROS production remains unknown. Ultraviolet (UV) light treatment improves the physicochemical properties of titanium, specifically the induction of super hydrophilicity and removal of hydrocarbon, and eventually enhances its osteoconductivity. We hypothesized that there is a favorable regulatory change of ROS production within osteoblasts in contact with UV-treated titanium. Osteoblasts were cultured on titanium disks with or without UV-pretreatment. The intracellular production of ROS was higher on acid-etch-created rough titanium surfaces than on machine-prepared smooth ones. The ROS production was reduced by 40-50% by UV pretreatment of titanium regardless of the surface roughness. Oxidative DNA damage, as detected by 8-OHdG expression, was alleviated by 50% on UV-treated titanium surfaces. The expression of inflammatory cytokines was consistently lower in osteoblasts cultured on UV-treated titanium. ROS scavenger, glutathione, remained more without being depleted in osteoblasts on UV-treated titanium. Bio-burden test further showed that culturing osteoblasts on UV-treated titanium can significantly reduce the ROS production even with the presence of hydrogen peroxide, an oxidative stress inducer. These data suggest that the intracellular production of ROS and relevant inflammatory reaction, which unavoidably occurs in osteoblasts in contact with titanium, can be significantly reduced by UV pretreatment of titanium, implying a novel antioxidant capability of the particular titanium. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.
Nemati, Sima Hashemi; Hadjizadeh, Afra
2017-08-01
Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.
Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.
Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto
2015-12-01
Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.
SURFACE HARDENING OF TITANIUM BY TREATMENT IN MOLTEN BORAX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minkevich, A.N.; Shul'ga, Yu.N.
1957-01-01
The surface hardening of titanium and titanium alloys by treatment in molten borax was investigated. Commercial titanium, a titanium-tungsten alloy, and an aluminum-chromium-titanium alloy were used for the experiments. To prevent oxidation of the titanium and to protect the surface, electro-chemical protection was applied, the current density being 0.1 amp/cm/sup 2/ and the the specimens were coated with a thin layer of borax. The results showed that treatment in molten borax is an effective method of increasing surface hardness. However, the strength, mmalleabiltiy, and toughness of the hardness increase is discussed. (J.S.R.)
Surface modification of titanium and titanium alloys by ion implantation.
Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han
2010-05-01
Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.
Method for Surface Texturing Titanium Products
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1998-01-01
The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.
Formation of low resistivity titanium silicide gates in semiconductor integrated circuits
Ishida, Emi [Sunnyvale, CA
1999-08-10
A method of forming a titanium silicide (69) includes the steps of forming a transistor having a source region (58), a drain region (60) and a gate structure (56) and forming a titanium layer (66) over the transistor. A first anneal is performed with a laser anneal at an energy level that causes the titanium layer (66) to react with the gate structure (56) to form a high resistivity titanium silicide phase (68) having substantially small grain sizes. The unreacted portions of the titanium layer (66) are removed and a second anneal is performed, thereby causing the high resistivity titanium silicide phase (68) to convert to a low resistivity titanium silicide phase (69). The small grain sizes obtained by the first anneal allow low resistivity titanium silicide phase (69) to be achieved at device geometries less than about 0.25 micron.
Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.
Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco
2017-01-26
Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David
2014-01-01
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165
Okamoto, Eiji; Kikuchi, Sakiko; Mitamura, Yoshinori
2016-09-01
We have developed a tissue-inducing electrode using titanium mesh to obtain mechanically and electrically stable contact with the tissue for a new transcutaneous communication system using the human body as a conductive medium. In this study, we investigated the electrical properties of the titanium mesh electrode by measuring electrode-tissue interface resistance in vivo. The titanium mesh electrode (Hi-Lex Co., Zellez, Hyogo, Japan) consisted of titanium fibers (diameter of 50 μm), and it has an average pore size of 200 μm and 87 % porosity. The titanium mesh electrode has a diameter of 5 mm and thickness of 1.5 mm. Three titanium mesh electrodes were implanted separately into the dorsal region of the rat. We measured the electrode-electrode impedance using an LCR meter for 12 weeks, and we calculated the tissue resistivity and electrode-tissue interface resistance. The electrode-tissue interface resistance of the titanium mesh electrode decreased slightly until the third POD and then continuously increased to 75 Ω. The electrode-tissue interface resistance of the titanium mesh electrode is stable and it has lower electrode-tissue interface resistance than that of a titanium disk electrode. The extracted titanium mesh electrode after 12 weeks implantation was fixed in 10 % buffered formalin solution and stained with hematoxylin-eosin. Light microscopic observation showed that the titanium mesh electrode was filled with connective tissue, inflammatory cells and fibroblasts with some capillaries in the pores of the titanium mesh. The results indicate that the titanium mesh electrode is a promising electrode for the new transcutaneous communication system.
Titanium Brazing for Structures and Survivability
2007-05-01
materials, such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of...such as ceramics. This work focuses on vacuum brazing of titanium (both Ti- 6Al - 4V and commercially pure titanium ) and the effect of processing...Suzumura, and Onzawa, reported the joining of Ti- 6Al - 4V and CP titanium alloys with zirconium-rich braze alloys.5 They found that these alloys could
Laminate armor and related methods
Chu, Henry S; Lillo, Thomas M; Zagula, Thomas M
2013-02-26
Laminate armor and methods of manufacturing laminate armor. Specifically, laminate armor plates comprising a commercially pure titanium layer and a titanium alloy layer bonded to the commercially pure titanium outer layer are disclosed, wherein an average thickness of the titanium alloy inner layer is about four times an average thickness of the commercially pure titanium outer layer. In use, the titanium alloy layer is positioned facing an area to be protected. Additionally, roll-bonding methods for manufacturing laminate armor plates are disclosed.
Titanium: Industrial Base, Price Trends, and Technology Initiatives
2009-01-01
respectively.3 All titanium metal production begins with rutile (titanium oxide, or TiO2). High-titania slag , produced by ilmen- ite smelting, is the first...Ilmenite ores are used in iron production. They leave a TiO2-rich slag , which is usually upgraded to be used in titanium production. 4 According to the...and least expensive process for producing titanium sponge, has four major steps. First, rutile con- centrate or synthetic rutile (titanium slag ) is
The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.
Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C
2013-04-01
A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.
2012-11-15
In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, Stephen J.; White, Jack C.
1999-01-01
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, Stephen J.; White, Jack C.
1998-01-01
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, S.J.; White, J.C.
1998-08-04
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.
Ball bearings comprising nickel-titanium and methods of manufacture thereof
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)
2012-01-01
Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.
Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, T. R.; Mayer, R.
2012-05-04
Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supplymore » of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.« less
Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer.
Luo, Yong; Ge, Shirong; Liu, Hongtao; Jin, Zhongmin
2009-12-11
Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.
Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y
2001-02-01
The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.
2005-03-01
size of the interphase [22-24]. Yang and Jeng [45], in a study of the titanium aluminides Ti-24-11 and Ti-25-10, and a metastable beta titanium Ti-15-3... Titanium Aluminide Matrix Composites," Workshop proceedings on Titanium Matrix Components, P.R. Smith and W.C. Revelos, eds., Wright-Patterson AFB...Experimental and Computational Study of Interphase Properties and Mechanics in Titanium Metal Matrix Composites at Elevated Temperatures Final Report
Titanium disilicide formation by sputtering of titanium on heated silicon substrate
NASA Astrophysics Data System (ADS)
Tanielian, M.; Blackstone, S.
1984-09-01
We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated
Utilization of gas-atomized titanium and titanium-aluminide powder
NASA Astrophysics Data System (ADS)
Moll, John H.
2000-05-01
A gas-atomization process has been developed producing clean, high-quality, prealloyed spherical titanium and titanium-aluminide powder. The powder is being used to manufacture hot-isostatically pressed consolidated shapes for aerospace and nonaerospace allocations. These include gamma titanium-aluminide sheet and orthorhombic titanium-aluminide wire as well as niche markets, such as x-ray drift standards and sputtering targets. The powder is also being used in specialized processes, including metal-matrix composites, laser forming, and metal-injection molding.
High density H2 associative absorption on Titanium alpha-borozene (Ti2B6H6): An ab-initio case study
NASA Astrophysics Data System (ADS)
Akbarzadeh, Alireza; Tymzcak, C. J.
2011-03-01
Hydrogen is considered as a clean energy carrier that could be a future replacement for our addiction to fossil fuels. However, in order to have hydrogen economy at its highest efficiently we need to store hydrogen at high volumetric and gravimetric density. Using the all electron hybrid density functional theory, we have designed a benzene-like-molecule, Ti2B6H6, which has the promise of achieving this goal. Our results show that the molecule can associatively absorb the hydrogen up to ten percent by weight of hydrogen, which exceeds the 2015 US department of energy target. In this presentation we will discuss the mechanisms of H2 absorption and possible applications of this novel molecule. This research is funded by the Welch Foundation under Grant J. 1675 and the Texas Southern University High Performance Computing Center.
In situ synthesis of hydroxyapatite coating by laser cladding.
Wang, D G; Chen, C Z; Ma, J; Zhang, G
2008-10-15
HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).
NASA Technical Reports Server (NTRS)
Richey, Edward, III
1995-01-01
This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).
Investigation on the Oxidation and Reduction of Titanium in Molten Salt with the Soluble TiC Anode
NASA Astrophysics Data System (ADS)
Wang, Shulan; Wan, Chaopin; Liu, Xuan; Li, Li
2015-12-01
To reveal the oxidation process of titanium from TiC anode and the reduction mechanism of titanium ions in molten NaCl-KCl, the polarization curve of TiC anode in molten NaCl-KCl and cyclic voltammograms of the molten salt after polarization were studied. Investigation on the polarization curve shows that titanium can be oxidized and dissociated from the TiC anode at very low potential. The cyclic voltammograms demonstrated that the reduction reaction of titanium ions in the molten salt is a one-step process. By potentiostatic electrolysis, dendritic titanium is obtained on the steel plate. The work promotes the understanding on the process of electrochemical oxidization/dissociation of titanium from TiC anode and the reduction mechanism of titanium ions in molten salt.
NASA Astrophysics Data System (ADS)
Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2015-08-01
Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.
Aydın, Elanur; Türkez, Hasan; Hacımüftüoğlu, Fazıl; Tatar, Abdulgani; Geyikoğlu, Fatime
2017-07-01
Titanium nanoparticles (NPs) have very wide application areas such as paint, cosmetics, pharmaceuticals, and biomedical applications. And, to translate these nanomaterials to the clinic and industrial domains, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. Therefore, in this study, we aimed to investigate of cytotoxicity and changes in gene expression profiles influenced by commonly titanium (as titanium carbide, titanium carbo-nitride, titanium (II) oxide, titanium (III) oxide, titanium (IV) oxide, titanium nitride, titanium silicon oxide) NPs in human alveolar epithelial (HPAEpiC) and pharynx (HPPC) cell lines in vitro since inhalation is an important pathway for exposure to these NPs. HPAEpiC and HPPC cells were treated with titanium (0-100 µg/mL), NPs for 24 and 48 h, and then cytotoxicity was detected by, [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT), uptake of neutral red (NR) and lactate dehydrogenase (LDH) release assays, while genotoxicity was also analyzed by cDNA array - RT-PCR assay. According to the results of MTT, NR and LDH assays, all tested NPs induced cytotoxicity on both HPAEpiC and HPPC cells in a time- and dose-dependent manner. Determining and analyzing the gene expression profiles of HPAEpiC and HPPC cells, titanium NPs showed more changes in genes related to DNA damage or repair, oxidative stress, and apoptosis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2056-2064, 2017. © 2017 Wiley Periodicals, Inc.
In-vitro assessment of oxidative stress generated by orthodontic archwires.
Spalj, Stjepan; Mlacovic Zrinski, Magda; Tudor Spalj, Vedrana; Ivankovic Buljan, Zorana
2012-05-01
Several metals undergo redox cycling, producing free radicals and generating oxidative stress. The purpose of this study was to investigate in-vitro oxidative stress of orthodontic archwires made of various alloys. Mouse fibroblast cells L929 were exposed to 6 types of archwires, and the concentration of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine in DNA was evaluated. Trypan blue dye was used in the determination of cell viability and numbers. Standard nickel-titanium archwires generated the highest oxidative stress, significantly higher than all other wires and the controls (P <0.05), and coated nickel-titanium, copper-nickel-titanium, and cobalt-chromium were lower than nickel-titanium (P <0.05), but higher than titanium-molybdenum and the negative and absolute controls (P <0.05). Titanium-molybdenum and stainless steel generated the lowest stress. Nickel-titanium induced the lowest viability, lower than the negative and absolute controls and all other wires (P <0.05) except titanium-molybdenum. Stainless steel showed the highest viability. Nickel-titanium produced the highest inhibition of cell growth, higher than all samples (P <0.05) except the positive control and cobalt-chromium. The lowest inhibition was observed in stainless steel and titanium-molybdenum, lower than nickel-titanium, cobalt-chromium, and the positive control (P <0.05). All orthodontic archwires generate oxidative stress in vitro. Stainless steel archwires have the highest and nickel-titanium the lowest biocompatibility. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Banai, Rona Elinor
Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that conductivity type was not determined. Titanium, molybdenum, and aluminum contacts were tested for Ohmic and Schottky behavior using transmission line measurements. The complexity of its microstructure and flexibility in formation of varying phase and altered phase presents challenges to its use as a PV absorber.
Brow, Richard K.; Watkins, Randall D.
1995-07-04
Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.
Brow, Richard K.; Watkins, Randall D.
1995-01-01
Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.
Adhesive-Bonded Tab Attaches Thermocouples to Titanium
NASA Technical Reports Server (NTRS)
Cook, C. F.
1982-01-01
Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.
Allergic contact dermatitis caused by titanium screws and dental implants.
Hosoki, Maki; Nishigawa, Keisuke; Miyamoto, Youji; Ohe, Go; Matsuka, Yoshizo
2016-07-01
Titanium has been considered to be a non-allergenic material. However, several studies have reported cases of metal allergy caused by titanium-containing materials. We describe a 69-year-old male for whom significant pathologic findings around dental implants had never been observed. He exhibited allergic symptoms (eczema) after orthopedic surgery. The titanium screws used in the orthopedic surgery that he underwent were removed 1 year later, but the eczema remained. After removal of dental implants, the eczema disappeared completely. Titanium is used not only for medical applications such as plastic surgery and/or dental implants, but also for paints, white pigments, photocatalysts, and various types of everyday goods. Most of the usage of titanium is in the form of titanium dioxide. This rapid expansion of titanium-containing products has increased percutaneous and permucosal exposure of titanium to the population. In general, allergic risk of titanium material is smaller than that of other metal materials. However, we suggest that pre-implant patients should be asked about a history of hypersensitivity reactions to metals, and patch testing should be recommended to patients who have experienced such reactions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing
NASA Astrophysics Data System (ADS)
MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.
2017-04-01
Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.
Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki
2011-01-01
The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862
Mo, A; Wang, J; Liao, Y; Cen, Y; Shi, X
2001-12-01
Sufficient porcelain-titanium bond is a vital factor determining the clinical performance of titanium-porcelain restorations. The purpose of this study was to investigate the effects of self-preparation La-porcelain composition on the porcelain-titanium bonding strength and to compare with the Vita Titankeramik. The present study examines 5 different recipes of porcelain by weight%: SiO2, 12%-17%; LaO2, 7%-10%; Al2O3, 9%-14%; B2O3, 23%-31%; CaO, 6%-8%; K2O, 2%-3%; SrO, 2%-4%; Na2O, 1%-3%; SnO2, 8%-10%; ZrO2, 3%-5%; TiO2, 6%-8%. Specimens were tested in push type shear with a universal testing machine. Scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA) were employed to reveal the microstructures and diffusion of elements in the interfacial regions between the porcelain coating and titanium to the bond strength when fired at 800 degrees C. The ratios of crystallized compositions had significant influences on the porcelain-titanium bond strength (P < 0.05). La-porcelain had the highest shear bond strength (37.76 MPa). The shear bond strength of the Vita Titankeramik to titanium was 20.18 MPa. The results of SEM revealed integrity of porcelain-titanium joints in La-porcelain and a greater amount of porosity in the interface of Vita Titankeramik to titanium. EPMA analysis demonstrated the aggregation of Si and Sn in the interfacial regions and their diffusion into the titanium. Chemical compositions of porcelain and ratios of crystallized compositions play the important role in the titanium porcelain bond. La-porcelain had the highest shear bond strength and good porcelain-titanium joints. La-porcelain is a new-style low fusing porcelain/titanium system.
Deep drawability of Ti/resin/Ti laminated sheet
NASA Astrophysics Data System (ADS)
Hardada, Yasunroi; Hattori, Shuji
2017-10-01
Aiming to enhance functionality of titanium cup, the formability of titanium/resin/titanium laminated sheet by deep drawing was investigated. Although pure titanium has excellent corrosion resistance, the density of titanium is higher than that of light metals, such as aluminum and magnesium. Part of the titanium cup made of resin allows for weight reduction of the cup. Furthermore, the clad cup is more likely to have heat retention and protection against vibration characteristics. In the experiment, the materials were pure titanium and polycarbonate. The initial thickness of the sheet was 0.2 to 0.5 mm in thickness. A total plate thickness of the blank was 1.0 to 1.5 mm in thickness. The blank diameter is 70 mm. The laminated sheet was constituted by interposing resin between two titanium sheets. Each sheet in stacked condition was not joined each other. In the deep drawing process, the laminated sheet was employed and a flat sheet blank was formed into a circle by a punch. For the prevention of seizure in contact area between a drawing tool and titanium, titanium blank was treated by oxide coating. By this method, the fresh and clean titanium is not in direct contact with the die during the forming due to the existence of the oxide layer. The deep drawing was carried out to investigate the formability. The laminated sheet was successfully drawn without the cracks. The section of the drawn cup was observed to examine a formability of the resin sheet. The reduction rate of the thickness was less than 10%. It was found that the titanium/resin/titanium clad cup was successfully drawn.
