Sample records for titans surface observed

  1. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  2. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.

  3. Quantifying Precipitation Variability on Titan Using a GCM and Implications for Observed Geomorphology

    NASA Astrophysics Data System (ADS)

    Faulk, Sean P.; Mitchell, Jonathan L.; Moon, Seulgi; Lora, Juan Manuel

    2016-10-01

    Titan's zonal-mean precipitation behavior has been widely investigated using general circulation models (GCMs), but the spatial and temporal variability of rainfall in Titan's active hydrologic cycle is less well understood. We conduct statistical analyses of rainfall, diagnosed from GCM simulations of Titan's atmosphere, to determine storm intensity and frequency. Intense storms of methane have been proposed to be critical for enabling mechanical erosion of Titan's surface, as indicated by observations of dendritic valley networks. Using precipitation outputs from the Titan Atmospheric Model (TAM), a GCM shown to realistically simulate many features of Titan's atmosphere, we quantify the precipitation variability within eight separate latitude bins for a variety of initial surface liquid distributions. We find that while the overall wettest regions are indeed the poles, the most intense rainfall generally occurs in the high mid-latitudes, between 45-67.5 degrees, consistent with recent geomorphological observations of alluvial fans concentrated at those latitudes. We also find that precipitation rates necessary for surface erosion, as estimated by Perron et al. (2006) J. Geophys. Res. 111, E11001, frequently occur at all latitudes, with recurrence intervals of less than one Titan year. Such analysis is crucial towards understanding the complex interaction between Titan's atmosphere and surface and defining the influence of precipitation on observed geomorphology.

  4. Quantifying Precipitation Variability and Relative Erosion Rates on Titan Using a GCM and Implications for Observed Geomorphology

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Moon, S.; Mitchell, J.; Lora, J. M.

    2016-12-01

    Titan's zonal-mean precipitation behavior has been widely investigated using general circulation models (GCMs), but the spatial and temporal variability of rainfall in Titan's active hydrologic cycle is less well understood. We conduct statistical analyses of rainfall, diagnosed from GCM simulations of Titan's atmosphere, to determine storm intensity and frequency. Intense storms of methane have been proposed to be critical for enabling mechanical erosion of Titan's surface, as indicated by extensive observations of dendritic valley networks. Using precipitation outputs from the Titan Atmospheric Model (TAM), a GCM shown to realistically simulate many features of Titan's atmosphere, we quantify the precipitation variability and resulting relative erosion rates within eight separate latitude bins for a variety of initial surface liquid distributions. We find that while the overall wettest regions are indeed the poles, the most intense rainfall generally occurs in the high mid-latitudes, between 45-67.5 degrees, consistent with recent geomorphological observations of alluvial fans concentrated at those latitudes. We also find that precipitation rates necessary for surface erosion, as estimated by Perron et al. (2006) J. Geophys. Res. 111, E11001, frequently occur at all latitudes, with recurrence intervals of less than one Titan year. Such analysis is crucial towards understanding the complex interaction between Titan's atmosphere and surface and defining the influence of precipitation on observed geomorphology.

  5. Liquid Hydrocarbons on Titan's Surface? How Cassini ISS Observations Fit into the Story (So Far)

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; Dawson, D. D.; Fussner, S.; Hardegree-Ullman, E.; Ewen, A. S.; Perry, J.; Porco, C. C.; West, R. A.

    2005-01-01

    Titan is the only satellite in our Solar System with a substantial atmosphere, the origins and evolution of which are still not well understood. Its primary (greater than 90%) component is nitrogen, with a few percent methane and lesser amounts of other species. Methane and ethane are stable in the liquid state under the temperature and pressure conditions in Titan s lower atmosphere and at the surface; indeed, clouds, likely composed of methane, have been detected. Photochemical processes acting in the atmosphere convert methane into more complex hydrocarbons, creating Titan s haze and destroying methane over relatively short timescales. Therefore, it has been hypothesized that Titan s surface has reservoirs of liquid methane which serve to resupply the atmosphere. Early observations of Titan s surface revealed albedo patterns which have been interpreted as dark hydrocarbon liquids occupying topographically low regions between higher-standing exposures of bright, water-ice bedrock, although this is far from being the only explanation for the observed albedo contrast. Observations made by the Imaging Science Subsystem during Cassini's approach to Saturn and its first encounters with Titan show the bright and dark regions in greater detail but have yet to resolve the question of whether there are liquids on the surface.

  6. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  7. Titan's Exotic Weather

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2006-09-01

    Images of Titan, taken during the joint NASA and European Space Agency Cassini-Huygens mission, invoke a feeling of familiarity: washes wind downhill to damp lakebeds; massive cumuli form and quickly dissipate, suggestive of rain; and dark oval regions resemble lakes. These features arise from Titan's unique similarity with Earth: both cycle liquid between their surfaces and atmospheres, but in Titan's cool atmosphere it is methane that exists as a gas, liquid, and ice. While Titan enticingly resembles Earth, its atmosphere is 10 times thicker, so that its radiative time constant near the surface exceeds a Titan year, and prohibits large thermal gradients and seasonal surface temperature variations exceeding 3K. Titan also lacks oceans - central to Earth's climate - and instead stores much of its condensible in its atmosphere. As a result, Titan's weather differs remarkably from Earth's. Evidence for this difference appears in the location of Titan's large clouds, which frequent a narrow band at 40S latitude and a region within 30 latitude of the S. Pole. Ground-based and Cassini observations, combined with thermodynamic considerations, indicate that we are seeing large convective cloud systems. Detailed cloud models and general circulation models further suggest that these are severe rain storms, which will migrate with the change in season. Outside these migrating "gypsy" cloud bands, the atmosphere appears to be calm, humid and thus frequented by thin stratiform clouds. An intriguingly alien environment is predicted. Yet, the combined effects of Titan's patchy wet surface, atmospheric tides, possible ice volcanoes, and detailed seasonal variations remain unclear as we have witnessed only one season so far. This talk will review observations of Titan's lower atmosphere and modeling efforts to explain the observations, and explore the questions that still elude us.

  8. Mapping products of Titan's surface: Chapter 19

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter

    2010-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  9. Titan Radar Mapper observations from Cassini's T3 fly-by

    USGS Publications Warehouse

    Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.

  10. Titan's seasonal weather patterns, associated surface modification, and geological implications

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; Barnes, J. W.; McEwen, A. S.; Barbara, J. M.; Del Genio, A. D.; Hayes, A. G.; West, R. A.; Lorenz, R. D.; Schaller, E. L.; Lunine, J. I.; Ray, T. L.; Lopes, R. M. C.; Stofan, E. R.

    2013-09-01

    Model predictions [e.g., 1-3] and observations [e.g., 4,5] illustrate changes in Titan's weather patterns related to the seasons (Fig. 1). In two cases, surface changes were documented following large cloud outbursts (Figs. 2, 3): the first in Arrakis Planitia at high southern latitudes in Fall 2004, during Titan's late southern summer [6]; and the second at lows southern latitudes in Concordia and Hetpet Regiones, Yalaing Terra (Fig. 3), and Adiri, in Fall 2010, just over a year after Titan's northern vernal equinox [4, 7, 8]. Not only do these storms demonstrate Titan's atmospheric conditions and processes, they also have important implications for Titan's surface process, its methane cycle, and its geologic history.

  11. Photometric changes on Saturn's Titan: Evidence for active cryovolcanism

    USGS Publications Warehouse

    Nelson, R.M.; Kamp, L.W.; Lopes, R.M.C.; Matson, D.L.; Kirk, R.L.; Hapke, B.W.; Wall, S.D.; Boryta, M.D.; Leader, F.E.; Smythe, W.D.; Mitchell, K.L.; Baines, K.H.; Jaumann, R.; Sotin, Christophe; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Lunine, J.I.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Irwin, P.G.J.; Pearl, J.C.

    2009-01-01

    We report infrared spectrophotometric variability on the surface of Saturn's moon Titan detected in images returned by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Saturn Orbiter. The changes were observed at 7??S, 138??W and occurred between October 27, 2005 and January 15, 2006. After that date the surface was unchanged until the most recent observation, March 18, 2006. We previously reported spectrophotometric variability at another location (26??S, 78??W). Cassini Synthetic Aperture RADAR (SAR) images find that the surface morphology at both locations is consistent with surface flows possibly resulting from cryovolcanic activity (Wall et al., companion paper, this issue). The VIMS-reported time variability and SAR morphology results suggest that Titan currently exhibits intermittent surface changes consistent with present ongoing surface processes. We suggest that these processes involve material from Titan's interior being extruded or effiised and deposited on the surface, as might be expected from cryovolcanism. ?? 2009.

  12. Radar evidence for liquid surfaces on Titan.

    PubMed

    Campbell, Donald B; Black, Gregory J; Carter, Lynn M; Ostro, Steven J

    2003-10-17

    Arecibo radar observations of Titan at 13-centimeter wavelength indicate that most of the echo power is in a diffusely scattered component but that a small specular component is present for about 75% of the subearth locations observed. These specular echoes have properties consistent with those expected for areas of liquid hydrocarbons. Knowledge of the areal extent and depth of any deposits of liquid hydrocarbons could strongly constrain the history of Titan's atmosphere and surface.

  13. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO images, and ESO Press Release 11/03 for MACAO-VLTI results.) The southern smile ESO PR Photo 08a/04 ESO PR Photo 08a/04 Images of Titan on November 20, 25 and 26, 2002 Through Five Filters (VLT YEPUN + NACO) [Preview - JPEG: 522 x 400 pix - 40k] [Normal - JPEG: 1043 x 800 pix - 340k] [Hires - JPEG: 2875 x 2205 pix - 1.2M] Caption: ESO PR Photo 08a/04 shows Titan (apparent visual magnitude 8.05, apparent diameter 0.87 arcsec) as observed with the NAOS/CONICA instrument at VLT Yepun (Paranal Observatory, Chile) on November 20, 25 and 26, 2003, between 6.00 UT and 9.00 UT. The median seeing values were 1.1 arcsec and 1.5 arcsec respectively for the 20th and 25th. Deconvoluted ("sharpened") images of Titan are shown through 5 different narrow-band filters - they allow to probe in some detail structures at different altitudes and on the surface. Depending on the filter, the integration time varies from 10 to 100 seconds. While Titan shows its leading hemisphere (i.e. the one observed when Titan moves towards us) on Nov. 20, the trailing side (i.e the one we see when Titan moves away from us in its course around Saturn) - which displays less bright surface features - is observed on the last two dates. ESO PR Photo 08b/04 ESO PR Photo 08b/04 Titan Observed Through Nine Different Filters on November 26, 2002 [Preview - JPEG: 480 x 400 pix - 36k] [Normal - JPEG: 960 x 800 pix - 284k] Caption: ESO PR Photo 08b/04: Images of Titan taken on November 26, 2002 through nine different filters to probe different altitudes, ranging from the stratosphere to the surface. On this night, a stable "seeing" (image quality before adaptive optics correction) of 0.9 arcsec allowed the astronomers to attain the diffraction limit of the telescope (0.032 arcsec resolution). Due to these good observing conditions, Titan's trailing hemisphere was observed with contrasts of about 40%, allowing the detection of several bright features on this surface region, once thought to be quite dark and featureless. ESO PR Photo 08c/04 ESO PR Photo 08c/04 Titan Surface Projections [Preview - JPEG: 601 x 400 pix - 64k] [Normal - JPEG: 1201 x 800 pix - 544k] Caption: ESO PR Photo 08c/04 : Titan images obtained with NACO on November 26th, 2002. Left: Titan's surface projection on the trailing hemisphere as observed at 1.3 μm, revealing a complex brightness structure thanks to the high image contrast of about 40%. Right: a new, possibly meteorological, phenomenon observed at 2.12 μm in Titan's atmosphere, in the form of a bright feature revolving around the South Pole. A team of French astronomers [2] have recently used the NACO state-of-the-art adaptive optics system on the fourth 8.2-m VLT unit telescope, Yepun, to map the surface of Titan by means of near-infrared images and to search for changes in the dense atmosphere. These extraordinary images have a nominal resolution of 1/30th arcsec and show details of the order of 200 km on the surface of Titan. To provide the best possible views, the raw data from the instrument were subjected to deconvolution (image sharpening). Images of Titan were obtained through 9 narrow-band filters, sampling near-infrared wavelengths with large variations in methane opacity. This permits sounding of different altitudes ranging from the stratosphere to the surface. Titan harbours at 1.24 and 2.12 μm a "southern smile", that is a north-south asymmetry, while the opposite situation is observed with filters probing higher altitudes, such as 1.64, 1.75 and 2.17 μm. A high-contrast bright feature is observed at the South Pole and is apparently caused by a phenomenon in the atmosphere, at an altitude below 140 km or so. This feature was found to change its location on the images from one side of the south polar axis to the other during the week of observations. Outlook An additional series of NACO observations of Titan is foreseen later this month (April 2004). These will be a great asset in helping optimize the return of the Cassini/Huygens mission. Several of the instruments aboard the spacecraft depend on such ground-based data to better infer the properties of Titan's surface and lower atmosphere. Although the astronomers have yet to model and interpret the physical and geophysical phenomena now observed and to produce a full cartography of the surface, this first analysis provides a clear demonstration of the marvellous capabilities of the NACO imaging system. More examples of the exciting science possible with this facility will be found in a series of five papers published today in the European research journal Astronomy & Astrophysics (Vol. 47, L1 to L24).

  14. Titan's Lakes in a Beaker

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.

    2017-12-01

    The surface of Titan presents a complex, varied surfaced, with mountains, plains, dunes, rivers, lakes and seas, composed of a layer of organics over a water ice bedrock. Over the past 10 years, our group at JPL has developed a variety of techniques to study the chemistry of Titan's organic surface under relevant temperature and pressure conditions (90-100 K, 1.5 bar). Dissolution, precipitation, and both covalent and non-covalent chemical processes are examined using Raman and infrared spectroscopy, mass spectrometry, optical microscopy, and synchrotron X-ray powder diffraction. Despite the low temperatures, our experiments are revealing that a rich and active organic chemistry is possible on Titan's surface. Laboratory experiments like these can provide crucial insights into the geological processes occurring Titan's surface, and help explain the wealth of observational data returned by the Cassini/Huygens mission. This type of data is also critical for the development of future missions to Titan.

  15. Titan's inventory of organic surface materials

    USGS Publications Warehouse

    Lorenz, R.D.; Mitchell, K.L.; Kirk, R.L.; Hayes, A.G.; Aharonson, O.; Zebker, H.A.; Paillou, P.; Radebaugh, J.; Lunine, J.I.; Janssen, M.A.; Wall, S.D.; Lopes, R.M.; Stiles, B.; Ostro, S.; Mitri, Giuseppe; Stofan, E.R.

    2008-01-01

    Cassini RADAR observations now permit an initial assessment of the inventory of two classes, presumed to be organic, of Titan surface materials: polar lake liquids and equatorial dune sands. Several hundred lakes or seas have been observed, of which dozens are each estimated to contain more hydrocarbon liquid than the entire known oil and gas reserves on Earth. Dark dunes cover some 20% of Titan's surface, and comprise a volume of material several hundred times larger than Earth's coal reserves. Overall, however, the identified surface inventories (>3 ?? 104 km3 of liquid, and >2 ?? 105 km3 of dune sands) are small compared with estimated photochemical production on Titan over the age of the solar system. The sand volume is too large to be accounted for simply by erosion in observed river channels or ejecta from observed impact craters. The lakes are adequate in extent to buffer atmospheric methane against photolysis in the short term, but do not contain enough methane to sustain the atmosphere over geologic time. Unless frequent resupply from the interior buffers this greenhouse gas at exactly the right rate, dramatic climate change on Titan is likely in its past, present and future. Copyright 2008 by the American Geophysical Union.

  16. Cassini/VIMS observes rough surfaces on Titan's Punga Mare in specular reflection.

    PubMed

    Barnes, Jason W; Sotin, Christophe; Soderblom, Jason M; Brown, Robert H; Hayes, Alexander G; Donelan, Mark; Rodriguez, Sebastien; Mouélic, Stéphane Le; Baines, Kevin H; McCord, Thomas B

    Cassini /VIMS high-phase specular observations of Titan's north pole during the T85 flyby show evidence for isolated patches of rough liquid surface within the boundaries of the sea Punga Mare. The roughness shows typical slopes of 6°±1°. These rough areas could be either wet mudflats or a wavy sea. Because of their large areal extent, patchy geographic distribution, and uniform appearance at low phase, we prefer a waves interpretation. Applying theoretical wave calculations based on Titan conditions our slope determination allows us to infer winds of 0.76±0.09 m/s and significant wave heights of [Formula: see text] cm at the time and locations of the observation. If correct, these would represent the first waves seen on Titan's seas, and also the first extraterrestrial sea-surface waves in general.

  17. Titan and Callisto

    NASA Image and Video Library

    2011-04-08

    These images compare surface features observed by NASA Cassini spacecraft at the Xanadu region on Saturn moon Titan left, and features observed by NASA Galileo spacecraft on Jupiter cratered moon Callisto right.

  18. Photochemical aerosol formation in planetary atmospheres: A comparison between Pluto and Titan

    NASA Astrophysics Data System (ADS)

    Lavvas, Panayotis; Strobel, Darrell F.; Lellouch, Emmanuel; Gurwell, Mark A.; Cheng, Andrew F.; Summers, Michael; Gladstone, Randy

    2016-10-01

    The New Horizons mission observations have revealed us that Pluto's atmosphere is rich in photochemical hazes that extend to high altitudes above its surface [1], apparently similar to those observed in Titan's atmosphere [2].We use detailed models combining photochemistry and microphysics in order to simulate the aerosol formation and growth in Pluto's atmosphere, as performed for Titan's atmosphere [3]. Here we discuss the possible mechanisms leading to the formation of haze particles in Pluto's atmosphere, and we evaluate the contribution of different growth processes (e.g. coagulation vs. condensation) to the resulting particle properties.Moreover we investigate the role of these particles in the radiative balance of Pluto's atmosphere and we compare the resulting particle properties, with those retrieved for Titan's upper atmosphere based on Cassini observations [4]. We discuss the similarities and difference between Pluto's and Titan's aerosols.[1] Gladstone et al., 2016, Science, 351, 6271[2] West et al., 2015, Titan's Haze, in Titan, Interior, Surface, Atmosphere and Space environment, Cambridge University Press[3] Lavvas et al., 2013, PNAS, pnas.1217059110[4] Lavvas et al., 2015, DPS47, id.205.08

  19. Singular regional brightening events on Titan as seen by Cassini/VIMS

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Le Mouélic, S.; Barnes, J. W.; Rannou, P.; Sotin, C.; Brown, R. H.; Bow, J.; Vixie, G.; Cornet, T.; Bourgeois, O.; Narteau, C.; Courrech Du Pont, S.; Griffith, C. A.; Jaumann, R.; Stephan, K.; Buratti, B. J.; Clark, R. N.; Baines, K. H.; Nicholson, P. D.

    2011-10-01

    We present here the observation of intense brightening at Titan's tropics, very close to the equinox. These detections were conducted with the Visual and Infrared Mapping Spectrometer [8] (VIMS) onboard Cassini. Figure 1 presents the VIMS color composite images of the three individual events detected so far, observed during the Titan's flybys T56 (22 May 2009), T65 (13 January 2010) and T70 (21 June 2010). T56, T65 and T70 observations show an intense and transient brightening of large regions very close to the equator, which all appear spectrally and morphologically different from all previous observed surface features or atmospheric phenomena. These events share in particular a strong brightening at wavelengths greater than 2 μm (especially at 5 μm), making them spectrally distinct from the few large storms observed near the equator. We will discuss the possibility that these singular events may have occurred very close to the surface, having a very local origin. We will also discuss the possible implication of the equinoctial occurrence of such events for Titan's tropical climatology and their probable link with particular geological features at Titan's surface.

  20. Exploring the Surface of Titan with Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Barnes, J.; Buratti, B. J.; Collins, G.; Fussner, S.; Lopes, R.; Lorenz, R. D.; Lunine, J. I.; McCord, T. B.; McEwen, A. S.; Nelson, R.; Perry, J.; Porco, C. C.; Soderblom, L.; Sotin, C.; Wall, S. D.

    2005-12-01

    Over the past year, the Cassini-Huygens mission has returned a wealth of data about the surface of Saturn's satellite Titan. Cassini's Imaging Science Subsystem (ISS), RADAR, and Visual and Infrared Mapping Spectrometer (VIMS), and Huygens' Descent Imaging Spectral Radiometer (DISR) have revealed an intriguing surface that is at once familiar and alien. Although water-ice and liquid hydrocarbons play the roles that rock and water play on Earth, the surface appears to have been worked by a wide variety of processes resulting in a seemingly Earth-like balance of fluvial, aeolian, and volcanic features, with relatively few impact craters. There seem to be at least two classes of surface material: dark areas (at visible-IR wavelengths) that are spectrally consistent with contaminated water ice, and brighter areas of unknown composition which show greater variations. The expected bodies of liquids have yet to be definitively identified; however, circumstantial evidence for liquids having acted upon the surface in Titan's past is abundant, primarily in the form of channels, and possible ponds or lakes, which have been observed by multiple instruments. Other features suggest that wind redistributes some surface materials, most likely the detritus of the complex atmospheric chemistry, creating diffuse IR-bright deposits and long, narrow, radar-dark (2.2-cm) stripes, all of which trend generally east-west. Only two impact structures have been identified to date, although several other suspiciously circular features have been documented. A variety of the morphologies observed bear strong resemblances to volcanic structures. A number of other features remain mysterious and further co-analysis of these data sets, as well as the anticipated acquisition of more data, will be needed to fully understand the nature of Titan's surface, the albedo variations observed at different wavelengths, and the processes that have acted upon it (and may continue to). In addition to the Huygens descent, the Cassini orbiter has observed Titan on six close passes to date, and two more are planned for Fall 2005 which will increase both the spatial coverage, at various wavelengths, and the time base over which observations have been made as northern-hemisphere spring approaches. We will present observations of Titan's surface acquired by the complementary suite of instruments on board Cassini-Huygens, the combination of which is proving essential to interpreting Titan's geology.

  1. Titan and habitable planets around M-dwarfs.

    PubMed

    Lunine, Jonathan I

    2010-01-01

    The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.

  2. The First Year of Cassini RADAR Observations of Titan

    NASA Astrophysics Data System (ADS)

    Elachi, C.; Lorenz, R. D.

    2005-12-01

    Titan`s atmosphere is essentially transparent to Radar, making it an ideal technique to study Titan`s surface. Cassini`s Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). Here we review data from four fly-bys in the first year of Cassini`s tour (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005.) Early SAR images from Ta and T3 (showing < 3% of Titan`s surface) reveal that Titan is geologically young and complex (see Elachi et al., 2005, Science 13, 970-4). Significant variations were seen between the range of features seen in the Ta swath (centered at ~50N, 80W) and T3 (~ 30N, 70W) : the large-scale radiometric properties also differed, with T3 being radar-brighter. A variety of features have been identified in SAR, including two large impact craters, cryovolcanic flows and a probable volcanic dome. Dendritic and braided radar-bright sinuous channels, some 180km long, are evidence of fluvial activity. `Cat scratches`, arrays of linear dark features seem most likely to be Aeolian. Radar provides unique topographic information on Titan`s landscape e.g. the depth of the 80km crater observed in T3 can be geometrically determined to be around 1300m deep. Despite the shallow large-scale slopes indicated in altimetry to date, many small hills are seen in T3. Scatterometry and radiometry maps provide large-scale classification of surface types and polarization and incidence angle coverage being assembled will constrain dielectric and scattering properties of the surface. Judging from the TA/T3 diversity, we expect further variations in the types and distribution of surface materials and geologic features in T7, which spans a wide range of Southern latitudes. T8 SAR will cover a near-equatorial dark region, including the landing site of the Huygens probe.

  3. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  4. Titan's surface at 2.2-cm wavelength imaged by the Cassini RADAR radiometer: Calibration and first results

    USGS Publications Warehouse

    Janssen, M.A.; Lorenz, R.D.; West, R.; Paganelli, F.; Lopes, R.M.; Kirk, R.L.; Elachi, C.; Wall, S.D.; Johnson, W.T.K.; Anderson, Y.; Boehmer, R.A.; Callahan, P.; Gim, Y.; Hamilton, G.A.; Kelleher, K.D.; Roth, L.; Stiles, B.; Le, Gall A.

    2009-01-01

    The first comprehensive calibration and mapping of the thermal microwave emission from Titan's surface is reported based on radiometric data obtained at 2.2-cm wavelength by the passive radiometer included in the Cassini Radar instrument. The data reported were accumulated from 69 separate observational segments in Titan passes from Ta (October 2004) through T30 (May 2007) and include emission from 94% of Titan's surface. They are diverse in the key observing parameters of emission angle, polarization, and spatial resolution, and their reduction into calibrated global mosaic maps involved several steps. Analysis of the polarimetry obtained at low to moderate resolution (50+ km) enabled integration of the radiometry into a single mosaic of the equivalent brightness temperature at normal incidence with a relative precision of about 1 K. The Huygens probe measurement of Titan's surface temperature and radiometry obtained on Titan's dune fields allowed us to infer an absolute calibration estimated to be accurate to a level approaching 1 K. The results provide evidence for a surface that is complex and varied on large scales. The radiometry primarily constrains physical properties of the surface, where we see strong evidence for subsurface (volume) scattering as a dominant mechanism that determines the emissivity, with the possibility of a fluffy or graded-density surface layer in many regions. The results are consistent with, but not necessarily definitive of a surface composition resulting from the slow deposition and processing of organic compounds from the atmosphere. ?? 2008 Elsevier Inc.

  5. Identification of Acetylene on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Singh, S.; McCord, T. B.; Rodriguez, S.; Combe, J. P.; Cornet, T.; Le Mouelic, S.; Maltagliati, L.; Chevrier, V.; Clark, R. N.

    2015-12-01

    Titan's atmosphere is opaque in the near infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows" (e.g., Sotin et al., 2005). Thus, the composition of Titan surface remains difficult to access from space and is still poorly constrained, limited to ethane in the polar lakes (Brown et al., 2008) and a few possible organic molecules on the surface (Clark et al., 2010). Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescale (Cordier et al., 2009, 2011). Acetylene (C2H2) is one of the most abundant organic molecules in the atmosphere and thus thought to present on the surface as well. Here we report direct evidence of solid C2H2 on Titan's surface using Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. By comparing VIMS observations and laboratory measurements of solid and liquid C2H2, we identify a specific absorption at 1.55 µm that is widespread over Titan but is particularly strong in the brightest terrains. This surface variability suggests that C2H2 is mobilized by surface processes, such as surface weathering, topography, and dissolution/evaporation. The detection of C2H2 on the surface of Titan opens new paths to understand and constrain Titan's surface activity. Since C2H2 is highly soluble in Titan liquids (Singh et al. 2015), it can easily dissolve in methane/ethane and may play an important role in carving of fluvial channels and existence of karstic lakes at higher latitudes on Titan. These processes imply the existence of a dynamic surface with a continued history of erosion and deposition of C2H2 on Titan.

  6. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    PubMed Central

    Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-01-01

    Abstract We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions. PMID:27656006

  7. Seasonal Changes in Titan's Meteorology

    NASA Technical Reports Server (NTRS)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  8. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations

    NASA Astrophysics Data System (ADS)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe

    2013-04-01

    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scatter-ing in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. The narrow 2.75-mm absorption feature, dividing the window into two sub-windows, present in all on-planet measurements is not present in the occultation data, and its strength is reduced at the cloud tops, suggesting the responsible molecule is concentrated in the lower troposphere or on the sur-face. Our empirical correction to Titan's surface reflectance yields properties shifted closer to water ice for the majority of the low-to-mid latitude area covered by VIMS measurements. Four compositional units are defined and mapped on Titan's surface based on the positions of data clusters in 5-mm vs. 2.8/2.7-mm scatter plots; a simple ternary mixture of H2O, hydrocarbons and CO2 might explain the reflectance properties of these surface units. The vast equatorial "dune seas" are compositionally very homogeneous, perhaps suggesting transport and mixing of particles over very large distances and/or and very consistent formation process and source material. The composi-tional branch characterizing Tui Regio and Hotei Regio is consistent with a mixture of typical Titan hydrocarbons and CO2, or possibly methane/ethane; the concentration mechanism proposed is something similar to a terrestrial playa lake evaporate deposit, based on the fact that river channels are known to feed into at least Hotei Regio.

  9. Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission

    NASA Astrophysics Data System (ADS)

    Lee, G.; Sen, B.; Ross, F.; Sokol, D.

    2016-12-01

    Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.

  10. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Cooper, J.; Mahaffy, P.; Fairbrother D.; dePater, I.; Schultze-Makuch, D.; Pitman, J.

    2007-01-01

    Cassini and Huygens have made exciting discoveries at Titan and Enceladus, and at the same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only -500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments will sample the upper atmosphere which may provide the seed population for the complex organic chemistry on the surface. The Aerorover will probably use a "hot air" Montgolfier balloon concept using the waste heat from the MMRTG 1-2 kwatts. New technologies will need to be developed and miniaturization will be required to maintain functionality while controlling mass, power and cost. Duty cycling will be used. The Aerorover will have all the instruments needed to sample Titan's atmosphere and surface with possible methane lakes-rivers. It will e.g., use multi-spectral imagers and for last 6 months of mission, balloon payload will land on surface at predetermined site to take core samples of the surface and use seismometers to help probe the interior. All remote (and active) sensors on the orbiter will share a - 1 meter telescope, called MIDAS (Multiple Instrument Distributed Aperture Sensor). MIDAS observations in stable orbit at Titan can provide full global maps of Titan's surface and could additionally provide long term observations of the Saturn system including Enceladus for extended mission phases over many years, potentially for decades. Experience from the Hubble Space Telescope has shown strong public interest and commitment to exciting generational missions.

  11. Photometric properties of Titan's surface from Cassini VIMS: Relevance to titan's hemispherical albedo dichotomy and surface stability

    USGS Publications Warehouse

    Nelson, R.M.; Brown, R.H.; Hapke, B.W.; Smythe, W.D.; Kamp, L.; Boryta, M.D.; Leader, F.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 ??m ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of ??=0.1 is considered these numbers increase to 0.089-0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14-65?? compared to the same high brightness class for the hemisphere encompassing 122-156?? longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units. We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out. Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out. We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out. The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties. ?? 2006 Elsevier Ltd. All rights reserved.

  12. Low-Latitude Ethane Rain on Titan

    NASA Technical Reports Server (NTRS)

    Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-01-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.

  13. GCM Simulations of Titan's Paleoclimate

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan; Russell, Joellen; Hayes, Alexander

    2014-11-01

    The hemispheric asymmetry observed in the distribution of Titan's lakes and seas has been suggested to be the result of asymmetric seasonal forcing, where a relative moistening of the north occurs in the current epoch due to its longer and less intense summers. General circulation models (GCMs) of present-day Titan have also shown that the atmosphere transports methane away from the equator. In this work, we use a Titan GCM to investigate the effects that changes in Titan's effective orbital parameters have had on its climate in recent geologic history. The simulations show that the climate is relatively insensitive to changes in orbital parameters, with persistently dry low latitudes and wet polar regions. The amount of surface methane that builds up over either pole depends on the insolation distribution, confirming the influence of orbital forcing on the distribution of surface liquids. The evolution of the orbital forcing implies that the surface reservoir must be transported on timescales of ~30 kyr, in which case the asymmetry reverses with a period of ~125 kyr. Otherwise, the orbital forcing is insufficient for generating the observed dichotomy.

  14. Another Look at an Enigmatic New World

    NASA Astrophysics Data System (ADS)

    2005-02-01

    VLT NACO Performs Outstanding Observations of Titan's Atmosphere and Surface On January 14, 2005, the ESA Huygens probe arrived at Saturn's largest satellite, Titan. After a faultless descent through the dense atmosphere, it touched down on the icy surface of this strange world from where it continued to transmit precious data back to the Earth. Several of the world's large ground-based telescopes were also active during this exciting event, observing Titan before and near the Huygens encounter, within the framework of a dedicated campaign coordinated by the members of the Huygens Project Scientist Team. Indeed, large astronomical telescopes with state-of-the art adaptive optics systems allow scientists to image Titan's disc in quite some detail. Moreover, ground-based observations are not restricted to the limited period of the fly-by of Cassini and landing of Huygens. They hence complement ideally the data gathered by this NASA/ESA mission, further optimising the overall scientific return. A group of astronomers [1] observed Titan with ESO's Very Large Telescope (VLT) at the Paranal Observatory (Chile) during the nights from 14 to 16 January, by means of the adaptive optics NAOS/CONICA instrument mounted on the 8.2-m Yepun telescope [2]. The observations were carried out in several modes, resulting in a series of fine images and detailed spectra of this mysterious moon. They complement earlier VLT observations of Titan, cf. ESO Press Photos 08/04 and ESO Press Release 09/04. The highest contrast images ESO PR Photo 04a/05 ESO PR Photo 04a/05 Titan's surface (NACO/VLT) [Preview - JPEG: 400 x 712 pix - 64k] [Normal - JPEG: 800 x 1424 pix - 524k] ESO PR Photo 04b/05 ESO PR Photo 04b/05 Map of Titan's Surface (NACO/VLT) [Preview - JPEG: 400 x 651 pix - 41k] [Normal - JPEG: 800 x 1301 pix - 432k] Caption: ESO PR Photo 04a/05 shows Titan's trailing hemisphere [3] with the Huygens landing site marked as an "X". The left image was taken with NACO and a narrow-band filter centred at 2 microns. On the right is the NACO/SDI image of the same location showing Titan's surface through the 1.6 micron methane window. A spherical projection with coordinates on Titan is overplotted. ESO PR Photo 04b/05 is a map of Titan taken with NACO at 1.28 micron (a methane window allowing it to probe down to the surface). On the leading side of Titan, the bright equatorial feature ("Xanadu") is dominating. On the trailing side, the landing site of the Huygens probe is indicated. ESO PR Photo 04c/05 ESO PR Photo 04c/05 Titan, the Enigmatic Moon, and Huygens Landing Site (NACO-SDI/VLT and Cassini/ISS) [Preview - JPEG: 400 x 589 pix - 40k] [Normal - JPEG: 800 x 1178 pix - 290k] Caption: ESO PR Photo 04c/05 is a comparison between the NACO/SDI image and an image taken by Cassini/ISS while approaching Titan. The Cassini image shows the Huygens landing site map wrapped around Titan, rotated to the same position as the January NACO SDI observations. The yellow "X" marks the landing site of the ESA Huygens probe. The Cassini/ISS image is courtesy of NASA, JPL, Space Science Institute (see http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=36222). The coloured lines delineate the regions that were imaged by Cassini at differing resolutions. The lower-resolution imaging sequences are outlined in blue. Other areas have been specifically targeted for moderate and high resolution mosaicking of surface features. These include the site where the European Space Agency's Huygens probe has touched down in mid-January (marked with the yellow X), part of the bright region named Xanadu (easternmost extent of the area covered), and a boundary between dark and bright regions. ESO PR Photo 04d/05 ESO PR Photo 04d/05 Evolution of the Atmosphere of Titan (NACO/VLT) [Preview - JPEG: 400 x 902 pix - 40k] [Normal - JPEG: 800 x 1804 pix - 320k] Caption: ESO PR Photo 04d/05 is an image of Titan's atmosphere at 2.12 microns as observed with NACO on the VLT at three different epochs from 2002 till now. Titan's atmosphere exhibits seasonal and meteorological changes which can clearly be seen here : the North-South asymmetry - indicative of changes in the chemical composition in one pole or the other, depending on the season - is now clearly in favour of the North pole. Indeed, the situation has reversed with respect to a few years ago when the South pole was brighter. Also visible in these images is a bright feature in the South pole, found to be presently dimming after having appeared very bright from 2000 to 2003. The differences in size are due to the variation in the distance to Earth of Saturn and its planetary system. The new images show Titan's atmosphere and surface at various near-infrared spectral bands. The surface of Titan's trailing side is visible in images taken through narrow-band filters at wavelengths 1.28, 1.6 and 2.0 microns. They correspond to the so-called "methane windows" which allow to peer all the way through the lower Titan atmosphere to the surface. On the other hand, Titan's atmosphere is visible through filters centred in the wings of these methane bands, e.g. at 2.12 and 2.17 microns. Eric Gendron of the Paris Observatory in France and leader of the team, is extremely pleased: "We believe that some of these images are the highest-contrast images of Titan ever taken with any ground-based or earth-orbiting telescope." The excellent images of Titan's surface show the location of the Huygens landing site in much detail. In particular, those centred at wavelength 1.6 micron and obtained with the Simultaneous Differential Imager (SDI) on NACO [4] provide the highest contrast and best views. This is firstly because the filters match the 1.6 micron methane window most accurately. Secondly, it is possible to get an even clearer view of the surface by subtracting accurately the simultaneously recorded images of the atmospheric haze, taken at wavelength 1.625 micron. The images show the great complexity of Titan's trailing side, which was earlier thought to be very dark. However, it is now obvious that bright and dark regions cover the field of these images. The best resolution achieved on the surface features is about 0.039 arcsec, corresponding to 200 km on Titan. ESO PR Photo 04c/04 illustrates the striking agreement between the NACO/SDI image taken with the VLT from the ground and the ISS/Cassini map. The images of Titan's atmosphere at 2.12 microns show a still-bright south pole with an additional atmospheric bright feature, which may be clouds or some other meteorological phenomena. The astronomers have followed it since 2002 with NACO and notice that it seems to be fading with time. At 2.17 microns, this feature is not visible and the north-south asymmetry - also known as "Titan's smile" - is clearly in favour in the north. The two filters probe different altitude levels and the images thus provide information about the extent and evolution of the north-south asymmetry. Probing the composition of the surface ESO PR Photo 04e/05 ESO PR Photo 04e/05 Spectrum of Two Regions on Titan (NACO/VLT) [Preview - JPEG: 400 x 623 pix - 44k] [Normal - JPEG: 800 x 1246 pix - 283k] Caption: ESO PR Photo 04e/05 represents two of the many spectra obtained on January 16, 2005 with NACO and covering the 2.02 to 2.53 micron range. The blue spectrum corresponds to the brightest region on Titan's surface within the slit, while the red spectrum corresponds to the dark area around the Huygens landing site. In the methane band, the two spectra are equal, indicating a similar atmospheric content; in the methane window centred at 2.0 microns, the spectra show differences in brightness, but are in phase. This suggests that there is no real variation in the composition beyond different atmospheric mixings. ESO PR Photo 04f/05 ESO PR Photo 04f/05 Imaging Titan with a Tunable Filter (NACO Fabry-Perot/VLT) [Preview - JPEG: 400 x 718 pix - 44k] [Normal - JPEG: 800 x 1435 pix - 326k] Caption: ESO PR Photo 04f/05 presents a series of images of Titan taken around the 2.0 micron methane window probing different layers of the atmosphere and the surface. The images are currently under thorough processing and analysis so as to reveal any subtle variations in wavelength that could be indicative of the spectral response of the various surface components, thus allowing the astronomers to identify them. Because the astronomers have also obtained spectroscopic data at different wavelengths, they will be able to recover useful information on the surface composition. The Cassini/VIMS instrument explores Titan's surface in the infrared range and, being so close to this moon, it obtains spectra with a much better spatial resolution than what is possible with Earth-based telescopes. However, with NACO at the VLT, the astronomers have the advantage of observing Titan with considerably higher spectral resolution, and thus to gain more detailed spectral information about the composition, etc. The observations therefore complement each other. Once the composition of the surface at the location of the Huygens landing is known from the detailed analysis of the in-situ measurements, it should become possible to learn the nature of the surface features elsewhere on Titan by combining the Huygens results with more extended cartography from Cassini as well as from VLT observations to come. More information Results on Titan obtained with data from NACO/VLT are in press in the journal Icarus ("Maps of Titan's surface from 1 to 2.5 micron" by A. Coustenis et al.). Previous images of Titan obtained with NACO and with NACO/SDI are accessible as ESO PR Photos 08/04 and ESO PR Photos 11/04. See also these Press Releases for additional scientific references.

  15. Saturn's Titan: Searching for Surface Change

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Kamp, L.; Matson, D. L.; Boryta, M. D.; Leader, F.; Baines, K. H.; Lopes, R.; Smythe, W. D.; Jauman, R.; Sotin, C.; Clark, R. N.; Cruikshank, D. P.; Drosart, P.; Hapke, B. W.; Buratti, B. J.; Brown, R. H.; Sicardy, B.; Lunine, J. I.; Combes, M.; Belucci, G.; Biebring, J.; Capaccioni, M.; Cerroni, P.; Corodini, A.; Formisano, V.; Filacchione, G.; Langevin, Y.; McCord, T.; Mennella, V.; Nicholson, P.

    2007-12-01

    The VIMS instrument on the Cassini spacecraft observes the surface of Titan through spectral 'windows' in its atmosphere where methane, the principal absorbing gas is transmitting. We previously have used VIMS to document changes in spectral reflectance and that have occurred on Titan's surface during Cassini's orbital tour at (latitude 26S, longitude 78W), (AGU spring meeting 2007). Having removed the possibility that the observed changes are either an atmospheric phenomenon or are the result of viewing angle (phase) effects, we conclude that physical changes in the chemistry or structure of the surface must be occurring. The size of the region suggests it may exceed the size of the largest active volcanic areas in the solar system. We now have explored additional sections of Titan's surface and have developed new techniques for locating surface changes over time. While some additional candidate areas for surface activity are suggested, confirmation is possible with the support of additional instruments on the Cassini Orbiter, particularly the radar instrument. The principal difficulty in implementing a coordinated program of observations with both instruments is due to the radar instrument's higher spatial resolution but small footprint on the surface relative to VIMS. In addition, the two instruments can not be used simultaneously on the same pass. Overlapping coverage will only be available after repeated flybys during Cassini's extended mission. This work done at JPL/CALTECH under contract with NASA

  16. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    NASA Astrophysics Data System (ADS)

    Sittler, E.; Cooper, J.; Mahaffy, P.; Fairbrother, D.; de Pater, I.; Schulze-Makuch, D.; Pitman, J.

    2007-08-01

    same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only 500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments will sample the upper atmosphere which may provide the seed population for the complex organic chemistry on the surface. The Aerorover will probably use a "hot air" Montgolfier balloon concept using the waste heat from the MMRTG ~1-2 kwatts. New technologies will need to be developed and miniaturization will be required to maintain functionality while controlling mass, power and cost. Duty cycling will be used. The Aerorover will have all the instruments needed to sample Titan's atmosphere and surface with possible methane lakes-rivers. It will e.g., use multi-spectral imagers and for last 6 months of mission, balloon payload will land on surface at predetermined site to take core samples of the surface and use seismometers to help probe the interior. All remote (and active) sensors on the orbiter will share a ~1 meter telescope, called MIDAS (Multiple Instrument Distributed Aperture Sensor). MIDAS observations in stable orbit at Titan can provide full global maps of Titan's surface and could additionally provide long term observations of the Saturn system including Enceladus for extended mission phases over many years, potentially for decades. Experience from the Hubble Space Telescope has shown strong public interest and commitment to exciting generational missions.

  17. DISCOVERY OF FOG AT THE SOUTH POLE OF TITAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M. E.; Smith, A. L.; Chen, C.

    2009-11-20

    While Saturn's moon Titan appears to support an active methane hydrological cycle, no direct evidence for surface-atmosphere exchange has yet appeared. The indirect evidence, while compelling, could be misleading. It is possible, for example, that the identified lake features could be filled with ethane, an involatile long-term residue of atmospheric photolysis; the apparent stream and channel features could be ancient remnants of a previous climate; and the tropospheric methane clouds, while frequent, could cause no rain to reach the surface. We report here the detection of fog at the south pole of Titan during late summer using observations from themore » VIMS instrument on board the Cassini spacecraft. While terrestrial fog can form from a variety of causes, most of these processes are inoperable on Titan. Fog on Titan can only be caused by evaporation of nearly pure liquid methane; the detection of fog provides the first direct link between surface and atmospheric methane. Based on the detections presented here, liquid methane appears widespread at the south pole of Titan in late southern summer, and the hydrological cycle on Titan is currently active.« less

  18. Near-infrared study of Titan's resolved disk in spectro-imaging with CFHT/OASIS

    NASA Astrophysics Data System (ADS)

    Hirtzig, M.; Coustenis, A.; Lai, O.; Emsellem, E.; Pecontal-Rousset, A.; Rannou, P.; Negrão, A.; Schmitt, B.

    2005-04-01

    We present observations of Titan taken on November 17, 2000, with the near-infrared spectro-imaging system OASIS, mounted downstream of the CFHT/PUEO adaptive optics system. We have spatially resolved Titan's disk at Greatest Eastern Elongation. Our spectra cover the 0.86- 1.02μm range with a spectral resolution of 1800. By studying Titan at these wavelengths, we have recovered several pieces of information on the vertical and latitudinal structure of the atmosphere and surface of the satellite. The observing conditions were sufficiently good (AO-corrected seeing of 0.34") so as to allow us to separate the disk into 7 independent elements. From the flux contained in the 0.890μm methane band, we find that at higher altitudes on Titan, the North-South asymmetry is undergoing changes with respect to previous years when the South was much brighter than the North. This asymmetry still prevails in the troposphere, but at higher levels the well-known "Titan smile" - previously reported - disappears. We believe that we even have evidence for a reversal. The year 2000 may then represent the beginning of a seasonal change in Titan's haze distribution in the near-infrared, something which has been confirmed since but was not visible in the previous years. By comparing regions on Titan's disk with similar surface and stratospheric characteristics, we find an differences in the latitudinal distribution of the aerosol content in the intermediate altitude levels. Reflectivity measurements derived in the 0.94μm window (and hence pertaining to the surface conditions) show that the equatorial regions of the leading side are brighter than the surrounding areas, due to the presence of the large bright zone observed since 1994. Given our spatial resolution, we find this region to be 6% brighter than northern latitudes, 7% brighter than the South pole and in total we have a contrast of 9% between the darker and the brighter areas distinguishable on our images. The 0.94μm methane window yields a geometric albedo of about 0.26 for the bright center of Titan's disk. This region is affected by a strong H2O telluric absorption and therefore we could not derive any precise information on the surface composition from the original spectrum. We have, however, been able to correct for the telluric lines by using a stellar spectrum taken just before our Titan observations. We were then able to apply our radiative transfer code and after modeling surface albedo values of about 0.37 and 0.29 for the brightest and darkest areas respectively were found. We investigate possible surface components, compatible with our data, such as water ice, hydrocarbon liquid, tholin deposits or silicates.

  19. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L105, 2009.

  20. Cassini First Radio Science Observations of Titan's Atmosphere and Surface

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; Flasar, F. M.; French, R. G.; Kliore, A. J.; Nagy, A. F.; Rappaport, N. J.; Schinder, P. J.; McGhee, C. A.; Simpson, R.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Goltz, G.; Fleischman, D.; Kahan, D.; Rochblatt, D.

    2006-09-01

    The first two Cassini radio occultations of Titan's atmosphere occurred on March 18 (T12) and May 20 (T14), 2006. The atmosphere was probed on the ingress and egress sides, yielding observations at four mid-southern latitudes. Titan's surface was also probed using bistatic-scattering during the inbound period on T12 and the inbound and outbound periods on T14. In all cases, quasi-monochromatic S-, X-, and Ka-bands RCP signals (13, 3.6, and 0.94 cm-wavelength, respectively) were transmitted from Cassini. Both the RCP and LCP signal components were observed at multiple ground receiving stations of the NASA/DSN. Demanding spacecraft maneuvers to point the Cassini high-gain antenna to virtual Earth during the occultations, and to track the specular region on Titan's surface during the bistatic observations were successfully implemented. For the first time ever, quasi-specular bistatic scattering surface echo is detected on both the inbound and outbound T14 observations. Although weak, an X-band RCP and LCP reflected spectral components are clearly detectable. Their total power ratio determines the refractive index of the regions probed and its likely nature (liquid vs solid). The echo appears consistent with reflection from localized hydrocarbon liquid regions embedded in mostly nonspecularly reflecting terrain. The atmospheric refracted S and X signals were tracked down to Titan's surface. The Ka signal was consistently extinguished by atmospheric absorption at about 10 km above the surface. Observed changes of signal frequency is used to recover the refractivity profiles of the neutral atmosphere, hence determine the corresponding temperature-pressure profiles assuming 100% N2 composition. Changes of signal strength, corrected to remove refractive defocusing, reveals both small-scale and large-scale effects. The former is likely due to gravity waves, turbulence, and layers. The latter exhibits remarkable wavelength dependence and is likely caused by dispersive N2-N2 collision-induced gaseous absorption, although additional extinction mechanisms may also be responsible.

  1. Size and shape of Saturn's moon Titan.

    PubMed

    Zebker, Howard A; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L; Lunine, Jonathan

    2009-05-15

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 +/- 0.05 kilometers (km), 2574.36 +/- 0.03 km, and 2574.91 +/- 0.11 km, respectively; its mean radius is 2574.73 +/- 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most--but not all--of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  2. Size and shape of Saturn's moon Titan

    USGS Publications Warehouse

    Zebker, Howard A.; Stiles, Bryan; Hensley, Scott; Lorenz, Ralph; Kirk, Randolph L.; Lunine, Jonathan

    2009-01-01

    Cassini observations show that Saturn's moon Titan is slightly oblate. A fourth-order spherical harmonic expansion yields north polar, south polar, and mean equatorial radii of 2574.32 ± 0.05 kilometers (km), 2574.36 ± 0.03 km, and 2574.91 ± 0.11 km, respectively; its mean radius is 2574.73 ± 0.09 km. Titan's shape approximates a hydrostatic, synchronously rotating triaxial ellipsoid but is best fit by such a body orbiting closer to Saturn than Titan presently does. Titan's lack of high relief implies that most—but not all—of the surface features observed with the Cassini imaging subsystem and synthetic aperture radar are uncorrelated with topography and elevation. Titan's depressed polar radii suggest that a constant geopotential hydrocarbon table could explain the confinement of the hydrocarbon lakes to high latitudes.

  3. Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.

    2017-12-01

    Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface structure and activity. In addition to surface investigations, Dragonfly can perform measurements during flight, including atmospheric profiles and aerial observations of surface geology, which also provide sampling context and scouting for landing sites.

  4. Titan's atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Hörst, S. M.

    2017-03-01

    Titan is the only moon with a substantial atmosphere, the only other thick N2 atmosphere besides Earth's, the site of extraordinarily complex atmospheric chemistry that far surpasses any other solar system atmosphere, and the only other solar system body with stable liquid currently on its surface. The connection between Titan's surface and atmosphere is also unique in our solar system; atmospheric chemistry produces materials that are deposited on the surface and subsequently altered by surface-atmosphere interactions such as aeolian and fluvial processes resulting in the formation of extensive dune fields and expansive lakes and seas. Titan's atmosphere is favorable for organic haze formation, which combined with the presence of some oxygen-bearing molecules indicates that Titan's atmosphere may produce molecules of prebiotic interest. The combination of organics and liquid, in the form of water in a subsurface ocean and methane/ethane in the surface lakes and seas, means that Titan may be the ideal place in the solar system to test ideas about habitability, prebiotic chemistry, and the ubiquity and diversity of life in the universe. The Cassini-Huygens mission to the Saturn system has provided a wealth of new information allowing for study of Titan as a complex system. Here I review our current understanding of Titan's atmosphere and climate forged from the powerful combination of Earth-based observations, remote sensing and in situ spacecraft measurements, laboratory experiments, and models. I conclude with some of our remaining unanswered questions as the incredible era of exploration with Cassini-Huygens comes to an end.

  5. Titan Mystery Clouds

    NASA Image and Video Library

    2016-12-21

    This comparison of two views from NASA's Cassini spacecraft, taken fairly close together in time, illustrates a peculiar mystery: Why would clouds on Saturn's moon Titan be visible in some images, but not in others? In the top view, a near-infrared image from Cassini's imaging cameras, the skies above Saturn's moon Titan look relatively cloud free. But in the bottom view, at longer infrared wavelengths, Cassini sees a large field of bright clouds. Even though these views were taken at different wavelengths, researchers would expect at least a hint of the clouds to show up in the upper image. Thus they have been trying to understand what's behind the difference. As northern summer approaches on Titan, atmospheric models have predicted that clouds will become more common at high northern latitudes, similar to what was observed at high southern latitudes during Titan's late southern summer in 2004. Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) teams have been observing Titan to document changes in weather patterns as the seasons change, and there is particular interest in following the onset of clouds in the north polar region where Titan's lakes and seas are concentrated. Cassini's "T120" and "T121" flybys of Titan, on June 7 and July 25, 2016, respectively, provided views of high northern latitudes over extended time periods -- more than 24 hours during both flybys. Intriguingly, the ISS and VIMS observations appear strikingly different from each other. In the ISS observations (monochrome image at top), surface features are easily identifiable and only a few small, isolated clouds were detected. In contrast, the VIMS observations (color image at bottom) suggest widespread cloud cover during both flybys. The observations were made over the same time period, so differences in illumination geometry or changes in the clouds themselves are unlikely to be the cause for the apparent discrepancy: VIMS shows persistent atmospheric features over the entire observation period and ISS consistently detects surface features with just a few localized clouds. The answer to what could be causing the discrepancy appears to lie with Titan's hazy atmosphere, which is much easier to see through at the longer infrared wavelengths that VIMS is sensitive to (up to 5 microns) than at the shorter, near-infrared wavelength used by ISS to image Titan's surface and lower atmosphere (0.94 microns). High, thin cirrus clouds that are optically thicker than the atmospheric haze at longer wavelengths, but optically thinner than the haze at the shorter wavelength of the ISS observations, could be detected by VIMS and simultaneously lost in the haze to ISS -- similar to trying to see a thin cloud layer on a hazy day on Earth. This phenomenon has not been seen again since July 2016, but Cassini has several more opportunities to observe Titan over the last months of the mission in 2017, and scientists will be watching to see if and how the weather changes. These two images were taken as part of the T120 flyby on June 7 (VIMS) and 8 (ISS), 2016. The distance to Titan was about 28,000 miles (45,000 kilometers) for the VIMS image and about 398,000 miles (640,000 kilometers) for the ISS image. The VIMS image has been processed to enhance the visibility of the clouds; in this false-color view, clouds appear nearly white, atmospheric haze is pink, and surface areas would appear green. http://photojournal.jpl.nasa.gov/catalog/PIA21054

  6. A Heuristic Approach to Examining Volatile Equilibrium at Titan's Surface

    NASA Technical Reports Server (NTRS)

    Samuelson, Robert E.

    1999-01-01

    R. D. Lorenz, J. I. Lunine, and C. P. McKay have shown in a manuscript accepted for publication that, for a given ethane abundance and surface temperature, the nitrogen and methane abundances in Titan's atmosphere can be calculated, yielding a surface pressure that can be compared with the observed value. This is potentially a very valuable tool for examining the evolution of Titan's climatology. Its validity does depend on two important assumptions, however: 1) that the atmosphere of Titan is in global radiative equilibrium, and 2) that volatiles present are in vapor equilibrium with the surface. The former assumption has been shown to be likely, but the latter has not. Water vapor in the Earth's atmosphere, in fact, is generally not very close to equilibrium in a global sense. In the present work a heuristic approach is used to examine the likelihood that methane vapor is in equilibrium with Titan's surface. Plausible climate scenerios are examined that are consistent with methane vapor abundances derived from Voyager IRIS data. Simple precipitation and surface diffusion models are incorporated into the analysis. It is tentatively inferred that methane may be in surface equilibrium near the poles, but that equilibrium at low latitudes is more difficult to establish.

  7. Titan LEAF: A Sky Rover Granting Targeted Access to Titan's Lakes and Plains

    NASA Astrophysics Data System (ADS)

    Ross, Floyd; Lee, Greg; Sokol, Daniel; Goldman, Benjamin; Bolisay, Linden

    2016-10-01

    Northrop Grumman, in collaboration with L'Garde Inc. and Global Aerospace Corporation (GAC), has been developing the Titan Lifting Entry Atmospheric Flight (T-LEAF) sky rover to roam the atmosphere and observe at close quarters the lakes and plains of Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in situ instruments to the surface.T-LEAF is a maneuverable, buoyant air vehicle. Its aerodynamic shape provides its maneuverability, and its internal helium envelope reduces propulsion power requirements and also the risk of crashing. Because of these features, T-LEAF is not restricted to following prevailing wind patterns. This freedom of mobility allows it be commanded to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations.T-LEAF utilizes a variable power propulsion system, from high power at ~200W to low power at ~50W. High power mode uses the propellers and control surfaces for additional mobility and maneuverability. It also allows the vehicle to hover over specific locations for long duration surface observations. Low power mode utilizes GAC's Titan Winged Aerobot (TWA) concept, currently being developed with NASA funding, which achieves guided flight without the use of propellers or control surfaces. Although slower than high powered flight, this mode grants increased power to science instruments while still maintaining control over direction of travel.Additionally, T-LEAF is its own entry vehicle, with its leading edges protected by flexible thermal protection system (f-TPS) materials already being tested by NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) group. This f-TPS technology allows T-LEAF to inflate in space, like HIAD, and then enter the atmosphere fully deployed. This approach accommodates entry velocities from as low as ~1.8 km/s if entering from Titan orbit, up to ~6 km/s if entering directly from Saturn orbit, like the Huygens probe.This presentation will discuss each of these topic areas, showing that a sky rover like T-LEAF is an ideal option for exploration of both the surface and atmosphere of Titan.

  8. Singular climatic activity at Equinox over Titan's dunefields as seen by CASSINI

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sebastien; Le Mouélic, Stephane; Barnes, Jason W.; Charnay, Benjamin; Kok, Jasper F.; Lorenz, Ralph D.; Radebaugh, Jani; Cornet, Thomas; Bourgeois, Olivier; Lucas, Antoine; Rannou, Pascal; Griffith, Caitlin A.; Coustenis, Athena; Appéré, Thomas; Hirtzig, Mathieu; Sotin, Christophe; Soderblom, Jason M.; Brown, Robert H.; Bow, Jacob; Vixie, Graham

    2016-04-01

    Titan, the largest satellite of Saturn, is the only satellite in the solar system with a dense atmosphere. The close and continuous observations of Titan by the Cassini spacecraft, in orbit around Saturn since July 2004, bring us evidences that Titan troposphere and low stratosphere experience an exotic, but complete meteorological cycle similar to the Earth hydrological cycle, with hydrocarbons evaporation, condensation in clouds, and rainfall. Cassini monitoring campaigns also demonstrate that Titan's cloud coverage and climate vary with latitude. Titan's tropics, with globally weak meteorological activity and widespread dune fields, seem to be slightly more arid than the poles, where extensive and numerous liquid reservoirs and sustained cloud activity were discovered. Only a few tropo-spheric clouds have been observed at Titan's tropics during the southern summer [2-4]. As equinox was approaching (in August 2009), they occurred more frequently and appeared to grow in strength and size [5-7]. We present here the observation of intense brightening at Titan's tropics, very close to the equinox. These detec-tions were conducted with the Visual and Infrared Mapping Spectrometer [8] (VIMS) onboard Cassini. Figure 1 presents the VIMS color composite images of the three individual events detected so far, observed during the Titan's flybys T56 (22 May 2009), T65 (13 January 2010) and T70 (21 June 2010). T56, T65 and T70 observations show an intense and transient brightening of large regions very close to the equator, which all appear spectrally and morphologically different from all previous observed surface features or atmospheric phenomena. These events share in particular a strong brightening at wavelengths greater than 2 μm (especially at 5 μm), making them spectrally distinct from the few large storms observed near the equator. We will discuss the possibility that these singular events may have occurred very close to the surface, having a very local origin. We will also discuss the possible implication of the equinoctial occurrence of such events for Titan's tropical climatology and their probable link with particular geological features at Titan's surface. References: [1] Griffith et al. Astrophys. J. Letters 702, L105-L109, 2009. [2] Turtle et al., Geophys. Res. Lett. 36, CiteID L02204, 2009. [3] Rodriguez et al., Nature 459, 678-682, 2009. [4] Schaller et al., Nature 460, 873-875, 2009. [5] Turtle et al., Geophys. Res. Lett. 38, CiteID L03203, 2011. [6] Turtle et al., Science 331, 2011. [7] Rodri-guez et al., Icarus 216, 89-110, 2011. [8] Brown et al., Space Sci. Rev. 115, 111-168, 2004.

  9. Titan: Preliminary results on surface properties and photometry from VIMS observations of the early flybys

    USGS Publications Warehouse

    Buratti, B.J.; Sotin, Christophe; Brown, R.H.; Hicks, M.D.; Clark, R.N.; Mosher, J.A.; McCord, T.B.; Jaumann, R.; Baines, K.H.; Nicholson, P.D.; Momary, T.; Simonelli, D.P.; Sicardy, B.

    2006-01-01

    Cassini observations of the surface of Titan offer unprecedented views of its surface through atmospheric windows in the 1-5 ??m region. Images obtained in windows for which the haze opacity is low can be used to derive quantitative photometric parameters such as albedo and albedo distribution, and physical properties such as roughness and particle characteristics. Images from the early Titan flybys, particularly T0, Ta, and T5 have been analyzed to create albedo maps in the 2.01 and 2.73 ??m windows. We find the average normal reflectance at these two wavelengths to be 0.15??0.02 and 0.035??0.003, respectively. Titan's surface is bifurcated into two albedo regimes, particularly at 2.01 ??m. Analysis of these two regimes to understand the physical character of the surface was accomplished with a macroscopic roughness model. We find that the two types of surface have substantially different roughness, with the low-albedo surface exhibiting mean slope angles of ???18??, and the high-albedo terrain having a much more substantial roughness with a mean slope angle of ???34??. A single-scattering phase function approximated by a one-term Henyey-Greenstein equation was also fit to each unit. Titan's surface is back-scattering (g???0.3-0.4), and does not exhibit substantially different backscattering behavior between the two terrains. Our results suggest that two distinct geophysical domains exist on Titan: a bright region cut by deep drainage channels and a relatively smooth surface. The two terrains are covered by a film or a coating of particles perhaps precipitated from the satellite's haze layer and transported by eolian processes. Our results are preliminary: more accurate values for the surface albedo and physical parameters will be derived as more data is gathered by the Cassini spacecraft and as a more complete radiative transfer model is developed from both Cassini orbiter and Huygens Lander measurements. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Fast forward modeling of Titan's infrared spectra to invert VIMS/Cassini hyperspectral images

    USGS Publications Warehouse

    Rodriguez, S.; Le Mouélic, Stéphane; Rannou, P.; Combe, J.-P.; Corre, L.L.; Tobie, G.; Barnes, J.W.; Sotin, Christophe; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    The surface of Titan, the largest icy moon of Saturn, is veiled by a very thick and hazy atmosphere. The Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft, in orbit around Saturn since July 2004, conduct an intensive survey of Titan with the objective to understand the complex nature of the atmosphere and surface of the mysterious moon and the way they interact. Accurate radiative transfer modeling is necessary to analyze Titan's infrared spectra, but are often very computer resources demanding. As Cassini has gathered hitherto millions of spectra of Titan and will still observe it until at least 2010, we report here on the development of a new rapid, simple and versatile radiative transfer model specially designed to invert VIMS datacubes. ?? 2009 IEEE.

  11. Cassini's Final Titan Radar Swath

    NASA Image and Video Library

    2017-08-11

    During its final targeted flyby of Titan on April 22, 2017, Cassini's radar mapper got the mission's last close look at the moon's surface. On this 127th targeted pass by Titan (unintuitively named "T-126"), the radar was used to take two images of the surface, shown at left and right. Both images are about 200 miles (300 kilometers) in width, from top to bottom. Objects appear bright when they are tilted toward the spacecraft or have rough surfaces; smooth areas appear dark. At left are the same bright, hilly terrains and darker plains that Cassini imaged during its first radar pass of Titan, in 2004. Scientists do not see obvious evidence of changes in this terrain over the 13 years since the original observation. At right, the radar looked once more for Titan's mysterious "magic island" (PIA20021) in a portion of one of the large hydrocarbon seas, Ligeia Mare. No "island" feature was observed during this pass. Scientists continue to work on what the transient feature might have been, with waves and bubbles being two possibilities. In between the two parts of its imaging observation, the radar instrument switched to altimetry mode, in order to make a first-ever (and last-ever) measurement of the depths of some of the lakes that dot the north polar region. For the measurements, the spacecraft pointed its antenna straight down at the surface and the radar measured the time delay between echoes from the lakes' surface and bottom. A graph is available at https://photojournal.jpl.nasa.gov/catalog/PIA21626

  12. Characterization of complex organics produced by proton irradiation of simulated Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Taniuchi, T.; Hosogai, T.; Kaneko, T.; Kobayashi, K.

    Titan the biggest satellite of Saturn has dense atmosphere that mainly consists of nitrogen and methane Voyager observation showed the presence of organic haze in Titan atmosphere Some scientists suggested the existence liquid hydrocarbon and water ice on surface Recently Huygens probe sent the analytical data about organic aerosol in Titan atmosphere to the Earth while in the Cassini-Huygens Mission It is supposed that Titan has somewhat similar environments to the primitive Earth so many observations and simulation experiments have been done where mainly UV light or electric discharges are used as energy sources Khare and Sagan reported that the organic materials produced by electric discharges in simulated Titan atmosphere tholin had structure with hydrocarbons nitriles hetero aromatic compounds and so on and that tholin yielded amino acids after hydrolysis They simulated the condition of upper atmosphere of Titan Though cosmic rays are possible effective energy source near the surface on Titan for the formation of organic compounds there were few laboratory simulations of cosmic ray tholin In this study we irradiated proton beam to the mixture of nitrogen and methane to verify the possibile formation of cosmic ray tholin in lower Titan atmosphere A mixture of methane 1-5 and nitrogen balance was irradiated with 3 MeV proton from a van de Graaff accelerator The resulting tholin was analyzed by Pyrolysis Py -GC MS and 1 H NMR to estimate the structure Gel permeation chromatography GPC and

  13. Composition of Titan's surface from Cassini VIMS

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; D'Aversa, E.; Griffith, C.A.; Baines, E.K.H.; Brown, R.H.; Dalle, Ore C.M.; Filacchione, G.; Formisano, V.; Hibbitts, C.A.; Jaumann, R.; Lunine, J.I.; Nelson, R.M.; Sotin, Christophe

    2006-01-01

    Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 ??m were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 ??m in the poorly understood 2.8-??m methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-??m methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 ??m that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface. ?? 2006 Elsevier Ltd. All rights reserved.

  14. Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.

    2005-01-01

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  15. A 5-micron-bright spot on Titan: evidence for surface diversity.

    PubMed

    Barnes, Jason W; Brown, Robert H; Turtle, Elizabeth P; McEwen, Alfred S; Lorenz, Ralph D; Janssen, Michael; Schaller, Emily L; Brown, Michael E; Buratti, Bonnie J; Sotin, Christophe; Griffith, Caitlin; Clark, Roger; Perry, Jason; Fussner, Stephanie; Barbara, John; West, Richard; Elachi, Charles; Bouchez, Antonin H; Roe, Henry G; Baines, Kevin H; Bellucci, Giancarlo; Bibring, Jean-Pierre; Capaccioni, Fabrizio; Cerroni, Priscilla; Combes, Michel; Coradini, Angioletta; Cruikshank, Dale P; Drossart, Pierre; Formisano, Vittorio; Jaumann, Ralf; Langevin, Yves; Matson, Dennis L; McCord, Thomas B; Nicholson, Phillip D; Sicardy, Bruno

    2005-10-07

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  16. Cassini observations of flow-like features in western Tui Regio, Titan

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Radebaugh, J.; Buratti, B.J.; Sotin, Christophe; Le, Mouelic S.; Rodriguez, S.; Turtle, E.P.; Perry, J.; Clark, R.; Baines, K.H.; Nicholson, P.D.

    2006-01-01

    A large (>3 ?? 104 km2), lobate, 5-??m-bright region seen by Cassini on Titan's leading equatorial region is best explained as a flow field. We discuss observations from the Visual and Infrared Mapping Spectrometer and Imaging Science Subsystem of the feature and present a map of the field. We establish relative ages of flow features and discuss possible formation mechanisms and the implications of this finding for the evolution of Titan's surface. Copyright 2006 by the American Geophysical Union.

  17. Transient surface liquid in Titan's south polar region from Cassini

    USGS Publications Warehouse

    Hayes, A.G.; Aharonson, O.; Lunine, J.I.; Kirk, R.L.; Zebker, H.A.; Wye, L.C.; Lorenz, R.D.; Turtle, E.P.; Paillou, P.; Mitri, Giuseppe; Wall, S.D.; Stofan, E.R.; Mitchell, K.L.; Elachi, C.

    2011-01-01

    Cassini RADAR images of Titan's south polar region acquired during southern summer contain lake features which disappear between observations. These features show a tenfold increases in backscatter cross-section between images acquired one year apart, which is inconsistent with common scattering models without invoking temporal variability. The morphologic boundaries are transient, further supporting changes in lake level. These observations are consistent with the exposure of diffusely scattering lakebeds that were previously hidden by an attenuating liquid medium. We use a two-layer model to explain backscatter variations and estimate a drop in liquid depth of approximately 1-m-per-year. On larger scales, we observe shoreline recession between ISS and RADAR images of Ontario Lacus, the largest lake in Titan's south polar region. The recession, occurring between June 2005 and July 2009, is inversely proportional to slopes estimated from altimetric profiles and the exponential decay of near-shore backscatter, consistent with a uniform reduction of 4 ± 1.3 m in lake depth. Of the potential explanations for observed surface changes, we favor evaporation and infiltration. The disappearance of dark features and the recession of Ontario's shoreline represents volatile transport in an active methane-based hydrologic cycle. Observed loss rates are compared and shown to be consistent with available global circulation models. To date, no unambiguous changes in lake level have been observed between repeat images in the north polar region, although further investigation is warranted. These observations constrain volatile flux rates in Titan's hydrologic system and demonstrate that the surface plays an active role in its evolution. Constraining these seasonal changes represents the first step toward our understanding of longer climate cycles that may determine liquid distribution on Titan over orbital time periods.