In vitro cytotoxicity evaluation of a 50.8% NiTi single crystal.
Manceur, Aziza; Chellat, Fatiha; Merhi, Yahye; Chumlyakov, Yuriy; Yahia, L'Hocine
2003-11-01
To our knowledge, the biocompatibility of nickel-titanium (NiTi) single crystals has not been reported. Yet certain orientations of single crystals present several advantages over the polycrystalline form in terms of maximal strain, fatigue resistance, and temperature range of superelasticity. Therefore we tested the in vitro biocompatibility of 50.8% NiTi single crystals in the orientation <001> after four different heat treatments in a helium atmosphere followed by mechanical polishing. The study was performed on the material extracts after immersion of the specimens in cell culture medium (DMEM) for 7 days at 37 degrees C. Cytotoxicity studies were performed on L-929 mouse fibroblasts using the MTT assay. J-774 macrophages were used to assess the potential inflammatory effect of the extracts by IL1-beta and TNF-alpha dosages (sandwich ELISA method). Exposure of L-929 to material extracts did not affect cell viability. In addition, IL1-beta and TNF-alpha secretion was not stimulated after incubation with NiTi extracts compared to the negative controls. These results were predictable since atomic absorption spectroscopy did not detect nickel ions in the extracts with a resolution of 1 ppm. Within the limits of in vitro testing, our results demonstrate that the TiNi(50.8%) single crystals do not trigger a cytotoxic reaction. Copyright 2003 Wiley Periodicals, Inc.
Biocompatilibity-related surface characteristics of oxidized NiTi.
Danilov, Anatoli; Tuukkanen, Tuomas; Tuukkanen, Juha; Jämsä, Timo
2007-09-15
In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties. The study showed that variations in EWF and mechanical stress caused by surface treatment were accompanied by variations in adhesive force. NiTi oxidation at all temperatures used gave rise to decrease in adhesive force and surface stress values in comparison to the nonoxidized state. In contrary, the EWF value revealed increase under the same condition. Variations in surface oxide layer thickness and its phase composition were also followed. The important role of oxide crystallite size in EWF values within the range of crystallite dimensions typical for NiTi surface oxide as an instrument for the fine regulation of NiTi adsorption properties was demonstrated. The comparative oxidation of pure titanium and NiTi showed that the effect of Ni on the EWF value of NiTi surface oxide is negligible. Copyright 2007 Wiley Periodicals, Inc.
Thermal equation of state of TiC: A synchrotron x-ray diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Xiaohui; National Lab for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080; Department of Physics, University of Science and Technology of China, Hefei 230026
2010-06-15
The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{sub 0}{sup '}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0}=268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P}=-0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1})=a+bT with a=1.62(12)x10{sup -5} K{supmore » -1} and b=1.07(17)x10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{alpha}/{partial_derivative}P){sub T}=(-3.62{+-}1.14)x10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V}=-0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less
Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey
2018-05-10
Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .
The 3H(d,gamma) Reaction and the 3 H(d,gamma)/ 3H(d, n) Branching Ratio for Ec.m. 300 keV
NASA Astrophysics Data System (ADS)
Parker, Cody E.
The 3H(d, gamma)5He reaction and the 3H(d, gamma)/3H(d, n) branching ratio have been measured using a 500-keV pulsed deuteron beam incident on a titanium tritide target of stopping thickness at the Edwards Accelerator Laboratory. The time-of-flight technique has been used to distinguish the gamma-rays from neutrons in the bismuth germinate (BGO) gamma-ray detector. A stilbene scintillator and an NE-213 scintillator have been used to detect the neutrons from the 3H(d, n)alpha reaction using both the pulse-shape discrimination and time-of-flight techniques. A target holder with an ion-implanted silicon detector at a fixed angle of 135° to the beam axis to simultaneously measure alpha-particles as a normalization for the number of neutrons was incorporated to reduce the uncertainty in the neutron yield over the preliminary measurement. The gamma-rays have been measured at laboratory angles of 0°, 4°, 9°, and 15°. Information about the gamma-ray energy distribution for the unbound ground state and first excited state of 5He have been obtained experimentally by comparing the BGO data to Monte Carlo simulations. The reported branching ratios for each angle contain only contributions from the ground-state gamma-ray branch.
Advanced ordered intermetallic alloy deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.T.; Maziasz, P.J.; Easton, D.S.
1997-04-01
The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositionsmore » and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.« less
Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra
2013-05-01
The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM brackets, more precise manufacturing technique should be improved to get a more smoother surface finish.
Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.
Hirota, Makoto; Hayakawa, Tohru; Shima, Takaki; Ametani, Akihiro; Tohnai, Iwai
2015-04-01
We compared osteoblast and osteoclast differentiation when using beta-tricalcium phosphate (βTCP) and titanium scaffolds by investigating human mesenchymal stem cells (hMSCs) and osteoclast progenitor cell activities. hMSCs were cultured for 7, 14, and 21days on titanium scaffolds with 60%, 73%, and 87% porosity and on βTCP scaffolds with 60% and 75% porosity. Human osteoclast progenitor cells were cultured with osteoblast for 14 and 21days on 87% titanium and 75% βTCP scaffolds. Viable cell numbers with 60% and 73% titanium were higher than with 87% titanium and βTCP scaffolds (P<0.05). An 87% titanium scaffold resulted in the highest osteocalcin production with calcification on day 14 (P<0.01) in titanium scaffolds. All titanium scaffolds resulted in higher osteocalcin production on days 7 and 14 compared to βTCP scaffolds (P<0.01). Osteoblasts cultured on 87% titanium scaffolds suppressed osteoclast differentiation on day 7 but enhanced osteoclast differentiation on day 14 compared to 75% βTCP scaffolds (P<0.01). These findings concluded that high porosity titanium scaffolds could enhance progression of hMSC/osteoblast differentiation and regulated osteoclast differentiation cooperating with osteoblast differentiation for calcification as compared with lower porous βTCP. Copyright © 2015 Elsevier B.V. All rights reserved.
Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit
2015-05-01
The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.
Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, A.M.; Merritt, K.; Brown, S.A.
1994-02-01
The use of titanium and titanium-6% aluminum-4% vanadium alloy for dental and orthopedic implants has increased in the last decade. The implants are presumed to be compatible because oseointegration, bony apposition, and cell attachment are known. However, the cellular association of titanium and vanadium have remained unknown. This study examined the uptake of salts or fretting corrosion products. Titanium was not observed to be toxic to the cells. Vanadium was toxic at levels greater than 10[mu]g/mL. The percentage of cellular association of titanium was shown to be about 10 times that of vanadium. The percentage of cellular association of eithermore » element was greater from fretting corrosion than from the addition of salts. The presence of vanadium did not affect the cellular uptake of titanium. The presence of titanium decreased the cell association of vanadium.« less
NASA Astrophysics Data System (ADS)
Muth, T. R.; Yamamoto, Y.; Frederick, D. A.; Contescu, C. I.; Chen, W.; Lim, Y. C.; Peter, W. H.; Feng, Z.
2013-05-01
An investigation was undertaken using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas-forming species. PM-titanium made from revert scrap, where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal and minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders are critical for achieving equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.
Microstructural Evolution in Friction Stir Welding of Ti-5111
2010-08-01
titanium and titanium aluminide alloys—an overview.” Materials Science and Engineering A243 (1998) 1-24 [Semiatin 1999] S.L. Semiatin, V...ABSTRACT Titanium and titanium alloys have shown excellent mechanical, physical, and corrosion properties. To address the needs of future naval...Texture; Phase Transformation Ti-5111 Titanium 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 174 19a
Process for reproducibly preparing titanium subhydride
Carlson, Richard S.
1982-01-01
Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.
NASA Astrophysics Data System (ADS)
Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.
2017-01-01
Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.
[The bonding characteristic of titanium and RG experiment porcelain].
Ren, Wei-hong; Guo, Tian-wen; Tian, Jie-mo; Zhang, Yun-long
2003-07-01
To study the bonding characteristic of Titanium and RG experiment porcelain. 5 specimens with a size of 10 mm x 5 mm x 1.4 mm were cast from pure titanium. Then 1 mm of RG experiment opaque and body porcelain were fused on the surface of the titanium specimens. The interface of titanium and porcelain was analyzed with a scanning electron microscope with energy-despersive spectrometry; 6 metal specimens with the size of 25 mm x 3 mm x 0.5 mm were cast from Ni-Cr alloy and a uniform thickness of 1 mm of VMK 99 porcelain was veneered on the central area of 8 mm x 3 mm 18 metal specimens as the same size were cast from pure titanium. The uniform thickness of 1 mm of VITA TITANKERAMIK porcelain, of Noritake super porcelain Ti-22 and of RG experiment porcelain were veneered on every 6 specimens respectively in the central area of 8 mm x 3 mm. The specimens were subjected to a three-point bending test on a load-test machine with a span of 20 mm, then the failure loads were recorded and statistically analysised. The RG porcelain/titanium crown was fabricated by fusing RG opaque porcelain and body porcelain to cast titanium substrate crown. The SEM results show no porosity and crackle were found in the interface. The energy-dispersive spectrometry show that there are Si, Ti and O in the 1 micro m layer between porcelain and titanium, which suggesting titanium and experiment porcelain bonding well. The three point test showed the fracture force for the combinations of titanium/VITA TITANKERAMIK porcelain, titanium/Noritake super porcelain Ti-22 and titanium/RG experiment porcelain were (7.233 +/- 2.539) N, (5.533 +/- 1.199) N and (6.316 +/- 1.433) N respectively. There were not statistically significant differences among them (t test, P < 0.01). The fracture force for the Ni-Cr alloy/VMK99 porcelain combination (12.733 +/- 3.297) N was significantly greater than those of the cast titanium/porcelain (t test, P > 0.05). The crown was translucent with no crack. RG porcelain is well compatible with titanium.
Baskaran, Suresh; Graff, Gordon L.; Song, Lin
1998-01-01
The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.
Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning.
Park, Ju-Young; Lee, In-Hwa
2010-05-01
Dispersed titanium dioxide in polymer nanofibers were prepared by sol-gel processing and electrospinning techniques using titanium isopropoxide (TiP)/polyvinylpyrrolidone (PVP) solution. The prepared titanium dioxide nanofibers were characterized by FE-SEM, TEM, XRD, and FT-IR. Pure titanium dioxide nanofibers were obtained from calcination of inorganic-organic composite fiber. The diameter of titanium oxide nanofibers were in the range of 70 nm to 150 nm. Prepared titanium dioxide nanofibers show rough surface and rather small diameter compare with TiP/PVP composite nanofibers. After calcined at 500 degrees C, TiO2 nanofibers convert into anatase and rutile mixed phased from amorphous structure. Calcination of these composite fibers above 600 degrees C resulted in pure rutile TiO2 nanofibers.
Removal of titanium plates coated with anodic titanium oxide ceramic: retrospective study.
Velich, Norbert; Németh, Zsolt; Suba, Csongor; Szabó, György
2002-09-01
Transformation of the surface of metallic titanium with titanium oxides prepared in various ways is a modern procedure. For more than 15 years, the authors have been utilizing fixing elements coated with titanium oxide ceramics, prepared by anodic oxidation and thermal treatment, for purposes of jawbone osteosynthesis. The aim of the authors' work was to assess the extent to which the titanium oxide ceramic coating influences the fate of the plates used for osteosynthesis within the human organism, in regard to the possible need for their removal. During a 5-year period, 108 of 1,396 plates coated with anodic titanium oxide had to be removed for various reasons: plate exposure (47), osteomyelitis (25), palpable swelling and tenderness (21), patient request for psychological reasons (13), or fracture of the plate (2). In none of these 108 cases was metallosis observed, which otherwise is reported relatively frequently in the vicinity of traditional titanium fixing elements, nor was any tissue damage connected with the surface of the plates. The results indicate the favorable properties of the titanium oxide ceramic surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhange, D.S.; Ramaswamy, Veda
2007-05-03
We have carried out in situ high temperature X-ray diffraction (HTXRD) studies of silicalite-1 (S-1) and metallosilicate molecular sieves containing iron, titanium and zirconium having Mobil Five (MFI) structure (iron silicalite-1 (FeS-1), titanium silicalite-1 (TS-1) and zirconium silicalite-1 (ZrS-1), respectively) in order to study the thermal stability of these materials. Isomorphous substitution of Si{sup 4+} by metal atoms is confirmed by the expansion of unit cell volume by X-ray diffraction (XRD) and the presence of Si-O-M stretching band at {approx}960 cm{sup -1} by Fourier transform infrared (FTIR) spectroscopy. Appearance of cristobalite phase is seen at 1023 and 1173 K inmore » S-1 and FeS-1 samples. While the samples S-1 and FeS-1 decompose completely to cristobalite at 1173 and 1323 K, respectively, the other two samples are thermally stable upto 1623 K. This transformation is irreversible. Although all materials show a negative lattice thermal expansion, their lattice thermal expansion coefficients vary. The thermal expansion behavior in all samples is anisotropic with relative strength of contraction along 'a' axes is more than along 'b' and 'c' axes in S-1, TS-1, ZrS-1 and vice versa in FeS-1. Lattice thermal expansion coefficients ({alpha} {sub v}) in the temperature range 298-1023 K were -6.75 x 10{sup -6} K{sup -1} for S-1, -12.91 x 10{sup -6} K{sup -1} for FeS-1, -16.02 x 10{sup -6} K{sup -1} for TS-1 and -17.92 x 10{sup -6} K{sup -1} for ZrS-1. The highest lattice thermal expansion coefficients ({alpha} {sub v}) obtained were -11.53 x 10{sup -6} K{sup -1} for FeS-1 in temperature range 298-1173 K, -20.86 x 10{sup -6} K{sup -1} for TS-1 and -25.54 x 10{sup -6} K{sup -1} for ZrS-1, respectively, in the temperature range 298-1623 K. Tetravalent cation substitution for Si{sup 4+} in the lattice leads to a high thermal stability as compared to substitution by trivalent cations.« less
Morphology and structure of borides in as-cast titanium and gamma-titanium aluminide-based alloys
NASA Astrophysics Data System (ADS)
Kitkamthorn, Usanee
In this study, the morphology and structure of the borides in boron-modified Ti- and gamma-TiAl-based alloys have been investigated using SEM, TEM, and HRTEM. A variety of different boride morphologies was observed including plates, needles, and ribbons. For the plate and needle borides, the major boride phase is B27 TiB. The needle borides have their major axis parallel to [010], and are bounded by (100) and {101} type-facets. The plate borides develop the same types of facets as the needles and have habit planes parallel to the (100). There are high densities of intrinsic stacking faults on (100) in these borides and these correspond to thin embedded layers of the Bf structure. The plate borides do not exhibit well-defined ORs with respect to the surrounding phases, suggesting that they develop in the liquid melt and were then trapped by the growing solid. Needle borides are observed mostly at boundaries between lamellar colonies: these needles tend to occur in groups lying nearly parallel to one another and, in some cases, to adopt well-defined ORs with respect to the surrounding phases. Cored borides with metallic phases such as beta, alpha, o and alpha 2+gamma in the center are frequently observed, especially in the Ti-based alloy. These core phases usually adopt well-defined ORs with respect to the surrounding boride which enable low-energy coherent interfaces to form between the phases. The ribbon borides are comprised of thin boride flakes interspersed with thin metallic layers. The major boride phase in these flakes is Bf TiB. The habit plane of the flakes is (010) and there are high densities of faults on this plane corresponding to intergrowths of the Ti3B 4 and TiB2 phases, together with thin layers or occluded pockets of metallic B2 phase. Occasional faults are observed on {110} corresponding to embedded slabs of B27 TiB. There is a well-defined OR between the boride flakes and the B2 phase within the ribbons, but not with the surrounding matrix. The characteristics of these various borides are consistent with them forming as eutectic reaction products, with the exception of the finest needles and plates observed in Ti-based alloy.
Mineral of the month: titanium
Gambogi, Joseph
2004-01-01
From paint to airplanes, titanium is important in a number of applications. Commercial production comes from titanium-bearing ilmenite, rutile and leucoxene (altered ilmenite). These minerals are used to produce titanium dioxide pigment, as well as an assortment of metal and chemical products.
Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas
NASA Astrophysics Data System (ADS)
Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih
2018-02-01
In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.
Method of making multilayered titanium ceramic composites
Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.
Method of making multilayered titanium ceramic composites
Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Method of making multilayered titanium ceramic composites
Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.
1998-01-01
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Effects of an AST program on US titanium story
NASA Technical Reports Server (NTRS)
Fitzsimmons, R. D.
1980-01-01
The singular importance of titanium as the primary structural material for an efficient advanced supersonic transport (AST) is outlined. The advantages of titanium over other metals are shown to apply to future subsonic aircraft as well as for supersonic designs. The cost problem of titanium is addressed and shown to be markedly reduced by the emerging technologies of superplastic forming/diffusion bonding sandwich, hot isostatic pressing of titanium powders, and isothermal forgings if demonstration programs should validate preliminary findings. The impact of a U.S. AST program on the United States titanium supply and demand picture is postulated.
Iowa Powder Atomization Technologies
Ricken, Joel and Heidloff, Andrew
2018-05-07
The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.