  18. Titan Aerosol Analogs from Aromatic Precursors: Comparisons to Cassini CIRS Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Sebree, Joshua A.; Anderson, Carrie M.; Loeffler, Mark J.

    2012-01-01

    Since Cassini's arrival at Titan, ppm levels of benzene (C6H6) as well as large positive ions, which may be polycyclic aromatic hydrocarbons (PAHs). have been detected in the atmosphere. Aromatic molecules. photolytically active in the ultraviolet, may be important in the formation of the organic aerosol comprising the Titan haze layer even when present at low mixing ratios. Yet there have not been laboratory simulations exploring the impact of these molecules as precursors to Titan's organic aerosol. Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) in the far-infrared (far-IR) between 560 and 20/cm (approx. 18 to 500 microns) and in the mid-infrared (mid-IR) between 1500 and 600/cm (approx. 7 to 17 microns) have been used to infer the vertical variations of Titan's aerosol from the surface to an altitude of 300 km in the far-IR and between 150 and 350 km in the mid-IR. Titan's aerosol has several observed emission features which cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs, including a broad far-IR feature centered approximately at 140/cm (71 microns).

  19. Dielectric Constant of Titan's South Polar Region from Cassini Radio Science Bistatic Scattering Observations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; Rappaport, N.; French, R.; Simpson, R.; Kliore, A.; McGhee, C.; Schinder, P.; Anabtawi, A.

    2008-12-01

    Four out of six Radio Science bistatic scattering (bistatic-radar) observations of Titan's surface completed during the Cassini nominal mission yielded detectable quasi-specular 3.6 cm-λ (X-band) surface echoes, making Titan the most distant solar system object for which bistatic echoes have been successfully detected. Right circularly polarized sinusoidal signal was transmitted by Cassini and both the right and left circularly polarized (RCP and LCP) surface reflected components were observed at the 70-m stations of NASA Deep Space Network. Cassini was maneuvered continuously to track the region of Titan's surface where mirror-like (quasi-specular) reflected signals may be observed. The experiments were designed for incidence angles θ close to the Brewster, or polarization, angle of likely surface compositions. Careful measurement of the system noise temperature allowed determination of the absolute power in each polarized echo component and hence their ratio. The polarization ratio, the known observation geometry, and Fresnel reflection theory were then used to determine the dielectric constant ɛ. Three near-equatorial (~ 5 to 15° S) observations on flyby T14 inbound and outbound and on flyby T34 inbound yielded weak but clearly detectable echoes. The echoes were intermittent along the ground track, indicating mostly rough terrain occasionally interrupted by patches of relatively flat areas. For the two observations on T14, polarization ratio measurements for two localized but widely separated surface regions (~ 15° S, ~ 14 and 140° W) conducted at angles θ ~ 56° and 64°, close to the Brewster angle for ices, imply ɛ ~ 1.6 for both regions, suggesting liquid hydrocarbons although alternative interpretations are possible (Marouf et al., 2006 Fall AGU, P11A- 07). In sharp contrast, a single high latitude (~81-86° S, ~ 45-155° W) observation on T27 inbound yielded much stronger surface echoes that lasted for almost the full duration of the experiment (~ 23 minutes). The relatively more grazing incidence geometry (θ ~ 70-79°) caused the RCP component to dominate the LCP component, as expected. Nonetheless, the later was mostly detectable, allowing estimation of the corresponding polarization ratio and hence profiling of the variability of the dielectric constant along the ground track. The inferred dielectric constant ɛ appears to vary over the large surface region probed but falls generally in the range 2 to 2.5, suggesting solid hydrocarbons or hydrocarbon "sludge" surface composition close to Titan's south pole. The small observed spectral Doppler broadening suggests that the echoes originate from gently undulating surface regions with RMS slopes of order few degrees.

  20. GCM simulations of Titan's middle and lower atmosphere and comparison to observations

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan I.; Russell, Joellen L.

    2015-04-01

    Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These include a new non-gray radiative transfer module that takes advantage of recent data from Cassini-Huygens, large-scale condensation and quasi-equilibrium moist convection schemes, a surface model with "bucket" hydrology, and boundary layer turbulent diffusion. The model produces a realistic temperature structure from the surface to the lower mesosphere, including a stratopause, as well as satisfactory superrotation. The latter is shown to depend on the dynamical core's ability to build up angular momentum from surface torques. Simulated latitudinal temperature contrasts are adequate, compared to observations, and polar temperature anomalies agree with observations. In the lower atmosphere, the insolation distribution is shown to strongly impact turbulent fluxes, and surface heating is maximum at mid-latitudes. Surface liquids are unstable at mid- and low-latitudes, and quickly migrate poleward. The simulated humidity profile and distribution of surface temperatures, compared to observations, corroborate the prevalence of dry conditions at low latitudes. Polar cloud activity is well represented, though the observed mid-latitude clouds remain somewhat puzzling, and some formation alternatives are suggested.

  1. Titan's rotation reveals an internal ocean and changing zonal winds

    USGS Publications Warehouse

    Lorenz, R.D.; Stiles, B.W.; Kirk, R.L.; Allison, M.D.; Del Marmo, P.P.; Iess, L.; Lunine, J.I.; Ostro, S.J.; Hensley, S.

    2008-01-01

    Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of ???0.36?? per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.

  2. Touring the saturnian system: the atmospheres of titan and saturn

    NASA Astrophysics Data System (ADS)

    Owen, Tobias; Gautier, Daniel

    2002-07-01

    This report follows the presentation originally given in the ESA Phase A Study for the Cassini Huygens Mission. The combination of the Huygens atmospheric probe into Titan's atmosphere with the Cassini orbiter allows for both in-situ and remote-sensing observations of Titan. This not only provides a rich harvest of data about Saturn's famous satellite but will permit a useful calibration of the remote-sensing instruments which will also be used on Saturn itself. Composition, thermal structure, dynamics, aeronomy, magnetosphere interactions and origins will all be investigated for the two atmospheres, and the spacecraft will also deliver information on the interiors of both Titan and Saturn. As the surface of Titan is intimately linked with the atmosphere, we also discuss some of the surface studies that will be carried out by both probe and orbiter.

  3. From Titan to the primitive Earth

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Gpcos Team

    Our knowledge of the conditions prevailing in the environment of the primitive Earth is still very limited, due to the lack of geological data. Fortunately, there are a few planetary objects in the solar system which present similarities with our planet, including during its early history. Titan is one of these. With a diameter of more than 5100 km, Titan, the largest moon of Saturn, is also the only one to have a dense atmosphere. This atmosphere, clearly evidenced by the presence of haze layers, extends to approximately 1500 km. Like the Earth, Titan's atmosphere is mainly composed of dinitrogen, N2 . The other main constituents are methane, CH4 , about 1.6% to 2.0% in the stratosphere, as measured by CIRS on Cassini and GC-MS on Huygens and dihydrogen (H2 , approximate 0.1%). With surface temperatures of approximately 94 K, and an average surface pressure of 1.5 bar, Titan's atmosphere is nearly five times denser than the Earth's. Despite of these differences between Titan and the Earth there are several analogies that can be drawn between the two planetary bodies. The first resemblances concern the vertical atmospheric structure. Although Titan is much colder, with a troposphere (˜94-˜70 K), a tropopause (70.4 K) and a stratosphere (˜70-175 K) its atmosphere presents a similar complex structure to that of the Earth. These analogies are linked to the presence in both atmospheres of greenhouse gases: CH4 and H2 on Titan, equivalent respectively to terrestrial condensable H2 O and non-condensable CO2 . In addition the haze particles and clouds in Titan's atmosphere play an antigreenhouse effect similar to that of the terrestrial atmospheric aerosols and clouds. Indeed, methane on Titan seems to play the role of water on the Earth, with a complex cycle, which still has to be understood. The possibility that Titan is covered with hydrocarbon oceans is now ruled out, but it is still possible that Titan's surface include lakes of methane and ethane. Moreover, the DISR instrument on Huygens has provided pictures of Titan's surface which clearly shows dentritic structures strongly suggesting recent liquid flow on the surface of Titan. In addition, the Huygens GCMS data show that methane mole fraction increases in the low troposphere (up to 5%) and reaches the saturation level at approximately 8 km altitude, allowing the possible formation of clouds and rain. Furthermore, GC-MS analyses recorded a 50% increase 1 in the methane mole fraction at Titan's surface, suggesting the presence of condensed methane on the surface near the lander. Other observations from the Cassini instruments clearly show the presence of various surface features of different origins indicative of volcanic, tectonic, sedimentological and meteorological processes.as we find on Earth .INMS on Cassini and GC-MS on Huygens have detected the presence of argon in the atmosphere. Similarly to the Earth atmosphere, the most abundant argon isotope is 40 Ar, which comes from the radioactive decay of 40 K. This strongly suggests that Titan's atmosphere is a secondary atmosphere, produced by the degassing of trapped gases. Analogies can also be made between the organic chemistry which is very active now on Titan and the prebiotic chemistry which was active on primitive Earth. In spite of the absence of permanent bodies of liquid water on Titan's surface, several of the organic processes which are occurring today on Titan imply some of the organic compounds which are considered as key molecules in the terrestrial prebiotic chemistry, such as hydrogen cyanide (HCN), cyanoacetylene (HC3 N) and cyanogen (C2 N2 ). A complex organic chemistry seems to be present in the three components of what one can call, always by analogy with our planet, the "geofluids" of Titan: air (gas atmosphere), aerosols (solid atmosphere) and surface (oceans). A recent study on the hydrogen escape from the primitive atmosphere of the Earth suggests that it may have been more reducing that we thought. If this is correct, the chemical processes involved in Titan's atmospheric chemistry may be even closer to those on the primitive Earth. References. Feng T., Owen B. T., Pavlov, A.A, and De Sterck, H. 2005. `A Hydrogen-Rich Early Earth Atmosphere'. Science 308, 1014-1017. Raulin, F. (2005), `Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations', Space Science Review 116 (1-2), 471-496. Nature, (2005), `The Huygens probe on Titan', 8 News & Views, Articles and Letters 438, 756-802 2

  4. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L105, 2009.

  5. Poster 8: ALMA observations of Titan : Vertical and spatial distributions of nitriles

    NASA Astrophysics Data System (ADS)

    Moreno, Raphael; Lellouch, Emmanuel; Vinatier, Sandrine; Gurwell, Mark; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq

    2016-06-01

    We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ˜0.47". Titan's angular surface diameter was 0.77". Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/dλ = 3106). We will present radiative transfer analysis of the acquired spectra. With the combination of all the detected rotational lines, we will constrain the atmospheric temperature, the spatial and vertical distribution HCN, HC3N, CH3CN, HNC, C2H5CN, as well as isotopic ratios.

  6. VIMS Observations of Titan During the First Two Close Flybys by the Cassini-Huygens Mission

    NASA Technical Reports Server (NTRS)

    Rodriquez, S.; LeMouelic, S.; Sotin, C.; Buratti, B. J.; Brown, R. H.

    2005-01-01

    The joint NASA-ESA-ASI Cassini-Huygens mission reached the saturnian system on July 1st 2004. It started the observations of Saturn s environment including its atmosphere, rings, and satellites (Phoebe, Iapetus and Titan). Titan, one of the primary scientific interests of the mission, is veiled by an ubiquitous thick haze. Its surface cannot be seen in the visible but as the haze effects decrease with increasing wavelength, there is signal in the infrared atmospheric windows if no clouds are present. Onboard the Cassini spacecraft, the VIMS instrument (Visual and Infrared Mapping Spectrometer) is expected to pierce the veil of the hazy moon and successfully image its surface in the infrared wavelengths, taking hyperspectral images in the range 0.4 to 5.2 micron. On 26 October (TA) and 13 December 2004 (TB), the Cassini-Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. VIMS acquired several tens of image cubes with spatial resolution ranging from a few tens of kilometers down to 1.5 kilometer per pixel, demonstrating its capability for studying Titan s geology.

  7. Titan's Surface Composition from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) Investigation

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Griffith, C. A.; Hansen, G. B.; Lunine, J. I.; Baines, K. H.; Brown, R. H.; Buratti, B.; Clark, R. N.; Cruikshank, D. P.; Filacchione, G.; Jaumann, R.; Hibbitts, C. A.; Sotine, C.; Cassini VIMS

    2004-11-01

    Titan, the largest satellite of Saturn, has a thick atmosphere containing methane with high altitude haze that obscures the surface except for windows in the methane absorption bands at some IR wavelengths where scattering also is reduced. Chemistry models of the atmosphere suggest deep deposits of organic liquids and solids (1). Groundbased telescopic observations of Titan's integral disk suggest the presence of water ice (2). The Cassini VIMS obtained spectra in the 0.35 to 5.1 μm range that include narrow windows in the methane spectrum near 1.6, 2.0, 2.8, and 5.0 μm where the surface might have been observed with spatial resolution up to about 100 x 200 km during the Saturn orbit insertion phase on June 30 2004. Surface albedo features seem to appear in these windows. We have analyzed Titan's spectra in an attempt to identity the surface material(s). The VIMS spectra were averaged for several pixels for each of six regions on Titan corresponding to apparent bright and dark surface features. The spectra were calibrated to I/F as seen by VIMS and then were analyzed using radiative transfer models to remove the effects of the atmosphere (2) to estimate surface I/F values. These were then compared with candidate material reflectance at each of the spectral windows. Preliminary analysis suggests that the average results will agree with previous groundbased data analyses (2) and there is the suggestion of differences in reflectance among the surface regions analyzed so far. This work was supported by the NASA Cassini Project. (1) Lunine et al., Science, 222, 1229, 1983. (2) Coustenis et al., Icarus 118, 87, 1995; Griffith et al., Science 300, 628, 2003.

  8. Six Days on Ligeia Mare : An Assessment of Meteorological and Oceanographic Phenomena on Titan's Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Mare Explorer (TiME) Science Team

    2011-12-01

    Titan's hydrocarbon seas are a scientifically appealing target for Cassini observations and for future exploration. The proposed Titan Mare Explorer ('TiME') Discovery mission will expand the temporal span of in-situ measurements at Titan's surface by 3 orders of magnitude from the (fortuitous) ~1 hr surface operation of the Huygens probe to TiME's nominal mission of 6 Titan days (96 Earth days) on Ligeia Mare, enabled by its radioisotope power source. This talk reviews Cassini observations and considers what time-varying features might be observed over this interval. Global Circulation Models (GCMs) suggest northern polar surface winds during the Cassini prime mission have been weak, consistent with radar backscatter and infrared specular reflection observations that indicate an absence of waves. These models also predict that winds are presently freshening, to a maximum of ~1.5m/s in midsummer (2017, the end of the Cassini Solstice Mission). Windspeeds should then decline, with expected speeds during the TiME mission epoch (2023) of ~1m/s, producing only small waves (~0.2m in height). Diurnal pressure changes of ~0.5 mbar are expected, while air and surface temperatures are expected to vary by ~1K or less. GCMs suggest that the wind vector on Ligeia may rotate substantially over the course of a Titan day, such that the drift of a floating capsule may follow an epicyclic trajectory with a net drift rather slower than its instantaneous drift rate, although nonetheless covering >100km over several Titan days. A bottom profile measured by an acoustic depth sounder (sonar) may therefore have several crossovers. At Ligeia's western and eastern margins, assuming a rigid crust, a tidal range of ~1m is encountered and may be detectable (on the other hand, a high Love number may reduce tidal effects). Evidence suggests Ligeia may have a central depth of ~300m or more, which means tidal currents will be ~1cm or less. The sun seen from Ligeia in 2023 remains up but low in the sky (peak elevation 20 degrees) for most of the day, dipping only briefly below the horizon. The changing illumination conditions over the long observing period will permit study of Titan's haze scattering and may allow imaging of rainbows,halos, mirages or other optical phenomena. A review of telescopic observations of cloud systems, and numerical models of precipitating cloud systems, suggests that during polar summer there is a ~0.1-2.5% chance of being rained on during the TiME mission. Such a precipitation event might last ~2 hours, providing a guiding timescale for meteorological measurements. In addition to meteorological, optical and acoustic signatures of such an event, the TiME capsule may detect a transient perturbation in near-surface liquid composition. Observations of these effects will not only bring a new era in Titan studies, but promise to open a new dimension in oceanography via study of marine processes in an exotic planetary environment.

  9. Studies on the effects of titanate and silane coupling agents on the performance of poly (methyl methacrylate)/barium titanate denture base nanocomposites.

    PubMed

    Elshereksi, Nidal W; Ghazali, Mariyam J; Muchtar, Andanastuti; Azhari, Che H

    2017-01-01

    This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied. Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated. NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%. Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane. Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Titan's atmosphere (clouds and composition): new results

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200 % on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9 % of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering ≤1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection might govern their evolution. Their short lives point to the presence of rain.

  11. Ground Based Monitoring of Cloud Activity on Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Rojo, Patricio; Ádámkovics, Máté; Turtle, Elizabeth; Buratti, Bonnie

    2014-11-01

    We will report on the latest results of an on-going ground based monitoring campaign of Saturn’s moon Titan using the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument on the Very Large Telescope (VLT). Presently, much is still unknown about the complex and dynamic hydrologic system of Titan as observations have yet to be made through an entire Titan year (29.7 Earth years). Because of the limited ability to observe Titan with Cassini, a combined ground and spaced-based approach provides a steady cadence of observation throughout the duration of a Titan year. We will present the results of observations to date using the adaptive optics (AO) mode (weather dependent) of SINFONI. We have been regularly observing Titan since April 2014 for the purpose of monitoring and identifying clouds and have also been in collaboration with the Cassini team that has concurrent ISS observations and historical VIMS observations of clouds. Our discussion will focus on the various algorithms and approaches used for cloud identification and analysis. Currently, we are entering into a very interesting time for clouds and Titan hydrology as Saturn moves into north polar summer for the first time since Cassini entered the Saturnian system. The increased insolation that this will bring to the north, where the majority of the liquid methane lakes reside, will give us our first observations of the potentially complex interplay between surface liquid and atmospheric conditions. By carefully monitoring and characterizing clouds (size, optical depth, altitude, etc.) we will also be able to derive constraints that can help to guide and validate GCMs. Since the beginning of our observations, no clouds have been observed through ground based observations, while Cassini has only observed a single cloud event in the north polar region over Ligeia Mare. We will provide an update on the latest results of our cloud monitoring campaign and discuss how this atmospheric inactivity and the frequency and characteristics of future cloud outbursts enhances our current understanding of Titan's hydrologic system.

  12. Carbonization in Titan Tholins: implication for low albedo on surfaces of Centaurs and trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Giri, Chaitanya; McKay, Christopher P.; Goesmann, Fred; Schäfer, Nadine; Li, Xiang; Steininger, Harald; Brinckerhoff, William B.; Gautier, Thomas; Reitner, Joachim; Meierhenrich, Uwe J.

    2016-07-01

    Astronomical observations of Centaurs and trans-Neptunian objects (TNOs) yield two characteristic features - near-infrared (NIR) reflectance and low geometric albedo. The first feature apparently originates due to complex organic material on their surfaces, but the origin of the material contributing to low albedo is not well understood. Titan tholins synthesized to simulate aerosols in the atmosphere of Saturn's moon Titan have also been used for simulating the NIR reflectances of several Centaurs and TNOs. Here, we report novel detections of large polycyclic aromatic hydrocarbons, nanoscopic soot aggregates and cauliflower-like graphite within Titan tholins. We put forth a proof of concept stating the surfaces of Centaurs and TNOs may perhaps comprise of highly `carbonized' complex organic material, analogous to the tholins we investigated. Such material would apparently be capable of contributing to the NIR reflectances and to the low geometric albedos simultaneously.

  13. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  14. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-06-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  15. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on Titan : • liquid water : permanently as a deep sub-surface ocean, and even episodically on the surface, • organic matter : in the internal structure, from chondritic materials, and in the atmosphere and on the surface, from the atmospheric organic chemistry • and energy : in the atmosphere (solar UV photons, energetic electrons from Saturn magnetosphere and cosmic rays) and, probably, in the environment of the sub-surface ocean (radioactive nuclei in the deep interior and tidal energy dissipation) as also supported by the likely presence of cryovolcanism on the surface Thus, it cannot be excluded that life may have emerged on or in Titan. In spite of the extreme conditions in this environment life may have been able to adapt and to persist. Many data are still expected from the Cassini-Huygens mission and future astrobiological exploration mission of Titan are now under consideration. Nevertheless, Titan already looks like another word, with an active prebiotic-like chemistry, but in the absence of permanent liquid water, on the surface: a natural laboratory for prebiotic-like chemistry. References. Fortes, A.D. (2000), `Exobiological implications of a possible ammonia-water ocean inside Titan', Icarus 146, 444-452 Raulin, F. (2005), `Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations', Space Science Review 116 (1-2), 471-496. Nature, (2005), `The Huygens probe on Titan', 8 News & Views, Articles and Letters 438, 756-802 Schulze-Makuch, D., and Grinspoon D.H. (2005), `Biologically enhanced energy and carbon cycling on Titan?',Astrobiology 5, 560-567. 2

  16. Titan - a New Laboratory for Oceanography

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2001-12-01

    Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, and quite probably large expanses of liquid hydrocarbons on its surface. The physical processes in these lakes and seas will open new vistas on oceanography and limnology. Although the Voyager-era paradigm of a deep, global ocean is ruled out by radar and infrared data showing that at least part of Titan's surface is icy, the photochemical arguments that originally led to the proposal of hydrocarbon oceans still apply. Even if the methane in the atmosphere is being resupplied by delivery from the interior, the ethane produced by photolysis would still accumulate to form large deposits on the surface. The near-infrared maps of Titan's surface from the Hubble Space Telescope and groundbased adaptive optics consistently show a number of dark (in fact, pitch-black!) regions that are strong candidates for hydrocarbon seas. These could be up to some 500km in extent. Titan promises to be a new laboratory for oceanography. Like in meteorology, many ocean processes are better parameterized than they are understood, and thus the different physical circumstances on Titan may shed new light on them. Titan has a lower gravity and its ocean fluids are of lower density, perhaps of lower viscosity (depending on solutes and suspended material) and probably rather more likely to cavitate. The ratio of atmospheric density to ocean density is much larger on Titan than on Earth, suggesting that liquid motions will be well-coupled to surface winds (although the distance from the sun is such that the energy in such winds is likely to be low.) Titan is also subject to strong tidal forces (the equilibrium tide due to Saturn's gravity is some 400x larger than that of the moon on Earth.) Although the 100m tidal bulge stays almost fixed because Titan rotates synchronously, the eccentricity of Titan's orbit leads to significant libration and variation in the tidal strength. The 500km seas allowed by the IR data may yet have a 2m tidal amplitude. The long period of tidal excitation, however, means that tidal resonances are unlikely to occur. The NASA-ESA Cassini/Huygens mission will arrive in late 2004, and deliver the parachute-borne Huygens probe to Titan's surface in early 2005, taking images during its descent. The Cassini orbiter during its 4 year tour will fly by Titan some 45 times, taking SAR and altimeter data with a multimode radar, and observing the surface with optical and near-IR sensors. Future missions to Titan are already being contemplated, and might involve such platforms as helicopters or blimps.

  17. Evidence for a polar ethane cloud on Titan

    USGS Publications Warehouse

    Griffith, C.A.; Penteado, P.; Rannou, P.; Brown, R.; Boudon, V.; Baines, K.H.; Clark, R.; Drossart, P.; Buratti, B.; Nicholson, P.; McKay, C.P.; Coustenis, A.; Negrao, A.; Jaumann, R.

    2006-01-01

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51?? to 68?? north and all longitudes observed (10?? to 190?? west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  18. Evidence for a polar ethane cloud on Titan.

    PubMed

    Griffith, C A; Penteado, P; Rannou, P; Brown, R; Boudon, V; Baines, K H; Clark, R; Drossart, P; Buratti, B; Nicholson, P; McKay, C P; Coustenis, A; Negrao, A; Jaumann, R

    2006-09-15

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51 degrees to 68 degrees north and all longitudes observed (10 degrees to 190 degrees west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  19. Hubble Observes Surface of Titan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.

    Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.

    Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.

    Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker.

    Smith's group used the Hubble Space Telescope's WideField/Planetary Camera 2 at near-infrared wavelengths (between .85 and 1.05 microns). Titan's haze is transparent enough in this wavelength range to allow mapping of surface features according to their reflectivity. Only Titan's polar regions could not be mapped this way, due to the telescope's viewing angle of the poles and the thick haze near the edge of the disk. Their image-resolution (that is, the smallest distance seen in detail) with the WFPC2 at the near-infrared wavelength is 360 miles. The 14 images processed and compiled into the Titan surface map were as 'noise' free, or as free of signal interference, as the space telescope allows, Smith said.

    Titan makes one complete orbit around Saturn in 16 days, roughly the duration of the imaging project. Scientists have suspected that Titan's rotation also takes 16 days, so that the same hemisphere of Titan always faces Saturn, just as the same hemisphere of the Earth's moon always faces the Earth. Recent observations by Lemmon and colleagues at the University of Arizona confirm this true.

    It's too soon to conclude much about what the dark and bright areas in the Hubble Space Telescope images are -- continents, oceans, impact craters or other features, Smith said. Scientists have long suspected that Titan's surface was covered with a global ehtane-methane ocean. The new images show that there is at least some solid surface.

    Smith's team made a total 50 images of Titan last month in their program, a project to search for small scale features in Titan's lower atmosphere and surface. They have yet to analyze images for information about Titan's clouds and winds. That analysis could help explain if the bright areas are major impact craters in the frozen water ice-and-rock or higher-altitude features.

    The images are important information for the Cassini mission, which is to launch a robotic spacecraft on a 7-year journey to Saturn in October 1997. About three weeks before Cassini's first flyby of Titan, the spacecraft is to release the European Space Agency's Huygens Probe to parachute to Titan's surface. Images like Smith's team has taken of Titan can be used to identify choice landing spots - - and help engineers and scientists understand how Titan's winds will blow the parachute through the satellite's atmosphere.

    UA scientists play major roles in the Cassini mission: Carolyn C. Porco, an associate professor at the Lunar and Planetary Laboratory, leads the 14-member Cassini Imaging Team. Jonathan I. Lunine, also an associate professor at the lab, is the only American selected by the European Space Agency to be on the three-member Huygens Probe interdisciplinary science team. Smith is a member of research professor Martin G. Tomasko's international team of scientists who will image the surface of Titan in visible light and in color with the Descent Imager/Spectral Radiometer, one of five instruments in the Huygens Probe's French, German, Italian and U.S. experiment payload. Senior research associate Lyn R. Doose is also on Tomasko's team. Lunine and LPL professor Donald M. Hunten are members of the science team for another U.S. instrument on that payload, the gas chromatograph mass spectrometer. Hunten was on the original Cassini mission science definition team back in 1983.

    PHOTO CAPTION: Four global projections of the HST Titan data, separated in longitude by 90 degrees. Upper left: hemisphere facing Saturn. Upper right: leading hemisphere (brightest region). Lower left: the hemisphere which never faces Saturn. Lower right: trailing hemisphere. Not that these assignments assume that the rotation is synchronous. The imaging team says its data strongly support this assumption -- a longer time baseline is needed for proof. The surface near the poles is never visible to an observer in Titan's equatorial plane because of the large optical path.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  20. The Surface of Titan: Arecibo Radar Observations

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Black, G. J.; Carter, L. M.; Hine, A. A.; Margot, J. L.; Nolan, M. C.; Ostro, S. J.

    2002-01-01

    The Arecibo 12.6 cm radar system was used to observe Titan in 1999, 2000 and 2001. The mean value of the radar albedo is 0.16 and the polarization ratio is 0.35. For some longitudes the echo has a specular component although most of the echo power is contained in a diffuse component. Additional information is contained in the original extended abstract.

  1. Plausible surface models for Titan

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1992-01-01

    Current understanding of the nature of Titan's surface and some new ideas for explaining the curious radar returns from Saturn's largest satellite are reviewed. Pre-Voyager models of the surface, based largely on cosmochemistry and the discovery of atmospheric methane, allowed for a range of possibilities, including pure methane oceans. The Voyager 1 flyby ruled out this last possibility, replacing it with compelling observational arguments in favor of a mixed light hydrocarbon and nitrogen ocean. Ground based radar observations indicated a surprisingly reflective surface which is inconsistent with a hydrocarbon ocean and more reminiscent of the Galilean Satellites. Nonetheless, passive radiometric measurements of the surface do not support the notion that Titan's surface is like that of the Galilean satellites. One of the arguments against hydrocarbon oceans reflecting radar energy is that most solid, complex hydrocarbon and nitriles will be denser than the liquid and sink. Nonetheless, many of the aerosol species will coagulate in highly nonspherical patterns, and some species probably polymerize in long chains. Such chains will have very low sedimendation velocities in the ocean and may remain near the surface through ocean mixing process. The prospect of an oceanic 'soup' of polar polymers acting as volume reflectors at radio wevelengths suggests that the interpretation of radar observations needs evaluation.

  2. Titan's Surface Brightness Temperatures and H2 Mole Fraction from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; hide

    2008-01-01

    The atmosphere of Titan has a spectral window of low opacity around 530/cm in the thermal infrared where radiation from the surface can be detected from space. The Composite Infrared spectrometer1 (CIRS) uses this window to measure the surface brightness temperature of Titan. By combining all observations from the Cassini tour it is possible to go beyond previous Voyager IRIS studies in latitude mapping of surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, which is close to the 93.65+/-0.25 K value measured at the surface by Huygens HASi. The temperature decreases toward the poles, reaching 91.6+/-0.7 K at 90 S and 90.0+/-1.0 K at 87 N. The temperature distribution is centered in latitude at approximately 12 S, consistent with Titan's season of late northern winter. Near the equator the temperature varies with longitude and is higher in the trailing hemisphere, where the lower albedo may lead to relatively greater surface heating5. Modeling of radiances at 590/cm constrains the atmospheric H2 mole fraction to 0.12+/-0.06 %, in agreement with results from Voyager iris.

  3. ALMA observations of Titan : Vertical and spatial distribution of nitriles

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Lellouch, E.; Vinatier, S.; Gurwell, M.; Moullet, A.; Lara, L. M.; Hidayat, T.

    2015-10-01

    We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ~0.47''. Titan's angular surface diameter was 0.77''. Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/d λ = 3106). We have obtained maps of several nitriles present in Titan' stratosphere: HCN, HC3N, CH3CN, HNC, C2H5CNand other weak lines (isotopes, vibrationnally excited lines).We will present radiative transfer analysis of the spectra acquired. With the combination of all these detected rotational lines, we will constrain the atmospheric temperature, the spatial and vertical distribution of these species, as well as isotopic ratios. Moreover, Doppler lineshift measurements will enable us to constrain the zonal wind flow in the upper atmosphere.

  4. Global characterization of Titan's dune fields by RADAR and VIMS observations

    NASA Astrophysics Data System (ADS)

    garcia, A.; Rodriguez, S.; Lucas, A.; Appéré, T.; Le Gall, A.; Reffet, E.; Le Corre, L.; Le Mouélic, S.; Cornet, T.; Courrech Du Pont, S.; Narteau, C.; Bourgeois, O.; Radebaugh, J.; Arnold, K.; Barnes, J. W.; Sotin, C.; Brown, R. H.; Lorenz, R. D.; Turtle, E. P.

    2013-12-01

    Cassini/RADAR high-resolution images of Titan's surface revealed linear features, geomorphologically similar to longitudinal dunes. Those dunes cover a large portion of the whole surface of Titan, i.e 7.8%, and 13.4% are present on the 58.4% of the surface imaged by the RADAR/SAR from July 2004 to July 2013 (fig.1). 99.6% of the dunes are confined at the equatorial regions (30°N-30°S). Formed and sculpted by the wind, those features represent clues for the understanding of the climatic history on the satellite. By using the joint analysis between RADAR/SAR observations and the infrared VIMS mosaic corrected for atmospheric contributions acquired through July 2013 and June 2010 respectively, we found a very high degree of correlation at global scale (more than 70%) between the RADAR dunes and a specific infrared VIMS spectral unit, the 'dark brown unit'. Some RADAR dunes, less than 2%, also belong in a commonly referenced unit, the 'dark blue unit'. These two units have been delimited by defining for each a specific set of spectral criteria. We have shown that those two units present a spectral behavior different, especially at short wavelengths (below 2 μm) allowing to say that the 'dark brown unit' is dominated by organic sediment, similar to atmospheric aerosols, namely tholins, and the 'dark blue' is most likely enriched in water ice compared to the rest of Titan's surface. Given the strong correlation between RADAR dunes and the infrared 'dark brown unit' we are now able to extrapolate the total surface area of the dunes material to the total surface area of the 'dark brown unit' which correspond to 17% of the Titan's surface. This permits to estimate the volume of sediment of 360,000 km3 (total mass ≈ 290,000 GT). Thus, these estimates based on the RADAR dunes/VIMS units correlation make the dune fields the largest organic reservoir on Titan's surface and characterize more precisely the composition of the dune material over the total extend of the dune regions.

  5. Weather on Titan

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Hall, J. L.; Geballe, T. R.

    2000-10-01

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200% on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9% of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering <=1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection governs their evolutions. Their short lives point to the presence of rain. C. A. Griffith and J. L. Hall are supported by the NASA Planetary Astronomy Program NAG5-6790.

  6. Prebiotic-like chemistry on Titan.

    PubMed

    Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice

    2012-08-21

    Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean.

  7. Titan Temperature Lag Maps

    NASA Image and Video Library

    2016-02-18

    This sequence of maps shows varying surface temperatures on Saturn moon Titan at two-year intervals, from 2004 to 2016. The measurements were made by the Composite Infrared Spectrometer CIRS instrument on NASA Cassini spacecraft. The maps show thermal infrared radiation (heat) coming from Titan's surface at a wavelength of 19 microns, a spectral window at which the moon's otherwise opaque atmosphere is mostly transparent. Temperatures have been averaged around the globe from east to west (longitudinally) to emphasize the seasonal variation across latitudes (from north to south). Black regions in the maps are areas for which there was no data. Titan's surface temperature changes slowly over the course of the Saturn system's long seasons, which each last seven and a half years. As on Earth, the amount of sunlight received at each latitude varies as the sun's illumination moves northward or southward over the course of the 30-year-long Saturnian year. When Cassini arrived at Saturn in 2004, Titan's southern hemisphere was in late summer and was therefore the warmest region. Shortly after the 2009 equinox, in 2010, temperatures were symmetrical across the northern and southern hemispheres, mimicking the distribution observed by Voyager 1 in 1980 (one Titan year earlier). Temperatures subsequently cooled in the south and rose in the north, as southern winter approached. While the overall trend in the temperature shift is clearly evident in these maps, there is narrow banding in several places that is an artifact of making the observations through Titan's atmosphere. The moon's dense, hazy envelope adds noise to the difficult measurement. Although it moves in latitude, the maximum measured temperature on Titan remains around -292 degrees Fahrenheit (-179.6 degrees Celsius, 93.6 Kelvin), with a minimum temperature at the winter pole only 6 degrees Fahrenheit (3.5 degrees Celsius or Kelvin) colder. This is a much smaller contrast than exists between Earth's warmest and coldest temperatures, which can vary by more than 200 degrees Fahrenheit, or more than 100 degrees Celsius. http://photojournal.jpl.nasa.gov/catalog/PIA20020

  8. Current State of Modeling the Photochemistry of Titan's Mutually Dependent Atmosphere and Ionosphere

    NASA Technical Reports Server (NTRS)

    Wilson, Eric H.; Atreya, S. K.

    2004-01-01

    In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two-stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron-impact, cosmic-ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for C3H8, HC3N, and possibly C2H3CN can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of 4200 cm(exp -3) is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini-Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005.

  9. Titan. [Voyager IRIS observation of satellite atmosphere

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1990-01-01

    Saturn's satellite Titan is the second-largest in the solar system. Its dense atmosphere is mostly molecular nitrogen with an admixture of methane, a surface pressure of 1.5 bars and a surface temperature of 94K. The fundamental driving force in the long-term evolution of Titan's atmosphere is the photolysis of methane in the stratosphere to form higher hydrocarbons and aerosols. The current rate of photolysis and undersaturation of methane in the lower troposphere suggests the presence of a massive ethane-methane-nitrogen ocean. The ocean evolves to a more ethane-rich state over geologic time, driving changes in the atmospheric thermal structure. An outstanding issue concerning Titan's earliest history is the origin of atmospheric nitrogen: was it introduced into Titan as molecular nitrogen or ammonia? Measurement of the argon-to-nitrogen ratio in the present atmosphere provides a diagnostic test of these competing hypotheses. Many of the questions raised by the Voyager encounters about Titan and its atmosphere can be adequately addressed only by an entry probe, such as that planned for the Cassini mission.

  10. Cassini ISS and VIMS observations of Titan's north polar region during the T120 and T121 flybys: The Curious Case of the Clouds

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Barnes, J. W.; Perry, J.; Barbara, J.; Hayes, A.; Corlies, P.; Kelland, J.; West, R. A.; Del Genio, A. D.; Soderblom, J. M.; McEwen, A. S.; Sotin, C.

    2016-12-01

    As northern summer approaches, atmospheric circulation models predict storm activity will pick up at Titan's high northern latitudes, as was observed at high southern latitudes upon Cassini's arrival during late southern summer in 2004. Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) teams have been targeting Titan to document changes in weather patterns over the course of the mission, and there is particular interest in following the onset of clouds in the north polar region where Titan's lakes and seas are concentrated. The T120 and T121 flybys of Titan, on 7 June and 25 July 2016, respectively, provided views of high northern latitudes, and each instrument performed a series of observations over more than 24 hours during both flybys. Intriguingly, at first look the ISS and VIMS observations appear strikingly different from each other: in the ISS observations made during each flyby, surface features are apparent and only a few isolated clouds are detected; however, the VIMS observations suggest widespread cloud cover at high northern latitudes during both flybys. Although the instruments achieve different resolutions, that alone cannot explain the differences. The observations were made over the same time periods, so differences in illumination geometry or changes in the clouds themselves are also unlikely to be the cause for the apparent discrepancy; VIMS shows persistent atmospheric features over the entire observation period and ISS consistently detects surface features with just a few localized clouds. Clouds with low optical depth (lower than the optical depth of Titan's atmospheric haze at the same wavelength) might be more easily apparent at the longer wavelengths of the VIMS observations, which extend out to 5 µm (haze optical depth 0.2), compared to the ISS observations at 938 nm (haze optical depth 2). However, the lack of any apparent change in the visibility of lakes and seas in the ISS images compared to previous flybys where no clouds were observed is still difficult to explain. We will present our analyses of the sequences of observations made by ISS and VIMS during T120 and T121, as well as an ongoing ground-based observing campaign (including data from 8 June and 23 July), and the implications for the behavior of Titan's atmosphere leading up to northern summer.

  11. The Veils of Titan

    NASA Image and Video Library

    2004-05-06

    The veils of Saturn's most mysterious moon have begun to lift in Cassini's eagerly awaited first glimpse of the surface of Titan, a world where scientists believe organic matter rains from hazy skies and seas of liquid hydrocarbons dot a frigid surface. Surface features previously observed only from Earth-based telescopes are now visible in images of Titan taken in mid-April by Cassini through one of the narrow angle camera's spectral filters specifically designed to penetrate the thick atmosphere. The image scale is 230 kilometers (143 miles) per pixel, and it rivals the best Earth-based images. The two images displayed here show Titan from a vantage point 17 degrees below its equator, yielding a view from 50 degrees north latitude all the way to its south pole. The image on the left was taken four days after the image on the right. Titan rotated 90 degrees in that time. The two images combined cover a region extending halfway around the moon. The observed brightness variations suggest a diverse surface, with variations in average reflectivity on scales of a couple hundred kilometers. The images were taken through a narrow filter centered at 938 nanometers, a spectral region in which the only obstacle to light is the carbon-based, organic haze. Despite the rather long 38-second exposure times, there is no noticeable smear due to spacecraft motion. The images have been magnified 10 times and enhanced in contrast to bring out details. No further processing to remove the effects of the overlying atmosphere has been performed. The superimposed grid over the images illustrates the orientation of Titan -- north is up and rotated 25 degrees to the left -- as well as the geographical regions of the satellite that are illuminated and visible. The yellow curve marks the position of the boundary between day and night on Titan. The enhanced image contrast makes the region within 20 degrees of this day and night division darker than usual. The Sun illuminates Titan from the right at a phase angle of 66 degrees. Because the Sun is in the southern hemisphere as seen from Titan, the north pole is canted relative to the boundary between day and night by 25 degrees. Also shown here is a map of relative surface brightness variations on Titan as measured in images taken in the 1080-nanometer spectral region in 1997 and 1998 by the Near Infrared Camera and Multi-Object Spectrometer on NASA's Hubble Space Telescope. These images have scales of 300 kilometers (186 miles) per pixel. The map colors indicate different surface reflectivities. From darkest to brightest, the color progression is: deep blue (darkest), light blue, green, yellow, red and deep red (brightest). The large, continent-sized, red feature extending from 60 degrees to 150 degrees west longitude is called Xanadu. It is unclear whether Xanadu is a mountain range, giant basin, smooth plain, or a combination of all three. It may be dotted with hydrocarbon lakes but that is also unknown. All that is presently known is that in Earth-based images, it is the brightest region on Titan. A comparison between the Cassini images and the Hubble map indicates that Xanadu is visible as a bright region in the Cassini image on the right. The dark blue northwest-southeast trending feature from 210 degrees to 250 degrees west longitude, and the bright yellow/green region to the east (right) and southeast of it at minus 50 degrees latitude and 180 to 230 degrees west longitude on the Hubble map, can both be seen in the image on the left. It is noteworthy that the surface is visible to Cassini from its present approach viewing geometry, which is not the most favourable for surface viewing. These early Cassini observations are promising for upcoming imaging sequences of Titan in which the resolution improves by a factor of five over the next two months. These results are encouraging for future, in-orbit observations of Titan that will be acquired from lower, more favorable phase angles. The first opportunity to view small-scale features (2 kilometers or 1.2 miles) on the surface comes during a 350,000 kilometer (217,500 mile) flyby over Titan's south pole on July 2, 2004, only 30 hours after Cassini's insertion into orbit around the ringed planet. http://photojournal.jpl.nasa.gov/catalog/PIA05390

  12. Saturn's Magnetospheric Plasma Flow Encountered by Titan

    NASA Astrophysics Data System (ADS)

    Sillanpää, I.

    2017-09-01

    Titan has been a major target of the ending Cassini mission to Saturn. 126 flybys have sampled, measured and observed a variety of Titan's features and processes from the surface features to atmospheric composition and upper atmospheric processes. Titan's interaction with the magnetospheric plasma flow it is mostly embedded in is highly dependent on the characteristics of the ambient plasma. The density, velocity and even the composition of the plasma flow can have great variance from flyby to flyby. Our purpose is the present the plasma flow conditions for all over 70 flybys of which we have Cassini Plasma Spectrometer (CAPS) measurements.

  13. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in diameter, which corresponds to the size of a dime as viewed from about two and a half miles. Illustration of Crab, Titan's Shadow and Chandra Illustration of Crab, Titan's Shadow and Chandra Unlike almost all of Chandra's images which are made by focusing X-ray emission from cosmic sources, Titan's X-ray shadow image was produced in a manner similar to a medical X-ray. That is, an X-ray source (the Crab Nebula) is used to make a shadow image (Titan and its atmosphere) that is recorded on film (Chandra's ACIS detector). Titan's atmosphere, which is about 95% nitrogen and 5% methane, has a pressure near the surface that is one and a half times the Earth's sea level pressure. Voyager I spacecraft measured the structure of Titan's atmosphere at heights below about 300 miles (500 kilometers), and above 600 miles (1000 kilometers). Until the Chandra observations, however, no measurements existed at heights in the range between 300 and 600 miles. Understanding the extent of Titan's atmosphere is important for the planners of the Cassini-Huygens mission. The Cassini-Huygens spacecraft will reach Saturn in July of this year to begin a four-year tour of Saturn, its rings and its moons. The tour will include close flybys of Titan that will take Cassini as close as 600 miles, and the launching of the Huygens probe that will land on Titan's surface. Chandra's X-ray Shadow of Titan Chandra's X-ray Shadow of Titan "If Titan's atmosphere has really expanded, the trajectory may have to be changed." said Tsunemi. The paper on these results has been accepted and is expected to appear in a June 2004 issue of The Astrophysical Journal. Other members of the research team were Haroyoski Katayama (Osaka University), David Burrows and Gordon Garmine (Penn State University), and Albert Metzger (JPL). Chandra observed Titan from 9:04 to 18:46 UT on January 5, 2003, using its Advanced CCD Imaging Spectrometer instrument. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  14. Equinoctial Activity Over Titan Dune Fields Revealed by Cassini/vims

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Le Mouelic, S.; Barnes, J. W.; Hirtzig, M.; Rannou, P.; Sotin, C.; Brown, R. H.; Bow, J.; Vixie, G.; Cornet, T.; Bourgeois, O.; Narteau, C.; Courrech Du Pont, S.; Le Gall, A.; Reffet, E.; Griffith, C. A.; Jaumann, R.; Stephan, K.; Buratti, B. J.; Clark, R. N.; Baines, K. H.; Nicholson, P. D.; Coustenis, A.

    2012-12-01

    Titan, the largest satellite of Saturn, is the only satellite in the solar system with a dense atmosphere. The close and continuous observations of Titan by the Cassini spacecraft, in orbit around Saturn since July 2004, bring us evidences that Titan troposphere and low stratosphere experience an exotic, but complete meteorological cycle similar to the Earth hydrological cycle, with hydrocarbons evaporation, condensation in clouds, and rainfall. Cassini monitoring campaigns also demonstrate that Titan's cloud coverage and climate vary with latitude. Titan's tropics, with globally weak meteorological activity and widespread dune fields, seem to be slightly more arid than the poles, where extensive and numerous liquid reservoirs and sustained cloud activity have been discovered. Only a few tropo-spheric clouds have been observed at Titan's tropics during the southern summer. As equinox was approaching (in August 2009), they occurred more frequently and appeared to grow in strength and size. We present here the observation of intense brightening at Titan's tropics, very close to the equinox. These detections were conducted with the Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini. We will discuss the VIMS images of the three individual events detected so far, observed during the Titan's flybys T56 (22 May 2009), T65 (13 January 2010) and T70 (21 June 2010). T56, T65 and T70 observations show an intense and transient brighten-ing of large regions very close to the equator, right over the extensive dune fields of Senkyo, Belet and Shangri-La. They all appear spectrally and morphologically different from all transient surface features or atmospheric phenomena previously reported. Indeed, these events share in particular a strong brightening at wavelengths greater than 2 μm (especially at 5 μm), making them spectrally distinct from the small tropical clouds observed before the equinox and the large storms observed near the equator in September and October 2010. In this paper, we will discuss the possibility that these singular events may have occurred very close to the surface, having a strong link with the underlying dune fields. Radiative transfer calculations indeed show that these singular brightenings are due to the transient appearance of an additional atmospheric layer, confined at very low altitudes and loaded with few but large particles. Gathering all the observational and modeling constraints, we conclude that the most probable explanation for these events is the local and transient occurrence of huge sand storms, directly originating from the underlying dune fields. We will also discuss the possible implications of the equinoctial occurrence of such events for Titan's tropical wind regimes and for the present-day activity of equatorial dunes.

  15. A Mid-latitude Cloud Eruption on Titan Observed by the Cassini Visual Infrared Mapping Spectrometer (VIMS) in July 2007

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Pitman, K. M.; Baines, K.; Sotin, C.; Brown, R. H.; Clark, R. N.; Nicholson, P. D.; Griffith, C. A.; Le Mouelic, S.; Momary, T.

    2007-12-01

    Mid-latitude clouds on Titan have been monitored by the Cassini spacecraft since they were reported by ground- based observers (Roe et al. 2005, Ap. J. 618, L49). The Cassini Visual Infrared Mapping Spectrometer (VIMS) is especially suited to detecting and mapping these clouds because its wavelength range of 0.4-5.1 microns covers several key methane cloud filters. These clouds may be the result of atmospheric upwelling on Titan (Griffith et al. 2000 Science 290, p. 509; Rannou et al. 2006 Science 311, p. 201), or they may start as plumes coming from active geologic features on Titan (Roe et al. 2005, Science 310, p. 477). Mid-latitude clouds were observed in the early part of the nominal mission (Dec. 2004 and early 2005), but they had disappeared until a large cloud system was observed in summer 2006, in the 0-90 degrees W longitude mid-latitude regions of Titan. A new group of clouds was observed during the two flybys of July 2007, which dwarfs the previous mid-latitude system. These clouds originate in a region centered on ~200 W longitude and ~48 S latitude. Monitoring of mid-latitude clouds will show whether their timescales for formation are compatible with climate models for Titan's atmosphere. If mid-latitude clouds are the result of active geologic processes, there appears to be more than one source on Titan's surface. Work funded by NASA.

  16. The exploration of Titan with an orbiter and a lake probe

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Coustenis, Athena; Fanchini, Gilbert; Hayes, Alex G.; Iess, Luciano; Khurana, Krishan; Lebreton, Jean-Pierre; Lopes, Rosaly M.; Lorenz, Ralph D.; Meriggiola, Rachele; Moriconi, Maria Luisa; Orosei, Roberto; Sotin, Christophe; Stofan, Ellen; Tobie, Gabriel; Tokano, Tetsuya; Tosi, Federico

    2014-12-01

    Fundamental questions involving the origin, evolution, and history of both Titan and the broader Saturnian system can be answered by exploring this satellite from an orbiter and also in situ. We present the science case for an exploration of Titan and one of its lakes from a dedicated orbiter and a lake probe. Observations from an orbit-platform can improve our understanding of Titan's geological processes, surface composition and atmospheric properties. Further, combined measurements of the gravity field, rotational dynamics and electromagnetic field can expand our understanding of the interior and evolution of Titan. An in situ exploration of Titan's lakes provides an unprecedented opportunity to understand the hydrocarbon cycle, investigate a natural laboratory for prebiotic chemistry and habitability potential, and study meteorological and marine processes in an exotic environment. We briefly discuss possible mission scenarios for a future exploration of Titan with an orbiter and a lake probe.

  17. Mapping the Methane and Aerosol Distributions within Titan's Troposphere: Complementing The Cassini/VIMS T90 Flyby of Titan

    NASA Astrophysics Data System (ADS)

    Young, Eliot

    2012-10-01

    Titan's atmosphere is mainly nitrogen gas with several trace constituents, including methane at the few percent level. The presence of methane has been a puzzle for decades, since the CH4 in Titan's atmosphere is expected to be destroyed by UV photolysis in ten million years or so. The source of Titan's atmospheric methane continues to be a major question. We propose a set of three STIS image cubes with the G750M grating at 0.62, 0.72 and 0.89 |*|m methane bands. These bands probe altitudes from the surface to 70 km; unlike CH4 bands at 1.6 or 2.3 |*|m, these cubes will provide a 3-D picture of Titan's troposphere {below 40 km}. The Cassini/VIMS visible channel has not been useful for this purpose for two reasons: its spectral resolution {about R=100} is coarse and its inconsistent background subtraction scheme that can lead to "stripes." HST/STIS resolves Titan's 1" disk into over 80 spatially resolved spectra, each with a spectral resolution greater than R=5000. STIS is a unique tool for mapping the 3-D distributions of CH4 and aerosols in Titan's troposphere.We request observations within a day of the Cassini flyby of Titan on April 5, 2013 around 21:40 UT in order to combine Cassini/VIMS and STIS mage cubes. Together, the visible {STIS} and IR {VIMS} image cubes will probe altitudes from the surface to the stratosphere {several hundred km}. The proposed STIS image cubes will provide the best tropospheric map of CH4 to date, relevant to surface/atmospheric coupling of CH4, latitudinal inhomogeneity of CH4 or aerosols, or the presence of condensates at low altitudes.

  18. Electrical Properties of Tholins and Derived Constraints on the Huygens Landing Site Composition at the Surface of Titan

    NASA Astrophysics Data System (ADS)

    Lethuillier, A.; Le Gall, A.; Hamelin, M.; Caujolle-Bert, S.; Schreiber, F.; Carrasco, N.; Cernogora, G.; Szopa, C.; Brouet, Y.; Simões, F.; Correia, J. J.; Ruffié, G.

    2018-04-01

    In 2005, the complex permittivity of the surface of Saturn's moon Titan was measured by the PWA-MIP/HASI (Permittivity Wave Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) experiment on board the Huygens probe. The analysis of these measurements was recently refined but could not be interpreted in terms of composition due to the lack of knowledge on the low-frequency/low-temperature electrical properties of Titan's organic material, a likely key ingredient of the surface composition. In order to fill that gap, we developed a dedicated measurement bench and investigated the complex permittivity of analogs of Titan's organic aerosols called "tholins." These laboratory measurements, together with those performed in the microwave domain, are then used to derive constraints on the composition of Titan's first meter below the surface based on both the PWA-MIP/HASI and the Cassini Radar observations. Assuming a ternary mixture of water ice, tholin-like dust and pores (filled or not with liquid methane), we find that at least 10% of water ice and 15% of porosity are required to explain observations. On the other hand, there should be at most 50-60% of organic dust. PWA-MIP/HASI measurements also suggest the presence of a thin conductive superficial layer at the Huygens landing site. Using accurate numerical simulations, we put constraints on the electrical conductivity of this layer as a function of its thickness (e.g., in the range 7-40 nS/m for a 7-mm thick layer). Potential candidates for the composition of this layer are discussed.

  19. Variations in Titan's dune orientations as a result of orbital forcing

    NASA Astrophysics Data System (ADS)

    McDonald, George D.; Hayes, Alexander G.; Ewing, Ryan C.; Lora, Juan M.; Newman, Claire E.; Tokano, Tetsuya; Lucas, Antoine; Soto, Alejandro; Chen, Gang

    2016-05-01

    Wind-blown dunes are a record of the climatic history in Titan's equatorial region. Through modeling of the climatic conditions associated with Titan's historical orbital configurations (arising from apsidal precessions of Saturn's orbit), we present evidence that the orientations of the dunes are influenced by orbital forcing. Analysis of 3 Titan general circulation models (GCMs) in conjunction with a sediment transport model provides the first direct intercomparison of results from different Titan GCMs. We report variability in the dune orientations predicted for different orbital epochs of up to 70°. Although the response of the GCMs to orbital forcing varies, the orbital influence on the dune orientations is found to be significant across all models. Furthermore, there is near agreement among the two models run with surface topography, with 3 out of the 5 dune fields matching observation for the most recent orbital cycle. Through comparison with observations by Cassini, we find situations in which the observed dune orientations are in best agreement with those modeled for previous orbital configurations or combinations thereof, representing a larger portion of the cycle. We conclude that orbital forcing could be an important factor in governing the present-day dune orientations observed on Titan and should be considered when modeling dune evolution.

  20. Fluvial channels on Titan: Initial Cassini RADAR observations

    USGS Publications Warehouse

    Lorenz, R.D.; Lopes, R.M.; Paganelli, F.; Lunine, J.I.; Kirk, R.L.; Mitchell, K.L.; Soderblom, L.A.; Stofan, E.R.; Ori, G.; Myers, M.; Miyamoto, H.; Radebaugh, J.; Stiles, B.; Wall, S.D.; Wood, C.A.

    2008-01-01

    Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards. ?? 2008.

  1. Titan's Elusive Lakes? Properties and Context of Dark Spots in Cassini TA Radar Data

    NASA Technical Reports Server (NTRS)

    Lorenz, R. D.; Elachi, C.; Stiles, B.; West, R.; Janssen, M.; Lopes, R.; Stofan, E.; Paganelli, F.; Wood, C.; Kirk, R.

    2005-01-01

    Titan's atmospheric methane abundance suggests the likelihood of a surface reservoir of methane and a surface sink for its photochemical products, which might also be predominantly liquid. Although large expanses of obvious hydrocarbon seas have not been unambiguously observed, a number of rather radar-dark spots up to approximately 30 km across are observed in the Synthetic Aperture Radar (SAR) data acquired during the Cassini TA encounter on October 26th 2004. Here we review the properties and setting of these dark spots to explore whether these may be hydrocarbon lakes.

  2. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

    PubMed Central

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  3. Observations in the Saturn system during approach and orbital insertion, with Cassini's visual and infrared mapping spectrometer (VIMS)

    USGS Publications Warehouse

    Brown, R.H.; Baines, K.H.; Bellucci, G.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Baugh, N.; Griffith, C.A.; Hansen, G.B.; Hibbitts, C.A.; Momary, T.W.; Showalter, M.R.

    2006-01-01

    The Visual and Infrared Mapping Spectrometer observed Phoebe, Iapetus, Titan and Saturn's rings during Cassini's approach and orbital insertion. Phoebe's surface contains water ice, CO2, and ferrous iron. lapetus contains CO2 and organic materials. Titan's atmosphere shows methane fluorescence, and night-side atmospheric emission that may be CO2 and CH3D. As determined from cloud motions, the winds at altitude 25-30 km in the south polar region of Titan appear to be moving in a prograde direction at velocity ???1 m s-1. Circular albedo features on Titan's surface, seen at 2.02 ??m, may be palimpsests remaining from the rheological adjustment of ancient impact craters. As such, their long-term persistence is of special interest in view of the expected precipitation of liquids and solids from the atmosphere. Saturn's rings have changed little in their radial structure since the Voyager flybys in the early 1980s. Spectral absorption bands tentatively attributed to Fe2+ suggest that iron-bearing silicates are a source of contamination of the C ring and the Cassini Division. ?? ESO 2006.

  4. Processing ISS Images of Titan's Surface

    NASA Technical Reports Server (NTRS)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  5. Transparency of the 2 μm window on Titan studied with observations made by VIMS

    NASA Astrophysics Data System (ADS)

    Rannou, P.; Lemouélic, S.; Sotin, C.; Brown, R. H.

    2012-09-01

    The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. However, intensity at some wavelengths are poorly modeled because additional opacities must be studied. We focus here on the case of the 2 μm window, which is essential to determined cloud and surface properties.

  6. Exploration of a New World: Saturn's Moon Titan

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Ray, Trina; Matson, Dennis L.; Lebreton, Jean-Pierre; Waite, J. Hunter; Turtle, Elizabeth; Bolton, Scott; Spilker, Linda

    Before the Cassini-Huygens spacecraft arrived at the Saturnian system very little was known about Saturn's largest moon Titan. Ground-based observations and Voyager data had revealed a thick atmosphere composed primarily of nitrogen with a small percentage of methane and higher order hydrocarbons. The surface was obscured by hydrocarbon smog. Where do you begin, when exploring a new world? What were the basic science objectives? What were the exploration objectives? How well has Cassini-Huygens achieved them? What are the pragmatic considerations in using a spacecraft equipped with 12 sophisticated instruments and no moving parts? How were the 45 Titan flybys in the primary mission to be used? We started by organizing science goals into four high level disciplines for the orbital investigation from Cassini: 1) study of the interior, 2) mapping of the surface geology and composition, 3) study of atmospheric structure, composition and dynamics, and 4) characterization of Titan's interaction with Saturn's magnetosphere. The Huygens probe gave us detailed in situ "ground truth" from the upper atmosphere to the surface, for comparison to orbital data. Now at the end of the primary mission, we are embarking on Cassini's 2 year "Equinox" extended mission, and planning a possible 6 year Cassini "Solstice" Mission to follow if all goes well. When we arrived at Titan it was the equivalent of January and by the time the Solstice Mission is complete it will be June on Titan. Now is a good time to review our progress and our future goals for the exploration of Titan. For each of the four disciplines we will review the goals and achievements of the primary mission, the way in which the 26 Titan flybys in the 2 year Equinox mission fills in gaps left by the primary mission, and look ahead to what could be done in a Solstice Mission. Cassini has discovered seas of "sand" dunes, lakes in the polar regions, and a young surface marked by few craters. The blank spots on the map are waiting to be filled in by higher resolution imaging and radar swaths during the Equinox mission. Is there a liquid layer in Titan's interior? A few more gravity passes and radar swaths are needed to answer this question. To-date no interior magnetic field has been detected, so a very close Titan flyby is planned at the end of the Equinox mission to go below the ionosphere. Titan's atmosphere has weather that can be compared to earth. Clouds form. Rain falls. The over-arching goal for the Cassini Solstice mission would be to observe changes: seasonal certainly, and any other surface activity. Will the current northern lakes dry up and new southern ones form? With the luxury of time and numerous flybys the Cassini / Huygens mission is slowly revealing a complex, new world. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  7. Triton, Pluto, and Titan: A Comparison of Haze Photometry

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Hillier, John K.; Abgarian, Mary; Kutsop, Nicholas; Devins, Spencer; Mosher, Joel A.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Young, Leslie; Ennico, Kimberly; New Horizons Science Team

    2017-10-01

    As Kuiper Belt Objects of similar size and albedo, Triton and Pluto were thought to be kindred bodies exhibiting like geologic histories and features, with possible seasonal volatile transport in their polar regions. During the flyby of Pluto in July 2015, active geological processes were observed on the planet (Stern et al., 2015), and a substantial haze layer that was more akin to Titan’s was observed (Gladstone et. al., 2016). Multiple haze layers were discovered surrounding the dwarf planet (Cheng et al. 2017).Using a radiative transfer model based on Chandrasekhar’s “Planetary Problem” of an optically thin atmosphere and a surface of arbitrary single scattering albedo and single particle phase function (Chandrasekhar, 1960; Hillier et al., 1990, 1991; Buratti et al., 2011), we have characterized the optical depth and surface properties of Pluto, Triton, and Titan. The forward-scattering properties of the haze can also be quantified by this model. Optical imaging data was analyzed for Triton and Pluto. For Titan we made use of published data on Titan (Tomasko and West, 2009) plus new Cassini Visual Infrared Mapping Spectrometer (VIMS) data, which spans the wavelength range between 0.35 and 5.2 microns, and which has several channels in the mid-infrared where both the haze opacity is relatively low and the atmosphere is optically thin. Pluto’s atmosphere is more optically thick than Triton’s but both are far thinner than Titan’s. The composition of Triton’s haze layer differs markedly from Titan’s. Observations of Pluto’s haze reveal a bluish color (Gladstone et al., 2016), but the reddish tint of possible haze deposits on the surface (Stern et al., 2015; Buratti et al., 2015) suggest Pluto’s haze composition is Titan-like. Institute of Technology. Government sponsorship acknowledged.

  8. Oceanus: A New Frontiers orbiter to study Titan's potential habitability

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Hayes, Alex; Malaska, Michael; Nimmo, Francis; Trainer, Melissa; Tortora, Paolo

    2017-04-01

    The New Frontiers 4 AO includes the theme "Ocean Worlds (Titan and/or Enceladus)" focused on the search for signs of extant life and/or characterizing the potential habitability of Titan and/or Enceladus. The Cassini has demonstrated that Titan is an organic world of two oceans: surface hydrocarbon seas [1,2] that cover part of the north polar region and a deep water ocean [3] that decouples the outer ice crust from an inner core likely composed of hydrated silicates [4]. Oceanus is an orbiter that would follow up on Cassini's amazing discoveries and assess Titan's habitability by following the organics through the methanologic cycle and assessing ex-change processes between the atmosphere, surface, and subsurface. Titan's reduced nitrogen-rich atmosphere operates as an organic factory [5] where heavy organic molecules are produced by a series of reations starting by the photolysis of methane [6,7]. The mass spectrometer will perform high-resolution in situ measurements of the organic material over a large mass range and at different altitudes. It will provide the information required to determine (i) the processes at work to form the heavy molecules, (ii) the functional group pattern of large molecules providing information on their composition. These organics coat Titan's surface and are moved around through a complex source-to-sink sediment transport system analogous to surface processes here on Earth. Titan's 90-95 K surface temperature at 1.5 bar surface pressure permit me-thane and ethane to condense out of the atmosphere and flow as liquids on the surface. As a result, Titan's methane-based hydrologic system produces a rich set of geologic features (dunes, river net-works, polar lakes/seas, etc.). Cassini's observations of this rich geomorphology is hindered by kilometer-scale resolution. Oceanus will take ad-vantage of a narrow atmospheric window at 5 µm to acquire 25 m/pixel (< 100 m resolution) images of Titan diverse surface [8]. The presence of 40Ar, a product of the decay of 40K contained in the silicate core, and methane whose origin is still controversial argue for ex-change processes between the interior and the atmosphere. Like we see here on Earth, these processes will be chronicled in the interaction between geological features on Titan's surface. Oceanus will investigate specific features identified by Cassini as potential candidates for cryvolcanism, impact, and tectonic processes that could facilitate exchange with the interior. Acknowledgments: This work has been per-formed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. References: [1] Stofan E.R. et al. (2007) Nature. [2] Sotin C. et al. (2012) Icarus. [3] Iess L. et al. (2012) Science. [4] Castillo-Rogez J.C. and Lunine J.I. (2010) Geophys. Res. Lett. [5] Coates A.J. et al. (2007) Geophys. Res. Let. [6] Lavvas P. et al. (2008) Planet. Space Sci. [7] Yung Y.L. et al. (1984) Astrophys. J. [8] Sotin C. et al. (2005) Nature.

  9. Crater Topography on Titan: Implications for Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  10. The effect of gravitational and pressure torques on Titan's length-of-day variations

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Rambaux, N.; Karatekin, Ö.; Baland, R.-M.

    2009-03-01

    Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between internal layers on the length-of-day (LOD) variations driven by the atmosphere. Because static tides deform Titan into an ellipsoid with the long axis approximately in the direction to Saturn, non-zero gravitational and pressure torques exist that can change the rotation rate of Titan. For the torque calculation, we estimate the flattening of Titan and its interior layers under the assumption of hydrostatic equilibrium. The gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to reduce any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 100 times smaller than the observations indicate when Titan has no ocean as well as when a subsurface ocean exists. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. The calculated LOD variations could be increased if the atmospheric torque is larger than predicted and or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations. Alternatively, the large differences with the observations may suggest that non-hydrostatic effects in Titan are important. In particular, we show that the amplitude and phase of the calculated rotation variations are similar to the observed values if non-hydrostatic effects could strongly reduce the equatorial flattening of the ice shell above an internal ocean.

  11. Laboratory Simulations of the Titan Surface to Elucidate the Huygens Probe GCMS Observations

    NASA Technical Reports Server (NTRS)

    Trainer, M. G.; Niemann, H. B.; Harpold, D. N.; Atreya, S. K.; Owen, T. C.; Kasprzak, W. T.

    2011-01-01

    The Cassini/Huygens mission has vastly increased the information we have available to stndy Satnro's moon Titan. The complete mission has included an array of observational methods including remote sensing techniques, upper atmosphere in-situ saropling, and the descent of the Huygens probe directly through the atmosphere to the surface [1,2]. The instruments on the Huygens probe remain the ouly source of in-situ measurements at the surface of Titan, and work evaluating these measurements to create a pict.rre of the surface environment is ongoing. In particular, the Gas Chromatograph Mass Spectrometer (GCMS) experiment on Huygens found that although there were no heavy hydrocarbons detected in the lower atmosphere, a rich spectrum of mass peaks arose once the probe landed on the surface [3,4], However, to date it has not been possible to extract the identity and abundances of the many minor components of the spectra due to a lack of temperatnre- and instrumentappropriate data for the relevant species. We are performing laboratory stndies designed to elucidate the spectrum collected on Titan's surface, utilizing a cryogenic charober maintained at appropriate temperature and pressure conditions. The experiments will simulate the temperatnre rise experienced by the surface, which led to an enhanced signal of volatiles detected by the Huygens GCMS. The objective of this study is to exaroine the characteristics of various surface analogs as measured by the Huygens GCMS flight spare instrument, which is currently housed in our laboratory at NASA Goddard Space Flight Center (GSFC). This identification cannot be adequately accomplished through theoretical work alone since the thermodynamic properties of many species at these temperatnres (94 K, HASI measurement [5]) are not known.

  12. Mountains on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Kirk, R.L.; Lunine, J.I.; Stofan, E.R.; Lopes, R.M.C.; Wall, S.D.

    2007-01-01

    The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term "mountains." Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37?? and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years. ?? 2007 Elsevier Inc. All rights reserved.

  13. Regional mapping of aerosol population and surface albedo of Titan by the massive inversion of the Cassini/VIMS dataset

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Cornet, T.; Maltagliati, L.; Appéré, T.; Le Mouelic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.

    2017-12-01

    Mapping Titan's surface albedo is a necessary step to give reliable constraints on its composition. However, even after the end of the Cassini mission, surface albedo maps of Titan, especially over large regions, are still very rare, the surface windows being strongly affected by atmospheric contributions (absorption, scattering). A full radiative transfer model is an essential tool to remove these effects, but too time-consuming to treat systematically the 50000 hyperspectral images VIMS acquired since the beginning of the mission. We developed a massive inversion of VIMS data based on lookup tables computed from a state-of-the-art radiative transfer model in pseudo-spherical geometry, updated with new aerosol properties coming from our analysis of observations acquired recently by VIMS (solar occultations and emission phase curves). Once the physical properties of gases, aerosols and surface are fixed, the lookup tables are built for the remaining free parameters: the incidence, emergence and azimuth angles, given by navigation; and two products (the aerosol opacity and the surface albedo at all wavelengths). The lookup table grid was carefully selected after thorough testing. The data inversion on these pre-computed spectra (opportunely interpolated) is more than 1000 times faster than recalling the full radiative transfer at each minimization step. We present here the results from selected flybys. We invert mosaics composed by couples of flybys observing the same area at two different times. The composite albedo maps do not show significant discontinuities in any of the surface windows, suggesting a robust correction of the effects of the geometry (and thus the aerosols) on the observations. Maps of aerosol and albedo uncertainties are also provided, along with absolute errors. We are thus able to provide reliable surface albedo maps at pixel scale for entire regions of Titan and for the whole VIMS spectral range.