Li, Jiaming; Wang, Decheng; He, Zhiliang; Shi, Hao
2018-01-08
To determine the efficacy of modified titanium tension band plus patellar tendon tunnel steel 8 "reduction band" versus titanium cable tension band fixation for the treatment of patellar lower pole fracture. 58 patients with lower patella fracture were enrolled in this study, including 30 patients treated with modified titanium cable tension band plus patellar tibial tunnel wire "8" tension band internal fixation (modified group), and 28 patients with titanium cable tension band fixation. All patients were followed up for 9∼15 months with an average of 11.6 months. Knee flexion was significantly improved in the modified group than in the titanium cable tension band group (111.33 ± 13 degrees versus 98.21 ± 21.70 degrees, P = 0.004). The fracture healing time showed no significant difference. At the end of the follow-up, the improvement excellent rate was 93.33% in the modified group, and 82.14% in the titanium cable tension band group. Titanium cable tension band internal fixation loosening was found in 2 cases, including 1 case of treatment by two surgeries without loose internal fixation. The modified titanium cable tension band with "8" tension band fixation showed better efficacy for lower patella fractures than titanium cable tension band fixation.
Present status of titanium removable dentures--a review of the literature.
Ohkubo, C; Hanatani, S; Hosoi, T
2008-09-01
Although porcelain and zirconium oxide might be used for fixed partial dental prostheses instead of conventional dental metals in the near future, removable partial denture (RPD) frameworks will probably continue to be cast with biocompatible metals. Commercially pure (CP) titanium has appropriate mechanical properties, it is lightweight (low density) compared with conventional dental alloys, and has outstanding biocompatibility that prevents metal allergic reactions. This literature review describes the laboratory conditions needed for fabricating titanium frameworks and the present status of titanium removable prostheses. The use of titanium for the production of cast RPD frameworks has gradually increased. There are no reports about metallic allergy apparently caused by CP titanium dentures. The laboratory drawbacks still remain, such as the lengthy burn-out, inferior castability and machinability, reaction layer formed on the cast surface, difficulty of polishing, and high initial costs. However, the clinical problems, such as discoloration of the titanium surfaces, unpleasant metal taste, decrease of clasp retention, tendency for plaque to adhere to the surface, detachment of the denture base resin, and severe wear of titanium teeth, have gradually been resolved. Titanium RPD frameworks have never been reported to fail catastrophically. Thus, titanium is recommended as protection against metal allergy, particularly for large-sized prostheses such as RPDs or complete dentures.
Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures
NASA Astrophysics Data System (ADS)
Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.
2011-12-01
The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.
Does titanium in ionic form display a tissue-specific distribution?
Golasik, Magdalena; Wrobel, Pawel; Olbert, Magdalena; Nowak, Barbara; Czyzycki, Mateusz; Librowski, Tadeusz; Lankosz, Marek; Piekoszewski, Wojciech
2016-06-01
Most studies have focused on the biodistribution of titanium(IV) oxide as nanoparticles or crystals in organism. But several reports suggested that titanium is released from implant in ionic form. Therefore, gaining insight into toxicokinetics of Ti ions will give valuable information, which may be useful when assessing the health risks of long-term exposure to titanium alloy implants in patients. A micro synchrotron radiation-induced X-ray fluorescence (µ-SRXRF) was utilized to investigate the titanium distribution in the liver, spleen and kidneys of rats following single intravenous or 30-days oral administration of metal (6 mg Ti/b.w.) in ionic form. Titanium was mainly retained in kidneys after both intravenous and oral dosing, and also its compartmentalization in this organ was observed. Titanium in the liver was non-uniformly distributed-metal accumulated in single aggregates, and some of them were also enriched in calcium. Correlation analysis showed that metal did not displace essential elements, and in liver titanium strongly correlated with calcium. Two-dimensional maps of Ti distribution show that the location of the element is characteristic for the route of administration and time of exposure. We demonstrated that µ-SRXRF can provide information on the distribution of titanium in internal structures of whole organs, which helps in enhancing our understanding of the mechanism of ionic titanium accumulation in the body. This is significant due to the popularity of titanium implants and the potential release of metal ions from them to the organism.
Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin
2016-03-01
Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards the titanium beads and fibroblast proliferation was significantly higher in hybrids compared to gel only controls. The MMP (Matrix Metalloproteinase)-sensitive hydrogels induced sprouting by cells in co-culture configuration which was quantified by fluorescence microscopy, confocal microscopy and qRT-PCR (Quantitative Reverse transcription polymerase chain reaction). When the microhybrid up-scaled to 3D thick structures, cellular localisation in specific areas of the 3D titanium structures was achieved, without decreasing overall cell proliferation compared to titanium only scaffolds. Microhybrids of titanium and hydrogels are useful models for deciding the necessary modifications of metallic implants and they can be used as a modelling system for the study of tissue/titanium implant interactions. This article demonstrates a method to apply cell-laden hydrogels to porous titanium implants and a model of titanium/hydrogel interaction at micro-level using titanium microbeads. The feasibility of site-specific modification of titanium implants with cell-laden microgels has been demonstrated. Use of titanium microbeads in combination with hydrogels with conventional analysis techniques as described in the article can facilitate the characterisation of surface modification of titanium in a relevant model system. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Oxidation resistant coating for titanium alloys and titanium alloy matrix composites
NASA Technical Reports Server (NTRS)
Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)
1992-01-01
An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.
40 CFR 471.60 - Applicability; description of the titanium forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the titanium forming...
40 CFR 471.60 - Applicability; description of the titanium forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... titanium forming subcategory. 471.60 Section 471.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.60 Applicability; description of the titanium forming...
40 CFR 180.1195 - Titanium dioxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...
40 CFR 180.1195 - Titanium dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...
40 CFR 180.1195 - Titanium dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...
The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching
NASA Astrophysics Data System (ADS)
Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.
2018-05-01
Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.
Corrosive effects of fluoride on titanium under artificial biofilm.
Fukushima, Azusa; Mayanagi, Gen; Sasaki, Keiichi; Takahashi, Nobuhiro
2018-01-01
This study aimed to investigate the effect of sodium fluoride (NaF) on titanium corrosion using a biofilm model, taking environmental pH into account. Streptococcus mutans cells were used as the artificial biofilm, and pH at the bacteria-titanium interface was monitored after the addition of 1% glucose with NaF (0, 225 or 900ppmF) at 37°C for 90min. In an immersion test, the titanium samples were immersed in the NaF solution (0, 225 or 900ppm F; pH 4.2 or 6.5) for 30 or 90min. Before and after pH monitoring or immersion test, the electrochemical properties of the titanium surface were measured using a potentiostat. The amount of titanium eluted into the biofilm or the immersion solution was measured using inductively coupled plasma mass spectrometry. The color difference (ΔE*ab) and gloss of the titanium surface were determined using a spectrophotometer. After incubation with biofilm, pH was maintained at around 6.5 in the presence of NaF. There was no significant change in titanium surface and elution, regardless of the concentration of NaF. After immersion in 900ppm NaF solution at pH 4.2, corrosive electrochemical change was induced on the surface, titanium elution and ΔE*ab were increased, and gloss was decreased. NaF induces titanium corrosion in acidic environment in vitro, while NaF does not induce titanium corrosion under the biofilm because fluoride inhibits bacterial acid production. Neutral pH fluoridated agents may still be used to protect the remaining teeth, even when titanium-based prostheses are worn. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M
2017-06-01
The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.
Scale-Up of a Titanium Carbonitride Coating System for Titanium Alloys.
1980-07-01
Ti-Cote C on JT12 Compressor 7th-Stage Airfoil -Optical Photomicrograph Porosity in Ti-Cote C Titanium 6AI- 4V Substrate - -- Mag: 1000OX FD 171506...30 21 TiCN Coating on Titanium 6A1- 4V ...indication of any corrosive damage to the titanium 6A1- 4V . This had been a matter of concern due to the corrosive nature of the reactive gases and
Trammell, Terry R; Flint, Kathy; Ramsey, Curtis J
2012-08-15
Magnetic resonance imaging (MRI) and computed tomography (CT) imaging are important postoperative diagnostic and evaluation tools, particularly in patients who have undergone spinal fusions. Advancements in materials and imaging techniques have lessened artifact and improved overall imaging results. Systems that combine titanium alloy and cobalt-chromium components have been introduced to reduce implant profile while maintaining strength. The objective of this study was to determine if there were any differences in the clarity of imaging between two types of implant materials in a lumbar spine construct model. One of two lumbar spine stabilization implant systems, titanium alloy (titanium) or titanium alloy with cobalt-chromium alloy (titanium-cobalt), was placed to simulate a four-level fusion construct in two human cadaveric spine segments, followed by MRI and CT imaging. The implant systems were then removed from each cadaver and implanted in the other cadaver. Nine physician graders from three subspecialties scored the images using a 5-point scale, with higher imaging scores indicating greater clarity of the region of interest. Physician-rated scores were compared across systems and between physician groups. There were no significant differences in the overall mean total scores on the basis of construct material. Overall mean scores were 18.16 for titanium and 17.45 for titanium-cobalt (p = 0.275). Among images of the titanium-cobalt constructs, no significant differences in mean scores were found between specimens with use of MRI (p = 0.883) or with use of CT only (p = 0.274). Among images of the titanium system, a slightly significant difference was found between specimens with use of MRI (p = 0.044) but not with CT imaging (p = 0.837). Overall image clarity scores were not significantly different between titanium and titanium-cobalt implant systems in the lumbar spine. Observation of pertinent anatomy in the regions of interest was not degraded by the presence of either system.
Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium
2011-09-01
nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United States...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The...
Detection of titanium in human tissues after craniofacial surgery.
Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N
1997-04-01
Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.
Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection
NASA Astrophysics Data System (ADS)
Wang, C.; Hu, J.; Wang, F.; Jiang, J.; Zhang, Z. Z.; Yang, Y.; Ding, J. X.; Jiang, H. C.; Wang, Y. M.; Wei, H. Y.
2018-04-01
Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.
[A study on the bond interface between low-fusing dental porcelain and pure titanium].
Mo, A; Cen, Y; Liao, Y; Wang, J; Shi, X
2001-09-01
To evaluate the bond interface between low fusing dental porcelain and pure titanium by observing the topography and detecting the ionic diffusion in the interface area. The low fusing-porcelain La-porcelain produced by the authors or Vita Titankeramik porcelain was fused to the surfaces of pure titanium. The topography of the interface between pure titanium and porcelain, and the structure of experimental materials were observed with SEM. The state of ionic diffusion in the interface area was investigated with EPMA. Excellent permeation and diffusion of La-porcelain were observed on the surfaces of pure titanium. The diffusion of ions of stannum and silicon was discovered in the interface area. The microstructure of La-porcelain to pure titanium bond interface was finer than that of Vita Titankeramik porcelain. Excellent bond can be produced in the interface between La-porcelain and pure titanium. The bonding mechanism may involve mechanical bond and chemical bond. The ionic diffusion of stannum plays an important role in the bonding of porcelain to pure titanium.
Yao, Chang; Webster, Thomas J
2006-01-01
Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.
Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly
Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen
2017-01-01
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462
Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng
2013-10-01
Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel
NASA Astrophysics Data System (ADS)
Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.
2011-02-01
14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.
Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection.
Wang, C; Hu, J; Wang, F; Jiang, J; Zhang, Z Z; Yang, Y; Ding, J X; Jiang, H C; Wang, Y M; Wei, H Y
2018-04-01
Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.
NASA Astrophysics Data System (ADS)
Malyutina, Yu. N.; Bataev, A. A.; Mali, V. I.; Anisimov, A. G.; Shevtsova, L. I.
2015-10-01
A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.
REDUCING TITANIUM TETRACHLORIDE WITH HIGH-SURFACE SODIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleck, D.C.; Wong, M.M.; Baker, D.H. Jr.
1960-01-01
A method of using sodium for reducing titanium tetrachloride, developed to improve the extractive metallurgy of titunium, is described. Finely divided titanium metal, titanium lower chlorides, or a mixture thereof was produced in a continuous operation at temperatures between 105 and 205 deg C by the reaction of molten sodium and vaporized titanium tetrachloride in an agitated bed of finely divided inert solids (powdered sodium chloride or the reaction products). Composition of the product was controlled by varying the relative quantities of sodium and titanium tetrachloride used. A description of the operations and analytical data of the reaction products aremore » given. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru
A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.
Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion
NASA Astrophysics Data System (ADS)
Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning
2016-12-01
Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.
Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi
2011-01-01
Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.300 - Applicability: Description of the primary and secondary titanium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... primary and secondary titanium subcategory. 421.300 Section 421.300 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Titanium Subcategory § 421.300 Applicability: Description of the primary and secondary titanium subcategory. The provisions of this subpart are applicable to...
40 CFR 440.50 - Applicability; description of the titanium ore subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of this...
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
21 CFR 73.1575 - Titanium dioxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements of § 73.575(a)(1) and (b). (2) Color additive mixtures for drug use made with titanium dioxide may...
2014-01-01
Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.
Bedinger, G.M.
2013-01-01
Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.
Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility.
1980-08-01
with pure titanium ( 4 ], it is of interest to pursue the effects on titanium -palladium alloys, to evaluate their susceptibility to stress corrosion...cracking due to hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ...characterized as 99.99+ percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium
1996-05-01
at San Antonio Supervising Professors: Barbara D. Boyan, Ph.D. David L. Cochran, D.D.S., Ph.D. Placement of endosseous dental implants requires the...titanium substratum was chosen for these studies since most medical and dental implants are fabricated from titanium The titanium was cut into uniform...electron microscopy to evaluate the histomorphometry of the implant-bone interface of various titanium and ceramic dental implants placed in dog mandibles
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.
Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.
Preparation of bioactive titania films on titanium metal via anodic oxidation.
Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T
2009-01-01
To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.
Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian
2015-06-01
Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saruwatari, Lei; Aita, Hideki; Butz, Frank; Nakamura, Hiromi K; Ouyang, Jianyong; Yang, Yang; Chiou, Wen-An; Ogawa, Takahiro
2005-11-01
This study revealed that osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on the tissue culture polystyrene, associated with modulated gene expression, uniform mineralization, well-crystallized interfacial calcium-phosphate layer, and intensive collagen deposition. Knowledge of this titanium-induced alteration of osteogenic potential leading to enhanced intrinsic biomechanical properties of mineralized tissue provides novel opportunities and implications for understanding and improving bone-titanium integration and engineering physiomechanically tolerant bone. Bone-titanium integration is a biological phenomenon characterized by continuous generation and preservation of peri-implant bone and serves as endosseous anchors against endogenous and exogenous loading, of which mechanisms are poorly understood. This study determines the intrinsic biomechanical properties and interfacial strength of cultured mineralized tissue on titanium and characterizes the tissue structure as possible contributing factors in biomechanical modulation. Rat bone marrow-derived osteoblastic cells were cultured either on a tissue culture-grade polystyrene dish or titanium-coated polystyrene dish having comparable surface topography. Nano-indentation and nano-scratch tests were undertaken on mineralized tissues cultured for 28 days to evaluate its hardness, elastic modulus, and critical load (force required to delaminate tissue). Gene expression was analyzed using RT-PCR. The tissue structural properties were examined by scanning electron microscopy (SEM), collagen colorimetry and localization with Sirius red stain, mineral quantification, and localization with von Kossa stain and transmission electron microscopy (TEM). Hardness and elastic modulus of mineralized tissue on titanium were three and two times greater, respectively, than those on the polystyrene. Three times greater force was required to delaminate the tissue on titanium than that on the polystyrene. SEM of the polystyrene culture displayed a porous structure consisting of fibrous and globular components, whereas the titanium tissue culture appeared to be uniformly solid. Cell proliferation was remarkably reduced on titanium. Microscopic observations revealed that the mineralized tissue on titanium was composed of uniform collagen-supported mineralization from the titanium interface to the outer surface, with intensive collagen deposition at tissue-titanium interface. In contrast, tissue on the polystyrene was characterized by collagen-deficient mineralization at the polystyrene interface and calcium-free collagenous matrix formation in the outer tissue area. Such characteristic microstructure of titanium-associated tissue was corresponded with upregulated gene expression of collagen I and III, osteopontin, and osteocalcin mRNA. Cross-sectional TEM revealed the apposition of a high-contrast and well-crystallized calcium phosphate layer at the titanium interface but not at the polystyrene interface. Culturing osteoblasts on titanium, compared with polystyrene, enhances the hardness, elastic modulus, and interfacial strength of mineralized tissue to a higher degree. Titanium per se possesses an ability to alter cellular phenotypes and tissue micro- and ultrastructure that result in enhanced intrinsic biomechanical properties of mineralized tissue.
Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.
Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar
2016-12-01
Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.
48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.
Code of Federal Regulations, 2012 CFR
2012-10-01
... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...
48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...
48 CFR 252.225-7008 - Restriction on Acquisition of Specialty Metals.
Code of Federal Regulations, 2011 CFR
2011-10-01
... atomization or sputtering of titanium, or final consolidation of non-melt derived titanium powder or titanium alloy powder. (3) Specialty metal means— (i) Steel— (A) With a maximum alloy content exceeding one or..., molybdenum, nickel, niobium (columbium), titanium, tungsten, or vanadium; (ii) Metal alloys consisting of— (A...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10031 - Lithium potassium titanium oxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...
40 CFR 721.10553 - Potassium titanium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...
40 CFR 721.10553 - Potassium titanium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as potassium titanium oxide (PMN P-06-149; CAS No. 12673-69...
Process for preparing fine grain titanium carbide powder
Janney, M.A.
1985-03-12
A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.