  14. Spatial and Temporal Variations in Titan's Surface Temperatures from Cassini CIRS Observations

    NASA Technical Reports Server (NTRS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; deKok, R.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2012-01-01

    We report a wide-ranging study of Titan's surface temperatures by analysis of the Moon's outgoing radiance through a spectral window in the thermal infrared at 19 mm (530/cm) characterized by lower atmospheric opacity. We begin by modeling Cassini Composite Infrared Spectrometer (CIRS) far infrared spectra collected in the period 2004-2010, using a radiative transfer forward model combined with a non-linear optimal estimation inversion method. At low-latitudes, we agree with the HASI near-surface temperature of about 94 K at 101S (Fulchignoni et al., 2005). We find a systematic decrease from the equator toward the poles, hemispherically asymmetric, of approx. 1 K at 60 deg. south and approx. 3 K at 60 deg. north, in general agreement with a previous analysis of CIRS data and with Voyager results from the previous northern winter. Subdividing the available database, corresponding to about one Titan season, into 3 consecutive periods, small seasonal changes of up to 2 K at 60 deg N became noticeable in the results. In addition, clear evidence of diurnal variations of the surface temperatures near the equator are observed for the first time: we find a trend of slowly increasing temperature from the morning to the early afternoon and a faster decrease during the night. The diurnal change is approx. 1.5 K, in agreement with model predictions for a surface with a thermal inertia between 300 and 600 J/ sq. m s (exp -1/2) / K. These results provide important constraints on coupled surface-atmosphere models of Titan's meteorology and atmospheric dynamic.

  15. Theoretical Calculations on Sediment Transport on Titan, and the Possible Production of Streamlined Forms

    NASA Technical Reports Server (NTRS)

    Burr, D. M.; Emery, J. P.; Lorenz, R. D.

    2005-01-01

    The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.

  16. Cassini RADAR at Titan : Results in 2014/2015

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-04-01

    Since the last EGU meeting, two Cassini flybys of Titan will have featured significant RADAR observations, illuminating our understanding of this enigmatic, complex world and its hydrocarbon seas in particular. T104, which executed in August 2014, featured a nadir-pointed altimetry swath over the northern part of Kraken Mare, Titan's largest sea. The echo characteristics showed that the sea surface was generally flat (to within a few mm), although a couple of areas appear to show some evidence of roughness. Intriguingly, altimetry processing which yielded (Mastrogiuseppe et al., GRL, 2014) the detection of a prominent bottom echo 160m beneath the surface of Ligeia Mare on T91 failed to yield a similar echo over most of Kraken on T104, suggesting either that Kraken is very deep (perhaps consistent with rather steep shoreline topography) or that the liquid in Kraken is more radar-absorbing than that in Ligeia, or both. The absorbing-liquid scenario may be consistent with a hydrological model for Titan's seas (Lorenz, GRL, 2014) wherein the most northerly seas receive more 'fresh' methane input, flushing ethane and other lower-volatility (and more radar-absorbing) solutes south into Kraken. T108, the last northern seas radar observation until T126 at the very end of the Cassini tour in 2017, is planned to execute on 11th January 2015, and preliminary results will be presented at the EGU meeting. This flyby features altimetry over part of Punga Mare, which will provide surface roughness information and possible bathymetry, permitting comparison of nadir-pointed data over all of Titan's three seas (Ligeia on T91; Kraken Mare on T104). The flyby also includes SAR observation of the so-called Ligeia 'Magic Island', the best-observed of several areas of varying radar brightness on Titan's seas. This brightness may be due to sediments suspended by currents, or by roughening of the surface either by local wind stress ('catspaw') or non-local stress (wind-driven currents). SAR imaging and altimetry over land areas on T104 and T108 will be reviewed (current flybys devote more close-approach time to altimetry, in part because of solar heating pointing constraints for other Cassini instruments), and selected interpretations and products of earlier coverage will be discussed.

  17. Watching Summer Clouds on Titan

    NASA Image and Video Library

    2016-11-04

    NASA's Cassini spacecraft watched clouds of methane moving across the far northern regions of Saturn's largest moon, Titan, on Oct. 29 and 30, 2016. Several sets of clouds develop, move over the surface and fade during the course of this movie sequence, which spans 11 hours, with one frame taken every 20 minutes. Most prominent are long cloud streaks that lie between 49 and 55 degrees north latitude. While the general region of cloud activity is persistent over the course of the observation, individual streaks appear to develop then fade. These clouds are measured to move at a speed of about 14 to 22 miles per hour (7 to 10 meters per second). There are also some small clouds over the region of small lakes farther north, including a bright cloud between Neagh Lacus and Punga Mare, which fade over the course of the movie. This small grouping of clouds is moving at a speed of about 0.7 to 1.4 miles per hour (1 to 2 meters per second). Time-lapse movies like this allow scientists to observe the dynamics of clouds as they develop, move over the surface and fade. A time-lapse movie can also help to distinguish between noise in images (for example from cosmic rays hitting the detector) and faint clouds or fog. In 2016, Cassini has intermittently observed clouds across the northern mid-latitudes of Titan, as well as within the north polar region -- an area known to contain numerous methane/ethane lakes and seas see PIA19657 and PIA17655. However, most of this year's observations designed for cloud monitoring have been short snapshots taken days, or weeks, apart. This observation provides Cassini's best opportunity in 2016 to study short-term cloud dynamics. Models of Titan's climate have predicted more cloud activity during early northern summer than what Cassini has observed so far, suggesting that the current understanding of the giant moon's changing seasons is incomplete. The mission will continue monitoring Titan's weather around the 2017 summer solstice in Titan's northern hemisphere. The movie was acquired using the Cassini narrow-angle camera using infrared filters to make the surface and tropospheric methane clouds visible. A movie is available at http://photojournal.jpl.nasa.gov/catalog/PIA21051

  18. Dunes on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  19. Asymmetric lake distribution on Titan mediated by methane transport due to atmospheric eddies

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Mitchell, Jonathan L.

    2015-11-01

    The observed north-south asymmetry in the distribution of Titan's seas and lakes has been proposed to be a consequence of orbital forcing affecting Titan's hydrologic cycle, as in the present the northern summer is longer but milder than its southern counterpart. Though recent general circulation models have simulated asymmetrical surface liquid distributions, the mechanism that generates this asymmetry has not been explained. In this work, we compare axisymmetric and three-dimensional simulations of Titan's atmospheric circulation with the Titan Atmospheric Model (TAM) [Lora et al. 2015, Icarus 250] to investigate the transport of moisture by the atmosphere. A significant hemispheric asymmetry only develops in the latter case, and we demonstrate that equatorward transport by high-latitude, baroclinic eddies is responsible. Eddies transport moisture from the high latitudes into the low and midlatitude cross-equatorial mean meridional circulation, producing an atmospheric "bucket brigade." The moisture transport by eddies is more intense in the south than in the north as a consequence of the orbital forcing, and therefore the result is net northward transport of methane, explaining the surface buildup in the north.

  20. Titan exploration with advanced systems. A study of future mission concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.

  1. Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Sotin, Christophe; Clenet, H.; Clark, R.N.; Buratti, B.; Brown, R.H.; McCord, T.B.; Nicholson, P.D.; Baines, K.H.

    2006-01-01

    Titan is one of the primary scientific objectives of the NASA-ESA-ASI Cassini-Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4-5.2 ??m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini-Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 ??m images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titan's surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak. ?? 2006 Elsevier Ltd. All rights reserved.

  2. The impact of runoff and surface hydrology on Titan's climate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs.

  3. Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith

    USGS Publications Warehouse

    Hayes, A.; Aharonson, O.; Callahan, P.; Elachi, C.; Gim, Y.; Kirk, R.; Lewis, K.; Lopes, R.; Lorenz, R.; Lunine, J.; Mitchell, Ken; Mitri, Giuseppe; Stofan, E.; Wall, S.

    2008-01-01

    Synthetic Aperture Radar (SAR) images of Titan's north polar region reveal quasi-circular to complex features which are interpreted to be liquid hydrocarbon lakes. We investigate methane transport in Titan's hydrologic cycle using the global distribution of lake features. As of May 2007, the SAR data set covers ???22% of the surface and indicates multiple lake morphologies which are correlated across the polar region. Lakes are limited to latitudes above 55??N and vary from <10 to more than 100,000 km2. The size and location of lakes provide constraints on parameters associated with subsurface transport. Using porous media properties inferred from Huygens probe observations, timescales for flow into and out of observed lakes are shown to be in the tens of years, similar to seasonal cycles. Derived timescales are compared to the time between collocated SAR observations in order to consider the role of subsurface transport in Titan's hydrologic cycle. Copyright 2008 by the American Geophysical Union.

  4. Cassini/Huygens Investigations of Titan's Methane Cycle

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Penteado, P.

    2008-12-01

    In Titan's atmosphere, the second most abundant constituent, methane, exists as a gas, liquid and solid, and cycles between the atmosphere and surface. Similar to Earth's hydrological cycle, Titan sports clouds, rain, and lakes. Yet, Titan's cycle differs dramatically from its terrestrial counterpart, and reveals the workings of weather in an atmosphere that is ten times thicker than Earth's atmosphere, that is two orders of magnitude less illuminated, and that involves a different condensable. Measurements of Titan's troposphere, where the methane cycle plays out, are limited largely to spectral images of Titan's clouds, several temperature profiles by Voyager, Huygens and Cassini, recent Keck spectra of the surface methane humidity, and one vertical profile of Titan's methane abundance, measured on a summer afternoon in Titan's tropical atmosphere by the Huygens probe. The salient features of Titan's methane cycle are distinctly alien: clouds have predominated the northern and southern polar atmospheres; the one humidity profile precisely matches the profile (of cartoonish simplicity) used in pre-Cassini models, and surface features correlate with latitude. Data of Titan's troposphere are analyzed with thermodynamic and radiative transfer calculations, and synthesized with other studies of Titan's stratosphere and surface, to investigate the workings of Titan's methane cycle. At the end of Cassini's nominal mission, we find that Titan's weather, climate and surface-to-atmosphere exchange of volatiles vastly differs from the manifestation of these processes on Earth, largely as a result of different basic characteristics of these planetary bodies. The talk ends with a comparison between Titan and Earth's tropospheres, their fundamental properties, the energetics of their condensible cycles, their weather and climates. References: Griffith C.A. et al. Titan's Tropical Storms in an Evolving Atmosphere. Ap.J. In Press (2008). Griffith C.A. Storms, Polar Deposits, and the Methane Cycle in Titan's Atmosphere. Phil. Trans. Royal Society A. In Press (2008). Penteado, P.F. & C.A. Griffith Ground-based measurements of the methane distribution on Titan. In Preparation for submission to Icarus Griffith C.A. et al. Evidence for a Polar Ethane Cloud on Titan, Science, 313, 1620 (2006). Griffith C.A. et al. The Evolution of Titan's Mid-Latitude Clouds, Science, 310, 474 (2005).

  5. Aromatic, Alphatic, Enigmatic: The Chemistry of Titan

    NASA Astrophysics Data System (ADS)

    Horst, Sarah

    2017-10-01

    The extraordinary complexity of Titan’s atmospheric chemistry far surpasses that of any other solar system atmosphere. With its thick N2 atmosphere and stable bodies of liquid on its surface, Titan also possesses many physical processes that are similar to those that occur on Earth. The connection between Titan’s surface and atmosphere is unique in our solar system; atmospheric chemistry produces materials that are deposited on the surface and subsequently altered by surface-atmosphere interactions such as aeolian and fluvial processes resulting in the formation of extensive dune fields and expansive lakes and seas. Titan’s atmosphere is favorable for organic haze formation, which combined with the presence of some oxygen-bearing molecules indicates that Titan’s atmosphere may produce molecules of prebiotic interest. The combination of organics and liquid, in the form of water in a subsurface ocean and methane/ethane in the surface lakes and seas, means that Titan may be the ideal place in the solar system to test ideas about habitability, prebiotic chemistry, and the ubiquity and diversity of life in the universe. I will review our current understanding of chemistry on Titan forged from the powerful combination of Earth-based observations, remote sensing and in situ spacecraft measurements, laboratory experiments, and models. I will conclude with some of the questions that remain after Cassini-Huygens.

  6. Titan Explorer: The Next Step in the Exploration of a Mysterious World

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Wright, Henry S.

    2005-01-01

    The Titan Explorer Mission outlined in this report is a proposed next step in the exploration of Titan, following the highly successful Huygens Titan probe of 2005. The proposed Titan Explorer Mission consists of an Orbiter and an Airship that traverses the atmosphere of Titan and can land on its surface. The Titan Explorer Mission is science driven and addresses some of the fundamental questions about the atmosphere, surface and evolution of Titan, which will add to our understanding of the origin and evolution of life on Earth and assess the likelihood of life elsewhere in the Solar System.

  7. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  8. Al{sub 2}O{sub 3} - TiO{sub 2}-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and themore » observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 {mu}m. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route.« less

  9. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields

    USGS Publications Warehouse

    Le, Gall A.; Janssen, M.A.; Wye, L.C.; Hayes, A.G.; Radebaugh, J.; Savage, C.; Zebker, H.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Lopes, R.M.C.; Wall, S.; Callahan, P.; Stofan, E.R.; Farr, Tom

    2011-01-01

    Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover ???12.5% of Titan's surface, which corresponds to an area of ???10millionkm2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ???11??, dune fields tend to become less emissive and brighter as one moves northward. Above ???11?? this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ???14??. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (???5?? latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan's asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan's northern tropics. ?? 2011 Elsevier Inc.

  10. Gravity waves in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1994-01-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.

  11. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Astrophysics Data System (ADS)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  12. Studying Titan's surface photometry in the 5 microns atmospheric window with the Cassini/VIMS instrument

    NASA Astrophysics Data System (ADS)

    Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2014-12-01

    Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on Titan, has been decomposed into a MySQL relational database in order to perform the present study looking at both spatial and temporal (seasonal) aspects.

  13. Large catchment area recharges Titan's Ontario Lacus

    NASA Astrophysics Data System (ADS)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  14. Cosmic-rays induced Titan tholins and their astrobiological significances

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Taniuchi, Toshinori; Hosogai, Tomohiro; Kaneko, Takeo; Takano, Yoshinori; Khare, Bishun; McKay, Chris

    Titan is the largest satellite of Saturn. It is quite unique satellite since it has a dense atmosphere composed of nitrogen and methane, and has been sometimes considered as a model of primitive Earth. In Titan atmosphere, a wide variety of organic compounds and mists made of complex organics. Such solid complex organics are often referred to as tholins. A number of laboratory experiments simulating reactions in Titan atmosphere have been conducted. In most of them, ultraviolet light and discharges (simulating actions of electrons in Saturn magnetosphere) were used, which were simulation of the reactions in upper dilute atmosphere of Titan. We examined possible formation of organic compounds in the lower dense atmosphere of Titan, where cosmic rays are major energies. A Mixture of 35 Torr of methane and 665 Torr of nitrogen was irradiated with high-energy protons (3 MeV) from a van de Graaff accelerator (TIT, Japan) or from a Tandem accelerator (TIARA, QUBS, JAEA, Japan). In some experiments, 13 C-labelled methane was used. We also performed plasma discharges in a mixture of methane (10 %) and nitrogen (90 %) to simulate the reactions in the upper atmosphere of Titan. Solid products by proton irradiation and those by plasma discharges are hereafter referred to as PI-tholins and PD-tholins, respectively. The resulting PI-tholins were observed with SEM and AFM. They were characterized by pyrolysis-GC/MS, gel permeation chromatography, FT-IR, etc. Amino acids in PI-and PD-tholins were analyzed by HPLC, GC/MS and MALDI-TOF-MS after acid hydrolysis. 18 O-Labelled water was used in some cases during hydrolysis. Filamentary and/or globular-like structures were observed by SEM and AFM. By pyrolysis-GC/MS of PI-tholins, ammonia and hydrogen cyanide were detected, which was the same as the results obtained in Titan atmosphere during the Huygens mission. A wide variety of amino acids were detected after hydrolysis of both tholins. It was proved that oxygen atoms in the amino acids in PI-tholins were incorporated from water during hydrolysis by the experiments with 18 O-Labelled water. Estimating from the G-values of amino acids and the flux of each energy in Titan atmosphere, it is strongly suggested that amino acid precursors in the form of tholins can be produced mainly in the lower Titan atmosphere by cosmic rays. The tholins containing amino acid precursors could be concentrated on some part of Titan surface by the flow of liquid methane. Amino acid precursors on the surface of Titan is promising targets in future Titan missions.

  15. Greenhouse models of the atmosphere of Titan.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1973-01-01

    The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.

  16. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This energy input evidently drives the large positive and negative ions observed below approximately 1100 km altitude with ion masses exceeding 10,000 daltons. We refer to these ions as seed particles for the aerosols observed below 300 km altitude. These seed particles can be formed, for example, from the polymerization of acetylene (C2H2) and benzene (C6H6) molecules in Titan's upper atmosphere to form polycyclic aromatic hydrocarbons (PAH) and/or fullerenes (C60). In the case of fullerenes, which are hollow spherical carbon shells, magnetospheric keV [O(+)] ions can become trapped inside the fullerenes and eventually find themselves inside the aerosols as free oxygen. The aerosols are then expected to fall to Titan's surface as polymerized hydrocarbons with trapped free oxygen where unknown surface chemistry can take place.

  17. The thermal structure of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1989-01-01

    The present radiative-convective model of the Titan atmosphere thermal structure obtains the solar and IR radiation in a series of spectral intervals with vertical resolution. Haze properties have been determined with a microphysics model encompassing a minimum of free parameters. It is determined that gas and haze opacity alone, using temperatures established by Voyager observations, yields a model that is within a few percent of the radiative convective balance throughout the Titan atmosphere. Model calculations of the surface temperature are generally colder than the observed value by 5-10 K; better agreement is obtained through adjustment of the model parameters. Sunlight absorption by stratospheric haze and pressure-induced gas opacity in the IR are the most important thermal structure-controlling factors.

  18. The Cassini UVIS stellar probe of the Titan atmosphere.

    PubMed

    Shemansky, Donald E; Stewart, A Ian F; West, Robert A; Esposito, Larry W; Hallett, Janet T; Liu, Xianming

    2005-05-13

    The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the extinction of photons from two stars by the atmosphere of Titan during the Titan flyby. Six species were identified and measured: methane, acetylene, ethylene, ethane, diacetylene, and hydrogen cyanide. The observations cover altitudes from 450 to 1600 kilometers above the surface. A mesopause is inferred from extraction of the temperature structure of methane, located at 615 km with a temperature minimum of 114 kelvin. The asymptotic kinetic temperature at the top of the atmosphere determined from this experiment is 151 kelvin. The higher order hydrocarbons and hydrogen cyanide peak sharply in abundance and are undetectable below altitudes ranging from 750 to 600 km, leaving methane as the only identifiable carbonaceous molecule in this experiment below 600 km.

  19. Dark Spots on Titan

    NASA Image and Video Library

    2005-05-02

    This recent image of Titan reveals more complex patterns of bright and dark regions on the surface, including a small, dark, circular feature, completely surrounded by brighter material. During the two most recent flybys of Titan, on March 31 and April 16, 2005, Cassini captured a number of images of the hemisphere of Titan that faces Saturn. The image at the left is taken from a mosaic of images obtained in March 2005 (see PIA06222) and shows the location of the more recently acquired image at the right. The new image shows intriguing details in the bright and dark patterns near an 80-kilometer-wide (50-mile) crater seen first by Cassini's synthetic aperture radar experiment during a Titan flyby in February 2005 (see PIA07368) and subsequently seen by the imaging science subsystem cameras as a dark spot (center of the image at the left). Interestingly, a smaller, roughly 20-kilometer-wide (12-mile), dark and circular feature can be seen within an irregularly-shaped, brighter ring, and is similar to the larger dark spot associated with the radar crater. However, the imaging cameras see only brightness variations, and without topographic information, the identity of this feature as an impact crater cannot be conclusively determined from this image. The visual infrared mapping spectrometer, which is sensitive to longer wavelengths where Titan's atmospheric haze is less obscuring -- observed this area simultaneously with the imaging cameras, so those data, and perhaps future observations by Cassini's radar, may help to answer the question of this feature's origin. The new image at the right consists of five images that have been added together and enhanced to bring out surface detail and to reduce noise, although some camera artifacts remain. These images were taken with the Cassini spacecraft narrow-angle camera using a filter sensitive to wavelengths of infrared light centered at 938 nanometers -- considered to be the imaging science subsystem's best spectral filter for observing the surface of Titan. This view was acquired from a distance of 33,000 kilometers (20,500 miles). The pixel scale of this image is 390 meters (0.2 miles) per pixel, although the actual resolution is likely to be several times larger. http://photojournal.jpl.nasa.gov/catalog/PIA06234

  20. Dragonfly: Investigating the Surface Composition of Titan

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Lawrence, D. J.; Barnes, J. W.; Lorenz, R. D.; Horst, S. M.; Zacny, K.; Freissinet, C.; Parsons, A. M.; Turtle, E. P.; Trainer, M. G.; hide

    2018-01-01

    Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments.

  1. A RT-based Technique for the Analysis and the Removal of Titan's Atmosphere by Cassini/VIMS-IR data

    NASA Astrophysics Data System (ADS)

    Sindoni, G.; Tosi, F.; Adriani, A.; Moriconi, M. L.; D'Aversa, E.; Grassi, D.; Oliva, F.; Dinelli, B. M.; Castelli, E.

    2015-12-01

    Since 2004, the Visual and Infrared Mapping Spectrometer (VIMS), together with the CIRS and UVIS spectrometers, aboard the Cassini spacecraft has provided insight on Saturn and Titan atmospheres through remote sensing observations. The presence of clouds and aerosols in Titan's dense atmosphere makes the analysis of the surface radiation a difficult task. For this purpose, an atmospheric radiative transfer (RT) model is required. The implementation of a RT code, which includes multiple scattering, in an inversion algorithm based on the Bayesian approach, can provide strong constraints about both the surface albedo and the atmospheric composition. The application of this retrieval procedure we have developed to VIMS-IR spectra acquired in nadir or slant geometries allows us to retrieve the equivalent opacity of Titan's atmosphere in terms of variable aerosols and gaseous content. Thus, the separation of the atmospheric and surface contributions in the observed spectrum is possible. The atmospheric removal procedure was tested on the spectral range 1-2.2μm of publicly available VIMS data covering the Ontario Lacus and Ligeia Mare regions. The retrieval of the accurate composition of Titan's atmosphere is a much more complex task. So far, the information about the vertical structure of the atmosphere by limb spectra was mostly derived under conditions where the scattering could be neglected [1,2]. Indeed, since the very high aerosol load in the middle-low atmosphere produces strong scattering effects on the measured spectra, the analysis requires a RT modeling taking into account multiple scattering in a spherical-shell geometry. Therefore the use of an innovative method we are developing based on the Monte-Carlo approach, can provide important information about the vertical distribution of the aerosols and the gases composing Titan's atmosphere.[1]Bellucci et al., (2009). Icarus, 201, Issue 1, p. 198-216.[2]de Kok et al., (2007). Icarus, 191, Issue 1, p. 223-235.

  2. Scientific and synergistic lessons learned from the Cassini-Huygens mission

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena

    The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. Titan is also rich in organic molecules—more so in its surface and atmosphere than anyplace in the solar system, including Earth [2-4]. These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. I will discuss our current understanding of Titan's complex environment in view of the Cassini-Huygens mission results [1-8], which demonstrated the power of synergistic remote and in situ exploration. I will focus on the atmospheric structure (temperature and composition), and the surface nature. I will show how these and other elements can give us clues as to the origin and evolution of the satellite, and how they connect to the observations of the other satellites, Enceladus in particular. Future space missions to Titan can help us understand the kronian and also our Solar System as a whole. Finally, I will describe the future exploration of Titan and the Saturnian System with TSSM, a mission studied jointly by ESA and NASA in 2008 and prioritized second for a launch around 2023-2025. References 1. Coustenis, A., Hirtzig, M., 2009. Cassini-Huygens results on Titan's surface. Research in Astronomy and Astrophysics 9, 249-268. 2. Coustenis et al., 2010, Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission Icarus, in press. 3. Flasar, F. M., et al., 2005. Titan's atmospheric temperatures, winds, and composition. Science, 308, 975-978. 4. Fulchignoni, M., et al, 2005. In situ measurements of the physical characteristics of Titan's environment. Nature, 438, 785-791, doi:10.1038/nature04126. 5. Lebreton, J-P., Coustenis, A., et al., 2009. Results from the Huygens probe on Titan. Astron. & Astrophys. Rev. 17, 149-179. 6. Tomasko, M. G., et al., 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 438, 765-778, doi:10.1038/nature04126.

  3. Polyimine and its potential significance for prebiotic chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Rahm, Martin; Lunine, Jonathan I.; Usher, David; Shalloway, David

    2016-10-01

    Hydrogen cyanide (HCN), a key reagent in prebiotic chemistry, is being generated in large amounts in the atmosphere of Titan. Contradictions between Cassini-Huygens measurements of the atmosphere and the surface of Titan, suggest that HCN is undergoing reaction chemistry, despite the frigid temperatures of 90-94 K. We will discuss computational results [1] investigating polyimine as one potential explanation for this observation. Polyimine is a polymer identified as the major component of polymerized HCN in laboratory experiments. It is flexible, which aids low temperature mobility, and it is able to form intermolecular and intramolecular =N-H...N hydrogen bonds, allowing for different polymorphs. Polymorphs have been predicted and explored by density functional theory coupled with a structure-searching algorithm. We have calculated the thermodynamics of polymerization, and show that polyimine is capable of absorbing light in a window of relative transparency in Titan's atmosphere. Light absorption and the possible catalytic functions of polyimine are suggestive of it driving photochemistry on the surface, with potential prebiotic implications.References:[1] M. Rahm, J. I. Lunine, D. Usher, D. Shalloway, "Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan", PNAS, early view. doi: 10.1073/pnas.1606634113

  4. Determining Titan surface topography from Cassini SAR data

    USGS Publications Warehouse

    Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini

    2009-01-01

    A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.

  5. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    USGS Publications Warehouse

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  6. Effects of topography on the dune forming winds on Titan

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, O. B.; Friedson, A. J.

    2013-10-01

    Cassini observed hundreds of dune fields on Titan, nearly all of which lie in the tropics and suggest westerly (from west to east) winds dominate at the surface. Most GCMs however have obtained easterly surface winds in the tropics, seemingly contradicting the wind direction suggested by the dunes. This has led to an active debate in the community about the origin of the dune forming winds on Titan and their direction and modality. This discussion is mostly driven by a study of Earth dunes seen as analogous to Titan. One can find examples of dunes on Earth that fit several wind regimes. To date only one GCM, that of Tokano (2008, 2010), has presented detailed analysis of its near surface winds and their dune forming capabilities. Despite the bulk of the wind being easterly, this GCM produces faster westerlies at equinox, thus transporting sand to the east. Our model, the Titan CAM (Friedson et al. 2009), is unable to reproduce the fast westerlies. Our GCM has been updated to include realistic topography released by the Cassini radar team. Preliminary results suggest our tropical wind regime now has net westerly winds in the tropics, albeit weak. References: Tokano, T. 2008. Icarus 194, 243-262. Tokano, T. 2010. Aeolian Research 2, 113-127. Friedson, J. et al. 2009. Planet. Sp. Sci., 57, 1931-1949.

  7. Huygens Highlights and lessons learned

    NASA Astrophysics Data System (ADS)

    Lebreton, Jean-Pierre

    2015-04-01

    Ten years ago, on 14 January 2005, the Huygens Probe parachuted down to the surface of Titan, Saturn's largest moon. Huygens is part of the international Cassini/Huygens mission, a joint endeavor of NASA, the European Space Agency, and Agenzia Spaziale Italiana. Cassini/Huygens, comprising the NASA-provided Saturn Orbiter and the ESA-provided Huygens probe, was launched in October 1997. It arrived at Saturn in early July 2004. Huygens was released on the 3rd orbit around Saturn. It made measurements during the hypersonic entry, the descent, and for more than one hour on the surface. Unique in situ characterization of the atmosphere along the entry and descent trajectory and of the surface at the landing site was provided, revealing that many Earth-like processes were at work on Titan, a very fascinating methane world. Huygens observations also allowed inferring the ice crust thickness, hence an estimation of the depth of the icy crust/liquid water ocean interface. Huygens measurements are also used as ground-truth of the measurements made by the orbiter during Titan flybys. In this presentation, after a brief review of the major mission milestones, Huygens achievements are discussed in the context of the progress made in our understanding of Titan during the Cassini/Huygens mission. Lessons learned for the future in situ exploration of Titan are addressed. * Most of this work was performed while at ESA/ESTEC, Noordwijk, The Netherlands

  8. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, R.; Clayton, J.A.; Kirk, R.L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ???6700-10,000 Titan years (???2.0-3.0??105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1m and 1.5m flows); these lowering rates increase to ???27,000-41,000 Titan years (???8.0-12.0??105 Earth years) when flows in the north polar region are restricted to summer months. ?? 2011 Elsevier Inc.

  9. The greenhouse of Titan.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Analysis of non-gray radiative equilibrium and gray convective equilibrium on Titan suggests that a massive molecular-hydrogen greenhouse effect may be responsible for the disagreement between the observed IR temperatures and the equilibrium temperature of an atmosphereless Titan. Calculations of convection indicate a probable minimum optical depth of 14 which corresponds to a molecular hydrogen shell of substantial thickness with total pressures of about 0.1 bar. It is suggested that there is an equilibrium between outgassing and blow-off on the one hand and accretion from the protons trapped in a hypothetical Saturnian magnetic field on the other, in the present atmosphere of Titan. It is believed that an outgassing equivalent to the volatilization of a few kilometers of subsurface ice is required to maintain the present blow-off rate without compensation for all geological time. The presence of an extensive hydrogen corona around Titan is postulated, with surface temperatures up to 200 K.

  10. Impact Craters on Titan? Cassini RADAR View

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Lopes, Rosaly; Stofan, Ellen R.; Paganelli, Flora; Elachi, Charles

    2005-01-01

    Titan is a planet-size (diameter of 5,150 km) satellite of Saturn that is currently being investigated by the Cassini spacecraft. Thus far only one flyby (Oct. 26, 2004; Ta) has occurred when radar images were obtained. In February, 2005, and approximately 20 more times in the next four years, additional radar swaths will be acquired. Each full swath images about 1% of Titan s surface at 13.78 GHz (Ku-band) with a maximum resolution of 400 m. The Ta radar pass [1] demonstrated that Titan has a solid surface with multiple types of landforms. However, there is no compelling detection of impact craters in this first radar swath. Dione, Tethys and other satellites of Saturn are intensely cratered, there is no way that Titan could have escaped a similar impact cratering past; thus there must be ongoing dynamic surface processes that erase impact craters (and other landforms) on Titan. The surface of Titan must be very young and the resurfacing rate must be significantly higher than the impact cratering rate.

  11. Titan's ground-based observations in the near-infrared.

    NASA Astrophysics Data System (ADS)

    Negrao, A.; Coustenis, A.; Hirtzig, M.; Lellouch, E.; Maillard, J.-P.; Rannou, P.; Gendron, E.; Drossart, P.; Combes, M.; Schmitt, B.

    We have observed Titan from 1991 to 2005 between 0.8 and 2.5 microns with the Fourier Transform Spectrometer (FTS) at the Canada France Hawaii Telescope (CFHT) and the NACO adaptive optics system, at the ESO Very Large Telescope (VLT). The CFHT dataset allows us (by applying a microphysical and radiative transfer model) to explore five methane windows at 0.94, 1.08, 1.28, 1.58 and 2 microns at different longitudes and resolutions for a disk average. We will also present a selected sample of the spectra we acquired with VLT/NACO on January 16, 2005, in the K band between 2.03 and 2.40 micron (Negrão et al., 2006b). Our spectra, taken with adaptive optics, include the Huygens landing site and surrounding dark and bright areas. A comparative study of the methane absorption coefficients currently available from different sources was also performed demonstrating the great sensitivity of surface inferences to this model parameter. Based on our results, we recommend the methane absorption coefficients produced by Boudon et al. (2006) and Irwin et al. (2006) for future studies of Titan. The analysis of the data yields information on the atmosphere and surface properties. We find our data to be compatible with mixtures of water ice and tholin but have strong indication for the presence of an additional as yet unidentified component (or components) for which we offer a spectral description. The analysis of the VLT/NACO data seem to indicate a strong decrease of Titan's surface albedo between 2.03 and 2.12 microns in the Huygens landing site area. This is compatible with the presence of ices such as CH4 and H2 O at the surface. References: Negrão, A., et al. 2006a. Titan's surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra Plan. Space Sci., in press; 1 Negrão, A., et al. 2006b. 2 micron spectroscopy of Huygens probe landing site on Titan with VLT/NACO. J. Geophys. Res. Planets, in press; Boudon, V., et al., 2006. The Vibrational Levels of Methane Obtained from Analyses of High-Resolution Spectra. J. Quant Spectrosc., in press; Irwin, P. G. J., et al, 2006. Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm-1 and implications for interpretation of outer planet spectra. Icarus, 181, 309-319. 2

  12. NIAC Phase 1 Final Study Report on Titan Aerial Daughtercraft

    NASA Technical Reports Server (NTRS)

    Matthies, Larry

    2017-01-01

    Saturns giant moon Titan has become one of the most fascinating bodies in the Solar System. Even though it is a billion miles from Earth, data from the Cassini mission reveals that Titan has a very diverse, Earth-like surface, with mountains, fluvial channels, lakes, evaporite basins, plains, dunes, and seas [Lopes 2010] (Figure 1). But unlike Earth, Titans surface likely is composed of organic chemistry products derived from complex atmospheric photochemistry [Lorenz 2008]. In addition, Titan has an active meteorological system with observed storms and precipitation-induced surface darkening suggesting a hydrocarbon cycle analogous to Earths water cycle [Turtle 2011].Titan is the richest laboratory in the solar system for studying prebiotic chemistry, which makes studying its chemistry from the surface and in the atmosphere one of the most important objectives in planetary science [Decadal 2011]. The diversity of surface features on Titan related to organic solids and liquids makes long-range mobility with surface access important [Decadal 2011]. This has not been possible to date, because mission concepts have had either no mobility (landers), no surface access (balloons and airplanes), or low maturity, high risk, and/or high development costs for this environment (e,g. large, self-sufficient, long-duration helicopters). Enabling in situ mobility could revolutionize Titan exploration, similarly to the way rovers revolutionized Mars exploration. Recent progress on several fronts has suggested that small-scale rotorcraft deployed as daughtercraft from a lander or balloon mothercraft may be an effective, affordable approach to expanding Titan surface access. This includes rapid progress on autonomous navigation capabilities of such aircraft for terrestrial applications and on miniaturization, driven by the consumer mobile electronics market, of high performance of sensors, processors, and other avionics components needed for such aircraft. Chemical analysis, for example with a mass spectrometer, will be important to any Titan surface mission. Anticipating that it may be more practical to host chemical analysis instruments on a mothership than a daughtercraft, we defined system and mission concepts that deploy a small rotorcraft, termed a Titan Aerial Daughtercraft (TAD), from a lander or balloon to perform high-resolution imaging and mapping, potentially land to acquire microscopic images or other in situ measurements, and acquire samples to return to analytical instruments on the mothership. In principle, the ability to recharge batteries in TAD from a radioisotope or other long-lived power source on the mothership could enable multiple sorties. For a lander-based mission, a variety of landing sites is conceivable, including near lake margins, in dry lake beds, or in regions of plains, dunes, or putative cryovolanic or impact melt features. Such missions may require landing with greater precision than in previous missions (Huygens) and mission studies; this could also enhance the ability of TAD to reach interesting terrain from the landing site. Precision descent may also benefit balloon missions, with or without a daughtercraft, by increasing the probability that the balloon will drift over desired terrain early in its mission. Given these potential benefits, the overall concept studied here includes brief consideration of precision descent for landing or balloon deployment, followed by one or more sorties by a rotorcraft deployed from the mothership, with the ability to return to the mothership.

  13. Peering Through Titan Haze

    NASA Image and Video Library

    2015-12-04

    This composite image shows an infrared view of Saturn's moon Titan from NASA's Cassini spacecraft, acquired during the mission's "T-114" flyby on Nov. 13, 2015. The spacecraft's visual and infrared mapping spectrometer (VIMS) instrument made these observations, in which blue represents wavelengths centered at 1.3 microns, green represents 2.0 microns, and red represents 5.0 microns. A view at visible wavelengths (centered around 0.5 microns) would show only Titan's hazy atmosphere (as in PIA14909). The near-infrared wavelengths in this image allow Cassini's vision to penetrate the haze and reveal the moon's surface. During this Titan flyby, the spacecraft's closest-approach altitude was 6,200 miles (10,000 kilometers), which is considerably higher than those of typical flybys, which are around 750 miles (1,200 kilometers). The high flyby allowed VIMS to gather moderate-resolution views over wide areas (typically at a few kilometers per pixel). The view looks toward terrain that is mostly on the Saturn-facing hemisphere of Titan. The scene features the parallel, dark, dune-filled regions named Fensal (to the north) and Aztlan (to the south), which form the shape of a sideways letter "H." Several places on the image show the surface at higher resolution than elsewhere. These areas, called subframes, show more detail because they were acquired near closest approach. They have finer resolution, but cover smaller areas than data obtained when Cassini was farther away from Titan. Near the limb at left, above center, is the best VIMS view so far of Titan's largest confirmed impact crater, Menrva (first seen by the RADAR instrument in PIA07365). Similarly detailed subframes show eastern Xanadu, the basin Hotei Regio, and channels within bright terrains east of Xanadu. (For Titan maps with named features see http://planetarynames.wr.usgs.gov/Page/TITAN/target.) Due to the changing Saturnian seasons, in this late northern spring view, the illumination is significantly changed from that seen by VIMS during the "T-9" flyby on December 26, 2005 (PIA02145). The sun has moved higher in the sky in Titan's northern hemisphere, and lower in the sky in the south, as northern summer approaches. This change in the sun's angle with respect to Titan's surface has made high southern latitudes appear darker, while northern latitudes appear brighter. http://photojournal.jpl.nasa.gov/catalog/PIA20016

  14. On the Discovery of CO Nighttime Emissions on Titan by Cassini/VIMS: Derived Stratospheric Abundances and Geological Implications

    NASA Technical Reports Server (NTRS)

    Bainesa, Kevin H.; Drossart, Pierre; Lopez-Valverde, Miguel A.; Atreya, Sushil K.; Sotin, Christophe; Momary, Thomas W.; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Philip D.

    2006-01-01

    We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119-147] in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 microns. For CH3D, the prominent Q branch of the nu(2) fundamental band of CH3D near 4.55 microns is apparent. CO2 emissions from the strong nu(3) vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32 +/- 15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is similar to 2.9 +/- 1.5 x 10(exp 14) kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (similar to 0.5-1.0 Gyr), we find a mean CO atmospheric production rate of 6 +/- 3 x 10(exp 5) kg yr(exp -1). Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779-784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8 +/- 0.9 x 10(exp -4), based on an average methane surface emission rate over the past 0.5 Gyr of 1.3 x 10(exp -13) gm cm(exp -2) s(exp -1) as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi: 10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer-Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is approximately 0.02 km(exp 3) yr (exp -1), a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant geological processes reshaping the surface of Titan.

  15. On the discovery of CO nighttime emissions on Titan by Cassini/VIMS: Derived stratospheric abundances and geological implications

    USGS Publications Warehouse

    Baines, K.H.; Drossart, P.; Lopez-Valverde, M. A.; Atreya, S.K.; Sotin, Christophe; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2006-01-01

    We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119-147]. in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 ??m. For CH3D, the prominent Q branch of the ??2 fundamental band of CH3D near 4.55 ??m is apparent. CO2 emissions from the strong v3 vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32??15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is ???2.9??1.5??1014 kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (???0.5-1.0 Gyr), we find a mean CO atmospheric production rate of 6??3??105 kg yr-1. Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779-784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8??0.9??10-4, based on an average methane surface emission rate over the past 0.5 Gyr of 1.3??10-13 gm cm-2 s-1 as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi:10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer-Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is ???0.02 km3 yr-1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan. ?? 2006 Elsevier Ltd. All rights reserved.

  16. A Rover Concept for Exploring the Surface of Titan

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Shirley, J. H.; Schriener, T. M.

    2005-12-01

    Titan is one of the premier targets for future in-situ exploration in the outer solar system, as unique "pre-biotic" organic chemical processes may be presently occurring at its surface. A mission to the surface of Titan is not as technically difficult as one to Europa; Titan's atmosphere allows for aerobraking descents, the radiation environment is not a mission-critical factor, and the organic materials we want to sample should be widely distributed (and easily accessible). The recent Titan landing by the Huygens Probe has focused considerable scientific interest on this remarkable body, and future missions to Titan are under consideration. We evaluated a Titan Rover mission concept that would have the capability to survive on Titan's surface for a period of 3 terrestrial years. This long mission lifetime is enabled by employing a radioisotope power system (RPS). To minimize costs and use as much flight heritage as possible, we began by assuming that system masses, dimensions, and instrumentation would be comparable to those of the Mars Surface Lander (MSL). We found that a rover configuration with a 110 W (electric) power system and four 1.5 m diameter inflatable wheels could potentially enable traverse distances up to ~500 km, depending on science and mission requirements, surface environments, and the capability of the autonomous navigation system employed. Direct to Earth communication would simplify the mission by removing the need for a relay orbiter. We will describe our strawman instrument payload and rover subsystems. Trades between the potentially available RPS systems (RTG, Advanced RTG, TPV, SRG, Advanced Stirling and Brayton RPSs) will be outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  17. The Case for Cryovolcanism on Saturns Moon Titan

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.

    2009-04-01

    Two regions on the surface of Saturn's satellite Titan have been observed to change reflectance during the Cassini spacecraft's four-year, orbital tour of the Saturnian system. These changes were documented by Cassini's Visual and Infrared Mapping Spectrometer. Titan's atmosphere is opaque at visual wavelengths due to methane, but VIMS is able to image the surface through "windows" at infrared wavelengths where the methane is relatively transparent[1,2]. Cassini RADAR images show that at least one of these regions, Hotei Arcus (26S,78W), exhibits lobate "flow" forms, consistent with the morphology of volcanic terrain [3]. Here we report the discovery of additional lobate "flow" patterns on Titan's surface at Hotei Arcus, based on VIMS images recently obtained during close flybys by Cassini. This new evidence, combined with the previous evidence from RADAR images, together with the earlier brightness variability seen at these same locations by VIMS, supports the hypothesis of volcanic eruptions. If so, then Titan is presently geologically active on the surface, and in its interior. Cassini encountered Titan at very close range on 2008-11-19-13:58 and again on 2008-12-05-12:38. These epochs are called T47 and T48. The slant distance from the spacecraft to Hotei Arcus was 27,051 and 31,787 km. for T47 and T48 respectively. We report changes that occurred since the T5 flyby (2005-04-16-13:17; range 117042 km). Previously, VIMS was able to see brightness changes but not morphological change. Now, comparison of earlier higher-resolution data (T5) with the recent T47 and T48 data reveal changes of the surface reflectance and morphology in the Hotei region. This is the first evidence from VIMS that shows that Hotei Arcus is morphology consistent with volcanic terrain. If Titan is currently active then these results raise for discussion the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan's chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? References: [1]R. M. Nelson et al., 2008a accepted in Icarus [2]R. M. Nelson et al., 2008b accepted in GRL. [3]S. D. Wall et al. 2009 accepted in GRL. This work performed at JPL under contract with NASA.

  18. The Exploration of Titan and the Saturnian System

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. Titan is also rich in organic molecules—more so in its surface and atmosphere than anyplace in the solar system, including Earth [4]. These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. I will discuss our current understanding of Titan's complex environment in view of recent exploration, in particular on the atmospheric structure (temperature and composition), and the surface nature. I will show how these and other elements can give us clues as to the origin and evolution of the satellite, and how they connect to the observations of the planet and the other satellites and rings. Future space missions to Titan can help us understand the kronian and also our Solar System as a whole. In particular, I will describe the future exploration of Titan and the Saturnian System with TSSM, a mission studied jointly by ESA and NASA in 2008 [1] and prioritized second for a launch around 2023-2025. TSSM comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: a montgolfiere and a lake-landing lander. The mission would arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfiere would last at least 6 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a —2-year orbit around Titan. References 1. TSSM and EJSM NASA/ESA Joint Summary Report, 16 January 2009 2. Coustenis et al. (2008). TandEM: Titan and Enceladus mission. Experimenta( Astron-omy, 23, 893-946. 3. Coustenis, A., Hirtzig, M., 2009. Cassini-Huygens results on Titan's surface. Research in Astronomy and Astrophysics 9, 249-268. 4. Coustenis et al., 2010, Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission Icarus, in press. 5. Flasar, F. M., et al., 2005. Titan's atmospheric temperatures, winds, and composition. Science, 308, 975-978. 6. Fulchignoni, M., et al, 2005. In situ measurements of the physical characteristics of Titan's environment. Nature, 438, 785-791, doi:10.1038/nature04126. 7. Lebreton, J-P., Coustenis, A., et al., 2009. Results from the Huygens probe on Titan. Astron. Astrophys. Rev. 17, 149-179. 8. Tomasko, M. G., et al., 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 438, 765-778, doi: 10. 1038/nature04126.

  19. Isotopic Ratios in Nitriles from Submillimeter Spectroscopy Using SMA and ALMA

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.; Moreno, Raphael; Vinatier, Sandrine; Lellouch, Emmanuel; Butler, Bryan J.; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq

    2016-10-01

    We present submillimeter spectroscopic observations of Titan obtained using the Submillimeter Array (SMA) in 2011, and the Atacama Large Millimeter/Submillimeter Array (ALMA) in 2012, some of which have previously been presented but not fully analyzed (1, 2, 3). The SMA observations were obtained at low spatial resolution, providing disk average spectra, but the ALMA observations provide low resolution mapping of Titan (~0.4"-0.6" when Titan was 0.77" surface diameter). We will present detailed radiative transfer analysis of detected spectral lines to derive isotopic ratios in two nitriles: HCN (D/H, 13C/12C, 15N/14N) and HC3N (15N/14N). The analysis makes use of nearly concurrent CIRS temperature profiles as important constraints for the vertical profiles of these species, allowing high precision measurements of the ratios. Finally, we will highlight current and future ALMA observations that will allow monitoring of non-symmetric molecular species in Titan's upper atmosphere from Earth, beyond the end of the Cassini mission.(1) Gurwell et al (2011) EPSC-DPS Joint Meeting 2011, p270. (2) Moreno et al (2014) EPSC 2014 Abstracts, Vol. 9, id. EPSC2014-438. (3) Moreno etal (2014), DPS meeting #46, id.211.19

  20. Model for interface formation and the resulting electrical properties for barium-strontium-titanate films on silicon

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.

    2003-04-01

    The interface formation between sputtered barium strontium titanate (BST) films and both Si and SiO2 substrate surfaces has been followed using real-time spectroscopic ellipsometry and the mass spectrometry of recoiled ions. In both substrates an intermixed interface layer was observed and subcutaneous Si oxidation occurred. A model for the interface formation is proposed in which the interface includes an SiO2 film on Si, and an intermixed film on which is pure BST. During the deposition of BST the interfaces films were observed to change in time. Electrical characterization of the resulting metal-BST interface capacitors indicates that those samples with SiO2 on the Si surface had the best electrical characteristics.

  1. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  2. Condensed-Phase Photochemical Processes in Titan's Aerosols and Surface: The Role of Longer Wavelength Photochemistry

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Jacovi, Ronen; Lignell, Antti; Couturier, Isabelle

    2011-01-01

    We will discuss photochemical properties of Titan's organic molecules in the condensed phase as solid aerosols or surface material, from small linear polyyenes (polyacetylenes and polycyanoacetylenes) such as C2H2, C4N2, HC5N, etc. In particular we will focus on photochemistry caused by longer wavelength UV-VIS photons (greater than 250 nm) photons that make it through Titan's atmosphere to the haze region (approximately 100 km) and on to the surface of Titan.

  3. Exoplanets -New Results from Space and Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. Titan is also rich in organic molecules—more so in its surface and atmosphere than anyplace in the solar system, including Earth [4]. These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. I will discuss our current understanding of Titan's complex environment in view of recent exploration, in particular on the atmospheric structure (temperature and composition), and the surface nature. I will show how these and other elements can give us clues as to the origin and evolution of the satellite, and how they connect to the observations of the planet and the other satellites and rings. Future space missions to Titan can help us understand the kronian and also our Solar System as a whole. In particular, I will describe the future exploration of Titan and the Saturnian System with TSSM, a mission studied jointly by ESA and NASA in 2008 [1] and prioritized second for a launch around 2023-2025. TSSM comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: a montgolfiere and a lake-landing lander. The mission would arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfiere would last at least 6 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a —2-year orbit around Titan. References 1. TSSM and EJSM NASA/ESA Joint Summary Report, 16 January 2009 2. Coustenis et al. (2008). TandEM: Titan and Enceladus mission. Experimenta( Astron-omy, 23, 893-946. 3. Coustenis, A., Hirtzig, M., 2009. Cassini-Huygens results on Titan's surface. Research in Astronomy and Astrophysics 9, 249-268. 4. Coustenis et al., 2010, Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission Icarus, in press. 5. Flasar, F. M., et al., 2005. Titan's atmospheric temperatures, winds, and composition. Science, 308, 975-978. 6. Fulchignoni, M., et al, 2005. In situ measurements of the physical characteristics of Titan's environment. Nature, 438, 785-791, doi:10.1038/nature04126. 7. Lebreton, J-P., Coustenis, A., et al., 2009. Results from the Huygens probe on Titan. Astron. Astrophys. Rev. 17, 149-179. 8. Tomasko, M. G., et al., 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 438, 765-778, doi: 10. 1038/nature04126.

  4. Aerosol Particle Shape and Radiative Coupling in a Three Dimensional Titan GCM

    NASA Astrophysics Data System (ADS)

    Larson, Erik J.; Toon, O. B.; Friedson, A. J.; West, R. A.

    2010-10-01

    Understanding the aerosols on Titan is imperative for understanding the atmosphere as a whole. The aerosols affect the albedo, optical depth, as well as heating and cooling rates which in turn affect the circulation on Titan leading to feedback with the aerosol distribution. Correctly representing the aerosols in atmospheric models is crucial to understanding this atmosphere. Friedson et al. (2009, A global climate model of Titan's atmosphere and surface. Planet. SpaceSci. 57, 1931-1949.) produced a three-dimensional model for Titan using the NCAR CAM3 model, to which we coupled the aerosol microphysics model CARMA. We have also made the aerosols produced by CARMA interactive with the radiation code in CAM. We compare simulations with radiatively interactive aerosols with those using a prescribed aerosol radiative effect. Preliminary results show that this model is capable of reproducing the seasonal changes in aerosols on Titan and many of the associated phenomena. For instance, the radiatively interactive aerosols are lofted by winds more in the summer hemisphere than the non-radiatively interactive aerosols, which is necessary to reproduce the observed seasonal cycle of the albedo. We compare simulations using spherical particles to simulations using fractal aggregate particles, which are expected from laboratory and observational data. Fractal particles have higher absorption in the UV, slower fall velocities and faster coagulation rates than equivalent mass spherical particles. We compare model simulations with observational data from the Cassini and Huygens missions.

  5. Titan's Spin State from Cassini SAR Data: Evidence for an Internal Ocean

    NASA Astrophysics Data System (ADS)

    Stiles, B. W.; Lorenz, R. D.; Kirk, R. L.; Hensley, S.; Lee, E. M.; Allison, M. D.; Perci Del Marmo, P.; Lunine, J. I.; Ostro, S. J.; Gim, Y.; Hamilton, G. A.; Johnson, W. T.; West, R. D.

    2007-12-01

    Nineteen areas on Titan's surface have been imaged with Cassini SAR on two separate flybys with intervals from 2 months to 2 years. We have used the apparent misregistration of features between separate flybys (which is 10-30 km) to construct a refined model of Titan's spin state, estimating six parameters: pole right ascension and declination, spin rate, and these quantities' first time derivatives. Because we have only observed Titan for 2-3 years, our dataset is unlikely to be sensitive to higher order derivatives. We have studied the uncertainty and degree of correlation of the model parameters, and have also searched the parameter space to eliminate the possibility of more than one solution. Our model spin state differs significantly from both the zero-inclination synchronous model and from any other plausible Cassini state. The previously estimated pole location and spin rate used by the IAU and the Cassini mission definitely cannot account for the observed misregistration. Because our imaging resolution is between 300 m and 1 km, we are very sensitive to the pole location and spin rate. Our estimated corrections to the pole and spin rate exceed their corresponding standard errors by factors of 40 and 4, respectively. We examined 150 different features in 19 different twice-observed regions. Applying our pole correction reduces the feature misregistration from tens of km to 3-4 km. Applying the spin rate and derivative corrections further reduces the misregistration to 1-2 km. We propose that our result reflects coupling between atmospheric angular momentum changes and an internal water ocean, for two reasons. First, astrodynamical theory predicts that if Titan is in a dynamically relaxed Cassini state there is a relationship between the moment of inertia factor C/MR2 and the obliquity of a few tenths of a degree. Our results (from two independent analyses of the overlaps) show an appreciable deviation from the expected range of states: either Titan suffered a recent dynamical excitation, or the theory does not hold because the surface is decoupled from the deep interior. We cannot identify an evident source of a recent excitation, so we favor the latter. Second, much as the Earth's length-of-day changes by ~1 ms over a year, seasonal changes in Titan's atmospheric angular momentum (Tokano and Neubauer, 2005) will manifest themselves in a change in surface rotation rate. The change in rate is ~10x higher, amounting to some hundreds of seconds, when the surface is decoupled from the interior by a water-ammonia ocean. Our preliminary rotation solutions indicate a present- day spin rate offset of several tenths of a degree per year that may be accelerating. The spin rate and its rate of change suggest that significant atmospheric changes are occurring and that Titan has an internal ocean. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Titan Global Map - June 2015

    NASA Image and Video Library

    2015-10-09

    This global digital map of Saturn's moon Titan was created using images taken by NASA's Cassini spacecraft's imaging science subsystem (ISS). The map was produced in June 2015 using data collected through Cassini's flyby on April 7, 2014, known as "T100." The images were taken using a filter centered at 938 nanometers, allowing researchers to examine variations in albedo (or inherent brightness) across the surface of Titan. Because of the scattering of light by Titan's dense atmosphere, no topographic shading is visible in these images. The map is an equidistant projection and has a scale of 2.5 miles (4 kilometers) per pixel. Actual resolution varies greatly across the map, with the best coverage (close to the map scale) along the equator near the center of the map at 180 degrees west longitude. The lowest resolution coverage can be seen in the northern mid-latitudes on the sub-Saturn hemisphere. Mapping coverage in the northern polar region has greatly improved since the previous version of this map in 2011 (see PIA14908). Large dark areas, now known to be liquid-hydrocarbon-filled lakes and seas, have since been documented at high latitudes. Titan's north pole was not well illuminated early in Cassini's mission, because it was winter in the northern hemisphere when the spacecraft arrived at Saturn. Cassini has been better able to observe northern latitudes in more recent years due to seasonal changes in solar illumination. This map is an update to the previous versions released in April 2011 and February 2009 (see PIA11149). Data from the past four years (the most recent data in the map is from April 2014) has completely filled in missing data in the north polar region and replaces the earlier imagery of the Xanadu region with higher quality data. A data gap of about 3 to 5 percent of Titan's surface still remains, located in the northern mid-latitudes on the sub-Saturn hemisphere of Titan. The uniform gray area in the northern hemisphere indicates a gap in the imaging coverage of Titan's surface, to date. The missing data will be imaged by Cassini during flybys on December 15, 2016 and March 5, 2017. The mean radius of Titan used for projection of this map is 1,600 miles (2,575 kilometers). Titan is assumed to be spherical until a control network -- a model of the moon's shape based on multiple images tied together at defined points on the surface -- is created at some point in the future. http://photojournal.jpl.nasa.gov/catalog/PIA19658

  7. Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode

    NASA Astrophysics Data System (ADS)

    Cui, Jun

    In this thesis I present an in-depth study of the distribution of various neutral species in Titan's upper atmosphere, at altitudes between 950 and 1,500 km for abundant species (N 2 , CH 4 as well as their isotopes) and between 950 and 1,200 km for most minor species. However, the study of the H 2 distribution on Titan is extended to an altitude as high as 6,000 km in the exosphere. The analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. The densities of abundant species including N 2 , CH 4 and H 2 are determined directly from their main channels. However, to untangle the overlapping cracking patterns of minor species, the technique of Singular Value Decomposition (SVD) is used to determine simultaneously the densities of various hydrocarbons, nitriles and oxygen compounds. All minor species except for 40 Ar present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption or heterogeneous surface chemistry on the chamber walls. In the thesis, I use a simple model to describe the observed time behavior of minor species. Results on their atmospheric abundances are provided both in terms of direct inbound measurements assuming ram pressure enhancement and values corrected for wall adsorption/desorption. Among all minor species of photochemical interest, the INMS data provide direct observational evidences for C 2 H 2 , C 2 H 4 , C 2 H 6 , CH 3 C 2 H, C 4 H 2 , C 6 H 6 , HC 3 N and C 2 N 2 in Titan's upper atmosphere. Upper limits are put for other minor species. The globally averaged distribution of N 2 , CH 4 and H 2 are each modeled with the diffusion approximation. The N 2 profile suggests an average thermospheric temperature of 154 K. The CH 4 and H 2 distribution constrains their fluxes to be 3.0 × 10 9 cm -2 s -1 and 1.3 × 10 10 cm -2 s -1 , referred to Titan's surface. The H 2 escape flux is about a factor of ~3 higher than the Jeans value, which is interpreted as enhanced thermal escape driven primarily by an upward conductive heat flux. Such a conclusion is based on kinetic model calculations in the 13-moment approximation that require energy continuity at the upper boundary. On the other hand, a proper interpretation of the observed CH 4 escape has to rely on the detailed nonthermal processes, which are still unknown at the present time. The INMS observations of the nitrogen isotope ratio implies 14 N/ 15 N=131.6 near Titan's surface. The profile of carbon isotope ratio combining INMS and GCMS results implies that both CH 4 and its isotope escape from Titan's exobase with roughly the same drift velocity, in contrast to the Jeans case which requires that CH 4 escapes with a much larger velocity due to its smaller mass. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial regions, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidences for the depletion of light species such as CH 4 . Meridional variations of most heavy species are also observed, with a trend of depletion toward the north pole. Though some of the above variations might be interpreted by either the solar-driven models or plasma-driven models, a physical scenario that reconciles all the observed horizontal/diurnal variations in a consistent way is still missing, With a careful evaluation of the effect of restricted sampling, some of the features shown in the INMS data are more likely to be observational biases.

  8. A Decade of Cassini Radio Science Observations of the Saturn System

    NASA Astrophysics Data System (ADS)

    French, R.; Armstrong, J.; Flasar, M.; Iess, L.; Kliore, A.; Marouf, E.; McGhee, C.; Nagy, A.; Rappaport, N.; Schinder, P.; Tortora, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischmann, D.; Kahan, D.

    2014-04-01

    The Cassini Radio Science Subsystem (RSS) on board the Cassini spacecraft has returned a wealth ofinformation about the Saturn system during its first decade of observations. The instrumentation is quite versatile, operating in up to three wavelengths simultaneously (S, X, and Ka bands), and tied to a very stable frequency standard either on board or uplinked to the spacecraft from a maser-controlled transmitter as part of the Deep Space Network. Over the course of the mission so far, dozens of occultations by Saturn's rings have been observed, revealing the detailed structure and scattering properties of the rings at sub-km resolution. A companion set of atmospheric occultations by Saturn and Titan have provided detailed vertical profiles of the temperature of the neutral atmosphere and the electron density of the ionosphere, spanning a range of latitudes and a significant fraction of a Saturn season. Operatin in a bistatic mode, the RSS instrument has transmitted signals to the surface of Titan at the specular point such that the reflected signal is received on the earth, revealing the dielectric properties of Titan's surface. Finally, exquisitely accurate measurements of the gravitationally induced Dopper shift of the RSS transmitted signal have provided measurements of the gravitations fields and probes of the internal structure of several of Saturn's major satellites, most notably indicating the presence of sub-surface oceans on both Titan and Enceladus. During the upcoming three-year finale of the Cassini mission, highlights of the remaining RSS science objectives include high- SNR measurements of the rings at their most favorable geometry of the entire Cassini orbital tour, and a set of close orbital fly-bys of Saturn itself, enabling the determination of the planet's gravitational field to an accuracy comparable to that expected for the Juno mission to Jupiter.

  9. Co-crystal formation between two organic solids on the surface of Titan

    NASA Astrophysics Data System (ADS)

    Cable, M. L.; Vu, T. H.; Maynard-Casely, H. E.; Hodyss, R. P.

    2017-12-01

    Laboratory experiments of Titan molecular materials, informed by modeling, can help us to understand the complex and dynamic surface processes occurring on this moon at cryogenic temperatures. We previously demonstrated that two common organic materials on Titan, ethane and benzene, form a unique and stable co-crystalline structure at Titan surface temperatures. We have now characterized a second co-crystal that is stable on Titan, this time between two solids: acetylene and ammonia. The co-crystal forms within minutes at Titan surface temperature, as evidenced by new Raman spectral features in the lattice vibration and C-H bending regions. In addition, a red shift of the C-H stretching mode suggests that the acetylene-ammonia co-crystal is stabilized by a network of C-H···N interactions. Thermal stability studies indicate that this co-crystal remains intact to >110 K, and experiments with liquid methane and ethane reveal the co-crystal to be resistant to fluvial or pluvial exposure. Non-covalently bound structures such as these co-crystals point to far more complex surface interactions than previously believed on Titan. New physical and mechanical properties (deformation, plasticity, density, etc.), differences in storage of key species (i.e., ethane versus methane), variations in surface transport and new chemical gradients can all result in diverse surface features and chemistries of astrobiological interest.

  10. Titan's Thermal Emission: Analysis Of Near-surface Temperatures Via Mid-infrared Measurements

    NASA Astrophysics Data System (ADS)

    Sadino, Jeff; Parrish, P. D.; Orton, G. S.; Burl, M. C.; Davies, A. G.; Irwin, P. G.; Teanby, N. A.; Flasar, F. M.; Cassini/CIRS investigation Team

    2006-09-01

    After Courtin and Kim 2002, tropospheric and near-surface temperatures of Titan may be obtained by examining mid-infrared radiances at 300 and 500 wavenumbers (33 and 20 microns). Here, the measured radiance is (respectively) sensitive to the temperature near the tropopause and sufficient to discern variations in surface topography and emissivity. Our search, as a function of location and time, compares brightness temperatures derived from measurements by the Cassini Composite Infrared Spectrometer (CIRS) and variations of radiance as a function of Titan's rotation derived from ground-based measurements at NASA's Infrared Telescope Facility. Although the variation of the tropopause and zonal near-surface temperatures are fairly homogenous, similar to Courtin and Kim 2002, the meridional distribution of near-surface temperatures varies symmetrically from Equator to pole. While no significant thermal variations suggestive of localized hotspots have yet been observed, such diversity is suggestive of active surface geology, in support of other optical and near-infrared investigations. Although the spatial coverage of the CIRS dataset is severely limited, the approximately 10 degrees field of view (450km at the Equator) is de-convolved somewhat to extract meaningful, sub-pixel maps of Titan's surface. Courtin, R. and Kim, S. (2002). Planet. and Sp. Sci., 50: 309-321. The acquisition of data described here was accomplished through the coordinated effort of Cassini-Huygens project staff, Deep Space Network personnel and the CIRS instrument and science-planning teams with funding provided by the National Research Council, NASA/JPL and NASA/GSFC and the UK Particle Physics and Astronomy council.

  11. Crater topography on Titan: Implications for landscape evolution

    NASA Astrophysics Data System (ADS)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of craters on Titan (gray diamonds) compared to similarly sized, fresh craters on Ganymede (central peaks, +; central pits, *) and a handful of relaxed craters (black squares) from Bray et al. (2012). References: Bray, V., et al.: "Ganymede crater dimensions - implications for central peak and central pit formation and development". Icarus, Vol. 217, pp. 115-129, 2012. Neish, C.D., Lorenz, R.D.: "Titan’s global crater population: A new assessment". Planetary and Space Science, Vol. 60, pp. 26-33, 2012. Schenk, P.M., et al.: "Ages and interiors: the cratering record of the Galilean satellites". In: Bagenal, F., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004. Stiles, B.W., et al.: "Determining Titan surface topography from Cassini SAR data". Icarus, Vol. 202, pp. 584-598, 2009. Wood, C.A., et al.: "Impact craters on Titan". Icarus, Vol. 206, pp. 334-344, 2010.

  12. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less

  13. Investigation of Titan's surface and atmosphere photometric functions using the Cassini/VIMS instrument

    NASA Astrophysics Data System (ADS)

    Cornet, Thomas; Altobelli, Nicolas; Rodriguez, Sébastien; Maltagliati, Luca; Le Mouélic, Stéphane; Sotin, Christophe; Brown, Robert; Barnes, Jason; Buratti, Bonnie; Baines, Kevin; Clark, Roger; Nicholson, Phillip

    2015-04-01

    After 106 flybys spread over 10 years, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) instrument acquired 33151 hyperspectral cubes pointing at the surface of Titan on the dayside. Despite this huge amount of data available for surface studies, and due to the strong influence of the atmosphere (methane absorption and haze scattering), Titan's surface is only visible with VIMS in 7 spectral atmospheric windows centred at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns. Atmospheric scattering and absorption effects dominate Titan's spectrum at wavelengths shorter than 3 microns, while the 5 micron window, almost insensitive to the haze scattering, only presents a reduced atmospheric absorption contribution to the signal recorded by VIMS. In all cases, the recorded I/F represents an apparent albedo, which depends on the atmospheric contributions and the surface photometry at each wavelength. We therefore aim to determine real albedo values for Titan's surface by finding photometric functions for the surface and the atmosphere that could be used as a basis for empirical corrections or Radiative Transfer calculations. After updating the navigation of the VIMS archive, we decomposed the entire VIMS data set into a MySQL relational database gathering the viewing geometry, location, time (season) and I/F (for pure atmosphere and surface-atmosphere images) for each pixel of the 33151 individual VIMS cubes. We then isolated all the VIMS pixels where Titan's surface has been repeatedly imaged at low phase angles (< 20 degrees) in order to characterize phase curves for the surface at 5 microns and for the atmosphere. Among these, the T88 flyby appears noteworthy, with a "Emergence-Phase Function (EPF)"-type observation: 25 cubes acquired during the same flyby, over the same area (close to Tortola Facula, in relatively dark terrains), at a constant incidence and with varying emergence and phase (from 0 to 60 degrees) angles. The data clearly exhibit an increase of I/F at 5 microns at very low phase angles, which is indicative of an opposition effect for the surface, and kinks in the I/F at low and high emergence/phase angles, increasing with decreasing wavelength (and thus with increasing atmospheric scattering). The latter dependency is present in both pure atmosphere and surface-atmosphere images, which clearly indicates that it is of atmospheric origin. We are currently investigating these dependencies with angles and try to determine best fit models that would describe the phase curves for the surface at 5 microns and for the atmosphere at lower wavelengths in this particular area.

  14. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  15. Titan: a laboratory for prebiological organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  16. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  17. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani

    2013-12-01

    Dunes on Titan, a dominant landform comprising at least 15% of the surface, represent the end product of many physical processes acting in alien conditions. Winds in a nitrogen-rich atmosphere with Earth-like pressure transport sand that is likely to have been derived from complex organics produced in the atmosphere. These sands then accumulate into large, planet-encircling sand seas concentrated near the equator. Dunes on Titan are predominantly linear and similar in size and form to the large linear dunes of the Namib, Arabian and Saharan sand seas. They likely formed from wide bimodal winds and appear to undergo average sand transport to the east. Their singular form across the satellite indicates Titan’s dunes may be highly mature, and may reside in a condition of stability that permitted their growth and evolution over long time scales. The dunes are among the youngest surface features, as even river channels do not cut through them. However, reorganization time scales of large linear dunes on Titan are likely tens of thousands of years. Thus, Titan’s dune forms may be long-lived and yet be actively undergoing sand transport. This work is a summary of research on dunes on Titan after the Cassini Prime and Equinox Missions (2004-2010) and now during the Solstice Mission (to end in 2017). It discusses results of Cassini data analysis and modeling of conditions on Titan and it draws comparisons with observations and models of linear dune formation and evolution on Earth.

  18. Oceans in the Outer Solar System: Future Exploration of Europa, Titan, and Enceladus

    NASA Astrophysics Data System (ADS)

    Johnson, T.; Clark, K.; Cutts, J.; Lunine, J.; Pappalardo, R.; Reh, K.

    Observational and theoretical evidence points to water-rich oceans or seas within several of the icy satellites of the outer planets, notably Europa and Enceladus, and hydrocarbon reservoirs within Titan. Here we report on concepts for future studies of these fascinating targets of high astrobiological relevance. Europa Exploration: Post-Galileo exploration of Europa presents several major technical challenges. We argue that four recent investments in technology and research allow a flagship mission class Europa exploration that relies on demonstrated technologies and achieves the high level science objectives. 1. Mass and Trip Time: Utilizing indirect Earth gravity assist, trajectories allows ˜2000 - 3000 kg dry mass, permitting ˜150 - 200 kg of science payload. 2. Radiation Tolerant Electronics: A significant program of radiation hard technology development has been done by NASA. The necessary radiation-tolerant elements are now ready for flight. 3. Science Mission: The science mission would last approximately two years, with a Jupiter system science phase of ˜1.5 yr and a 90 day nominal orbital mission at Europa, with significant probability of functioning much longer. 4. Planetary Protection: The ultimate fate of an orbiter will be impact with Europa. Planetary protection requirements will be met by radiation sterilization during the primary mission for most external and unshielded internal surfaces, combined with pre-launch sterilization of shielded components. We conclude that a flagship class Europa mission can now be developed relying on existing technologies, having significant scientific capability. Titan and Enceladus Exploration: Remarkable discoveries by the Cassini/Huygens related to hydrocarbons at Titan and water vapor geysering at Enceladus demand follow-up of these astrobiologically relevant worlds by future missions. An aerial platform capable of observing the surface of Titan from beneath the obscuring cloud cover and descending repeatedly to the surface, can offer a powerful scientific capability. Taking advantage of both the density and cold temperature of the atmosphere of Titan a hot-air balloon implementation provides long duration operation at a very modest cost in terms of energy input. A Saturn orbiter making repeated encounters of Titan and Enceladus in a so-called cycler orbit can carry out new science at Enceladus while also providing high bandwidth downlink communications for the aerial platform.

  19. Titan's Atmosphere and Surface Explored by Future in Situ Balloon Investigations

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; OPAG Titan Working Group

    2009-09-01

    A wide range of high priority scientific questions for Titan remain to be addressed after Cassini-Huygens, some of which cannot be comprehensively addressed by any envisioned extension of Cassini flybys due to its inherent limitations and require both remote and in situ investigation. Whereas a spacecraft in orbit around Titan could allow for a thorough investigation of Titan's upper atmosphere, there are questions that can only be answered by extending the measurements into Titan's lower atmosphere and down to the surface. Key steps toward the synthesis of prebiotic molecules that may have been present on the early Earth as precursors to life might be occurring high in the atmosphere, the products then descending towards the surface where they might replicate. In situ chemical analysis of gases, liquids and solids, both in the atmosphere and on the surface, would enable the identification of chemical species that are present and how far such putative reactions have advanced. The rich inventory of complex organic molecules that are known or suspected to be present in the lower atmosphere and at the surface gives Titan a strong astrobiological potential. Our understanding of the forces that shape Titan's diverse landscape and interior will benefit greatly from detailed investigations at a variety of locations, a demanding requirement anywhere else, but one that is uniquely possible at Titan using a hot-air balloon (montgolfière). Indeed, Titan's thick cold atmosphere and low gravity make the deployment of in situ elements using parachutes (as demonstrated by the Cassini-Huygens probe) and balloons vastly easier than for any other solar system body. A balloon floating across the Titan landscape for long periods of time, with an adapted payload, would offer the mobility required to explore the diversity of Titan in a way that cannot be achieved with any other platform.

  20. Potentially active regions on Titan: New processing of Cassini/VIMS data

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Hirtzig, M.; Bratsolis, E.; Bampasidis, G.; Coustenis, A.; Kyriakopoulos, K.; Le Mouélic, S.; Stephan, K.; Jaumann, R.; Drossart, P.; Sotin, C.; St. Seymour, K.; Moussas, X.

    2012-04-01

    The Cassini Visual and Infrared Mapping Spectrometer (VIMS) obtained data of Titan's surface from flybys performed during the last seven years. In the 0.8-5.2 µm range, these spectro-imaging data showed that the surface consists of a multivariable geological terrain hosting complex geological processes. The data from the seven narrow methane spectral "windows" centered at 0.93, 1.08, 1.27, 1.59, 2.03, 2.8 and 5 µm provide some information on the lower atmospheric context and the surface parameters that we want to determine. Atmospheric scattering and absorption need to be clearly evaluated before we can extract the surface properties. We apply here a statistical method [1, 2] and a radiative transfer method [3, 1] on three potentially "active" regions on Titan, i.e. regions possibly subject to change over time (in brightness and/or in color etc) [4]: Tui Regio (20°S, 130°W) [5], a 1,500-km long flow-like figure, Hotei Regio (26°S, 78°W) [6], a 700-km wide volcanic-like terrain, and Sotra Facula (15°S, 42°W) [7], a 235-km in diameter area. With our method of Principal Component Analysis (PCA) we have managed to isolate specific regions of distinct and diverse chemical composition. We have tested this method on the previously studied Sinlap crater [8], delimitating compositional heterogeneous areas compatible with the published conclusions by Le Mouélic et al. (2008). Our follow-up method focuses on retrieving the surface albedo of the three areas and of the surrounding terrains with different spectral response by applying a radiative transfer (RT) code. We have used as input most of the Cassini HASI and DISR measurements, as well as new methane absorption coefficients [9], which are important to evaluate the atmospheric contribution and to allow us to better constrain the real surface alterations, by comparing the spectra of these regions. By superposing these results onto the PCA maps, we can correlate composition and morphology. As a test case, we used our RT code to verify the varying brightness of Hotei Regio reported by other investigators based on models lacking proper simulation of the atmospheric absorption [10]. Even though we have used exactly the same dataset, we did not detect any significant surface albedo variations over time; this led us to revise the definition of "active" regions: even if these regions have not visually changed over the course of the Cassini mission, the determination of the chemical composition and the correlation with the morphological structures [11] observed in these areas do not rule out that past and/or ongoing cryovolcanic processes are still a possible interpretation. [1] Solomonidou, A. et al. (2011). Potentially active regions on Titan: New processing of Cassini/VIMS data. In preparation. [2] Stephan, K. et al. (2008). Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data. Planetary and Space Science 56, 406-419. [3] Hirtzig, M. et al. (2011). Applications of a new methane linelist to Cassini/VIMS spectra of Titan in the 1.28-5.2 µm range . In preparation. [4] Wall, s. D. et al. (2009). Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Journal of Geophysical Research 36, L04203, [5] Barnes, J.W. et al. (2006). Cassini observations of flow-like features in western Tui Regio, Titan. Geophysical Research Letters 33, L16204. [6] Soderblom, L.A. et al. (2009). The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR. Icarus 204, 610-618. [7] Lopes, R.M.C. et al. (2010). Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus 205, 540-558. [8] Le Mouélic et al. (2008). Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. Journal of Geophysical Research 113, E04003. [9] Campargue, A. et al. (2011). An empirical line list for methane at 80 K and 296 K in the 1.26-1.71 µm region for planetary investigations. Application to Titan. Icarus. Submitted. [10] Nelson, R. et al (2009). Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus 199, 429-441. [11] Solomonidou, A. et al. (2011). Possible morphotectonic features on Titan and their origin. Planetary and Space Science. Submitted.

  1. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  2. The Lakes and Seas of Titan

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  3. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's "warm ponds" on Titan.

  4. An Aerobot for Global In Situ Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Hall, J.; Kerzhanovich, V.; Yavrouian, A.; Jones, J.; White, C.; Dudik, B.; Elfes, A.

    This paper describes the design and component testing of an aerobot that will be capable of global in situ exploration of Saturn's moon, Titan, over a 6 to 12 month mission lifetime. The proposed aerobot is a propeller-driven, buoyant vehicle that resembles terrestrial airships. However, the extremely cold Titan environment requires the use of cryogenic materials of construction and careful thermal design for protection of temperature-sensitive payload elements. Multiple candidate balloon materials have been identified based on extensive laboratory testing at 77 K. The most promising materials to date are laminates comprised of polyester fabrics and/or films with areal densities in the range of 40-100 g/m^2. The aerobot hull is a streamlined ellipsoid 12 meters in length with a maximum diameter of 3 meters. The enclosed volume of 56 m^3 is sufficient to float a mass of 200 kg at a maximum altitude of 8 km at Titan. Forward and aft ballonets are located inside the hull to enable the aerobot to descend to the surface while preserving a fully inflated streamlined shape. Altitude changes are effected primarily through thrust vectoring of the twin main propellers, with pressure modulated buoyancy change via the ballonets available as a slower backup option. A total of 100 W of electrical power is provided to the vehicle by a radioisotope thermal generator. Up to half of this power is available to the propulsion system to generate a top flight speed in the range of 1-2 m/s. This speed is expected to be greater than the near surface winds at Titan, enabling the aerobot to fly to and hover over targets of interest. A preliminary science payload has been devised for the aerobot to give it the capability for aerial imaging of the surface, atmospheric observations and sampling, and surface sample acquisition and analysis. Targeting, hovering, surface sample acquisition and vehicle health monitoring and reflexive safing actions will all require significant on-board autonomy due to the over two hour round trip light time between Titan and Earth. An autonomy architecture and a core set of perception, reasoning and control technologies is under development using a free-flying airship testbed of approximately the same size as the proposed Titan aerobot. Data volume from the Titan science mission is expected to be on the order of 100-300 Mbit per day transmitted either direct to Earth through an 0.8 m high gain antenna or via an orbiter relay using an omni-directional antenna on the aerobot.

  5. An aerobot for global in situ exploration of Titan

    NASA Astrophysics Data System (ADS)

    Hall, J. L.; Kerzhanovich, V. V.; Yavrouian, A. H.; Jones, J. A.; White, C. V.; Dudik, B. A.; Plett, G. A.; Mennella, J.; Elfes, A.

    This paper describes the design and component testing of an aerobot that would be capable of global in situ exploration of Saturn's moon, Titan, over a 6-12 month mission lifetime. The proposed aerobot is a propeller-driven, buoyant vehicle that resembles terrestrial airships. However, the extremely cold Titan environment requires the use of cryogenic materials of construction and careful thermal design for protection of temperature-sensitive payload elements. Multiple candidate balloon materials have been identified based on extensive laboratory testing at 77 K. The most promising materials to date are laminates comprised of polyester fabrics and/or films with areal densities in the range of 40-100 g/m 2. The aerobot hull is a streamlined ellipsoid 14 m in length with a maximum diameter of 3 m. The enclosed volume of 60 m 3 is sufficient to float a mass of 234 kg at a maximum altitude of 8 km at Titan. Forward and aft ballonets are located inside the hull to enable the aerobot to descend to the surface while preserving a fully inflated streamlined shape. Altitude changes are effected primarily through thrust vectoring of the twin main propellers, with pressure modulated buoyancy change via the ballonets available as a slower backup option. A total of 100 W of electrical power is provided to the vehicle by a radioisotope power supply. Up to half of this power is available to the propulsion system to generate a top flight speed in the range of 1-2 m/s. This speed is expected to be greater than the near surface winds at Titan, enabling the aerobot to fly to and hover over targets of interest. A preliminary science payload has been devised for the aerobot to give it the capability for aerial imaging of the surface, atmospheric observations and sampling, and surface sample acquisition and analysis. Targeting, hovering, surface sample acquisition and vehicle health monitoring and automatic safing actions will all require significant on-board autonomy due to the over 2 h round trip light time between Titan and Earth. An autonomy architecture and a core set of perception, reasoning and control technologies is under development using a free-flying airship testbed of approximately the same size as the proposed Titan aerobot. Data volume from the Titan science mission is expected to be on the order of 100-300 Mbit per day transmitted either direct to Earth through an 0.8 m high gain antenna or via an orbiter relay using an omni-directional antenna on the aerobot.

  6. Titan's Radioactive Haze : Production and Fate of Radiocarbon On Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Jull, A. J. T.; Swindle, T. D.; Lunine, J. I.

    Just as cosmic rays interact with nitrogen atoms in the atmosphere of Earth to gener- ate radiocarbon (14C), the same process should occur in Titan`s nitrogen-rich atmo- sphere. Titan`s atmosphere is thick enough that cosmic ray flux, rather than nitrogen column depth, limits the production of 14 C. Absence of a strong magnetic field and the increased distance from the sun suggest production rates of 9 atom/cm2/s, approx- imately 4 times higher than Earth. On Earth the carbon is rapidly oxidised into CO2. The fate and detectability of 14C on Titan depends on the chemical species into which it is incorporated in Titan's reducing atmosphere : as methane it would be hopelessly diluted even in only the atmosphere (ignoring the other, much more massive carbon reservoirs likely to be present on Titan, like hydrocarbon lakes.) However, in the more likely case that the 14C attaches to the haze that rains out onto the surface (as tholin, HCN or acetylene and their polymers - a much smaller carbon reservoir) , haze in the atmosphere or recently deposited on the surface would therefore be quite intrinsically radioactive. Such activity may modify the haze electrical charging and hence its coag- ulation. Measurements with compact instrumentation on future in-situ missions could place useful constraints on the mass deposition rates of photochemical material on the surface and identify locations where surface deposits of such material are `freshest`.

  7. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    NASA Astrophysics Data System (ADS)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.

  8. Low-Temperature Alkaline pH Hydrolysis of Oxygen-Free Titan Tholins: Carbonates' Impact.

    PubMed

    Brassé, Coralie; Buch, Arnaud; Coll, Patrice; Raulin, François

    2017-01-01

    Titan, the largest moon of Saturn, is one of the key planetary objects in the field of exobiology. Its dense, nitrogen-rich atmosphere is the site of important organic chemistry. This paper focuses on the organic aerosols produced in Titan's atmosphere that play an important role in atmospheric and surface processes and in organic chemistry as it applies to exobiological interests. To produce reliable laboratory analogues of these aerosols, we developed, tested, and optimized a device for the synthesis of clean tholins. The potential chemical evolution of Titan aerosols at Titan's surface has been studied, in particular, the possible interaction between aerosols and putative ammonia-water cryomagma. Modeling of the formation of Saturn's atmosphere has permitted the characterization of a composition of salts in the subsurface ocean and cryolava. From this new and original chemical composition, a laboratory study of several hydrolyses of tholins was carried out. The results obtained show the formation of many organic compounds, among them, species identified only in the presence of salts. In addition, a list of potential precursors of these compounds was established, which could provide a database for research of the chemical composition of tholins and/or aerosols of Titan. Key Words: Titan tholins-Titan aerosols-Hydrolysis-Carbonates-Titan's surface. Astrobiology 17, 8-26.

  9. The methane distribution on Titan: high resolution spectroscopy in the near-IR with Keck NIRSPEC/AO

    NASA Astrophysics Data System (ADS)

    Adamkovics, Mate; Mitchell, Jonathan L.

    2014-11-01

    The distribution of methane on Titan is a diagnostic of regional scale meteorology and large scale atmospheric circulation. The observed formation of clouds and the transport of heat through the atmosphere both depend on spatial and temporal variations in methane humidity. We have performed observations to measure the the distribution on methane Titan using high spectral resolution near-IR (H-band) observations made with NIRSPEC, with adaptive optics, at Keck Observatory in July 2014. This work builds on previous attempts at this measurement with improvement in the observing protocol and data reduction, together with increased integration times. Radiative transfer models using line-by-line calculation of methane opacities from the HITRAN2012 database are used to retrieve methane abundances. We will describe analysis of the reduced observations, which show latitudinal spatial variation in the region the spectrum that is thought to be sensitive to methane abundance. Quantifying the methane abundance variation requires models that include the spatial variation in surface albedo and meridional haze gradient; we will describe (currently preliminary) analysis of the the methane distribution and uncertainties in the retrieval.

  10. From Titan's chemistry and exobiology to Titan's astrobiology

    NASA Astrophysics Data System (ADS)

    Raulin, François

    2015-04-01

    When the IDS proposal « Titan's chemistry and exobiology » was submitted to ESA 25 years ago, in the frame of what will become the Cassini-Huygens mission, Titan was already seen as a quite interesting planetary object in the solar system for Exobiology. Several organic compounds of prebiotic interest were identified in its atmosphere, which was thus was expected to be chemically very active, especially in term of organic processes. Atmospheric aerosols seemed to play a key role in this chemistry. Moreover, the presence of an internal aqueous ocean, compatible with life was suspected. A few years later, when astrobiology was (re)invented, Titan became one of the most interesting planetary target for this new (but very similar to exobiology) field. With the Cassini-Huygens mission, the exo/astrobiological interest of Titan has become more and more important. However, the mission has been providing a vision of Titan quite different from what it was supposed. Its atmospheric organic chemistry is very complex and starts in much higher zones than it was believed before, involving high molecular weight species in the ionosphere. Titan's surface appears to be far from homogeneous: instead of been covered by a global methane-ethane ocean, it is very diversified, with dunes, lakes, bright and dark areas, impact and volcanic craters with potential cryovolcanic activity. These various geological areas are continuously feeded by atmospheric aerosols, which represent an important step in the complexity of Titan's organic chemistry, but probably not the final one. Indeed, after being deposited on the surface, in the potential cryovolvanic zones, these particles may react with water ice and form compounds of exo/astrobiological interest, such as amino acids, purine and pyrimidine bases. Moreover, The Cassini-Huygens data strongly support the potential presence of an internal water ocean, which becomes less and less hypothetical and of great interest for exobiology. These various exobiological aspects of Titan, revealed from Cassini-Huygens observations, especially from the data of the Huygens instruments, coupled to laboratory works, both experimental simulations and modeling, will be quickely reviewed and summarized. References : Raulin, F. (2008), Astrobiology and habitability of Titan, Space Science Reviews 135 (1-4), 37-48 ; Raulin, F. et al. (2012), Prebiotic-like chemistry on Titan. Chemical Society Reviews. 41, 5380-5393 Acknowledgement: Supports from the European Space Agency (ESA) and the French Space Agency (CNES) is deeply acknowledged.

  11. Tidal Currents between Titan's Seas Detected by Solar Glints

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Barnes, J. W.; Lawrence, K. J.; Soderblom, J. M.; Audi, E.; Brown, R. H.; Le Mouelic, S.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.

    2015-12-01

    Titan is the only place in the solar system, besides Earth, to have stable bodies of liquids on its surface. The three large seas and most of the lakes are located in the northern pole area [1]. They are major reservoirs of organic material [2]. Questions related to the variability in composition of the seas [2] and their interaction [3] can be addressed by dedicated observations. For this purpose, the Visual and Infrared Mapping Spectrometer (VIMS) observed the area between Ligeia Mare and Kraken Mare, Titan's two largest seas on February 12, 2015. The location of the specular point was close to the strait that has been suggested to link Ligeia and Kraken [4]. As demonstrated by previous observations of specular reflections on the lakes and seas [5, 6], such observations provide a means to assess the presence of liquids and the dynamics of the liquid surface. The VIMS observation provides images of the strait, named Trevize fretum, with a footprint of about 3 km. It shows a remarkable correlation with the radar images, suggesting that no major changes in the level of the seas have occurred in the last 10 years, a third of a Titan year. Very strong values of I/F at 5-μm suggest specular reflection away from the specular point on the Ligiea outlet. This is consistent with the presence of waves which can be generated by either winds or strong currents between Kraken Mare and Ligeia mare. Such currents can be generated during Titan's orbital motion around Saturn. We have investigated the volume of liquids that would transit through Trevize fretum during a Titan day and have found that the flow would be in a turbulent regime for the value of the mean anomaly at the time of the VIMS observation. Although subsurface communication between the two seas cannot be ruled out, the present observation underlines the role of the strait in providing exchange of fluids between the two large seas. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Stofan et al. (2007) Nature, 445, 61-64. [2] Lorenz et al. (2014) Icarus, 237, 9-15. [3] Tokano et al. (2014) Icarus, 242, 188-201. [4] Sotin et al. (2014), AGU, P43C-3999. [5] Soderblom et al. (2012) Icarus, 220, 744-751. [6] Barnes et al. (2013) Astrophysical J., 777, 161.

  12. The rotation of Titan by latest Cassini data*

    NASA Astrophysics Data System (ADS)

    Meriggiola, R.; Iess, L.; Stiles, B. W.

    2011-12-01

    Between 2004 and 2009 the RADAR instrument of the Cassini mission provided 31 SAR images of Titan. With a good coverage of both polar and equatorial regions, SAR imaging revealed the complex and unique landforms of Titan's surface, including hydrocarbon lakes and river channels. As each observed land strip covers a wide interval of latitudes and/or longitudes, there are many regions of the satellite that have been observed twice, at different epochs and mean anomalies. The overlapping portions of the SAR images offer a good opportunity to determine the body's rotational state (spin pole and length of day) by means of landmark tracking. We selected 44 crossings and 252 outstanding surface features for image correlation. Each pair of features was georeferenced using the IAU model of Titan's rotation and correlated to produce a misregistration vector. The mismatching (in the range of 400 m-42 km) is mainly due to the incorrect values of the rotational parameters. A parallax effect due to errors in the presumed surface body shape can also contribute to misregistration. In extreme cases, this effect can contribute > 5 km of misregistration error. To avoid this extra error source we utilize Titan surface height estimates in our fitting procedure. Both systematic and random errors in the image correlation and georeferencing also contribute at the level of 1 km. The misregistration vectors are used as observable quantities in a least-squares fit, where the rotational parameters are adjusted to minimize the weighted residuals. We used the misregistration of tiepoints to estimate spin pole location (right ascension and declination at J2000 epoch) and the spin period. The new pole location, considering also the precession and nutation terms, is compatible with the occupancy of a Cassini state 1. The spin period is found to be compatible with a long-term synchronous rotation within the bounds of the experimental errors. The analysis confirms the large value of the obliquity (> 0.3 degrees), incompatible with the assumption of a rigid body with fully-damped pole and a moment of inertia factor of 0.34 (as determined by gravity measurements). * Portions of the work reported here were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

  13. Titan's interior constrained from its obliquity and tidal Love number

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Coyette, Alexis; Yseboodt, Marie; Beuthe, Mikael; Van Hoolst, Tim

    2016-04-01

    In the last few years, the Cassini-Huygens mission to the Saturn system has measured the shape, the obliquity, the static gravity field, and the tidally induced gravity field of Titan. The large values of the obliquity and of the k2 Love number both point to the existence of a global internal ocean below the icy crust. In order to constrain interior models of Titan, we combine the above-mentioned data as follows: (1) we build four-layer density profiles consistent with Titan's bulk properties; (2) we determine the corresponding internal flattening compatible with the observed gravity and topography; (3) we compute the obliquity and tidal Love number for each interior model; (4) we compare these predictions with the observations. Previously, we found that Titan is more differentiated than expected (assuming hydrostatic equilibrium), and that its ocean is dense and less than 100 km thick. Here, we revisit these conclusions using a more complete Cassini state model, including: (1) gravitational and pressure torques due to internal tidal deformations; (2) atmosphere/lakes-surface exchange of angular momentum; (3) inertial torque due to Poincaré flow. We also adopt faster methods to evaluate Love numbers (i.e. the membrane approach) in order to explore a larger parameter space.

  14. Titan's cloud seasonal activity from winter to spring with Cassini/VIMS

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Sotin, Christophe; Brown, R.H.; Barnes, J.W.; Griffith, C.A.; Burgalat, J.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2011-01-01

    Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002-August 2009) and the beginning of spring, allowing a detailed monitoring of Titan's cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan's clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60??N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4. years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1. year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30??S and 60??S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached. We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n= 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn's tides. Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan's poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan's northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a 'sudden' shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan's surface higher than previously expected. ?? 2011 Elsevier Inc.

  15. Topographic Constraints on the Evolution and Connectivity of Titan's Lacustrine Basins

    NASA Astrophysics Data System (ADS)

    Hayes, A. G.; Birch, S. P. D.; Dietrich, W. E.; Howard, A. D.; Kirk, R. L.; Poggiali, V.; Mastrogiuseppe, M.; Michaelides, R. J.; Corlies, P. M.; Moore, J. M.; Malaska, M. J.; Mitchell, K. L.; Lorenz, R. D.; Wood, C. A.

    2017-12-01

    The topography provided by altimetry, synthetic aperture radar-topography, and stereo radargrammetry has opened new doors for Titan research by allowing for quantitative analysis of morphologic form. Using altimetry measurements, we show that Titan's Maria are consistent with an equipotential surface but that several filled lakes are found to be hundreds of meters above this sea level, suggesting that they exist in isolated or perched basins. Within a given drainage basin, empty lake floors are typically higher than the liquid elevation of nearby lakes/seas, suggesting local subsurface connectivity. The majority of Titan's lakes reside in topographically closed, sharp-edged depressions whose planform curvature suggests lateral expansion through uniform scarp retreat. Many, but not all, empty lake basins exhibit flat floors and hectometer-scale raised rims that present a challenge to formation models. We conclude that dissolution erosion can best match the observed constraints but that challenges remain in the interpretation of formation processes and materials.

  16. The rotational dynamics of Titan from Cassini RADAR images

    NASA Astrophysics Data System (ADS)

    Meriggiola, Rachele; Iess, Luciano; Stiles, Bryan. W.; Lunine, Jonathan. I.; Mitri, Giuseppe

    2016-09-01

    Between 2004 and 2009 the RADAR instrument of the Cassini mission provided 31 SAR images of Titan. We tracked the position of 160 surface landmarks as a function of time in order to monitor the rotational dynamics of Titan. We generated and processed RADAR observables using a least squares fit to determine the updated values of the rotational parameters. We provide a new rotational model of Titan, which includes updated values for spin pole location, spin rate, precession and nutation terms. The estimated pole location is compatible with the occupancy of a Cassini state 1. We found a synchronous value of the spin rate (22.57693 deg/day), compatible at a 3-σ level with IAU predictions. The estimated obliquity is equal to 0.31°, incompatible with the assumption of a rigid body with fully-damped pole and a moment of inertia factor of 0.34, as determined by gravity measurements.

  17. Infrared spectroscopy of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1993-01-01

    Infrared spectroscopy provides unique insights into the chemistry and dynamics of the atmospheres of Jupiter, Saturn, and Titan. In 1991 we obtained data at J, H, K, and M and made repeated observations of Titan's albedo as the satellite orbited Saturn. The J albedo is 12% +/- 3% greater than the albedo measured in 1979; the H and K albedos are the same. There was no evidence for variations at any wavelength over the eastern half of Titan's orbit. We also obtained low resolution (R=50) spectra of Titan between 3.1 and 5.1 microns. The spectra contain evidence for CO and CH3D absorptions. Spectra of Callisto and Ganymede in the 4.5 micron spectral region are featureless and give albedos of 0.08 and 0.04 respectively. If Titan's atmosphere is transparent near 5 microns, its surface albedo there is similar to Callisto's. In 1992 and 1993 we obtained further spectroscopic data of Titan with the UKIRT CGS4 spectrometer. We discovered two unexpected and unexplained spectral features in the 3-4 micron spectrum of Titan. An apparent emission feature near the 3 micron (nu sub 3) band of methane indicated temperatures higher than known to be present in Titan's upper stratosphere and may be caused by unexpected non-LTE emission. An absorption feature near 3.47 microns may be caused by absorption in solid grains or aerosols in Titan's clouds. The feature is similar but not identical to organics in the interstellar matter and in comets.

  18. Storms in the tropics of Titan.

    PubMed

    Schaller, E L; Roe, H G; Schneider, T; Brown, M E

    2009-08-13

    Methane clouds, lakes and most fluvial features on Saturn's moon Titan have been observed in the moist high latitudes, while the tropics have been nearly devoid of convective clouds and have shown an abundance of wind-carved surface features like dunes. The presence of small-scale channels and dry riverbeds near the equator observed by the Huygens probe at latitudes thought incapable of supporting convection (and thus strong rain) has been suggested to be due to geological seepage or other mechanisms not related to precipitation. Here we report the presence of bright, transient, tropospheric clouds in tropical latitudes. We find that the initial pulse of cloud activity generated planetary waves that instigated cloud activity at other latitudes across Titan that had been cloud-free for at least several years. These observations show that convective pulses at one latitude can trigger short-term convection at other latitudes, even those not generally considered capable of supporting convection, and may also explain the presence of methane-carved rivers and channels near the Huygens landing site.

  19. Photochemical reactions of cyanoacetylene and dicyanoacetylene: Possible processes in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Guillemin, J. C.

    1991-01-01

    Titan has an atmosphere which is subject to dramatic chemical evolution due mainly to the dramatic effect of the UV flux from the Sun. The energetic solar photons and other particles are converting the methane-nitrogen atmosphere into the unsaturated carbon compounds observed by the Voyager probes. These same solar photons are also converting some of these unsaturated reaction products into the aerosols observed in the atmosphere which obscure the view of the surface of Titan. In particular, the photochemical reactions of cyanoacetylene, dicyanoacetylene, acetylene and ethylene may result in the formation of the higher hydrocarbons and polymers which result in the aerosols observed in Titan's atmosphere. Polymers are the principal reaction products formed by irradiation of cyanoacetylene and dicyanoacetylene. Irradiation of cyanoacetylene with 185 nm of light also yields 1,3,5-tricyanobenzene while irradiation at 254 nm yields 1,2,4-tricyanobenzene and tetracyano cyclooctatetraenes. Photolyses of mixtures of cyanoacetylene and acetylene yields mono- and di- cyanobenzenes. The 1-Cyanocyclobutene is formed from the photochemical addition of cyanoacetylene with ethylene. The photolysis of dicyanoacetylene with acetylene yields 2,3-dicyano-1,3-butadiene and 1,2-dicyanobenzene. Tetracyano cyclooctatetraene products were also observed in the photolysis of mixtures of dicyanoacetylene and acetylene with 254 nm light. The 1,2-Dicyano cyclobutene is obtained from the photolysis dicyanoacetylene and ethylene. Reaction mechanisms will be proposed to explain the observed photoproducts.

  20. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further themore » similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.« less

  1. Mapping of Titan: Results from the first Titan radar passes

    USGS Publications Warehouse

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  2. A rigid and weathered ice shell on Titan.

    PubMed

    Hemingway, D; Nimmo, F; Zebker, H; Iess, L

    2013-08-29

    Several lines of evidence suggest that Saturn's largest moon, Titan, has a global subsurface ocean beneath an outer ice shell 50 to 200 kilometres thick. If convection is occurring, the rigid portion of the shell is expected to be thin; similarly, a weak, isostatically compensated shell has been proposed to explain the observed topography. Here we report a strong inverse correlation between gravity and topography at long wavelengths that are not dominated by tides and rotation. We argue that negative gravity anomalies (mass deficits) produced by crustal thickening at the base of the ice shell overwhelm positive gravity anomalies (mass excesses) produced by the small surface topography, giving rise to this inverse correlation. We show that this situation requires a substantially rigid ice shell with an elastic thickness exceeding 40 kilometres, and hundreds of metres of surface erosion and deposition, consistent with recent estimates from local features. Our results are therefore not compatible with a geologically active, low-rigidity ice shell. After extrapolating to wavelengths that are controlled by tides and rotation, we suggest that Titan's moment of inertia may be even higher (that is, Titan may be even less centrally condensed) than is currently thought.

  3. A model study of the vertical distributions and escape fluxes of the major and minor species in Titan's thermosphere under different conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Kai; Liang, Mao-Chang; Ip, Wing-Huen

    2017-04-01

    From the measurements of the Ion Neutral Mass Spectrometer (INMS) on the Cassini spacecraft at different close encounters with Titan, it is know that the vertical temperature profile and density distributions of N2, CH4, H2 and other species could have large variations which might be driven by environmental effects such as solar radiation and magnetospheric interaction. For example, the atmospheric temperature as determined from the N2 density profiles can vary between 120 K and 175 K. Following the treatment of Li et al. (PSS, 104 (2014) 48-58) by applying a non-monotonic eddy diffusivity profile, we compute the vertical distributions of different species between Titan's surface to 2000 km altitude, for a range of atmospheric temperatures. Intercomparison between the model results and observations leads to better understanding of the production mechanisms of the minor species like C2H2, C2H4, C2H6 and others, all important to the hydrocarbon budgets of Titan's atmosphere and surface, respectively. Furthermore, such detailed photochemical calculations will also yield accurate estimates of the escape fluxes of H, H2 and CH4 into the circum-planetary region.

  4. The dynamics behind Titan's methane clouds.

    PubMed

    Mitchell, Jonathan L; Pierrehumbert, Raymond T; Frierson, Dargan M W; Caballero, Rodrigo

    2006-12-05

    We present results of an axisymmetric global circulation model of Titan with a simplified suite of atmospheric physics forced by seasonally varying insolation. The recent discovery of midlatitude tropospheric clouds on Titan has caused much excitement about the roles of surface sources of methane and the global circulation in forming clouds. Although localized surface sources, such as methane geysers or "cryovolcanoes," have been invoked to explain these clouds, we find in this work that clouds appear in regions of convergence by the mean meridional circulation and over the poles during solstices, where the solar forcing reaches its seasonal maximum. Other regions are inhibited from forming clouds because of dynamical transports of methane and strong subsidence. We find that for a variety of moist regimes, i.e., with the effect of methane thermodynamics included, the observed cloud features can be explained by the large-scale dynamics of the atmosphere. Clouds at the solsticial pole are found to be a robust feature of Titan's dynamics, whereas isolated midlatitude clouds are present exclusively in a variety of moist dynamical regimes. In all cases, even without including methane thermodynamics, our model ceases to produce polar clouds approximately 4-6 terrestrial years after solstices.

  5. Seasonal Changes in Titan's Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Jennins, Donald E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.; Carlson, R. C.; Gorius, N. J. P.; hide

    2011-01-01

    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer (CIRS) measured surface radiances at 19 micron in two time periods: one in late northern winter (Ls = 335d eg) and another centered on northern spring equinox (Ls = 0 deg). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between late northern winter and northern spring equinox a shift occurred in the temperature distribution, characterized by a warming of approximately 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was 93.4 K. We measured a seasonal lag of delta Ls approximately 9 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 deg S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

  6. Titan dune heights retrieval by using Cassini Radar Altimeter

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.

    2014-02-01

    The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.

  7. The Changing Surface of Saturn's Titan: Cassini Observations Suggest Active Cryovolcanism

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.

    2008-12-01

    R. M. Nelson(1), L. Kamp(1), R. M. C. Lopes(1), D. L. Matson(1), S. D. Wall(1), R. L. Kirk(2), K. L Mitchell(1), G. Mitri(1), B. W. Hapke(3), M. D. Boryta(4), F. E. Leader(1) , W. D. Smythe(1), K. H. Baines(1), R. Jauman(5), C. Sotin(1), R. N. Clark(6), D. P. Cruikshank(7) , P. Drossart(9), B. J. Buratti(1) , J.Lunine(8), M. Combes(9), G. Bellucci(10), J.-P. Bibring(11), F. Capaccioni(10), P. Cerroni(10), A. Coradini(10), V. Formisano(10), G Filacchione(10), R. Y. Langevin(11), T. B. McCord(12), V. Mennella(13), P. D. Nicholson(14) , B. Sicardy(8) 1-JPL, 4800 Oak Grove Drive, Pasadena CA 91109, 2-USGS, Flagstaff, 3-U Pittsburgh, 4-Mt. Sac Col, 5- DLR, Berlin, 6-USGS Denver, 7-NASA AMES, 8-U Paris-Meudon, 9-Obs de Paris, 10-ISFI-CNR Rome, 11-U Paris -Sud. Orsay, 12-Bear Flt Cntr Winthrop WA, 13-Obs Capodimonte Naples, 14-Cornell U. Several Instruments on the Cassini Saturn Orbiter have been observing the surface of Saturn's moon Titan since mid 2004. The Visual and Infrared Mapping Spectrometer (VIMS) reports that regions near 26oS, 78oW (region 1) and 7oS, 138oW (region 2) exhibit photometric changes consistent with on-going surface activity. These regions are photometrically variable with time(1). Cassini Synthetic Aperture Rader (SAR) has investigated these regions and reports that both of these regions exhibit morphologies consistent with cryovolcanism (2). VIMS observed region 1 eight times and reported that on two occasions the region brightened two-fold and then decreased again on timescales of several weeks. Region 2 was observed on four occasions (Tb-Dec13/2004 ,T8-Oct27/2005, T10-Jan15/2006, T12-Mar18/2006) and exhibited a pronounced change in I/F betweenT8 and T10. Our photometric analysis finds that both regions do not exhibit photometric properties consistent with atmospheric phenomena such as tropospheric clouds. These changes must be at or very near the surface. Radar images of these regions reveal morphology that is consistent with cryovolcanoes. We conclude that the VIMS instrument has found two instances in which selected regions on Titan's surface became unusually reflective and remained reflective on time scales of days to months. In both cases the area of reflectance variability is large (~100000 sq km), larger than either Loki or the Big Island of Hawaii. This is a strong evidence for currently active surface processes on Titan. Pre-Cassini, Titan was thought of as a pre-biotic earth that was frozen in time. Cassini VIMS and SAR observations combined suggest that Titan is the present day is not frozen solid, and is instead an episodically changing or evolving world. References: [1] Nelson R. M. et al, LPSC 2007 , Europlanets 2007, AGU 2007, EGU 2008, Accepted in Icarus 2008. [2] Lopes et al (this meeting), Stofan et al. Icarus 185, 443-456, 2007. Lopes et al. Icarus 186, 395- 412, 2007. Kirk et al., DPS 2007. Acknowledgement: This work done at JPL under contract with NASA

  8. Pluto's Implications for a Snowball Titan

    NASA Astrophysics Data System (ADS)

    Wong, M.; Yung, Y. L.; Gladstone, R.

    2013-12-01

    The recent Cassini-Huygens Mission to the Saturnian system provides compelling evidence that the present state of Titan's dense atmosphere is unsustainable over the age of the Solar System. Instead, for most of the time Titan's atmosphere must have existed in a collapsed snowball state, characterized by a cold surface and a thin atmosphere, much like those of present-day Pluto and Triton. We will briefly review how the present Titan atmosphere exists due to a sensitive coupling between photochemistry, radiation, and dynamics. This delicate 'house of cards' must have collapsed in the past when it ran out of CH4 or when the sun was dimmer. We will investigate how the rate of organic synthesis on Snowball Titan differs from that of contemporary Titan. The forthcoming New Horizons Mission to Pluto and the Kuiper Belt may allow us to gain insights into the fine balance and the evolutionary history of certain planetary atmospheres. In particular, the high SNR solar occultations planned for observation with the Alice UV spectrograph on New Horizons are expected to yield abundance profiles of important hydrocarbons and nitriles in Pluto's atmosphere, providing detailed constraints for photochemical models such as those considered here.

  9. Channel morphometry, sediment transport, and implications for tectonic activity and surficial ages of Titan basins

    USGS Publications Warehouse

    Cartwright, Richard; Clayton, Jordan A.; Kirk, Randolph L.

    2011-01-01

    Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0–5.0) for dendritic networks; comparisons with Rb values determined for Titanbasins, in conjunction with similarities in network patterns, suggest that portions of Titan's north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sedimenttransport rates in at least one Titanbasin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sedimenttransport estimates suggest that ~6700–10,000 Titan years (~2.0–3.0 x 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ~27,000–41,000 Titan years (~8.0–12.0 x 105 Earth years) when flows in the north polar region are restricted to summer months.

  10. Lightning generation in Titan due to the electrical self-polarization properties of Methane

    NASA Astrophysics Data System (ADS)

    Quintero, A.; Falcón, N.

    2009-05-01

    We describe an electrical charge process in Titan's thunderclouds, due to the self-polarization properties or pyroelectricity of methane, which increases the internal electric field in thunderclouds and facilitates the charge generation and separation processes. Microphysics that generates lightning flashes is associated with the physical and chemical properties of the local atmosphere, so methane could be the principal agent of the electrical activity because of its great concentration in Titan's atmosphere. Besides, Titan's electrical activity should not be very influenced by Saturn's magnetosphere because lightning occurs at very low altitude above Titan's surface, compared with the greater distance of Saturn's magnetosphere and Titan's troposphere. Using an electrostatic treatment, we calculate the internal electric field of Titan's thunderclouds due to methane's pyroelectrical properties, 7.05×10^11 Vm^-1; and using the telluric capacitor approximation for thunderclouds, we calculate the total charge obtained for a typical Titan thundercloud, 2.67×10^9 C. However, it is not right to use an electrostatic treatment because charge times are very fast due to the large methane concentration in Titan's clouds and the life time of thunderclouds is very low (around 2 hours). We consider a time dependent mechanism, employing common Earth atmospheric approaches, because of the similitude in chemical composition of both atmospheres (mainly nitrogen), so the typical charge of a thundercloud in Titan should reach between 20 C to 40 C, like on Earth. We obtain that lightning occurs with a frequency between 2 and 6 KHz. In Titan's atmosphere, methane concentration is higher than on Earth, and atmospheric electrical activity is stronger, so this model could be consistent with the observed phenomenology.

  11. Consideration of probability of bacterial growth for Jovian planets and their satellites

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Berkman, R. M.; Divine, N.

    1974-01-01

    Environmental parameters affecting growth of bacteria are compared with current atmospheric models for Jupiter and Saturn, and with the available physical data for their satellites. Different zones of relative probability of growth are identified for Jupiter and Saturn. Of the more than two dozen satellites, only the largest (Io, Europa, Ganymede, Callisto, and Titan) are found to be interesting biologically. Titan's atmosphere may produce a substantial greenhouse effect providing increased surface temperatures. Models predicting a dense atmosphere are compatible with microbial growth for a range of pressures at Titan's surface. For Titan's surface the probability of growth would be enhanced if: (1) the surface is entirely or partially liquid; (2) volcanism is present; or (3) access to internal heat sources is significant.

  12. Evidence for Likely Liquid Hydrocarbons on Titan's Surface from Cassini Radio Science Bistatic Scattering Observations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; Flasar, M.; French, R.; Kliore, A.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Simpson, R.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Kahan, D.; Kern, A.; Rochblatt, D.

    2006-12-01

    Cassini conducted the first two Radio Science bistatic scattering observations of Titan's surface on March 18 (T12) and May 20 (T14), 2006. The experiment was designed to search for mirror-like (quasi-specular) reflections from relatively flat surface regions. Three sinusoidal signals (0.94, 3.6, and 13 cm-wavelength; Ka-, X-, and S-band) transmitted by Cassini were used to illuminate and continuously track the region on Titan's surface where specular reflection is expected. The signals received at the Earth receiving stations (70-m for X and S, 34-m for Ka) of the NASA Deep Space Network were then searched for a surface echo. The transmitted signals are right circularly polarized (RCP). Both same sense (RCP) and opposite sense (LCP) polarized received components were recorded. The receivers were tuned to account for the rapidly time varying Doppler shift of the echo center frequency and the data was recorded in a 16 kHz bandwidth. Special procedures were implemented to calibrate the system noise temperature of both polarization channels, hence ensure accurate measurement of the absolute signal power. The observation geometry captured surface scattering over roughly 50 to 70 degrees incidence angle, close to the Brewster angle range of water ice and liquid and solid hydrocarbons. No strong specular echo was detectable over most of the T12 ingress track (about 40 m duration) or the T14 ingress (28 m) and egress (31 m) tracks, likely indicating very rough terrain over most regions probed (about 15 deg South latitude). However, for limited time periods (2 to 6 m), weak X- band RCP and LCP echo components are clearly detectable on both the T14 ingress and egress sides (about 140 and 14 deg west longitude, respectively). An S-band RCP echo component is also marginally detectable, but not an LCP component. No Ka-band echo is detectable, likely because of strong atmospheric gaseous absorption. The detected X-band echo appears to originate form relatively flat surface regions of less than about 100 km spatial extent. Remarkably, for both the ingress and egress locations, the measured echo polarization ratio implies a similar surface dielectric constant of about 1.6, suggesting liquid hydrocarbons (although other porous material of unknown nature can not be excluded at this time). The results suggest that the footprint of the radio beam on Titan's surface likely swept across localized regions of liquid hydrocarbons that are several tens of kilometers in extent (lakes?) embedded within an otherwise very rough surface terrain.

  13. Lakes, Seas, Mountains and Volcanoes on Titan: Implications for Geologic History

    NASA Astrophysics Data System (ADS)

    Stofan, E.; Hayes, A. G.; Wall, S. W.; Wood, C. A.

    2013-09-01

    The surface of Titan exhibits abundant evidence for erosional and depositional processes, with bodies of liquid hydrocarbons at both poles. While the portion of Titan's geologic history that we can access through its current surface is dominated by exogenic processes, remnant mountains and a few cryovolcanic features hint at a more endogenic past.

  14. Titan's Primordial Soup: Formation of Amino Acids via Low Temperature Hydrolysis of Tholins

    NASA Astrophysics Data System (ADS)

    Neish, Catherine; Somogyi, Á.; Smith, M. A.

    2009-09-01

    Titan, Saturn's largest moon, is a world rich in the "stuff of life". Reactions occurring in its dense nitrogen-methane atmosphere produce a wide variety of organic molecules, which subsequently rain down onto its surface. Water - thought to be another important ingredient for life - is likewise abundant on Titan. Theoretical models of Titan's formation predict that its interior consists of an ice I layer several tens of kilometers thick overlying a liquid ammonia-rich water layer several hundred kilometers thick (Tobie et al., 2005). Though its surface temperature of 94K dictates that Titan is on average too cold for liquid water to persist at its surface, melting caused by impacts and/or cryovolcanism may lead to its episodic availability. Impact melt pools on Titan would likely remain liquid for 102 - 104 years before freezing (O'Brien et al., 2005). The combination of complex organic molecules and transient locales of liquid water make Titan an interesting natural laboratory for studying prebiotic chemistry. In this work, we sought to determine what biomolecules might be formed under conditions analogous to those found in transient liquid water environments on Titan. We hydrolyzed Titan organic haze analogues, or "tholins", in 13 wt. % ammonia-water at 253K and 293K for a year. Using a combination of high resolution mass spectroscopy and tandem mass spectroscopy fragmentation techniques, four amino acids were identified in the hydrolyzed tholin sample. These four species have been assigned as the amino acids asparagine, aspartic acid, glutamine, and glutamic acid. This represents the first detection of biologically relevant molecules created under conditions similar to those found in impact melt pools and cryolavas on Titan. Future missions to Titan should therefore carry instrumentation capable of detecting amino acids and other prebiotically relevant molecules on its surface This work was supported by the NASA Exobiology Program.

  15. Tuning wettability of hydrogen titanate nanowire mesh by Na+ irradiation

    NASA Astrophysics Data System (ADS)

    Das, Pritam; Chatterjee, Shyamal

    2018-04-01

    Hydrogen titanate (HT) nanowires have been widely studied for remarkable properties and various potential applications. However, a handful studies are available related to ion beam induced structural changes and influence on wetting behavior of the HT nanowire surface. In this work, we exposed HT nanowires to 5 keV Na+ at an ion fluence of 1×1016 ions.cm-2. Scanning electron microscope shows that at this ion fluence nanowires are bent arbitrarily and they are welded to each other forming an interlinked network structure. Computer simulation shows that ion beam induces defect formation in the nanowires, which plays major role in such structural modifications. An interesting alteration of surface wetting property is observed due to ion irradiation. The hydrophilic pristine surface turns into hydrophobic after ion irradiation.

  16. Nanosilver particle formation on a high surface area titanate.

    PubMed

    Shi, Meng; Lin, Christopher C H; Wu, Lan; Holt, Christopher M B; Mitlin, David; Kuznicki, Steven M

    2010-12-01

    Titanium based molecular sieves, such as ETS-10, have the ability to exchange silver ions and subsequently support self assembly of stable silver nanoparticles when heated. We report that a high surface area sodium titanate (resembling ETS-2) displays a similar ability to self template silver nanoparticles on its surface. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show high concentrations of silver nanoparticles on the surface of this sodium titanate, formed by thermal reduction of exchanged silver cations. The nanoparticles range in size from 4 to 12 nm, centered at around 6 nm. In addition to SEM and TEM, XRD and surface area analysis were used to characterize the material. The results indicate that this sodium titanate has a high surface area (>263 m2/g), and high ion exchange capacity for silver (30+ wt%) making it an excellent substrate for the exchange and generation of uniform, high-density silver nanoparticles.

  17. COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN'S MOON TITAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Li; Zheng Weijun; Kaiser, Ralf I.

    2010-08-01

    The aromatic benzene molecule (C{sub 6}H{sub 6})-a central building block of polycyclic aromatic hydrocarbon molecules-is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C{sub 2}H{sub 2}) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two ordersmore » of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.« less

  18. Global mapping of the surface of Titan through the haze with VIMS onboard Cassini

    NASA Astrophysics Data System (ADS)

    Le Mouélic, Stéphane; Cornet, Thomas; Rodriguez, Sébastien; Sotin, Christophe; Barnes, Jason W.; Brown, Robert H.; Lasue, Jérémie; Baines, K. H.; Buratti, Bonnie; Clark, Roger Nelson; Nicholson, Philip D.

    2016-10-01

    The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini observes the surface of Titan through the atmosphere in seven narrow spectral windows in the infrared at 0.93, 1.08, 1.27, 1.59, 2.01, 2.68-2.78, and 4.9-5.1 microns. We have produced a global hyperspectral mosaic at 32 pixels per degrees of the complete VIMS data set of Titan between T0 (July 2004) and T120 (June 2016) flybys. We merged all the data cubes sorted by increasing spatial resolution, with the high resolution images on top of the mosaic and the low resolution images used as background. One of the main challenge in producing global spectral composition maps is to remove the seams between individual frames taken throughout the entire mission. These seams are mainly due to the widely varying viewing angles between data acquired during the different Titan flybys. These angles induce significant surface photometric effects and a strongly varying atmospheric (absorption and scattering) contribution, the scattering of the atmosphere being all the more present than the wavelength is short. We have implemented a series of empirical corrections to homogenize the maps, by correcting at first order for photometric and atmospheric scattering effects. Recently, the VIMS' IR wavelength calibration has been observed to be drifting from a total of a few nm toward longer wavelengths, the drift being almost continuously present over the course of the mission. Whereas minor at first order, this drift has implications on the homogeneity of the maps when trying to fit images taken at the beginning of the mission with images taken near the end, in particular when using channels in the narrowest atmospheric spectral windows. A correction scheme has been implemented to account for this subtle effect.

  19. Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators

    NASA Astrophysics Data System (ADS)

    Li, Min

    High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a negative flat band voltage shift and larger hysteresis relative to the HF-dipped samples. The IL EOT reduction by mtridation increases with increasing HE Surface nitridation also induces extra charge, more considerable at the Si/IL interface. The leakage current is reduced in the Hf-rich samples with a nitride layer. Electron mobility degradation by surface nitridation was also observed.

  20. Investigations into the photochemistry of the current and primordial atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Wilson, Eric Hezekiah

    2002-08-01

    A comprehensive steady-state one-dimensional photochemical model of the atmosphere of Titan has been developed. This model has included updated chemistry with a focus on rate coefficients and cross sections measured under conditions most applicable for simulation of Titan's atmosphere. Through this simulation, the physical and chemical processes which affect the altitudinal distribution of constituents in Titan's atmosphere have been explored. The model results, in comparison to previous Titan photochemical models, compares favorably with ground-based and fly-by observations of Titan's atmosphere. As a result, the model has facilitated the analysis of key questions regarding the nature of Titan's present chemistry, involving the production of key molecules and hazes. These questions include the role constituent density profiles may play in constraining methane photolysis quantum yields, the existence and formation mechanisms of benzene in Titan's atmosphere, and the chemical origin of Titan haze. Results show that the determination of CH3C2H and C3H6 abundance profiles will help constrain the CH quantum yield from methane photolysis, which varies significantly among photolytic schemes. Results also show that benzene can be formed in Titan's atmosphere, and the aromatic chemistry that ensues is the likely source of the Titan haze which enshrouds the surface. The origin of Titan's atmosphere has also been studied through a pseudo-time-dependent model which describes the evolution of the likely primordial ammonia inventory during the early stages of the solar system. Assuming an enhanced T-Tauri solar flux, the conversion of ammonia to nitrogen, in the presence of methane and water vapor, is found to be a plausible mechanism to account for the present-day nitrogen inventory. Results from this model are presented in preparation for the retrieval and interpretation of data from the Cassini- Huygens spacecraft, which will arrive at Titan in 2004.

  1. Evidence of Titan's climate history from evaporite distribution

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon M.; Barnes, Jason W.; Sotin, Christophe; Soderblom, Jason M.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Phillip D.; McCord, Thomas B.

    2014-11-01

    Water-ice-poor, 5-μm-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μm-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μm-bright material covers 1% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μm-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μm-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite?

  2. PPI/HASI Pressure Measurements in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    M'akinen, J. T. T.; Harri, A.-M.; Siili, T.; Lehto, A.; Kahanp'a'a, H.; Genzer, M.; Leppelmeier, G. W.; Leinonen, J.

    2005-08-01

    The Huygens probe descended through the atmosphere of Titan on January 14, 2005, providing an excellent set of observations. As a part of the Huygens Atmospheric Structure Instrument (HASI) measuring several variables, including acceleration, pressure, temperature and atmospheric electricity, the Pressure Profile Instrument (PPI) provided by FMI commenced operations after the deployment of the main parachute and jettisoning of the heat shield at an altitude of about 160 km. Based on aerodynamic considerations, PPI measured the total pressure with a Kiel probe at the end of a boom, connected to the sensor electronics inside the probe through an inlet tube. The instrument performed flawlessly during the 2.5 hour descent and the 0.5 hour surface phase before the termination of radio link between Huygens and the Cassini orbiter. We present an analysis of the pressure data including recreation of the pressure, temperature, altitude, velocity and acceleration profiles as well as an estimate for the level of atmospheric activity on the surface of Titan.

  3. Titan Ice and Dust Experiment (TIDE): Detection and Analysis of Compounds of Interest to Astrobiology in the Lower Atmosphere and Surface of Titan

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige

    2004-01-01

    The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.

  4. Transient Climate Effects of Large Impacts on Titan

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Korycansky, Donald; Nixon, Conor A.

    2013-01-01

    Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We find that a nominal Menrva impact is big enough to raise the surface temperature by approx. 80 K and to double the amount of methane in the atmosphere. The extra methane drizzles out of the atmosphere over hundreds of years. An upper-limit Menrva is just big enough to raise the surface to water's melting point. The putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al., 2009) is big enough to raise the surface temperature to 350-400 K. Water rain must fall and global meltwaters might range between 50 m to more than a kilometer deep, depending on the details. Global meltwater oceans do not last more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth. Significant near-surface clathrate formation is possible as Titan cools but faces major kinetic barriers.

  5. Cassini radar views the surface of Titan.

    PubMed

    Elachi, C; Wall, S; Allison, M; Anderson, Y; Boehmer, R; Callahan, P; Encrenaz, P; Flamini, E; Franceschetti, G; Gim, Y; Hamilton, G; Hensley, S; Janssen, M; Johnson, W; Kelleher, K; Kirk, R; Lopes, R; Lorenz, R; Lunine, J; Muhleman, D; Ostro, S; Paganelli, F; Picardi, G; Posa, F; Roth, L; Seu, R; Shaffer, S; Soderblom, L; Stiles, B; Stofan, E; Vetrella, S; West, R; Wood, C; Wye, L; Zebker, H

    2005-05-13

    The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of approximately 0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.

  6. Cassini radar views the surface of Titan

    USGS Publications Warehouse

    Elachi, C.; Wall, S.; Allison, M.; Anderson, Y.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Franceschetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.; Johnson, W.; Kelleher, K.; Kirk, R.; Lopes, R.; Lorenz, R.; Lunine, J.; Muhleman, D.; Ostro, S.; Paganelli, F.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Soderblom, L.; Stiles, B.; Stofan, E.; Vetrella, S.; West, R.; Wood, C.; Wye, L.; Zebker, H.

    2005-01-01

    The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of ???0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.

  7. Titan's lakes and Mare observed by the Visual and Infrared Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Brown, R. H.; Soderblom, L. A.; Sotin, C.; Barnes, J. W.; Hayes, A. G.; Lawrence, K. J.; Le Mouelic, S.; Rodriguez, S.; Soderblom, J. M.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; Nicholson, P. D.; Stephan, K.

    2012-04-01

    Titan is the only place, besides Earth, that holds stable liquid bodies at its surface. The large Kraken Mare, first seen by ISS [1], was then observed by the radar instrument that discovered a large number of small lakes as well as two other Mare [2]. The liquid nature of these radar-dark features was later confirmed by the specular reflection observed by the Visual and Infrared Mapping Spectrometer (VIMS) over Kraken Mare [3] and by the very low albedo at 5-micron over Ontario Lacus [4]. The three largest lakes are called Mare and are all located in the North Pole area. It is remarkable that most of these lakes have been observed on the North Pole with only one large lake, Ontario lacus, located in the South Pole area. This observation suggests the influence of orbital parameters on the meteorology and the occurrence of rainfalls to refill the depressions [5]. Ethane was detected by the VIMS instrument as one component of Ontario lacus [4]. These lakes and Mare play a key role in Titan's meteorology as demonstrated by recent global circulation models [6]. Determining the composition and the evolution of those lakes has become a primary science objective of the Cassini extended mission. Since Titan entered northern spring in August 2009, the North Pole has been illuminated allowing observations at optical wavelengths. On June 5, 2010 the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed the northern pole area with a pixel size from 3 to 7 km. These observations demonstrate that little of the solar flux at 5-micron is scattered by the atmosphere, which allowed us to build a mosaic covering an area of more than 500,000 km2 that overlaps and complements observations made by the Synthetic Aperture Radar (SAR) in 2007. We find that there is an excellent correlation between the shape of the radar dark area, known as Ligeia Mare and the VIMS 5-micron dark unit. Matching most of the radar shoreline, the 2010 VIMS observations suggest that the 125,000-km2 surface area of Ligeia Mare measured by RADAR in 2007 has not significantly changed [7]. The analysis of the 2-micron spectral window confirms the presence of ethane [8]. Because its saturation vapor pressure is several orders of magnitude smaller than that of methane, liquid ethane is expected to be very stable at Titan's surface conditions, which could explain the stability of the shorelines if ethane is the major compound of the lakes. VIMS observations of Ontario Lacus are planned in 2012 before it disappears in the polar night. Several observations of the northern lakes are planned in 2012 as well as observations of the Mare later in the mission. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged.

  8. Titan Polar Maps - 2015

    NASA Image and Video Library

    2015-10-09

    The northern and southern hemispheres of Titan are seen in these polar stereographic maps, assembled in 2015 using the best-available images of the giant Saturnian moon from NASA's Cassini mission. The images were taken by Cassini's imaging cameras using a spectral filter centered at 938 nanometers, allowing researchers to examine variations in albedo (or inherent brightness) across the surface of Titan. These maps utilize imaging data collected through Cassini's flyby on April 7, 2014, known as "T100." Titan's north pole was not well illuminated early in Cassini's mission, because it was winter in the northern hemisphere when the spacecraft arrived at Saturn. Cassini has been better able to observe northern latitudes in more recent years due to seasonal changes in solar illumination. Compared to the previous version of Cassini's north polar map (see PIA11146), this map provides much more detail and fills in a large area of missing data. The imaging data in these maps complement Cassini synthetic aperture radar (SAR) mapping of Titan's north pole (see PIA17655). The uniform gray area in the northern hemisphere indicates a gap in the imaging coverage of Titan's surface, to date. The missing data will be imaged by Cassini during flybys on December 15, 2016 and March 5, 2017. Lakes are also seen in the southern hemisphere map, but they are much less common than in the north polar region. Only a lakes have been confirmed in the south. The dark, footprint-shaped feature at 180 degrees west is Ontario Lacus; a smaller lake named Crveno Lacus can be seen as a very dark spot just above Ontario. The dark-albedo area seen at the top of the southern hemisphere map (at 0 degrees west) is an area called Mezzoramia. Each map is centered on one of the poles, and surface coverage extends southward to 60 degrees latitude. Grid lines indicate latitude in 10-degree increments and longitude in 30-degree increments. The scale in the full-size versions of these maps is 4,600 feet (1,400 meters) per pixel. The mean radius of Titan used for projection of these maps is 1,600 miles (2,575 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19657

  9. TSSM: The in situ exploration of Titan

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The probe will descend through Titan's atmosphere and land on a liquid surface (at the North pole, in a lake according to the current design). The currently envisaged strawman payload for these elements will be presented. Instruments aboard the balloon would provide high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, unimpeded by Titan's ionosphere, would permit sensitive detection of induced or intrinsic fields. The short-lived probe would splash into a large northern sea and spend several hours floating during which direct chemical and physical sampling of the liquid—a carrier for many dissolved organic species— would be undertaken. During its descent the Mare Explorer would provide the first in situ profiling of the winter northern hemispheric atmosphere, which is distinctly different from the equatorial atmosphere where Huygens descended and the balloon will arrive. Coordinated radio science experiments aboard the orbiter and in situ elements would be capable of providing detailed information on Titan's tidal response, and hence its crustal rigidity and thickness.

  10. Titan!

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  11. Liquid Elevations and Topographic Constraints of Titan's Lacustrine Basins at the end of Cassini: Hydrology and Formation

    NASA Astrophysics Data System (ADS)

    Hayes, A. G., Jr.; Birch, S.; Corlies, P.; Poggiali, V.; Dietrich, W. E.; Howard, A. D.; Kirk, R. L.; Mastrogiuseppe, M.; Malaska, M.; Moore, J. M.; Mitchell, K. L.

    2017-12-01

    The topographic information provided by Cassini RADAR Altimetry, SAR Topography, and stereo photogrammetry has opened new doors for Titan research by allowing the quantitative analysis of morphologic form as well as relative measurements of liquid elevation. Herein, we investigate the relative elevation of liquid bodies and the three-dimensional morphology of Titan's lacustrine basins in order to provide observables that will constrain connectivity and plausible formation mechanisms. Using delay-Dopler processed altimetry measurements we show that the liquid elevations of Titan's Mare are the same to within measurement error, consistent with an equipotential surface. The liquid elevation of several smaller lakes, however, are found to be several hundreds above this sea level, suggesting that they exist in isolated or perched basins. Within a given topographic basin, the floor elevations of empty lakes are typically higher than the local liquid elevation, suggesting either the presence of an impermeable boundary or local subsurface connectivity. Basins with floors closer to the local phreatic surface appear brighter to both nadir and off-nadir microwave observations than those that are more elevated, indicating a potential change in composition. The majority of Titan's lakes reside in sharp edged depressions whose planform curvature suggests expansion through uniform scarp retreat. Many, but not all, of these basins exhibit flat floors and hundred-meter scale steep-sided raised rims that present a challenge to formation models. Raised rims are found on 57% of all the lakes in our study, including for all lakes >500 km2 in area. With super-resolution altimetry profiles, the raised rims can also be correlated directly with SAR image data, allowing for the identification of raised rims on other lakes, even when they lack topographic data coverage.. The basins are often topographically closed with no evidence for inflow or flow channels at the 300 m resolution of Cassini SAR images. The implications of these observations will be discussed in the context of common basin formation models. We conclude that sublimation and dissolution mechanisms can best match the observed constraints, but that challenges still exist in their implementation.

  12. The environment of Titan, 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information regarding the physical characteristics of Titan and atmospheric models necessary to support design and mission planning of spacecraft that are to orbit Titan, enter its atmosphere or land on its surface is given.

  13. Orographic forcing of dune forming winds on Titan

    NASA Astrophysics Data System (ADS)

    Larson, E. J.; Toon, O. B.; Friedson, A. J.

    2013-12-01

    Cassini has observed hundreds of dune fields on Titan, nearly all of which lie in the tropics and suggest westerly (from west to east) winds dominate at the surface [1,2]. Most GCMs however have obtained easterly surface winds in the tropics, seemingly contradicting the wind direction suggested by the dunes. This has led to an active debate in the community about the origin of the dune forming winds on Titan and their direction and modality. This discussion is mostly driven by a study of Earth dunes seen as analogous to Titan [1,2,3]. One can find examples of dunes on Earth that fit several wind regimes. To date only one GCM, that of Tokano [4,5], has presented detailed analysis of its near surface winds and their dune forming capabilities. Despite the bulk of the wind being easterly, this GCM produces faster westerlies at equinox, thus transporting sand to the east. Our model, the Titan CAM [6], is unable to reproduce the fast westerlies, although it is possible we are not outputting frequently enough to catch them. Our GCM has been updated to include realistic topography released by the Cassini radar team. Preliminary results suggest our tropical wind regime now has net westerly winds in the tropics, albeit weak. References: [1], Lorenz, R. et al. 2006. Science, 312, 724-727. [2], Radebaugh, J. et al. 2008. Icarus, 194, 690-703. [3] Rubin, D. and Hesp, P. 2009. Nature Geoscience 2, 653-658. [4] Tokano, T. 2008. Icarus 194, 243-262. [5] Tokano, T. 2010. Aeolian Research 2, 113-127. [6] Friedson, J. et al. 2009. Planetary Space Science, 57, 1931-1949.

  14. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan

    NASA Astrophysics Data System (ADS)

    Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia

    2014-08-01

    Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.

  15. Do Titan's Mountains Betray the Late Acquisition of its Current Atmosphere

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan; Nimmo, F.

    2011-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history [1,2,3,4]. Prior to that time, Titan would have been nearly airless, with its volatiles frozen or sequestered. Present-day Titan experiences only small (approximately 4 K) pole-to-equator variations, owing to efficient heat transport via the thick atmosphere [5]; these temperature variations would have been much larger (approximately 20 K) in the absence of an atmosphere. If Titan's ice shell is conductive, the change in surface temperature associated with the development of an atmosphere would have led to changes in shell thickness. In particular, the poles would move down (inducing compression) while the equator would move up. Figure 1 shows the predicted change in surface elevation as a result of the change in surface temperature, using the numerical conductive shell thickness model of [6

  16. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  17. Dunes on Titan: A major landform revealing atmospheric and surface processes

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Lorenz, Ralph; Arnold, Karl; Savage, Christopher; Williams, Brigitte

    The surface of Saturn’s moon Titan is covered in features that herald an active atmosphere and perhaps interior, such as dunes, rivers, lakes, mountain chains, and possible cryovolcanoes. Examining the geomorphology of these features helps us approach an understanding of the processes that are occurring or have occurred in the atmosphere and subsurface. A major landform on Titan is dunes, composed of organic sands ultimately derived from upper atmospheric processing of methane, subsequently perhaps eroded from organic sedimentary layers by methane rainfall and fluvial flow. Dunes fill vast fields, termed sand seas, similar to those observed in the Sahara, Namibia, and the Arabian peninsula. The equatorial region of Titan contains five separate sand seas as observed by the Cassini Synthetic Aperture Radar (SAR), Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) instruments. Together these sand seas cover 14 percent of the surface, totaling 12 million km2, and each have areas on the scale of the Saharan Great Sand Sea. They adjoin each other through sediment pathways around landmasses, and these large-scale connections as well as individual dune interactions with topography indicate a general transport of sediment from west to east. Measurements of dune height, width and spacing in Cassini SAR images reveal all of Titan’s thousands of linear dunes are of the same population. This indicates there was general uniformity in the wind and sediment supply conditions that led to the current dune forms. Variations in the parametric values result from deviations from these conditions, in some locations where elevated terrains have deflected winds. Dunes and sand seas are among the stratigraphically youngest features on Titan, showing little evidence of being affected by impact cratering or fluvial flow. However, individual dunes may be relatively stable, as the reorganization time scale for these features on Earth can be tens to hundreds of thousands of years. Recent field studies of large, linear dunes in Namibia reveal a complex reworking of the dune interior, overprinted on the main duneform, as a result of changing regional conditions. These field studies, which can be undertaken at a level of detail not yet possible to obtain on Titan, help us better understand the history of similar landforms on a distant solar system body.

  18. Impact of aerosols present in Titan's atmosphere on The Cassini Radar experiment

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Paillou, P.; Dobrijevic, M.; Ruffie, G.; Coll, P.; Bernard, J. M.; Encrenaz, P.

    2002-09-01

    One of the goals of the Cassini-Huygens mission, which will reach Saturn in 2004, is the study of the satellite Titan (its atmosphere and surface) by means of various remote sensing instruments on the orbiter and with the entry of the Huygens probe into Titan's atmosphere. In particular, the Cassini Radar experiment will use the high gain antenna at 13.78 GHz to "see" through Titan's atmosphere and map about 30 Two active modes (SAR and altimeter) and a passive mode (radiometer) will be used within the Radar experiment. The interpretation of future radar acquisitions will be conditioned by the electric properties of the atmospheric components the radar pulse will encounter, as well as the Titan's surface reflectivity. For this purpose, we made some dielectric constant measurements on synthetic analogs of Titan's aerosols, i.e. tholins. We found ǎrepsilon'=2-2.5 and a loss tangent between 5.10-2 and 10-3. These results were combined to scenarii of aerosol and rain formation in Titan's atmosphere into a simple simulation of the atmospheric transmission (Rayleigh and Mie scattering) in order to estimate the way aerosols and rain particles will affect the performance of the radar instrument, by attenuating the radar pulse before it reaches the surface. Results we obtained are surprisingly pessimistic for numbers of published atmospheric models, with computed attenuations that can be higher than 12 dB. Indeed, the occurrence of hydrocarbon rain in the low atmosphere could have a prejudicial effect on the radar pulses, since they could be partially attenuated, completely reflected, or distorted before reaching Titan's surface. We conclude on possible consequences that such atmospheric effects could have on the future analysis of Cassini Radar data. We also propose alternative ways to use combined altimeter and SAR data in order to decorrelate atmospheric and surface effects and then map the surface with less ambiguity, but also study the particles distribution in Titan's atmosphere. This work was supported by the French Programme National de Planétologie of the Institut National des Sciences de l'Univers, CNRS.

  19. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.

    PubMed

    Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B

    2009-08-01

    Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.

  20. The Calm Methane Northern Seas of Titan from Cassini Radio Science Observations

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; French, Richard G.; Wong, Kwok; Anabtawi, Aseel; Schinder, Paul J.; Cassini Radio Science Team

    2016-10-01

    We report on results from 3 bistatic scattering observations of Titan northern seas conducted by the Cassini spacecraft in 2014 ( flybys T101, T102, and T106). The onboard Radio Science instrument transmits 3 sinusoidal signals of 0.94, 3.6, and 13 cm wavelengths. The spacecraft is continuously maneuvered to point in incidence direction so that mirror-like reflections from Titan's surface are observed at the ground stations of the NASA Deep Space Network. The corresponding ground-track in all 3 cases crossed different regions of Kraken Mare, and in the case of T101 also crossed Ligeia Mare. A nearly pure sinusoidal reflected signal was clearly detectable in the observed echoes spectra over surface regions identified in the Cassini RADAR images as potential liquid regions. Weaker quasi-specular echoes were also evident over some intermediate dry land and near sea shores. Cassini transmits right-circularly-polarized (RCP) signals and both the RCP and LCP echo components are observed. Their spectral shape, bandwidth, and total power are the observables used to infer/constrain physical surface properties. Presented results are limited to the 3.6 cm wavelength signal which has the largest SNR. The remarkably preserved sinusoidal echo spectral shape and the little detectable Doppler broadening strongly suggest surface that is smooth on scales large compared to 3.6 cm. If long wavelength gravity waves are present, they must be very subtle. The measured RCP/LCP echo power ratio provides direct measurement of the surface dielectric constant and is diagnostic of the liquid composition. The power ratio measurements eliminate possible significant ethane contribution and strongly imply predominantly liquid methane and nitrogen composition. Carefully calibrated measurements of the absolute echo power and the inferred dielectric constant constrain the presence of any capillary waves of wavelength << 3.6 cm. The latter affect wave coherence across the Fresnel region, reducing the reflected sinusoidal component power. When detectable, the reduction implies an RMS ripples height of about 2 mm, otherwise the measurements place an upper bound of about 1 mm. The results appear consistent among the two polarized echo components.