Process for preparing fine grain titanium carbide powder
Janey, Mark A.
1986-01-01
A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.
Titanium fasteners. [for aircraft industry
NASA Technical Reports Server (NTRS)
Phillips, J. L.
1972-01-01
Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.
Study on Thermal Deformation Behavior of TC4 – ELI Titanium Alloy
NASA Astrophysics Data System (ADS)
Song, Y.; Zhang, F. S.; Huang, T.; Song, K. X.
2018-05-01
The TC4-ELI titanium alloy was subjected to hot compression deformation test by the Gleeble-1500D thermal simulation test machine. The thermal deformation behavior of the TC4-ELI titanium alloy was studied under the condition of 850°C-1050°C, 0.001s-1-10s-1 strain rate and 50% deformation. The constitutive equation of TC4-ELI titanium alloy was established based on the hyperbolic sine model of Arrhenius equation. The results show that the flow stress of TC4-ELI titanium alloy decreases with the increase of temperature at high temperature. The calculated heat activation energy of TC4-ELI titanium alloy is 300367.5807J / mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.
The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25°C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052more » glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300° C.« less
Rapid plasma quenching for the production of ultrafine metal and ceramic powders
NASA Astrophysics Data System (ADS)
Donaldson, Alan; Cordes, Ronald A.
2005-04-01
The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.
A novel approach to fabrication of three-dimensional porous titanium with controllable structure.
Wang, Dong; Li, Qiuyan; Xu, Mingqin; Jiang, Guofeng; Zhang, Yunxia; He, Guo
2017-02-01
A new approach to fabrication of porous titanium by using the molybdenum wire as space holder was developed, in which titanium liquid was cast into the entangled molybdenum wires in a vacuum environment, and followed by etching off the space holder material in an aqua regia solution. This infiltration casting and acid corrosion method fabricated the porous titanium with different porosities with a pore diameter of 0.4mm. The porous titanium with the porosity of 32-47% exhibited the Young's modulus in the range of 23-62GPa and the yielding strength in the range of 76-192MPa. The adhesion and spreadability of the bovine osteoblast cells on the porous titanium were also evaluated in vitro. The porous titanium with 47% porosity has great potential for implant applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanical properties and grindability of dental cast Ti-Nb alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2003-09-01
Aiming at developing a dental titanium alloy with better mechanical properties and machinability than unalloyed titanium, a series of Ti-Nb alloys with Nb concentrations up to 30% was made. They were cast into magnesia-based molds using a dental casting machine and the mechanical properties and grindability of the castings were examined. The hardness of the alloys with Nb concentrations of 5% and above was significantly higher than that of titanium. The yield strength and tensile strength of the alloys with Nb concentrations of 10% and above were significantly higher than those of titanium, while the elongation was significantly lower. A small addition of niobium to titanium did not contribute to improving the grindability of titanium. The Ti-30% Nb alloy exhibited significantly better grindability at low grinding speed with higher hardness, strength, and Young's modulus than titanium, presumably due to precipitation of the omega phase in the beta matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan
ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders priormore » to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.« less
NASA Astrophysics Data System (ADS)
Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki
2018-05-01
The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.
Sealing glasses for titanium and titanium alloys
Brow, Richard K.; Watkins, Randall D.
1992-01-01
Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.
Sealing glasses for titanium and titanium alloys
Brow, R.K.; Watkins, R.D.
1988-01-21
Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.
Titanium-nitrogen reaction investigated for application to gettering systems
NASA Technical Reports Server (NTRS)
Arntzen, J. D.; Coleman, L. F.; Kyle, M. L.; Pierce, R. D.
1968-01-01
Titanium is one of several gettering materials available for removing nitrogen from inert gases. The reaction rate of titanium-metal sponge and nitrogen in argon-nitrogen mixtures was studied at 900 degrees C. The rate was found to depend upon the partial pressure of nitrogen in the gas phase. Mathematical relationships simulate titanium systems.
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
40 CFR 721.10600 - Calcium cobalt lead strontium titanium tungsten oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium cobalt lead strontium titanium... Specific Chemical Substances § 721.10600 Calcium cobalt lead strontium titanium tungsten oxide. (a... calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0) is subject to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meredith, S.E.; Benjamin, J.F.
1993-07-13
A method is described of manufacturing corrosion resistant tubing from seam welded stock of a titanium or titanium based alloy, comprising: cold pilgering a seam welded tube hollow of titanium or titanium based alloy in a single pass to a final sized tubing, the tube hollow comprising a strip which has been bent and welded along opposed edges thereof to form the tube hollow, the tube hollow optionally being heat treated prior to the cold pilgering step provided the tube hollow is not heated to a temperature which would transform the titanium or titanium alloy into the beta phase, themore » cold pilgering effecting a reduction in cross sectional area of the tube hollow of at least 50% and a reduction of wall thickness of at least 50%, in order to achieve a radially oriented crystal structure; and annealing the final sized tubing at a temperature and time sufficient to effect complete recrystallization and reform grains in a weld area along the seam into smaller, homogeneous grains.« less
Sonochemical method for producing titanium metal powder.
Halalay, Ion C; Balogh, Michael P
2008-07-01
We demonstrate a sonochemical method for producing titanium metal powder. The method uses low intensity ultrasound in a hydrocarbon solvent at near-ambient temperatures to first create a colloidal suspension of liquid sodium-potassium alloy in the solvent and then to reduce liquid titanium tetrachloride to titanium metal under cavitation conditions. XRD data collected for the reaction products after the solvent removal show only NaCl and KCl, with no diffraction peaks attributable to titanium metal or other titanium compounds, indicating either the formation of amorphous metal or extremely small crystallite size. TEM micrographs show that hollow spheres formed of halide salts and titanium metal, with diameters with diameters ranging from 100 to 500 nm and a shell thickness of 20 to 40 nm form during the synthesis, suggesting that the sonochemical reaction occurs inside the liquid shell surrounding the cavitation bubbles. Metal particle sizes are estimated to be significantly smaller than 40 nm from TEM data. XRD data of the powder after annealing and prior to removal of the alkali chloride salts provides direct evidence that titanium metal was formed during the sonochemical synthesis.
Ultrasonic effects on titanium tanning of leather.
Peng, Biyu; Shi, Bi; Sun, Danhong; Chen, Yaowen; Shelly, Dennis C
2007-03-01
The effects of ultrasound on titanium tanning of leather were investigated. Either 20 or 40 kHz ultrasound was applied to the titanium tanning of pigskins. Five different treatment conditions were carried out and the effects were examined, such as leather shrinkage temperature (T(s)), titanium content and titanium distribution in the leather. Overall heat loading was carefully controlled. Results showed that 20 kHz ultrasound effectively improves titanium agent penetration into the hide and increases the leather's shrinkage temperature. Doubling the frequency to 40 kHz produced negligible enhancements. An impressive 105.6 degrees C T(s) was achieved using 20 kHz ultrasound pretreatment of the tanning liquor followed by 20 kHz ultrasound in the tanning mixture (liquor plus pigskins) in a special salt-free medium. Finally, using a unique ultrasonic tanning drum with 26.5 kHz ultrasound, the T(s) reached a record level of 106.5 degrees C, a value not achieved in conventional (no ultrasound) titanium tanning. The ultrasonic effects on titanium tanning of leather are judged to make a superior mineral tanned leather.
NASA Astrophysics Data System (ADS)
Guo, Si-yao; Han, Song
2014-12-01
A novel nano/micro hierarchical structured titanium phosphate with unique 3D flower-like morphology has been prepared by a simple hydrothermal method without adding any surfactants. The shape of the titanium phosphate could be controlled by simply adjusting the concentration of phosphoric acid. The 3D flower-like titanium phosphate with diameter of 2-3 μm is characterized by the assembly of numerous porous and connected lamella structures. Interestingly, this novel hierarchical mesoporous 3D flower-like titanium exhibits enhanced hydrogen evolution from water splitting under xenon lamp irradiation in the presence of methanol as the sacrificial reagent, which is also the first example of 3D flower-like titanium phosphate with high photocatalytic activity for water splitting. Since the use of titanium phosphate as a photocatalyst has been mostly neglected up to now, this low-cost, simple procedure and large-scale yield of 3D nano/micro structure titanium phosphate could be expected to be applicable in the synthesis of controlled, reproducible and robust photocatalytic systems.
[Follow-up examinations after removal of titanium plates coated with anodic titanium oxide ceramic].
Velich, Norbert; Németh, Zsolt; Barabás, József; Szabó, György
2002-04-01
Transformation of the titanium metal surface with titanium oxides produced in various ways belongs among the most up-to-date procedures. The authors as pioneers in this field (e.g. Nobel Biocare TiUnite surface), have been utilizing for more than 15 years dental root implants and fixing elements (for mandibular osteosynthesis) coated with titanium oxide ceramics, produced by anodic oxidation and thermal treatment. The aim of this work was to assess the extent to which a titanium oxide ceramic coating influences the fate of plates applied for osteosynthesis within the human body. During a 5-year period (1995-1999), 108 of 1396 titanium oxide ceramic plates had to be removed for various reasons: loosening of the plate [47], osteomyelitis [25], a palpable swelling and tenderness [21] at the request of the patient for psychological reasons (13) or breaking of the plate [2]. When these 108 plates were removed, it was not possible to detect metallosis in even a single case; nor was there any tissue damage that could be attributed to the surface of the plates, whereas the literature data indicate that such damage is relatively frequent in the environment of traditional titanium fixing elements. The present investigation confirms the favourable properties of the titanium oxide ceramic surface.
Microwave assisted scalable synthesis of titanium ferrite nanomaterials
NASA Astrophysics Data System (ADS)
Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.
2018-04-01
Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.
Initial stability of a highly porous titanium cup in an acetabular bone defect model.
Yoshimoto, Kensei; Nakashima, Yasuharu; Wakiyama, Miyo; Hara, Daisuke; Nakamura, Akihiro; Iwamoto, Mikio
2018-04-12
The purpose of this study was to quantify the initial stability of a highly porous titanium cup using an acetabular bone defect model. The maximum torque of a highly porous titanium cup, with a pore size of 640 μm and porosity of 60%, was measured using rotational and lever-out torque testing and compared to that of a titanium-sprayed cup. The bone models were prepared using a polyurethane foam block and had three levels of bone coverage: 100, 70, and 50%. The highly porous titanium cup demonstrated significantly higher maximum torque than the titanium-sprayed cups in the three levels of bone defects. On rotational torque testing, it was found to be 1.5, 1.3, and 1.3 times stronger than the titanium-sprayed cups with 100, 70 and 50% bone coverage, respectively. Furthermore, it was found to be 2.2, 2.3, and 1.5 times stronger on lever-out testing than the titanium-sprayed cup. No breakage in the porous layers was noted during the testing. This study provides additional evidence of the initial stability of highly porous titanium cup, even in the presence of acetabular bone defects. Copyright © 2018. Published by Elsevier B.V.
Effects of silicon coating on bond strength of two different titanium ceramic to titanium.
Ozcan, Isil; Uysal, Hakan
2005-08-01
This study investigated the effect of silicon coating (SiO2) by magnetron sputtering on bond strength of two different titanium ceramics to titanium. Sixty cast titanium specimens were prepared following the protocol ISO 9693. Titanium specimens were divided into two test and control groups with 15 specimens in each. Test groups were silicon coated by the magnetron sputtering technique. Two titanium ceramics (Triceram and Duceratin) were applied on both test (coated) and control (uncoated) metal specimens. The titanium-ceramic specimens were subjected to a three point flexural test. The groups were compared for their bond strength. SEM and SEM/EDS analyses were performed on the delaminated titanium surfaces to ascertain bond failure. The mean bond strength of Ti-Duceratin, Ti-Triceram, Si-coated Ti-Duceratin and Si-coated Ti-Triceram were 17.22+/-2.43, 23.31+/-3.18, 23.21+/-3.81 and 24.91+/-3.70 MPa, respectively. While the improvement in bond strength was 30% for Duceratin, it was statistically insignificant for Triceram. An adhesive mode of failure was observed in the Duceratin control group. In the silicoated Duceratin specimen, the bonded ceramic boundaries were wider but less than in the silicoated Triceram specimen. In the coated Triceram specimen, the ceramic retained areas were frequent and the failure mode was generally cohesive. Silicon coating was significantly effective in both preventing titanium oxide layer formation and in improving bond strength for Duceratin. However, it was of less value for Triceram.
Evaluation of Titanium-Coated Pedicle Screws: In Vivo Porcine Lumbar Spine Model.
Kim, Do-Yeon; Kim, Jung-Ryul; Jang, Kyu Yun; Kim, Min Gu; Lee, Kwang-Bok
2016-07-01
Many studies have addressed the problem of loosening pedicle screws in spinal surgery, which is a serious concern. Titanium coating of medical implants (arthroplasty) is common, but few studies involving in vivo spine models have been reported. We evaluated the radiological, mechanical, and histological characteristics of titanium-coated pedicle screws compared with uncoated or hydroxyapatite-coated pedicle screws. Three different types of pedicle screws, i.e., uncoated, hydroxyapatite-coated, and titanium-coated, were implanted into the lumbar 3-4-5 levels of 9 mature miniature pigs. Radiological evaluation of loosening of pedicle screws was performed. Peak torsional extraction torque was tested in the 42 screws from 7 miniature pigs at 12 weeks postoperatively. The implant-bone interface of the remaining 12 pedicle screws from 2 miniature pigs in each group was assessed by micro-computed tomography and histologic studies. The incidence of loosening at 12 weeks postoperatively was not significantly different between the titanium-coated pedicle screw group and the other groups. The titanium-coated pedicle screw group exhibited the greatest mean extraction torsional peak torque at 12 weeks postoperatively (P < 0.05). Quantitative micro-computed tomography data were greatest in the titanium-coated pedicle screw group (P < 0.05). Histologic findings showed osteointegration with densely packed new bone formation at the screw coating-bone interface in the titanium-coated pedicle screw group. Fixation strength was greatest in the titanium-coated pedicle screw group. Osteointegration at the interface between the titanium-coated implant and bone produced prominent and firm bonding. The titanium-coated pedicle screw is a promising device for application in spinal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at; Loder, D.; Reip, T.
2015-02-15
Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an earlymore » process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important information on inclusion formation.« less
Cavalcanti, Yuri Wanderley; Soare, Rodrigo Villamarim; Leite Assis, Marina Araújo; Zenóbio, Elton Gonçalves; Girundi, Francisco Mauro da Silva
2015-02-01
Some surface treatments performed on titanium can alter the composition of salivary pellicle formed on this abiotic surface. Such treatments modify the titanium's surface properties and can promote higher adsorption of proteins, which allow better integration of titanium to the biotic system. This study aimed to evaluate the interactions between salivary proteins and titanium disks with different surface treatments. Machined titanium disks (n = 48) were divided into four experimental groups (n = 12), according to their surface treatments: surface polishing (SP); acid etching (A); spot-blasting plus acid etching (SB-A); spot-blasting followed by acid etching and nano-functionalization (SB-A-NF). Titanium surfaces were characterized by surface roughness and scanning electron microscopy (SEM). Specimens were incubated with human saliva extracted from submandibular and sublingual glands. Total salivary protein adsorbed to titanium was quantified and samples were submitted to western blotting for mucin glycoprotein 2 (MG2) and lactoferrin identification. Surface roughness was statistically higher for SB-A and SB-A-NF groups. Scanning electron microscopy images confirmed that titanium surface treatments increased surface roughness with higher number of porous and scratches for SB-A and SB-A-NF groups. Total protein adsorption was significantly higher for SB-A and SB-A-NF groups (p < 0.05), which also presented higher interactions with MG2 and lactoferrin proteins. The roughing of titanium surface by spot-blasting plus acid etching treatments contribute to higher interaction with salivary proteins, such as MG2 and lactoferrin. Titanium surface roughing increases the interactions of the substratum with salivary proteins, which can influence the integration of dental implants and their components to the oral environment. However, those treatments should be used carefully intraorally, avoiding increase biofilm formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Go
Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgymore » (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo.« less
Hruska, A R; Borelli, P
1991-10-01
Procedures for casting, laboratory soldering, and intraoral welding of titanium for dental restorations are described and illustrated. Pure titanium and titanium 6A1-4Va alloy castings may be used for virtually any prosthodontic rehabilitation as well as for implants, with the proper equipment and technique.
Method for synthesis of titanium dioxide nanotubes using ionic liquids
Qu, Jun; Luo, Huimin; Dai, Sheng
2013-11-19
The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.
NASA Technical Reports Server (NTRS)
Siriwardane, R. V.; Wightman, J. P.
1982-01-01
The titanium dioxide surface is discussed. Polymer adhesive are also discussed. Titanium powders are considered. Characterization techniques are also considered. Interactions with polymers, water vapor, and HCl are reported. Adsorbents are characterized.
40 CFR 721.10602 - Lead niobium titanium zirconium oxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...
40 CFR 721.10602 - Lead niobium titanium zirconium oxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium zirconium oxide (PMN P-11-270; CAS No. 61461-40-3... strontium titanium tungsten oxide (PMN P-11-272; CAS No. 1262279-30-0); Lanthanum lead titanium zirconium...
NASA Astrophysics Data System (ADS)
Anza, Inigo; Makhlouf, Makhlouf M.
2018-02-01
The Rotating Impeller In-Situ Gas-Liquid Reaction Method is employed for the production of Al-TiC composites. The method relies on injecting a carbon-bearing gas by means of a rotating impeller into a specially formulated molten aluminum-titanium alloy. Under the optimal conditions of temperature and composition, the gas reacts preferentially with titanium to form titanium carbide particles. The design of the apparatus, the process operation window, and the routes for forming titanium carbide particles with different sizes are elucidated.