  1. Global map of Titan's dune fields

    NASA Astrophysics Data System (ADS)

    Le Corre, L.; Le Mouélic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.; Nicholson, P.

    2008-09-01

    Introduction Methane is the second major constituent of Titan's atmosphere; but it should be totally removed at least in ten million years by photochemistry in the stratosphere and condensation in the troposphere [1]. The first process produces hydrocarbons which form the haze and can condensate onto the surface. The second process causes methane rains on the surface, which carve channels networks. The loss of methane is possibly balanced by outgassing during cryovolcanic event [2]. But hydrocarbons grains deposited onto the surface cannot be recycled. They may be stored in the dunes [3], which were first seen by SAR (Synthetic Aperture Radar) [4]. We focus our study on the mapping of the dune fields in order to determine their global distribution. The aim is to constrain the amount of hydrocarbon material existing in the dunes, and to relate it to the duration of the methane cycle. Data from the Visual and Infrared Mapping Spectrometer (VIMS) and RADAR instruments onboard Cassini spacecraft can be used to map Titan's surface. Infrared images, which are mainly sensitive to composition and grain size, are very complementary to the microwave measurements which depend mainly on roughness and topography. We used spectral criteria after empirical correction of aerosols to map the distribution of heterogeneous units on Titan [5]. These units are compared with SAR images in overlapping regions. Titan's surface mosaics with VIMS VIMS probes the first ten of microns of the ground in seven narrow atmospheric windows in the 0.88 to 5.11 μm wavelength range. We built infrared mosaics with cubes sorted by spatial resolution, by keeping cubes corresponding to favorable observing conditions (incidence, emergence, phase and time exposure). Band ratios were computed and combined in false color composite images (red as 1.59/1.27-μm, green as 2.03/1.27-μm and blue as 1.27/1.08-μm). Band ratios are useful to minimize the effect of illuminating conditions and albedo variations [6]. Mosaics of Titan's surface were created using images acquired during 42 flybys from Ta (October 26th 2004) to T42 (March 25th 2008). These images have been integrated into a Geographic Information System (GIS). Global maps of band ratios appear fuzzy at high latitudes due to a low spatial resolution and to the presence of haze and clouds. The unfavorable observing geometry, with high incidence angles, induces a very strong scattering by the aerosols in these regions. On the contrary, equatorial and mid-latitudes regions have been covered at a medium resolution, in better observing conditions. In our color composites, most of Titan surface appears either in brown units, bluish units or bright units. We observed that brown units cover 18% of the whole Titan's surface and are found in equatorial regions. Dark blue units cover roughly 2% of Titan's surface. They are systematically associated with bright terrains and are never found isolated within brown units (Fig. 1a). Dune patterns were first observed in the infrared with VIMS during the closest approach at T4 and T20 flybys [7, 8]. The detailed study of dune fields by [8] shows that dune patterns are found mainly in brown units and interdunes can account for the observed spectral variability. Dunes with Radar SAR dataset We also use the RADAR data in SAR mode, mainly sensitive to roughness, surface topography and dielectric constant variations. It is independent of solar light conditions and of the presence of clouds. We retrieved the radar swaths from Ta to T25 (February 22nd 2007) flybys from the PDS website and reprojected the data using the ISIS2 software. The spatial resolution of the SAR images allows the direct imaging of the dunes. Most of Titan's dunes appear longitudinal and resemble terrestrial dunes, such as the ones found in Namibia [4]. Detailed morphologic analysis was performed in [9], who inferred a dominant wind eastward to account for their formation. Two kinds of dunes have been observed: sand seas and small dunes in low sand supply zones. Most of the aeolian sand deposits are found in sand seas. In addition, isolated groups of "cat scratches", very sinuous short dunes [9] and sand sheets [10] (visible as dark uniform terrains) are recognized. Their emplacement is most probably related to the available sand supply. Comparison of infrared and SAR units Sand seas and small dunes match different kind of terrains in the infrared. Radar dune fields boundaries in the infrared. The dune fields in SAR images generally end at the limit between infrared brown and bright units (Fig. 1b and 1c). Dunes can also be found on dark blue terrains as seen by [7] and [11]. 82% of SAR dunes are located in brown units and 4.5% in dark blue units. The remnant dunes corresponding to "cat scratches" or not well defined dune fields appear in infrared bright units as isolated patches. These dunes may form with a low sand supply, thus VIMS detects a bright terrain because of the lower resolution than SAR. It could account for some of the 13.5% radar dunes found on bright areas. It should be noted that the limit between SAR dunes and brown units is sometimes shifted by about 20 km. This could be due to the obliquity and spin rate of Titan, which are not taken into account in our georeferenced images [12]. An accurate model of Titan obliquity and spin rate would be needed to correct this effect. But yet, there is a significant overlapping between VIMS brown units and dunes seen with the RADAR at global scale. The relationship seems to be more complex for the dark blue terrains, since dunes overlap this unit or are stopped at the border. Dark blue units may correspond to an aeolian deposit younger than the dunes [6]. By using a mean height of 150 m for the dunes [3, 10] and an average thickness of 20 m [3], we find a total amount of dune material in the brown units of 3.01 105 km3. This is consistent with the estimation from [3]. Conclusion From the global mapping, we inferred that dunes in the RADAR data are highly correlated with brown infrared terrains, and can overlap dark blue areas. Observations of brown infrared terrains by VIMS will complete the dune fields coverage found by SAR: the total SAR surface coverage at the end of the extended mission will be ~40%, whereas VIMS will achieve a near global coverage at 15-20 km/pixel in average. Therefore, the integration of both datasets will improve the estimation of amount of hydrocarbons present in solid state on Titan. References [1] Atreya, S. K. et al. (2006) PSS, 54, 1177-1187. [2] Sotin, C. et al. (2005) Science, 435, 786-789. [3] Lorenz, R. D. et al. (2008), GRL, 35, L02206. [4] Lorenz, R. D. et al. (2006) Science, 312, 724-727. [5] Le Mouélic, S. et al. (2008) LPSC XXXIX, abstract 1730. [6] Le Mouélic, S. et al. (2008) JGR, 113, E04003. [7] Barnes, J. W. et al. (2007) Icarus, 186, 242-258. [8] Barnes, J. W. et al. (2008) Icarus, 195, 400-414. [9] Radebaugh, J. et al. (2008) Icarus, 194, 690-703. [10] Lunine, J. I. et al. (2008) Icarus, 195, 415-433. [11] Soderblom, L. A. et al. (2007) PSS, 55, 2025-2036. [12] Stiles, B. W. et al (2008) The Astronomical Journal, 135, 1669-1680.

  2. A Chemical Approach to Understanding Oxide Surface Structure and Reactivity

    NASA Astrophysics Data System (ADS)

    Enterkin, James Andrew

    Transmission electron microscopy and diffraction are powerful tools for solving complex structural problems. They complement other analytical techniques, such as x-ray diffraction, elucidating problems which cannot be solved by other techniques. One area where they are of particularly great value is in the determination of surface structures. The research presented herein uses electron microscopy and diffraction as the primary experimental techniques in the development of a chemistry of surface structures. High-resolution electron microscopy revealed that the La4Cu 3MoO12 structure has turbostratic disorder and a lower symmetry space group (Pm) than was previously found. The refinement of the x-ray data was significantly improved by using a disordered model and the Pm space group. A bond valence analysis confirmed that the disordered structure is the superior model. Strontium titanate, SrTiO3, single crystal surfaces were examined principally via transmission electron diffraction. A homologous series with intergrowths was discovered on the (110) surface of strontium titanate, marking the first time that these important concepts of solid state chemistry have been found at the surface. Atmospheric adsorbates, such as H2O and CO2, were found to help to stabilize undercoordinated surface structures on the (100) surface. It was shown that chemical bonding, bond valence, atomic coordination, and stoichiometry greatly influence the development of surface structures. Additionally, such chemistry based analysis was demonstrated to be able to predict surface structure stability and reactivity. Application of a modified Wulff construction to the observed shape of strontium titanate nanocuboids revealed that the surface structure and particle stoichiometry are interlinked, with control over one allowing equally precise control over the other. Platinum nanoparticles on the strontium titanate nanocuboids were shown via high resolution electron microscopy to have cube-on-cube epitaxy, with the shape of the platinum nanoparticles governed by the Winterbottom construction. Precise modification of the support surface will therefore allow engineering of supported metal particles with precise control over which facets are exposed. These results suggest that control over the support surface chemistry can be used to engineer thermodynamically stable, face selective catalysts.

  3. Cratering on Titan: A Pre-Cassini Perspective

    NASA Technical Reports Server (NTRS)

    Lorenz, R. D.

    1997-01-01

    The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km (compared with 4 km on Venus, or 0.5 km on Earth). Crater chains are unlikely on Titan, since impactors must pass close enough to Saturn to be tidally disrupted; as a result, they would suffer aerodynamic disruption. Crater counting on adjacent satellites gives densities of about 200 per 10 (exp 6) square km for 20-km-diameter craters. However, the presence of a thick atmosphere leads to atmospheric shielding, depleting the relative abundance of small craters. This has been evaluated by models, and the relative abundance of small craters may be due to a diagnostic atmospheric collapse. A number of radar-dark "splotches" have been detected on Venus; these have been attributed to the interaction of the surface with the atmospheric shockwave produced by the Tunguska-like explosion of a bolide in the atmosphere. Simple analogy suggests that similar features might occur on Titan, but the shocked mass density (which controls the momentum coupling between the surface and the shockwave) of Titan's cold N2 atmosphere is about 20x smaller than that of Venus's hot CO2 atmosphere. Unless ice is much more easily turned to rubble than is rock, such features seem less probable on Titan. When the energy deposited by an impact forms a fireball with an equilibrate greater than one scale height, the fireball expands upward and can distribute ejecta. on ballistic exoatmospheric trajectories. On Venus this process is believed to be responsible for the parabolic features; the interaction of various-sized particles falling through the atmosphere with the zonal wind field winnows the particles to form a parabolic deposit. Although such a process is possible on Titan, the large scale height at higher altitudes would make it more difficult. Comparison with craters on other icy satellites suggests that craters on Titan will be fairly shallow (depth/diameter about 0.1) and craters greater than 10 km in diameter will have central peaks or domed bases, perhaps with central pits. The formation of ejecta. blankets may involve the atmosphere in a significant way, both by restraining the expansion of the ejecta cloud and by influencing the thermal history of the ejecta. Compared with Venus, Titan's atmosphere will chill an impact melt somewhat quickly, so the long ejecta flows seen on Venus seem less likely, detailed modeling needs to be performed to determine the impact melt production. Crater topography on Titan may be highlighted by the influence of liquids forming crater lakes. Craters with central peaks will typically form ring-shaped lakes, although horseshoe-shaped takes may be common; domed craters with central pits may even form bullseye lakes with islands with central ponds. If liquids have covered a substantial part of Titan's surface for a substantial period, hydroblemes and tsunami deposits may be common.

  4. Cratering on Titan: A Pre-Cassini Perspective

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    1997-01-01

    The NASA-ESA Cassini mission, comprising a formidably instrumented orbiter and parachute-borne probe to be launched this October, promises to reveal a crater population on Titan that has been heretofore hidden by atmospheric haze. This population on the largest remaining unexplored surface in the solar system will be invaluable in comparative planetological studies, since it introduces evidence of the atmospheric effects of cratering on an icy satellite. Here, I highlight some impact features we may hope to find and could devote some modeling effort toward. Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s Atmosphere -94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface.Titan in a Nutshell: Radius= 2575 km. Density= 1880 kg/cubic m consistent with rock-ice composition. Surface pressure = 1.5 bar. Surface gravity = 1.35 m/square s; Atmosphere about 94% N2 6% CH, Surface temperature = 94K Tropopause temperature = 70K at 40 km alt. Probable liquid hydrocarbon deposits exist on or near the surface. Titan is comparable to Callisto and Ganymede for strength/gravity, Mars/Earth/Venus for atmospheric interaction, and Hyperion, Rhea, and Iapetus for impactor distribution. The leading/trailing asymmetry of crater density from heliocentric impactors is expected to be about 5-6, in the absence of resurfacing. Any Saturnocentric impactor population is likely to alter this. In particular the impact disruption of Hyperion is noted; because of the 3:4 orbital resonance with Titan, fragments from the proto-Hyperion breakup would have rapidly accreted onto Titan. Titan's resurfacing history is of course unknown. The disruption of impactors into fragments that individually create small craters is expected to occur. A crude estimate suggests a maximum separation of about 2 km (compared with 4 km on Venus, or 0.5 km on Earth). Crater chains are unlikely on Titan, since impactors must pass close enough to Saturn to be tidally disrupted; as a result, they would suffer aerodynamic disruption. Crater counting on adjacent satellites gives densities of about 200 per 10 6 square km for 20-km-diameter craters. However, the presence of a thick atmosphere leads to atmospheric shielding, depleting the relative abundance of small craters. This has been evaluated by models, and the relative abundance of small craters may be due to a diagnostic atmospheric collapse. A number of radar-dark "splotches" have been detected on Venus; these have been attributed to the interaction of the surface with the atmospheric shockwave produced by the Tunguska-like explosion of a bolide in the atmosphere. Simple analogy suggests that similar features might occur on Titan, but the shocked mass density (which controls the momentum coupling between the surface and the shockwave) of Titan's cold N2 atmosphere is about 20x smaller than that of Venus's hot CO2 atmosphere. Unless ice is much more easily turned to rubble than is rock, such features seem less probable on Titan. When the energy deposited by an impact forms a fireball with an equilibrate greater than one scale height, the fireball expands upward and can distribute ejecta. on ballistic exoatmospheric trajectories. On Venus this process is believed to be responsible for the parabolic features; the interaction of various-sized particles falling through the atmosphere with the zonal wind field winnows the particles to form a parabolic deposit. Although such a process is possible on Titan, the large scale height at higher altitudes would make it more difficult. Comparison with craters on other icy satellites suggests that craters on Titan will be fairly shallow (depth/diameter about 0.1) and craters greater than 10 km in diameter will have central peaks or domed bases, perhaps with central pits. The formation of ejecta. blankets may involve the atmosphere in a significant way, both by restraining the expansion of the ejecta cloud and by influencing the thermal history of the ejecta. Compared with Venus, Titan's atmosphere will chill an impact melt somewhat quickly, so the long ejecta flows seen on Venus seem less likely, detailed modeling needs to be performed to determine the impact melt production. Crater topography on Titan may be highlighted by the influence of liquids forming crater lakes. Craters with central peaks will typically form ring-shaped lakes, although horseshoe-shaped takes may be common; domed craters with central pits may even form bullseye lakes with islands with central ponds. If liquids have covered a substantial part of Titan's surface for a substantial period, hydroblemes and tsunami deposits may be common.

  5. Poster 17: Methane storms as a driver of Titan's dune orientation.

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clement; Lebonnois, Sebastien; Rodriguez, Sebastien; Courech Du Pont, Sylvain; Lucas, Antoine

    2016-06-01

    Titan's equatorial regions are covered by eastward oriented linear dunes [1,2]. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth. We propose that Titan's dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation [3]. Using meso-scale simulations of convective methane clouds [4] with a GCM wind profile featuring the superrotation [5,6], we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind calculations and analogies with terrestrial dune fields [7], we show that Titan's dune propagation occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes as the divergence from the equator or the dune size and spacing. It also implies an equatorial origin of Titan's dune sand and a possible occurence of dust storms.

  6. The Greenhouse and Anti-Greenhouse Effects on Titan

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  7. Constraints on Titan rotation from Cassini radar

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Stiles, B. W.; Kirk, R. L.

    2014-12-01

    We give an update on efforts to model the rotation of Titan, subject to constraints from Cassini radar observations. The data we are currently using includes 670 tie-points, each of which is a pair of inertial positions of a single surface point, relative to the center of mass of Titan, and the corresponding pair of observation times. The positional accuracy is of order 1 km, in each Cartesian component. A reasonably good fit to the observations is obtained with a simple model which has a fixed spin pole and a rotation rate which is a sum of a constant value and a single sinusoidal oscillation. A better fit is obtained if we insist that Titan should behave as a synchronous rotator, in the dynamical sense of keeping its axis of least inertia oriented toward Saturn. At the level of accuracy required to fit the Cassini radar data, synchronous rotation is notably different than having a uniform rate of rotation. In this case, we need to model time variations in the orbital mean longitude, which is the longitude of periapse, plus the mean anomaly. That angle varies on a wide range of times scales, including Titan's periapse precession period (703 years), Saturn's heliocentric orbital period (29.47 years), perturbations from relatively large satellites Iapetus (79.3 days), and a 4:3 mean motion resonant interaction with Hyperion (640 and 6850 days), and a linear increase at Titan's mean orbital period (15.9455 day). Our rotation model for Titan has 4 free parameters. Two of them specify the orientation of the fixed spin pole, and the other two are the effective free libration period and viscous damping time. Our dynamical model includes a damped forced longitudinal libration, in which gravitational torques attempt to align the axis of least inertia with the instantaneous direction to Saturn. For a rigid tri-axial body, with Titan's moments of inertia, the free oscillation period for longitudinal librations would be 850 days. For a decoupled elastic shell, the effective period is likely somewhat less. Variations in angular position of Saturn, as seen from Titan, with periods shorter than the free libration period, will not be accurately tracked. Thus the short period (one and two cycles per orbit) forced librations will be very small (~50 m), and are, in any event, not well sampled in the data.

  8. Discovery of Temperate Latitude Clouds on Titan

    NASA Astrophysics Data System (ADS)

    Roe, H. G.; Bouchez, A. H.; Trujillo, C. A.; Schaller, E. L.; Brown, M. E.

    2005-01-01

    Until now, all the clouds imaged in Titan's troposphere have been found at far southern latitudes (60°-90° south). The occurrence and location of these clouds is thought to be the result of convection driven by the maximum annual solar heating of Titan's surface, which occurs at summer solstice (2002 October) in this south polar region. We report the first observations of a new recurring type of tropospheric cloud feature, confined narrowly to ~40° south latitude, which cannot be explained by this simple insolation hypothesis. We propose two classes of formation scenario, one linked to surface geography and the other to seasonally evolving circulation, which will be easily distinguished with continued observations over the next few years. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  9. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  10. Tuning the surface microstructure of titanate coatings on titanium implants for enhancing bioactivity of implants

    PubMed Central

    Wang, Hui; Lai, Yue-Kun; Zheng, Ru-Yue; Bian, Ye; Zhang, Ke-Qin; Lin, Chang-Jian

    2015-01-01

    Biological performance of artificial implant materials is closely related to their surface characteristics, such as microtopography, and composition. Therefore, convenient fabrication of artificial implant materials with a cell-friendly surface structure and suitable composition was of great significance for current tissue engineering. In this work, titanate materials with a nanotubular structure were successfully fabricated through a simple chemical treatment. Immersion test in a simulated body fluid and in vitro cell culture were used to evaluate the biological performance of the treated samples. The results demonstrate that the titanate layer with a nanotubular structure on Ti substrates can promote the apatite-inducing ability remarkably and greatly enhance cellular responses. This highlights the potential of such titanate biomaterials with the special nanoscale structure and effective surface composition for biomedical applications such as bone implants. PMID:26089665

  11. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    PubMed Central

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  12. Geologic Conditions Required for the Fluvial Erosion of Titan’s Craters

    NASA Astrophysics Data System (ADS)

    Kinser, Rebeca; Neish, Catherine; Howard, Alan; Schenk, Paul; Bray, Veronica

    2015-11-01

    In comparison to other icy satellites, Titan has a small number of impact craters on its surface. This suggests that it has a young surface and/or erosional processes that remove craters from its surface. The set of geological conditions on Titan that would allow craters to become unrecognizable by orbiting spacecraft such as Cassini is unclear. Initial results suggest that not all geologic conditions would allow for complete degradation of impact craters on Titan. Using a landscape evolution model, we explored a larger parameter space to determine the conditions under which a representative 40 km crater on Titan would be eroded. We focused on varying the values of parameters such as bedrock and regolith erodibility, sediment grain size, the weathering rate of the regolith, and whether or not the regolith was saturated with liquid hydrocarbons. We found that only after changing the saturation state of the regolith mid-way through the simulation was it possible to completely erode the crater. Since there are few craters on Titan, this suggests that during Titan’s geological history there may have been varying quantities of liquid on its surface. Titan is known to have a dense atmosphere, not unlike that of the Earth, that could allow for surface liquids to vary under a changing climate. The erosion rate could then also vary as a direct result of changing climatic conditions.

  13. Fluvial erosion and post-erosional processes on Titan

    USGS Publications Warehouse

    Jaumann, R.; Brown, R.H.; Stephan, K.; Barnes, J.W.; Soderblom, L.A.; Sotin, Christophe; Le, Mouelic S.; Clark, R.N.; Soderblom, J.; Buratti, B.J.; Wagner, R.; McCord, T.B.; Rodriguez, S.; Baines, K.H.; Cruikshank, D.P.; Nicholson, P.D.; Griffith, C.A.; Langhans, M.; Lorenz, R.D.

    2008-01-01

    The surface of Titan has been revealed by Cassini observations in the infrared and radar wavelength ranges as well as locally by the Huygens lander instruments. Sand seas, recently discovered lakes, distinct landscapes and dendritic erosion patterns indicate dynamic surface processes. This study focus on erosional and depositional features that can be used to constrain the amount of liquids involved in the erosional process as well as on the compositional characteristics of depositional areas. Fluvial erosion channels on Titan as identified at the Huygens landing site and in RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations have been compared to analogous channel widths on Earth yielding average discharges of up to 1600 m3/s for short recurrence intervals that are sufficient to move centimeter-sized sediment and significantly higher discharges for long intervals. With respect to the associated drainage areas, this roughly translates to 1-150 cm/day runoff production rates with 10 years recurrence intervals and by assuming precipitation this implies 0.6-60 mm/h rainfall rates. Thus the observed surface erosion fits with the methane convective storm models as well as with the rates needed to transport sediment. During Cassini's T20 fly-by, the VIMS observed an extremely eroded area at 30?? W, 7?? S with resolutions of up to 500 m/pixel that extends over thousands of square kilometers. The spectral characteristics of this area change systematically, reflecting continuous compositional and/or particle size variations indicative of transported sediment settling out while flow capacities cease. To account for the estimated runoff production and widespread alluvial deposits of fine-grained material, release of area-dependent large fluid volumes are required. Only frequent storms with heavy rainfall or cryovolcanic induced melting can explain these erosional features. ?? 2008 Elsevier Inc.

  14. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  15. CASSINI VIMS OBSERVATIONS SHOW ETHANE IS PRESENT IN TITAN'S RAINFALL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalba, Paul A.; Buratti, Bonnie J.; Baines, Kevin H.

    2012-12-20

    Observations obtained over two years by the Cassini Imaging Science Subsystem suggest that rain showers fall on the surface. Using measurements obtained by the Visual Infrared Mapping Spectrometer, we identify the main component of the rain to be ethane, with methane as an additional component. We observe five or six probable rainfall events, at least one of which follows a brief equatorial cloud appearance, suggesting that frequent rainstorms occur on Titan. The rainfall evaporates, sublimates, or infiltrates on timescales of months, and in some cases it is associated with fluvial features but not with their creation or alteration. Thus, Titanmore » exhibits frequent 'gentle rainfall' instead of, or in addition to, more catastrophic events that cut rivers and lay down large fluvial deposits. Freezing rain may also be present, and the standing liquid may exist as puddles interspersed with patches of frost. The extensive dune deposits found in the equatorial regions of Titan imply multi-season arid conditions there, which are consistent with small, but possibly frequent, amounts of rain, in analogy to terrestrial deserts.« less

  16. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1978-01-01

    Observations of nonequilibrium phenomena on the Saturn satellite Titan indicate the occurrence of organic chemical evolution. Greenhouse and thermal inversion models of Titan's atmosphere provide environmental constraints within which various pathways for organic chemical synthesis are assessed. Experimental results and theoretical modeling studies suggest that the organic chemistry of the satellite may be dominated by two atmospheric processes: energetic-particle bombardment and photochemistry. Reactions initiated in various levels of the atmosphere by cosmic ray, Saturn wind, and solar wind particle bombardment of a CH4 - N2 atmospheric mixture can account for the C2-hydrocarbons, the UV-visible-absorbing stratospheric haze, and the reddish color of the satellite. Photochemical reactions of CH4 can also account for the presence of C2-hydrocarbons. In the lower Titan atmosphere, photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. Hot H-atom reactions initiated by photo-dissociation of NH3 can couple the chemical reactions of NH3 and CH4 and produce organic matter.

  17. An Autonomy Architecture for Aerobot Exploration of the Saturnian Moon Titan

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Clouse, Daniel S.; Morfopoulos, Arin C.; Montgomery, James F.; Cameron, Jonathan M.; Ansar, Adnan; Machuzak, Richard J.

    2008-01-01

    The Huygens probe arrived at Saturn's moon Titan on January 14, 2005, unveiling a world that is radically different from any other in the Solar system. The data obtained, complemented by continuing observations from the Cassini spacecraft, show methane lakes, river channels and drainage basins, sand dunes, cryovolcanos and sierras. This has lead to an enormous scientific interest in a follow-up mission to Titan, using a robotic lighter-than-air vehicle (or aerobot). Aerobots have modest power requirements, can fly missions with extended durations, and have very long distance traverse capabilities. They can execute regional surveys, transport and deploy scientific instruments and in-situ laboratory facilities over vast distances, and also provide surface sampling at strategic science sites. This paper describes our progress in the development of the autonomy technologies that will be required for exploration of Titan. We provide an overview of the autonomy architecture and some of its key components. We also show results obtained from autonomous flight tests conducted in the Mojave desert.

  18. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    NASA Astrophysics Data System (ADS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  19. Two Titans

    NASA Image and Video Library

    2017-08-11

    These two views of Saturn's moon Titan exemplify how NASA's Cassini spacecraft has revealed the surface of this fascinating world. Cassini carried several instruments to pierce the veil of hydrocarbon haze that enshrouds Titan. The mission's imaging cameras also have several spectral filters sensitive to specific wavelengths of infrared light that are able to make it through the haze to the surface and back into space. These "spectral windows" have enable the imaging cameras to map nearly the entire surface of Titan. In addition to Titan's surface, images from both the imaging cameras and VIMS have provided windows into the moon's ever-changing atmosphere, chronicling the appearance and movement of hazes and clouds over the years. A large, bright and feathery band of summer clouds can be seen arcing across high northern latitudes in the view at right. These views were obtained with the Cassini spacecraft narrow-angle camera on March 21, 2017. Images taken using red, green and blue spectral filters were combined to create the natural-color view at left. The false-color view at right was made by substituting an infrared image (centered at 938 nanometers) for the red color channel. The views were acquired at a distance of approximately 613,000 miles (986,000 kilometers) from Titan. Image scale is about 4 miles (6 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21624

  20. Geochemistry and Organic Chemistry on the Surface of Titan

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  1. The effects of upstream plasma properties on Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2016-12-01

    Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine how the properties of the incident plasma (composition, density, temperature etc…) affect Titan's ionosphere. We examine how much ionospheric plasma is lost from Titan as well as the amount of mass and energy deposited into Titan's atmosphere.

  2. Exploring inner structure of Titan's dunes from Cassini Radar observations

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive correlation between the backscatter and elevation along dune profile for the larger, older dunes in the Great Sand Sea in south-western Egypt and Siwa dune field in north-western Egypt, as opposed to the weak negative correlation exhibited by the smaller, younger Qattaniya dunes in north-eastern Egypt. This result is reinforced by our GPR survey on a large dune in the Siwa dune field and a smaller dune in the Qattaniya dune field. Our GPR data suggest the internal structure of larger dunes to consist of greater number of layers/cross-strata than smaller ones in the first 8 meters of the subsurface, which corresponds to the radar penetration depth at (0.8-1.2) GHz. Dunes on Titan exhibit backscatter-height dependency similar to the smaller Qattaniya dunes. In particular, the Shangri-La and Belet dunes on Titan exhibit a significantly stronger, negative correlation for the backscatter-height dependency compared to the Fensal and Aztlan dunes, suggesting a difference in the internal layering, relative ages and formation history of these dunes on Titan.

  3. The rotation of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  4. Geodetic data support trapping of ethane in Titan's polar crust

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar mass anomalies are compensated at shallow depth by denser ethane-rich clathrates. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Choukroun M. and Sotin C. (2012) GRL, 39, L04201. [2] Gao and Stevenson (2013) Icarus, 226, 1185-1191.

  5. Light scattering measurements with Titan's aerosols analogues produced by dusty plasma

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.-B.; Szopa, C.; Cernogora, G.; Levasseur-Regourd, A. C.

    The Titan s atmosphere contains solid aerosols produced by the photochemistry of nitrogen and methane These aerosols are at the origin of the characteristic brown yellow colour of Titan During the descent of the Huygens probe the 14 th January 2005 optical measurements of the Titan s haze and Titan s surface have been done In order to explain the obtained results laboratory simulations are necessary We produce analogues of the Titan s aerosols in a RF capacitively coupled low-pressure plasma in a N 2 --CH 4 mixture representative of the Titan s atmosphere Szopa et al 2006 Szopa et al this conference The morphology of the produced solid aerosols is observed by SEM analyses They are quasi spherical and their mean size is function of the plasma conditions Moreover their colour changes from yellow to brown as a function of CH 4 ratio in the plasma In order to have information on the optical properties of the produced aerosols measurements have been performed with the PROGRA2 experiment Renard et al 2002 The PROGRA2 experiment measures the phase dependence of the linear polarization of the light scattered by dust particles for two wavelengths 543 5 nm and 632 8 nm The particles are lifted either in microgravity in the CNES ESA dedicated airplane or by an air-draught in ground-based conditions The aim of this work is to build a database for further modelling of the optical properties of Titan s in connection with the Huygens data These particles have also an astrophysical interest as organic compounds Hadamcik et

  6. The bulk composition of Titan's atmosphere.

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1972-01-01

    Consideration of the physical constraints for Titan's atmosphere leads to a model which describes the bulk composition of the atmosphere in terms of observable parameters. Intermediate-resolution photometric scans of both Saturn and Titan, including scans of the Q branch of Titan's methane band, constrain these parameters in such a way that the model indicates the presence of another important atmospheric gas, namely, another bulk constituent or a significant thermal opacity. Further progress in determining the composition and state of Titan's atmosphere requires additional observations to eliminate present ambiguities. For this purpose, particular observational targets are suggested.

  7. Organic matter in the Titan lakes, and comparison with primitive Earth

    NASA Astrophysics Data System (ADS)

    Khare, Bishun N.; McKay, C.; Wilhite, P.; Beeler, D.; Carter, M.; Schurmeier, L.; Jagota, S.; Kawai, J.; Nna-Mvondo, D.; Cruikshank, D.; Embaye, T.

    2013-06-01

    Titan is the only world in the solar system besides the Earth that has liquid on its surface. The liquid in the lakes is thought to be composed primarily of ethane with methane and nitrogen in solution. The clouds are thought to be composed of liquid methane drops. Surface liquid is present in polar lakes and in surface materials at equatorial sites. Studying the chemical processing that potentially results from organic material interacting with this liquid is one of the main goals of proposed missions to Titan. We have been engaged in producing tholin under Titan-like conditions for more than three decades, first at the Laboratory for Planetary Studies at Cornell University in collaboration with Late Dr. Carl Sagan and for over a decade at Laboratory for Planetary Studies at NASA Ames Research Center and Carl Sagan Center for the Study of Life in the Universe, SETI Institute. Our focus is to understand the capabilities for analysis of tholin solubility in liquid methane and ethane for flight instruments. Our results are expected to contribute to an understanding of the organic chemistry on Titan and to the development of an explicit and targeted scientific strategy for near term analysis of the products of organic-liquid interactions on Titan. Organics are produced as a haze in Titan's high atmosphere due to photolysis of methane with the Sun's extreme ultraviolet light and subsequent reaction with N. Also tholins are formed at a much higher level on Titan by charged particles of Saturn magnetosphere. However, the presence of organics is not the sole feature, which makes Titan significant to astrobiology; organics are widely present in the outer solar system. The reason Titan is a prime target for future outer solar system missions is the combination of organic material and liquid on the surface; liquid that could over a medium for further organic synthesis. NASA recently selected for further study a Discovery proposal TiME to investigate the chemistry of the lakes on Titan. As described by the team's press release: "The TiME capsule would launch in 2016 and reach Titan in 2023, parachuting onto the moon's second-largest northern sea, the Ligeia Mare. For 96 days the capsule would study the composition and behavior of the sea and its interaction with Titan's weather and climate. TiME would also seek evidence of the complex organic chemistry that may be active on Titan today, and that may be similar to processes that led to the development of life on the early Earth". The results of our on going research on how tholins interact with the liquid ethane and methane in the lakes on Titan will improve our chances of detecting any possible biology on this cold and distant world.

  8. Global-scale surface spectral variations on Titan seen from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Buratti, B.J.; Sotin, Christophe; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Clark, R.; Nicholson, P.

    2007-01-01

    We present global-scale maps of Titan from the Visual and Infrared Mapping Spectrometer (VIMS) instrument on Cassini. We map at 64 near-infrared wavelengths simultaneously, covering the atmospheric windows at 0.94, 1.08, 1.28, 1.6, 2.0, 2.8, and 5 ??m with a typical resolution of 50 km/pixel or a typical total integration time of 1 s. Our maps have five to ten times the resolution of ground-based maps, better spectral resolution across most windows, coverage in multiple atmospheric windows, and represent the first spatially resolved maps of Titan at 5 ??m. The VIMS maps provide context and surface spectral information in support of other Cassini instruments. We note a strong latitudinal dependence in the spectral character of Titan's surface, and partition the surface into 9 spectral units that we describe in terms of spectral and spatial characteristics. ?? 2006 Elsevier Inc. All rights reserved.

  9. Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph

    2017-10-01

    We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.

  10. Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Fan, Siteng; Wong, Michael L.; Liang, Mao-Chang; Shia, Run-Lie; Kammer, Joshua A.; Yung, Yuk L.; Summers, Michael E.; Gladstone, G. Randall; Young, Leslie A.; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; Stern, S. Alan; New Horizons Science Team

    2017-05-01

    The New Horizons flyby of Pluto confirmed the existence of hazes in its atmosphere. Observations of a large high- to low- phase brightness ratio, combined with the blue color of the haze (indicative of Rayleigh scattering), suggest that the haze particles are fractal aggregates, perhaps analogous to the photochemical hazes on Titan. Therefore, studying the Pluto hazes can shed light on the similarities and differences between the Pluto and Titan atmospheres. We model the haze distribution using the Community Aerosol and Radiation Model for Atmospheres assuming that the distribution is shaped by downward transport and coagulation of particles originating from photochemistry. Hazes composed of both purely spherical and purely fractal aggregate particles are considered. General agreement between model results and solar occultation observations is obtained with aggregate particles when the downward mass flux of photochemical products is equal to the column-integrated methane destruction rate ∼1.2 × 10-14 g cm-2 s-1, while for spherical particles the mass flux must be 2-3 times greater. This flux is nearly identical to the haze production flux of Titan previously obtained by comparing microphysical model results to Cassini observations. The aggregate particle radius is sensitive to particle charging effects, and a particle charge to radius ratio of 30 e-/μm is necessary to produce ∼0.1-0.2 μm aggregates near Pluto's surface, in accordance with forward scattering measurements. Such a particle charge to radius ratio is 2-4 times higher than those previously obtained for Titan. Hazes composed of spheres with the same particle charge to radius ratio have particles that are 4 times smaller at Pluto's surface. These results further suggest that the haze particles are fractal aggregates. We also consider the effect of condensation of HCN, C2H2, C2H4, and C2H6 on the haze particles, which may play an important role in shaping their altitude and size distributions.

  11. Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan

    USGS Publications Warehouse

    Sotin, Christophe; Jaumann, R.; Buratti, B.J.; Brown, R.H.; Clark, R.N.; Soderblom, L.A.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Lemouelic, S.; Rodriguez, S.; Stephan, K.; Scholz, C.K.

    2005-01-01

    Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N 2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10 years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure ???30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.

  12. Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan.

    PubMed

    Sotin, C; Jaumann, R; Buratti, B J; Brown, R H; Clark, R N; Soderblom, L A; Baines, K H; Bellucci, G; Bibring, J-P; Capaccioni, F; Cerroni, P; Combes, M; Coradini, A; Cruikshank, D P; Drossart, P; Formisano, V; Langevin, Y; Matson, D L; McCord, T B; Nelson, R M; Nicholson, P D; Sicardy, B; LeMouelic, S; Rodriguez, S; Stephan, K; Scholz, C K

    2005-06-09

    Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.

  13. Seeing, touching and smelling the extraordinarily Earth-like world of Titan

    NASA Astrophysics Data System (ADS)

    2005-01-01

    "We now have the key to understanding what shapes Titan's landscape," said Dr Martin Tomasko, Principal Investigator for the Descent Imager-Spectral Radiometer (DISR), adding: "Geological evidence for precipitation, erosion, mechanical abrasion and other fluvial activity says that the physical processes shaping Titan are much the same as those shaping Earth." Spectacular images captured by the DISR reveal that Titan has extraordinarily Earth-like meteorology and geology. Images have shown a complex network of narrow drainage channels running from brighter highlands to lower, flatter, dark regions. These channels merge into river systems running into lakebeds featuring offshore 'islands' and 'shoals' remarkably similar to those on Earth. Data provided in part by the Gas Chromatograph and Mass Spectrometer (GCMS) and Surface Science Package (SSP) support Dr Tomasko's conclusions. Huygens' data provide strong evidence for liquids flowing on Titan. However, the fluid involved is methane, a simple organic compound that can exist as a liquid or gas at Titan's sub-170°C temperatures, rather than water as on Earth. Titan's rivers and lakes appear dry at the moment, but rain may have occurred not long ago. Deceleration and penetration data provided by the SSP indicate that the material beneath the surface's crust has the consistency of loose sand, possibly the result of methane rain falling on the surface over eons, or the wicking of liquids from below towards the surface. Heat generated by Huygens warmed the soil beneath the probe and both the GCMS and SSP detected bursts of methane gas boiled out of surface material, reinforcing methane's principal role in Titan's geology and atmospheric meteorology -- forming clouds and precipitation that erodes and abrades the surface. In addition, DISR surface images show small rounded pebbles in a dry riverbed. Spectra measurements (colour) are consistent with a composition of dirty water ice rather than silicate rocks. However, these are rock-like solid at Titan's temperatures. Titan's soil appears to consist at least in part of precipitated deposits of the organic haze that shrouds the planet. This dark material settles out of the atmosphere. When washed off high elevations by methane rain, it concentrates at the bottom of the drainage channels and riverbeds contributing to the dark areas seen in DISR images. New, stunning evidence based on finding atmospheric argon 40 indicates that Titan has experienced volcanic activity generating not lava, as on Earth, but water ice and ammonia. Thus, while many of Earth's familiar geophysical processes occur on Titan, the chemistry involved is quite different. Instead of liquid water, Titan has liquid methane. Instead of silicate rocks, Titan has frozen water ice. Instead of dirt, Titan has hydrocarbon particles settling out of the atmosphere, and instead of lava, Titanian volcanoes spew very cold ice. Titan is an extraordinary world having Earth-like geophysical processes operating on exotic materials in very alien conditions. "We are really extremely excited about these results. The scientists have worked tirelessly for the whole week because the data they have received from Huygens are so thrilling. This is only the beginning, these data will live for many years to come and they will keep the scientists very very busy", said Jean-Pierre Lebreton, ESA's Huygens Project Scientist and Mission manager. The Cassini-Huygens mission is a cooperation between NASA, ESA and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA's Office of Space Science, Washington DC. JPL designed, developed and assembled the Cassini orbiter while ESA operated the Huygens atmospheric probe.

  14. Titan's cold case files - Outstanding questions after Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Lorenz, R. D.; Achterberg, R. K.; Buch, A.; Coll, P.; Clark, R. N.; Courtin, R.; Hayes, A.; Iess, L.; Johnson, R. E.; Lopes, R. M. C.; Mastrogiuseppe, M.; Mandt, K.; Mitchell, D. G.; Raulin, F.; Rymer, A. M.; Todd Smith, H.; Solomonidou, A.; Sotin, C.; Strobel, D.; Turtle, E. P.; Vuitton, V.; West, R. A.; Yelle, R. V.

    2018-06-01

    The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004-2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008-2010) and Solstice Mission (2010-2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim.

  15. In-Situ Probing of Titan's Surface and Near-Surface Organic Environment From a Montgolfiere

    NASA Astrophysics Data System (ADS)

    Spilker, Thomas R.; Reh, K. R.; Elliott, J. O.; Lunine, J. I.; Lorenz, R.

    2006-09-01

    Since Dec 2005 a study team that includes the authors has investigated mission concepts for detailed studies of Titan's surface, shallow (1-3 km) subsurface, and lower atmosphere. Recent Cassini-Huygens results support the study's focus on pre-biotic organic chemistry at Titan, including environmental influences on chemical processes and evolution. The team's planetary scientists established a coherent set of science goals and objectives, worked with the engineering and instrument teams to define a candidate payload complement, and participated in developing a realistic operations scenario including the vehicles that carry the orbital and in situ payloads. Titan's atmosphere is well suited for aerial vehicles, from stationary to hypersonic. Its large scale height makes it the easiest destination in the solar system for aerocapture into orbit, and relatively benign for direct entry. Aerocapture allows inserting significantly more mass into Titan orbit than other options. Titan's lower atmosphere features low gravity, high densities, and gentle winds conducive to energy-efficient subsonic vehicles from balloons to airplanes. A Montgolfiere, a well-tested type of hot-air balloon that uses an apex vent to control altitude, was judged the best candidate vehicle for this study's in situ payload and objectives. At Titan such a vehicle can loft more than 150 kg to altitudes in excess of 15 km using waste heat from a single power source such as those slated for the Mars Science Laboratory. Vertical controllability is such that accurate descent to altitudes of 100 m or less allows deployment and retrieval of surface-sampling devices. Models of Titan's winds indicate that controlling altitude also allows a degree of lateral control that in a half-year or year mission can visit a significant range of latitudes, over multiple circuits of Titan. This paper discusses the science objectives and operational capabilities and considerations for such a mission concept.

  16. Cryovolcanism on Titan

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R. M.

    2008-12-01

    Remote sensing observations yield evidence for cryovolcanism on Titan, and evolutionary models support (but do not require) the presence of an ammonia-water subsurface ocean. The impetus for invoking ammonia as a constituent in an internal ocean and cryovolcanic magma comes from two factors. First, ammonia-water liquid has a lower freezing temperature than pure liquid water, enabling cryovolcanism under the low- temperature conditions prevalent in the outer Solar System. Second, pure water is negatively buoyant with respect to pure water ice, which discourages eruption from the subsurface ocean to the surface. In contrast, the addition of ammonia to the water decreases its density, hence lessening this problem of negative buoyancy. A marginally positive buoyant ammonia-water mixture might allow effusive eruptions from a subsurface ocean. If the subsurface ocean were positively buoyant, all the ammonia would have been erupted very early in Titan's history. Contrary to this scenario, Cassini-Huygens has so far observed neither a global abundance nor a complete dearth of cryovolcanic features. Further, an ancient cryovolcanic epoch cannot explain the relative youth of Titan's surface. Crucial to invoking ammonia-water resurfacing as the source of the apparently recent geological activity is not how to make ammonia-water volcanism work (because the near neutral buoyancy of the ammonia-water mixture encourages an explanation), but rather how to prevent eruption from occurring so easily that cryovolcanic activity is over early on. Although cryovolcanism by ammonia-water has been proposed as a resurfacing process on Titan, few models have specifically dealt with the problem of how to transport ammonia-water liquid onto the surface. We proposed a model of cryovolcanism that involve cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. While the ammonia-water pockets cannot easily become neutral buoyant and promote effusive eruptions, large scale tectonics stress (due to tides, non-synchronous rotation, satellite volume changes, and/or topography) may all promote resurfacing at localized times and spaces. Thermal convection in the ice-I shell can play an important role in ensuring recent cryovolcanism activity on Titan. Ammonia-water pockets trapped in the ice shell provides a possible mechanism for explaining episodic cryovolcanism. Our model has several advantages over more simplistic ones. Because of the relative inefficiency of trapping liquid in the shell and transporting it to the surface, our mechanism makes volcanism a marginal process. In this way we can explain why Titan did not lose all its ammonia into cryovolcanic flows early in Solar System history as would happen were ammonia-water liquid to be positively buoyant, hence making cryovolcanism too "easy". At the same time, our mechanism allows cryovolcanism to be an important process on regional scales: ammonia should be present at the surface and hence detectable so long as it is not buried by subsequent sedimentation of organic aerosols. Finally, because we posit that the cryovolcanic liquid comes from localized pockets rather than directly from the ocean, our scenario also allows the ocean to remain dilute in ammonia, hence much denser than the overlying ice and mechanically stable over the history of the Solar System.

  17. Detailed exploration of Titan with a Montgolfiere aerobot

    NASA Astrophysics Data System (ADS)

    Spilker, T.; Tipex Team

    The International Cassini/Huygens (CH) mission has verified the expectation that Saturn's moon Titan offers many opportunities for studying high-priority planetary and astrobiology science objectives. CH results to date show that this world, though entirely alien in its frigid environment, presents an Earth-like and diverse appearance due to the relative balance of competing forces such as geology/tectonics, meteorology, aeronomy, and cosmic impacts. But with the limitations of a single Huygens probe, and a finite number of Cassini flybys limited in proximity and remote sensing resolution by Titan's thick atmosphere and hazes, there is much science to be done there after the CH mission has ended. Detailed exploration of Titan's surface and lower atmosphere, especially for astrobiological objectives, is best addressed by in situ investigations. The atmosphere and its hazes severely restrict orbital remote sensing: Titan cannot be mapped from orbit in the same manner as Mars, at (essentially) arbitrarily high resolution, and limited infrared (IR) windows allow only gross compositional interpretations. After CH indeed there will be further orbital investigations to be carried out, notably completion of the global mapping by Synthetic Aperture Radar and IR mapping spectrometry begun by CH, at the best resolutions practical from orbit. But to fully understand Titan as an evolving, planetary-scale body and an abode of preserved protobiological chemistry will require a platform that has access to, and mobility at, the surface and the lowest few kilometers of the atmosphere. The TiPEx study team weighed the options for Titan in situ exploration, and finds that a mission based on a Montgolfiere (a type of hot-air balloon) aerobot is the best candidate for post-CH exploration. Ground-based platforms of the type used to date on Mars are far too limited in range to sample the diversity of Titan, and do not adequately investigate the lower atmosphere. Titan's cold, dense atmosphere is ideal for aerial vehicles, requiring orders of magnitude less power for sustained flight than equivalent vehicles at Earth. Its winds provide mobility unequaled by any ground-based platform, and even controllability by the same techniques used by hot-air balloonists on Earth. The study team also found that the Montgolfiere approach is most effective when it is supported by a Titan orbiter that provides data relay as well as its own science observations. 1 Operationally, the Montgolfiere is seen as an evolutionary step from the Huygens probe, adding controlled buoyancy to the long list of Huygens demonstrations, thus enabling greatly expanded longevity (at least months) and greater data return by 3 to 4 orders of magnitude. It is amenable to long periods of autonomous control, necessary due to the three-hour communication round-trip time to Earth and longer periods out of Earth and orbiter visibility. Tests at Earth show that deployment and inflation under a parachute present no unsolved problems, and that altitude control is simple and accurate, as demonstrated by precision "touch and go" landings, so surface sampling of a limited number of sites at Titan is practical. This presentation will summarize the study team's concept of science objectives, mission architecture, and operations of a Montgolfiere mission to Titan. 2

  18. Titan's surface-atmosphere system before and after Huygens

    NASA Astrophysics Data System (ADS)

    Lunine, Jonathan I.

    2015-04-01

    Speculation about the nature of Titan's surface-atmosphere interactions goes back to the discovery of methane in its atmosphere in 1943 but beginning in the early 1970's surface models began to grapple more quantitatively with the source of methane and its instability in the atmosphere. The role of molecular nitrogen in the atmosphere was first quantitatively considered at that time as well. The Voyager 1 flyby put a thick atmosphere of molecular nitrogen and methane on an observational footing, and made an atmospheric descent probe quite feasible. The measured high methane humidity made seas of methane and possibly other constituents an attractive possible source of methane and sink of its photolytic products, influencing the choice of instruments for a descent probe. At the time of Huygens' actual descent to the surface, global seas had been ruled out, and the Cassini Orbiter was just beginning to gather imaging and radar data of the surface. The fluvial nature of the Huygens landing site and presence of volatiles just below the surface were important discoveries of Huygens itself. Together with Cassini, Huygens painted a picture of a cryogenic desert with occasional violent methane rainstorms feeding streams that tumble pebbles of ice and organics downhill, the whole surrounded by dunes whose organic-rich particles are harvested from the chemical conversion of methane to more refractory compounds high in the atmosphere. And yet many mysteries remain. The large bodies of liquid methane are restricted to high latitudes. Most of the river valleys seen in Cassini radar data seem to run down to nowhere. And the ultimate source and replenishment of methane, although seemingly more strongly tied to the interior than before Cassini-Huygens, remain unresolved. Huygens gave us the only imaging of Titan's surface with a resolution good enough to follow fluvial processes all the way from the contextual geology, to channels, to the stream debris washed out into the plains. What would we see if we could image even just 10% of Titan at Huygens resolution? Conversely, what might we have concluded about Titan were only the Cassini Orbiter data available, without Huygens? It is clear that Huygens gave us one tantalizing look through the keyhole at a mysterious room, but to truly understand what was glimpsed will require a future mission to open wide the door.

  19. ISO observations of Titan with SWS/grating

    NASA Technical Reports Server (NTRS)

    Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.

    1997-01-01

    The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.

  20. Acetylene-based pathways for prebiotic evolution on Titan

    NASA Astrophysics Data System (ADS)

    Abbas, O.; Schulze-Makuch, D.

    2002-11-01

    Due to Titan's reducing atmosphere and lack of an ozone shield, ionizing radiation penetrates the atmosphere creating ions, radicals and electrons that are highly reactive producing versatile chemical species on Titan's surface. We propose that the catalytic hydrogenation of photochemically produced acetylene may be used as simple metabolic pathway by organisms at or near Titan's surface. While the acetylene may undergo this reaction, it can also undertake several other multi-step synthetic schemes that eventually lead to the production of amino acids or other biologically important molecules. Four model synthetic schemes will be described, and their relevance in relation to prebiotic evolution on Earth is discussed.

  1. The Spectral Nature of Titan's Major Geomorphological Units: Constraints on Surface Composition

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Coustenis, A.; Lopes, R. M. C.; Malaska, M. J.; Rodriguez, S.; Drossart, P.; Elachi, C.; Schmitt, B.; Philippe, S.; Janssen, M.; Hirtzig, M.; Wall, S.; Sotin, C.; Lawrence, K.; Altobelli, N.; Bratsolis, E.; Radebaugh, J.; Stephan, K.; Brown, R. H.; Le Mouélic, S.; Le Gall, A.; Villanueva, E. V.; Brossier, J. F.; Bloom, A. A.; Witasse, O.; Matsoukas, C.; Schoenfeld, A.

    2018-02-01

    We investigate Titan's low-latitude and midlatitude surface using spectro-imaging near-infrared data from Cassini/Visual and Infrared Mapping Spectrometer. We use a radiative transfer code to first evaluate atmospheric contributions and then extract the haze and the surface albedo values of major geomorphological units identified in Cassini Synthetic Aperture Radar data, which exhibit quite similar spectral response to the Visual and Infrared Mapping Spectrometer data. We have identified three main categories of albedo values and spectral shapes, indicating significant differences in the composition among the various areas. We compare with linear mixtures of three components (water ice, tholin-like, and a dark material) at different grain sizes. Due to the limited spectral information available, we use a simplified model, with which we find that each albedo category of regions of interest can be approximately fitted with simulations composed essentially by one of the three surface candidates. Our fits of the data are overall successful, except in some cases at 0.94, 2.03, and 2.79 μm, indicative of the limitations of our simplistic compositional model and the need for additional components to reproduce Titan's complex surface. Our results show a latitudinal dependence of Titan's surface composition, with water ice being the major constituent at latitudes beyond 30°N and 30°S, while Titan's equatorial region appears to be dominated partly by a tholin-like or by a very dark unknown material. The albedo differences and similarities among the various geomorphological units give insights on the geological processes affecting Titan's surface and, by implication, its interior. We discuss our results in terms of origin and evolution theories.

  2. Orographic Condensation at the South Pole of Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate

    2016-10-01

    Although many clouds have been observed on Titan over the past two decades (Griffith et al. 1998, Rodriquez et al 2009, Brown et al. 2010), only a handful of clouds have been analyzed in detail (Griffith et al 2005, Brown et al 2009, Adamkovics et al 2010). In light of new data and better radiative transfer (RT) modelling, we present here a reexamination of one of these cloud systems observed in March 2007, formerly identified as ground fog (Brown et al 2009), using the Cassini VIMS instrument. Combining our analysis with RADAR observations we attempt to understand the connection and correlation between this low altitude atmospheric phenomenon and the local topography, suggesting instead, a topographically driven (orographic) cloud formation mechanism. This analysis would present the first links between cloud formation and topography on Titan, and has valuable implications in understanding additional cloud formation mechanisms, allowing for a better understanding of Titan's atmospheric dynamics.We will also present an update on an ongoing ground based observation campaign looking for clouds on Titan. This campaign, begun back in April 2014, has been (nearly) continuously monitoring Titan for ongoing cloud activity. Although a variety of telescope and instruments have been used in an effort to best capture the onset of cloud activity expected at Titan's North Pole, no cloud outbursts have yet been observed from the ground (though frequent observations have been made with Cassini ISS/VIMS). This is interesting because it further suggests a developing dichotomy between Titan's seasons, since clouds were observable from the ground during southern summer. Thus, monitoring the onset of large scale cloud activity at Titan's North Pole will be crucial to understanding Titan's hydrologic cycle on seasonal timescales.

  3. Titan Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nixon, Conor A.; Achterberg, Richard K.; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon L.; Comet, Thomas; Hayes, Alaxander G.; Lellouch, Emmanuel; Lemmon, Mark T.; Lopez-Puertas, Manuel; hide

    2016-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a signicantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 microns). In this paper, we examine the potential for scientic investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientic themes are identied: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientic purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectorssufcient to encompass Titan, but with signicantly faster readout times. We nd that JWST has very signicant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a ve- to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).

  4. Titan Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, Richard K.; Ádámkovics, Máté; Bézard, Bruno; Bjoraker, Gordon L.; Cornet, Thomas; Hayes, Alexander G.; Lellouch, Emmanuel; Lemmon, Mark T.; López-Puertas, Manuel; Rodriguez, Sébastien; Sotin, Christophe; Teanby, Nicholas A.; Turtle, Elizabeth P.; West, Robert A.

    2016-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μm). In this paper, we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors—sufficient to encompass Titan, but with significantly faster readout times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five- to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).

  5. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu

    2013-06-10

    The organic haze produced from complex CH{sub 4}/N{sub 2} chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, theirmore » densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH{sub 4} concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.« less

  6. Evidence for frozen hydrocarbons on Titan

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Barnes, Jason W.; Brown, Robert H.; Chevrier, Vincent; Farnsworth, Kendra; Soderblom, Laurence A.

    2016-10-01

    Cassini Visual and Infrared Mapping Spectrometer (VIMS) and Imaging Science Subsystem (ISS) have twice, now, observed widespread darkening of Titan's surface that has been interpreted as evidence of rainfall (Turtle et al., 2009, GRL 36; Turtle et al., 2011, Science 331) followed by an increase in albedo, well beyond the pre-darkened albedo (Barnes et al., 2013, Planet. Sci. 2; Soderblom et al., 2014, DPS). Based on the timescale and magnitude of the albedo changes, and the correlations between the timescale and temperature (inferred from latitude), we favor a thermodynamically controlled process to explain the brightening. Herein, we present a detailed comparison of the IR spectra of the bright materials of these two events. We also discuss the implications on the interpretation of these data from recent laboratory work investigating the freezing of ethane at Titan-like conditions (Farnsworth et al., 2016, LPSC 47).

  7. Intensive Titan exploration begins.

    PubMed

    Mahaffy, Paul R

    2005-05-13

    The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.

  8. Cassini ISS Observations Of The Early Stages Of The Formation Of Titan's South Polar Hood And Vortex In 2012

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Del Genio, A.; Perry, J.; Ingersoll, A. P.; Turtle, E. P.; Porco, C.; Ovanessian, A.

    2012-10-01

    Northern spring equinox on Titan occurred on August 11, 2009. In March of 2012 the Imaging Science Subsystem (ISS) on the Cassini spacecraft saw the first evidence for the formation of a polar hood in the atmosphere above Titan’s south pole. Views of the limb showed an optical thickening primarily at about 360 km altitude across a few degrees of latitude centered on the pole. Images of Titan in front of Saturn provide a nearly direct measure of the line-of-sight optical depth as a function of latitude and altitude from about 250 km and higher. Two or more distinct layers are seen, both near the pole and at other latitudes. The highest of these, near 360 km altitude, hosts the embryonic polar hood. On June 27, 2012 ISS observed the pole from high latitude. These images show a distinct and unusual cloudy patch, elongated and not centered on the pole and with an elevated perimeter. The morphology and color indicate an unfamiliar (for Titan) composition and dynamical regime. The interior of the feature consists of concentrations of cloud/haze organized on spatial scales of tens of kilometers. Its morphology is reminiscent of the open cellular convection sometimes seen in the atmospheric boundary layer over Earth’s oceans under conditions of large-scale subsidence. Unlike Earth, where such convection is forced by large surface heat fluxes or the onset of drizzle, convection at 360 km on Titan is more likely to be driven from above by radiative cooling. During the 9 hours we observed Titan, this feature completed a little over one rotation around the pole, providing direct evidence for a polar vortex rotating at a rate roughly consistent with angular-momentum-conserving flow for air displaced from the equator. Part of this work was performed by the Jet Propulsion Laboratory, California Institute of Technology.

  9. TSSM: An International Mission to Titan and the Saturn System

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Lebreton, J. P.; Coustenis, A.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    A mission to return to Titan after Cassini- Huygens is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, the ESA Cosmic Visions competition, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, contains a vast subsurface ocean of liquid water, surface repositories of methane, ethane and other organic compounds, and has the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. One of the mission concepts would consist of a NASA-provided 1600 kg orbiter with ESA-provided 180 kg Mare Explorer and 588 kg Montgolfière Balloon. The mission would launch on an Atlas 551 in the 2018-2020 timeframe, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn approximately 8.5 years later. The SEP stage would be released approximately 5.8 years after launch well in advance of Saturn approach. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting approximately 2 years. During the first Titan flyby (~100 days after SOI), the orbiter would release the lander (Mare Explorer) to target one of the two large northern polar seas, probably Kraken Mare, and the Montgolfiere balloon system to target the mid latitude region. During the tour phase, TSSM would accomplish Saturn system and Enceladus science (at least 4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit around Titan. The next phase would utilize concurrent aerosampling and aerobraking (to depths as low as 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit plane. Instruments aboard the orbiter would map Titan's surface at 50 meter resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface to identify layers and porous (possibly liquid-filled) reservoirs, sample high molecular weight organics, provide detailed observations of the atmosphere at all levels, and quantify the interaction of Titan with the Saturn magnetospheric environment. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon would provide high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, unimpeded by Titan's ionosphere, would permit sensitive detection of induced or intrinsic fields. The Mare Explorer would splash into a large northern sea and spend several hours floating during which direct chemical and physical sampling of the liquid—a carrier for many dissolved organic species— would be undertaken. During its descent the Mare Explorer would provide the first in situ profiling of the winter northern hemispheric atmosphere, which is distinctly different from the equatorial atmosphere where Huygens descended and the balloon will arrive. Coordinated radio science experiments aboard the orbiter and in situ elements would be capable of providing detailed information on Titan's tidal response, and hence its crustal rigidity and thickness.

  10. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  11. Titan's Variable Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2015-12-01

    Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine the effects of the incident plasma distribution function and the flow velocity. We closely examine the results on Titan's induced magnetosphere and the resulting pickup ion properties.

  12. The sand seas of titan: Cassini RADAR observations of longitudinal dunes

    USGS Publications Warehouse

    Lorenz, R.D.; Wall, S.; Radebaugh, J.; Boubin, G.; Reffet, E.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Elachi, C.; Lunine, J.; Mitchell, Ken; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Ori, G.G.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; Flamini, E.; West, R.

    2006-01-01

    The most recent Cassini RADAR images of Titan show widespread regions (up to 1500 kilometers by 200 kilometers) of near-parallel radar-dark linear features that appear to be seas of longitudinal dunes similar to those seen in the Namib desert on Earth. The Ku-band (2.17-centimeter wavelength) images show ???100-meter ridges consistent with duneforms and reveal flow interactions with underlying hills. The distribution and orientation of the dunes support a model of fluctuating surface winds of ???0.5 meter per second resulting from the combination of an eastward flow with a variable tidal wind. The existence of dunes also requires geological processes that create sand-sized (100- to 300-micrometer) particulates and a lack of persistent equatorial surface liquids to act as sand traps.

  13. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes.

    PubMed

    Lorenz, R D; Wall, S; Radebaugh, J; Boubin, G; Reffet, E; Janssen, M; Stofan, E; Lopes, R; Kirk, R; Elachi, C; Lunine, J; Mitchell, K; Paganelli, F; Soderblom, L; Wood, C; Wye, L; Zebker, H; Anderson, Y; Ostro, S; Allison, M; Boehmer, R; Callahan, P; Encrenaz, P; Ori, G G; Francescetti, G; Gim, Y; Hamilton, G; Hensley, S; Johnson, W; Kelleher, K; Muhleman, D; Picardi, G; Posa, F; Roth, L; Seu, R; Shaffer, S; Stiles, B; Vetrella, S; Flamini, E; West, R

    2006-05-05

    The most recent Cassini RADAR images of Titan show widespread regions (up to 1500 kilometers by 200 kilometers) of near-parallel radar-dark linear features that appear to be seas of longitudinal dunes similar to those seen in the Namib desert on Earth. The Ku-band (2.17-centimeter wavelength) images show approximately 100-meter ridges consistent with duneforms and reveal flow interactions with underlying hills. The distribution and orientation of the dunes support a model of fluctuating surface winds of approximately 0.5 meter per second resulting from the combination of an eastward flow with a variable tidal wind. The existence of dunes also requires geological processes that create sand-sized (100- to 300-micrometer) particulates and a lack of persistent equatorial surface liquids to act as sand traps.

  14. Cassini radar : system concept and simulation results

    NASA Astrophysics Data System (ADS)

    Melacci, P. T.; Orosei, R.; Picardi, G.; Seu, R.

    1998-10-01

    The Cassini mission is an international venture, involving NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI), for the investigation of the Saturn system and, in particular, Titan. The Cassini radar will be able to see through Titan's thick, optically opaque atmosphere, allowing us to better understand the composition and the morphology of its surface, but the interpretation of the results, due to the complex interplay of many different factors determining the radar echo, will not be possible without an extensive modellization of the radar system functioning and of the surface reflectivity. In this paper, a simulator of the multimode Cassini radar will be described, after a brief review of our current knowledge of Titan and a discussion of the contribution of the Cassini radar in answering to currently open questions. Finally, the results of the simulator will be discussed. The simulator has been implemented on a RISC 6000 computer by considering only the active modes of operation, that is altimeter and synthetic aperture radar. In the instrument simulation, strict reference has been made to the present planned sequence of observations and to the radar settings, including burst and single pulse duration, pulse bandwidth, pulse repetition frequency and all other parameters which may be changed, and possibly optimized, according to the operative mode. The observed surfaces are simulated by a facet model, allowing the generation of surfaces with Gaussian or non-Gaussian roughness statistic, together with the possibility of assigning to the surface an average behaviour which can represent, for instance, a flat surface or a crater. The results of the simulation will be discussed, in order to check the analytical evaluations of the models of the average received echoes and of the attainable performances. In conclusion, the simulation results should allow the validation of the theoretical evaluations of the capabilities of microwave instruments, when considering topics like the surface topography, stratigraphy and identification of different materials.

  15. Observations of Titan IIIC Transtage Fragmentation Debris

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Seitzer, P.; Abercromby, K.; Barker, E.; Buckalew, B.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-01-01

    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6-m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9-m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  16. Observations of Titan IIIC Transtage Fragmentation Debris

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Buckalew, B.; Barker, E.; Abercromby, K.; Seitzer, P.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-09-01

    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6 m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  17. The lakes of Titan

    USGS Publications Warehouse

    Stofan, E.R.; Elachi, C.; Lunine, J.I.; Lorenz, R.D.; Stiles, B.; Mitchell, K.L.; Ostro, S.; Soderblom, L.; Wood, C.; Zebker, H.; Wall, S.; Janssen, M.; Kirk, R.; Lopes, R.; Paganelli, F.; Radebaugh, J.; Wye, L.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Paillou, P.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Vetrella, S.; West, R.

    2007-01-01

    The surface of Saturn's haze-shrouded moon Titan has long been proposed to have oceans or lakes, on the basis of the stability of liquid methane at the surface. Initial visible and radar imaging failed to find any evidence of an ocean, although abundant evidence was found that flowing liquids have existed on the surface. Here we provide definitive evidence for the presence of lakes on the surface of Titan, obtained during the Cassini Radar flyby of Titan on 22 July 2006 (T16). The radar imaging polewards of 70?? north shows more than 75 circular to irregular radar-dark patches, in a region where liquid methane and ethane are expected to be abundant and stable on the surface. The radar-dark patches are interpreted as lakes on the basis of their very low radar reflectivity and morphological similarities to lakes, including associated channels and location in topographic depressions. Some of the lakes do not completely fill the depressions in which they lie, and apparently dry depressions are present. We interpret this to indicate that lakes are present in a number of states, including partly dry and liquid-filled. These northern-hemisphere lakes constitute the strongest evidence yet that a condensable-liquid hydrological cycle is active in Titan's surface and atmosphere, in which the lakes are filled through rainfall and/or intersection with the subsurface 'liquid methane' table. ??2007 Nature Publishing Group.

  18. Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid

    NASA Astrophysics Data System (ADS)

    Kim, Tae Woo; Kim, In Young; Park, Dae-Hwan; Choy, Jin-Ho; Hwang, Seong-Ju

    2016-02-01

    A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the cationic APTES-anchored titanate lattice makes possible the reliable long-term protection of DNA against enzymatic, chemical, and UV-vis light corrosions. The encapsulated DNA can be easily released from the titanate lattice via sonication, underscoring the functionality of the cationic APTES-anchored titanate nanosheet as a stable nanocontainer for DNA. The APTES-anchored titanate nanosheet can be also used as an efficient CO2 adsorbent and a versatile host material for various inorganic anions like polyoxometalates, leading to the synthesis of novel intercalative nanohybrids with unexplored properties and useful functionalities.

  19. Highly Stable Nanocontainer of APTES-Anchored Layered Titanate Nanosheet for Reliable Protection/Recovery of Nucleic Acid.

    PubMed

    Kim, Tae Woo; Kim, In Young; Park, Dae-Hwan; Choy, Jin-Ho; Hwang, Seong-Ju

    2016-02-24

    A universal technology for the encapsulative protection of unstable anionic species by highly stable layered metal oxide has been developed via the surface modification of a metal oxide nanosheet. The surface anchoring of (3-aminopropyl)triethoxysilane (APTES) on exfoliated titanate nanosheet yields a novel cationic metal oxide nanosheet, which can be universally used for the hybridization with various biological and inorganic anions. The encapsulation of deoxyribonucleic acid (DNA) in the cationic APTES-anchored titanate lattice makes possible the reliable long-term protection of DNA against enzymatic, chemical, and UV-vis light corrosions. The encapsulated DNA can be easily released from the titanate lattice via sonication, underscoring the functionality of the cationic APTES-anchored titanate nanosheet as a stable nanocontainer for DNA. The APTES-anchored titanate nanosheet can be also used as an efficient CO2 adsorbent and a versatile host material for various inorganic anions like polyoxometalates, leading to the synthesis of novel intercalative nanohybrids with unexplored properties and useful functionalities.

  20. Biologically Enhanced Energy and Carbon Cycling on Titan?

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Grinspoon, David H.

    2005-08-01

    With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.

  1. Biologically enhanced energy and carbon cycling on Titan?

    PubMed

    Schulze-Makuch, Dirk; Grinspoon, David H

    2005-08-01

    With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.

  2. Instrumentation for in situ sampling and analysis of compounds of interest to Astrobiology in the lower atmosphere and surface of Titan

    NASA Technical Reports Server (NTRS)

    Holland, Paul M.; Kojiro, Daniel R.; Stimac, Robert; Kaye, William; Takeuchi, Nori

    2006-01-01

    Instrumentation for exploration of the solar system will require new enabling technology for in situ sample acquisition and analysis of pre-biotic chemistry in extreme planetary environments, such as that encountered at the surface of Titan. The potential use of balloon aero-rovers for Titan places special emphasis on the importance of miniaturization, low power and low usage of consumables. To help meet this need, we are developing a miniature gas chromatograph coupled with a new Mini-Cell ion mobility spectrometer (GC-IMS), and one of us (PMH) has begun development work on a miniaturized cryogenic inlet system with sampling probes for Titan. This instrumentation, and its approach for meeting measurement needs for the analysis of prebiotic chemistry on Titan, will be discussed.