NASA Astrophysics Data System (ADS)
Anza, Inigo; Makhlouf, Makhlouf M.
2017-12-01
The Rotating Impeller In-Situ Gas-Liquid Reaction Method is employed for the production of Al-TiC composites. The method relies on injecting a carbon-bearing gas by means of a rotating impeller into a specially formulated molten aluminum-titanium alloy. Under the optimal conditions of temperature and composition, the gas reacts preferentially with titanium to form titanium carbide particles. The design of the apparatus, the process operation window, and the routes for forming titanium carbide particles with different sizes are elucidated.
NASA Astrophysics Data System (ADS)
Yang, Fei; Raynova, Stella; Singh, Ajit; Zhao, Qinyang; Romero, Carlos; Bolzoni, Leandro
2018-02-01
Powder metallurgy is a very attractive method for producing titanium alloys, which can be near-net-shape formed and have freedom in composition selection. However, applications are still limited due to product affordability. In this paper, we will discuss a possible cost-effective route, combining fast heating and hot processing, to produce titanium alloys with similar or even better mechanical properties than that of ingot metallurgy titanium alloys. Two titanium alloys, Ti-5Al-5V-5Mo-3Cr (Ti-5553) and Ti-5Fe, were successfully produced from HDH titanium powder and other master alloy powders using the proposed processing route. The effect of the processing route on microstructural variation and mechanical properties have been discussed.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
NASA Astrophysics Data System (ADS)
Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.
2017-05-01
The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.
Titanium-nitride-oxide-coated coronary stents: insights from the available evidence.
Karjalainen, Pasi P; Nammas, Wail
2017-06-01
Coating of stent surface with a biocompatible material is suggested to improve stent safety profile. A proprietary process was developed to coat titanium-nitride-oxide on the stent surface, based on plasma technology that uses the nano-synthesis of gas and metal. Preclinical in vitro and in vivo investigation confirmed blood compatibility of titanium (nitride-) oxide films. Titanium-nitride-oxide-coated stents demonstrated a better angiographic outcome, compared with bare-metal stents at mid-term follow-up; however, they failed to achieve non-inferiority for angiographic outcome versus second-generation drug-eluting stents. Observational studies showed adequate clinical outcome at mid-term follow-up. Non-randomized studies showed an outcome of titanium-nitride-oxide-coated stents comparable to - or better than - first-generation drug-eluting stents at long-term follow-up. Two randomized controlled trials demonstrated comparable efficacy outcome, and a better safety outcome of titanium-nitride-oxide-coated stents versus drug-eluting stents at long-term follow-up. Evaluation by optical coherence tomography at mid-term follow-up revealed better neointimal strut coverage associated with titanium-nitride-oxide-coated stents versus drug-eluting stents; yet, neointimal hyperplasia thickness was greater. Key messages Stents coated with titanium-nitride-oxide demonstrated biocompatibility in preclinical studies: they inhibit platelet and fibrin deposition, and reduce neointimal growth. In observational and non-randomized studies, titanium-nitride-oxide-coated stents were associated with adequate safety and efficacy outcome. In randomized trials of patients with acute coronary syndrome, titanium-nitride-oxide-coated stents were associated with a better safety outcome, compared with drug-eluting stents; efficacy outcome was comparable.
Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto
2017-01-01
Titanium implants coated with a 500nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p<0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p<0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p<0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. Copyright © 2016. Published by Elsevier B.V.
Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John
2016-05-01
The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.
Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo
2014-11-01
Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Rees, Kelly; Lorusso, Emanuela; Cosham, Samuel D; Kulak, Alexander N; Hyett, Geoffrey
2018-02-14
In this paper we report on a novel chemical vapour deposition approach to the formation and control of composition of mixed anion materials, as applied to titanium oxynitride thin films. The method used is the aerosol assisted chemical vapour deposition (AACVD) of a mixture of single source precursors. To explore the titanium-oxygen-nitrogen system the single source precursors selected were tetrakis(dimethylamido) titanium and titanium tetraisopropoxide which individually are precursors to thin films of titanium nitride and titanium dioxide respectively. However, by combining these precursors in specific ratios in a series of AACVD reactions at 400 °C, we are able to deposit thin films of titanium oxynitride with three different structure types and a wide range of compositions. Using this precursor system we can observe films of nitrogen doped anatase, with 25% anion doping of nitrogen; a new composition of pseudobrookite titanium oxynitride with a composition of Ti 3 O 3.5 N 1.5 , identified as being a UV photocatalyst; and rock-salt titanium oxynitride in the range TiO 0.41 N 0.59 to TiO 0.05 N 0.95 . The films were characterised using GIXRD, WDX and UV-vis spectroscopy, and in the case of the pseudobrookite films, assessed for photocatalytic activity. This work shows that a so-called dual single-source CVD approach is an effective method for the deposition of ternary mixed anion ceramic films through simple control of the ratio of the precursors, while keeping all other experimental parameters constant.
Thermal Equation of State of TiC: A Synchrotron X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, X.; Lin, Z; Zhang, J
2010-01-01
The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{prime}{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1}) =more » a+b T with a = 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8}K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{sub {alpha}}/{partial_derivative}{sub P}){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V} = -0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less
Seto, H; Fujioka, S; Takatsuto, S; Koshino, H; Shimizu, T; Yoshida, S
2000-08-01
As a reference compound library for the investigation of biosynthesis of brassinosteroids, focused on a pathway from campesterol (1) to campestanol (2), 6-oxy functionalized campest-4-en-3-ones as well as campest-5-en-3-one (7) and campestane-3,6-dione were prepared from 1. Oxidation of 1 with pyridinium chlorochromate buffered by calcium carbonate gave 5-en-3-one (7) in 76% yield. Treatment of 7 with silica gel under an oxygen atmosphere in ethyl ether at room temperature produced efficient hydroperoxidation at the C-6 position to give 6alpha-hydroperoxycampest-4-en-3-one and 6beta-hydroperoxycampest-4-en-3-one in 34% and 49% yields, respectively. These compounds were converted to 6alpha-hydroxycampest-4-en-3-one and 6beta-hydroxycampest-4-en-3-one by reduction with triethyl phosphite. This provided the first example of the practical use of hydroperoxidation at C-6 of a Delta(5(6))-unsaturated 3-oxo-steroid with molecular oxygen and silica gel. On the other hand, oxidation of 1 with pyridinium chlorochromate in the absence of calcium carbonate gave campest-4-ene-3,6-dione in 64% yield. This compound was then converted in a highly stereoselective manner to campestane-3,6-dione with A/B trans ring junction by reduction with titanium (III) chloride in 85% yield.
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium
Zhu, Wei; Teel, George; O’Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace
2015-01-01
Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing bio-mimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327
Titanium dioxide in dental enamel as a trace element and its variation with bleaching
Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey
2018-01-01
Background Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Material and Methods Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance (p≤0.05) and Bonferroni pairwise comparisons. Results Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule (p≤0,05). Conclusions All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words:Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide. PMID:29930771
Titanium dioxide in dental enamel as a trace element and its variation with bleaching.
Vargas-Koudriavtsev, Tatiana; Durán-Sedó, Randall; Herrera-Sancho, Óscar-Andrey
2018-06-01
Titanium is a less studied trace element in dental enamel. Literature relates an increased Titanium concentration with a decreased enamel crystal domain size, which in turn is related to a higher color value. The aim of our study was to analyze the effect of tooth bleaching agents on its concentration in dental enamel by means of confocal Raman spectroscopy. Human teeth were randomly distributed in six experimental groups (n=10) and submitted to different bleaching protocols according to the manufacturer´s instructions. Confocal Raman spectroscopy was carried out in order to identify and quantify the presence of titanium dioxide molecules in enamel prior to and during whitening. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. Titanium dioxide concentration was negatively affected by the longer bleaching protocols (at-home bleaching gels). All in-office whitening products increased significantly the studied molecule ( p ≤0,05). All dental specimens depicted the presence of titanium dioxide as a trace element in dental enamel. Bleaching gels that have to be applied at higher concentrations but for shorter periods of time increase the concentration of titanium dioxide, whilst at-home whitening gels used for longer periods of time despite the lower concentration caused a loss in titanium. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, titanium dioxide.
Wu, Jinshuang; Wang, Xianli; Xing, Helin; Guo, Tianwen; Dong, Chaofang
2017-01-01
This study investigated the mechanical properties and single crown accuracy of the tailor-made Fourth University Stomatology investment (FUS-invest) for casting titanium. Background. Current investment for casting titanium is not optimal for obtaining high-quality castings, and the commercially available titanium investment is costly. Methods. Titanium specimens were cast using the tailor-made FUS-invest. The mechanical properties were tested using a universal testing machine. Fractured castings were characterized by energy-dispersive spectroscopy. 19 titanium crowns were produced using FUS-invest and another 19 by Symbion. The accuracy of crowns was evaluated. Results. The mechanical properties of the titanium cast by FUS-invest were elastic modulus 125.6 ± 8.8 GPa, yield strength 567.5 ± 11.1 MPa, tensile strength 671.2 ± 15.6 MPa, and elongation 4.6 ± 0.2%. For marginal fit, no significant difference (P > 0.05) was found at four marker points of each group. For internal fit, no significant difference (P > 0.05) was found between two groups, whereas significant difference (P < 0.01) was found at different mark point of each group. Conclusions. The mechanical properties of titanium casted using FUS-invest fulfilled the ISO 9693 criteria. The marginal and internal fit of the titanium crowns using either the FUS-invest or Symbion were similar. PMID:28913355
Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells.
Marcatti Amarú Maximiano, William; Marino Mazucato, Vivian; Tambasco de Oliveira, Paulo; Célia Jamur, Maria; Oliver, Constance
2017-08-01
Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017. © 2017 Wiley Periodicals, Inc.
Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide
Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo
2016-01-01
The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287
Rempel, А А; Van Renterghem, W; Valeeva, А А; Verwerft, M; Van den Berghe, S
2017-09-07
The superlattice and domain structures exhibited by ordered titanium monoxide Ti 5 O 5 are disrupted by low energy electron beam irradiation. The effect is attributed to the disordering of the oxygen and titanium sublattices. This disordering is caused by the displacement of both oxygen and titanium atoms by the incident electrons and results in a phase transformation of the monoclinic phase Ti 5 O 5 into cubic B1 titanium monoxide. In order to determine the energies required for the displacement of titanium or oxygen atoms, i.e. threshold displacement energies, a systematic study of the disappearance of superstructure reflections with increasing electron energy and electron bombardment dose has been performed in situ in a transmission electron microscope (TEM). An incident electron energy threshold between 120 and 140 keV has been observed. This threshold can be ascribed to the displacements of titanium atoms with 4 as well as with 5 oxygen atoms as nearest neighbors. The displacement threshold energy of titanium atoms in Ti 5 O 5 corresponding with the observed incident electron threshold energy lies between 6.0 and 7.5 eV. This surprisingly low value can be explained by the presence of either one or two vacant oxygen lattice sites in the nearest neighbors of all titanium atoms.
Research and Development on Titanium Alloys
1949-10-31
EVALUATION OF EPERIMENTAL TITANIUM-BASE ALLOYS• 65 Binary Alloys of Titanium . . . . .. 65 Titanium-Silver Alloys. . . . . ..... ... 68 Mechanical Properties...using a technique in melting designed to give more uniform distribution of the alloying additions. NMATTWLL MOMORIAL INSTITUTE 4...tc Dr. Derge for analysis. BATTELLE MEMORIAL INSTITUTE -107- 2TABLE 28. OXYGEN STANDARDS FOR ANALYSIS Wt fSapl Pein Cen Designation Sample lielting, 1
Ultrafine-grained titanium for medical implants
Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.
2002-01-01
We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.
Nickel-Titanium Wire as Suture Material: A New Technique for the Fixation of Skin.
Li, Haidong; Song, Tao
2018-01-29
To introduce nickel-titanium wire as suture material for closure of incisions in cleft lip procedures. Closure of skin incisions using nickel-titanium wire as suture material, with postoperative follow-up wound evaluation. There was excellent patient satisfaction and good cosmetic outcome. Nickel-titanium wire is an excellent alternative for suture closure of cleft lip surgical incisions.
Array of titanium dioxide nanostructures for solar energy utilization
Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu
2014-12-30
An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.
Custom-made laser-welded titanium implant prosthetic abutment.
Iglesia-Puig, Miguel A
2005-10-01
A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.
Corrosion behavior of Ti-39Nb alloy for dentistry.
Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav
2015-11-01
To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. Copyright © 2015 Elsevier B.V. All rights reserved.
Structural characterization of oxidized titanium surfaces
NASA Astrophysics Data System (ADS)
Jobin, M.; Taborelli, M.; Descouts, P.
1995-05-01
Oxidized titanium surfaces resulting from various processes have been structurally characterized by means of scanning force microscopy, x-ray photoemission spectroscopy (XPS), x-ray diffraction, and electron energy-loss spectroscopy (EELS) with losses in the 0-100 eV range. It has been found that the surface morphology has a granular structure for electropolished titanium and for titanium evaporated on mica at low substrate temperature (570 K), but changes to flat terraces for the films evaporated at higher temperature (770 K). Angular-dependent XPS has revealed the presence of a Ti2O3 suboxide at the Ti/TiO2 interface for electropolished titanium. Dry oxidation has been performed at 770 and 970 K on both weakly and highly crystallized evaporated titanium films oriented along (0001). In the case of underlying crystallized metallic titanium, the resulting TiO2 films are crystallized with the anatase (004) orientation for oxidation at 770 K and with rutile (200) orientation for oxidation at 970 K. EELS spectra interpreted in terms of the molecular orbitals of a (TiO6)8- cluster show that the local octahedral environment of titanium atoms is preserved on native oxides, even if these oxides are not crystallized.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
'water splitting' by titanium exchanged zeolite A. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznicki, S.M.; Eyring, E.M.
1978-09-01
Visually detectable and chromatographically and mass spectrally identified hydrogen gas evolves from titanium (III) exchanged zeolite A immersed in water and illuminated with visible light. Titanium(III) exchanged zeolite X and zeolite Y do not produce this reaction. A photochemically produced, oxygenated titanium free radical (detected by electron spin resonance) not previously described is the species in the zeolite that reduces protons to molecular hydrogen. The other product of this reduction step is a nonradical, oxygenated titanium species of probable empirical formula TiO4. Heating the spent oxygenated titanium containing zeolite A under vacuum at 375 C restores over fifty percent ofmore » the free radical. Unlike previously reported systems, heating does not restore the original aquotitanium(III) species in the zeolite. Thus a means other than heating must be found to achieve a closed photochemical cycle that harnesses visible solar energy in the production of molecular hydrogen. The titanium exchanged zeolite A does, however, lend itself to a thermolysis of water previously described by Kasai and Bishop. (Author)« less
Effect of cathodic polarization on coating doxycycline on titanium surfaces.
Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J
2016-06-01
Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.
Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system.
Inagaki, Ryoichi; Kikuchi, Masafumi; Takahashi, Masatoshi; Takada, Yukyo; Sasaki, Keiichi
2015-01-01
Titanium is difficult to machine because of its intrinsic properties. In a previous study, the machinability of titanium was improved by alloying with silver. This study aimed to evaluate the durability of tungsten carbide burs after the fabrication of frameworks using a Ti-20%Ag alloy and titanium with a computer-aided design and computer-aided manufacturing system. There was a significant difference in attrition area ratio between the two metals. Compared with titanium, the ratio of the area of attrition of machining burs was significantly lower for the experimental Ti-20%Ag alloy. The difference in the area of attrition for titanium and Ti-20%Ag became remarkable with increasing number of machining operations. The results show that the same burs can be used for a longer time with Ti-20%Ag than with pure titanium. Therefore, in terms of tool life, the machinability of the Ti-20%Ag alloy is superior to that of titanium.
Hydrocarbon Deposition Attenuates Osteoblast Activity on Titanium
Hayashi, R.; Ueno, T.; Migita, S.; Tsutsumi, Y.; Doi, H.; Ogawa, T.; Hanawa, T.; Wakabayashi, N.
2014-01-01
Although the reported percentage of bone-implant contact is far lower than 100%, the cause of such low levels of bone formation has rarely been investigated. This study tested the negative biological effect of hydrocarbon deposition onto titanium surfaces, which has been reported to be inevitable. Osteogenic MC3T3-E1 cells were cultured on titanium disks on which the carbon concentration was experimentally regulated to achieve carbon/titanium (C/Ti) ratios of 0.3, 0.7, and 1.0. Initial cellular activities such as cell attachment and cell spreading were concentration-dependently suppressed by the amount of carbon on the titanium surface. The osteoblastic functions of alkaline phosphatase activity and calcium mineralization were also reduced by more than 40% on the C/Ti (1.0) surface. These results indicate that osteoblast activity is influenced by the degree of hydrocarbon contamination on titanium implants and suggest that hydrocarbon decomposition before implant placement may increase the biocompatibility of titanium. PMID:24868012
Adhesion of osteoblasts to a nanorough titanium implant surface
Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš
2011-01-01
This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478
NASA Astrophysics Data System (ADS)
Mehrpouya, Fahimeh; Tavanai, Hossein; Morshed, Mohammad; Ghiaci, Mehran
2012-08-01
Activated carbon (AC) can act as an important carrier for TiO2 nanoparticles. TiO2 nanoparticle can be fabricated by the hydrolysis and condensation of titanium alkoxides like titanium isopropoxide. This study showed that the formation of titanium dioxide crystallite nanoparticle during activation of PAN nanofibers containing titanium isopropoxide leads to the formation of mainly anatase crystal TiO2 nanoparticle in AC nanofibers, with a good dispersion in both the longitude and cross section of nanofibers. The TiO2 crystallite size lies in the range of 7.3-11.3 nm. The dispersion of TiO2 nanoparticles in the matrix of AC nanofibers is far superior to the direct mixing of TiO2 nanoparticles in the original electrospinning solution.
Welding and Joining of Titanium Aluminides
Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai
2014-01-01
Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113
Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting
2014-01-01
In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.
Electrically conductive ceramic powders
NASA Astrophysics Data System (ADS)
Lu, Yanxia
1999-11-01
Electrically conductive ceramic powders were investigated in this project. There are three ways to produce those materials. The first is doping alkali metal into the titanium dioxides in an inert or reducing atmosphere. The second is reducing un-doped titanium dioxide, forming a non-stoichiometric composition in a hydrogen atmosphere. The third is to coat a conductive layer, reduced titanium dioxide, on an insulating core such as alumina. Highly conductive powders have been produced by all these processes. The conductivity of powder compacts ranged between 10-2 and 10° S/cm. A novel doping process was developed. All samples were doped by a solid-vapor reaction instead of a solid state reaction. Titanium dioxide was doped with alkali metals such as Na or Li in this study. The alkali metal atom contributes an electron to the host material (TiO2), which then creates Ti 3+ ion. The conductivity was enhanced by creating the donor level due to the presence of these Ti3+ ions. The conductivity of those alkali doped titanium oxides was dependent on the doping level and charge mobility. Non-stoichiometric titanium oxides were produced by reduction of titanium dioxide in a hydrogen atmosphere at 800°C to 1000°C for 2 to 6 hours. The reduced titanium oxides showed better stability with respect to conductivity at ambient condition when compared with the Na or Li doped samples. Conductive coatings were prepared by coating titanium precursors on insulating core materials like SiO2, Al2O3 or mica. The titania coating was made by hydrolysis of titanyl sulfate (TiOSO 4) followed by a reduction procedure to form reduced titanium oxide. The reduced titanium oxides are highly conductive. A uniform coating of titanium oxides on alumina cores was successfully produced. The conductivity of coated powder composites was a function of coating quantity and hydrolysis reaction temperature. The conductivity of the powder as a function of structure, composition, temperature, frequency and moisture was studied. Three classifications of structure were identified for alkali-doped titanium oxides: (1) Pure titanium dioxide phase with alkali ions located in interstitial positions. (2) The titanium bronze phases. (3) Alkali-doped titanium oxides. Highly conductive powders were obtained in the first and second classifications with conductivity of 10-2 to 10° S/cm. Materials in the third classification had poor conductivity below 10-3 S/cm. The conductivity of a powder was determined mainly by the grain conductivity and the grain contact conductivity. The present results of impedance spectroscopy suggested that the grain contact resistance was a major factor of the electrical resistance of the samples. The aging effect at different moisture conditions was also caused by an increase of the contact resistance. Both sodium-doped and reduced titanium oxides showed re-oxidation at elevated temperature (above 140°C) in air, which is most probably caused by oxidizing the Ti3+ ions under those conditions. Lithium doped titanium oxides did not show this re-oxidation at temperatures up to 200°C. Theoretical models were applied to describe the effects of porosity, contact configuration and grain surface on conductivity of powder compacts. Percolation theory was used in the present study to demonstrate the effect of mixtures of conductive and non-conductive powders, which is one of applications for conductive ceramic powders when they are used as filler materials in paper, paints or plastics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, J.; Richard, P.; Gray, T.J.
The systematics of single and double K-shell-vacancy production in titanium has been investigated in the limit of zero target thickness (approx.1 ..mu..g/cm/sup 2/) for incident C, N, O, F, Mg, Al, Si, S, and Cl ions over a maximum energy range of 0.5 to 6.5 MeV/amu. This corresponds to collision systems with 0.27< or =Z/sub 1//Z/sub 2/< or =0.77 and 0.24< or =v/sub 1//vK< or =0.85, where v/sub 1/ is the projectile nuclear velocity and vK is the mean velocity of an electron in the target K shell. The present work is divided into four major sections. (1) Single K-shell-vacancymore » production has been investigated by measuring K..cap alpha.. and K..beta.. p satellite x-ray-production cross sections for projectiles incident with no K-shell vacancies. For incident ions with Z/sub 1/> or =9, the contribution due to electron-transfer processes from the target K shell to outer shells of the projectile has also been noted. (2) Single K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly by the measuring of the enhancement in the Ti K x-ray production cross section for bare incident projectiles over ions incident with no initial K-shell vacancies. (3) Double K-vacancy production has been investigated by measuring the K..cap alpha.. hypersatellite intensity in ratio to the total K..cap alpha.. intensity. (4) Double K-shell--to--K-shell electron-transfer cross sections have been obtained indirectly with the use of a procedure similar to that used for single K to K transfer. The measured cross sections have been compared to theoretical models for direct Coulomb ionization and inner-shell electron transfer and have been used to investigate the relative importance of these mechanisms for K-vacancy production in heavy-ion--atom collisions.« less
Color Anodizing of Titanium Coated Rolled Carbon Steel Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab
As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.
Titanium: light, strong, and white
Woodruff, Laurel; Bedinger, George
2013-01-01
Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.
In situ hydride formation in titanium during focused ion milling.
Ding, Rengen; Jones, Ian P
2011-01-01
It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.
NASA Astrophysics Data System (ADS)
Bi, Xiaoguo; Dong, Yingnan; Li, Yingjie; Niu, Wei; Tang, Jian; Ding, Shuang; Li, Meiyang
2017-09-01
Oxalate coprecipitation is applied in this paper, high purity titanium tetrachloride, and after the purification of strontium chloride, match with a certain concentration of solution, oxalate and strontium chloride and titanium tetrachloride in 1.005:1.000 make strontium titanium mixture ratio, slowly under 60°C to join in oxalic acid solution, aging around 4 h, get oxygen titanium strontium oxalate (SrTiO(C2O4)2 • 4H2 ) precipitation, after washing, drying and other process made oxygen titanium strontium oxalate powder.
Chang, Bei; Song, Wen; Han, Tianxiao; Yan, Jun; Li, Fuping; Zhao, Lingzhou; Kou, Hongchao; Zhang, Yumei
2016-03-01
The present work assesses the potential of three-dimensional (3D) porous titanium (pore size of 188-390 μm and porosity of 70%) fabricated by vacuum diffusion bonding of titanium meshes for applications in bone engineering. Rat bone marrow mesenchymal stem cells were used to investigate the proliferation and differentiation of cells on titanium scaffolds with different pore sizes at day 7, day 14 and day 21 based on DNA contents, alkaline phosphatase (ALP) activity, collagen (COL) secretion and osteogenic gene expressions including ALP, COL-1, bone morphogenetic protein-2 (BMP-2), osteopontin (OPN), runt-related transcription factor 2 (RUNX2), using smooth solid titanium plate as reference material. The rabbit models with distal femoral condyles defect were used to investigate the bone ingrowth into the porous titanium. All samples were subjected to Micro-CT and histological analysis after 4 and 12 weeks of healing. A one-way ANOVA followed by Tukey post hoc tests was used to analyze the data. It was found that the differentiation stage of cells on the porous titanium delayed compared with the smooth solid titanium plate and Ti 188 was more inclined to promote cell differentiation at the initial stage (day 14) while cell proliferation (day 1, 4, 7, 10, 14 and 21) and bone ingrowth (4 and 12 weeks) were biased to Ti 313 and Ti 390. The study indicates that the hybrid porous implant design which combines the advantages of different pore sizes may be meaningful and promising for bone defect restoration. One of the significant challenges in bone defect restoration is the integration of biomaterials and surrounding bone tissue. Porous titanium may be a promising choice for bone ingrowth and mineralization with appropriate mechanical and biological properties. In this study, based on porous titanium fabricated by vacuum diffusion bonding of titanium meshes, we have evaluated the influence of various pore sizes on rat bone marrow mesenchymal stem cells (rBMMSCs) penetration in vitro and bone ingrowth in vivo. It was interesting that we found the proliferation and differentiation abilities of rBMMSCs, as well as bone ingrowth were related to different pore sizes of such porous scaffolds. The results may provide guidance for porous titanium design for bone defect restoration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A New Construction Material-Titanium
1974-01-01
results of studying the electrochemical behavior of titanium and its alloys in aggressive media, and also the oxidizability of the most important...are the following properties of titanium and especially its alloys: low specific weight, high strength, corrosion resistance in many agressive media...resistance or complete immunity of titanium to a number of agressive media. 3. Operational directions: a) lengthening the service life of the articles, b
2006-06-24
crystals and assume same yield stress in tension and compression. Some anisotropic models have been proposed and used in the literature for HCP poly...2006), etc. These criteria dealt with the modeling of cubic crystals and assume same yield stress in tension an compression. Some anisotropic...Constitutive/Damage Modeling of Titanium and Titanium Alloys Principal Investigator: Akhtar S. Khan
Nanodesigning of Hierarchical Multifunctional Ceramics
1993-09-28
transformations were determined by XRD. As in previous studies, the final particle size of BaTiO 3, obtair-0 trom either the titanium isopropoxide ...conditions by reacting nanosized titanium oxide or titanium alkoxides with a solution of barium hydroxide. The powders produced by this approach range in...optical ceramic-polymer composites using colloidal dispersion techniques. In our experiments, we used either a high purity titania sood or titanium
Photorefractive Effect in Barium Titanate Crystals
1988-08-15
photorefractivity. The titanium dioxide feed material was prepared by the hydrolysis of titanium isopropoxide , Ti(ioc3H7 )4 , according to the reaction...reduced pressure fractional distillation. This purification technique was based on the observation that titanium isopropoxide has a much lower boiling...Starting materials A major effort in this research was devoted to the synthesis of high-purity starting materials, since titanium dioxide and barium
Consolidation of Surface Coatings by Friction Stir Techniques
2010-09-01
alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments
Surface modification of porous titanium with rice husk as space holder
NASA Astrophysics Data System (ADS)
Wang, Xinsheng; Hou, Junjian; Liu, Yanpei
2018-06-01
Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.
Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. David M. Bowden; Dr. William H. Peter
2012-03-31
The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.« less
PMMA versus titanium cage after anterior cervical discectomy - a prospective randomized trial.
Schröder, J; Grosse-Dresselhaus, F; Schul, C; Wassmann, H
2007-02-01
Nonautologous interbody fusion materials are utilised in increasing numbers after anterior cervical disc surgery to overcome the problem of donor site morbidity of autologous bone grafts. This study investigates the performance of two nonautologous materials, the bone cement Polymethylmethacrylate (PMMA) and titanium cages. This prospective randomised trial, with assessment of the results by an independent observer, evaluates whether a Polymethylmethacrylate (PMMA) spacer or a titanium cage provides a better fusion rate around the implant and a better clinical outcome. Between 2000 and 2002, 115 patients with monoradicular cervical nerve root compression syndrome caused by soft cervical disc herniation were eligible for this study. Myelopathy, excessive osteophyte formation, and adjacent level degeneration were exclusion criteria. A block-restricted randomisation was applied. The 2-year clinical outcome served as the primary endpoint of the study. Clinical outcome was assessed according to the Odom scale by an independent observer at the follow-up examination. Preoperative, postoperative, and follow-up radiographs were taken. The study was completed by 107 patients (53 with PMMA and 54 with titanium cage). No significant difference between the two groups could be established with respect to the clinical outcome. In each group, 26 patients scored excellent. Good results were found in 19 PMMA patients and 16 titanium cage patients; satisfactory results were found in 8 PMMA patients and 9 titanium cage patients; bad results were found in 3 titanium cage patients. In 47 titanium cage cases (87%), fusion occurred radiologically as bony bridging around the implant. The fusion rate was significantly lower (p=0.011) in the PMMA group, with 35 cases (66%) united at follow-up. The radiological result of the titanium cage is superior to that of PMMA with respect to the fusion rate. Although the titanium cage achieves a better fusion rate, there is no difference between titanium cages and PMMA with respect to the clinical outcome.
Villalobos-Hernández, J R; Müller-Goymann, C C
2006-09-28
Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).
Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas
NASA Astrophysics Data System (ADS)
Ahmadi, Eltefat; Yashima, Yuta; Suzuki, Ryosuke O.; Rezan, Sheikh Abdul
2018-05-01
Previously this group reported that a good quality titanium metal powder can be produced from titanium sulfides by electrochemical OS process. In this study, the sulfurization procedure was examined to synthesize titanium sulfide from titanium oxycarbonitride by CS2 gas. The experiments were carried out in the temperature range of 1173 K to 1523 K (900 °C to 1250 °C) in a tube reactor with continuously flowing argon (Ar) as carrier gas of CS2. The formation of titanium sulfide phases from the commercial TiN, TiC, and TiO powders was studied as the initial step. Then, TiO0.02C0.13N0.85 coming from ilmenite was sulfurized to prepare single phase of titanium sulfide. The products were characterized by X-ray diffraction, and the morphology of the sulfides was rigorously investigated, and the sulfur, oxygen, and carbon contents in the products were analyzed. The process was remarkably dependent on the temperature and time. TiN and TiO0.02C0.13N0.85 powders could be fully converted to the single phase of Ti2.45S4 (Ti2+x S4) at 1473 K (1200 °C) in 3.6 ks. The maximum weight gain of TiN sample was 55.3 pct indicating a full conversion of TiN to Ti2S3 phase. The carbon and oxygen contents in this sulfide prepared from the oxycarbonitride were about 1.8 wt pct C and 1.4 wt pct O, respectively. Therefore, the titanium sulfide could be a promising feedstock for the production of commercial grade titanium powder.
Nie, Bin'en; Ao, Haiyong; Zhou, Jianliang; Tang, Tingting; Yue, Bing
2016-09-01
Titanium has been widely used in the orthopedic and dental fields, however, the inert nature of Ti makes it unsuitable for application in promoting bone cell growth,osteogenic differentiation and antibacterial ability. The aims of the current study were to investigate the antimicrobial activity and biofunction of the polypeptide antibiotic bacitracin, and obtain a multi-biofunctional titanium implant by covalently-immobilizing titanium with the bacitracin. The results showed that the bacitracin possessed low minimum inhibitory concentration (MIC) to both Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with the non-cytotoxicity concentration up to 500μg/mL to human bone marrow mesenchymal stem cells (hBMSCs), furthermore, the bacitracin could improve the osteogenic differentiation of hBMSCs. The results of Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) indicated that bacitracin had been covalently immobilized on the surface of titanium. Immobilized bacitracin could improve the hydrophilic of immobilized titanium. The results of antimicrobial assay demonstrated that the covalently-immobilized bacitracin also had excellent antimicrobial property, and the bacitracin immobilized titanium could inhibit bacterial adhesion and colonization. The results of cell biology experiments proved that the bacitracin immobilized titanium could improve hBMSCs' adhesion, proliferation and osteogenic differentiation. We also found that the macrophages were difficult to spread or activate on the surface of bacitracin immobilized titanium, and the secretion of inflammatory factors had been inhibited. In conclusion, the novel bacitracin immobilized titanium has multi-biofunctions including outstanding antibacterial properties, excellent cell biology performance, and restraining inflammation, which has exciting application prospect. Copyright © 2016 Elsevier B.V. All rights reserved.
Vis, Bradley; Pele, Laetitia C.; Faria, Nuno; Powell, Jonathan J.
2017-01-01
Abstract Pigment grade titanium dioxide is composed of sub‐micron sized particles, including a nanofraction, and is widely utilized in food, cosmetic, pharmaceutical, and biomedical industries. Oral exposure to pigment grade titanium dioxide results in at least some material entering the circulation in humans, although subsequent interactions with blood immune cells are unknown. Pigment grade titanium dioxide is employed for its strong light scattering properties, and this work exploited that attribute to determine whether single cell–particle associations could be determined in immune cells of human whole blood at “real life” concentrations. In vitro assays, initially using isolated peripheral blood mononuclear cells, identified titanium dioxide associated with the surface of, and within, immune cells by darkfield reflectance in imaging flow cytometry. This was confirmed at the population level by side scatter measurements using conventional flow cytometry. Next, it was demonstrated that imaging flow cytometry could quantify titanium dioxide particle‐bearing cells, within the immune cell populations of fresh whole blood, down to titanium dioxide levels of 10 parts per billion, which is in the range anticipated for human blood following titanium dioxide ingestion. Moreover, surface association and internal localization of titanium dioxide particles could be discriminated in the assays. Overall, results showed that in addition to the anticipated activity of blood monocytes internalizing titanium dioxide particles, neutrophil internalization and cell membrane adhesion also occurred, the latter for both phagocytic and nonphagocytic cell types. What happens in vivo and whether this contributes to activation of one or more of these different cells types in blood merits further attention. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC. PMID:28941170
Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.
Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério
2013-10-01
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, JC; Lai, LC; Sheets, CG; Earthman, J; Newcomb, R
2011-01-01
Statement of problem A new fabrication process has been developed where a titanium coping, which has a gold colored titanium nitride outer layer can be reliably fused to porcelain, but the marginal adaptation characteristics are still undetermined. Purpose The primary purpose of this study is to compare the rate of Clinically Acceptable Marginal Adaptation (CAMA-defined as a marginal gap mean ≤60 μm) of cathode-arc vapor-deposited titanium with the CAMA rate for the cast base metal copings. In addition, the study will evaluate the marginal gap scores themselves to assess their mean difference between the two study groups. Finally, the study will present two analyses of group differences in variability to support the contention that the titanium copings perform more consistently than their base metal counterparts. Material and methods Thirty-seven cathode-arc vapor-deposited titanium copings and 40 cast base metal copings were evaluated by computer-based image analysis using an optical microscope. The conventional lost wax technique was used to fabricate the 40 cast base metal copings that were 0.3 mm thick. The titanium copings were 0.3 mm thick and were formed by a collection of atomic titanium vapor onto a refractory die duplicate in a high vacuum chamber. Fifty vertical marginal gap measurements were collected from each of the 77 copings and the mean of these measurements was computed to form a gap score for each coping. Next, the gap score was compared to the 60 μm criterion to classify each coping as to whether it did or did not achieve Clinically Acceptable Marginal Adaption (CAMA). A comparison of the CAMA rates for each type of coping was used to address the primary purpose of this study. In addition, the gap scores themselves were used to test the (one-sided) hypothesis that the mean of the titanium gap scores is smaller than the mean of the base metal gap scores. Finally, the assertion that the titanium copings provide more consistency in their marginal gap performance was tested in two ways. First, the means of the titanium gap scores were compared to the means of the marginal gap scores for the base metal copings. Second, the standard deviations of the marginal gap scores for the titanium copings were compared with those for the base metal copings. Results Statistical comparison of the CAMA rates for each type of coping showed that the CAMA criterion was achieved by 24 of the 37 (64.86%) titanium copings, while 19 of the 40 (47.50%) base metal copings met this same standard. Noninferiority of the titanium copings was established by the 2-sided 90% Confidence Interval for the 17.36% difference in these rates (−0.95%, 35.68%) and noninferiority of titanium coping adaption was also demonstrated by the Wald Test rejection of the tentative hypothesis of inferiority (Z-score=1.9191, one-sided p=0.0275). The mean of the vertical marginal gap scores for the titanium copings (56.9025) was significantly less than the mean of the marginal gap scores for the base metal copings (71.9041) as shown by the Satterthwaite t-score=−2.29 (one-sided p=0.0126). To compare the adaption consistency of the titanium copings to the base metal counterparts the difference between the variance of the marginal gap scores for the titanium copings (594.843) and the variance of the marginal gap scores for the base metal copings (1510.901) was found to be statistically significant (Folded-F test score=2.63, p=0.0042). Our second method for showing that the titanium copings performed more consistently than the base metal comparisons was to use a one-sided test to show that the mean of the standard deviations of the vertical gap measurements for each titanium coping (29.9835) was significantly lower than the mean of the standard deviations of the vertical gap measurements for each base metal coping (36.1332). This test produced a Satterthwaite’s t-score of −2.24 (one-sided p=0.0141), indicating the titanium adaption was significantly more consistent. Conclusions Cathode-arc vapor deposited titanium copings exhibited a higher rate of Clinically Acceptable Marginal Adaption (CAMA) than the comparison base metal copings. Comparison of the coping marginal adaption score variances and direct assessment of the coping marginal adaption scores provided additional evidence that the titanium copings performed better and with more consistency than their base metal counterparts. PMID:21640242
Phase relations in Ti-Al-Nb alloys at 1200 degrees C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanarayana, C.; Lee, D.S.
1992-03-15
This paper reports that titanium aluminides based on both Ti{sub 3}Al ({alpha}{sub 2}) and TiAl ({gamma}) have received considerable attention during the past few years as potential candidates for high temperature structural applications in the aerospace industry. This has been due to the attractive combination of properties such as low density, high specific strength, elevated temperature strength and modulus retention, excellent creep resistance and high resistance to oxidation. A serious handicap in using these alloys has been their vary poor ductility. Refinement of grain size, addition of ternary and quaternary alloying elements (e.g., Nb, Mn and Ta) and microstructural refinementsmore » through either innovative heat treatments or by production of nanometer-sized grains through mechanical alloying or magnetron sputtering methods have been explored to increase the ductility. Amongst these approaches, addition of alloying elements, especially of niobium, has proven extremely beneficial. Thus, there have been several investigations in recent years on the constitution, microstructure and properties of ternary Ti-Al-Nb alloys.« less
Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy
NASA Astrophysics Data System (ADS)
Umapathi, A.; Swaroop, S.
2018-04-01
Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm-2. Hardness and residual stress profiles indicated thermal softening near the surface (< 100 μm) and bulk softening due to adiabatic heating. Maximum hardness (235 HV at 500 μm) and maximum residual stress (- 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.
Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy
NASA Astrophysics Data System (ADS)
Umapathi, A.; Swaroop, S.
2018-05-01
Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm-2. Hardness and residual stress profiles indicated thermal softening near the surface (< 100 μm) and bulk softening due to adiabatic heating. Maximum hardness (235 HV at 500 μm) and maximum residual stress (- 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.
Titanium tetrafluoride and dental caries: a systematic review.
Alves, Rubiane Diógenes; Souza, Tatyana Maria Silva de; Lima, Kenio Costa de
2005-12-01
The aim of this systematic review was to evaluate the effectiveness of titanium tetrafluoride as a preventive or cariostatic agent against caries. The databases used to find the articles analyzed were MEDLINE LILACS, and BBO. In MEDLINE and LILACS the search strategy utilized was "titanium" [Words] and "tetrafluoride" [Words] and Spanish or English or Portuguese [Language], whereas In BBO "titânio" [Words] and "tetrafluoreto" [Words] and Espanhol or Inglês or Português [Language]. Out of a total of 42 studies found, which assessed possible preventive/cariostatic effects of titanium tetrafluoride against caries in vivo, only 2 were selected. In both studies, titanium tetrafluoride was shown to be effective against caries. However, given that the quality and consequently the validity of these two clinical studies are questionable, their results do not allow to conclude that titanium tetrafluoride is effective against caries clinically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellakhal, N
2002-12-01
The exposure of a titanium sample to an NH{sub 3} low pressure plasma leads to the formation of a nitriding layer. The products formed at the titanium surface were identified by XRD spectroscopy. The modification of the corrosion resistance characteristics of titanium due to the NH{sub 3} plasma treatment were investigated by electrochemical tests. The recorded polarization curves of the treated titanium samples were used to determine the values of the corrosion potential E{sub corr}. This study confirms the increasing of the corrosion resistance as a function of the time exposure and the injected electric power in the silica reactor.more » The plasma treatment also induces drastic changes of the titanium target in hardness.« less
Banerjee, S
1986-04-01
A sensitive spectrophotometric method for the determination of titanium by formation of its complex with tannin and thioglycollic acid at pH 4 has been developed. The intense yellow colour is measured at 400 nm and the system obeys Beer's law over the range 0.2-5 ppm titanium in the solution measured. The method is applicable to titanium-treated steels, stainless steels, permanent magnet alloys and duralumin alloys. The interference of Co, Ni, Cr, Mn, V, Mo and W can be eliminated by prior separation of titanium by controlled addition of cupferron in the presence of thioglycollic acid (TGA). Copper can be quantitatively separated by precipitation with TGA and determined complexometrically with EDTA, with PAN as indicator. Niobium interferes even in traces.
Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T
2015-05-20
Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.
[The influence of surface conditioning on the shear bond strength of La-Porcelain and titanium].
Mo, Anchun; Cen, Yuankun; Liao, Yunmao
2003-04-20
To determine the influence of different surface conditioning methods on bonding strength of low fusing porcelain (La-Porcelain) and titanium. The surface of the samples were sandblasted for 2 min with 80-250 microns Al2O3 or coated for two times with Si-couple agent or conditioned by pre-oxidation. The shear bond strength was examined by push-type shear test with a speed of 0.5 mm/min in a universal testing machine. Scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA) were employed to explore the relationship between bonding strength and microstructures, as well as the element diffusion at the interface between porcelain coating and titanium when heated at 800 degrees C. Bonding strength was not statistically different (P > 0.05) after sandblasting with Al2O3 in particle size ranged from 80 microns to 250 microns. When a Si-couple agent was used, bond of porcelain to titanium was significantly lower (P < 0.05). The shear bond strength of the porcelain to the pre-oxidized titanium surface remained unchanged after heating (P > 0.05). The SEM results revealed integrity of porcelain and titanium. La-Porcelain showed a small effect of surface coarseness. Sandblasting the titanium surface with 150-180 microns Al2O3 can be recommended as a method for better bonding between La-Porcelain and titanium. The Si-couple agent coating and pre-oxidation of titanium surface is unnecessary.
Zhao, Ruiguo; Liu, Taotao; Wang, Liying; Ma, Haiyan
2014-09-07
A series of titanium trichloride complexes , ligated with claw-type tetradentate aminophenolate ligands were synthesized from the direct reaction of TiCl4(THF)2 with 1 equiv. of the corresponding aminophenol in the presence of triethylamine. For comparison purposes, titanium isopropoxide complexes were also synthesized via the reaction of Ti(O(i)Pr)4 and 1 equiv. of the proligand. Similar reactions of ZrCl4(THF)2 with the corresponding aminophenol ligands in the presence of triethylamine only allowed the isolation of zirconium complex . The X-ray diffraction studies reveal that titanium trichloride complexes , and titanium triisopropoxide complex all possess a distorted octahedral geometry with the tetradentate aminophenolate ligand in cis-O, N, N chelating mode, where the methoxy group of the aryl unit does not coordinate with the metal center in the solid state. Upon activation with MMAO, these titanium and zirconium(iv) complexes exhibited moderate to high catalytic activities for ethylene polymerization at 30-120 °C, producing high-molecular-weight polyethylenes with broad distributions (Mw/Mn = 10.2-34.8). The activities of titanium trichloride complexes are significantly higher than those of titanium isopropoxide and zirconium trichloride complexes at high temperatures. The highest activity of 15 456 kg (mol-Ti h)(-1) could be achieved by titanium trichloride complex with bromo groups on both ortho- and para-positions of the phenolate ring of the ligand at 120 °C.
Spark plasma sintering of titanium aluminide intermetallics and its composites
NASA Astrophysics Data System (ADS)
Aldoshan, Abdelhakim Ahmed
Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.
FY97 Materials & Processes Technology Area Plan
1996-09-01
Offices ess has Center Technology Coun- ings, the first use ever of gamma (SPOs). In addition, we provide cil (CTCs) technology needs Titanium Aluminide ...300,000 in form- structive evaluation (NDE). Four Agreements (CRDAs) with 7 ing of Titanium Aluminide with Data EAchange Agreements more in negotiation and...Systems Aircraft Range with r 50% Decrease in Fuel Propulsion Syste s =Consumption Titanium Aluminides Cast Titanium 25000F Ceramic Matrix Transition
1991-06-01
GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence
Joining of Gamma Titanium Aluminides
2002-09-01
AFRL-ML-WP-TR-2003-4036 JOINING OF GAMMA TITANIUM ALUMINIDES LTC William A. Baeslack, III Metals Branch (AFRL/MLLM) Metals, Ceramics, and...GAMMA TITANIUM ALUMINIDES 5c. PROGRAM ELEMENT NUMBER 62102F 5d. PROJECT NUMBER MO2R 5e. TASK NUMBER 10 6. AUTHOR(S) LTC William A...comparatively discusses the results of research and development performed on the joining of gamma titanium aluminides during the past two decades. Although
Manufacturing Techniques for Titanium Aluminide Based Alloys and Metal Matrix Composites
2010-01-01
aluminides are being used in the low pressure turbine (LPT) blades . In addition, titanium aluminides were also investigated for use in High Speed Civil... Titanium aluminides are also being used in General Electric’s GEnex gas turbine engine for the 6th and the 7th stage of the low pressure turbine blades ...ABSTRACT Title of Dissertation: MANUFACTURING TECHNIQUES FOR TITANIUM ALUMINIDE BASED ALLOYS AND METAL MATRIX COMPOSITES
Review: Microstructure Engineering of Titanium Alloys via Small Boron Additions (Preprint)
2011-07-01
small amount of boron to γ titanium aluminides (TiAl) has been found to improve room temperature ductility [12]. The principal effect of boron...AFRL-RX-WP-TP-2011-4298 REVIEW: MICROSTRUCTURE ENGINEERING OF TITANIUM ALLOYS VIA SMALL BORON ADDITIONS (Preprint) D.B. Miracle...2011 Journal Article Preprint 01 July 2011 – 01 July 2011 4. TITLE AND SUBTITLE REVIEW: MICROSTRUCTURE ENGINEERING OF TITANIUM ALLOYS VIA SMALL
Iron-titanium-mischmetal alloys for hydrogen storage
Sandrock, Gary Dale
1978-01-01
A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.
The effect of vacuum annealing on corrosion resistance of titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikanov, V.N.; Peshkov, V.V.; Kireev, L.S.
1994-09-01
The effect of annealing on the corrosion resistance of OT4-1 sheet titanium in 25% HCl under various air pressures and self-evacuating conditions has been investigated. From the kinetic corrosion curves it follows that the least corrosion resistance of titanium is observed after vacuum annealing. Even low residual air pressure in a chamber improves corrosion resistance. The corrosion resistance of titanium decreases with vacuum-annealing time.
Active Materials for Photonic Systems (AMPS)
1998-04-13
titanium isopropoxide were used as metalorganic precursors. The PZT films grown on the (101) oriented Ru02 electrode layers are highly (001) oriented...fabrication it was noted mat adhesion loss occurred at the platinum/ titanium interface. This loss occurred during stripping of the photoresist layer used to...reveal that the titanium was present as titanium dioxide rather than as the original metal. This indicated that oxygen had diffused through the platinum
Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)
2014-08-15
AFRL-RX-WP-JA-2014-0177 REACTIVE SPARK PLASMA SINTERING (SPS) OF NITRIDE REINFORCED TITANIUM ALLOY COMPOSITES (POSTPRINT) Jaimie S...titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and...lcomReactive spark plasma sintering (SPS) of nitride reinforced titanium alloy compositeshttp://dx.doi.org/10.1016/j.jallcom.2014.08.049 0925-8388
A Single Crystalline Porphyrinic Titanium MetalOrganic Framework
2015-04-28
22, which was synthesized from preformed titanium -oxo carboxylate clusters and porphyrinic ligands. PCN-22 possesses high porosity and photocatalytic...DOI: 10.1039/c5sc00916b www.rsc.org/chemicalscience 3926 | Chem. Sci., 2015, 6, 3926–3930e porphyrinic titanium metal– organic framework† Shuai Yuan...Scott J. Dalgarnoc and Hong-Cai Zhou*a We successfully assembled the photocatalytic titanium -oxo cluster and photosensitizing porphyrinic linker into a
Treatment of ectopic mandibular second molar with titanium miniscrews.
Giancotti, Aldo; Arcuri, Claudio; Barlattani, Alberto
2004-07-01
The use of a Cizeta titanium miniscrew (Cizeta Surgical, Bologna, Italy) for treating an impacted mandibular second molar is presented in this report. The surgical procedure for placing the miniscrew and the subsequent orthodontic management are described, including orthodontic traction with a nickel-titanium closed-coil spring exerting 50 g of force. We concluded that the titanium miniscrew for skeletal anchorage is effective in treating deeply impacted mandibular second molars.
Assad, M; Lemieux, N; Rivard, C H; Yahia, L H
1999-01-01
The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.
Listgarten, M A; Buser, D; Steinemann, S G; Donath, K; Lang, N P; Weber, H P
1992-02-01
This experiment was aimed at studying the intact tissue/implant interface of non-submerged dental implants with a titanium surface. Epoxy-resin replicas were fabricated from 3.05 x 8 mm cylindrical titanium implants with a plasma-sprayed apical portion and a smooth coronal collar. The replicas were coated with a 90-120-nm-thick layer of pure titanium and autoclaved. The coated replicas were inserted as non-submerged endosseous implants in the edentulous premolar region of dog mandibles and allowed to heal for three months. Jaw sections containing the implants were processed for light and electron microscopic study of the intact tissue/implant interface with and without prior demineralization. Gingival connective tissue fibers were closely adapted to the titanium layer, in an orientation more or less parallel to the implant surface. There was no evidence of any fiber insertions into the surface irregularities of the smooth or rough titanium surface. Undemineralized bone was intimately adapted to the titanium surface without any intervening space. In demineralized sections, the collagen fibers of the bone matrix tended to be somewhat thinner and occasionally less densely packed in the vicinity of the implant surface. However, they extended all the way to the titanium surface, without any intervening fibril-free layer.
MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization
Hayakawa, Tohru; Yoshida, Eiji; Yoshimura, Yoshitaka; Uo, Motohiro; Yoshinari, Masao
2012-01-01
The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells. PMID:22675359
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy.
Prymak, Oleg; Bogdanski, Denise; Köller, Manfred; Esenwein, Stefan A; Muhr, Gert; Beckmann, Felix; Donath, Tilmann; Assad, Michel; Epple, Matthias
2005-10-01
Disks consisting of macroporous nickel-titanium alloy (NiTi, Nitinol, Actipore) are used as implants in clinical surgery, e.g. for fixation of spinal dysfunctions. The morphological properties were studied by scanning electron microscopy (SEM) and by synchrotron radiation-based microtomography (SRmuCT). The composition was studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and energy-dispersive X-ray spectroscopy (EDX). The mechanical properties were studied with temperature-dependent dynamical mechanical analysis (DMA). Studies on the biocompatibility were performed by co-incubation of porous NiTi samples with isolated peripheral blood leukocyte fractions (polymorphonuclear neutrophil granulocytes, PMN; peripheral blood mononuclear leukocytes, PBMC) in comparison with control cultures without NiTi samples. The cell adherence to the NiTi surface was analyzed by fluorescence microscopy and scanning electron microscopy. The activation of adherent leukocytes was analyzed by measurement of the released cytokines using enzyme-linked immunosorbent assay (ELISA). The cytokine response of PMN (analyzed by the release of IL-1ra and IL-8) was not significantly different between cell cultures with or without NiTi. There was a significant increase in the release of IL-1ra (p<0.001), IL-6 (p<0.05), and IL-8 (p<0.05) from PBMC in the presence of NiTi samples. In contrast, the release of TNF-alpha by PBMC was not significantly elevated in the presence of NiTi. IL-2 was released from PBMC only in the range of the lower detection limit in all cell cultures. The material, clearly macroporous with an interconnecting porosity, consists of NiTi (martensite; monoclinic, and austenite; cubic) with small impurities of NiTi2 and possibly NiC(x). The material is not superelastic upon manual compression and shows a good biocompatibility.