  3. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), andmore » measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.« less

  4. Transparency of the 2 μm (5000 cm-1) methane window in Titan's atmosphere and impact on retrieved surface reflectivity

    NASA Astrophysics Data System (ADS)

    Rannou, Pascal; Seignovert, Benoit; Le Mouélic, Stéphane; Sotin, Christophe

    2016-10-01

    The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles and its spectral behaviour along the VIMS/Cassini range (from 0.88 to 5.1 μm). However, for applications to real atmospheres, one need to account for the widening of the spectroscopic lines (e.g., Voigt profile) and apply an empirical cut-off of the far wings. In general, this is a multiplying function of the wavenumber, f(ν), applied to the Voigt profile that allows a faster decay of the wing profile beyond a given distance from the center of the line ν0 : f(ν)=1 if |ν- ν0| ≤ Δν, and f(ν)=exp(-|ν- ν0|/ σ) if |ν- ν0| > Δν. Although the 2-μm window is apparently straitforward to model, it appears that the standard cut-off parameters (that is Δν ~ 26 cm-1 and σ ~ 120 cm-1) which is used for other windows in Titan's atmosphere is not adequat for this window. Other sets of parameter must be used to reproduce Titan spectrum at 2 μm. However, there is no convergence of the results between these works and a large variety of cut-off parameters are used. Alternatively, it was found that some gas absorptions (ethane and another unknown gas) leave a signature around 2-μm and also affect the transparency in this window. In our study we make an exhaustive investigation on the cut-off parameters to determine which are the best couples of parameters to fit the 2-μm window. We also evaluated how gaseous absorptions can allow to reach a satisfactory agreement and, especially, if it allows to match observations with the standard cut-off. Finally, we investigate the impact of the different solutions (different cut-off, with or without supplementary absorptions) on the retrieved surface albedo.

  5. Titan Topography: A Comparison Between Cassini Altimeter and SAR Imaging from Two Titan Flybys

    NASA Astrophysics Data System (ADS)

    Gim, Y.; Stiles, B.; Callahan, P. S.; Johnson, W. T.; Hensley, S.; Hamilton, G.; West, R.; Alberti, G.; Flamini, E.; Lorenz, R. D.; Zebker, H. A.; Cassini RADAR Team

    2007-12-01

    The Cassini RADAR has collected twelve altimeter data sets of Titan since the beginning of the Saturn Tour in 2004. Most of the altimeter measurements were made at high altitudes, from 4,000 km to 15,000 km, resulting in low spatial resolutions due to beam footprint sizes larger than 20 km, as well as short ground tracks less than 600 km. One flyby (T30) was dedicated to altimeter data collection from 15,000 km to the closest approach altitude of 950 km. This produced a beam footprint size of 6 km at the lowest altitude and an altimeter ground track of about 3,500 km covering Titan's surface from near the equator to high latitude areas near Titan's north pole. More importantly, the ground track is located inside the SAR swath viewed from an earlier Titan flyby (T28). This provides a rare opportunity to investigate Titan topography with a relatively high spatial resolution and compare nadir-looking altimeter data with side-looking SAR imaging. From altimeter data, we have measured the mean Titan radius of 2575.1 km +/- 0.1 km and observed rather complex topographical variations over a short distance. By comparing altimeter data and SAR images at altitudes below 2,000 km, we have found that there is a strong correlation between SAR brightness and altimeter waveform; SAR dark areas correspond to strong and sharp altimeter waveforms while SAR bright areas correspond to weak and diffused altimeter waveforms. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe of Titan

    NASA Astrophysics Data System (ADS)

    Tomasko, Martin G.; Doose, Lyn R.; Smith, Peter H.; Fellows, C.; Rizk, B.; See, C.; Bushroe, M.; McFarlane, E.; Wegryn, E.; Frans, E.; Clark, R.; Prout, M.; Clapp, S.

    1996-10-01

    The Huygen's probe of the atmosphere of Saturn's moon Titan includes one optical instrument sensitive to the wavelengths of solar radiation. The goals of this investigation fall into four broad areas: 1) the measurement of the profile of solar heating to support an improved understanding of the thermal balance of Titan and the role of the greenhouse effect in maintaining Titan's temperature structure; 2) the measurement of the size, vertical distribution, and optical properties of the aerosol and cloud particles in Titan's atmosphere to support studies of the origin, chemistry, life cycles, and role in the radiation balance of Titan played by these particles; 3) the composition of the atmosphere, particularly the vertical profile of the mixing ratio of methane, a condensable constituent in Titan's atmosphere; and 4) the physical state, composition, topography, and physical processes at work in determining the nature of the surface of Titan and its interaction with Titan's atmosphere. In order to accomplish these objectives, the Descent Imager/Spectral Radiometer (DISR) instrument makes extensive use of fiber optics to bring the light from several different sets of foreoptics to a silicon CCD detector, to a pair of InGaAs linear array detectors, and to three silicon photometers. Together these detectors permit DISR to make panoramic images of the clouds and surface of Titan, to measure the spectrum of upward and downward streaming sunlight from 350 to 1700 nm at a resolving power of about 200, to measure the reflection spectrum of >= 3000 locations on the surface, to measure the brightness and polarization of the solar aureole between 4 and 30 degrees from the sun at 500 and 935 nm, to separate the direct and diffuse downward solar flux at each wavelength measured, and to measure the continuous reflection spectrum of the ground between 850 and 1600 nm using an onboard lamp in the last 100 m of the descent.

  7. Does Titan's Landscape Betray the Late Acquisitions of Its Current Atmosphere?

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Nimmo, F.

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The sudden appearance of a thick atmosphere may have changed Titan's global topography. This change in global topography may be expressed in the latitudinal distribution of landform types across its surface.

  8. Study of the growth of CeO2 nanoparticles onto titanate nanotubes

    NASA Astrophysics Data System (ADS)

    Marques, Thalles M. F.; Ferreira, Odair P.; da Costa, Jose A. P.; Fujisawa, Kazunori; Terrones, Mauricio; Viana, Bartolomeu C.

    2015-12-01

    We report the study of the growth of CeO2 nanoparticles on the external walls and Ce4+ intercalation within the titanate nanotubes. The materials were fully characterized by multiple techniques, such as: Raman spectroscopy, infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The ion exchange processes in the titanate nanotubes were carried out using different concentrations of Ce4+ in aqueous solution. Our results indicate that the growth of CeO2 nanoparticles grown mediated by the hydrolysis in the colloidal species of Ce and the attachment onto the titanate nanotubes happened and get it strongly anchored to the titanate nanotube surface by a simple electrostatic interaction between the nanoparticles and titanate nanotubes, which can explain the small size and even distribution of nanoparticles on titanate supports. It was demonstrated that it is possible to control the amount and size of CeO2 nanoparticles onto the nanotube surface, the species of the Ce ions intercalated between the layers of titanate nanotubes, and the materials could be tuned for using in specific catalysis in according with the amount of CeO2 nanoparticles, their oxygen vacancies/defects and the types of Ce species (Ce4+ or Ce3+) present into the nanotubes.

  9. Magnetospheric particle precipitation at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie; Esposito, Larry; Crary, Frank; Wahlund, Jan-Erik

    2017-04-01

    Although solar XUV radiation is known to be the main source of ionization in Titan's upper atmosphere around 1100 km of altitude, magnetospheric particle precipitation can also account for about 10% of the ionization process. Magnetospheric particle precipitation is expected to be the most intense on the nightside of the satelllite and when Titan's orbital position around Saturn is the closest to Noon Saturn Local Time (SLT). In addition, on several occasion throughout the Cassini mission, Titan has been observed while in the magnetosheath. We are reporting here Ultraviolet (UV) observations of Titan airglow enhancements correlated to these magnetospheric changing conditions occurring while the spacecraft, and thus Titan, are known to have crossed Saturn's magnetopause and have been exposed to the magnetosheath environnment. Using Cassini-Ultraviolet Imaging Spectrograph (UVIS) observations of Titan around 12PM SLT as our primary set of data, we present evidence of Titan's upper atmosphere response to a fluctuating magnetospheric environment. Pattern recognition software based on 2D UVIS detector images has been used to retrieve observations of interest, looking for airglow enhancement of a factor of 2. A 2D UVIS detector image, created for each UVIS observation of Titan, displays the spatial dimension of the UVIS slit on the x-axis and the time on the y-axis. In addition, data from the T32 flyby and from April 17, 2005 from in-situ Cassini instruments are used. Correlations with data from simultaneous observations of in-situ Cassini instruments (CAPS, RPWS and MIMI) has been possible on few occasions and events such as electron burst and reconnections can be associated with unusual behaviors of the Titan airglow. CAPS in-situ measurements acquired during the T32 flyby are consistent with an electron burst observed at the spacecraft as the cause of the UV emission. Moreover, on April 17, 2005 the UVIS observation displays feature similar to what could be aTitan aurora on the north pole, linked to a very fluctuating magnetospheric environment. CAPS data taken this same day indicates that the spacecraft crossed the magnetopause and provide evidence for possible reconnection events.

  10. The Geology of Titan as Revealed by Cassini

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M.; Malaska, Michael; Solomonidou, Anezina; Cassini RADAR Team

    2015-08-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail, enabling us to discern the different geomorphic units on the surface and constrain the relative times of emplacement. We used a combined dataset of Cassini’s multiple instruments and instrument modes: Synthetic Aperture Radar (SAR-RADAR), altimetry, scatterometry, imaging (ISS) and hyperspectral imaging (VIMS) to provide information on Titan’s surface geology. Continuing the initial work described in Lopes et al. [1], we established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaus with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between them but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important, as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.References: [1] Lopes, R.M.C., et al. Icarus, 212, 744-750, 2010.

  11. Consideration of probability of bacterial growth for Jovian planets and their satellites

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Berkman, R. M.; Divine, N.

    1975-01-01

    Environmental parameters affecting growth of bacteria (e.g., moisture, temperature, pH, and chemical composition) were compared with current atmospheric models for Jupiter and Saturn, and with the available physical data for their satellites. Different zones of relative probability of growth were identified for Jupiter and Saturn, with the highest in pressure regions of 1-10 million N/sq m (10 to 100 atmospheres) and 3-30 million N/sq m (30 to 300 atmospheres), respectively. Of the more than two dozen satellites, only the largest (Io, Europa, Ganymede, Callisto, and Titan) were found to be interesting biologically. Titan's atmosphere may produce a substantial greenhouse effect providing increased surface temperatures. Models predicting a dense atmosphere are compatible with microbial growth for a range of pressures at Titan's surface. For Titan's surface the probability of growth would be enhanced if (1) the surface is entirely or partially liquid (water), (2) volcanism (in an ice-water-steam system) is present, or (3) access to internal heat sources is significant.

  12. A post-Cassini view of Titan's methane-based hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Lorenz, Ralph D.; Lunine, Jonathan I.

    2018-05-01

    The methane-based hydrologic cycle on Saturn's largest moon, Titan, is an extreme analogue to Earth's water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon's surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini-Huygens mission revealed that Titan's hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll-Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan's methane-based hydrologic system.

  13. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less

  14. A Report of Clouds on Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Adamkovics, Mate; Rodriguez, Sebastien; Kelland, John; Turtle, Elizabeth P.; Mitchell, Jonathan; Lora, Juan M.; Rojo, Patricio; Lunine, Jonathan I.

    2017-10-01

    We present in this work a detailed analysis of many of the clouds in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) dataset in order to understand their global and seasonal properties. Clouds are one of the few direct observables in Titan’s atmosphere (Griffith et al 2009, Rodriguez et al 2009, Adamkovics et al 2010), and so determining their characteristics allows for a better understanding of surface atmosphere interactions, winds, transport of volatile material, and general circulation. We find the clouds on Titan generally reside in at 5-15km altitude, which agrees with previous modelling efforts (Rafkin et al. 2015), as well as a power law distribution for cloud optical depth. We assume an average cloud droplet size of 100um. No seasonal dependence is observed with either cloud altitude or optical depth, suggesting there is no preferred seasonal formation mechanisms. Combining these characteristics with cloud size (Kelland et al 2017) can trace the transport of volatiles in Titan’s atmosphere, which can be compared against general circulation models (GCMs) (Lora et al 2015). We also present some specific analysis of interesting cloud systems including hypothesized surface fogs (Brown et al 2009) and orographic cloud formation (Barth et al 2010, Corlies et al 2017). In this analysis we use a correlation between Cassini VIMS and RADAR observations as well as an updated topographic map of Titan’s southern hemisphere to better understand the role that topography plays in influencing and driving atmospheric phenomena.Finally, with the end of the Cassini mission, ground based observing now acts as the only means with which to observe clouds on Titan. We present an update of an ongoing cloud campaign to search for clouds on Titan and to understand their seasonal evolution.References:Adamkovics et al. 2010, Icarus 208:868Barth et al. 2010, Planet. Space Sci. 58:1740Corlies et al. 2017, 48th LPSC, 2870CGriffith et al. 2009, ApJ 702:L105Kelland et al. 2017, 48th LPSC, 2748KLora et al. 2015, Icarus 250:516Rafkin et al. 2015, J. Geophys. Res. 120:739Rodriguez et al. 2009, Nature 459:678

  15. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  16. Experimental Study on Interactions Between H Atoms and Organic Haze

    NASA Technical Reports Server (NTRS)

    Sekine, Y.; Imanaka, H.; Khare, B. N.; Bakes, E. L. O.; McKay, C. P.; Sugita, S.; Matsui, T.

    2005-01-01

    In Titan s atmosphere composed of N2 and CH4, irradiations of both solar ultraviolet light and charged particles induce active chemical reactions. In the processes of these reactions, a large amount of hydrogen (H) atoms are expected to be formed by dissociation of CH4 and other hydrocarbons [e.g., 1, 2]. Theoretical models suggest that these active H atoms need to be converted to stable hydrogen molecules (H2) efficiently to maintain unsaturated hydrocarbons and organic haze in Titan s atmosphere [e.g., 1]. Furthermore, molecular hydrogen is an important greenhouse effect gas in Titan s atmosphere, and small variation in its abundance strongly affects Titan s surface temperature [3]. Thus, the formation of H2 molecules from H atoms is a key reaction for both the atmospheric chemistry and the surface environment of Titan. Although several numerical calculations have been conducted to investigate the atmospheric chemistry of Titan with hypothesized recombination reactions of H atoms, such as catalytic scheme of C4H2 [e.g., 1, 2], it is still unclear what chemical reaction is responsible for the conversion of H atoms to H2 molecules in Titan s atmosphere.

  17. Titan's Complex Chemistry: Insights from the Lab

    NASA Astrophysics Data System (ADS)

    Horst, Sarah

    2018-06-01

    The Cassini-Huygens mission revealed Titan to be a complex world with physical processes reminiscent of other terrestrial planets, but chemistry that is unlike anywhere else in the Solar System. Titan's complex atmospheric chemistry converts N2 and CH4 into numerous, abundant organic molecules ranging from relatively simple hydrocarbons to ions with mass to charge ratios up to 10,000 amu/q. The molecules eventually settle to the surface where they can participate in and be modified by geological processes such as aeolian and fluvial erosion or undergo subsequent chemistry in Titan's lakes and seas or impact craters and potential cryovolcanic flows. From the processes leading to massive ion formation in the atmosphere to the behavior of saltating organic sands on the surface, laboratory experiments are playing a pivotal role in understanding Titan and expanding our understanding of planetary processes into new, exciting phase space.

  18. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains. Eventually, this residual liquid evaporates away, exposing the submerged ethane ice, which Cassini VIMS and ISS would observe as a dramatic brightening of the surface, consistent with observations. [1] Turtle et al. 2009, GRL; 2011, Science; [2] Soderblom et al. 2014, DPS; [3] Barnes et al. 2013 Planet. Sci

  19. The Influence of Internal and External Torques on Titan's Length-of-day Variations

    NASA Astrophysics Data System (ADS)

    van Hoolst, T.; Karatekin, O.; Rambaux, N.

    2008-12-01

    Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan and its atmosphere is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between Titan's internal layers on the length-of-day (LOD) variations driven by the atmosphere. Those torques depend on the equatorial flattening of Titan resulting from static tides raised by Saturn. We calculate Titan's flattening under the assumption of hydrostatic equilibrium and show that the gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to diminish any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 50 times smaller than the observations indicate when a subsurface ocean exists and more than 100 times smaller when Titan has no ocean. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. Those large differences with the observations suggest that non-hydrostatic effects in Titan are important. In particular, we show that the amplitude and phase of the calculated rotation variations would be similar to the observed values if non-hydrostatic effects strongly reduce the equatorial flattening of the ice shell above an internal ocean. Alternatively, the calculated LOD variations could be increased if the atmospheric torque is larger than predicted or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations.

  20. Titan Meteorology

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan

    2012-04-01

    Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern hemisphere summer.

  1. Clathrate hydrate stability models for Titan: implications for a global subsurface ocean

    NASA Astrophysics Data System (ADS)

    Basu Sarkar, D.; Elwood Madden, M.

    2013-12-01

    Titan is the only planetary body in the solar system, apart from the Earth, with liquid at its surface. Titan's changing rotational period suggests that a global subsurface ocean decouples the icy crust from the interior. Several studies predict the existence of such an internal ocean below an Ice I layer, ranging in depth between a few tens of kilometers to a few hundreds of kilometers, depending on the composition of the icy crust and liquid-ocean. While the overall density of Titan is well constrained, the degree of differentiation within the interior is unclear. These uncertainties lead to poor understanding of the volatile content of the moon. However, unlike other similar large icy moons like Ganymede and Callisto, Titan has a thick nitrogen atmosphere, with methane as the second most abundant constituent - 5% near the surface. Titan's atmosphere, surface, and interior are likely home to various compounds such as C2H6, CO2, Ar, N2 and CH4, capable of forming clathrate hydrates. In addition, the moon has low temperature and low-to-high pressure conditions required for clathrate formation. Therefore the occurrence of extensive multicomponent hydrates may effect the composition of near-surface materials, the subsurface ocean, as well as the atmosphere. This work uses models of hydrate stability for a number of plausible hydrate formers including CH4, C2H6, CH4 + C2H6 and CH4 + NH3, and equilibrium geothermal gradients for probable near-surface materials to delineate the lateral and vertical extent of clathrate hydrate stability zones for Titan. By comparing geothermal gradients with clathrate stability fields for these systems we investigate possible compositions of Titan's global subsurface ocean. Preliminary model results indicate that ethane hydrates or compound hydrates of ethane and methane could be destabilized within the proposed depth range of the internal ocean, while methane/ammonia or pure methane hydrates may not be affected. Therefore, ethane or ethane-methane clathrates may be a major component of Titan's icy shell. Modeled geothermal gradients and stability fields of possible clathrate formers with three different scenarios for an internal ocean from the recent literature. Geothermal gradients obtained from thermal conductivity and density representing water ice and pure CH4-C2H6 hydrate. Clathrate stability field determined using HYDOFF and recent publications of NH3 clathrate stability.

  2. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  3. Titan's icy scar

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Penteado, P. F.; Turner, J. D.; Neish, C. D.; Mitri, G.; Montiel, M. J.; Schoenfeld, A.; Lopes, R. M. C.

    2017-09-01

    We conduct a Principal Components Analysis (PCA) of Cassini/VIMS [1] infrared spectral windows to identify and quantify weak surface features, with no assumptions on the haze and surface characteris- tics. This study maps the organic sediments, supplied by past atmospheres, as well as ice-rich regions that constitute Titan's bedrock.

  4. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  5. Computing Global Mosaics of Titan With the VIMS Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Le Mouelic, S.; Cornet, T.; Rodriguez, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.

    2015-12-01

    The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini observes the surface of Titan in seven narrow atmospheric windows in the infrared at 0.93, 1.08, 1.27, 1.59, 2.01, 2.68-2.78, and 4.9-5.1 microns. We have produced a global hyperspectral mosaic of the complete VIMS data set of Titan between T0 (July 2004) and T112 flyby (July 2015), by merging all the data cubes sorted by increasing spatial resolution, with the high resolution images on top of the mosaic and the low resolution images used as background. We filtered out the observing geometry in order to remove the pixels acquired in too extreme illuminating and viewing conditions, which systematically produce atmospheric artifacts. We used thresholds of 80° both on the incidence and emission angles, 100° on the phase angle, and 7 on the airmass. These thresholds corresponds to a trade-off between surface coverage and data quality. The viewing geometry is normalized at first order using a surface photometric function derived from the observation at 5 μm, where the atmospheric scattering is almost negligible. We also use the wings of the atmospheric windows as a proxy to correct for the amount of additive scattering present in the center of these windows, where the surface is seen by VIMS. Various color composites can then be produced using combinations of different wavelengths to emphasize surface heterogeneities. Among these, a RGB composite with red controlled by the 5 μm image, the green by the 2 μm image and the blue by the 1.27 μm, reveals the extent of equatorial dune fields appearing in brownish tones. Bluish areas corresponds to regions possibly enriched in water ice or other organic compounds. Composite of band ratios such as 1.59/1.27 μm, 2.03/1.27 μm and 1.27/1.08 also prove to be more useful to better emphasize surface variations, even if they are also more sensitive to residual artefacts due to atmospheric and geometric effects or calibration residuals.

  6. The organic surface of 5145 Pholus: Constraints set by scattering theory

    NASA Technical Reports Server (NTRS)

    Wilson, Peter D.; Sagan, Carl; Thompson, W. Reid

    1994-01-01

    No known body in the Solar System has a spectrum redder than that of object 5145 Pholus. We use Hapke scattering theory and optical constants measured in this laboratory to examine the ability of mixtures of a number of organic solids and ices to reproduce the observed spectrum and phase variation. The primary materials considered are poly-HCN, kerogen, Murchison organic extract, Titan tholin, ice tholin, and water ice. In a computer grid search of over 10 million models, we find an intraparticle mixture of 15% Titan tholin, 10% poly-HCN, and 75% water ice with 10-micrometers particles to provide an excellent fit. Replacing water ice with ammonia ice improves the fits significantly while using a pure hydrocarbon tholin, Tholin alpha, instead of Titan tholin makes only modest improvements. All acceptable fits require Titan tholin or some comparable material to provide the steep slope in the visible, and poly-HCN or some comparable material to provide strong absorption in the near-infrared. A pure Titan tholin surface with 16-micrometers particles, as well as all acceptable Pholus models, fit the present spectrophotometric data for the transplutonian object 1992 QB(sub 1). The feasibility of gas-phase chemistry to generate material like Titan tholin on such small objects is examined. An irradiated transient atmosphere arising from sublimating ices may generate at most a few centimeters of tholin over the lifetime of the Solar System, but this is insignificant compared to the expected lag deposit of primordial contaminants left behind by the sublimating ice. Irradiation of subsurface N2/CH4 or NH3/CH4 ice by cosmic rays may generate approximately 20 cm of tholin in the upper 10 m of regolith in the same time scale but the identity of this tholin to its gas-phase equivalent has not been demonstrated.

  7. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Malaska, M. J.; Schoenfeld, A.; Birch, S. P.; Hayes, A. G., Jr.

    2014-12-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.

  8. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly; Malaska, Michael; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Solomonidou, Anezina; Radebaugh, Jani

    2015-04-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.

  9. Titan as the Abode of Life

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  10. Titan as the Abode of Life

    NASA Astrophysics Data System (ADS)

    McKay, Christopher P.

    2016-02-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms.

  11. Titan as the Abode of Life.

    PubMed

    McKay, Christopher P

    2016-02-03

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H₂O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic-polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms.

  12. Titan gravity investigation with the Oceanus mission

    NASA Astrophysics Data System (ADS)

    Tortora, Paolo; Zannoni, Marco; Nimmo, Francis; Mazarico, Erwan; Iess, Luciano; Sotin, Christophe; Hayes, Alexander; Malaska, Michael

    2017-04-01

    Oceanus is a proposed mission for NASA's New Frontiers 4 Announcement of Opportunity to study Saturn's largest moon Titan. One of the main goals of Oceanus is to examine crustal properties and determine the potential interaction of organics with the subsurface ocean, with implications for potential habitability of Titan. To this end, Oceanus could potentially characterize the thickness of the external icy shell and determine the extent of convection in the shell. The product (average ice rigidity) x (ice shell thickness) can be retrieved from the Love numbers k2 and h2, which describe Titan's gravity and shape response to Saturn's tidal field during its orbital motion around the planet, using a combined analysis of gravity and topography but also measuring Titan's physical librations from gravity data and the on-board camera surface landmarks. The gravity science experiment is crucial to accomplish the mission goals, because precise orbit determination of the spacecraft provides a direct measure of Titan's static gravitational field, the real and imaginary parts of the Love number k2, and its rotational state (obliquity and amplitude of physical librations in longitude). Moreover, a precise spacecraft orbit reconstruction throughout the entire mission is necessary to process radar altimetry data and accurately measure Titan's h2 through crossover analysis. We present the expected accuracy in the estimation of the scientific parameters of interest, obtained through numerical simulations of the orbit determination of the Oceanus spacecraft during its 2-year mission around Titan. The main observable quantities used in the analysis are two-way Doppler data obtained from the frequency shift of a highly stable microwave carrier between the spacecraft and the stations of NASA's Deep Space Network. White Gaussian noise was added to the simulated data, with a realistic standard deviation obtained from an accurate noise budget derived from the experience with Cassini Ka-band Doppler data. A covariance analysis was carried out using a multi-arc approach, comparing different observational and modeling strategies, in particular for the non-gravitational perturbations. Our results show that Oceanus will allow estimating the real and imaginary parts of Titan's k2 to an accuracy of 0.0001, the gravity field to at least degree 12 with SNR of 10, and also provide spacecraft orbit reconstruction with a radial uncertainty better than 0.5 meter during the mission.

  13. Experimental measurements of the ground cloud effluents and cloud growth for the May 20, 1975, Titan 3C launch at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Storey, R. W., Jr.

    1977-01-01

    The experiment included surface level and airborne in situ cloud measurements of the exhaust effluents from the Titan IIIC solid rocket boosters. Simultaneous visible spectrum photographic pictures of the ground cloud as well as infrared imaging of the cloud were obtained to study the cloud rise, growth, and direction of travel within the earth's surface mixing layer. The NASA multilayer diffusion model predictions of cloud growth, direction of travel, and expected surface level effluent concentrations were made prior to launch and after launch using measured meteorological conditions. Prelaunch predictions were used to position the effluent monitoring instruments, and the postlaunch predictions were compared with the measured data. Measurement results showed that surface level effluent values were low, often below the detection limits of the instrumentation. The maximum surface level hydrogen chloride concentration measured 50 parts per billion at about 8 km from the launch pad. The maximum observed in-cloud (airborne measurement) hydrogen chloride concentration was 7 per million.

  14. Seasonal Change in Titan's Cloud Activity Observed with IRTF/SpeX

    NASA Astrophysics Data System (ADS)

    Schaller, Emily L.; Brown, M. E.; Roe, H. G.

    2006-09-01

    We have acquired whole disk spectra of Titan on nineteen nights with IRTF/SpeX over a three-month period in the spring of 2006. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk-integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. We find that Titan had less than 0.15% fractional cloud coverage on all but one of the nineteen nights. The near lack of cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 & 2000) who found rapidly varying clouds covering 0.5% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.

  15. Titan's impact history

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin

    2010-04-01

    Impacts play a major role in the growth and evolution of planets, satellites, and other nameless things. Titan is no exception. This talk will address a subset of the following topics: (i) The modern impact rate is constrained by the population of Centaurs and the impact rate at Jupiter. (ii) Titan's thick atmosphere and volatile surface cause it to respond to major impacts in an Earth-like manner. The impact that made Menrva - the 440 km diameter impact basin sited near the current apex of Titan's motion - was big enough to raise the average global surface temperature above 273 K, which suggests that water rain was possible. This would have been followed by methane drizzles lasting for thousands of years. More modest impacts will generate crater lakes and will saturate the atmosphere with methane, the latter leading to hundreds of years of intermittent drizzle. (iii) Impact ejecta from Menrva will strike Hyperion and should saturate the latter with sesquinary craters. (iv) In any modern story of how Titan got its atmosphere, solar nebular condensates (comets) deliver the volatiles. A consequence of a cometogenic atmosphere is that the atmosphere is heavily processed by strong shocks. The high temperatures produce a wide range of chemical species that would not otherwise be abundant. Some of these will survive to mix into the atmosphere (e.g., CO) or freeze out to fall to the surface (e.g. CO2). (v) That Titan even has an atmosphere, when Callisto and Ganymede do not, is an excellent question. The leading explanation is that Titan alone was made from ammonia - and methane - rich stuff. But the competition between impact delivery and impact expulsion of volatiles can strongly favor Titan over Callisto. Stable isotopes as well as total volatile inventories provide constraints.

  16. Titan's Greenhouse Effect And Climate: Lessons From The Earth's Cooler Cousin

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Titan Climate White Paper Proposal Team

    2009-12-01

    We argue that continuing scientific study of Earth's `distant cousin’ Titan can provide a greater understanding and insight into the energy balance of our own planet's atmosphere. Titan's Earth-like properties have been recognized for some time, from the discovery of its atmosphere in 1907, through the Voyager 1 encounter in 1980 that showed Titan's atmosphere is mostly nitrogen gas with a surface pressure within a factor of two of terrestrial. Calculation shows that Titan's atmosphere causes `greenhouse’ warming of the surface, an effect similar to that seen on the Earth, Mars, and Venus. In the 1990s, direct imaging from the Earth by adaptive optics revealed that Titan's ubiquitous haze layer is slowly changing in apparent response to the seasons that occur due to the Saturn system's obliquity. The NASA Cassini mission that arrived in Saturnian orbit in 2004, and the ESA Huygens Titan probe of 2005, have returned a flood of new data regarding this intriguing world. For the first time, we are building a detailed picture of weather in the lower atmosphere, where condensable methane takes on the role played by water in the Earth's atmosphere, leading to methane rainfall, rivers and lakes. We examine parallels between the atmospheres of Earth and of Titan, including the possibilities for dramatic climate change. Extending the duration of the Cassini spacecraft mission during the next decade will provide part of the needed picture, but in addition we urge planning for a future new mission focused on Titan's climate, and other measures.

  17. Future observations of and missions to Mercury

    NASA Technical Reports Server (NTRS)

    Stern, Alan S.; Vilas, Faith

    1988-01-01

    Key scientific objectives of Mercury explorations are discussed, and the methods by which remote observations of Mercury can be carried out from earth and from space are examined. Attention is also given to the scientific rationale and technical concepts for missions to Mercury. It is pointed out that multiple Venus-Mercury encounter trajectories exist which, through successive gravity assists, reduce mission performance requirements to levels deliverable by available systems, such as Titan-Centaur, Atlas-Centaur, and Shuttle/TOS. It is shown that a single launch in July of 1994, using a Titan-Centaur combination, could place a 1477-kg payload into orbit around Meercury. The components of a Mercury-orbiter payload designed to study surface geology and geochemistry, atmospheric composition and structure, the local particle and fields environment, and solid-body rotation dynamics are listed.

  18. Lakes Through the Haze

    NASA Image and Video Library

    2013-12-23

    Using a special spectral filter, the high-resolution camera aboard NASA's Cassini spacecraft was able to peer through the hazy atmosphere of Saturn's moon Titan. It captured this image, which features the largest seas and some of the many hydrocarbon lakes that are present on Titan's surface. Titan is the only place in the solar system, other than Earth, that has stable liquids on its surface. In this case, the liquid consists of ethane and methane rather than water. This view looks towards the side of Titan (3,200 miles or 5,150 kilometers across) that leads in its orbit around Saturn. North on Titan is up and rotated 36 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were taken with the Cassini spacecraft narrow-angle camera on Oct. 7, 2013. The view was acquired at a distance of approximately 809,000 miles (1.303 million kilometers) from Titan. Image scale is 5 miles (8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17179

  19. Acetonitrile cluster solvation in a cryogenic ethane-methane-propane liquid: Implications for Titan lake chemistry.

    PubMed

    Corrales, L René; Yi, Thomas D; Trumbo, Samantha K; Shalloway, David; Lunine, Jonathan I; Usher, David A

    2017-03-14

    The atmosphere of Titan, Saturn's largest moon, exhibits interesting UV- and radiation-driven chemistry between nitrogen and methane, resulting in dipolar, nitrile-containing molecules. The assembly and subsequent solvation of such molecules in the alkane lakes and seas found on the moon's surface are of particular interest for investigating the possibility of prebiotic chemistry in Titan's hydrophobic seas. Here we characterize the solvation of acetonitrile, a product of Titan's atmospheric radiation chemistry tentatively detected on Titan's surface [H. B. Niemann et al., Nature 438, 779-784 (2005)], in an alkane mixture estimated to match a postulated composition of the smaller lakes during cycles of active drying and rewetting. Molecular dynamics simulations are employed to determine the potential of mean force of acetonitrile (CH 3 CN) clusters moving from the alkane vapor into the bulk liquid. We find that the clusters prefer the alkane liquid to the vapor and do not dissociate in the bulk liquid. This opens up the possibility that acetonitrile-based microscopic polar chemistry may be possible in the otherwise nonpolar Titan lakes.

  20. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a lake.

  1. A Single Deformed Bow Shock for Titan-Saturn System

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. H.; Omidi, N.; Kurth, W. S.; Madanian, H.; Cravens, T.; Sergis, N.; Dougherty, M. K.; Edberg, N. J. T.

    2017-12-01

    During periods of high solar wind pressure, Saturn's bow shock is pushed inside Titan's orbit exposing the moon and its ionosphere to the supersonic solar wind. The Cassini spacecraft's T96 encounter with Titan occurred during such a period and is the subject of this presentation. The observations during this encounter show evidence for the presence of outbound and inbound shock crossings associated with Saturn and Titan. They also reveal the presence of two foreshocks: one between the outbound Kronian and inbound Titan bow shocks (foreshock-1) and the other between the outbound Titan and inbound Kronian bow shocks (foreshock-2). Using electromagnetic hybrid (kinetic ions, fluid electrons) simulations and Cassini observations we show that the origin of foreshock-1 is tied to the formation of a single deformed bow shock for the Titan-Saturn system. We also report for the first time, the observations of spontaneous hot flow anomalies (SHFAs) in foreshock-1 making Saturn the fourth planet this phenomenon has been observed and indicating its universal nature. The results of hybrid simulations also show the generation of oblique fast magnetosonic waves upstream of the outbound Titan bow shock in agreement with the observations of large amplitude magnetosonic pulsations in foreshock-2. The formation of a single deformed bow shock results in unique foreshock-bow shock or foreshock-foreshock geometries. For example, the presence of Saturn's foreshock upstream of Titan's quasi-perpendicular bow shock result in ion acceleration through a combination of shock drift and Fermi processes. We also discuss the implications of a single deformed bow shock for Saturn's magnetopause and magnetosphere.

  2. High resolution VIMS images of Titan's surface: implications for its composition, internal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Le Mouelic, S.; Le Corre, L.; Barnes, J.; Brown, R. H.; Jaumann, R.; Buratti, B.; Baines, K.; Clark, R.; Nicholson, P.; Soderblom, L.

    2008-12-01

    With a field of view of 0.5 mrad per pixel, the VIMS (Visual and Infrared Mapping Spectrometer) onboard the Cassini spacecraft can acquire images with a resolution of 500 m per pixel at closest approach during a typical Titan flyby. This resolution is comparable to the resolution of the radar instrument and allows comparisons between the radar images and optical images in the six infrared windows where the surface can be observed. Such opportunities were not set up for the nominal tour before Saturn insertion. The opportunity was offered during the TA flyby [Sotin et al., Nature, 2005] and the results lead the Cassini program to give VIMS the prime observations during closest approach at the T24 and T38 flybys. Two different implementations were experienced. During the T24 flyby (01/29/2007), we used a push-broom mode allowing VIMS to image a long path before pointing to a specific site at the limit between the light and dark terrains. This observation allowed us to see the dunes and to infer some information on their composition [Barnes et al., Icarus, 2008], to image channels and to infer information of erosion processes of the bright equatorial regions [Jaumann et al., Icarus, in press] and to observe the strong correlation between radar images and the VIMS images over a bright area interpreted as a flow feature [Lopes et al., Icarus, 2007]. During the T38 flyby over Ontario Lacus (12/05/2007), it was decided to point to the lake and get different images which provide us with a set of observations obtained with different emergence angles. This observation allowed us to infer the liquid nature of the lake and the composition of the lake [Brown et al., Nature, 2008]. In addition, this mode gives good information on the atmospheric component and will help us remove that component to get better spectra of Titan's surface. During the extended mission, two observations are forecasted at the beginning and at the end of the Cassini Equinox Mission. The first one will happen on November 19, 2008. The VIMS has been programmed to observe the Huygens landing site area at a resolution of 1 km/pixel. Before and after this observation, the push-broom mode will be used in order to cross-cut some of the radar paths. Because Titan's spin rate may be different from synchronous [Stiles et al., 2007; Lorenz et al., 2008], there is some uncertainty on the pointing. This study will report on the results of this flyby. This work has been carried out at the JPL, Caltech, under contract with NASA.

  3. Encouragement from Jupiter for Europe's Titan Probe

    NASA Astrophysics Data System (ADS)

    1996-04-01

    Huygens will transmit scientific information for 150 minutes, from the outer reaches of Titan's cold atmosphere and all the way down to its enigmatic surface. For comparison, the Jupiter Probe radioed scientific data for 58 minutes as it descended about 200 kilometres into the outer part of the atmosphere of the giant planet. The parachutes controlling various stages of Huygens' descent will rely upon a system for deployment designed and developed in Europe that is nevertheless similar to that used by the Jupiter Probe. The elaborate sequence of operations in Huygens worked perfectly during a dramatic drop test from a stratospheric balloon over Sweden in May 1995, which approximated as closely as possible to events on Titan. The performance of the American Probe at Jupiter renews the European engineers' confidence in their own descent control system, and also in the lithium sulphur-dioxide batteries which were chosen to power both Probes. "The systems work after long storage in space," comments Hamid Hassan, ESA's Project Manager for Huygens. "Huygens will spend seven years travelling to Saturn's vicinity aboard the Cassini Orbiter. The Jupiter Probe was a passenger in Galileo for six years before its release, so there is no reason to doubt that Huygens will work just as well." Huygens will enter the outer atmosphere of Titan at 20,000 kilometres per hour. A heat shield 2.7 metres in diameter will withstand the friction and slow the Probe to a speed at which parachutes can be deployed. The size of the parachute for the main phase of the descent is chosen to allow Huygens to reach the surface in about 2 hours. The batteries powering Huygens will last for about 21/2 hours. Prepared for surprises A different perspective on the Jupiter Probe comes from Jean-Pierre Lebreton, ESA's Project Scientist for Huygens. The results contradicted many preconceptions of the Galileo scientists, particularly about the abundance of water and the structure of cloud layers. Arguments continue about whether the Probe hit by chance a patch of unusual weather, whether instruments were misreading, or whether ideas about the giant planet need a thorough shake-up. "The Jupiter experience teaches us to be more modest in our predictions about what a new world will be like," says Dr Lebreton. "It shows the limitations of theories made from telescope studies and flybys, and confirms the need for on-the-spot observations. We know far less about Titan than about Jupiter. So a real understanding of Titan must await the arrival of Cassini/ Huygens in eight years' time." Hazy orange clouds obscure Titan and leave scientists guessing about what Huygens will find. As speculation and debate continue, the biggest uncertainty concerns the nature of Titan's surface. Some experts expect to find large lakes of liquid hydrocarbons, while others suspect that the surface is dry. The hypothesis that a global ocean might cover Titan is out of fashion at present, because of radar results and reasoning about the effects of tides in a global ocean. The multinational teams of scientists who have developed the instruments on Huygens are prepared for surprises. For example, the Surface Science Package is designed for a wet or a dry landing, and will give appropriate results in either case. Further tests planned With just eighteen months to go until the launch of the joint Cassini/Huygens mission in October 1997, the spring of 1996 is a busy time for the Huygens teams. The first European flight hardware reached NASA's Jet Propulsion Laboratory (JPL) for incorporation in the Flight Model of the Cassini Orbiter. This is the Probe Support Avionics, which receives and processes the signals from the Probe at Titan. The Engineering Model of Huygens has also gone to JPL, for comprehensive electrical tests of the Cassini spacecraft. ESA is planning to carry out further tests on the Flight Model of Huygens, which is due for delivery in less than a year's time. The aim is to settle questions remaining after searching reviews of the Probe's design and readiness. Shock tests will check that Huygens is not harmed by the firing of pyrotechnic devices used to release the protective shell and the parachutes, after the Probe's incandescent entry into Titan's atmosphere. In addition, the so-called Titan Test will be repeated. This subjects the Probe to a simulation of the very cold atmosphere of the target moon. A previous test showed some components in Huygens approaching the lower limit of acceptable temperatures. The repeated test will verify that subsequent minor modifications have succeeded in reducing effect of the chilling. Background facts about the Cassini/Huygens mission Huygens is a medium-sized mission of ESA's Horizon 2000 programme for space science, and a contribution to the joint NASA-ESA Cassini mission. Christiaan Huygens discovered Saturn's moon Titan in 1655, and the mission named after him aims to deliver a 343-kilogram Probe to Titan and carry a package of scientific instruments through the atmosphere. Six sets of instruments will analyse the chemical composition of the atmosphere, observe the weather and topography of Titan, and examine the nature of its surface. Titan is larger than the planet Mercury, and its unique atmosphere rich in nitrogen and hydrocarbons may resemble the atmosphere of the primitive Earth, before life began. Nominal dates for the Huygens mission are as follows: - launch, 6 October 1997 - arrival at Saturn, 26 June 2004 - release of Huygens, 6 November 2004 - entry into Titan's atmosphere, 27 November 2004. The Saturn Orbiter, the other element in the Cassini mission, will relay the signals from Huygens to the Earth, before settling down to prolonged observations of Saturn and its rings and moons. European and American scientists are partners in all the experiments, both in the Orbiter and in the Huygens Probe. Farthest out for Europe Huygens will travel to a greater distance from the Sun than any previous ESA mission, out to the orbit of Saturn at 1400 million kilometres, or nearly ten times the Sun-Earth distance. For comparison, the farthest-ranging mission at present is Ulysses. It orbits over the poles of the Sun and out to the orbit of Jupiter, 800 million kilometres from the Sun. As no other mission planned or contemplated by ESA at present will go as far as Saturn, Huygens is likely to hold the European record for many years. HUYGENS PRESS BRIEFING On wednesday 17 April, Aérospatiale organises a press brifing at its establishment in Cannes on Huygens Media interested to attend this briefing should contact (by fax):

  4. Water vapor in Titan's atmosphere observed by Cassini/CIRS data

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; Teanby, N. A.; Anderson, C. M.; Irwin, P. G.; Flasar, F. M.

    2011-12-01

    Water vapor in Titan's atmosphere has only been detected by whole-disk observations from the Infrared Space Observatory [1]. In fact an earlier attempt to measure water vapor with NASA's Cassini Composite Infrared Spectrometer (CIRS, [2]) was unsuccessful, due to poor signal-to-noise in early versions of the calibration pipeline. In this paper we show the detection of the water vapor in Titan's atmosphere through the analysis of the emission lines present in the spectral range (60 - 300 cm-1) observed by the far-IR Focal Plane 1 (FP1) detector. We model high spectral resolution (0.5 cm-1) disk versus limb data to determine the water mixing ratio as a function of latitude and time (using data acquired from December 2004 to late 2011), also exploring differences between the leading and trailing side of Saturn's moon. The opacity sources in the atmospheric model include thermal emission from the moon, collision-induced absorption (CIA) from pairs of Titan's main atmospheric molecules, the stratospheric aerosol and emission lines from atmospheric gases across the FP1 spectral range (see Cottini et al., 2011 [3] for description of the model). The radiative transfer model and retrieval code (NEMESIS) is based on the method of optimal estimation to perform a correlated-k computation of synthetic spectra.Our determination of the atmospheric abundance of water vapor yields a value of ~0.14 ppb assuming a constant vertical profile, which corresponds to a column abundance of 4.3x1014 molecules/cm2. Preliminary results suggest a change in the atmospheric water vapour abundance during northern winter into early northern spring. We also detected water in CIRS high resolution limb spectra. Modeling these limb observations, mainly centered on two tangent heights, 125 and 225 km, allows us to constrain the water vapor abundance vertical profile; utilizing the limb data allows us to retrieve the water vapor from disk observations using a water vapor mixing ratio that varies in altitude.These results will be compared to existing photochemical models of Titan's oxygen species, and we will conclude with a discussion of future plans by the CIRS team for improving knowledge of the water abundance in Titan's atmosphere. References [3] Cottini, V., Nixon, C.A., Jennings, D.E., de Kok, R., Teanby, N.A., Irwin, P.G.J. and Flasar F.M., 2011. Spatial and temporal variations in Titan's surface temperatures from Cassini CIRS observations. Planetary and Space Science, doi:10.1016/j.pss.2011.03.015 [1] Coustenis, A., and 8 colleagues, 1998. Evidence for water vapor in Titan's atmosphere from ISO/SWS data. Astronomy and Astrophysics, v.336, p.L85-L89 [2] Flasar, F. M., and 44 colleagues, 2004. Exploring the Saturn system in the thermal infrared: The Composite Infrared Spectrometer. Space Sci. Rev. 115, 169 - 297

  5. Quantum chemical spectral characterization of CH2NH2+ for remote sensing of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Thackston, Russell; Fortenberry, Ryan C.

    2018-01-01

    Cassini has shown that CH2NH2+ is likely present in relatively high abundance in Titan's upper atmosphere. Relatively little is known about this molecule even though it contains the same number of electrons as ethylene, a molecule of significance to Titan's chemistry. Any studies on CH2NH2+ with application to Titan or its atmospheric chemistry will have to be done remotely at this point with the end of the fruitful Cassini mission. Consequently, trusted quantum chemical techniques are utilized here to produce the rotational, vibrational, and rovibrational spectroscopic constants for CH2NH2+ for the first time. The methodology produces a tightly fit potential energy surface here that is well-behaved indicating a strong credence in the accuracy for the produced values. Most notably, the 884.1 cm-1 NH2 out-of-plane bend is the brightest of the vibrational frequencies reported here for CH2NH2+ , and an observed and unattributed feature in this spectral region has been documented but never assigned to a molecular carrier. Follow-up IR or radio observations making use of the 540 GHz to 660 GHz range with the 0.45 D molecular dipole moment will have to be undertaken in order to confirm this or any attribution, but the data provided in this work will greatly assist in any such studies related to CH2NH2+.

  6. Plumbing Coastal Depths in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Radar data from NASA's Cassini spacecraft reveal the depth of liquid methane/ethane seas on Saturn's moon Titan. Cassini's Titan flyby on August 21, 2014, included a segment designed to collect altimetry (or height) data, using the spacecraft's radar instrument, along a 120-mile (200-kilometer) shore-to-shore track on Kraken Mare, Titan's largest hydrocarbon sea. For a 25-mile (40-kilometer) stretch of this data, along the sea's eastern shoreline, Cassini's radar beam bounced off the sea bottom and back to the spacecraft, revealing the sea's depth in that area. Observations in this region, near the mouth of a large, flooded river valley, showed depths ranging from 66 to 115 feet (20 to 35 meters). Plots of three radar echoes are shown at left, indicating depths of 89 feet (27 meters), 108 feet (33 meters) and 98 feet (30 meters), respectively. The altimetry echoes show the characteristic double-peaked returns of a bottom-reflection. The tallest peak represents the sea surface; the shorter of the pair represents the sea bottom. The distance between the two peaks is a measure of the liquid's depth. The Synthetic Aperture Radar (SAR) image at right shows successive altimetry observations as black circles. The three blue circles indicate the locations of the three altimetry echoes shown in the plots at left. http://photojournal.jpl.nasa.gov/catalog/PIA19046

  7. Studies in occultation astronomy

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1980-01-01

    Major scientific results are summarized for the following studies: (1) observations of the 8 April 1976 occultation of epsilon Geminorum by Mars; (2) studies in occultation techniques; and (3) the March 1974 occultation of Saturn by the Moon. A re-analysis of the 1974 lunar occultation of the Titan indicates that Titan is strongly limb darkened, with D approximately greater than 5800km; there is internal evidence in the data that Titan's atmosphere is inhomogeneous; and that observations are inconsistent with any sample homogeneous model atmosphere which matches the P (lambda) and Beta (lambda) observations of Titan.

  8. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  9. Too Much of a Good Thing ? Radioisotope Power Conversion Technology and `Waste' Heat in the Titan Environment

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system therefore has considerable appeal. For airplanes, the superior power:weight ratio of Stirling systems is virtually essential, and for light gas balloons, the lower thermal perturbation of a Stirling system is certainly preferable. On the other hand, the lifting capacity of a Montgolfière balloon is directly proportional to the heat flux, and a thermoelectric system is more practical. Similarly, if magnetic fields or seismic measurements on a lander are of higher priority than meteorology, the lack of moving parts in a thermoelectric system is preferable. I review the Titan surface environment and the thermal interactions of the Huygens probe with it, and discuss the implications of RPS waste heat for different science mission concepts.

  10. Rain, winds and haze during the Huygens probe's descent to Titan's surface

    USGS Publications Warehouse

    Tomasko, M.G.; Archinal, B.; Becker, T.; Bezard, B.; Bushroe, M.; Combes, M.; Cook, D.; Coustenis, A.; De Bergh, C.; Dafoe, L.E.; Doose, L.; Doute, S.; Eibl, A.; Engel, S.; Gliem, F.; Grieger, B.; Holso, K.; Howington-Kraus, E.; Karkoschka, E.; Keller, H.U.; Kirk, R.; Kramm, R.; Kuppers, M.; Lanagan, P.; Lellouch, E.; Lemmon, M.; Lunine, J.; McFarlane, E.; Moores, J.; Prout, G.M.; Rizk, B.; Rosiek, M.; Rueffer, P.; Schroder, S.E.; Schmitt, B.; See, C.; Smith, P.; Soderblom, L.; Thomas, N.; West, R.

    2005-01-01

    The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent. ?? 2005 Nature Publishing Group.

  11. Cassini RADAR observations of lakes and seas in the Northern Polar region of Titan: Bathymetry and Composition

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, Marco; Hayes, Alex; Poggiali, Valerio; Lunine, Jonathan; Seu, Roberto; Hofgartner, Jason; Le Gall, Alice; Lorenz, Ralph; Mitri, Giuseppe

    2017-04-01

    Recent observations by the Cassini spacecraft has revealed its RADAR to be an invaluable tool for investigating Titan's seas and lakes. The T91 (May 2013) observation of Ligeia Mare, Titan's second largest sea, has demonstrated the capabilities of the RADAR, in its altimeter mode, to measure depth, composition and seafloor topography. The 104 (August 2014) observation provided similar data over the largest sea, Kraken Mare, and the T108 (January 2015) flyby acquired an altimetry pass over Punga Mare. The T49 (December 2007) altimetry pass over Ontario Lacus, the largest southern liquid body, has also been processed to retrieve subsurface echoes. Cassini's final flyby of Titan, T126 (April 2017), is the next and unique opportunity to observe an area in the Northern Polar region of Titan, where several small - medium size (5 - 30 km) lakes are present and have been previously imaged by Cassini. In our presentation, we will report the integrated results of these investigations and discuss them in the overall context of Titan's hydrologic cycle.

  12. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  13. Dunes in the Solar System : New Perspectives, Analogs and Challenges

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2016-12-01

    These are exciting times for planetary Aeolian research. New paradigms opened up by numerical modeling backed by laboratory and field experimentation now permit a much higher-fidelity mapping of dune morphology to wind regime and sediment characteristics. The identification of the 'fingering mode' of bedform growth, and its association with limited sediment supply, now brings a systematic explanation of what was once bewildering complexity and opens the way to decoding more environmental detail from the landscape than was possible before. Much of this model work has been developed in parallel with, if not stimulated by, the discovery of vast fields of sand dunes on Titan a decade ago, and datasets of higher resolution and wider coverage on Mars and Earth. The pace of relevant discoveries has accelerated, with bedforms observed on comet 67P-Churyumov-Gerasimenko, periodic structures on Pluto's landscape, and a possibly new class of bedform discovered by the Curiosity rover's close inspection of the Bagnold dunes on Mars - all in the last two years! These features have all stimulated examination of transport physics at the particle and bedform scale, especially in rarified conditions.At the global scale, Titan's dune patterns have been broadly explained, and hint at Croll-Milankovich climate cycles. Yet the origin of the sand remains a mystery. Much work remains to understand regional transports on all worlds, which can be addressed with mesoscale and CFD models. Observationally, the greatest opportunity for progress will come with higher resolution views of the surfaces of Venus and Titan. Venus, a world on which aeolian transport was observed in only a couple of hours of surface observation, is in particular long overdue for further exploration. In all these cases, terrestrial analogs provide valuable insights.

  14. Dunelands of Titan

    NASA Image and Video Library

    2015-11-02

    Saturn's frigid moon Titan has some characteristics that are oddly similar to Earth, but still slightly alien. It has clouds, rain and lakes (made of methane and ethane), a solid surface (made of water ice), and vast dune fields (filled with hydrocarbon sands). The dark, H-shaped area seen here contains two of the dune-filled regions, Fensal (in the north) and Aztlan (to the south). Cassini's cameras have frequently monitored the surface of Titan (3200 miles or 5150 kilometers across) to look for changes in its features over the course of the mission. Any changes would help scientists better understand different phenomena like winds and dune formation on this strangely earth-like moon. For a closer view of Fensal-Aztlan, see PIA07732 . This view looks toward the leading side of Titan. North on Titan is up. The image was taken with the Cassini spacecraft narrow-angle camera on July 25, 2015 using a spectral filter sensitive to wavelengths of near-infrared light centered at 938 nanometers. The view was obtained at a distance of approximately 450,000 miles (730,000 kilometers) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 32 degrees. Image scale is 3 miles (4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18341

  15. Titan as the Abode of Life

    PubMed Central

    McKay, Christopher P.

    2016-01-01

    Titan is the only world we know, other than Earth, that has a liquid on its surface. It also has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan’s atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis, but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in its atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures, azotosomes, in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic—polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the universe is full of diverse and wondrous life forms. PMID:26848689

  16. Direct Measurement of Interparticle Forces of Titan Aerosol Analogs ("Tholin") Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; McGuiggan, Patricia; Bridges, Nathan T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of Titan's organic sand particles on Titan. The organic sand may behave distinctively compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, and Mars) due to differences in interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy) of the Titan aerosol analog (tholin). We find that the surface energy of a tholin thin film is about 70.9 mN/m, and its elastic modulus is about 3.0 GPa (similar to hard polymers like PMMA and polystyrene). For two 20 μm diameter particles, the theoretical cohesion force is therefore 3.3 μN. We directly measured interparticle forces for relevant materials: tholin particles are 0.8 ± 0.6 μN, while the interparticle cohesion between walnut shell particles (a typical model materials for the Titan Wind Tunnel, TWT) is only 0.4 ± 0.1 μN. The interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than materials used in the TWT. This suggests that we should increase the interparticle force in both analog experiments (TWT) and threshold models to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol particles (˜1 μm) in Titan's atmosphere are transformed into large sand particles (˜200 μm). It may also support the cohesive sand formation mechanism suggested by Rubin and Hesp (2009), where only unidirectional wind is needed to form linear dunes on Titan.

  17. Project Cassini: a Saturn Orbiter/titan Probe Mission Proposal

    NASA Astrophysics Data System (ADS)

    Gautier, D.; Ip, W. H.

    1984-12-01

    Titan is the only moon in the solar system with a substantial atmosphere. The organic chemistry of its N2-CH4 atmosphere may resemble that of the earth's primitive atmosphere before life arose. The investigation of the synthesis of prebiotic molecules in Titan's atmosphere and the atmospheric and surface environments of this planet-sized moon will be the focal point of the Cassini Project proposed to the European Space Agency for an international Saturn Orbiter/Titan Probe mission.

  18. Evidence of Temporal Variation of Titan Atmospheric Density in 2005-2013

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Lim, Ryan S.

    2013-01-01

    One major science objective of the Cassini mission is an investigation of Titan's atmosphere constituent abundances. Titan's atmospheric density is of interest not only to planetary scientists but also to mission design and mission control engineers. Knowledge of the dependency of Titan's atmospheric density with altitude is important because any unexpectedly high atmospheric density has the potential to tumble the spacecraft during a flyby. During low-altitude Titan flyby, thrusters are fired to counter the torque imparted on the spacecraft due to the Titan atmosphere. The denser the Titan's atmosphere is, the higher are the duty cycles of the thruster firings. Therefore thruster firing telemetry data could be used to estimate the atmospheric torque imparted on the spacecraft. Since the atmospheric torque imparted on the spacecraft is related to the Titan's atmospheric density, atmospheric densities are estimated accordingly. In 2005-2013, forty-three low-altitude Titan flybys were executed. The closest approach altitudes of these Titan flybys ranged from 878 to 1,074.8 km. Our density results are also compared with those reported by other investigation teams: Voyager-1 (in November 1980) and the Huygens Atmospheric Structure Instrument, HASI (in January 2005). From our results, we observe a temporal variation of the Titan atmospheric density in 2005-2013. The observed temporal variation is significant and it isn't due to the estimation uncertainty (5.8%, 1 sigma) of the density estimation methodology. Factors that contributed to this temporal variation have been conjectured but are largely unknown. The observed temporal variation will require synergetic analysis with measurements made by other Cassini science instruments and future years of laboratory and modeling efforts to solve. The estimated atmospheric density results are given in this paper help scientists to better understand and model the density structure of the Titan atmosphere.

  19. Titan's Oxygen Chemistry and its Impact on Haze Formation

    NASA Astrophysics Data System (ADS)

    Vuitton, Veronique; Carrasco, Nathalie; Flandinet, Laurene; Horst, Sarah; Klippenstein, Stephen; Lavvas, Panayotis; Orthous-Daunay, Francois-Regis; Thissen, Roland; Yelle, Roger

    2016-06-01

    Though Titan's atmosphere is reducing with its 98% N2, 2% CH4 and 0.1% H2, CO is the fourth most abundant molecule with a uniform mixing ratio of ˜50 ppm. Two other oxygen bearing molecules have also been observed in Titan's atmosphere: CO2 and H2O, with a mixing ratio of ˜15 and ˜1 ppb, respectively. The physical and chemical processes that determine the abundances of these species on Titan have been at the centre of a long-standing debate as they place constraints on the origin and evolution of its atmosphere [1]. Moreover, laboratory experiments have shown that oxygen can be incorporated into complex molecules, some of which are building blocks of life [2]. Finally, the presence of CO modifies the production rate and size of tholins [3,4], which transposed to Titan's haze may have some strong repercussions on the temperature structure and dynamics of the atmosphere. We present here our current understanding of Titan's oxygen chemistry and of its impact on the chemical composition of the haze. We base our discussion on a photochemical model that describes the first steps of the chemistry and on state-of-the-art laboratory experiments for the synthesis and chemical analysis of aerosol analogues. We used a very-high resolution mass spectrometer (LTQ-Orbitrap XL instrument) to characterize the soluble part of tholin samples generated from N2/CH4/CO mixtures at different mixing ratios and with two different laboratory set-ups. These composition measurements provide some understanding of the chemical mechanisms by which CO affects particle formation and growth. Our final objective is to obtain a global picture of the fate and impact of oxygen on Titan, from its origin to prebiotic molecules to haze particles to material deposited on the surface.

  20. A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator

    NASA Astrophysics Data System (ADS)

    Dong, Wenjun; Hou, Lijuan; Li, Tingting; Gong, Ziqiang; Huang, Huandi; Wang, Ge; Chen, Xiaobo; Li, Xiaoyun

    2015-12-01

    Scaffold biomaterials with open pores and channels are favourable for cell growth and tissue regeneration, however the inherent poor mechanical strength and low surface activity limit their applications as load-bearing bone grafts with satisfactory osseointegration. In this study, macro-porous graphene oxide (GO) modified titanate nanowire scaffolds with desirable surface chemistry and tunable mechanical properties were prepared through a simple hydrothermal process followed by electrochemical deposition of GO nanosheets. The interconnected and porous structure of the GO/titanate nanowire scaffolds provides a large surface area for cellular attachment and migration and displays a high compressive strength of approximately 81.1 MPa and a tunable Young’s modulus over the range of 12.4-41.0 GPa, which satisfies site-specific requirements for implantation. Surface chemistry of the scaffolds was modulated by the introduction of GO, which endows the scaffolds flexibility in attaching and patterning bioactive groups (such as -OH, -COOH and -NH2). In vitro cell culture tests suggest that the GO/titanate nanowire scaffolds act as a promising biomaterial candidate, in particular the one terminated with -OH groups, which demonstrates improved cell viability, and proliferation, differentiation and osteogenic activities.

  1. A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator.

    PubMed

    Dong, Wenjun; Hou, Lijuan; Li, Tingting; Gong, Ziqiang; Huang, Huandi; Wang, Ge; Chen, Xiaobo; Li, Xiaoyun

    2015-12-21

    Scaffold biomaterials with open pores and channels are favourable for cell growth and tissue regeneration, however the inherent poor mechanical strength and low surface activity limit their applications as load-bearing bone grafts with satisfactory osseointegration. In this study, macro-porous graphene oxide (GO) modified titanate nanowire scaffolds with desirable surface chemistry and tunable mechanical properties were prepared through a simple hydrothermal process followed by electrochemical deposition of GO nanosheets. The interconnected and porous structure of the GO/titanate nanowire scaffolds provides a large surface area for cellular attachment and migration and displays a high compressive strength of approximately 81.1 MPa and a tunable Young's modulus over the range of 12.4-41.0 GPa, which satisfies site-specific requirements for implantation. Surface chemistry of the scaffolds was modulated by the introduction of GO, which endows the scaffolds flexibility in attaching and patterning bioactive groups (such as -OH, -COOH and -NH2). In vitro cell culture tests suggest that the GO/titanate nanowire scaffolds act as a promising biomaterial candidate, in particular the one terminated with -OH groups, which demonstrates improved cell viability, and proliferation, differentiation and osteogenic activities.

  2. Titan's Methane Hydrological Cycle: Detection of Seasonal Change

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Brown, M. E.; Roe, H. G.

    2007-08-01

    We have acquired whole disk spectra of Titan on over 100 nights with IRTF/SpeX during the 2006-2007 Titan season. The data encompass the spectral range of 0.8 to 2.4 microns at a resolution of 375. These disk- integrated spectra allow us to determine Titan's total fractional cloud coverage and altitudes of clouds present. The near lack of tropospheric cloud activity in these spectra is in sharp contrast to nearly every spectrum taken from 1995-1999 with UKIRT by Griffith et al. (1998 & 2000) who found rapidly varying clouds covering 0.5-9% of Titan's disk. The differences in these two similar datasets indicate a striking seasonal change in the behavior of Titan's clouds. Adaptive optics observations from Keck and Gemini also show markedly decreased cloud activity in the late southern summer era compared with the period surrounding southern summer solstice (October 2002). Observations of the latitudes, magnitudes, altitudes, and frequencies of Titan's clouds as Titan moves toward southern autumnal equinox in 2009 will help elucidate when and how Titan's methane hydrological cycle changes with season.

  3. Titan's missing ethane: From the atmosphere to the subsurface

    NASA Astrophysics Data System (ADS)

    Gilliam, Ashley E.; Lerman, Abraham

    2016-09-01

    The second most abundant component of the present-day Titan atmosphere, methane (CH4), is known to undergo photolytic conversion to ethane (C2H6) that accumulates as a liquid on Titan's surface. Condensation temperature of ethane is higher than that of methane, so that ethane "rain" may be expected to occur before the liquefaction of methane. At present, the partial pressure of ethane in the atmosphere is 1E-5 bar, much lower than 1E-1 bar of CH4. Estimated 8.46E17 kg or 1.37E6 km3 of C2H6 have been produced on Titan since accretion. The Titan surface reservoirs of ethane are lakes and craters, of estimated volume of 50,000 km3 and 61,000 km3, respectively. As these are smaller than the total volume of liquid ethane produced in the course of Titan's history, the excess may be stored in the subsurface of the crust, made primarily of water ice. The minimum porosity of the crust needed to accommodate all the liquid ethane would be only 0.9% of the uppermost 2 km of the crust. The occurrence of CH4 and liquid C2H6 on Titan has led to much speculation on the possibility of life on that satellite. The aggregation of organic molecules in a "primordial soup or bullion" depends in part on the viscosity of the medium, diffusivity of organic molecules in it, and rates of polymerization reactions. The temperatures on Titan, much lower than on primordial Earth, are less favorable to the "Second Coming of life" on Titan.

  4. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are demonstrated in the aerosol mass spectra shown in Figure 2. The aromatic aerosol also demonstrates strong chemical reactivity when exposed to laboratory air, indicating substantial stored chemical potential. Oxidatoin and solubility studies wil be presented and implicatoins for prebiotic chemistry o nTitan will be discussed.

  5. Inexpensive Ultrasound Demonstrations as Analogs of Radio Diffraction in the field : Huygens Probe Bistatic experiment on Titan and the Sea Interferometer (Invited)

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2013-12-01

    The wave nature of electromagnetic radiation can be exploited in a number of astronomical and remote sensing methods, but is often challenging to visualize in the classroom. One approach with conveniently-inexpensive components is to use sound as an analog. Readily-available ultrasonic transducers at 40 kHz can be driven with a 555 oscillator and received intensity detected with an op-amp and visualized with a digital voltmeter, a lightbulb, or even acoustically. The wavelength of 9mm is convenient for tabletop experiments, with a relevant example being Lloyds Mirror, the interference of a direct wave from a source just above a surface with the reflected wave. As a distant receiver moves in angle through this interference pattern, a series of peaks and nulls in recorded intensity can be interpreted as the height of the transmitter and the reflectivity (i.e. with some assumptions, the roughness) of the reflecting surface. This $10 experiment will be demonstrated at the poster. Such an observation was (serendipitously) made in 2005 after the landing of the Huygens probe on the surface of Titan, where the radio signal measured by Cassini as it set on the horizon as seen from the probe underwent sharp dips in strength that were inverted into a precise measurement of the post-impact probe height. A similar technique in reverse was applied a half century earlier in early Australian radio astronomy to measure the position and width of astrophysical sources from a single clifftop antenna. Ultrasound can be convenient to emulate other radio work, exploiting Doppler effects and (for pulsed sources, like those used in rangers for amateur robotics) propagation time rather than diffraction. Some experiments on tracking Frisbees as an analog for measuring planetary winds by tracking descent probes, and on bistatic delay/Doppler scatterometry as in the CYGNSS GPS-based experiment to measure hurricane winds via sea state, will also be discussed. Huygens probe on the surface of Titan. The interference pattern constrained Titan surface properties Ultrasound pattern is a function of geometry and surface covering

  6. Advances in Architectural Elements For Future Missions to Titan

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and to describe recent advances and ongoing planning for a Titan balloon and surface elements. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851

  7. Analytic Theory of Titans Schumann Resonance: Constraints on Ionospheric Conductivity and Buried Water Ocean

    NASA Technical Reports Server (NTRS)

    Beghin, Christian; Randriamboarison, Orelien; Hamelin, Michel; Karkoschka, Erich; Sotin, Christophe; Whitten, Robert C.; Berthelier, Jean-Jacques; Grard, Rejean; Simoes, Fernando

    2013-01-01

    This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out.

  8. Mass Spectral Investigation of Laboratory Made Tholins and Their Reaction Products: Implications to Tholin Surface Chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Somogyi, Arpad; Smith, M. A.

    2006-09-01

    The success of the Huygens mission does not overshadow the importance of laboratory simulations of gas-phase and surface reactions that might occur in Titan's atmosphere and surface, respectively. We present here our latest results on chemical reactions (hydrolysis, peroxidation and hydrogenation) of laboratory made tholins obtained by FT-ICR mass spectrometry. The laboratory synthesis of tholins has been described in our earlier papers [1,2]. Overall, we conclude that our laboratory tholins are reactive materials that undergo fast hydrolysis, oxidation and reduction. Thus, if the tholin on Titan's surface resemble our laboratory made tholins, it can be considered as a potential starting material for several synthetic processes that can provide organic compounds of pre-biotic interest. Hydrolysis reactions occur with rate constants of 2-10 hour-1 at room temperature. Formal water addition to several species of CxHyNz has been observed by detecting the formation of CxHy+2NzO species. MS/MS fragmentation of the oxygen containing ions leads to the loss of water, ammonia, HCN, acetonitrile, etc. This suggests that tholin hydrolysis may occur in temporary melted ponds of water/ammonia ice on Titan. Peroxidation, which can be considered as a very harsh oxidation, leads to mono-, and multiple oxygenated compounds within a few minutes. The MS/MS fragmentation of these compounds suggests the presence of organic amides and, presumably, amino acid like compounds. Hydrogenation leads to compounds in which the originally present carbon-carbon or carbon-nitrogen double and triple bonds are saturated. H/D exchange experiments show different kinetics depending on the degree of unsaturation/saturation and the number of N atoms. [1] Sarker, N.; Somogyi, A.; Lunine, J. I.; Smith, M. A. Astrobiology, 2003, 3, 719-726. [2] Somogyi, A.; Oh, C-H.; Lunine, J. I.; Smith, M. A. J. Am. Soc. Mass Spectrom. 2005, 16, 850-859.

  9. Coupled atmosphere-ocean models of Titan's past

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis

    1993-01-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  10. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.

  11. New Interfacial Nanochemistry on Sensory Bioscaffold-Membranes of Nanobelts

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    Nanostructured bioscaffolds and biosensors are evolving as popular and powerful tools in life science and biotechnology, due to the possible control of their surface and structural properties at the nm-scale. Being seldom discussed in literature and long-underexploited in materials and biomedical sciences, development of nanofiber-based sensory bioscaffolds has great promises and grand challenges in finding an ideal platform for low-cost quantifications of biological and chemical species in real-time, label-free, and ultrasensitive fashion. In this study, titanate nanobelts were first of all synthesized, from hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to possess underexploited structure and surface vital to the rapid and label-free electrochemical detections of protein (cytochrome c) and neurotransmitter (dopamine). This work is based on a suite of new physical and chemical properties on the titanate nanobelt in water, including high surface area, zwitterionic surface, chemical- and photochemical-durability, cation-exchange and anion- and cation-sorption capacities, protein- and cell-compatibility, thermal-stability, and charge conductivity. The Fourier transform infrared (FTIR) was used for identifying any denaturing of the cytochrome c pre-immobilized on the titanate nanobelts. On that basis, the pheochromocytoma cells (PC-12 cell) were chosen to grow on the titanate nanobelts. These experiments prove that the sensory bioscaffolds of titanate nanobelt-membrane is a multiplex platform for developing new tools for energy, environmental and life sciences.

  12. The evolution of Titan's mid-latitude clouds

    USGS Publications Warehouse

    Griffith, C.A.; Penteado, P.; Baines, K.; Drossart, P.; Barnes, J.; Bellucci, G.; Bibring, J.; Brown, R.; Buratti, B.; Capaccioni, F.; Cerroni, P.; Clark, R.; Combes, M.; Coradini, A.; Cruikshank, D.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.; McCord, T.; Mennella, V.; Nelson, R.; Nicholson, P.; Sicardy, B.; Sotin, Christophe; Soderblom, L.A.; Kursinski, R.

    2005-01-01

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal that the horizontal structure, height, and optical depth of Titan's clouds are highly, dynamic. Vigorous cloud centers are seen to rise from the middle to the upper troposphere within 30 minutes and dissipate within the next hour. Their development indicates that Titan's clouds evolve convectively; dissipate through rain; and, over the next several hours, waft downwind to achieve their great longitude extents. These and other characteristics suggest that temperate clouds originate from circulation-induced convergence, in addition to a forcing at the surface associated with Saturn's tides, geology, and/or surface composition.

  13. Organic haze on Titan and the early Earth

    PubMed Central

    Trainer, Melissa G.; Pavlov, Alexander A.; DeWitt, H. Langley; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2006-01-01

    Recent exploration by the Cassini/Huygens mission has stimulated a great deal of interest in Saturn's moon, Titan. One of Titan's most captivating features is the thick organic haze layer surrounding the moon, believed to be formed from photochemistry high in the CH4/N2 atmosphere. It has been suggested that a similar haze layer may have formed on the early Earth. Here we report laboratory experiments that demonstrate the properties of haze likely to form through photochemistry on Titan and early Earth. We have used a deuterium lamp to initiate particle production in these simulated atmospheres from UV photolysis. Using a unique analysis technique, the aerosol mass spectrometer, we have studied the chemical composition, size, and shape of the particles produced as a function of initial trace gas composition. Our results show that the aerosols produced in the laboratory can serve as analogs for the observed haze in Titan's atmosphere. Experiments performed under possible conditions for early Earth suggest a significant optical depth of haze may have dominated the early Earth's atmosphere. Aerosol size measurements are presented, and implications for the haze layer properties are discussed. We estimate that aerosol production on the early Earth may have been on the order of 1014 g·year−1 and thus could have served as a primary source of organic material to the surface. PMID:17101962

  14. Laboratory studies of molecular growth in the Titan ionosphere.

    PubMed

    Thissen, Roland; Vuitton, Veronique; Lavvas, Panayotis; Lemaire, Joel; Dehon, Christophe; Dutuit, Odile; Smith, Mark A; Turchini, Stefano; Catone, Daniele; Yelle, Roger V; Pernot, Pascal; Somogyi, Arpad; Coreno, Marcello

    2009-10-22

    Experimental simulations of the initial steps of the ion-molecule reactions occurring in the ionosphere of Titan were performed at the synchrotron source Elettra in Italy. The measurements consisted of irradiating gas mixtures with a monochromatic photon beam, from the methane ionization threshold at 12.6 eV, up to and beyond the molecular nitrogen dissociative ionization threshold at 24.3 eV. Three gas mixtures of increasing complexity were used: N(2)/CH(4) (0.96/0.04), N(2)/CH(4)/C(2)H(2) (0.96/0.04/0.001), and N(2)/CH(4)/C(2)H(2)/C(2)H(4) (0.96/0.04/0.001/0.001). The resulting ions were detected with a high-resolution (1 T) FT-ICR mass spectrometer as a function of time and VUV photon energy. In order to interpret the experimental results, a Titan ionospheric model was adapted to the laboratory conditions. This model had previously allowed the identification of the ions detected in the Titan upper atmosphere by the ion neutral mass spectrometer (INMS) onboard the Cassini spacecraft. Comparison between observed and modeled ion densities validates the kinetic model (reactions, rate constants, product branching ratios) for the primary steps of molecular growth. It also reveals differences that we attribute to an intense surface chemistry. This result implies that heterogeneous chemistry on aerosols might efficiently produce HCN and NH(3) in the Titan upper atmosphere.

  15. Titan Aeromony and Climate Workshop

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Lavvas, Panayotis; Rannou, Pascal; Sotin, Christophe; Strobel, Darrell; West, Robert A.; Yelle, Roger

    2016-06-01

    The observations of the Cassini spacecraft since 2004 revealed that Titan, the largest moon of Saturn, has an active climate cycle with a cloud cover related to the large scale atmospheric circulation, lakes of methane and hyrdrocarbons with variable depth, a dried fluvial system witnessing a past wetter climate, dunes, and deep changes in the weather and atmospheric structure as Titan went through the North Spring equinox. Moreover, the upper atmosphere is now considered the cradle of complex chemistry leading to aerosol formation, as well as the manifestation place of atmospheric waves. However, as the Cassini mission comes to its end, many fundamental questions remain unresolved... The objective of the workshop is to bring together international experts from different fields of Titan's research in order to have an overview of the current understanding, and to determine the remaining salient scientific issues and the actions that could be implemented to address them. PhD students and post-doc researchers are welcomed to present their studies. This conference aims to be a brainstorming event leaving abundant time for discussion during oral and poster presentations. Main Topics: - Atmospheric seasonal cycles and coupling with dynamics. - Composition and photochemistry of the atmosphere. - Formation and evolution of aerosols and their role in the atmosphere. - Spectroscopy, optical properties, and radiative transfer modeling of the atmosphere. - Surface composition, liquid reservoirs and interaction with atmosphere. - Evolution of the atmosphere. - Titan after Cassini, open questions and the path forward.

  16. Titan's lower troposphere: thermal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Lebonnois, S.

    2011-12-01

    A new climate model for Titan's atmosphere has been developed, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model's dynamical core. The GCM covers altitudes from the surface to 500 km with the diurnal cycle and the gravitational tides included. 1. Boundary layer and thermal structure The HASI profile of potential temperature shows a layer at 300 m, an other at 800 m and a slope change at 2 km ([5],[2]). Dune spacing on Titan is consistent with a 2-3 km boundary layer ([3]). We have reproduced this profile (see figure) and interpreted the layer at 300 m as a convective boundary layer, the layer at 800 m is a residual layer corresponding to the maximum diurnal vertical extension of the PBL. We interpret the slope change at 2 km as produced by the seasonal displacement of the ITCZ. This layer traps the circulation in the first two km and is responsible of the dune spacing. Finally we interpret the fog discovered in summer polar region ([1]) has clouds produced by the diurnal cycle of the PBL (as fair weather cumulus on Earth). 2. Surface winds 2.1 Effect of gravitational and thermal tides We analysed tropospheric winds and the influence of both the thermal and the gravitational tides. The impact of gravitational tides on the circulation is extremely small. Thermal tides have a visible effect, though quite tenuous. 2.2 Effect of topography We produced topography maps derived from spherical harmonic interpolation ([6]) on the reference ellipsoid ([4]). Surface temperatures at high altitude appear higher that the ambient air. Vertical air movements produce anabatic winds developing on smooth and long slopes. This could be one of the main causes controlling the direction of surface winds and the direction of dunes. References [1] Brown et al.: Discovery of fog at the south pole of Titan, Astrophys. J. 706 (2009), pp. L110-L113 [2] Griffith et al.: Titan's Tropical Storms in an Evolving Atmosphere, Astrophys. J. 687 (2008) L41-L44. [3] Lorenz et al.: A 3 km atmospheric boundary layer on Titan indiacted by dune spacing and Huygens data, Icarus 205, 719-721 (2010) [4] Luciano Iess et al.: Gravity Field, Shape, and Moment of Inertia of Titan, Science 327, 1367(2010) [5] Tokano et al.: Titan's planetary boundary layer structure at the Huygens landing site, J. Geophys. Res vol. 111 (2006) [6] HA. Zebker et al.: Size and Shape of Saturn's Moon TitanScience 324, 921(2009)

  17. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  18. Enhanced airglow at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie; Esposito, Larry; Wahlund, Jan-Erik

    2016-06-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) instrument made thousand of observations of Titan since its arrival in the Saturnian system in 2004, but only few of them have been analyzed yet. Using the imaging capability of UVIS combined to a big data analytics approach, we have been able to uncover an unexpected pattern in this observations: on several occasions the Titan airglow exhibits an enhanced brightness by approximately a factor of 2, generally combined with a lower altitude of the airglow emission peak. These events typically last from 10 to 30 minutes and are followed and preceded by an airglow of regular and expected level of brightness and altitude. Observations made by the Cassini Plasma Spectrometer (CAPS) instrument onboard Cassini allowed us to correlate the enhanced airglow observed on T-32 with an electron burst. The timing of the burst and the level of energetic electrons (1 keV) observed by CAPS correspond to a brighter and lower than typical airglow displayed on the UVIS data. Furthermore, during T-32 Titan was inside the Saturn's magnetosheath and thus more subject to bombardment by energetic particles. However, our analysis demonstrates that the presence of Titan inside the magnetosheath is not a necessary condition for the production of an enhanced airglow, as we detected other similar events while Titan was within Saturn's magnetosphere. The study presented here aims to a better understanding of the interactions of Titan's upper atmosphere with its direct environment.

  19. Titan's Xanadu region: Geomorphology and formation scenario

    NASA Astrophysics Data System (ADS)

    Langhans, Migrjam; Lunine, Jonathan I.; Mitri, Giuseppe

    2013-04-01

    Based on comprehensive mapping of the region, the recent theories of Xanadu's origin are examined and a chronology of geologic processes is proposed. The geologic history of Titan's Xanadu region is different from that of the other surface units on Saturn's moon. A previously proposed origin of western Xanadu from a giant impact in the early history of the moon is difficult to confirm given the scarcity of morphologic indications of an impact basin. The basic topographic structure of the landscape is controlled by tectonic processes that date back to the early history of Titan. More recently, the surface is intensely reworked and resurfaced by fluvial processes, which seem to have leveled out and compensated height differences. Although the surface age seems young at first view, the underlying processes that created this surface and the topographic structure appear to be ancient.

  20. Center for Adaptive Optics | News

    Science.gov Websites

    * Methane Clouds Observed Near Titan's Equator May Explain Presence of Riverbeds on the Surface * 'Dark Center for Adaptive Optics A University of California Science and Technology Center home AO of Cosmic Time * Celebration of Science and Technology Centers Class of 2000 AO Headlines 2009

  1. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  2. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  3. Fluid dynamics of liquids on Titans surface

    NASA Astrophysics Data System (ADS)

    Ori, Gian Gabriele; Marinangeli, Lucia; Baliva, Antonio; Bressan, Mario; Strom, Robert G.

    1998-10-01

    On the surface of Titan liquids can be present in three types of environments : (i) oceans, (ii) seas and lakes, and (iii) fluvial channels. The liquid in these environments will be affected by several types of motion: progressive (tidal) waves, wind-generated waves and unidirectional currents. The physical parameters of the liquid on Titans surface can be reconstructed using the Peng-Robinson equation of state. The total energy of the waves, both tidal and wind, depends on the gravity and liquid density ; both values are lower on Titan than on Earth. Thus, the same total energy will produce larger waves on Titan. This is also valid also for the progressive waves, as it is confirmed by the physical relationship between horizontal velocity, wave amplitude, and depth of the liquid. Wind-driven waves also will tend to be larger, because the viscosity of the liquid (which is lower on Titan) controls the deformation of the liquid under shear stress. Wind-generated waves would be rather large, but the dimension of the liquid basin limits the size of the waves ; in small lakes or seas the wave power cannot reach large values. Unidirectional currents are also affected by the liquid properties. Both the relations from driving and resting forces and the Reynolds number suggests that the flows exhibit a large erosional capacity and that, theoretically, a true fluvial network could be formed. However, caution should be exercised, because the cohesion of the sedimentary interface can armour bottom and induce laterally extensive, unchanelled sheet flows with small erosional capacity.

  4. Global Patterns of Tectonism on Titan from Mountain Chains and Virgae

    NASA Technical Reports Server (NTRS)

    Cook, C.; Barnes, J. W.; Radebaugh, J.; Hurford, T.; Ktatenhorn, S. A.

    2012-01-01

    This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display patterns of surface tectonic features that imply global stress fields driven or modified by global forces. Patterns such as these are seen in Europa's tidally induced fracture patterns, Enceladus's tiger stripes, and Ganymede's global expansion induced normal fault bands. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays possible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored dark linear streaks termed virgae by the IAU. Imaged by Cassini with the RADAR instrument, mountain chains near the equator are observed with a predominante east-west orientation (Liu et al. 2012, Mitri et al. 2010). Orientations such as these can be explained by modifications in the global tidal stress field induced by global contraction followed by rotational spin-up. Also, due to Titan's eccentric orbit, its current rotation rate may be in an equilibrium between tidal spin-up near periapsis and spin-down near apoapsis (Barnes and Fortney 2003). Additional stress from rotational spin-up provides an asymmetry to the stress field. This, combined with an isotropic stress from radial contraction, favors the formation of equatorial mountain chains in an east-west direction. The virgae, which have been imaged by Cassini with both the Visual and Infrared Mapping Spectrometer (VIMS) and Imaging Science Subsystem (ISS) instruments, are located predominately near 30 degrees latitude in either hemisphere. Oriented with a pronounced elongation in the east-west direction, all observed virgae display similar characteristics: similar relative albedos as the surrounding terrain however darkened with an apparent neutral absorber, broken-linear or rounded sharp edges, and connected, angular elements with distinct, linear edges. Virgae imaged during northern latitude passes are oriented with their long dimensions toward Titan's antiSaturn point. If the virgae are of tectonic origin, for instance if the turn out to be i.e. grabens, they could serve as markers to Titan's global stress field. Using them in this way allows for a mapping of global tectonic patterns. These patterns will be tested for consistency against the various sources of global stress and orientations of mountain chains. By determining what drives Titan's tectonics globally, we will be able to place Titan within the context of the other outer planet icy satellites.

  5. Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2015-01-01

    Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.

  6. Titan Saturn System Mission (TSSM) Enables Comparative Climatology with Earth

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Lunine, J.; Coustenis, A.; Matson, D.; Beauchamp, P.; Erd, C.; Lebreton, J.

    2009-09-01

    Titan is a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. The Titan Saturn System Mission would seek to understand Titan as a system, in the same way that one would ask this question about Venus, Mars, and the Earth. How are distinctions between Titan and other worlds in the solar systems understandable in the context of the complex interplay of geology, hydrology, meteorology, and aeronomy? Is Titan an analogue for some aspect of Earth's history, past or future? Why is Titan endowed with an atmosphere when Ganymede is not? Titan is also rich in organic molecules_more so in its surface and atmosphere than anyplace in the solar system, including Earth (excluding our vast carbonate sediments). These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. The second goal of the proposed TSSM mission is to understand the chemical cycles that generate and destroy organics and assess the likelihood that they can tell us something of life's origins. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  7. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus. ??2008 Macmillan Publishers Limited. All rights reserved.

  8. Spacecraft Exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Matson, D.; Coustenis, A.; Lunine, J. I.; Lebreton, J.; Reh, K.; Beauchamp, P.; Erd, C.

    2009-12-01

    The future exploration of Titan and Enceladus is very important for planetary science. The study titled Titan Saturn System Mission (TSSM) led to an announcement in which ESA and NASA prioritized future OPF missions, stating that TSSM is planned after EJSM (for details see http://www.lpi.usra.edu/opag/). The TSSM concept consists of an Orbiter that would carry two in situ elements: the Titan Montgolfiere hot air balloon and the Titan Lake Lander. This mission could launch in the 2023-2025 timeframe on a trajectory to arrive ~9 years later and begin a 4-year mission in the Saturnian system. At an appropriate time after arrival at Saturn, the montgolfiere would be delivered to Titan to begin its mission of airborne, scientific observations of Titan from an altitude of about 10 km above the surface. The montgolfiere would have a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) power system whose waste heat would warm the gas in the balloon, providing buoyancy. It would be designed to survive at least 6-12 months in Titan’s atmosphere. With the predicted winds and weather, it should be possible to circumnavigate the globe! Later, on a subsequent fly-by, the TSSM orbiter would send the Lake Lander to Titan. It would descend through the atmosphere making scientific measurements, much like Huygens did, and then land and float on one of Titan’s seas. This would be its oceanographic phase of making a physical and chemical assessment of the sea. The Lake Lander would operate for 8-10 hours until its batteries become depleted. Following the delivery of the in situ elements, the TSSM orbiter would then explore the Saturn system for two years on a tour that includes in situ sampling of Enceladus’ plumes as well as flybys of Titan. After the Saturn tour, the TSSM orbiter would go into orbit around Titan and carry out a global survey phase. Synergistic observations would be carried out by the TSSM orbiter and the in situ elements. The scientific requirements for TSSM were developed by a Joint Science Definition Team (JSDT). In the TSSM study the orbiter was assumed to be NASA’s responsibility while the in situ elements were assumed to be provided by ESA. The engineering and flight operations aspects were developed in a collaborative study by NASA and ESA engineering teams. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The European part was conducted in ESA within the Cosmic Vision 1 plan. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  9. Mapping Titan Cloud Coverage

    NASA Image and Video Library

    2010-09-21

    This graphic, constructed from data obtained by NASA Cassini spacecraft, shows the percentage of cloud coverage across the surface of Saturn moon Titan. The color scale from black to yellow signifies no cloud coverage to complete cloud coverage.

  10. Possible Niches for Extant Life on Titan in Light of Cassini/Huygens Results

    NASA Astrophysics Data System (ADS)

    Grinspoon, D. H.; Bullock, M. A.; Spencer, J. R.; Schulze-Makuch, D.

    2005-08-01

    Results from the first year of the Cassini mission show that Titan has an active surface with few impact craters and abundant hints of cryovolcanism, tectonism, aeolian and fluvial activity (Porco et al., 2005; Elachi et al., 2005). Methane clouds and surface characteristics strongly imply the presence of an active global methane cycle analogous to Earth's hydrological cycle. Astrobiological interest in Titan has previously focused on possible prebiological chemical evolution on a moon with a thick nitrogen atmosphere and rich organic chemistry (Raulin and Owen, 2002). Yet the emerging new picture of Titan has raised prospects for the possibility of extant life. Several key requirements for life appear to be present, including liquid reservoirs, organic molecules and ample energy sources. One promising location may be hot springs in contact with hydrocarbon reservoirs. Hydrogenation of photochemically produced acetylene could provide metabolic energy for near-surface organisms and also replenish atmospheric methane (Schulze-Makuch and Grinspoon, 2005). The energy released could be used by organisms to drive endothermic reactions, or go into heating their surroundings, helping to create their own liquid microenvironments. In environments which are energy-rich but liquid-poor, like the near-surface of Titan, natural selection may favor organisms that use their ``waste heat" to melt their own watering holes. Downward transport of high energy photochemical compounds could provide an energy supply for near-surface organisms which could be used, in part, to maintain the liquid environments conducive to life. We will present the results of thermal modeling designed to test the feasibility of biothermal melting on Titan. C. Porco and the Cassini Imaging Team (2005) Nature 434, 159-168; C. Elachi et al, Science, 308, 970-974; F. Raulin and T. Owen (2002) Space Sci. Rev. 104, 377 - 394.; D. Schulze-Makuch and D. H. Grinspoon (2005) Astrobiology, in press.

  11. Handling Late Changes to Titan Science

    NASA Technical Reports Server (NTRS)

    Pitesky, Jo Eliza; Steadman, Kim; Ray, Trina; Burton, Marcia

    2014-01-01

    The Cassini mission has been in orbit for eight years, returning a wealth of scientific data from Titan and the Saturnian system. The mission, a cooperative undertaking between NASA, ESA and ASI, is currently in its second extension of the prime mission. The Cassini Solstice Mission (CSM) extends the mission's lifetime until Saturn's northern summer solstice in 2017. The Titan Orbital Science Team (TOST) has the task of integrating the science observations for all 56 targeted Titan flybys in the CSM. In order to balance Titan science across the entire set of flybys during the CSM, to optimize and influence the Titan flyby altitudes, and to decrease the future workload, TOST went through a "jumpstart" process before the start of the CSM. The "jumpstart" produced Master Timelines for each flyby, identifying prime science observations and allocating control of the spacecraft attitude to specific instrument teams. Three years after completing this long-range plan, TOST now faces a new challenge: incorporating changes into the Titan Science Plan without undoing the balance achieved during the jumpstart.

  12. Energy deposition and ion production from thermal oxygen ion precipitation during Cassini's T57 flyby

    NASA Astrophysics Data System (ADS)

    Snowden, Darci; Smith, Michael; Jimson, Theodore; Higgins, Alex

    2018-05-01

    Cassini's Radio Science Investigation (RSS) and Langmuir Probe observed abnormally high electron densities in Titan's ionosphere during Cassini's T57 flyby. We have developed a three-dimensional model to investigate how the precipitation of thermal magnetospheric O+ may have contributed to enhanced ion production in Titan's ionosphere. The three-dimensional model builds on previous work because it calculates both the flux of oxygen through Titan's exobase and the energy deposition and ion production rates in Titan's atmosphere. We find that energy deposition rates and ion production rates due to thermal O+ precipitation have a similar magnitude to the rates from magnetospheric electron precipitation and that the simulated ionization rates are sufficient to explain the abnormally high electron densities observed by RSS and Cassini's Langmuir Probe. Globally, thermal O+ deposits less energy in Titan's atmosphere than solar EUV, suggesting it has a smaller impact on the thermal structure of Titan's neutral atmosphere. However, our results indicate that thermal O+ precipitation can have a significant impact on Titan's ionosphere.

  13. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  14. A preliminary assessment of the Titan planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Allison, Michael

    1992-01-01

    Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.

  15. The Properties and Effects of Titan's Organic Haze

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Titan's organic haze is the the dominant absorber of solar energy in Titan's atmosphere, creating an anti-greenhouse effect. Its variation over time may have had important implications for Titan's surface temperature. The haze is potentially an important sink of photochemically produced carbon and nitrogen compounds. Laboratory simulations and microphysical models suggest that the haze is a sink for C of 4 x 10(exp 8)/ sq cm s, and a sink for N of 1 x 10(exp 8)sq cm s. The C sink is small compared to condensation of hydrocarbons but the sink for N is comparable to the total production rate of HCN. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere.

  16. Joint observations of Titan's North Pole by Cassini/VIMS and Keck/NIRSPEC

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Griffith, C. A.; Fitzpatrick, R.; Lawrence, K. J.

    2017-12-01

    One of many Titan's characteristics is the presence of hydrocarbon seas and lakes in the Northern hemisphere, which represent one reservoir involved in the methane cycle that controls Titan's meteorology. During Titan's spring, the North Pole is illuminated and evaporation of methane should happen. Observations of the non-saturated absorption bands in the 1.6 micron atmospheric window by the NIRSPEC (Near Infrared Spectrometer) instrument on the Keck telescope should allow us to retrieve this critical information to understand the methane cycle on Titan. Such observations were performed during the night of July 9, 2017. Simultaneously, images of Titan's North pole were taken by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during non-targeted flybys between 7:00 am and 8:45 am UT on July 10, 2017. As observed during recent non-targeted flybys, cloud activity at high northern latitudes is increasing as Titan gets closer to summer solstice. During Rev 283, elongated clouds form a circle along latitude 60 N (green arrow) with an apparent higher activity around 90W (blue arrow). There is also a bright patch at the North Pole (red arrow) that is visible at 2.1 micron and not at 2.0 micron, which also suggests cloud activity. Analysis of the 1.6 micron atmospheric window will be presented while the processing of the NIRSPEC data are ongoing.

  17. Titan's Ammonia Feature

    NASA Technical Reports Server (NTRS)

    Smythe, W.; Nelson, R.; Boryta, M.; Choukroun, M.

    2011-01-01

    NH3 has long been considered an important component in the formation and evolution of the outer planet satellites. NH3 is particularly important for Titan, since it may serve as the reservoir for atmospheric nitrogen. A brightening seen on Titan starting in 2004 may arise from a transient low-lying fog or surface coating of ammonia. The spectral shape suggests the ammonia is anhydrous, a molecule that hydrates quickly in the presence of water.

  18. Evidence of Titan's Climate History from Evaporite Distribution

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon; Barnes, J. W.; Brown, R.; Sotin, C.; Buratti, B. J.; Clark, R.; Baines, K. H.; Nicholson, P. D.; Le Mouelic, S.; Rodriguez, S.

    2013-10-01

    5-μm bright material on the surface of Titan has been positively correlated with the shores of RADAR-dark (liquid-filled) and the bottoms of RADAR-bright (empty) lakebeds in the region just south of Ligea Mare by Barnes et al. (2011). This water ice-poor spectral unit was thus proposed to be evaporite, the formerly-dissolved solute deposits left behind when the solvent (here presumably a methane/ethane mixture) evaporates. Because evaporite forms under specific conditions—solute and solvent at or near saturation, no outlets or other means of affecting the solution balance, etc.—the presence of evaporite can shed light on Titan's climate history. Adding to the previously identified cases, we use the breadth of available Cassini VIMS data to comprehensively map new instances of evaporite. In particular, we found new instances of evaporite in the north polar region and the midlatitudes. Our map of the global distribution of Titan's 5-μm-bright deposits can be used to constrain the historical evolution of Titan's surface volatile inventory and may bear on the question of the time variation of the methane concentration in Titan's atmosphere. Furthermore, we explore the implications of the idea that the 5-$\\mu$m-bright areas are indeed mostly evaporitic in nature with respect to the relationship between the regional and global volatile cycles.

  19. Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Ching; Hsu, Tzu-Chien; Lu, Shan-Yu

    2013-09-01

    A facile one-step cohydrothermal synthesis via urea treatment has been adopted to prepare a series of nitrogen-doped titanate nanotubes with highly efficient visible light photocatalysis of rhodamine B, in an effect to identify the effect of nitrogen doping on the photodegradation efficiency. The morphology and microstructure of the thus-prepared N-doped titanates were characterized by nitrogen adsorption/desorption isotherms, transmission electron microscopy, and scanning electron microscopy. With increasing urea loadings, the N-doped titanates change from a porous multi-layer and nanotube-shaped to a dense and aggregated particle-shaped structure, accompanied with reduced specific surface area and pore volume and enhanced pore diameter. Interstitial linkage to titanate via Tisbnd Osbnd N and Tisbnd Nsbnd O is confirmed by X-ray photoelectron spectroscopy. Factors governing the photocatalytic degradation such as the specific surface area of the catalyst and the degradation pathway are analyzed, a mechanistic illustration on the photodegradation is provided, and a 3-stage degradation mechanism is identified. The synergistic contribution due to the enhanced deethylation and chromophore cleavage on rhodamine B molecules and the reduced band gap on the catalyst TiO2 by interstitial nitrogen-doping has been accounted for the high photodegradation efficiency of the N-doped titanate nanotubes.

  20. Design of a Long Endurance Titan VTOL Vehicle

    NASA Technical Reports Server (NTRS)

    Prakash, Ravi; Braun, Robert D.; Colby, Luke S.; Francis, Scott R.; Guenduez, Mustafa E.; Flaherty, Kevin W.; Lafleur, Jarret M.; Wright, Henry S.

    2006-01-01

    Saturn s moon Titan promises insight into many key scientific questions, many of which can be investigated only by in situ exploration of the surface and atmosphere of the moon. This research presents a vertical takeoff and landing (VTOL) vehicle designed to conduct a scientific investigation of Titan s atmosphere, clouds, haze, surface, and any possible oceans. In this investigation, multiple options for vertical takeoff and horizontal mobility were considered. A helicopter was baselined because of its many advantages over other types of vehicles, namely access to hazardous terrain and the ability to perform low speed aerial surveys. Using a nuclear power source and the atmosphere of Titan, a turbo expander cycle produces the 1.9 kW required by the vehicle for flight and operations, allowing it to sustain a long range, long duration mission that could traverse the majority of Titan. Such a power source could increase the lifespan and quality of science for planetary aerial flight to an extent that the limiting factor for the mission life is not available power but the life of the mechanical parts. Therefore, the mission could potentially last for years. This design is the first to investigate the implications of this potentially revolutionary technology on a Titan aerial vehicle.

  1. Abundance and Temperature Variations in Titan's Atmosphere as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Thelen, A. E.; Nixon, C. A.; Chanover, N.; Molter, E.; Cordiner, M. A.; Serigano, J., IV; Irwin, P. G.; Charnley, S. B.; Teanby, N. A.

    2016-12-01

    Photochemistry in Titan's atmosphere produces a wealth of organic molecular species through the dissociation of it's main constituents: N2 and CH4. Chemical species including hydrocarbons (CXHY) and nitriles (CXHY[CN]Z) exhibit latitudinal variations in abundance as observed by Cassini, attributed to atmospheric circulation and Titan's seasonal cycle. Flux calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes smaller than Titan's angular diameter ( 0.7'') allow for measurements of rotational transition lines in spatially resolved regions of Titan's disk. We present nitrile abundance profiles and temperature measurements derived from CO lines obtained by ALMA in 2014, as Titan transitioned into northern summer. Vertical profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. We present a comparison of the abundance variations of chemical species to measurements made using Cassini data. Temperature profiles derived from CO lines are compared to Cassini Composite Infrared Spectrometer temperature fields. The techniques presented here will allow us to determine temporal changes in Titan's atmospheric chemical composition after the end of the Cassini mission by utilizing high resolution ALMA data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.

  2. Poster 12: Nitrile and Hydrocarbon Spatial Abundance Variations in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor A.; Molter, Edward; Serigano, Joseph; Cordiner, Martin A.; Charnley, Steven B.; Teanby, Nick; Chanover, Nancy

    2016-06-01

    Many minor constituents of Titan's atmosphere exhibit latitudinal variations in abundance as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle [1,2]. Species with observed spatial abundance variations include hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - as found by Cassini [3,4]. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk [5]. Abundance profiles in Titan's lower/middle atmosphere are retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code [6]. We present continuous abundance profiles for various species in Titan's atmosphere obtained from ALMA data in 2014. These species show polar abundance enhancements which can be compared to studies using Cassini data [7]. Measurements in the mesosphere will constrain molecular photochemical and dynamical models, while temporal variations inform our knowledge of chemical lifetimes for the large inventory of organic species produced in Titan's atmosphere. The synthesis of the ALMA and Cassini datasets thus allow us to observe the important changes in production and circulation of numerous trace components of Titan's atmosphere, which are attributed to Titan's seasons.

  3. Future Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Decadal Panel Collaboration

    2001-11-01

    Titan promises to be the Mars of the Outer Solar System - the focus of not only the broadest range of investigations in planetary science but also the focus of public attention. The reasons for exploring Titan are threefold: 1. Titan and Astrobiology : Titan ranks with Mars and Europa as a prime body for astrobiological study due to its abundant organics. Like Europa, it may well have a liquid water interior. 2. Titan - A world in its own right. Titan deserves study even only to put other satellites (its remarkably smaller Saturnian siblings, and its same-sized but volatile-poor Jovian counterparts) in context. The added dimension of an atmosphere makes Titan's origin and evolution particularly interesting. 3. Titan - an environmental laboratory for Earth. Titan will be an unrivalled place to investigate meteorological, oceanographical and other processes. Many of these (e.g. wave generation by wind) are only empirically parameterized - the very different physical parameters of the Titan environment will bring new insights to these phenomena. While Cassini-Huygens will dramatically boost our knowledge of Titan, it will likely only whet our appetite for more. The potential for prebiotic materials at various locations (in particular where liquid water has interacted with photochemical deposits) and the need to monitor Titan's meteorology favor future missions that may exploit Titan's unique thick-atmosphere, low-gravity environment - a mobile platform like an airship or helicopter, able to explore on global scales, but access the surface for in-situ chemical analysis and probe the interior by electromagnetic and seismic means. Such missions have dramatic potential to capture the public's imagination, on both sides of the Atlantic.

  4. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  5. Titan's Oxygen Chemistry and its Impact on Haze Formation

    NASA Astrophysics Data System (ADS)

    Vuitton, Veronique; Carrasco, Nathalie; Flandinet, Laurene; Horst, Sarah; Klippenstein, Stephen; Lavvas, Panayotis; Orthous-Daunay, Francois-Regis; Quirico, Eric; Thissen, Roland; Yelle, Roger V.

    2016-10-01

    Though Titan's atmosphere is reducing with its 98% N2, 2% CH4 and 0.1% H2, CO is the fourth most abundant molecule with a uniform mixing ratio of ~50 ppm. Two other oxygen bearing molecules have also been observed in Titan's atmosphere: CO2 and H2O, with a mixing ratio of ~15 and ~1 ppb, respectively. The physical and chemical processes that determine the abundances of these species on Titan have been at the centre of a long-standing debate as they place constraints on the origin and evolution of its atmosphere [1]. Moreover, laboratory experiments have shown that oxygen can be incorporated into complex molecules, some of which are building blocks of life [2]. Finally, the presence of CO modifies the production rate and size of tholins [3, 4], which transposed to Titan's haze may have some strong repercussions on the temperature structure and dynamics of the atmosphere.We present here our current understanding of Titan's oxygen chemistry and of its impact on the chemical composition of the haze. We base our discussion on a photochemical model that describes the first steps of the chemistry and on state-of-the-art laboratory experiments for the synthesis and chemical analysis of aerosol analogues. We used a very-high resolution mass spectrometer (LTQ-Orbitrap XL instrument) to characterize the soluble part of tholin samples generated from N2/CH4/CO mixtures at different mixing ratios and with two different laboratory set-ups. These composition measurements provide some understanding of the chemical mechanisms by which CO affects particle formation and growth. Our final objective is to obtain a global picture of the fate and impact of oxygen on Titan, from its origin to prebiotic molecules to haze particles to material deposited on the surface.[1] S.M. Hörst et al., The origin of oxygen species in Titan's atmosphere, J. Geophys. Res., 113, E10006 (2008).[2] S.M. Hörst et al., Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment, Astrobiology, 12, 809-17 (2012).[3] B. Fleury et al., Influence of CO on Titan atmospheric reactivity, Icarus, 238, 221-9 (2014).[4] S.M. Hörst and M.A. Tolbert, The effect of carbon monoxide on planetary haze formation, Astrophys. J., 781, 53 (2014).

  6. First Cassini Radio Science Bistatic Scattering Observation of Titan's Northern Seas

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Kliore, A. J.; Rappaport, N. J.; French, R. G.; Schinder, P. J.; Anabtawi, A.; Wong, K. K.; Armstrong, J. W.; Asmar, S. W.; Flasar, F. M.; Iess, L.; McGhee-French, C.; Nagy, A. F.; Tortora, P.; Barbinis, E.; Buccino, D.; Kahan, D. S.

    2014-12-01

    On May 17, 2014, the Cassini spacecraft completed its 101 flyby of Saturn's satellite Titan. Mirror-like (quasi-specular) reflections of radio signals transmitted by Cassini were observed on the Earth (bistatic scattering geometry). Three right circularly polarized (RCP) sinusoidal signals were transmitted (wavelength = 0.94, 3.6, and 13 cm). Both the RCP and LCP surface reflections were observed at the Canberra, Australia, complex of the NASA Deep Space Network. The signals probed the region extending from about (lat, long) = (79°N, 315°W) to about (74°N, 232°W). For the first time, two major Titan northern seas, the Ligeia Mare and the Kraken Mare, were probed. Clearly detectable RCP and LCP echo components were observed over both seas at all 3 wavelengths. The echoes were intermittent over the region in between the two seas. The echoes from the seas have narrowband spectra well modeled as pure sinusoids, suggesting very smooth surfaces over > ~1 cm scales. Over shorelines and river like channels the measured spectra reveal a second distinct broadband component, likely reflection from a rough bottom solid interface. Modeling the narrowband echo components as sinusoids, we estimate the RCP and LCP echo power profiles over the observation period. High resolution power profiles (several seconds time average; 0.2 to 2 km along the ground track) reveal remarkable structural detail. The statistical measurement uncertainty improves significantly when the resolution is degraded to about 1 m time average (3 to 30 km). Comparison of the 1 m power profiles with theoretical predictions computed assuming absent surface waves (negligible roughness) reveals excellent agreement with reflections from liquid hydrocarbons. The small statistical uncertainty promises to strongly constrain the liquid composition (ethane vs methane dominance). In principle, the measured RCP/LCP power ratio removes dependence on roughness and enables determination of the dielectric constant regardless if waves are present or not. A known dielectric constant then enables searching for potential presence of capillary and/or gravity waves based on effects on the absolute RCP and LCP echo power and on observed spectral bandwidth. A second bistatic observation of the Kraken Mare was completed on 06/18/14. A third is to be completed on 10/24/14.

  7. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    NASA Astrophysics Data System (ADS)

    Kleinhammes, Alfred; Wagner, George W.; Kulkarni, Harsha; Jia, Yuanyuan; Zhang, Qi; Qin, Lu-Chang; Wu, Yue

    2005-08-01

    Titanate nanoscrolls, a recently discovered variant of TiO 2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination. The large surface area of the uncapped tubules provides the desired rapid absorption of the contaminant while water molecules, intrinsic constituents of titanate nanoscrolls, provide the necessary chemistry for hydrolytic reaction. In this study the decomposition of 2-chloroethyl ethylsulfide (CEES), a simulant for the CWA mustard, was monitored using 13C NMR. The NMR spectra reveal reaction products as expected from the hydrolysis of CEES. This demonstrates that titanate nanoscrolls could potentially be employed as a decontaminant for CWAs.

  8. Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan.

    PubMed

    Rahm, Martin; Lunine, Jonathan I; Usher, David A; Shalloway, David

    2016-07-19

    The chemistry of hydrogen cyanide (HCN) is believed to be central to the origin of life question. Contradictions between Cassini-Huygens mission measurements of the atmosphere and the surface of Saturn's moon Titan suggest that HCN-based polymers may have formed on the surface from products of atmospheric chemistry. This makes Titan a valuable "natural laboratory" for exploring potential nonterrestrial forms of prebiotic chemistry. We have used theoretical calculations to investigate the chain conformations of polyimine (pI), a polymer identified as one major component of polymerized HCN in laboratory experiments. Thanks to its flexible backbone, the polymer can exist in several different polymorphs, which are relatively close in energy. The electronic and structural variability among them is extraordinary. The band gap changes over a 3-eV range when moving from a planar sheet-like structure to increasingly coiled conformations. The primary photon absorption is predicted to occur in a window of relative transparency in Titan's atmosphere, indicating that pI could be photochemically active and drive chemistry on the surface. The thermodynamics for adding and removing HCN from pI under Titan conditions suggests that such dynamics is plausible, provided that catalysis or photochemistry is available to sufficiently lower reaction barriers. We speculate that the directionality of pI's intermolecular and intramolecular =N-H(…)N hydrogen bonds may drive the formation of partially ordered structures, some of which may synergize with photon absorption and act catalytically. Future detailed studies on proposed mechanisms and the solubility and density of the polymers will aid in the design of future missions to Titan.

  9. Cassini Imaging Science: First Results at Saturn

    NASA Astrophysics Data System (ADS)

    Porco, C. C.

    The Cassini Imaging Science experiment at Saturn will commence in early February, 2004 -- five months before Cassini's arrival at Saturn. Approach observations consist of repeated multi-spectral `movie' sequences of Saturn and its rings, image sequences designed to search for previously unseen satellites between the outer edge of the ring system and the orbit of Hyperion, images of known satellites for orbit refinement, observations of Phoebe during Cassini's closest approach to the satellite, and repeated multi-spectral `movie' sequences of Titan to detect and track clouds (for wind determination) and to sense the surface. During Saturn Orbit Insertion, the highest resolution images (~ 100 m) obtained during the whole orbital tour will be collected of the dark side of the rings. Finally, imaging sequences are planned for Cassini's first Titan flyby, on July 2, from a distance of ~ 350,000 km, yielding an image scale of ~ 2.1 km on the South polar region. The highlights of these observation sequences will be presented.

  10. A silicone column for GC analysis of polar and nonpolar chemicals

    NASA Technical Reports Server (NTRS)

    Shen, T. C.

    1991-01-01

    The investigation of the Saturnian System is being proposed jointly by NASA and the European Space Agency (ESA). The mission is scheduled for a launch in 1996. The mission provides an opportunity for close observation and exploration of Saturn's atmosphere, the complex Saturnian System of satellites and rings, Titan (Saturn's planet-sized moon), and Saturn's magnetosphere. The mission gives special attention to Titan which is blanketed by a thick, opaque atmosphere. An atmospheric probe will be deposited into the Titan Atmosphere for in situ measurement during a slow, three hour descent to the surface. The results from this analysis may provide the information which is important to the research of chemical evolution, and the origin of life. An analytical system was developed as a part of the Titan Aerosol Gas Experiment (TAGEX), a proposed experiment for the Cassini Mission. This system will use two highly sensitive detectors, the Metastable Ionization Detector (MID) and the Ion Mobility Spectrometer (IMS). Unfortunately, when commercial columns are utilized with these highly sensitive detectors, volatile components continuously bleed from the column and interfere with the detector. In addition, light columns must be able to separate polar and nonpolar organic chemicals within 10-15 minutes under isothermal conditions for the Titan Mission. Therefore, a highly crosslinked silicone polymeric packed column was developed which is able to efficiently separate amines, alcohols, and hydrocarbons with retention times less that 15 minutes at 100 C isothermal condition.

  11. How Does Titan Retain a Finite Orbital Eccentricity?

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Nimmo, Francis

    2004-01-01

    There is appreciable evidence for a significant hydrocarbon ocean on the surface of Titan. However, it has long been appreciated that tidal dissipation within a putative hydrocarbon ocean on Titan easily yields an orbital eccentricity damping time e which is short compared to the age of the solar system. Unless Titan s present eccentricity (e = 0.0288) were acquired recently, it requires that either: the ocean has a configuration which limits dissipation, or some mechanism exists which effectively maintains the eccentricity against dissipative damping. We argue for the latter. Specifically, the proximity of Jupiter and Saturn to a 5:2 mean motion resonance may provide a sufficient excitation source, and thereby effectively remove dynamical constraints on the dissipation and configuration of the Titan ocean.

  12. Triple Crescents

    NASA Image and Video Library

    2015-06-22

    A single crescent moon is a familiar sight in Earth's sky, but with Saturn's many moons, you can see three or even more. The three moons shown here -- Titan (3,200 miles or 5,150 kilometers across), Mimas (246 miles or 396 kilometers across), and Rhea (949 miles or 1,527 kilometers across) -- show marked contrasts. Titan, the largest moon in this image, appears fuzzy because we only see its cloud layers. And because Titan's atmosphere refracts light around the moon, its crescent "wraps" just a little further around the moon than it would on an airless body. Rhea (upper left) appears rough because its icy surface is heavily cratered. And a close inspection of Mimas (center bottom), though difficult to see at this scale, shows surface irregularities due to its own violent history. This view looks toward the anti-Saturn hemisphere of Titan. North on Titan is to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 25, 2015. The view was obtained at a distance of approximately 2.7 million miles (4.3 million kilometers) from Titan. Image scale at Titan is 16 miles (26 kilometers) per pixel. Mimas was 1.9 million miles (3.0 million kilometers) away with an image scale of 11 miles (18 kilometers) per pixel. Rhea was 1.6 million miles (2.6 million kilometers) away with an image scale of 9.8 miles (15.7 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18322

  13. First Color View of Titan Surface

    NASA Image and Video Library

    2005-01-15

    This image was returned on Jan 14, 2005, by the European Space Agency Huygens probe during its successful descent to land on Titan. This colored view, following processing to add reflection spectra data, gives a better indication of the actual color.

  14. The thermal structure of Triton's atmosphere - Pre-Voyager models

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Zent, Aaron P.; Cruikshank, Dale P.; Courtin, Regis

    1989-01-01

    Spectral data from earth observations have indicated the presence of N2 and CH4 on Triton. This paper outlines the use of the 1-D radiative-convective model developed for Titan to calculate the current pressure of N2 and CH4 on Triton. The production of haze material is obtained by scaling down from the Titan value. Results and predictions for the Voyager Triton encounter are as follows: A N2-CH4 atmosphere on Triton is thermodynamically self consistent and would have a surface pressure of approximately 50 millibar; due to the chemically produced haze, Triton has a hot atmosphere with a temperature of approximately 130 K; Triton's troposphere is a region of saturation of the major constituent of the atmosphere, N2.

  15. Titan’s Oxygen Chemistry and its Impact on Haze Formation

    NASA Astrophysics Data System (ADS)

    Vuitton, Veronique; He, Chao; Moran, Sarah; Wolters, Cedric; Flandinet, Laurene; Orthous-Daunay, Francois-Regis; Thissen, Roland; Horst, Sarah

    2018-06-01

    Though Titan's atmosphere is reducing with its 98% N2, 2% CH4 and 0.1% H2, CO is the fourth most abundant molecule with a uniform mixing ratio of ~50 ppm. Two other oxygen bearing molecules have also been observed in Titan's atmosphere: CO2 and H2O, with a mixing ratio of ~15 and ~1 ppb, respectively. The physical and chemical processes that determine the abundances of these species on Titan have been at the centre of a long-standing debate as they place constraints on the origin and evolution of its atmosphere. Moreover, laboratory experiments have shown that oxygen can be incorporated into complex molecules, some of which are building blocks of life. Finally, the presence of CO modifies the production rate and size of tholins, which transposed to Titan's haze may have some strong repercussions on the temperature structure and dynamics of the atmosphere.We present here our current understanding of Titan's oxygen chemistry and of its impact on the chemical composition of the haze. We base our discussion on state-of-the-art laboratory experiments for the synthesis and chemical analysis of aerosol analogues. We used a very-high resolution mass spectrometer (LTQ-Orbitrap XL instrument) to characterize the soluble part of tholin samples generated from N2/CH4/CO mixtures at different mixing ratios. These composition measurements provide some understanding of the chemical mechanisms by which CO affects particle formation and growth. Our final objective is to obtain a global picture of the fate and impact of oxygen on Titan, from its origin to prebiotic molecules to haze particles to material deposited on the surface.

  16. Big Impacts and Transient Oceans on Titan

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.; Korycansky, D. G.; Nixon, C. A.

    2014-01-01

    We have studied the thermal consequences of very big impacts on Titan [1]. Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We assume that half of the impact energy is immediately available to the atmosphere and surface while the other half is buried at the site of the crater and is unavailable on time scales of interest. The atmosphere and surface are treated as isothermal. We make the simplifying assumptions that the crust is everywhere as methane saturated as it was at the Huygens landing site, that the concentration of methane in the regolith is the same as it is at the surface, and that the crust is made of water ice. Heat flow into and out of the crust is approximated by step-functions. If the impact is great enough, ice melts. The meltwater oceans cool to the atmosphere conductively through an ice lid while at the base melting their way into the interior, driven down in part through Rayleigh-Taylor instabilities between the dense water and the warm ice. Topography, CO2, and hydrocarbons other than methane are ignored. Methane and ethane clathrate hydrates are discussed quantitatively but not fully incorporated into the model.

  17. Global circulation as the main source of cloud activity on Titan

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Tobie, G.; Baines, K.H.; Barnes, J.W.; Griffith, C.A.; Hirtzig, M.; Pitman, K.M.; Sotin, Christophe; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40??) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40??N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titans equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  18. Go Huygens!

    NASA Image and Video Library

    2005-01-11

    This map illustrates the planned imaging coverage for the Descent Imager/Spectral Radiometer, onboard the European Space Agency's Huygens probe during the probe's descent toward Titan's surface on Jan. 14, 2005. The Descent Imager/Spectral Radiometer is one of two NASA instruments on the probe. The colored lines delineate regions that will be imaged at different resolutions as the probe descends. On each map, the site where Huygens is predicted to land is marked with a yellow dot. This area is in a boundary between dark and bright regions. This map was made from the images taken by the Cassini spacecraft cameras on Oct. 26, 2004, at image scales of 4 to 6 kilometers (2.5 to 3.7 miles) per pixel. The images were obtained using a narrow band filter centered at 938 nanometers -- a near-infrared wavelength (invisible to the human eye) at which light can penetrate Titan's atmosphere to reach the surface and return through the atmosphere to be detected by the camera. The images have been processed to enhance surface details. Only brightness variations on Titan's surface are seen; the illumination is such that there is no shading due to topographic variations. For about two hours, the probe will fall by parachute from an altitude of 160 kilometers (99 miles) to Titan's surface. During the descent the camera on the probe and five other science instruments will send data about the moon's atmosphere and surface back to the Cassini spacecraft for relay to Earth. The Descent Imager/Spectral Radiometer will take pictures as the probe slowly spins, and some these will be made into panoramic views of Titan's surface. This map shows the planned coverage by the medium- and high-resolution. PIA06173 shows expected coverage by the Descent Imager/Spectral Radiometer side-looking imager and two downward-looking imagers - one providing medium-resolution and the other high-resolution coverage. http://photojournal.jpl.nasa.gov/catalog/PIA06173

  19. Rivers on Titan - numerical modelling of sedimentary structures

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-07-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of the sedimentation on Titan and on the Earth. Our preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580. [2] Witek, P., Czechowski, L., 2015. Dynamical modeling of river deltas on Titan and Earth. Planet. Space. Sci., 105: 65-79.

  20. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are available. Therefore it would be very useful to get more laboratory data and especially from Tran et al (2013), Mahjoub et al. (2012) and Imanaka et al. (2012) samples in these spectral regions since their refractive indexes match observational and theoretical data in other spectral ranges. This presentation will critically summarize these recent results and present detailled constraints on the optical constants Titan's aerosols. In addition, specific lacks of data will be highlighted as well as some possible investigations to be carried out to fill these gaps. References: Cable, M. L., et al., 2012. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chemical Reviews. 112, 1882-1909. Imanaka, H., et al., 2012. Optical constants of Titan tholins at mid-infrared wavelengths (2.5-25 µm) and the possible chemical nature of Titan's haze particles. Icarus. 218, 247-261. Khare, B. N., et al., 1984. Optical-Constants of Organic Tholins Produced in a Simulated Titanian Atmosphere - from Soft-X-Ray to Microwave-Frequencies. Icarus. 60, 127-137. Kim, S. J., Courtin, R., 2013. Spectral characteristics of the Titanian haze at 1-5 micron from Cassini/VIMS solar occultation data. Astronomy & Astrophysics. 557, L6. Mahjoub, A., et al., 2012. Influence of methane concentration on the optical indices of Titan's aerosols analogues. Icarus. 221, 670-677. Raulin, F., et al., 2012. Prebiotic-like chemistry on Titan. Chemical Society Reviews. 41, 5380-5393. Sagan, C., Khare, B. N., 1979. Tholins - Organic-Chemistry of Inter-Stellar Grains and Gas. Nature. 277, 102-107. Tran, B. N., et al., 2003. Simulation of Titan haze formation using a photochemical flow reactor - The optical constants of the polymer. Icarus. 165, 379-390. Acknowledgements: We acknowledge support from the French Space Agency (CNES) and the European Space Agency (ESA).

  1. Magnetic phase composition of strontium titanate implanted with iron ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulov, E.N., E-mail: evgeny.dulov@ksu.ru; Ivoilov, N.G.; Strebkov, O.A.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The origin of RT-ferromagnetism in iron implanted strontium titanate. Black-Right-Pointing-Pointer Metallic iron nanoclusters form during implantation and define magnetic behaviour. Black-Right-Pointing-Pointer Paramagnetic at room temperature iron-substituted strontium titanate identified. -- Abstract: Thin magnetic films were synthesized by means of implantation of iron ions into single-crystalline (1 0 0) substrates of strontium titanate. Depth-selective conversion electron Moessbauer spectroscopy (DCEMS) indicates that origin of the samples magnetism is {alpha}-Fe nanoparticles. Iron-substituted strontium titanate was also identified but with paramagnetic behaviour at room temperature. Surface magneto-optical Kerr effect (SMOKE) confirms that the films reveal superparamagnetism (the low-fluence sample) or ferromagnetism (themore » high-fluence sample), and demonstrate absence of magnetic in-plane anisotropy. These findings highlight iron implanted strontium titanate as a promising candidate for composite multiferroic material and also for gas sensing applications.« less

  2. Specular reflection on Titan: Liquids in Kraken Mare

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Brown, Robert H.; Soderblom, Jason M.; Soderblom, Laurence A.; Barnes, Jason W.; Sotin, Christophe; Griffith, Caitlin A.; Kirk, Randolph L.; Baines, Kevin H.; Buratti, Bonnie J.; Clark, Roger N.; Lytle, Dyer M.; Nelson, Robert M.; Nicholson, Phillip D.

    2010-01-01

    After more than 50 close flybys of Titan by the Cassini spacecraft, it has become evident that features similar in morphology to terrestrial lakes and seas exist in Titan's polar regions. As Titan progresses into northern spring, the much more numerous and larger lakes and seas in the north-polar region suggested by Cassini RADAR data, are becoming directly illuminated for the first time since the arrival of the Cassini spacecraft. This allows the Cassini optical instruments to search for specular reflections to provide further confirmation that liquids are present in these evident lakes. On July 8, 2009 Cassini VIMS detected a specular reflection in the north-polar region of Titan associated with Kraken Mare, one of Titan's large, presumed seas, indicating the lake's surface is smooth and free of scatterers with respect to the wavelength of 5 μm, where VIMS detected the specular signal, strongly suggesting it is liquid.

  3. Space Art "Titan"

    NASA Image and Video Library

    2006-09-13

    Artist Daniel Zeller used the breathtaking imagery from the Cassini spacecraft as a departure point to interpret the intricate surface of Saturn’s moon Titan in this peice titled "Titan". Cassini entered Saturn's orbit in July of 2004 after a seven-year voyage. It then began a four-year mission that includes more than 70 orbits around the ringed planet and its moons. Ink on Paper, 17x21. 2006. Copyrighted: For more information contact Curator, NASA Art Program.

  4. Interior and its implications for the atmosphere. [effects of Titan interior structure on its atmospheric composition

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1974-01-01

    The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.

  5. Thermal Structure of Titan's Troposphere and Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Achterberg, R. K.; Schinder, P. J.

    2011-01-01

    The thermal structure of Titan's atmosphere is reviewed, with particular emphasis on recent Cassini-Huygens results. Titan's has a similar troposphere-stratosphere-mesosphere pattern like Earth, but with a much more extended atmosphere, because of the weaker gravity, and also much lower temperatures, because of its greater distance from the sun. Titan's atmosphere exhibits an unusually large range in radiative relaxation times. In the troposphere, these are long compared to seasonal time scales, but in the stratosphere they are much shorter than a season. An exception is near the winter pole, where the stratospheric relaxation times at 100-170 km become comparable to the seasonal time scale; at the warm stratopause, they are comparable to a Titan day. Hence, seasonal behavior in the troposphere should be muted, but significant in the stratosphere. This is reflected in the small meridional contrast observed in temperatures in the troposphere and the large stratospheric contrasts noted above. A surprising feature of the vertical profiles of temperature is the abrupt transition between these regimes in at high northern latitudes in winter, where the temperatures in the lower stratosphere exhibit a sudden drop with increasing altitude. This could be a radiative effect, not associated with spatial variations in gaseous opacity, but rather from an optically thick condensate at thermal-infrared wavelengths. A curious aspect of Titan's middle atmosphere is that the axis of symmetry of the temperature field is tilted by several degrees relative to the rotational axis of the moon itself. Whether this is driven by solar heating or gravitational perturbations is not known. Titan's surface exhibits weak contrasts in temperature, approximately 3 K in the winter hemisphere. At low latitudes, there is evidence of a weak nocturnal boundary layer on the morning terminator, which is not radiatively controlled, but can be explained in terms of vertical mixing with a small eddy viscosity.

  6. Cassini-Huygens makes first close approach to Titan

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Purple zaze hi-res Size hi-res: 88 kb Credits: NASA/JPL/Space Science Institute Purple haze around Titan This NASA/ESA/ASI Cassini-Huygens image of Titan was taken with the narrow-angle camera on 3 July 2004, from a distance of about 789 000 kilometres from Titan. The image scale is 4.7 kilometres per pixel. This image shows two thin haze layers. The outer haze layer is detached and appears to float high in the atmosphere. Because of its thinness, the high haze layer is best seen at the moon's limb. The image was taken using a spectral filter sensitive to wavelengths of ultraviolet light centred at 338 nanometres. The image has been falsely coloured, the globe of Titan retains the pale orange hue our eyes would usually see, but both the main atmospheric haze and the thin detached layer have been brightened and given a purple colour to enhance their visibility. At the time of the closest approach, which is scheduled for 18:44 CEST, the spacecraft will be travelling only 1200 kilometres above the surface of the moon, almost grazing the outer atmosphere, at a speed of six kilometres per second (21 800 kilometres per hour)! Confirmation that the fly-by was successful and that all the data were received will not take place until 03:30 CEST on 27 October. This fly-by not only allows important surface science to be performed, such as radar analysis at close quarters, but also it significantly changes the orbit of the spacecraft around Saturn. Currently Cassini-Huygens has an orbital period of four months, which will change to 48 days, thus setting the course for the next close Titan fly-by on 13 December 2004 and the Huygens probe release on 25 December. Several of the observations performed during this fly-by will provide important information for ESA’s Huygens team, who will be using the data gathered to double-check atmospheric models for entry and descent on 14 January 2005. The Huygens probe will need to perform reliably in some of the most challenging and remote environments ever attempted by a man-made object. On this pass, the Huygens touchdown site will be visible at around 167 degrees East and 10.7 degrees South on the sunlit face of Titan before reaching the point of closest approach. Data from the imaging and radar instrumentation on board Cassini-Huygens should provide a tantalising idea of what the surface of Titan could be like. A second view of the Huygens touchdown site will be possible on the second close fly-by in December. Jean-Pierre Lebreton, ESA’s Huygens Mission Manager and Project Scientist, said: “This first close-up look at Titan should enable us to find out just how precisely our atmospheric models fit with the real situation and of course we are excited about the prospect of discovering just what type of surface the Huygens probe could impact on early next year.” Today’s fly-by will also be looking at other aspects of Titan which, although it is the second largest moon in the Solar System after Jupiter’s Ganymede, we know relatively little about. The instruments on board the Cassini orbiter will be looking at the surface characteristics, atmospheric properties and interactions with Saturn’s magnetosphere. Huygens is dormant during the fly-by. The first images are expected at 03:30 CEST on 28 October. However, at the point of closest approach, Titan will have an apparent size far exceeding the field of view of the Cassini orbiter’s narrow-angle camera. Details below a 100-metre resolution may be seen if the camera can pierce the haze and fog. Spectacular multicolour images at 1-2 kilometre resolution are also anticipated from the Visual Infrared and Mapping Spectrometer and may reveal details about Titan surface structure and composition. However, the excitement does not stop after 26 October. On 28 October, at about 12:30 CEST, there is a close encounter with Tethys, another of the significant moons of Saturn. Tethys is a ball of solid ice about 1060 kilometres in diameter which orbits Saturn at a distance of 295 000 kilometres. The Cassini-Huygens spacecraft will pass within 246 000 kilometres of this moon at a speed of 13.8 kilometres per second. At this distance the narrow-angle camera should be able to resolve features down to about 1.4 kilometres in size. Note to Editors The Cassini-Huygens mission to Saturn is the most ambitious effort in planetary space exploration ever mounted. A cooperative endeavour of the European Space Agency (ESA), NASA and the Italian space agency, Agenzia Spaziale Italiana (ASI), Cassini-Huygens is sending a sophisticated robotic spacecraft to orbit the ringed planet and study the Saturnian system in detail over a four-year period. On board Cassini is a scientific probe called Huygens, provided by ESA, which will be released from the main spacecraft to parachute through the atmosphere to the surface of Saturn’s largest and most interesting moon, Titan. For more information about the Cassini-Huygens mission please see: http://saturn.esa.int

  7. Titan: Putting it all Together

    NASA Image and Video Library

    2011-08-01

    Three of Titan major surface features-dunes, craters and the enigmatic Xanadu-appear in this radar image from NASA Cassini spacecraft. The hazy bright area at the left that extends to the lower center of the image marks the northwest edge of Xanadu.

  8. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie; Ferrante, Robert F.; Moore, W. James; Hudson, Reggie; Moore, Marla H.

    2011-01-01

    Spectra and optical constants of nitrile ices known or suspected to be in Titan?s atmosphere have been determined from 2.0 to 333.3 microns (approx.5000 to 30/cm). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan?s winter pole. Ices studied were: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C2H5CN, propionitrile; and HC3N, cyanoacetylene. Optical constants were calculated, using Kramers-Kronig analysis, for each nitrile ice?s spectrum measured at a variety of temperatures, in both the amorphous- and crystalline phases. Spectra were also measured for many of the nitriles after quenching at the annealing temperature and compared with those of annealed ices. For each of these molecules we also measured the real component, n, of the refractive index for amorphous and crystalline phases at 670 nm. Several examples of the information contained in these new data sets and their usefulness in modeling Titan?s observed features will be presented (e.g., the broad emission feature at 160/cm; Anderson and Samuelson, 2011).

  9. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the Huygens measurements. At low latitudes the zonal winds near the surface appear not to be westward as on Earth, but eastward. Because the net zonal-mean time-averaged torq exerted by the surface on the atmosphere should vanish, this implies westward flow o part of the surface; the question is where. The latitude contrast in tropospheric temperatures, deduced from radio occultations at low, mid, and high latitudes, is small approx.5 K at the tropopause and approx.3 K at the surface.

  10. Aeolian Landscapes of Titan from Cassini RADAR Reveal Winds, Elevation Constraints and Sediment Characteristics

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; Lewis, R. C.; Bishop, B.; Christiansen, E. H.; Kerber, L.; Rodriguez, S.; Narteau, C.; Le Gall, A. A.; Lucas, A.; Malaska, M.

    2017-12-01

    Similar to terrestrial bodies with atmospheres, a significant portion of the surface of Titan is covered in aeolian landscapes, now imaged by Cassini RADAR at close to 50% coverage. While the compositions of the wind-carried and wind-carved sediments are under discussion, their characteristics, such as being rounded, loose and capable of being saltated, or being fine, soft and forming easily erodible deposits, can be discerned from the geomorphology. Large duneforms are similar to those in Earth's big deserts, formed by particles in strict size and shape limits, and steep, badlands-like morphologies of yardang regions indicate soft rocks with armored features. Shapes and orientations of dunes and yardangs can also reveal wind directions and effects of elevation and topographic obstacles. Recent studies of dunes in the Belet Sand Sea of Titan's equatorial trailing hemisphere reveal dunes are generally wider and with greater spacing near the center, similar to dunes in the Namib Sand Sea of Earth. Dune-to-interdune ratios decrease toward higher latitudes, as was previously observed, and are slightly higher in regions of low elevation, which may relate to elevation affecting winds and sand transport capacity. However, this relationship is not as strong for the Namib. Furthermore, the effects of the location of dunes with respect to sand sea margins on dune parameter values has only begun to be explored. The European ERA-Interim (observations plus model) wind results for the Namib reveal vector sum winds are several degrees away from down the dune long axis, consistent with the fingering mode of dune growth, and allowing for down-axis sand transport. We assume similar model winds for the dunes of Titan. Model winds for the yardangs of the Lut desert of Earth are directly down axis, which means wind directions should be able to be determined in the isolated yardang fields of Titan's northern midlatitudes. Further studies of dune parameters on Titan from Cassini can help reveal the reasons for the extent of the sand seas and how (and whether) sands are transported across them. Further studies of winds and sediment properties of yardangs on Earth will reveal expected winds, material requirements and relative ages of the yardangs with respect to other landforms of Titan.

  11. Titan's geoid and hydrology: implications for Titan's geological evolution

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013) Icarus, 225, 367-377. [3] Choukroun M. and C. Sotin (2012) Geophys. Res. Lett., 39, L0420. [4] Barnes J.W. et al. (2011) Icarus, 216, 136-140. [5] MacKenzie S.M. et al. (2014) submitted to JGR.

  12. Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Forget, François; Tobie, Gabriel; Sotin, Christophe; Wordsworth, Robin

    2014-10-01

    Several clues indicate that Titan's atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. Here, we explore these exotic climates throughout Titan's history with a 3D Global Climate Model (GCM) including the nitrogen cycle and the radiative effect of nitrogen clouds. We show that for the last billion years, only small polar nitrogen lakes should have formed. Yet, before 1 Ga, a significant part of the atmosphere could have condensed, forming deep nitrogen polar seas, which could have flowed and flooded the equatorial regions. Alternatively, nitrogen could be frozen on the surface like on Triton, but this would require an initial surface albedo higher than 0.65 at 4 Ga. Such a state could be stable even today if nitrogen ice albedo is higher than this value. According to our model, nitrogen flows and rain may have been efficient to erode the surface. Thus, we can speculate that a paleo-nitrogen cycle may explain the erosion and the age of Titan's surface, and may have produced some of the present valley networks and shorelines. Moreover, by diffusion of liquid nitrogen in the crust, a paleo-nitrogen cycle could be responsible of the flattening of the polar regions and be at the origin of the methane outgassing on Titan.

  13. Cassini observations of carbon-based anions in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Lewis, Gethyn; Waite, J. Hunter; Kataria, Dhiren; Wellbrock, Anne; Jones, Geraint; Coates, Andrew

    2016-07-01

    Cassini observations of Titan's ionosphere revealed an atmosphere rich in positively and negatively charged ions and organic molecules. The detection of large quantities of negatively charged ions was particularly surprising and adds Titan to the growing list of locations where anion chemistry has been observed to play an important role. In this study we present updated analysis on these negatively charged ions through an enhanced understanding of the Cassini CAPS Electron Spectrometer (CAPS-ELS) instrument response. The ionisation of Titan's dominant atmospheric constituent, N2, by the HeII Solar line, results in an observable photoelectron population at 24.1eV which we use to correct for differential spacecraft charging. Correcting for further energy-angle signatures within this dataset, we use an updated fitting procedure to show how the ELS mass spectrum, previously grouped into broad mass ranges, can be resolved into specific peaks at multiples of carbon-based anion species up to over 100amu/q. These peaks are shown to be ubiquitous within Titan's upper atmosphere and reminiscent of carbon-based anions identified in dense molecular clouds beyond our Solar System. It is thus shown how the moon Titan in the Outer Solar System can be used as an analogue to study these even more remote and exotic astrophysical environments.

  14. A FUSE Search for Argon on Titan

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Link, R.; Stern, S. A.; Festou, M.; Waite, J. H.

    2002-09-01

    The origin of Titan's thick nitrogen and methane atmosphere is a compelling enigma. One key and still missing observable concerns the abundances of noble gases in general, and argon in particular. Detection of sufficient argon could indicate that the N2 and CO now found in the atmosphere came in with ice during Titan's accretion. Alternatively, if there is very little argon, then we have to turn to models starting with frozen ammonia, methane and water ice, indicating a more important role for the Saturn sub-nebula, and requiring subsequent modification by photochemistry. Current estimates on the fraction of argon in Titan's atmosphere are crude, and based only on indirect evidence, and range up to 25%. On Sept. 21, 2000, using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, we performed an observation of Titan to search for argon and to make a survey of Titan's dayglow in the 90--115 nm FUSE bandpass. No emissions were found in the 18 ks exposure, although only 7.4 ks were obtained when FUSE was in Earth's shadow where terrestrial airglow contamination is minimal. While no Ar, N, or N2 emissions were detected, 2-σ upper limits of 4 R (for Ar 104.8 nm) and 20 R (for N 113.4 nm) are found using the best of the FUSE data. There is a bump on the terrestrial geocorona H Lyβ emission at 102.5 nm which may be due to Titan and a Titan Torus. The signal in the bump is about 400 R. Model estimates suggest that the Lyβ brightness of Titan should be about 20 R and the Titan Torus in the 30--700 R range. For an assumed argon abundance of 5% the 104.8 nm emission is predicted to be 7 R, so the argon estimate is constraining already. The nitrogen estimate is very close to the model expectation of 15 R. An accurate determination of the abundance of argon on Titan would be useful in preparing for the arrival of the Cassini orbiter and Huygens probe at the Saturn system, so further FUSE observations of Titan are planned. We gratefully acknowledge support from NASA through FUSE grant NAG5-9972.

  15. Are Titan's radial Labyrinth terrains surface expressions of large laccoliths?

    NASA Astrophysics Data System (ADS)

    Schurmeier, L.; Dombard, A. J.; Malaska, M.; Radebaugh, J.

    2017-12-01

    The Labyrinth terrain unit may be the one of the best examples of the surface expression of Titan's complicated history. They are characterized as highly eroded, dissected, and elevated plateaus and remnant ridges, with an assumed composition that is likely organic-rich based on radar emissivity. How these features accumulated organic-rich sediments and formed topographic highs by either locally uplifting or surviving pervasive regional deflation or erosion is an important question for understanding the history of Titan. There are several subsets of Labyrinth terrains, presumably with differing evolutionary histories and formation processes. We aim to explain the formation of a subset of Labyrinth terrain units informally referred to as "radial Labyrinth terrains." They are elevated and appear dome-like, circular in planform, have a strong radial dissection pattern, are bordered by Undifferentiated Plains units, and are found in the mid-latitudes. Based on their shape, clustering, and dimensions, we suggest that they may be the surface expression of large subsurface laccoliths. A recent study by Manga and Michaut (Icarus, 2017) explained Europa's lenticulae (pits, domes, spots) with the formation of saucer-shaped sills that form laccoliths around the brittle-ductile transition depth within the ice shell (1-5 km). Here, we apply the same scaling relationships and find that the larger size of radial labyrinth terrains with Titan's higher gravity implies deeper intrusion depths of around 20-40 km. This intrusion depth matches the expected brittle-ductile transition on Titan based on our finite element simulations and yield strength envelope analyses. We hypothesize that Titan's radial labyrinth terrains formed as cryovolcanic (water) intrusions that rose to the brittle-ductile transition within the ice shell where they spread horizontally, and uplifted the overlying ice. The organic-rich sedimentary cover also uplifted, becoming more susceptible to pluvial and fluvial erosion, and hence resulting in uplifted, highly eroded terrains within the Undifferentiated Plains unit. Since widespread evidence for cryovolcanism has been marginal on Titan, perhaps a large proportion of it is intrusive, expressed as radial Labyrinth terrains on Titan.

  16. Dissolution on Saturn's Moon Titan: A 3D Karst Landscape Evolution Model

    NASA Astrophysics Data System (ADS)

    Cornet, Thomas; Fleurant, Cyril; Seignovert, Benoît; Cordier, Daniel; Bourgeois, Olivier; Le Mouélic, Stéphane; Rodriguez, Sebastien; Lucas, Antoine

    2017-04-01

    Titan is an Earth-like world possessing a nitrogen-rich atmosphere that covers a surface with signs of lacustrine (lakes, seas, depressions), fluvial (channels, valleys) and aeolian (dunes) activity [1]. The chemistry implied in the geological processes is, however, strikingly different from that on Earth. Titan's extremely cold environment (T -180°C) allows water to exist only under the form of icy "bedrock". The presence of methane as the second major constituent in the atmosphere, as well as an active nitrogen-methane photochemistry, allows methane and ethane to drive a hydrocarbon cycle similar to the terrestrial hydrological cycle. A plethora of organic solids, more or less soluble in liquid hydrocarbons, is also produced in the atmosphere and can lead, by atmospheric sedimentation over geological timescales, to formation of some kind of organic geological sedimentary layer. Based on comparisons between Titan's landscapes seen in the Cassini spacecraft data and terrestrial analogues, karstic-like dissolution and evaporitic crystallization have been suggested in various instances to take part in the landscape development on Titan. Dissolution has been invoked, for instance, for the development of the so-called "labyrinthic terrain", located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain. In this work, we aim at testing this hypothesis by comparing the natural landscapes visible in the Cassini/RADAR images of Titan's surface, with those inferred from the use of a 3D Landscape Evolution Model (LEM) based on the Channel-Hillslope Integrated Landscape Development (CHILD) [2] modified to include karstic dissolution as the major geological process [3]. Digital Elevation Models (DEMs) are generated from an initial quasi-planar surface for a set of dissolution rates, diffusion coefficients (solute transport), and sink densities of the mesh. The landscape evolves over millions of years. Synthetic SAR images are generated from these DEMs in order to be compared with Titan's landforms seen in the Cassini SAR data. Inference on the possible thickness and degree of maturation of the Titan karst will be discussed. [1] Lopes R.M.C. et al. (2010), Icarus ; [2] Tucker et al. (2001), Computers Geosciences ; [3] Fleurant C. et al. (2008), Geomorph., Rel., Proc., Envir.

  17. Analysis of the osseointegrative force of a hyperhydrophilic and nanostructured surface refinement for TPS surfaces in a gap healing model with the Göttingen minipig.

    PubMed

    Seidling, Roland; Lehmann, Lars J; Lingner, Manuel; Mauermann, Eckhard; Obertacke, Udo; Schwarz, Markus L R

    2016-10-17

    A lot of advantages can result in a high wettability as well as a nanostructure at a titanium surface on bone implants. Thus, the aim of this study was to evaluate the osseointegrative potential of a titan plasma-sprayed (TPS) surface refinement by acid-etching with chromosulfuric acid. This results in a hyperhydrophilic surface with a nanostructure and an extreme high wetting rate. In total, 72 dumbbell shape titan implants were inserted in the spongy bone of the femora of 18 Göttingen minipigs in a conservative gap model. Thirty-six titan implants were coated with a standard TPS surface and 36 with the hyperhydrophilic chromosulfuric acid (CSA) surface. After a healing period of 4, 8, and 12 weeks, the animals were killed. The chronological healing process was histomorphometrically analyzed. The de novo bone formation, represented by the bone area (BA), is increased by approximately 1.5 times after 12 weeks with little additional benefit by use of the CSA surface. The bone-to-implant contact (BIC), which represents osseoconductive forces, shows results with a highly increased osteoid production in the CSA implants beginning at 8 and 12 weeks compared to TPS. This culminates in a 17-fold increase in BIC after a healing period of 12 weeks. After 4 weeks, significantly more osteoid was seen in the gap as de novo formation in the CSA group (p = 0.0062). Osteoid was also found more frequently after 12 weeks at the CSA-treated surface (p = 0.0355). The site of implantation, intertrochanteric or intercondylar, may influence on the de novo bone formation in the gap. There is a benefit by the CSA surface treatment of the TPS layer for osseointegration over an observation time up to 12 weeks. Significant differences were able to be shown in two direct comparisons between the CSA and the TPS surface for osteoid formation in the gap model. Further trials may reveal the benefit of the CSA treatment of the TPS layer involving mechanical tests if possible.

  18. Formation Mechanisms for Dunes Observed on Titan

    NASA Astrophysics Data System (ADS)

    Vinson, Alec; Hays, C. C.; Lopes-Gautier, R. M.; Mitchell, K. L.; Diniega, S.; Farr, T. G.

    2013-01-01

    The Cassini spacecraft has discovered massive dune fields on Saturn’s largest moon, Titan. The dunes were observed with the Cassini Synthetic Aperture Radar Imaging (SARS) instrument. The radar instrument operates at a frequency of 13.78 GHz, corresponding to a wavelength 2.2 cm. The resolution for the images examined are ~ 1 pixel = 175 m (varies from image to image). These dunes, or at least what’s visible to radar, through the thick nitrogen Titan atmosphere, seem to be almost exclusively longitudinal dunes (with crests forming parallel to prevailing wind directions). Many unanswered questions remain about these dunes. One goal of this project is to attempt to calculate the heights of these dunes, which has not yet been systematically attempted. We will use radar parallax analyses to calculate the height of the dunes. The Cassini radar determines position based on how long the radar wave took to return to the spacecraft, making an assumption that the surface is a perfect sphere. With changes in height, the time return for radar will change, distorting the image. Looking at these distortions (specifically, the shortening or elongation of the side of a dune) and knowing the inclination angle, we can determine height or depth. We will also use this same method with radar images of the Namib dunes, in southwest Africa, as an Earth analog, to test and determine how accurate our method is. This approach should give useful information on the morphology of the dunes on Titan. Knowing more about the morphology of the dunes can teach us more about the dune’s composition and formation mechanisms.

  19. Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koroesi, Laszlo, E-mail: korosi@enviroinvest.hu; Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertvaros utca 2, H-7632 Pecs; Papp, Szilvia

    2012-08-15

    Titanate nanotubes were synthesized from TiO{sub 2} in alkaline medium by a conventional hydrothermal method (150 Degree-Sign C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H{sub 3}PO{sub 4} aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N{sub 2}-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative resultsmore » of using two kinds of acids shed light on the superior thermal stability of the H{sub 3}PO{sub 4}-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low ({approx}0.5 at%) concentration of P. After calcination at 500 Degree-Sign C, the specific surface areas of the HCl- and H{sub 3}PO{sub 4}-treated samples were 153 and 244 m{sup 2} g{sup -1}, respectively. The effects of H{sub 3}PO{sub 4} treatment on the structure, morphology and porosity of titanate nanotubes are discussed. - Graphical Abstract: TEM picture (left) shows P-TNTs with diameters about 5-6 nm. Inset shows a stable titanate nanotube sol illuminated by a 532 nm laser beam. Due to the presence of the nanoparticles the way of the light is visible in the sol. Cross sectional SEM picture (right) as well as ellipsometry revealed the formation of optical quality P-TNT films with thicknesses below 50 nm. Highlights: Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} treatment led to TNTs with high surface area even after calcination at 500 Degree-Sign C. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4}-treated TNTs preserved their nanotube morphology up to 500 Degree-Sign C. Black-Right-Pointing-Pointer Stable TNT sols can be prepared by the peptization of TNT gels. Black-Right-Pointing-Pointer High-transparency TNT thin films of high quality were fabricated.« less

  20. Numerical modelling of sedimentary structures in rivers on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-04-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. 2. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. 4. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580.

  1. Energy Budgets of the Giant Planets and Titan

    NASA Technical Reports Server (NTRS)

    Liming, Li; Smith, Mark A.; Conrath, Barney J.; Conrath, Peter J.; Simon-Miller, Amy A.; Baines, Kevin H.; West, Robert A.; Achterberg, Richard K.; Orton, Glenn S.; Santiago, Perez-Hoyos; hide

    2012-01-01

    As a fundamental property, the energy budget affects many aspeCts of planets and their moons, such as thermal structure, meteorology, and evolution. We use the observations from two Cassini spectrometers (i.e., CIRS and VIMS) to explore one important component of the energy budget the total emitted power of Jupiter, Saturn, and Titan (Li et al., 2010, 2011, 2012). Key results are: (1) The Cassini observations precisely measure the global-average emitted power of three bodies: 14.l0+/-0.03 Wm(exp -2), 4.952+/-0.035 Wm(exp -2), and 2.834+/-0.012 Wm(exp -2) for Jupiter, Saturn, and Titan, respectively. (2) The meridional distribution of emitted power displays a significant asymmetry between the northern and southern hemispheres on Jupiter and Saturn. On Titan, the meridional distribution of emitted power is basically symmetric around the equator. (3) Comparing with the Voyager measurements, the new Cassini observations reveal a significant temporal variation of emitted power on both Jupiter and Saturn: i) The asymmetry between the two hemisphere shown in the Cassini epoch (2000-2010) is not present in the Voyager epoch (1979-1980); and ii) From the Voyager epoch to the Cassini epoch, the global-average emitted power appeared to increase by approx 3.8% for Jupiter and approx 6.4% for Saturn. (4) Together with previous measurements of the absorbed solar power on Titan, the new Cassini measurements of emitted power provide the first observational evidence of the global energy balance on Titan. The uncertainty in the previous measurements of absorbed solar energy places an upper limit on its energy imbalance of 6.0% on Titan. The exploration of emitted power is the first part of a series of studies examining the temporal variability of the energy budget on the giant planets and Titan. Currently, We are measuring the absorbed solar energy in order to determine new constraints on the energy budgets of Jupiter, Saturn, and Titan.

  2. Probing Pluto's underworld: Ice temperatures from microwave radiometry decoupled from surface conditions

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Lorenz, Ralph D.; Le Gall, Alice

    2016-04-01

    Present models admit a wide range of 2015 surface conditions at Pluto and Charon, where the atmospheric pressure may undergo dramatic seasonal variation and for which measurements are imminent from the New Horizons mission. One anticipated observation is the microwave brightness temperature, heretofore anticipated as indicating surface conditions relevant to surface-atmosphere equilibrium. However, drawing on recent experience with Cassini observations at Iapetus and Titan, we call attention to the large electrical skin depth of outer Solar System materials such as methane, nitrogen or water ice, such that this observation may indicate temperatures averaged over depths of several or tens of meters beneath the surface. Using a seasonally-forced thermal model to determine microwave emission we predict that the southern hemisphere observations (in polar night) of New Horizons in July 2015 will suggest effective temperatures of ∼40 K, reflecting deep heat buried over the last century of summer, even if the atmospheric pressure suggests that the surface nitrogen frost point may be much lower.

  3. Spatial Variations of Chemical Abundances in Titan's Atmosphere as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor; Chanover, Nancy J.; Molter, Edward; Serigano, Joseph; Cordiner, Martin; Charnley, Steven B.; Teanby, Nicholas A.; Irwin, Patrick

    2016-10-01

    Complex organic molecules in Titan's atmosphere - formed through the dissociation of N2 and CH4 - exhibit latitudinal variations in abundance as observed by Cassini. Chemical species including hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - may show spatial abundance variations as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes of ~0.3'' allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk. We present abundance profiles obtained from public ALMA data taken in 2014, as Titan transitioned into northern summer. Abundance profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. These retrievals were performed using spatial temperature profiles obtained by modeling strong CO lines from datasets taken in similar times with comparable resolution. We compare the abundance variations of chemical species to measurements made using Cassini data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.

  4. Clinicopathological features of pulmonary cryptococcosis with cryptococcal titan cells: a comparative analysis of 27 cases.

    PubMed

    Wang, Jing-Mei; Zhou, Qiang; Cai, Hou-Rong; Zhuang, Yi; Zhang, Yi-Fen; Xin, Xiao-Yan; Meng, Fan-Qing; Wang, Ya-Ping

    2014-01-01

    In addition to the typical size, Cryptococcus neoformans can enlarge its size to form titan cells during infection, and its diameter can reach up to 100 μm. Clinical reports about cryptococcal titan cells are rare. Most studies focus on aspects of animal models of infection with titan cells. Herein, we report the clinical and imaging characteristics and histopathologic features of 3 patients with titan cells and 27 patients with pathogens of typical size, and describe the morphological characteristics of titan cells in details. Histologically, 3 patients with titan cells show necrosis, fibrosis and macrophage accumulation. The titan cells appear in necrotic tissue and between macrophages, and have thick wall with unstained halo around them and diameters range from 20 to 80 μm with characteristic of narrow-necked single budding. There are also organisms with typical size. All 27 patients with normal pathogens show epithelioid granulomatous lesions. There is no significantly difference in clinical and imaging feature between the two groups. Cryptococcus neoformans exhibits a striking morphological change for the formation of titan cells during pulmonary infection, which will result in misdiagnosis and under diagnosis. The histopathological changes may be new manifestation, which need to be further confirmed by the study with animal models of infection and the observation of more clinical cases. Careful observation of the tissue sections is necessary.

  5. Big Impacts and Transient Oceans on Titan

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Korycansky, D. G.; Nixon, C. A.

    2014-02-01

    We ask what happened to Titan after the impacts came. A nominal Menrva heats the surface to ~170 K; it takes heroic assumptions to reach 273 K. Bigger impacts (e.g., putative Hotei impact) produce meltwater oceans that last for decades or centuries.

  6. Titan Aerial Daughtercraft (TAD) for Surface Studies from a Lander or Balloon

    NASA Astrophysics Data System (ADS)

    Matthies, L.; Tokumaru, P.; Sherrit, S.; Beauchamp, P.

    2014-06-01

    Recent rapid progress on autonomous navigation of micro air vehicles for terrestrial applications opens new possibilities for a small aerial vehicle that could deploy from a Titan lander or balloon to acquire samples for analysis on the mothership.

  7. Dependence of Surface Contrast on Emission Angle in Cassini ISS 938-nm Images of Titan

    NASA Technical Reports Server (NTRS)

    Fussner, S.; McEwen, A.; Perry, J.; Turtle, E.; Dawson, D.; Porco, C.; West, R.

    2005-01-01

    Titan, the largest of Saturn s moons, is one of the most difficult solid surfaces in the Solar System to study. It is shrouded in a thick atmosphere with fine haze particles extending up to 500 km. [1] The atmosphere itself is rich in methane, which allows clear viewing of the surface only through narrow "windows" in the methane spectrum. Even in these methane windows, the haze absorbs and scatters light, blurring surface features and reducing the contrast of images. The haze optical depth is high at visible wavelengths, and decreases at longer (infrared) wavelengths. [2

  8. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  9. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  10. Methane, Ethane, and Nitrogen Stability on Titan

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  11. Facile synthesis and photocatalytic activity of ZnO/zinc titanate core-shell nanorod arrays

    NASA Astrophysics Data System (ADS)

    He, Ding-Chao; Fu, Qiu-Ming; Ma, Zhi-Bin; Zhao, Hong-Yang; Tu, Ya-Fang; Tian, Yu; Zhou, Di; Zheng, Guang; Lu, Hong-Bing

    2018-02-01

    ZnO/zinc titanate core-shell nanorod arrays (CSNRs) were successfully prepared via a simple synthesis process by combining hydrothermal synthesis and liquid phase deposition (LPD). The surface morphologies, crystalline characteristics, optical properties and surface electronic states of the ZnO/zinc titanate CSNRs were characterized by scanning electron microscope, transmission electron microscope, x-ray diffractometer, x-ray photoelectron spectroscopy, PL and ultraviolet (UV)-visible absorption spectra. By controlling the reaction time of LPD, the shell thickness could vary with the reaction time. Furthermore, the impacts of the reaction time and post-annealing temperature on the crystalline structure and chemical composition of the CSNRs were also investigated. The studies of photocatalytic activity under UV light irradiation revealed that the ZnO/zinc titanate CSNRs annealed at 700 °C with 30 min deposition exhibited the best photocatalytic activity and good stability for degradation of methylene blue. It had been found that the effective separation of photogenerated electron-hole pairs in the CSNRs led to the enhanced photocatalytic activity. Moreover, the ZnO/zinc titanate CSNRs grown on quartz glass substrate could be easily recycled for reuse with almost unchanged photocatalytic activity.

  12. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  13. Titan's atmosphere and surface in 2026: the AVIATR Titan Airplane Mission

    NASA Astrophysics Data System (ADS)

    McKay, Chris; Barnes, Jason W.; Lemke, Lawrence; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David; Flasar, F. Michael

    2010-04-01

    This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.

  14. The seasonal cycle of Titan's detached haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Seignovert, Benoît.; Rannou, Pascal; Dumont, Philip; Turtle, Elizabeth P.; Perry, Jason; Roy, Mou; Ovanessian, Aida

    2018-06-01

    Titan's `detached' haze, seen in Voyager images in 1980 and 1981 and monitored by the Cassini Imaging Science Subsystem (ISS) during the period 2004-2017, provides a measure of seasonal activity in Titan's mesosphere with observations over almost half of Saturn's seasonal cycle. Here we report on retrieved haze extinction profiles that reveal a depleted layer (having a diminished aerosol content), visually manifested as a gap between the main haze and a thin, detached upper layer. Our measurements show the disappearance of the feature in 2012 and its reappearance in 2016, as well as details after the reappearance. These observations highlight the dynamical nature of the detached haze. The reappearance seems congruent with earlier descriptions by climate models but more complex than previously described. It occurs in two steps, first as haze reappearing at 450 ± 20 km and one year later at 510 ± 20 km. These observations provide additional tight and valuable constraints about the underlying mechanisms, especially for Titan's mesosphere, that control Titan's haze cycle.

  15. The seasonal cycle of Titan's detached haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Seignovert, Benoît; Rannou, Pascal; Dumont, Philip; Turtle, Elizabeth P.; Perry, Jason; Roy, Mou; Ovanessian, Aida

    2018-04-01

    Titan's `detached' haze, seen in Voyager images in 1980 and 1981 and monitored by the Cassini Imaging Science Subsystem (ISS) during the period 2004-2017, provides a measure of seasonal activity in Titan's mesosphere with observations over almost half of Saturn's seasonal cycle. Here we report on retrieved haze extinction profiles that reveal a depleted layer (having a diminished aerosol content), visually manifested as a gap between the main haze and a thin, detached upper layer. Our measurements show the disappearance of the feature in 2012 and its reappearance in 2016, as well as details after the reappearance. These observations highlight the dynamical nature of the detached haze. The reappearance seems congruent with earlier descriptions by climate models but more complex than previously described. It occurs in two steps, first as haze reappearing at 450 ± 20 km and one year later at 510 ± 20 km. These observations provide additional tight and valuable constraints about the underlying mechanisms, especially for Titan's mesosphere, that control Titan's haze cycle.

  16. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; hide

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  17. Poster 9: Isotopic Ratios of Carbon and Oxygen in Titan's CO using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixion, Conor A.; Cordiner, Martin A.; Irwin, Patrick G. J.; Teanby, Nick A.; Charnley, Steven B.; Lindberg, Johan E.

    2016-06-01

    The advent of the Atacama Large Millimeter/Submillimeter Array (ALMA) has provided a new and powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the complex atmosphere of Titan, photochemical processes dissociate and ionize molecular nitrogen and methane in the upper atmosphere, creating a complex inventory of trace hydrocarbons and nitriles. Additionally, the existence of oxygen on Titan facilitates the synthesis of molecules of potential astrobiological importance. Utilization of ground-based submillimeter observations of Titan has proven to be a powerful tool to complement results from spacecraft observations. ALMA provides the ability to probe this region in greater detail with unprecedented spectral and spatial resolution at high sensitivity, allowing for the derivation of vertical mixing profiles, molecular detections, and observations of latitudinal and seasonal variations. Recent ALMA studies of Titan have presented spectrally and spatially-resolved maps of HNC and HC3N emission (Cordiner et al. 2014), as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan's atmosphere (Cordiner et al. 2015). This poster will focus on ALMA observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C 17O in Titan's atmosphere. Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code (Irwin et al. 2008). This study reports the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundances of these molecules and isotopic ratios of 12C/13C, 16O/18O, and 16O/17O will be presented. General implications for the history of Titan from these measurements will be discussed.

  18. Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity

    NASA Astrophysics Data System (ADS)

    Hirtzig, M.; Bézard, B.; Coustenis, A.; Lellouch, E.; Drossart, P.; deBergh, C.; Campargue, A.; Boudon, V.; Tyuterev, V.; Rannou, P.; Cours, T.; Kassi, S.; Nikitin, A.; Wang, L.; Solomonidou, A.; Schmitt, B.; Rodriguez, S.

    2012-04-01

    In this paper we present an updated analysis of VIMS data in view of recent developments on the methane opacity in the 1.3-5.2 µm region, a very important parameter in simulating Titan's spectrum. We use a multi-stream radiative transfer model, benefitting from the latest methane absorption coefficients available [1], which allows us to determine more accurately the haze and surface contributions. This code is applied to Cassini/VIMS spectro-imaging data of various regions with very different spectral responses to extract information on the content of the lower atmosphere (0-200 km) as well as on the surface properties. In particular, we update the DISR aerosol model [2] for the Huygens landing site that we then adjust to fit the data for other locations on Titan's disk. Fitting VIMS data taken from 2004 to 2010 (TA to T70), around Titan's mid-latitudes (40°S-40°N), we determine the latitudinal and temporal evolution of the aerosol population, monitoring the North-South Asymmetry. While around the equinox [3] witnessed the collapse of the detached haze layer, we measure a continuous depletion of the aerosols throughout the atmosphere, although the NSA remains with a brighter northern hemisphere. Using this improved atmospheric model, we also retrieve surface albedos simultaneously for all the seven windows in the whole VIMS range for these regions, also recovering the shape of the surface albedo within each window. Eventually, we look for Titan's surface probable chemical composition, using mixtures of dark and complex hydrocarbons like bitumens and tholins, as well as bright CH4, CO2, NH3 and H2O ices of various grain sizes. [4] [1] Campargue, A. et al., (2012) Icarus, submitted. [2] Tomasko, M. et al., (2008) Planetary and Space Science, 56, 669. [3] West, R.A. et al., (2011) Geophysical Research Letters, 38, L06204. [4] Hirtzig, M. et al., (2012) Planetary and Space Science, submitted.

  19. A Detailed Geomorphological Sketch Map of Titan's Afekan Crater Region

    NASA Astrophysics Data System (ADS)

    Schoenfeld, A.; Malaska, M. J.; Lopes, R. M. C.; Le Gall, A. A.; Birch, S. P.; Hayes, A.

    2014-12-01

    Due to Titan's uniquely thick atmosphere and organic haze layers, the most detailed images (with resolution of 300 meters per pixel) of the Saturnian moon's surface exist as Synthetic Aperture Radar (SAR) images taken by Cassini's RADAR instrument. Using the SAR data, we have been putting together detailed geomorphological sketch maps of various Titan regions in an effort to piece together its geologic history. We initially examined the Afekan region of Titan due to extensive SAR coverage. Features described on Afekan fall under the categories (in order of geologic age, extrapolated from their relative emplacement) of hummocky, labyrinthic, plains, and dunes. During our mapping effort, we also divided each terrain category into several different subclasses on a local level. Our map offers a chance to present and analyze the distribution, relationship, and potential formation hypotheses of the different terrains. In bulk, we find evidence for both Aeolian and fluvial processes. A particularly important unit found in the Afekan region is the unit designated "undifferentiated plains", or the "Blandlands" of Titan, a mid-latitude terrain unit comprising 25% of the moon's surface. Undifferentiated plains are notable for its relative featurelessness in radar and infrared. Our interpretation is that it is a fill unit in and around Afekan crater and other hummocky/mountainous units. The plains suggest that the nature of Titan's geomorphology seems to be tied to ongoing erosional forces and sediment deposition. Other datasets used in characterizing Titan's various geomorphological units include information obtained from radiometry, infrared (ISS), and spectrometry (VIMS). We will present the detailed geomorphological sketch map with all the terrain units assigned and labeled.

  20. Investigating magnetospheric interaction effects on Titan's ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ulusen, D.; Ledvina, S. A.; Mandt, K.; Magee, B.; Waite, J. H.; Westlake, J.; Cravens, T. E.; Robertson, I.; Edberg, N.; Agren, K.; Wahlund, J.-E.; Ma, Y.-J.; Wei, H.; Russell, C. T.; Dougherty, M. K.

    2012-06-01

    In the ˜6 years since the Cassini spacecraft went into orbit around Saturn in 2004, roughly a dozen Titan flybys have occurred for which the Ion Neutral Mass Spectrometer (INMS) measured that moon's ionospheric density and composition. For these, and for the majority of the ˜60 close flybys probing to altitudes down to ˜950 km, Langmuir Probe electron densities were also obtained. These were all complemented by Cassini magnetometer observations of the magnetic fields affected by the Titan plasma interaction. Titan's ionosphere was expected to differ from those of other unmagnetized planetary bodies because of significant contributions from particle impact due to its magnetospheric environment. However, previous analyses of these data clearly showed the dominance of the solar photon source, with the possible exception of the nightside. This paper describes the collected ionospheric data obtained in the period between Cassini's Saturn Orbit Insertion in 2004 and 2009, and examines some of their basic characteristics with the goal of searching for magnetospheric influences. These influences might include effects on the altitude profiles of impact ionization by magnetospheric particles at the Titan orbit location, or by locally produced pickup ions freshly created in Titan's upper atmosphere. The effects of forces on the ionosphere associated with both the draped and penetrating external magnetic fields might also be discernable. A number of challenges arise in such investigations given both the observed order of magnitude variations in the magnetospheric particle sources and the unsteadiness of the magnetospheric magnetic field and plasma flows at Titan's (˜20Rs (Saturn Radius)) orbit. Transterminator flow of ionospheric plasma from the dayside may also supply some of the nightside ionosphere, complicating determination of the magnetospheric contribution. Moreover, we are limited by the sparse sampling of the ionosphere during the mission as the Titan interaction also depends on Saturn Local Time as well as possible intrinsic asymmetries and variations of Titan's neutral atmosphere. We use organizations of the data by key coordinate systems of the plasma interaction with Titan's ionosphere to help interpret the observations. The present analysis does not find clear characteristics of the magnetosphere's role in defining Titan's ionosphere. The observations confirm the presence of an ionosphere produced mainly by sunlight, and an absence of expected ionospheric field signatures in the data. Further investigation of the latter, in particular, may benefit from numerical experiments on the inner boundary conditions of 3D models including the plasma interaction and features such as neutral winds.

  1. Differences between evolution of Titan's and Earth's rivers - further conclusions

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2014-05-01

    Titan is the only celestial body, beside the Earth, where liquid is present on the surface. Liquid forms a number of lakes and rivers. In our research we use numerical model of the river to determine differences of evolution of rivers on the Earth and on Titan. We have found that transport of sediments on Titan is more effective than on Earth for the same river geometry and discharge. We have found also the theoretical explanations for this conclusion. 2.Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This paper is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Basic equations of our model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. 4. Parameters of the model We considered our model for a few kinds of liquid found on Titan. The liquid that falls as a rain (75% methane, 25% nitrogen) has different properties than the fluid forming lakes (74% ethane, 10% methane, 7% propane, 8.5% butane, 0.5% nitrogen). Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our preliminary results indicate that transport of material by Titan's rivers is more efficient than by terrestrial rivers of the same geometry parameters. We also distinguish that suspended load is the main way of transport in simulated Titan's conditions. In future we will do the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653).

  2. A newly discovered impact crater in Titan's Senkyo: Cassini VIMS observations and comparison with other impact features

    USGS Publications Warehouse

    Buratti, B.J.; Sotin, Christophe; Lawrence, K.; Brown, R.H.; Le, Mouelic S.; Soderblom, J.M.; Barnes, J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.

    2012-01-01

    Senkyo is an equatorial plain on Titan filled with dunes and surrounded by hummocky plateaus. During the Titan targeted flyby T61 on August 25, 2009, the Cassini Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft observed a circular feature, centered at 5.4?? N and 341??W, that superimposes the dune fields and a bright plateau. This circular feature, which has been named Paxsi by the International Astronomical Union, is 120??10 km in diameter (measured from the outer edge of the crater rim) and exhibits a central bright area that can be interpreted as the central peak or pit of an impact crater. Although there are only a handful of certain impact craters on Titan, there are two other craters that are of similar size to this newly discovered feature and that have been studied by VIMS: Sinlap (Le Mou??lic et al, 2008) and Selk (Soderblom et al, 2010). Sinlap is associated with a large downwind, fan-like feature that may have been formed from an impact plume that rapidly expanded and deposited icy particles onto the surface. Although much of the surrounding region is covered with dunes, the plume region is devoid of dunes. The formation process of Selk also appears to have removed (or covered up) dunes from parts of the adjacent dune-filled terrain. The circular feature on Senkyo is quite different: there is no evidence of an ejecta blanket and the crater itself appears to be infilled with dune material. The rim of the crater appears to be eroded by fluvial processes; at one point the rim is breached. The rim is unusually narrow, which may be due to mass wasting on its inside and subsequent infill by dunes. Based on these observations, we interpret this newly discovered feature to be a more eroded crater than both Sinlap and Selk. Paxsi may have formed during a period when Titan was warmer and more ductile than it is currently. ?? 2011 Elsevier Ltd. All rights reserved.

  3. Diurnal variations of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  4. Chapman Solar Zenith Angle variations at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd

    2016-10-01

    Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.

  5. Space Science

    NASA Image and Video Library

    1997-10-15

    The 7-year journey to Saturn began with the liftoff of a Titan IVB/Centaur carrying the Cassini orbiter and its attached Huygens probe. After a 2.2-billion mile journey that included two swingbys of Venus and one of Earth to gain additional velocity, the two-story tall spacecraft will arrive at Saturn in July 2004. The orbiter will circle the planet for 4 years, its compliment of 12 scientific instruments gathering data about Saturn's atmosphere, rings and magnetosphere, and conducting close-up observations of the Saturnian moons. Huygens, with a separate suite of 6 science instruments, will separate from Cassini to fly on a ballistic trajectory toward Titan, the only celestial body besides Earth to have an atmosphere rich in nitrogen. Scientists are eager to study further this chemical similarity in hopes of learning more about the origins of our own planet Earth. Huygens will provide the first direct sampling of Titan's atmospheric chemistry and the first detailed photographs of its surface. The Cassini mission is an international effort involving NASA, the European Space Agency (ESA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI).

  6. Space Science

    NASA Image and Video Library

    1997-10-15

    The 7-year journey to Saturn began with the liftoff of a Titan IVB/ Centaur carrying the Cassini orbiter and its attached Huygens probe. After a 2.2-billion mile journey that included two swingbys of Venus and one of the Earth to gain additional velocity, the two-story tall spacecraft will arrive at Saturn in July 2004. The orbiter will circle the planet for 4 years, its compliment of 12 scientific instruments gathering data about Saturn's atmosphere, rings and magnetosphere and conducting close-up observations of Saturnian moons. Huygens, with a separate suite of 6 science instruments, will separate from Cassini to fly on a ballistic trajectory toward Titan, the only celestial body besides Earth to have an atmosphere rich in nitrogen. Scientists are eager to study further this chemical similarity in hopes of learning more about the origins of our own planet Earth. Huygens will provide the first direct sampling of Titan's atmospheric chemistry and the first detailed photographs of its surface. The Cassini mission is an International effort involving NASA, the European Space Agency (ESA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI).

  7. SAR Polarimetry

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2012-01-01

    Radar Scattering includes: Surface Characteristics, Geometric Properties, Dielectric Properties, Rough Surface Scattering, Geometrical Optics and Small Perturbation Method Solutions, Integral Equation Method, Magellan Image of Pancake Domes on Venus, Dickinson Impact Crater on Venus (Magellan), Lakes on Titan (Cassini Radar, Longitudinal Dunes on Titan (Cassini Radar), Rough Surface Scattering: Effect of Dielectric Constant, Vegetation Scattering, Effect of Soil Moisture. Polarimetric Radar includes: Principles of Polarimetry: Field Descriptions, Wave Polarizations: Geometrical Representations, Definition of Ellipse Orientation Angles, Scatter as Polarization Transformer, Scattering Matrix, Coordinate Systems, Scattering Matrix, Covariance Matrix, Pauli Basis and Coherency Matrix, Polarization Synthesis, Polarimeter Implementation.

  8. Titan under a red giant sun: a new kind of "habitable" moon.

    PubMed

    Lorenz, R D; Lunine, J I; McKay, C P

    1997-11-15

    We explore the response of Titan's surface and massive atmosphere to the change in solar spectrum and intensity as the sun evolves into a red giant. Titan's surface temperature is insensitive to insolation increases as the haze-laden atmosphere "puffs up" and blocks more sunlight. However, we find a window of several hundred Myr exists, roughly 6 Gyr from now, when liquid water-ammonia can form oceans on the surface and react with the abundant organic compounds there. The window opens due to a drop in haze production as the ultraviolet flux from the reddening sun plummets. The duration of such a window exceeds the time necessary for life to have begun on Earth. Similar environments, with approximately 200K water-ammonia oceans warmed by methane greenhouses under red stars, are an alternative to the approximately 30OK water-CO2 environments considered the classic "habitable" planet.

  9. Titan's 5 micrometers spectral window: carbon monoxide and the albedo of the surface

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; Geballe, T. R.; Knacke, R. F.; Pendleton, Y. J.

    1996-01-01

    We have measured the spectrum of Titan near 5 micrometers and have found it to be dominated by absorption from the carbon monoxide 1-0 vibration-rotation band. The position of the band edge allows us to constrain the abundance of CO in the atmosphere and/or the location of the reflecting layer in the atmosphere. In the most likely case, 5 micrometers radiation is reflected from the surface and the mole fraction of CO in the atmosphere is qCO=10(+10/-5) ppm, significantly lower than previous estimates for tropospheric CO. The albedo of the reflecting layer is approximately 0.07(+0.02/-0.01) in the 5 micrometers continuum outside the CO band. The 5 micrometers albedo is consistent with a surface of mixed ice and silicates similar to the icy Galilean satellites. Organic solids formed in simulated Titan conditions can also produce similar albedos at 5 micrometers.

  10. The fate of ethane in Titan's hydrocarbon lakes and seas

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Lunine, Jonathan I.; Hayes, Alexander G.; Hofgartner, Jason D.

    2016-05-01

    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.

  11. Studies of satellite and planetary surfaces and atmospheres. [Jupiter, Saturn, and Mars and their satellites

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1978-01-01

    Completed or published research supported by NASA is summarized. Topics cover limb darkening and the structure of the Jovian atmosphere; the application of generalized inverse theory to the recovery of temperature profiles; models for the reflection spectrum of Jupiter's North Equatorial Belt; isotropic scattering layer models for the red chromosphore on Titan; radiative-convective equilibrium models of the Titan atmosphere; temperature structure and emergent flux of the Jovian planets; occultation of epsilon Geminorum by Mars and the structure and extinction of the Martian upper atmosphere; lunar occultation of Saturn; astrometric results and the normal reflectances of Rhea, Titan, and Iapetus; near limb darkening of solids of planetary interest; scattering light scattering from particulate surfaces; comparing the surface of 10 to laboratory samples; and matching the spectrum of 10: variations in the photometric properties of sulfur-containing mixtures.

  12. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  13. The Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan

    NASA Astrophysics Data System (ADS)

    Tomasko, M. G.; Buchhauser, D.; Bushroe, M.; Dafoe, L. E.; Doose, L. R.; Eibl, A.; Fellows, C.; Farlane, E. M.; Prout, G. M.; Pringle, M. J.; Rizk, B.; See, C.; Smith, P. H.; Tsetsenekos, K.

    2002-07-01

    The payload of the Huygens Probe into the atmosphere of Titan includes the Descent Imager/Spectral Radiometer (DISR). This instrument includes an integrated package of several optical instruments built around a silicon charge coupled device (CCD) detector, a pair of linear InGaAs array detectors, and several individual silicon detectors. Fiber optics are used extensively to feed these detectors with light collected from three frame imagers, an upward and downward-looking visible spectrometer, an upward and downward looking near-infrared spectrometer, upward and downward looking violet phtotometers, a four-channel solar aerole camera, and a sun sensor that determines the azimuth and zenith angle of the sun and measures the flux in the direct solar beam at 940 nm. An onboard optical calibration system uses a small lamp and fiber optics to track the relative sensitivity of the different optical instruments relative to each other during the seven year cruise to Titan. A 20 watt lamp and collimator are used to provide spectrally continuous illumination of the surface during the last 100 m of the descent for measurements of the reflection spectrum of the surface. The instrument contains software and hardware data compressors to permit measurements of upward and downward direct and diffuse solar flux between 350 and 1700 nm in some 330 spectral bands at approximately 2 km vertical resolution from an alititude of 160 km to the surface. The solar aureole camera measures the brightness of a 6° wide strip of the sky from 25 to 75° zenith angle near and opposite the azimuth of the sun in two passbands near 500 and 935 nm using vertical and horizontal polarizers in each spectral channel at a similar vertical resolution. The downward-looking spectrometers provide the reflection spectrum of the surface at a total of some 600 locations between 850 and 1700 nm and at more than 3000 locations between 480 and 960 nm. Some 500 individual images of the surface are expected which can be assembled into about a dozen panoramic mosaics covering nadir angles from 6° to 96° at all azimuths. The spatial resolution of the images varies from 300 m at 160 km altitude to some 20 cm in the last frames. The scientific objectives of the experiment fall into four areas including (1) measurement of the solar heating profile for studies of the thermal balance of Titan; (2) imaging and spectral reflection measurements of the surface for studies of the composition, topography, and physical processes which form the surface as well as for direct measurements of the wind profile during the descent; (3) measurements of the brightness and degree of linear polarization of scattered sunlight including the solar aureole together with measurements of the extinction optical depth of the aerosols as a function of wavelength and altitude to study the size, shape, vertical distribution, optical properties, sources and sinks of aerosols in Titan's atmosphere; and (4) measurements of the spectrum of downward solar flux to study the composition of the atmosphere, especially the mixing ratio profile of methane throughout the descent. We briefly outline the methods by which the flight instrument was calibrated for absolute response, relative spectral response, and field of view over a very wide temperature range. We also give several examples of data collected in the Earth's atmosphere using a spare instrument including images obtained from a helicopter flight program, reflection spectra of various types of terrain, solar aureole measurements including the determination of aerosol size, and measurements of the downward flux of violet, visible, and near infrared sunlight. The extinction optical depths measured as a function of wavelength are compared to models of the Earth's atmosphere and are divided into contributions from molecular scattering, aerosol extinction, and molecular absorption. The test observations during simulated descents with mountain and rooftop venues in the Earth's atmosphere are very important for driving out problems in the calibration and interpretion of the observations to permit rapid analysis of the observations after Titan entry.

  14. Perspective on Kraken Mare Shores

    NASA Image and Video Library

    2015-02-12

    This Cassini Synthetic Aperture Radar (SAR) image is presented as a perspective view and shows a landscape near the eastern shoreline of Kraken Mare, a hydrocarbon sea in Titan's north polar region. This image was processed using a technique for handling noise that results in clearer views that can be easier for researchers to interpret. The technique, called despeckling, also is useful for producing altimetry data and 3-D views called digital elevation maps. Scientists have used a technique called radargrammetry to determine the altitude of surface features in this view at a resolution of approximately half a mile, or 1 kilometer. The altimetry reveals that the area is smooth overall, with a maximum amplitude of 0.75 mile (1.2 kilometers) in height. The topography also shows that all observed channels flow downhill. The presence of what scientists call "knickpoints" -- locations on a river where a sharp change in slope occurs -- might indicate stratification in the bedrock, erosion mechanisms at work or a particular way the surface responds to runoff events, such as floods following large storms. One such knickpoint is visible just above the lower left corner, where an area of bright slopes is seen. The image was obtained during a flyby of Titan on April 10, 2007. A more traditional radar image of this area on Titan is seen in PIA19046. http://photojournal.jpl.nasa.gov/catalog/PIA19051

  15. Titan Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, Richard; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon; Cornet, Thomas; Hayes, Alexander; Lellouch, Emmanuel; Lemmon, Mark; Lopez Puertas, Manuel; Rodriguez, Sebastien; Sotin, Christophe; Teanby, Nicholas; Turtle, Elizabeth; West, Robert

    2015-11-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is an ambitious next-generation large-aperture (6.5 m) space observatory focused on pushing the boundaries of infrared astronomy (0.6-28.0 μm). This long-wavelength focus gives it very substantial potential for solar system science, since the thermal emissions from the surfaces and atmospheres of many planets, moons and small bodies peak in this part of the spectrum. Here we report the findings of a task team convened to examine the potential for Titan science using JWST. These can be divided into five broad areas: (i) the surface, especially the rotational lightcurve; (ii) clouds in the lower atmosphere from direct imaging and near-IR spectroscopy; (iii) composition of the lower atmosphere, especially methane relative humidity; (iv) composition of the middle atmosphere, including thermal and fluorescent emissions from gases; (v) hazes in the middle atmosphere, including seasonal changes in hemispheric contrast. The capability of the major JWST instruments in each area is considered, and limitations such as potential saturation is noted and mitigation strategies (such as sub-arraying) discussed. Overall we find that JWST can make significant contributions to Titan science in many areas, not least in temporal monitoring of seasonal change after the end of the Cassini mission in 2017, in partnership with other next-generation observing facilities (TMT, GMT, EELT, ALMA).

  16. An overview of the descent and landing of the Huygens probe on Titan.

    PubMed

    Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B; Matson, Dennis L; Gurvits, Leonid I; Atkinson, David H; Kazeminejad, Bobby; Pérez-Ayúcar, Miguel

    2005-12-08

    Titan, Saturn's largest moon, is the only Solar System planetary body other than Earth with a thick nitrogen atmosphere. The Voyager spacecraft confirmed that methane was the second-most abundant atmospheric constituent in Titan's atmosphere, and revealed a rich organic chemistry, but its cameras could not see through the thick organic haze. After a seven-year interplanetary journey on board the Cassini orbiter, the Huygens probe was released on 25 December 2004. It reached the upper layer of Titan's atmosphere on 14 January and landed softly after a parachute descent of almost 2.5 hours. Here we report an overview of the Huygens mission, which enabled studies of the atmosphere and surface, including in situ sampling of the organic chemistry, and revealed an Earth-like landscape. The probe descended over the boundary between a bright icy terrain eroded by fluvial activity--probably due to methane-and a darker area that looked like a river- or lake-bed. Post-landing images showed centimetre-sized surface details.

  17. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.

    PubMed

    Okagaki, Laura H; Nielsen, Kirsten

    2012-06-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged "titan" cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells.

  18. Titan Upper Atmosphere: A factory of hydrocarbons

    NASA Image and Video Library

    2005-04-22

    During its closest flyby of Saturn's moon Titan on April 16, the Cassini spacecraft came within 1,025 kilometers (637 miles) of the moon's surface and found that the outer layer of the thick, hazy atmosphere is brimming with complex hydrocarbons. This figure shows a mass spectrum of Titan's ionosphere near 1,200 kilometers (746 miles) above its surface. The mass range covered goes from hydrogen at 1 atomic mass unit per elementary charge (Dalton) to 99 Daltons. This mass range includes compounds with 1, 2, 3, 4, 5, 6, and 7 carbons as the base structure (as indicated in the figure label). The identified compounds include multiple carbon molecules and carbon-nitrogen bearing species as well. http://photojournal.jpl.nasa.gov/catalog/PIA07865

  19. Characterization of Titan surface scenarios combining Cassini SAR images and radiometric data

    NASA Astrophysics Data System (ADS)

    Ventura, B.; Notarnicola, C.; Casarano, D.; Janssen, M.; Posa, F.; Cassini RADAR Science Team

    2009-04-01

    A great amount of data and images was provided by the radar on Cassini probe, thus opening and suggesting new scenarios about Titan's formation and evolution. An important result was the detection, among the peculiar and heterogeneous Titan's surface features, of lakes most likely constituted by liquid hydrocarbons, thus supporting the hypothesis of a methane cycle similar to water cycle on Earth.These areas, which resemble terrestrial lakes, seem to be sprinkled all over the high latitudes surrounding Titan's pole. The abundant methane in Titan's atmosphere combined with the low temperature, 94 K, lead scientists to interpret them as lakes of liquid methane or ethane. In this work, scattering models and a Bayesian inversion algorithm are applied in order to characterize lake and land surfaces. The possibility of combining the SAR data with radiometric ones on both lakes and neighboring land areas is also presented. Radar backscattering from lakes is described in terms of a double layer model, consisting of Bragg or facets scattering for the upper liquid layer and the Integral Equation Model (IEM) model for the lower solid surface. Furthermore, by means of a gravity-capillary wave model (Donelan-Pierson), the wave spectra of liquid hydrocarbons surfaces are introduced as a function of wind speed and direction. Theoretical radar backscattering coefficient values are compared with the experimental ones collected by the radar in order to estimate physical and morphological surface parameters, and to evaluate their compatibility with the expected constituents for Titan surfaces. This electromagnetic analysis is the starting point for a statistical inversion algorithm which allows determining limits on the parameters values, especially on the optical thickness and wind speed of the lakes. The physical surface parameters inferred by using the inversion algorithm are used as input for a forward radiative transfer model calculation to obtain simulated brightness temperatures. The radiometric model has been introduced to further verify the values ranges for the different parameters. In fact the same parameters derived from the radar data analysis have been used as input for the radiometric model. The comparison between the observed and computed brightness temperatures has been performed in order to address the consistency of the observations from the two instruments and to determine the coarse characteristics of the surface parameters. For both radar and radiometric data the soil medium is horizontally stratified into 2 layers. Each layer can be characterized by different absorption coefficients depending on the optical thickness, dielectric constant and physical temperature. In this algorithm, the starting point is the map of optical thickness derived from the SAR images. The simulated brightness temperature is calculated by applying the forward radiative transfer model to the optical thickness map with the same hypotheses assumed to derive it. The simulation is also carried out on the neighboring land areas by considering a double layer model including a contribution of volume scattering. Each layer is described in terms of dielectric constant values, albedo and roughness parameters with the hypothesis of water ice ammonia on layers of solid hydrocarbons and organic compounds like tholins. The analysis is applied to the areas detected on flybys 25 and 30. One important result arises from the analysis of the inverted optical thickness on deep lakes. In this case, found values of optical thickness can be considered limit values because, beyond these values, a complete attenuation can be considered. This limit value is important as it is stable even if the other parameters vary. Starting from this point, posing the condition of a complete attenuation of the second layer, i.e. fixing the value of the optical thickness, the algorithm can be used to estimate the wind speed. The retrieved values vary between 0.2 to 0.5 m/s. The first results also show a good agreement between the simulated data and the measured brightness temperature for both the liquid surface and the surrounding areas. In the last case, a good agreement is obtained only if the contribution from volume scattering is included in the model

  20. Bony integration of titanium implants with a novel bioactive calcium titanate (Ca4Ti3O10) surface treatment in a rabbit model.

    PubMed

    Haenle, Maximilian; Lindner, Tobias; Ellenrieder, Martin; Willfahrt, Manfred; Schell, Hanna; Mittelmeier, Wolfram; Bader, Rainer

    2012-10-01

    Nowadays total joint replacement is an indispensable component of modern medicine. The surfaces characteristics of cementless prostheses may be altered to achieve an accelerated and enduring bony integration. Classic surface coatings bear the risk of loosening or flaking from the implant body. This risk is excluded by the chemical conversion of the naturally existing TiO(2) surface layer into calcium titanate. The aim of this experimental animal study was to investigate the bony integration of implants with a new calcium titanate surface (Ca(4)Ti(3)O(10)) compared with a conventional standard Ti6Al4V surface. Cylindrical implants, made of titanium alloy (Ti6Al4V) were implanted in both lateral femoral condyles of New Zealand white rabbits. In each animal, an implant with and without surface treatment was inserted in a blinded manner. Animals were sacrificed after 4, 12, and 36 weeks, respectively. The axial pull-off forces were determined for 25 animals using a universal testing machine (Zwick Z010, Ulm, Germany). Furthermore, a histological analysis of the bony integration of the implants was performed in 12 specimens. In general, the pull-off forces for untreated and treated implants increased with longer survival times of the rabbits. No significant difference could be shown after 4 weeks between treated and untreated implants. After 12 weeks, the treated implants revealed a statistical significant higher pull-off force. After 36 weeks, the pull-off forces for treated and untreated implants aligned again. Titanium implants treated with calcium titanate, may offer an interesting and promising implant surface modification for endoprosthetic implants. They might lead to an accelerated osseointegration of total hip and knee replacements. Copyright © 2012 Wiley Periodicals, Inc.

  1. Characterization of a Planet: Dependence on Coverage Fraction

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    1996-03-01

    I investigate, by means of numerical experiments and a real-time quiz of colleagues (to be repeated at the poster presentation associated with this abstract), how well-characterized a planet may be considered, as a function of how much of its surface has been studied. Most measures seem to indicate that characterization quality increases steeply up to about 30% coverage. Beyond 30%, additional coverage has a lower marginal value as a 'complete' knowledge of the surface is asymptotically reached. These studies are pertinent where tradeoffs of coverage against other scientific objectives exist, for example the orbital tour design of the Cassini mission. The tour design affects how much of Titan's surface (after the Galileo mission, Titan's surface becomes the largest mappable, but unmapped, area in the solar system) may be covered by the Cassini radar. The mission has too few flybys to cover all of Titan's surface: the Radar team aims to have 30% coverage at 1km resolution or better. I also find that long, thin swaths sample a planet better than square blocks of equivalent area.

  2. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    USGS Publications Warehouse

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2.03/1.27??m, and B: 1.27/1.08??m; the channels either dissect pure bluish surface units or they are carved into terrain with a mixed spectral signature between bright and bluish surface materials. The global picture of fluvial flows clearly indicates a high diversity of parameters controlling fluvial erosion, such as climatic processes, as well as surface and bedrock types. Recent fluvial activity is very likely in the north polar region in contrast to more arid conditions at lower latitudes and at the south pole of Titan. This divergence is probably an indication of seasonal climatic asymmetries between the hemispheres. However, traces of previous fluvial activity are scattered over all latitudes of Titan, which is indicative of previous climatic conditions with at least episodic rainfall. ?? 2011 Elsevier Ltd. All rights reserved.

  3. Titan's Sand Seas properties from the modelling of microwave-backscattered signal of Cassini/SAR

    NASA Astrophysics Data System (ADS)

    Lucas, Antoine; Rodriguez, Sébastien; Lommonier, Florentin; Ferrari, Cécile; Paillou, Philippe; Le Gall, Alice; Narteau, Clément

    2016-04-01

    Titan's sand seas may reflect the current and past surface conditions. Assessing the physicochemical properties and the morphodynamics of the equatorial linear dunes is a milestone in our comprehension of the climatic and geological history of the largest Saturn's moon. Based on enhanced SAR processing leading to despeckled Cassini RADAR data sets, we analyzed quantitatively the surface properties (e.g., slopes, texture, composition...) over the sand seas. First, using a large amount of overlaps and a wide range of incidence angle and azimuths, we show that the radar cross-section over the inter-dunes strongly differs from the one over the dunes. This strongly suggests significant difference in the physical properties between these two geomorphic units. Then, we derived quantitatively the surface properties from the modelling of microwave-backscattered signal using a Monte-Carlo inversion. Our results show that dunes are globally more microwaves absorbent than the inter-dunes. The inter-dunes are smoother with a higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs mainly composed of water ice, suggesting the presence of a shallow layer of sediment in between the dunes. This may suggest that Titan dunes are developing over a coarser sediment bed similarly to what is observed in some terrestrial sand seas such as in Ténéré desert (Niger, see also contribution #EGU2016-13383). Additionally, potential secondary bedforms (such as ripples) as well as avalanche faces may have been detected.

  4. ALMA observations of Titan's atmospheric chemistry and seasonal variation

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin

    2017-04-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Photochemistry in Titan's upper atmosphere results in the production of a wide range of organic molecules, including hydrocarbons, nitriles and aromatics, some of which could be of pre-biotic relevance. Thus, we obtain insights into the possible molecular inventories of primitive (reducing) planetary atmospheres. Titan's atmosphere also provides a unique laboratory for testing our understanding of fundamental processes involving the chemistry and spectroscopy of complex organic molecules. In this talk, results will be presented from our studies using the Atacama Large Millimeter/submillimeter Array (ALMA) during the period 2012-2015, focussing in particular on the detection and mapping of emission from various nitrile species. By combining data from multiple ALMA observations, our spectra have reached an unprecedented sensitivity level, enabling the first spectroscopic detection and mapping of C2H3CN (vinyl cyanide) on Titan. Liquid-phase simulations of Titan's seas indicate that vinyl cyanide molecules could combine to form vesicle membranes (similar to the cells of terrestrial biology), and the astrobiological implications of this discovery will be discussed. Furthermore, ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere, for gases inaccessible to previous instruments. Combined with complementary data obtained from the Cassini Saturn orbiter, as well as theoretical models and laboratory studies, our observed, seasonally variable, spatially resolved abundance patterns are capable of providing new insights into photochemical production and transport in primitive planetary atmospheres in the Solar System and beyond.

  5. Subcritical crack growth phenomenon and fractography of barium titanate and barium titanate-based composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H.J.; Niihara, Koichi

    1997-01-15

    Subcritical crack growth (SCG), the propagation of surface and subsurface flaws under subcritical stress, i.e., any stress less than that necessary to catastrophically propagate the flaw, is a general phenomenon frequently observed in ceramics. Recently, electrical devices are miniaturized and used under quite severe atmospheres. Such environments often lead to the initiation and propagation of cracks due to the repeated electrical cycling, stresses by the mismatch in thermal expansion coefficient between devices and other constituents and thermal shock. In this study, the authors fabricated BaTiO{sub 3} and BaTiO{sub 3}-based composites containing nano-sized SiC particulates. The SCG phenomenon and fractography weremore » discussed based on the data obtained from indentation-induced-fracture (IIF) method.« less

  6. Experimental basis for a Titan probe organic analysis

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Scattergood, T. W.; Borucki, W. J.; Kasting, J. F.; Miller, S. L.

    1986-01-01

    The recent Voyager flyby of Titan produced evidence for at least nine organic compounds in that atmosphere that are heavier than methane. Several models of Titan's atmosphere, as well as laboratory simulations, suggest the presence of organics considerably more complex that those observed. To ensure that the in situ measurements are definitive with respect to Titan's atmosphere, experiment concepts, and the related instrumentation, must be carefully developed specifically for such a mission. To this end, the possible composition of the environment to be analyzed must be bracketed and model samples must be provided for instrumentation development studies. Laboratory studies to define the optimum flight experiment and sampling strategy for a Titan entry probe are currently being conducted. Titan mixtures are being subjected to a variety of energy sources including high voltage electron from a DC discharge, high current electric shock, and laser detonation. Gaseous and solid products are produced which are then analyzed. Samples from these experiements are also provided to candidate flight experiments as models for instrument development studies. Preliminary results show that existing theoretical models for chemistry in Titan's atmosphere cannot adequetely explain the presence and abundance of all trace gases observed in these experiments.

  7. Probing Titan's Complex Atmospheric Chemistry Using the Atacama Large Millimeter/Submillimeter Array

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin A.; Nixon, Conor; Charnley, Steven B.; Teanby, Nick; Irwin, Pat; Serigano, Joseph; Palmer, Maureen; Kisiel, Zbigniew

    2015-01-01

    Titan is Saturn's largest moon, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and other species of possible pre-biotic relevance. Titan's carbon-rich atmosphere may be analogous to that of primitive terrestrial planets throughout the universe, yet its origin, evolution and complete chemical inventory are not well understood. Here we present spatially-resolved maps of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH in Titan's atmosphere, observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in 2012-2013. These data show previously-undetected spatial structures for the observed species and provide the first spectroscopic detection of C2H5CN on Titan. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with photochemical production and transport in the upper atmosphere followed by subsidence over the poles. The HNC emission peaks are offset from the polar axis, indicating that Titan's mesosphere may be more longitudinally variable than previously thought.

  8. A Design Comparison of Atmospheric Flight Vehicles for the Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Wright, Henry S.; Lewis, Mark J.

    2005-01-01

    Titan, the largest moon of Saturn, is one of the most scientifically interesting locations in the Solar System. With a very cold atmosphere that is five times as dense as Earth s, and one and a half times the surface pressure, it also provides one of the most aeronautically fascinating environments known to humankind. While this may seem the ideal place to attempt atmospheric flight, many challenges await any vehicle attempting to navigate through it. In addition to these physical challenges, any scientific exploration mission to Titan will most likely have several operational constraints. One difficult constraint is the desire for a global survey of the planet and thus, a long duration flight within the atmosphere. Since many of the scientific measurements that would be unique to a vehicle flying through the atmosphere (as opposed to an orbiting spacecraft) desire near-surface positioning of their associated instruments, the vehicle must also be able to fly within the first scale height of the atmosphere. Another difficult constraint is that interaction with the surface, whether by landing or dropped probe, is also highly desirable from a scientific perspective. Two common atmospheric flight platforms that might be used for this mission are the airplane and airship. Under the assumption of a mission architecture that would involve an orbiting relay spacecraft delivered via aerocapture and an atmospheric flight vehicle delivered via direct entry, designs were developed for both platforms that are unique to Titan. Consequently, after a viable design was achieved for each platform, their advantages and disadvantages were compared. This comparison included such factors as deployment risk, surface interaction capability, mass, and design heritage. When considering all factors, the preferred candidate platform for a global survey of Titan is an airship.

  9. Effect of Diffuse Backscatter in Cassini Datasets on the Inferred Properties of Titan's surface

    NASA Astrophysics Data System (ADS)

    Sultan-Salem, A. K.; Tyler, G. L.

    2006-12-01

    Microwave (2.18 cm-λ) backscatter data for the surface of Titan obtained with the Cassini Radar instrument exhibit a significant diffuse scattering component. An empirical scattering law of the form Acos^{n}θ, with free parameters A and n, is often employed to model diffuse scattering, which may involve one or more unidentified mechanisms and processes, such as volume scattering and scattering from surface structure that is much smaller than the electromagnetic wavelength used to probe the surface. The cosine law in general is not explicit in its dependence on either the surface structure or electromagnetic parameters. Further, the cosine law often is only a poor representation of the observed diffuse scattering, as can be inferred from computation of standard goodness-of-fit measures such as the statistical significance. We fit four Cassini datasets (TA Inbound and Outbound, T3 Outbound, and T8 Inbound) with a linear combination of a cosine law and a generalized fractal-based quasi-specular scattering law (A. K. Sultan- Salem and G. L. Tyler, J. Geophys. Res., 111, E06S08, doi:10.1029/2005JE002540, 2006), in order to demonstrate how the presence of diffuse scattering increases considerably the uncertainty in surface parameters inferred from the quasi-specular component, typically the dielectric constant of the surface material and the surface root-mean-square slope. This uncertainty impacts inferences concerning the physical properties of the surfaces that display mixed scattering properties.

  10. Role of Fluids in Mechanics of Overthrust Faulting on Titan

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Radebaugh, J.; Harris, R. A.; Christiansen, E. H.

    2013-12-01

    Since Cassini has unveiled Titan's surface, its mountains have been commonly associated with contractional tectonism. However, in order to form contractional structures on icy satellites, relatively large stresses are required. The stress required to form contractional structures on Ganymede and Europa is 3-8 times that required for extensional features. Sources of such stresses probably do not exist for most icy satellites. Therefore, a paradox has emerged, wherein no stress source is known that is large enough to produce the contractional structures observed on Titan. A possible solution for the strength paradox is inspired by Hubbert and Rubey (1959) who demonstrated how high fluid pressures reduce the normal stress along a fault plane, therefore significantly reducing frictional resistance to thrusting. Since liquid hydrocarbons have been identified on Titan's surface and may flow in the subsurface, we speculate that fluid pressures associated with liquid hydrocarbons in the subsurface significantly reduce the shear strength of the icy crust and enable contractional structures to form without the requiring large stresses. We use critical wedge theory, which is a mechanism for driving fold-and-thrust belt formation, to test if the slope angles of mountains and crustal conditions with estimated fluid pressures favor the formation of fold-thrust belts on Titan. We evaluated 6 mountain belts with available Cassini SARTopo data using critical wedge calculations. The slopes of 10 traces from valley floors to summits are between 0.4 and 2.5 degrees. We use the measured slopes with varying friction coefficients and fluid pressures to calculate the range of dip angles. The results yielded 840 dip angle values, 689 (82%) of which were in a reasonable range, and consistent with fold belt formation in critical wedge settings. We conclude that crustal liquids have played a key role in Titan's tectonic history. Our results highlight the significance of fluids in planetary lithospheres and have implications for tectonics on all solid bodies that may have fluid in their lithospheres, now or in the past. Reference: Hubbert, M. K. & Rubey, W. W. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull. 70, 2, 115-166 (1959).

  11. The Huygens Descent Trajectory Working Group and the Reconstruction of the Huygens Probe Entry and Descent Trajectory at Titan

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Kazeminejad, Bobby; Lebreton, Jean-Pierre

    2015-04-01

    Cassini/Huygens, a flagship mission to explore the rings, atmosphere, magnetic field, and moons that make up the Saturn system, is a joint endeavor of NASA, the European Space Agency, and Agenzia Spaziale Italiana. Comprising two spacecraft - a Saturn orbiter built by NASA and a Titan entry/descent probe built by the European Space Agency - Cassini/Huygens was launched in October 1997 and arrived at Saturn in 2004. The Huygens probe parachuted to the surface of Titan in January 2005. During the descent, six science instruments provided measurements of Titan's atmosphere, clouds, and winds, and photographed Titan's surface. It was recognized early in the Huygens program that to correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for ground truth calibration of the Cassini orbiter remote sensing observations, an accurate reconstruction of the probe entry and descent trajectory and surface landing location would be necessary. The Huygens Descent Trajectory Working Group (DTWG) was chartered in 1996 as a subgroup of the Huygens Science Working Team. With membership comprising representatives from all the probe engineering and instrument teams as well as representatives of industry and the Cassini and Huygens Project Scientists, the DTWG presented an organizational framework within which instrument data was shared, the entry and descent trajectory reconstruction implemented, and the trajectory reconstruction efficiently disseminated. The primary goal of the Descent Trajectory Working Group was to develop retrieval methodologies for the probe descent trajectory reconstruction from the entry interface altitude of 1270 km to the surface using navigation data, and engineering and science data acquired by the instruments on the Huygens Probe, and to provide a reconstruction of the Huygens probe trajectory from entry to the surface of Titan that is maximally consistent with all available engineering and science data sets. The official project entry and descent trajectory reconstruction effort was published by the DTWG in 2007. A revised descent trajectory was released in 2010 that accounts for updated measurements of Titan's pole coordinates derived from radar images of Titan taken during Cassini flybys after 2007. The effect of the updated pole positions on Huygens is a southward shift of the trajectory by about 0.3 degrees with a much smaller effect of less than 0.01 degree in the zonal (west to east) direction. The revised Huygens landing coordinates of 192.335 degrees West and 10.573 degrees South with longitude and latitude residuals of respectively 0.035 degrees and 0.007 degrees, respectively, are in excellent agreement with results of recent landing site investigations using visual and radar images from the Cassini VIMS instrument. Acknowledgements *J.-P.L's work was performed while at ESA/ESTEC. DA and BK would like to express appreciation to the European Space Agency's Research and Scientific Support Department for funding the Descent Trajectory Working Group. The work of the Descent Trajectory Working Group would not have been possible without the dedicated efforts of all the Huygens principal investigators and their teams, and the science and engineering data provided from each experiment team, including M. Fulchignoni and the HASI Team, H. Niemann and the GCMS Team, J. Zarnecki and the SSP Team, M. Tomasko and the DISR Team, M. Bird and the DWE Team, and G. Israel and the ACP Team. Additionally, special thanks for many years of support to D.L. Matson, R.T. Mitchell, M. Pérez-Ayúcar, O. Witasse; J. Jones, D. Roth, N. Strange on the Cassini Navigation Team at JPL; A.-M. Schipper and P. Couzin at Thales Alenia; C. Sollazzo, D. Salt, J. Wheadon and S. Standley from the Huygens Ops Team; and R. Trautner and H. Svedhem on the Radar Team at ESTEC.

  12. Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity

    USGS Publications Warehouse

    Nelson, R.M.; Kamp, L.W.; Matson, D.L.; Irwin, P.G.J.; Baines, K.H.; Boryta, M.D.; Leader, F.E.; Jaumann, R.; Smythe, W.D.; Sotin, Christophe; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Pearl, J.C.; Hapke, B.W.; Lunine, J.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, R.Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.

    2009-01-01

    Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March–April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH3 frost over a water ice substrate. NH3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).

  13. Impact-Induced Climate Change on Titan

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Korycansky, Donald

    2012-01-01

    Titan's thick atmosphere and volatile surface cause it to respond to big impacts like the one that produced the prominent Menrva impact basin in a somewhat Earth-like manner. Menrva was big enough to raise the surface temperature by 100 K. If methane in the regolith is generally as abundant as it was at the Huygens landing site, Menrva would have been big enough to double the amount of methane in the atmosphere. The extra methane would have drizzled out of the atmosphere over hundreds of years. Conditions may have been favorable for clathrating volatiles such as ethane. Impacts can also create local crater lakes set in warm ice but these quickly sink below the warm ice; whether the cryptic waters quickly freeze by mixing with the ice crust or whether they long endure under the ice remains a open question. Bigger impacts can create shallow liquid water oceans at the surface. If Titan's crust is made of water ice, the putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al 2009) would have raised the average surface temperature to 350-400 K. Water rain would have fallen and global meltwaters would have averaged 50 m to as much as 500 m deep. The meltwaters may not have lasted more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth.

  14. Titan Cells Confer Protection from Phagocytosis in Cryptococcus neoformans Infections

    PubMed Central

    Okagaki, Laura H.

    2012-01-01

    The human fungal pathogen Cryptococcus neoformans produces an enlarged “titan” cell morphology when exposed to the host pulmonary environment. Titan cells exhibit traits that promote survival in the host. Previous studies showed that titan cells are not phagocytosed and that increased titan cell production in the lungs results in reduced phagocytosis of cryptococcal cells by host immune cells. Here, the effect of titan cell production on host-pathogen interactions during early stages of pulmonary cryptococcosis was explored. The relationship between titan cell production and phagocytosis was found to be nonlinear; moderate increases in titan cell production resulted in profound decreases in phagocytosis, with significant differences occurring within the first 24 h of the infection. Not only were titan cells themselves protected from phagocytosis, but titan cell formation also conferred protection from phagocytosis to normal-size cryptococcal cells. Large particles introduced into the lungs were not phagocytosed, suggesting the large size of titan cells protects against phagocytosis. The presence of large particles was unable to protect smaller particles from phagocytosis, revealing that titan cell size alone is not sufficient to provide the observed cross-protection of normal-size cryptococcal cells. These data suggest that titan cells play a critical role in establishment of the pulmonary infection by promoting the survival of the entire population of cryptococcal cells. PMID:22544904

  15. Reaction Profiles and Molecular Dynamics Simulations of Cyanide Radical Reactions Relevant to Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Trinidad Pérez-Rivera, Danilo; Romani, Paul N.; Lopez-Encarnacion, Juan Manuel

    2016-10-01

    Titan's atmosphere is arguably the atmosphere of greatest interest that we have an abundance of data for from both ground based and spacecraft observations. As we have learned more about Titan's atmospheric composition, the presence of pre-biotic molecules in its atmosphere has generated more and more fascination about the photochemical process and pathways it its atmosphere. Our computational laboratory has been extensively working throughout the past year characterizing nitrile synthesis reactions, making significant progress on the energetics and dynamics of the reactions of .CN with the hydrocarbons acetylene (C2H2), propylene (CH3CCH), and benzene (C6H6), developing a clear picture of the mechanistic aspects through which these three reactions proceed. Specifically, first principles calculations of the reaction profiles and molecular dynamics studies for gas-phase reactions of .CN and C2H2, .CN and CH3CCH, and .CN and C6H6 have been carried out. A very accurate determination of potential energy surfaces of these reactions will allow us to compute the reaction rates which are indispensable for photochemical modeling of Titan's atmosphere.The work at University of Puerto Rico at Cayey was supported by Puerto Rico NASA EPSCoR IDEAS-ER program (2015-2016) and DTPR was sponsored by the Puerto Rico NASA Space Grant Consortium Fellowship. *E-mail: juan.lopez15@upr.edu

  16. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan.

    PubMed

    Black, Benjamin A; Perron, J Taylor; Hemingway, Douglas; Bailey, Elizabeth; Nimmo, Francis; Zebker, Howard

    2017-05-19

    Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth. Copyright © 2017, American Association for the Advancement of Science.

  17. Space exploration: The interstellar goal and Titan demonstration

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed.

  18. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  19. Exploration of the Saturn System by the Cassini Mission: Observations with the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.

    2014-01-01

    Outline: Introduction to the Cassini mission, and Cassini mission Objectives; Cassini spacecraft, instruments, launch, and orbit insertion; Saturn, Rings, and Satellite, Titan; Composite Infrared Spectrometer (CIRS); and Infrared observations of Saturn and titan.

  20. Titan Mare Explorer (TiME): A Discovery Mission to Titan’s Hydrocarbon Lakes

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Stofan, E. R.; Lunine, J. I.; Kirk, R. L.; Mahaffy, P. R.; Bierhaus, B.; Aharonson, O.; Clark, B. C.; Kantsiper, B.; Ravine, M. A.; Waite, J. H.; Harri, A.; Griffith, C. A.; Trainer, M. G.

    2009-12-01

    The discovery of lakes in Titan’s high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan’s methane cycle, along with the prebiotic chemistry and implications for habitability of Titan’s lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan’s methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

Top