Galli, Silvia; Andersson, Martin; Jinno, Yohei; Karlsson, Johan; He, Wenxiao; Xue, Ying; Mustafa, Kamal; Wennerberg, Ann; Jimbo, Ryo
2017-10-01
The release of magnesium ions (Mg 2+ ) from titanium surfaces has been shown to boost the initial biological response of peri-implant bone and to increase the biomechanical strength of osseointegration. The objective of the present paper was to investigate if the initial improvement in osseointegration would influence the bone remodeling also during the maturation stage of bone healing. Titanium implants were coated with mesoporous titania layers and either loaded with Mg 2+ (test group) or left untreated (control group). The implants were inserted in the tibiae of 10 New Zealand White rabbits. Osseointegration was assessed after 6 weeks by means of biomechanical testing (RTQ), non-decalcified histology and histomorphometry (BIC%, BA%, NBA%). The expression of genes involved in the bone formation and remodeling was quantified using qPCR. Mg 2+ releasing mesoporous titania coatings showed, on average, higher removal torques and histomorphometrical outcomes (RTQ: 17.2 Ncm vs. 15 Ncm; BIC: 38.8% vs. 32.1%; BA%: 71.6% vs. 64%; NBA% 62.5% vs. 54% for the tests vs the controls); however, the differences were not statistically significant. Three osteogenic markers, osteocalcin (OC), collagen 1 alpha 1 (COL1A1), and alkalin phosphatase (ALPL), were respectively 2-fold, 1.53-fold, and 1.13-fold up-regulated in the control group compared to the test. The expression of COL1A1 was particularly high in both groups, while the biomarkers for remodeling and inflammation showed a low expression in both groups. The results suggested that the initial enhancement in osseointegration induced by magnesium release from mesoporous titania coatings has no detrimental effects during bone maturation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2118-2125, 2017. © 2016 Wiley Periodicals, Inc.
Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J
2015-12-01
The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.
Metallographic structure and hardness of titanium orthodontic brackets.
Zinelis, Spiros; Annousaki, Olga; Eliades, Theodore; Makou, Margarita
2003-11-01
To determine the elemental composition, microstructure, and hardness of two different brands of titanium (Ti) orthodontic brackets. Four specimens of each brand were embedded in epoxy resin and, after metallographic grinding and polishing, were studied under a metallographic microscope. The bonding base morphology of each bracket was studied in as-received brackets by scanning electron microscopy. Energy dispersive x-ray microanalysis (EDS) was used on polished specimens to assess the elemental composition of base and wing bracket components, and the brackets were subjected to metallographic etching to reveal the metallurgical structure. The same specimen surfaces were used for assessment of the Vickers hardness. The results were statistically analyzed by two-way analysis of variance (ANOVA) with the bracket brand and bracket region (base, wing) serving as discriminating variables, whilst further group differences were investigated with Tukey's multiple comparison test at the alpha = 0.05 level of significance. Metallographic imaging revealed that the Orthos2 brackets (Ormco, Glendora, CA, USA) consist of two parts joined together by laser welding, with large gaps along the base wing interface, whereas Rematitan brackets (Dentaurum, Ispringen, Germany) are single-piece appliances. Ti was the only element identified in Rematitan and Orthos2 base materials, while aluminium (Al) and vanadium (V) were also found in the Orthos2 wing component. Metallographic analysis showed the presence of a + b phase for Orthos2 and plate-like grains for Rematitan. The results of the Vickers hardness testing were: Orthos2 (wing): 371 +/- 22, Rematitan (wing): 272 +/- 4, Rematitan (base): 271 +/- 16, Orthos2 (base): 165 +/- 2. The findings of the present study suggest that there are significant differences in composition, microstructure and hardness between the two commercial types of Ti brackets tested; the clinical implications of the findings are discussed.
Marin, E; Fusi, S; Pressacco, M; Paussa, L; Fedrizzi, L
2010-07-01
EBM (Electron Beam Melting) technology can be used successfully to obtain cellular solids in metallic biomaterials that can greatly increase osseointegration in arthroprothesis and at the same time maintain good mechanical properties. The investigated structures, called Trabecular Titanium, usually cannot be obtained by traditional machining. Two samples: (A) with a smaller single cell area and, (B) with a bigger single cell area, were produced and studied in this project. They have been completely characterized and compared with the results in similar literature pertinent to Ti6Al4V EBM structures. Relative density was evaluated using different methods, the mean diameter of the open porosities was calculated by Scanning Electron Microscope images; the composition was evaluated using Energy-Dispersive X-Ray Spectroscopy; the microstructure (alpha-beta) was investigated using chemical etching and, the mechanical proprieties were investigated using UMTS. The mean porosity values resulted comparable with spongy bone (63% for A and 72% for B). The mean diameter of the single porosity (650 mum for A and 1400 mum for B) resulted compatible with the osseointegration data from the literature, in particular for sample A. The Vickers micro-hardness tests and the chemical etching demonstrated that the structure is fine, uniform and well distributed. The mechanical test proved that sample (A) was more resistant than sample (B), but sample (B) showed an elastic modulus almost equal to the value of spongy bone. The results of this study suggest that the two Ti6Al4V cellular solids can be used in biomedical applications to promote osseointegration demonstrating that they maybe successfully used in prosthetic implants. Additional implant results will be published in the near future. Copyright 2010 Elsevier Ltd. All rights reserved.
Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks
2017-01-01
Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331
Evaluation of macrozone dimensions by ultrasound and EBSD techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreau, Andre, E-mail: Andre.Moreau@cnrc-nrc.gc.ca; Toubal, Lotfi; Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, QC, Canada H3C 1K3
2013-01-15
Titanium alloys are known to have texture heterogeneities, i.e. regions much larger than the grain dimensions, where the local orientation distribution of the grains differs from one region to the next. The electron backscattering diffraction (EBSD) technique is the method of choice to characterize these macro regions, which are called macrozones. Qualitatively, the images obtained by EBSD show that these macrozones may be larger or smaller, elongated or equiaxed. However, often no well-defined boundaries are observed between the macrozones and it is very hard to obtain objective and quantitative estimates of the macrozone dimensions from these data. In the presentmore » work, we present a novel, non-destructive ultrasonic technique that provides objective and quantitative characteristic dimensions of the macrozones. The obtained dimensions are based on the spatial autocorrelation function of fluctuations in the sound velocity. Thus, a pragmatic definition of macrozone dimensions naturally arises from the ultrasonic measurement. This paper has three objectives: 1) to disclose the novel, non-destructive ultrasonic technique to measure macrozone dimensions, 2) to propose a quantitative and objective definition of macrozone dimensions adapted to and arising from the ultrasonic measurement, and which is also applicable to the orientation data obtained by EBSD, and 3) to compare the macrozone dimensions obtained using the two techniques on two samples of the near-alpha titanium alloy IMI834. In addition, it was observed that macrozones may present a semi-periodical arrangement. - Highlights: Black-Right-Pointing-Pointer Discloses a novel, ultrasonic NDT technique to measure macrozone dimensions Black-Right-Pointing-Pointer Proposes a quantitative and objective definition of macrozone dimensions Black-Right-Pointing-Pointer Compares macrozone dimensions obtained using EBSD and ultrasonics on 2 Ti samples Black-Right-Pointing-Pointer Observes that macrozones may have a semi-periodical arrangement.« less
Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects
NASA Astrophysics Data System (ADS)
Grover, Valerie Ann
The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.
NASA Astrophysics Data System (ADS)
Gerstl, Stephan S. A.
Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.
Localization of intercellular adhesion molecule-1 (ICAM-1) in the lungs of silica-exposed mice.
Nario, R C; Hubbard, A K
1997-01-01
Intercellular adhesion molecule-1 (ICAM-1) is expressed on a variety of cells including endothelial cells, alveolar epithelial cells, and alveolar macrophages. Endothelial/epithelial cell ICAM-1 participates in the migration of leukocytes out of the blood in response to pulmonary inflammation, whereas alveolar macrophage ICAM-1 may represent cell activation. Our previous studies have shown that there is increased expression of ICAM-1 in lung tissue during acute inflammation following intratracheal injection with silica particles (2 mg/mouse). This increased expression was shown to play a role, in part, in the migration of neutrophils from the circulation into the tissue parenchyma. The aim of the current work is to localize expression of ICAM-1 during acute inflammation in lungs of mice exposed to either silica or the nuisance dust, titanium dioxide. In silica-exposed mice, a significant increase in ICAM-1 was detected on day-1 and localized by immunohistochemistry to aggregates of pulmonary macrophages and to type II epithelial cells. Areas of the lung with increased ICAM-1 expression also showed increased tumor necrosis factor alpha expression. Immunocytochemical staining of bronchoalveolar lavage (BAL) cells demonstrated increased ICAM-1 expression associated with alveolar macrophages 3, 5, and 7 days following silica exposure. Finally, soluble ICAM-1 levels in the BAL fluid were significantly increased in mice exposed to silica on the same days. Titanium dioxide exposure elicited a minimal increase in expression of ICAM-1 in the lungs. These data demonstrate that exposure to the toxic particle silica specifically increases ICAM-1 expression localized to pulmonary macrophages and type II epithelial cells. Images Figure 2. B Figure 2. A Figure 2. D Figure 2. C Figure 3. A Figure 3. B Figure 5. B Figure 5. A Figure 5. C PMID:9400721
Bu, Yan-Min; Zheng, De-Zhi; Wang, Lei; Liu, Jun
2017-02-01
The adverse biological responses to prostheses wear particles commonly led to the failure of total hip arthroplasty. Among the released cytokines, interferon-γ (IFN-γ) has been found to be a critical functional factor during osteoclast differentiation. However, the molecular mechanism underlying the regulation of IFN-γ in wear particles-induced cells still needs to be determined. Four kinds of abrasive endoprosthetic wear particle were used to treat THP-1 cells, including polymethylmethacrylate (PMMA), zirconiumoxide (ZrO 2 ), commercially pure titanium (cpTi), and titanium alloy (Ti-6Al-7Nb), with a concentration of 0.01, 0.05, 0.1, or 0.2 mg/ml for 48 h. The expression of IFN-γ and miR-29b was detected by real-time RT-PCR or ELISA. Luciferase reporter assay was performed to determine the regulation of miR-29b on IFN-γ. The effect of miR-29b inhibitor on the expression of wear particle-induced IFN-γ was detected. The expression of miR-29b was examined in THP-1 cells treated with tumor necrosis factor-alpha (TNF-α). The expression of IFN-γ was downregulated and the level of miR-29b was increased in THP-1 cells pretreated with wear particles. IFN-γ was a target of miR-29b. Wear particles inhibited the expression of IFN-γ through miR-29b. The expression of miR-29b was significantly reduced in THP-1 cells treated with TNF-α neutralizing antibody and particles comparing to that in the cells treated with particles alone. Wear particles inhibit the IFN-γ secretion in human monocytes, which was associated with the upregulating TNF-α-induced miR-29b.
NASA Astrophysics Data System (ADS)
Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.
2009-11-01
Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.
NASA Astrophysics Data System (ADS)
Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.
2002-11-01
In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.
Method for producing titanium aluminide weld rod
Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.
1995-01-01
A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.
An Insoluble Titanium-Lead Anode for Sulfate Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferdman, Alla
2005-05-11
The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead compositemore » material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.« less
40 CFR 98.310 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...
40 CFR 98.310 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...
40 CFR 98.310 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...
40 CFR 98.310 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...
40 CFR 98.310 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.310 Definition of the source category. The titanium dioxide production source category consists of facilities that use the chloride process to produce titanium dioxide. ...
Kawai, Hiroyuki; Shibata, Yo; Miyazaki, Takashi
2004-05-01
Despite the fact that several reports have demonstrated osteoclast activity on various bioactive ceramics, osteoclast functions on surface-modified titanium have not come under focus. This study aimed to examine whether the increasing surface energy of glow discharge plasma (GDP) involved in protein adhesion containing the RGD (Arg-Gly-Asp) sequence affects osteoclast responses on titanium plates. We examined osteoclast differentiation and survival rates on titanium plates with and without GDP. The amounts of osteoclasts on titanium plates were not increased by GDP after 1 week. However, osteoclast differentiation was greatly activated by GDP pretreatment, as tartrate-resistant acid phosphatase synthesis significantly increased on the titanium plates with GDP. Additionally, since the presence of osteoclasts was detected only on the titanium plates with GDP, even after 4h cultivation in a coculture test, the osteoclasts survival rate was increased by GDP pretreatment. As osteoclast responses were affected even on surface modified metallic materials, we concluded that novel approaches are needed not only for osteoclastic resorption on ceramic materials but also for osteoclast responses on surface-modified metallic materials.
Sealing glasses for titanium and titanium alloys
Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.
1997-07-15
Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.
Sealing glasses for titanium and titanium alloys
Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.
1997-01-01
Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).
NASA Astrophysics Data System (ADS)
Nizar, U. K.; Hidayatul, J.; Sundari, R.; Bahrizal, B.; Amran, A.; Putra, A.; Latisma DJ, L.; Dewata, I.
2018-04-01
This study investigates the correlation of the number of titanium tetrahedral coordination and biodiesel production. The solid-state method has been used to synthesis of silica-titania catalyst for biodiesel production, which the precursors, i.e. silica and titania commercials were heated in the temperature range of 450 - 550°C. The characterization of the prepared silica-titania has been studied by FTIR and DR UV-Vis in order to identify and calculate the presence of titanium tetrahedral coordination in silica-titania catalyst. A very small peak at around 950 cm-1 indicated the presence of titanium tetrahedral coordination through Si–O–Ti bonds. Deconvolution of DR UV-Vis spectra showed the coordination of titanium in silica-titania is more octahedral. However, the number of titanium tetrahedral coordination of the prepared silica-titania is found higher than that of TiO2 commercial. The increasing of titanium tetrahedral fraction in silica-titania affects the physical properties of biodiesel in terms of boiling point, viscosity and density, which is produced by the reaction of methanol and palm oil.
A Review on High-Speed Machining of Titanium Alloys
NASA Astrophysics Data System (ADS)
Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San
Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.
Sealing glasses for titanium and titanium alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brow, R.K.; McCollister, H.L.; Phifer, C.C.
1997-07-15
Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansionmore » about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.« less
Evaluation of cyclic flexural fatigue of M-wire nickel-titanium rotary instruments.
Al-Hadlaq, Solaiman M S; Aljarbou, Fahad A; AlThumairy, Riyadh I
2010-02-01
This study was conducted to investigate cyclic flexural fatigue resistance of GT series X rotary files made from the newly developed M-wire nickel-titanium alloy compared with GT and Profile nickel-titanium files made from a conventional nickel-titanium alloy. Fifteen files, size 30/0.04, of each type were used to evaluate the cyclic flexural fatigue resistance. A simple device was specifically constructed to measure the time each file type required to fail under cyclic flexural fatigue testing. The results of this experiment indicated that the GT series X files had superior cyclic flexural fatigue resistance than the other 2 file types made from a conventional nickel-titanium alloy (P = .004). On the other hand, the difference between the Profile and the GT files was not statistically significant. The findings of this study suggest that size 30/0.04 nickel-titanium rotary files made from the newly developed M-wire alloy have better cyclic flexural fatigue resistance than files of similar design and size made from the conventional nickel-titanium alloy. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
In vitro studying corrosion behavior of porous titanium coating in dynamic electrolyte.
Chen, Xuedan; Fu, Qingshan; Jin, Yongzhong; Li, Mingtian; Yang, Ruisong; Cui, Xuejun; Gong, Min
2017-01-01
Porous titanium (PT) is considered as a promising biomaterials for orthopedic implants. Besides biocompatibility and mechanical properties, corrosion resistance in physiological environment is the other important factor affecting the long stability of an implant. In order to investigate the corrosion behavior of porous titanium implants in a dynamic physiological environment, a dynamic circle system was designed in this study. Then a titanium-based implant with PT coating was fabricated by plasma spraying. The corrosion resistance of PT samples in flowing 0.9% NaCl solution was evaluated by electrochemical measurements. Commercial pure solid titanium (ST) disc was used as a control. The studies of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the pores in the PT play a negetive part in corrosion resistance and the flowing electrolyte can increase the corrosive rate of all titanium samples. The results suggest that pore design of titanium implants should pay attention to the effect of dynamic process of a physiological environment on the corrosion behavior of implants. Copyright © 2016 Elsevier B.V. All rights reserved.
Preload evaluation of different screws in external hexagon joint.
Assunção, Wirley Gonçalves; Delben, Juliana Aparecida; Tabata, Lucas Fernando; Barão, Valentim Adelino Ricardo; Gomes, Erica Alves; Garcia, Idelmo Rangel
2012-02-01
This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns. Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05). Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P > 0.05). All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage.