Sample records for tld systems

  1. Evaluation of Effective Sources in Uncertainty Measurements of Personal Dosimetry by a Harshaw TLD System

    PubMed Central

    Hosseini Pooya, SM; Orouji, T

    2014-01-01

    Background: The accurate results of the individual doses in personal dosimety which are reported by the service providers in personal dosimetry are very important. There are national / international criteria for acceptable dosimetry system performance. Objective: In this research, the sources of uncertainties are identified, measured and calculated in a personal dosimetry system by TLD. Method: These sources are included; inhomogeneity of TLDs sensitivity, variability of TLD readings due to limited sensitivity and background, energy dependence, directional dependence, non-linearity of the response, fading, dependent on ambient temperature / humidity and calibration errors, which may affect on the dose responses. Some parameters which influence on the above sources of uncertainty are studied for Harshaw TLD-100 cards dosimeters as well as the hot gas Harshaw 6600 TLD reader system. Results: The individual uncertainties of each sources was measured less than 6.7% in 68% confidence level. The total uncertainty was calculated 17.5% with 95% confidence level. Conclusion: The TLD-100 personal dosimeters as well as the Harshaw TLD-100 reader 6600 system show the total uncertainty value which is less than that of admissible value of 42% for personal dosimetry services. PMID:25505769

  2. TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration.

    PubMed

    Alvarez, P; Kry, S F; Stingo, F; Followill, D

    2017-11-01

    The Imaging and Radiation Oncology Core QA Center in Houston (IROC-H) performs remote dosimetry audits of more than 20,000 megavoltage photon and electron beams each year. Both a thermoluminescent dosimeter (TLD-100) and optically stimulated luminescent dosimeter (OSLD; nanoDot) system are commissioned for this task, with the OSLD system being predominant due to the more time-efficient read-out process. The measurement apparatus includes 3 TLD or 2 OSLD in an acrylic mini-phantom, which are irradiated by the institution under reference geometry. Dosimetry systems are calibrated based on the signal-to-dose conversion established with reference dosimeters irradiated in a Co-60 beam, using a reference dose of 300 cGy for TLD and 100 cGy for OSLD. The uncertainty in the dose determination is 1.3% for TLD and 1.6% for OSLD at the one sigma level. This accuracy allows for a tolerance of ±5% to be used.

  3. Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters.

    PubMed

    Kirby, T H; Hanson, W F; Johnston, D A

    1992-01-01

    Thermoluminescence dosimeters (TLD) are widely used to verify absorbed doses delivered from radiation therapy beams. Specifically, they are used by the Radiological Physics Center for mailed dosimetry for verification of therapy machine output. The effects of the random experimental uncertainties of various factors on dose calculations from TLD signals are examined, including: fading, dose response nonlinearity, and energy response corrections; reproducibility of TL signal measurements and TLD reader calibration. Individual uncertainties are combined to estimate the total uncertainty due to random fluctuations. The Radiological Physics Center's (RPC) mail out TLD system, utilizing throwaway LiF powder to monitor high-energy photon and electron beam outputs, is analyzed in detail. The technique may also be applicable to other TLD systems. It is shown that statements of +/- 2% dose uncertainty and +/- 5% action criterion for TLD dosimetry are reasonable when related to uncertainties in the dose calculations, provided the standard deviation (s.d.) of TL readings is 1.5% or better.

  4. Nonuniform Irradiation of the Canine Intestine. 2. Dosimetry

    DTIC Science & Technology

    1990-01-01

    irradiation is accurate assessment In vivo dosimetry was done using Harshaw (Solon, Ohio) TLD - 100 lith- of the injury after either accidental or... vivo TLD dosimetry system allowed measure- 5 and 6. The dose was determined from the median TLD ment of the °Co dose deposited in the canine small...provide replicate measurements. Two separate dosimetry tubes were deveoped (Fig. 1). The first contained 30 TLD cap- doses (1). Nevertheless, current

  5. Microprocessor controlled portable TLD system

    NASA Technical Reports Server (NTRS)

    Apathy, I.; Deme, S.; Feher, I.

    1996-01-01

    An up-to-date microprocessor controlled thermoluminescence dosemeter (TLD) system for environmental and space dose measurements has been developed. The earlier version of the portable TLD system, Pille, was successfully used on Soviet orbital stations as well as on the US Space Shuttle, and for environmental monitoring. The new portable TLD system, Pille'95, consists of a reader and TL bulb dosemeters, and each dosemeter is provided with an EEPROM chip for automatic identification. The glow curve data are digitised and analysed by the program of the reader. The measured data and the identification number appear on the LED display of the reader. Up to several thousand measured data together with the glow curves can be stored on a removable flash memory card. The whole system is supplied either from built-in rechargeable batteries or from the mains of the space station.

  6. Nonlinear multimodal model for TLD of irregular tank geometry and small fluid depth

    NASA Astrophysics Data System (ADS)

    Love, J. S.; Tait, M. J.

    2013-11-01

    Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman-Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure-TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.

  7. Measurement of dose given by Co-60 in radiotherapy with TLD-500

    NASA Astrophysics Data System (ADS)

    Tanır, Güneş; Cengiz, Ferhat; Hicabi Bölükdemir, M.

    2012-04-01

    The uses of dosimeters based on optically stimulated luminescence technique have become widespread in clinical applications. In the present study, the dose values given by Cobalt-60 radiotherapy machine were measured with optically stimulated luminescence (OSL) technique using TLD-500 and compared with those of commonly used ionization chamber dosimeter system. The percentage depth dose (DD%) values and graphs were formed. OSL system with TLD-500 can be reliably used as medical and personal dosimeter.

  8. Thermoluminescent dosimeters (TLD) quality assurance network in the Czech Republic.

    PubMed

    Kroutilķková, Daniela; Novotný, Josef; Judas, Libor

    2003-02-01

    The Czech thermoluminescent dosimeters (TLD) quality assurance network was established in 1997. Its aim is to pursue a regular independent quality audit in Czech radiotherapy centres and to support state supervision. The audit is realised via mailed TL dosimetry. The TLD system consists of encapsulated LiF:Mg,Ti powder (type MT-N) read with Harshaw manual reader model 4000. Basic mode of the TLD audit covers measurements under reference conditions, specifically beam calibration checks for all clinically used photon and electron beams. Advanced mode consists of measurements under both reference and non-reference conditions using a solid multipurpose phantom ('Leuven phantom') for photon beams. The radiotherapy centres are instructed to deliver to the TLD on central beam axis absorbed dose of 2 Gy calculated with their treatment planning system for a particular treatment set-up. The TLD measured doses are compared with the calculated ones. Deviations of +/-3% are considered acceptable for both basic and advanced mode of the audit. There are 34 radiotherapy centres in the Czech Republic. They undergo the basic mode of the TLD audit regularly every 2 years. If a centre shows a deviation outside the acceptance level, it is audited more often. Presently, most of the checked beams comply with the acceptance level. The advanced TLD audit has been implemented as a pilot study for the present. The results were mostly within the acceptance limit for the measurements on-axis, whereas for off-axis points they fell beyond the limit more frequently, especially for set-ups with inhomogeneities, oblique incidence and wedges. The results prove the importance of the national TLD quality assurance network. It has contributed to the improvement of clinical dosimetry in the Czech Republic. In addition, it helps the regulatory authority to monitor effectively and regularly radiotherapy centres.

  9. SU-E-T-308: Systematic Characterization of the Energy Response of Different LiF TLD Crystals for Dosimetry Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, E; Caprile, P; Sanchez-Nieto, B

    Purpose: The thermoluminiscense dosimeters (TLDs) are widely used in personal and clinical dosimetry due to its small size, good sensitivity and tissue equivalence, among other advantages. This study presents the characterization of Lithium Fluoride based TLDs, in terms of their absorbed dose response to successive irradiation cycles in a broad range of beam energies, measured under reference conditions. Methods: Four types of Harshaw TLD chips were used: TLD-100, TLD-600 TLD-700 and 100-H. They were irradiated with 10 photon beams of different energy spectrums, from 28 kVp to 18MV (in 30 consecutive cycles for 6 and 18 MV). Results: It wasmore » found that the response of the dosimetric system was stabilized (less than ±3%) after 10 cycles for TLD-600 and TLD-700. In the case of TLD-100 and TLD-100H this dependence was not observed. A decreased response to increasing beam energy in terms of absorbed dose to water was observed, as expected, except for TLD-100H which showed the opposite behavior. The less energy dependent detector was the TLD-100H exhibiting a maximum deviation of 12%. The highest variation observed was 33% for TLD-100. The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy. Conclusion: The study allowed the determination of calibration factors in absorbed dose for a wide range of energies and materials for different dosimetric applications, such as in-vivo dosimetry during imaging and radiotherapy.« less

  10. Dose Analysis of the Model 112A Pulserad Pulsed X-Ray Generator by Its Cyltran

    DTIC Science & Technology

    1989-12-01

    field was performed by R. B. Pietruszka [Ref. 1] using the dosimetry system which consists of Thermoluminescent Dosimeter ( TLD ) and associated TLD ...has the same pattern at a specific angle of the dominant electron flow. For a Marx charge of 75 kV, Figure 18 shows the absorbed dose in TLD normalized... Electron energy (1.66 MeV to 0.05 MeV) 3 materials 56 minutes 45 minutes (Ta, Al, TLD ) 68 APPENDIX F. MEASURED EXPOSURE VARIATION Marx Charge 75 kV

  11. Positional glow curve simulation for thermoluminescent detector (TLD) system design

    NASA Astrophysics Data System (ADS)

    Branch, C. J.; Kearfott, K. J.

    1999-02-01

    Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.

  12. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy.

    PubMed

    Kinhikar, Rajesh A; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M; Dhote, Dipak S; Deshpande, Deepak D

    2009-09-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.

  13. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Lin, Y; Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure ismore » 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)« less

  14. Verification of an on line in vivo semiconductor dosimetry system for TBI with two TLD procedures.

    PubMed

    Sánchez-Doblado, F; Terrón, J A; Sánchez-Nieto, B; Arráns, R; Errazquin, L; Biggs, D; Lee, C; Núñez, L; Delgado, A; Muñiz, J L

    1995-01-01

    This work presents the verification of an on line in vivo dosimetry system based on semiconductors. Software and hardware has been designed to convert the diode signal into absorbed dose. Final verification was made in the form of an intercomparison with two independent thermoluminiscent (TLD) dosimetry systems, under TBI conditions.

  15. Ada Compiler Validation Summary Report: Certificate Number: 940305W1. 11335 TLD Systems, Ltd. TLD Comanche VAX/i960 Ada Compiler System, Version 4.1.1 VAX Cluster under VMS 5.5 = Tronix JIAWG Execution Vehicle (i960MX) under TLD Real Time Executive, Version 4.1.1

    DTIC Science & Technology

    1994-03-14

    Comanche VAX/i960 Ada Compiler System, Version 4.1.1 Host Computer System: Digital Local Area Network VAX Cluster executing on (2) MicroVAX 3100 Model 90...31 $MAX DIGITS 15 SmNx INT 2147483647 $MAX INT PLUS_1 2147483648 $MIN IN -2_147483648 A-3 MACR PARAMEERIS $NAME NO SUCH INTEGER TYPE $NAME LIST...nested generlcs are Supported and generics defined in libary units are pexitted. zt is not possible to pen ore a macro instantiation for a generic I

  16. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    PubMed

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a check of the whole dosimetry chain for this type of brachytherapy afterloading system and can easily be performed by mail to any institution in the European area and elsewhere. Such an external audit can be an efficient QC method complementary to internal quality control as it can reveal some errors which are not observable by other means.

  17. Type Testing of Model 7200 Automatic TLD Reader.

    PubMed

    Malek Mohammadi, M; Hosseini Pooya, S M

    2017-04-20

    The type testing of measuring devices is one of the most important parts of a quality management system in a personal dosimetry services program. In this study, based upon the International Electrotechnical Commission (IEC) 62387 criteria, a reader-testing program was performed for a home-made personal thermoluminescent dosimetry (TLD) reader. The stability of the reader, the effects of light exposure, temperature and fluctuations of primary power supply on TLD read-outs as the main parameters were investigated in this program. Moreover, this study assesses some important criteria of dosimetry system including the non-linearity of response, reusability, after effect and overload that may include significant contribution in the performance of a reader. The results showed that the TLD reader met all requirements of the IEC for the reader tests by a large margin. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gökçe, M., E-mail: mgokce@adu.edu.tr; Uslu, D. Koçyiğit; Ertunç, C.

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3more » percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.« less

  19. SU-G-201-08: Energy Response of Thermoluminescent Microcube Dosimeters in Water for Kilovoltage X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maso, L; Lawless, M; Culberson, W

    Purpose: To characterize the energy dependence for TLD-100 microcubes in water at kilovoltage energies. Methods: TLD-100 microcubes with dimensions of (1 × 1 × 1) mm{sup 3} were irradiated with kilovoltage x-rays in a custom-built thin-window liquid water phantom. The TLD-100 microcubes were held in Virtual Water™ probes and aligned at a 2 cm depth in water. Irradiations were performed using the M-series x-ray beams of energies ranging from 50-250 kVp and normalized to a {sup 60}Co beam located at the UWADCL. Simulations using the EGSnrc Monte Carlo Code System were performed to model the x-ray beams, the {sup 60}Comore » beam, the water phantom and the dosimeters in the phantom. The egs-chamber user code was used to tally the dose to the TLDs and the dose to water. The measurements and calculations were used to determine the intrinsic energy dependence, absorbed-dose energy dependence, and absorbed-dose sensitivity. These values were compared to TLD-100 chips with dimensions of (3.2 × 0.9 × 0.9) mm{sup 3}. Results: The measured TLD-100 microcube response per dose to water among all investigated x-ray energies had a maximum percent difference of 61% relative to {sup 60}Co. The simulated ratio of dose to water to the dose to TLD had a maximum percent difference of 29% relative to {sup 60}Co. The ratio of dose to TLD to the TLD output had a maximum percent difference of 13% relative to {sup 60}Co. The maximum percent difference for the absorbed-dose sensitivity was 15% more than the used value of 1.41. Conclusion: These results confirm that differences in beam quality have a significant effect on TLD response when irradiated in water. These results also indicated a difference in TLD-100 response between microcube and chip geometries. The intrinsic energy dependence and the absorbed-dose energy dependence deviated up to 10% between TLD-100 microcubes and chips.« less

  20. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    PubMed

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  1. Verification of calculated skin doses in postmastectomy helical tomotherapy.

    PubMed

    Ito, Shima; Parker, Brent C; Levine, Renee; Sanders, Mary Ella; Fontenot, Jonas; Gibbons, John; Hogstrom, Kenneth

    2011-10-01

    To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi·Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. The mean difference and standard error of the mean difference between measurement and calculation for the scar measurements was -1.8% ± 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% ± 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% ± 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Verification of Calculated Skin Doses in Postmastectomy Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Shima; Parker, Brent C., E-mail: bcparker@marybird.com; Mary Bird Perkins Cancer Center, Baton Rouge, LA

    2011-10-01

    Purpose: To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). Methods and Materials: In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi.Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. Results: The mean difference and standard errormore » of the mean difference between measurement and calculation for the scar measurements was -1.8% {+-} 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% {+-} 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% {+-} 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. Conclusions: The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%.« less

  3. A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.

    PubMed

    Soares, C G; Ehrlich, M; Padikal, T N; Gromadzki, Z C

    1982-11-01

    Radiation-therapy dosimetry surveys employing thermoluminescence dosimeters (TLDs) are now being considered for high-energy electron beams. Using a system of individually calibrated pressed LiF TLDs in a water and a polystyrene phantom, we established that the distortions of depth-dose distributions in non-conducting materials previously observed at high absorbed doses and high dose rates were not detectable in the present geometry at doses and dose rates as much as 40 times higher than those employed in radiation therapy. The system was then used to measure TLD response in water and in polystyrene in the nominal electron-energy range from 7 to 18 MeV. In the water phantom, the well-known trend for TLD response to decrease with increasing electron energy was observed. In the polystyrene phantom, TLD response was found to be independent of electron energy.

  4. The use of LiF (TLD-100) as an out-of-field dosimeter.

    PubMed

    Kry, Stephen F; Price, Michael; Followill, David; Mourtada, Firas; Salehpour, Mohammad

    2007-09-24

    The commonly used thermoluminescent dosimeter TLD-100 (Harshaw Chemical Company, Solon, OH) responds not only to photons and electrons, but also to neutrons that are produced during high-energy therapies. As a result, TLD-100 measurements outside of the treatment field are suspect when high-energy radiation is used. Although alternatives such as TLD-700 do not respond to neutrons, specialty dosimeters of this kind are expensive and are not routinely used in most clinics. In the current study, we examined the accuracy of TLD-100 in measuring the out-of-field photon dose as a function of treatment energy. To determine the accuracy of TLD-100 as compared with TLD-700, TLD-100 was irradiated outside of the treatment field by medical accelerators operated at 6, 10, 15, and 18 MV. In an effort to eliminate the response of TLD-100 to neutrons, TLD capsules were encased in varying thicknesses of cadmium foil (0.25 - 0.75 mm) before being irradiated at 18 MV. The out-of-field TLD-100 was found to be accurate at 6 MV and 10 MV, but to be substantially over-responsive at 15 MV and 18 MV (by up to 1063% relative to TLD-700). By wrapping the TLD-100 in up to 0.75 mm of cadmium, it was possible to drastically reduce (down to 39% on average) the over-response of the TLD-100; however, total removal of the over-responsiveness was not possible. Although TLD-100 is well suited for measuring out-of-field dose at energies as high as 10 MV, at higher energies (15 MV or greater), this dosimeter over-responds substantially and should not be used. Although encasing the TLD in cadmium minimized over-response to a degree, the reduction was not sufficient to make TLD-100 viable for measuring out-of-field dose at high treatment energies.

  5. Two-dimensional dosimetry of radiotherapeutical proton beams using thermoluminescence foils.

    PubMed

    Czopyk, L; Klosowski, M; Olko, P; Swakon, J; Waligorski, M P R; Kajdrowicz, T; Cuttone, G; Cirrone, G A P; Di Rosa, F

    2007-01-01

    In modern radiation therapy such as intensity modulated radiation therapy or proton therapy, one is able to cover the target volume with improved dose conformation and to spare surrounding tissue with help of modern measurement techniques. Novel thermoluminescence dosimetry (TLD) foils, developed from the hot-pressed mixture of LiF:Mg,Cu,P (MCP TL) powder and ethylene-tetrafluoroethylene (ETFE) copolymer, have been applied for 2-D dosimetry of radiotherapeutical proton beams at INFN Catania and IFJ Krakow. A TLD reader with 70 mm heating plate and CCD camera was used to read the 2-D emission pattern of irradiated foils. The absorbed dose profiles were evaluated, taking into account correction factors specific for TLD such as dose and energy response. TLD foils were applied for measuring of dose distributions within an eye phantom and compared with predictions obtained from the MCNPX code and Eclipse Ocular Proton Planning (Varian Medical Systems) clinical radiotherapy planning system. We demonstrate the possibility of measuring 2-D dose distributions with point resolution of about 0.5 x 0.5 mm(2).

  6. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method.

    PubMed

    HosseiniAliabadi, S J; Hosseini Pooya, S M; Afarideh, H; Mianji, F

    2015-06-01

    The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. This system can be utilized in large scale environmental monitoring with a higher accuracy.

  7. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    NASA Astrophysics Data System (ADS)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  8. Determination of quality parameters from statistical analysis of routine TLD dosimetry data.

    PubMed

    German, U; Weinstein, M; Pelled, O

    2006-01-01

    Following the as low as reasonably achievable (ALARA) practice, there is a need to measure very low doses, of the same order of magnitude as the natural background, and the limits of detection of the dosimetry systems. The different contributions of the background signals to the total zero dose reading of thermoluminescence dosemeter (TLD) cards were analysed by using the common basic definitions of statistical indicators: the critical level (L(C)), the detection limit (L(D)) and the determination limit (L(Q)). These key statistical parameters for the system operated at NRC-Negev were quantified, based on the history of readings of the calibration cards in use. The electronic noise seems to play a minor role, but the reading of the Teflon coating (without the presence of a TLD crystal) gave a significant contribution.

  9. Depth dose and off-axis characteristics of TLD in therapeutic pion beams.

    PubMed

    Hogstrom, K R; Irifune, T

    1980-07-01

    The thermoluminescent (TL) response of LiF (TLD-100, TLD-600, TLD-700) and Li2B4O7 (TLD-800) has been measured as a function of depth and off-axis position in a therapeutic negative-pion beam in order to evaluate their usefulness in pion radiotherapy. TLD-100, TLD-600, and TLD-800 have been shown to be of little use as in vivo dosemeters because the neutron kerma relative to that in tissue changes grossly with depth. The neutron source comes primarily from pion absorption in the lead-alloy collimator. The 200 degrees C TLD-700 response agrees well with the depth dose spectra, except for small changes due to the varying linear energy transfer (LET) distributions. This variation can be partially accounted for by incorporating the known LET response of LiF. The 260 degrees C peak of TLD-700 has been found to be approximately four times more sensitive than the 200 degrees C peak to high LET dose. Using a simple model of the LET responses, the measured 200 degrees C and 260 degrees C peaks predict total dose within +/- 4% and high LET dose within +/- 50%, therefore indicating TLD-700 to be a good in vivo dosemeter for total dose but only an indicator of high LET dose.

  10. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kry, S.

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  11. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3)more » To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.« less

  12. A combined TLD/emulsion method of sampling dosimetry applied to Apollo missions

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1979-01-01

    A system which simplifies the complex monitoring methods used to measure the astronaut's radiation exposure in space is proposed. The excess dose equivalents of trapped protons and secondary neutrons, protons, and alpha particles from local nuclear interactions are determined and a combined thermoluminescent dosimeter (TLD)/nuclear emulsion method which measures the absorbed dose with thermoluminescent dosimeter chips is presented.

  13. Preliminary Studies of Thermoluminescence Dosimeter (TLD) CaSO4:Dy Synthesis

    NASA Astrophysics Data System (ADS)

    Nuraeni, N.; Iskandar, F.; Waris, A.; Haryanto, F.

    2017-07-01

    Thermoluminescence dosimeter (TLD) CaSO4:Dy was synthesised by coprecipitation. The TLD was observed after radiation exposure to Strontium-90. The thermoluminescence intensity was read using a TLD Reader Harshaw 3500. The thermoluminescent response obtained was 59.29 nC. Then re-annealing was conducted with the temperature varied at 700, 800 and 900 °C. The thermoluminescent intensity obtained at temperatures of 700 °C, 800 °C and 900 °C was 66.12 nC, 169.45 nC, and 552.37 nC respectively. The sensitivity of the TLD increased in response to the re-annealing temperature rise. In addition to observing the thermoluminescence properties, a comparison was made between the TLD obtained from this experiment with an existing TLD in the market. Finally, also the glow-curve characteristics of the TLD were observed.

  14. Robust determination of effective atomic numbers for electron interactions with TLD-100 and TLD-100H thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Taylor, M. L.

    2011-04-01

    Lithium fluoride thermoluminescent dosimeters (TLD) are the most commonly implemented for clinical dosimetry. The small physical magnitude of TLDs makes them attractive for applications such as small field measurement, in vivo dosimetry and measurement of out-of-field doses to critical structures. The most broadly used TLD is TLD-100 (LiF:Mg,Ti) and, for applications requiring higher sensitivity to low-doses, TLD-100H (LiF:Mg,Cu,P) is frequently employed. The radiological properties of these TLDs are therefore of significant interest. For the first time, in this study effective atomic numbers for radiative, collisional and total electron interaction processes are calculated for TLD-100 and TLD-100H dosimeters over the energy range 1 keV-100 MeV. This is undertaken using a robust, energy-dependent method of calculation rather than typical power-law approximations. The influence of dopant concentrations and unwanted impurities is also investigated. The two TLDs exhibit similar effective atomic numbers, ranging from approximately 5.77-6.51. Differences arising from the different dopants are most pronounced in low-energy radiative effects. The TLDs have atomic numbers approximately 1.48-2.06 times that of water. The effective atomic number of TLD-100H is consistently higher than that of TLD-100 over a broad energy range, due to the greater influence of the higher- Z dopants on the electron interaction cross sections. Typical variation in dopant concentration does not significantly influence the effective atomic number. The influence on TLD-100H is comparatively more pronounced than that on TLD-100. Contrariwise, unwanted hydroxide impurities influence TLD-100 more than TLD-100H. The effective atomic number is a key parameter that influences the radiological properties and energy response of TLDs. Although many properties of these TLDs have been studied rigorously, as yet there has been no investigation of their effective atomic numbers for electron interactions. The discrepancy between the effective atomic numbers of the TLDs and water is significantly higher than would be indicated by comparing effective atomic numbers calculated via the common - but dubious - power-law method. The mean effective numbers over the full energy range are 6.06, 6.09, 3.34 and 3.37 for TLD-100, TLD-100H, soft tissue and water respectively.

  15. The Origins of Specificity in the Microcin-Processing Protease TldD/E.

    PubMed

    Ghilarov, Dmitry; Serebryakova, Marina; Stevenson, Clare E M; Hearnshaw, Stephen J; Volkov, Dmitry S; Maxwell, Anthony; Lawson, David M; Severinov, Konstantin

    2017-10-03

    TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence from the modified MccB17 precursor peptide, to yield mature antibiotic, while it has no effect on the unmodified peptide. Both proteins are essential for the activity; however, only the TldD subunit forms a novel metal-containing active site within the hollow core of the heterodimer. Peptide substrates are bound in a sequence-independent manner through β sheet interactions with TldD and are likely cleaved via a thermolysin-type mechanism. We suggest that TldD/E acts as a "molecular pencil sharpener": unfolded polypeptides are fed through a narrow channel into the active site and processively truncated through the cleavage of short peptides from the N-terminal end. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. In vivo dose verification of IMRT treated head and neck cancer patients.

    PubMed

    Engström, Per E; Haraldsson, Pia; Landberg, Torsten; Sand Hansen, Hanne; Aage Engelholm, Svend; Nyström, Håkan

    2005-01-01

    An independent in vivo dose verification procedure for IMRT treatments of head and neck cancers was developed. Results of 177 intracavitary TLD measurements from 10 patients are presented. The study includes data from 10 patients with cancer of the rhinopharynx or the thyroid treated with dynamic IMRT. Dose verification was performed by insertion of a flexible naso-oesophageal tube containing TLD rods and markers for EPID and simulator image detection. Part of the study focussed on investigating the accuracy of the TPS calculations in the presence of inhomogeneities. Phantom measurements and Monte Carlo simulations were performed for a number of geometries involving lateral electronic disequilibrium and steep density shifts. The in vivo TLD measurements correlated well with the predictions of the treatment planning system with a measured/calculated dose ratio of 1.002+/-0.051 (1 SD, N=177). The measurements were easily performed and well tolerated by the patients. We conclude that in vivo intracavitary dosimetry with TLD is suitable and accurate for dose determination in intensity-modulated beams.

  17. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    PubMed Central

    HosseiniAliabadi, S. J.; Hosseini Pooya, S. M.; Afarideh, H.; Mianji, F.

    2015-01-01

    Introduction The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion This system can be utilized in large scale environmental monitoring with a higher accuracy. PMID:26157729

  18. SU-E-I-09: Application of LiF:Mg,Cu (TLD-100H) Dosimeters for in Diagnostic Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sina, S; Zeinali, B; Karimipourfard, M

    Purpose: Accurate dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg,Cu,P (TLD100H) in obtaining the Entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H, were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. Methods: In this study the ESD values were measured using two types of Thermoluminescence dosimeters (TLD-100, and TLD-100H) for 16 patients undergoing diagnostic radiology (lumbar spine imaging). The ESD values were also obtained by putting the two types of TLDs at the surface ofmore » Rando phantom for different imaging techniques and different views (AP, and lateral). The TLD chips were annealed with a standard procedure, and the ECC values for each TLD was obtained by exposing the chips to equal amount of radiation. Each time three TLD chips were covered by thin dark plastic covers, and were put at the surface of the phantom or the patient. The average reading of the three chips was used for obtaining the dose. Results: The results show a close agreement between the dose measuered by the two dosimeters.According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e.signal(nc)/dose) than TLD-100.The ESD values varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for measurements. Conclusion: The TLD-100H dosimeters are suggested as effective dosimeters for dosimetry in low dose fields because of their higher sensitivities.« less

  19. SU-E-T-172: Characterization of TLD-100 (LiF:Mg,Ti) Microcube Energy Response in a Cylindrical Chamber Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, V; Hammer, C; Kunugi, K

    Purpose: To characterize the energy response of TLD-100 microcubes inside a Virtual Water chamber phantom. Methods: Four TLD microcubes were placed inside a water-proof Virtual Water (VW) chamber phantom and irradiated to a known dose on a Varian linac in a 1D water tank. These chamber phantoms were then replaced by TLD-100 chips inside a separate VW paddle and irradiated to the same dose. Each energy response reading was calculated as light output per unit dose in nC/cGy and normalized to a calibration set irradiated to the same dose in 60Co. The differences in response between the TLD chips andmore » microcubes were then analyzed. Results: Across all energies, the average microcube response was less sensitive to energy than the average chip response with both falling consistently within 2.8% of previously established values in the literature Conclusion: TLD microcubes showed a lower average sensitivity to energy than their TLD chip counterparts. The use of TLD-100 microcubes inside the chamber phantom was validated against TLD-100 chips inside of VW paddles.« less

  20. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horst, Felix, E-mail: felix.ernst.horst@kmub.thm.de; Czarnecki, Damian; Zink, Klemens

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’more » impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types of TLD chips was quantified and was as expected found to be very low relative to that of the primary photons. For most practical reasons the neutrons’ influence on dosimetry might be neglected while for absolute precise thermoluminescence dosimetry in high energy photon fields, the use of TLD-700H (<0.03% {sup 6}Li) instead of the commonly used TLD-100 (7.4% {sup 6}Li) or even the extra neutron sensitive TLD-600H is recommended (95.6% {sup 6}Li) due to the additional inaccuracy in measurement for TLD materials with a high {sup 6}Li fraction.« less

  1. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.

    PubMed

    Horst, Felix; Czarnecki, Damian; Zink, Klemens

    2015-11-01

    Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry-although considered to be very low-is widely unexplored. In this work, Monte Carlo based investigations into this issue performed with fluka and egsnrc are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. egsnrc was used for the photon and fluka for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons' impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons' influence, a theoretically required correction factor was defined and calculated for five representative water depths. The neutrons' impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons' influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose 6Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on 6Li. The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types of TLD chips was quantified and was as expected found to be very low relative to that of the primary photons. For most practical reasons the neutrons' influence on dosimetry might be neglected while for absolute precise thermoluminescence dosimetry in high energy photon fields, the use of TLD-700H (<0.03% 6Li) instead of the commonly used TLD-100 (7.4% 6Li) or even the extra neutron sensitive TLD-600H is recommended (95.6% 6Li) due to the additional inaccuracy in measurement for TLD materials with a high 6Li fraction.

  2. OSLD energy response performance and dose accuracy at 24 - 1250 keV: Comparison with TLD-100H and TLD-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadir, A. B. A.; Priharti, W.; Samat, S. B.

    OSLD was evaluated in terms of energy response and accuracy of the measured dose in comparison with TLD-100H and TLD-100. The OSLD showed a better energy response performance for H{sub p}(10) whereas for H{sub p}(0.07), TLD-100H is superior than the others. The OSLD dose accuracy is comparable with the other two dosimeters since it fulfilled the requirement of the ICRP trumpet graph analysis.

  3. Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response.

    PubMed

    Hamilton, Holly M; Wilson, Ray; Blythe, Martin; Nehring, Ralf B; Fonville, Natalie C; Louis, Edward J; Rosenberg, Susan M

    2013-11-01

    Thymineless death (TLD) is the rapid loss of colony-forming ability in bacterial, yeast and human cells starved for thymine, and is the mechanism of action of common chemotherapeutic drugs. In Escherichia coli, significant loss of viability during TLD requires the SOS replication-stress/DNA-damage response, specifically its role in inducing the inhibitor of cell division, SulA. An independent RecQ- and RecJ-dependent TLD pathway accounts for a similarly large additional component of TLD, and a third SOS- and RecQ/J-independent TLD pathway has also been observed. Although two groups have implicated the SOS-response in TLD, an SOS-deficient mutant strain from an earlier study was found to be sensitive to thymine deprivation. We performed whole-genome resequencing on that SOS-deficient strain and find that, compared with the SOS-proficient control strain, it contains five mutations in addition to the SOS-blocking lexA(Ind(-)) mutation. One of the additional mutations, csrA, confers TLD sensitivity specifically in SOS-defective strains. We find that CsrA, a carbon storage regulator, reduces TLD in SOS- or SulA-defective cells, and that the increased TLD that occurs in csrA(-) SOS-defective cells is dependent on RecQ. We consider a hypothesis in which the modulation of nucleotide pools by CsrA might inhibit TLD specifically in SOS-deficient (SulA-deficient) cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. NOTE: Clinical application of a OneDose™ MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    NASA Astrophysics Data System (ADS)

    Kinhikar, Rajesh A.; Sharma, Pramod K.; Tambe, Chandrashekhar M.; Mahantshetty, Umesh M.; Sarin, Rajiv; Deshpande, Deepak D.; Shrivastava, Shyam K.

    2006-07-01

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose™ in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  5. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    PubMed

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  6. Dosimetry audit of radiotherapy treatment planning systems.

    PubMed

    Bulski, Wojciech; Chełmiński, Krzysztof; Rostkowska, Joanna

    2015-07-01

    In radiotherapy Treatment Planning Systems (TPS) various calculation algorithms are used. The accuracy of dose calculations has to be verified. Numerous phantom types, detectors and measurement methodologies are proposed to verify the TPS calculations with dosimetric measurements. A heterogeneous slab phantom has been designed within a Coordinated Research Project (CRP) of the IAEA. The heterogeneous phantom was developed in the frame of the IAEA CRP. The phantom consists of frame slabs made with polystyrene and exchangeable inhomogeneity slabs equivalent to bone or lung tissue. Special inserts allow to position thermoluminescent dosimeters (TLD) capsules within the polystyrene slabs below the bone or lung equivalent slabs and also within the lung equivalent material. Additionally, there are inserts that allow to position films or ionisation chamber in the phantom. Ten Polish radiotherapy centres (of 30 in total) were audited during on-site visits. Six different TPSs and five calculation algorithms were examined in the presence of inhomogeneities. Generally, most of the results from TLD were within 5 % tolerance. Differences between doses calculated by TPSs and measured with TLD did not exceed 4 % for bone and polystyrene equivalent materials. Under the lung equivalent material, on the beam axis the differences were lower than 5 %, whereas inside the lung equivalent material, off the beam axis, in some cases they were of around 7 %. The TLD results were confirmed with the ionisation chamber measurements. The comparison results of the calculations and the measurements allow to detect limitations of TPS calculation algorithms. The audits performed with the use of heterogeneous phantom and TLD seem to be an effective tool for detecting the limitations in the TPS performance or beam configuration errors at audited radiotherapy departments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Thermoluminescence measurements of neutron dose around a medical linac.

    PubMed

    Barquero, R; Méndez, R; Iñiguez, M P; Vega, H R; Voytchev, M

    2002-01-01

    The photoncutron ambient dose around a 18 MV medical electron lineal accelerator has been measured with LiF:Mg,Ti chips of 3 x 3 x 1 mm inside moderating spheres. During the measurements a water phantom was irradiated in a field of 40 x 40 cm2. Two methods have been considered for comparison. In the first, a TLD-600/TLD-700 pair at the centre of a 25 cm diameter paraffine sphere was used, with the system behaving as a rem meter. In the second method, TLD-600/TLD-700 pairs, bare and at the centre of 7.6, 12.7, 20.3, 25.4, and 30.5 cm diameter polyethylene Bonner spheres were used to obtain the neutron spectrum. This was unfolded using the BUNKIUT code with the SPUNIT algorithm and the UTA4 and ARKI response functions. The neutron dose was followed by multiplying the unfolded neutron spectrum by the ambient dose equivalent to neutron fluence conversion factors. Both methods result in 0.5 mSv x Gy(-1) m away from the isocentre.

  8. Intra-cavitary dosimetry for IMRT head and neck treatment using thermoluminescent dosimeters in a naso-oesophageal tube.

    PubMed

    Gagliardi, F M; Roxby, K J; Engström, P E; Crosbie, J C

    2009-06-21

    Complex intensity-modulated radiation therapy (IMRT) treatment plans require rigorous quality assurance tests. The aim of this study was to independently verify the delivered dose inside the patient in the region of the treatment site. A flexible naso-gastric tube containing thermoluminescent dosimeters (TLDs) was inserted into the oesophagus via the sinus cavity before the patient's first treatment. Lead markers were also inserted into the tube in order that the TLD positions could be accurately determined from the lateral and anterior-posterior electronic portal images taken prior to treatment. The measured dose was corrected for both daily linac output variations and the estimated dose received from the portal images. The predicted dose for each TLD was determined from the treatment planning system and compared to the measured TLD doses. The results comprise 431 TLD measurements on 43 patients. The mean measured-to-predicted dose ratio was 0.988 +/- 0.011 (95% confidence interval) for measured doses above 0.2 Gy. There was a variation in this ratio when the measurements were separated into low dose (0.2-1.0 Gy), medium dose (1.0-1.8 Gy) and high dose (>1.8 Gy) measurements. The TLD-loaded, naso-oesophageal tube for in vivo dose verification is straightforward to implement, and well tolerated by patients. It provides independent reassurance of the delivered dose for head and neck IMRT.

  9. Intra-cavitary dosimetry for IMRT head and neck treatment using thermoluminescent dosimeters in a naso-oesophageal tube

    NASA Astrophysics Data System (ADS)

    Gagliardi, F. M.; Roxby, K. J.; Engström, P. E.; Crosbie, J. C.

    2009-06-01

    Complex intensity-modulated radiation therapy (IMRT) treatment plans require rigorous quality assurance tests. The aim of this study was to independently verify the delivered dose inside the patient in the region of the treatment site. A flexible naso-gastric tube containing thermoluminescent dosimeters (TLDs) was inserted into the oesophagus via the sinus cavity before the patient's first treatment. Lead markers were also inserted into the tube in order that the TLD positions could be accurately determined from the lateral and anterior-posterior electronic portal images taken prior to treatment. The measured dose was corrected for both daily linac output variations and the estimated dose received from the portal images. The predicted dose for each TLD was determined from the treatment planning system and compared to the measured TLD doses. The results comprise 431 TLD measurements on 43 patients. The mean measured-to-predicted dose ratio was 0.988 ± 0.011 (95% confidence interval) for measured doses above 0.2 Gy. There was a variation in this ratio when the measurements were separated into low dose (0.2-1.0 Gy), medium dose (1.0-1.8 Gy) and high dose (>1.8 Gy) measurements. The TLD-loaded, naso-oesophageal tube for in vivo dose verification is straightforward to implement, and well tolerated by patients. It provides independent reassurance of the delivered dose for head and neck IMRT.

  10. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.

    PubMed

    Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis

    2015-07-01

    Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Out-of-field in vivo dosimetry using TLD in SABR for primary kidney cancer involving mixed photon fields.

    PubMed

    Lonski, P; Keehan, S; Siva, S; Pham, D; Franich, R D; Taylor, M L; Kron, T

    2017-05-01

    To assess out-of-field dose using three different variants of LiF thermoluminescence dosimeters (TLD) for ten patients who underwent stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) and compare with treatment planning system (TPS) dose calculations. Thermoluminescent dosimeter (TLD) measurements were conducted at 20, 30, 40 and 50cm from isocentre on ten patients undergoing SABR for primary RCC. Three types of high-sensitivity LiF:Mg,Cu,P TLD material with different 6 Li/ 7 Li isotope ratios were used. Patient plans were calculated using Eclipse Anisotropic Analytical Algorithm (AAA) for clinical evaluation and recalculated using Pencil Beam Convolution (PBC) algorithm for comparison. Both AAA and PBC showed diminished accuracy for photon doses at increasing distance out-of-field. At 50cm, measured photon dose was 0.3cGy normalised to a 10Gy prescription on average with only small variation across all patients. This is likely due to the leakage component of the out-of-field dose. The 6 Li-enriched TLD materials showed increased signal attributable to additional neutron contribution. LiF:Mg,Cu,P TLD containing 6 Li is sensitive enough to measure out-of-field dose 50cm from isocentre however will over-estimate the photon component of out-of-field dose in high energy treatments due to the presence of thermal neutrons. 7 Li enriched materials which are insensitive to neutrons are therefore required for accurate photon dosimetry. Neutron signal has been shown here to increase with MUs and is higher for patients treated using certain non coplanar beam arrangements. Further work is required to convert this additional neutron signal to dose. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Evaluation of Sloped Bottom Tuned Liquid Damper for Reduction of Seismic Response of Tall Buildings

    NASA Astrophysics Data System (ADS)

    Patil, G. R.; Singh, K. D.

    2016-12-01

    Due to migration of people to urban area, high land costs and use of light weight materials modern buildings tend to be taller, lighter and flexible. These buildings possess low damping. This increases the possibility of failure during earthquake ground motion and also affect the serviceability during wind vibrations. Out of many available techniques today, to reduce the response of structure under dynamic loading, Tuned Liquid Damper (TLD) is a recent technique to mitigate seismic response. However TLD has been used to mitigate the wind induced structural vibrations. Flat bottom TLD gives energy back to the structure after event of dynamic loading and it is termed as beating. Beating affects the performance of TLD. Study attempts to analyze the effectiveness of sloped bottom TLD for reducing seismic vibrations of structure. Concept of equivalent flat bottom LD has been used to analyze sloped bottom TLD. Finite element method (EM) is used to model the structure and the liquid in the TLD. MATLAB code is developed to study the response of structure, the liquid sloshing in the tank and the coupled fluid-structure interaction. A ten storey two bay RC frame is analyzed for few inputs of ground motion. A sinusoidal ground motion corresponding to resonance condition with fundamental frequency of frame is analyzed. In the analysis the inherent damping of structure is not considered. Observations from the study shows that sloped bottom TLD uses less amount of liquid than flat bottom TLD. Also observed that efficiency of sloped bottom TLD can be improved if it is properly tuned.

  13. TLD linearity vs. beam energy and modality.

    PubMed

    Troncalli, Andrew J; Chapman, Jane

    2002-01-01

    Thermoluminescent dosimetry (TLD) is considered to be a valuable dosimetric tool in determining patient dose. Lithium fluoride doped with magnesium and titanium (TLD-100) is widely used, as it does not display widely divergent energy dependence. For many years, we have known that TLD-100 shows supralinearity to dose. In a radiotherapy clinic, there are multiple energies and modality beams. This work investigates whether individual linearity corrections must be used for each beam or whether a single correction can be applied to all beams. The response of TLD as a function of dose was measured from 25 cGy to 1000 cGy on both electrons and photons from 6 to 18 MeV. This work shows that, within our measurement uncertainty, TLD-100 exhibits supralinearity at all megavoltage energies and modalities.

  14. DRDC Ottawa Participation in the SILENE Accident Dosimetry Intercomparison Exercise. June 10-21, 2002

    DTIC Science & Technology

    2002-11-01

    of CaF2:Mn and A120 3 TLDs for gamma-ray dosimetry ). In addition, DRDC Ottawa has recently substantially expanded its efforts in radiation dosimetry ...use of any real- time electronic dosimeter. Foils have long been proposed and used for criticality dosimetry (as well as for general monitoring of...ray Dosimetry DRDC Ottawa offers a number (over five) of various thermoluminescence dosimetry ( TLD ) systems. The choice of any particular TLD depends

  15. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    NASA Astrophysics Data System (ADS)

    Mosia, G. J.; Chamberlain, A. C.

    2007-09-01

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32×0.32 cm 2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning.

  16. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.

    PubMed

    Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A

    2014-12-01

    To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  17. Type testing the Model 6600 plus automatic TLD reader.

    PubMed

    Velbeck, K J; Luo, L Z; Streetz, K L

    2006-01-01

    The Harshaw Model 6600 Plus is a reader with a capacity for 200 TLD cards or 800 extremity cards. The new unit integrates more functionality, and significantly automates the QC and calibration process compared to the Model 6600. The Model 6600 Plus was tested against the IEC 61066 (1991-2012) procedures using Harshaw TLD-700H and TLD-600H, LiF:Mg,Cu,P based TLD Cards. An overview of the type testing procedures is presented. These include batch homogeneity, detection threshold, reproducibility, linearity, self-irradiation, residue, light effects on dosemeter, light leakage to reader, voltage and frequency, dropping and reader stability. The new TLD reader was found to meet all the IEC criteria by large margins and appears well suited for whole body, extremity and environmental dosimetry applications, with a high degree of dosimetric performance.

  18. Intensity variation study of the radiation field in a mammographic system using thermoluminescent dosimeters TLD-900 (CaSO4:Dy)

    NASA Astrophysics Data System (ADS)

    Corrêa, E. L.; Silva, J. O.; Vivolo, V.; Potiens, M. P. A.; Daros, K. A. C.; Medeiros, R. B.

    2014-02-01

    This study presents the results of the intensity variation of the radiation field in a mammographic system using the thermoluminescent dosimeter TLD-900 (CaSO4:Dy). These TLDs were calibrated and characterized in an industrial X-ray system used for instruments calibration, in the energy range used in mammography. They were distributed in a matrix of 19 lines and five columns, covering an area of 18 cm×8 cm in the center of the radiation field on the clinical equipment. The results showed a variation of the intensity probably explained by the non-uniformity of the field due to the heel effect.

  19. Anthropomorphic Phantom Radiation Dosimetry at the NATO Standard Reference Point at Aberdeen Proving Ground,

    DTIC Science & Technology

    1987-04-01

    and would still be well under 10(C. .% % p., I V a- E p - -12 - IABLE 8 (a) TLD results for phantom dosimetry - all values shown are measured charge...SAI. Conclusions The current DREO dosimetry system-consisting of bubble, CR39 and TLD dosimeters - has proven capable of producing meaningful results at...MC FILE CoPy’ Defence nationale 00 ANTHROPOMORPHIC PHANTOM RADIATION DOSIMETRY AT THE NATO STANDARD OREFERENCE POINT AT ABERDEEN PROVING GROUND by T

  20. An Investigation of Nonuniform Dose Deposition From an Electron Beam

    DTIC Science & Technology

    1994-08-01

    to electron - beam pulse. Ceramic package HIPEC Lid Electron beam Die Bond wires TLD TLD Silver epoxy 6 package cavity die TLD’s 21 3 4 5 Figure 2...these apertures was documented in a previous experiment relating to HIFX electron -beam dosimetry .2 The hardware required for this setup was a 60-cm...impurity serves 2Gregory K. Ovrebo, Steven M. Blomquist, and Steven R. Murrill, A HIFX Electron -Beam Dosimetry System, Army Research Laboratory, ARL-TR

  1. Performance testing of the environmental TLD system for the Three Mile Island Nuclear Station.

    PubMed

    Toke, L F; Carson, B H; Baker, G G; McBride, M H; Plato, P A; Miklos, J A

    1984-05-01

    Panasonic UD-801 thermoluminescent dosimeters ( TLDs ) containing two calcium sulfate phosphors were tested under Performance Specification 3.1 established by the American National Standard Institute ( ANSI75 ) and in the U.S. Nuclear Regulatory Commission's Regulatory Guide 4.13 ( NRC77 ). The specific qualifying tests included TLD uniformity, reproducibility, energy dependence and directional dependence. The overall measurement uncertainties and associated confidence levels are within the prescribed guidelines defined in the qualifying requirements for environmental TLDs .

  2. Ultrastructure of cholinergic neurons in the laterodorsal tegmental nucleus of the rat: interaction with catecholamine fibers.

    PubMed

    Kubota, Y; Leung, E; Vincent, S R

    1992-01-01

    The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.

  3. Seismic Vibration Control of Elevated Water Tank by TLD and Validation of Full-Scale TLD Model through Real-Time-Hybrid-Testing

    NASA Astrophysics Data System (ADS)

    Roy, A.; Staino, A.; (D Ghosh, A.; Basu, B.; Chatterjee, S.

    2016-09-01

    Elevated water tanks (EWTs), being top-heavy structures, are highly vulnerable to earthquake forces, and several have experienced damage/failure in past seismic events. However, as these are critical facilities whose continued performance in the post-earthquake scenario is of vital concern, it is significant to investigate their seismic vibration control using reliable and cost-effective passive dampers such as the Tuned Liquid Damper (TLD). Here, this aspect is studied for flexible EWT structures, such as those with annular shaft supports. The criterion of tuning the sloshing frequency of the TLD to the structural frequency necessitates dimensions of the TLD larger than those hitherto examined in literature. Hence the nonlinear model of the TLD based on established shallow water wave theory is verified for large container size by employing Real-Time-Hybrid-Testing (RTHT). Simulation studies are further carried out on a realistic example of a flexible EWT structure with TLDs. Results indicate that the TLD can be applied very effectively for the seismic vibration mitigation of EWTs.

  4. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti.

    PubMed

    Hauri, Pascal; Schneider, Uwe

    2018-04-01

    Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.

  5. Thermoluminescence Dosimetry (TLD) and its Application in Medical Physics

    NASA Astrophysics Data System (ADS)

    Azorín Nieto, Juan

    2004-09-01

    Radiation dosimetry is fundamental in Medical Physics, involving patients and phantom dosimetry. In both cases thermoluminescence dosimetry (TLD) is the most appropriate technique for measuring the absorbed dose. In this paper thermoluminescence phenomenon as well as the use of TLD in radiodiagnosis and radiotherapy for in vivo or in phantom measurements is discussed. Some results of measurements made in radiotherapy and radiodiagnosis using home made LiF:Mg,Cu,P+PTFE TLD are presented.

  6. Validation Summary Report: TLD Systems, Ltd., TLD HP 9000/MIL-STD-1750A Ada Compiler System, Ver 2.9.0, HP-UX Ver 7.0 (Host) to running TLDmps (Target), 920319W1.11243

    DTIC Science & Technology

    1992-04-30

    9G.dgal. Wath ~nglon. DC 20503l 1. AGENCY USE (Leave 2. REPORT j3. REPORT TYPE AND DATES I Final: 30 April 92 4. TITLE AND 5.FUNDING Validation Summary...2-4 CHAPTER 3 PROCESSING INFORMATION 3.1 TESTING EVIRaONMflr.. ............ ............ 3-1 3.2 SUM’MARYYOOTE TRESUT ESU.L...ACVC an Ada implementation must process each test of the customized test suite according to the Ada Standard. 1.4 DEFINITION OF TERMS Ada Compiler

  7. SU-E-T-112: Experimental Characterization of a Novel Thermal Reservoir for Consistent and Accurate Annealing of High-Sensitivity TLDs.

    PubMed

    Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z

    2012-06-01

    To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing high-sensitivity TLD has been carried out. It enabled consistent and accurate annealing of high- sensitivity TLDs which could significantly improve the efficiency of brachytherapy source characterizations. Supported in part by NIH grant R01-CA134627. © 2012 American Association of Physicists in Medicine.

  8. The dose-response of Harshaw TLD-700H.

    PubMed

    Velbeck, K J; Luo, L Z; Ramlo, M J; Rotunda, J E

    2006-01-01

    Harshaw TLD-700H (7LiF:Mg,Cu,P) was previously characterised for low- to high-dose ranges from 1 microGy to 20 Gy. This paper describes the studies and results of dose-response and linearity at much higher doses. TLD-700H is a near perfect dosimetric material with near tissue equivalence, flat energy response, and the ability to measure beta, gamma and X rays. These new results extend the applicability of Harshaw TLD-700H into more dosimetric measurement environments. The simple glow curve structure provides insignificant fade, eliminating special oven preparation methods experienced by other materials. The work presented in this paper quantifies the performance of Harshaw TLD-700H in extended ranges.

  9. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J. L., E-mail: jlreed2@wisc.edu; Micka, J. A.; Culberson, W. S.

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were usedmore » to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.« less

  10. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study.

    PubMed

    Koivisto, J; Schulze, D; Wolff, J; Rottke, D

    2014-01-01

    The objective of this study was to compare the performance of metal oxide semiconductor field-effect transistor (MOSFET) technology dosemeters with thermoluminescent dosemeters (TLDs) (TLD 100; Thermo Fisher Scientific, Waltham, MA) in the maxillofacial area. Organ and effective dose measurements were performed using 40 TLD and 20 MOSFET dosemeters that were alternately placed in 20 different locations in 1 anthropomorphic RANDO(®) head phantom (the Phantom Laboratory, Salem, NY). The phantom was exposed to four different CBCT default maxillofacial protocols using small (4 × 5 cm) to full face (20 × 17 cm) fields of view (FOVs). The TLD effective doses ranged between 7.0 and 158.0 µSv and the MOSFET doses between 6.1 and 175.0 µSv. The MOSFET and TLD effective doses acquired using four different (FOV) protocols were as follows: face maxillofacial (FOV 20 × 17 cm) (MOSFET, 83.4 µSv; TLD, 87.6 µSv; -5%); teeth, upper jaw (FOV, 8.5 × 5.0 cm) (MOSFET, 6.1 µSv; TLD, 7.0 µSv; -14%); tooth, mandible and left molar (FOV, 4 × 5 cm) (MOSFET, 10.3 µSv; TLD, 12.3 µSv; -16%) and teeth, both jaws (FOV, 10 × 10 cm) (MOSFET, 175 µSv; TLD, 158 µSv; +11%). The largest variation in organ and effective dose was recorded in the small FOV protocols. Taking into account the uncertainties of both measurement methods and the results of the statistical analysis, the effective doses acquired using MOSFET dosemeters were found to be in good agreement with those obtained using TLD dosemeters. The MOSFET dosemeters constitute a feasible alternative for TLDs for the effective dose assessment of CBCT devices in the maxillofacial region.

  11. Comparison of doses calculated by the Monte Carlo method and measured by LiF TLD in the buildup region for a 60Co photon beam.

    PubMed

    Budanec, M; Knezević, Z; Bokulić, T; Mrcela, I; Vrtar, M; Vekić, B; Kusić, Z

    2008-12-01

    This work studied the percent depth doses of (60)Co photon beams in the buildup region of a plastic phantom by LiF TLD measurements and by Monte Carlo calculations. An agreement within +/-1.5% was found between PDDs measured by TLD and calculated by the Monte Carlo method with the TLD in a plastic phantom. The dose in the plastic phantom was scored in voxels, with thickness scaled by physical and electron density. PDDs calculated by electron density scaling showed a better match with PDD(TLD)(MC); the difference is within +/-1.5% in the buildup region for square and rectangular field sizes.

  12. A comparison of two methods of in vivo dosimetry for a high energy neutron beam.

    PubMed

    Blake, S W; Bonnett, D E; Finch, J

    1990-06-01

    Two methods of in vivo dosimetry have been compared in a high energy neutron beam. These were activation dosimetry and thermoluminescence dosimetry (TLD). Their suitability was determined by comparison with estimates of total dose, obtained using a tissue equivalent ionization chamber. Measurements were made on the central axis and a profile of a 10 x 10 cm square field and also behind a shielding block in order to simulate conditions of clinical use. The TLD system was found to provide the best estimate of total dose.

  13. Word Detection in Sung and Spoken Sentences in Children With Typical Language Development or With Specific Language Impairment

    PubMed Central

    Planchou, Clément; Clément, Sylvain; Béland, Renée; Cason, Nia; Motte, Jacques; Samson, Séverine

    2015-01-01

    Background: Previous studies have reported that children score better in language tasks using sung rather than spoken stimuli. We examined word detection ease in sung and spoken sentences that were equated for phoneme duration and pitch variations in children aged 7 to 12 years with typical language development (TLD) as well as in children with specific language impairment (SLI ), and hypothesized that the facilitation effect would vary with language abilities. Method: In Experiment 1, 69 children with TLD (7–10 years old) detected words in sentences that were spoken, sung on pitches extracted from speech, and sung on original scores. In Experiment 2, we added a natural speech rate condition and tested 68 children with TLD (7–12 years old). In Experiment 3, 16 children with SLI and 16 age-matched children with TLD were tested in all four conditions. Results: In both TLD groups, older children scored better than the younger ones. The matched TLD group scored higher than the SLI group who scored at the level of the younger children with TLD . None of the experiments showed a facilitation effect of sung over spoken stimuli. Conclusions: Word detection abilities improved with age in both TLD and SLI groups. Our findings are compatible with the hypothesis of delayed language abilities in children with SLI , and are discussed in light of the role of durational prosodic cues in words detection. PMID:26767070

  14. Measurements of occupational exposure for a technologist performing 18F FDG PET scans.

    PubMed

    Biran, Talma; Weininger, Jolie; Malchi, Shalom; Marciano, Rami; Chisin, Roland

    2004-11-01

    Radiation doses to one PET technologist performing 100 18F FDG (18F fluorodeoxyglucose) imaging procedures were measured in a clinical setting using two types of thermoluminescent dosimeter (TLD) badges, one finger-ring TLD and one electronic pocket dosimeter (EPD). 18F FDG was handled either with unshielded or with viewing window tungsten shielded syringes. The resulting doses using unshielded syringes were 13.8 +/- 0.8 microSv/370 MBq and 14.3 +/- 0.4 microSv/370 MBq, measured with TLD 100 and with TLD 700H/600H, respectively. For the same series of measurements, the doses obtained using shielded syringes were 10.7 +/- 0.4 microSv/370 MBq and 7.2 +/- 2.1 microSv/370 MBq with TLD700H/600H and with EPD, respectively. The dose to the right hand from shielded syringes was 69.3 +/- 5.5 microSv/370 MBq. All these values are within the ICRP recommended dose limits. Extrapolated to 725 examinations per year, the resulting effective dose measured with TLD would be 10 mSv with unshielded and 7.5 mSv with shielded syringes, respectively (25% dose reduction). The doses measured by TLD were consistently higher than those measured by EPD, suggesting that EPD measurements might underestimate occupational doses.

  15. WE-H-BRC-08: Examining Credentialing Criteria and Poor Performance Indicators for IROC Houston’s Anthropomorphic Head and Neck Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, M; Molineu, A; Taylor, P

    Purpose: To analyze the most recent results of IROC Houston’s anthropomorphic H&N phantom to determine the nature of failing irradiations and the feasibility of altering pass/fail credentialing criteria. Methods: IROC Houston’s H&N phantom, used for IMRT credentialing for NCI-sponsored clinical trials, requires that an institution’s treatment plan must agree with measurement within 7% (TLD doses) and ≥85% pixels must pass 7%/4 mm gamma analysis. 156 phantom irradiations (November 2014 – October 2015) were re-evaluated using tighter criteria: 1) 5% TLD and 5%/4 mm, 2) 5% TLD and 5%/3 mm, 3) 4% TLD and 4%/4 mm, and 4) 3% TLD andmore » 3%/3 mm. Failure/poor performance rates were evaluated with respect to individual film and TLD performance by location in the phantom. Overall poor phantom results were characterized qualitatively as systematic (dosimetric) errors, setup errors/positional shifts, global but non-systematic errors, and errors affecting only a local region. Results: The pass rate for these phantoms using current criteria is 90%. Substituting criteria 1-4 reduces the overall pass rate to 77%, 70%, 63%, and 37%, respectively. Statistical analyses indicated the probability of noise-induced TLD failure at the 5% criterion was <0.5%. Using criteria 1, TLD results were most often the cause of failure (86% failed TLD while 61% failed film), with most failures identified in the primary PTV (77% cases). Other criteria posed similar results. Irradiations that failed from film only were overwhelmingly associated with phantom shifts/setup errors (≥80% cases). Results failing criteria 1 were primarily diagnosed as systematic: 58% of cases. 11% were setup/positioning errors, 8% were global non-systematic errors, and 22% were local errors. Conclusion: This study demonstrates that 5% TLD and 5%/4 mm gamma criteria may be both practically and theoretically achievable. Further work is necessary to diagnose and resolve dosimetric inaccuracy in these trials, particularly for systematic dose errors. This work is funded by NCI Grant CA180803.« less

  16. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study

    PubMed Central

    Schulze, D; Wolff, J; Rottke, D

    2014-01-01

    Objectives: The objective of this study was to compare the performance of metal oxide semiconductor field-effect transistor (MOSFET) technology dosemeters with thermoluminescent dosemeters (TLDs) (TLD 100; Thermo Fisher Scientific, Waltham, MA) in the maxillofacial area. Methods: Organ and effective dose measurements were performed using 40 TLD and 20 MOSFET dosemeters that were alternately placed in 20 different locations in 1 anthropomorphic RANDO® head phantom (the Phantom Laboratory, Salem, NY). The phantom was exposed to four different CBCT default maxillofacial protocols using small (4 × 5 cm) to full face (20 × 17 cm) fields of view (FOVs). Results: The TLD effective doses ranged between 7.0 and 158.0 µSv and the MOSFET doses between 6.1 and 175.0 µSv. The MOSFET and TLD effective doses acquired using four different (FOV) protocols were as follows: face maxillofacial (FOV 20 × 17 cm) (MOSFET, 83.4 µSv; TLD, 87.6 µSv; −5%); teeth, upper jaw (FOV, 8.5 × 5.0 cm) (MOSFET, 6.1 µSv; TLD, 7.0 µSv; −14%); tooth, mandible and left molar (FOV, 4 × 5 cm) (MOSFET, 10.3 µSv; TLD, 12.3 µSv; −16%) and teeth, both jaws (FOV, 10 × 10 cm) (MOSFET, 175 µSv; TLD, 158 µSv; +11%). The largest variation in organ and effective dose was recorded in the small FOV protocols. Conclusions: Taking into account the uncertainties of both measurement methods and the results of the statistical analysis, the effective doses acquired using MOSFET dosemeters were found to be in good agreement with those obtained using TLD dosemeters. The MOSFET dosemeters constitute a feasible alternative for TLDs for the effective dose assessment of CBCT devices in the maxillofacial region. PMID:25143020

  17. A methodology for TLD postal dosimetry audit of high-energy radiotherapy photon beams in non-reference conditions.

    PubMed

    Izewska, Joanna; Georg, Dietmar; Bera, Pranabes; Thwaites, David; Arib, Mehenna; Saravi, Margarita; Sergieva, Katia; Li, Kaibao; Yip, Fernando Garcia; Mahant, Ashok Kumar; Bulski, Wojciech

    2007-07-01

    A strategy for national TLD audit programmes has been developed by the International Atomic Energy Agency (IAEA). It involves progression through three sequential dosimetry audit steps. The first step audits are for the beam output in reference conditions for high-energy photon beams. The second step audits are for the dose in reference and non-reference conditions on the beam axis for photon and electron beams. The third step audits involve measurements of the dose in reference, and non-reference conditions off-axis for open and wedged symmetric and asymmetric fields for photon beams. Through a co-ordinated research project the IAEA developed the methodology to extend the scope of national TLD auditing activities to more complex audit measurements for regular fields. Based on the IAEA standard TLD holder for high-energy photon beams, a TLD holder was developed with horizontal arm to enable measurements 5cm off the central axis. Basic correction factors were determined for the holder in the energy range between Co-60 and 25MV photon beams. New procedures were developed for the TLD irradiation in hospitals. The off-axis measurement methodology for photon beams was tested in a multi-national pilot study. The statistical distribution of dosimetric parameters (off-axis ratios for open and wedge beam profiles, output factors, wedge transmission factors) checked in 146 measurements was 0.999+/-0.012. The methodology of TLD audits in non-reference conditions with a modified IAEA TLD holder has been shown to be feasible.

  18. SU-F-P-47: Estimation of Skin Dose by Performing the Measurements On Cylindrical Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosma, S; Sanders, M; Aryal, P

    Purpose: To evaluate the skin dose by performing the measurements on cylindrical phantom with 6X beam. Methods: A cylindrical phantom was used to best model a patient surface. The source to surface distance (SSD) was 100 cm at phantom surface along central axis (CAX). The EBT2 films were cut into 2×2 cm2 pieces. Each piece of film was placed at CAX on phantom surface for each measurement at 0°, 15°, 30°, 45°, 60°, 75°, and 90° gantry angles for field sizes of 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. One hundred monitor units (MU) with 6X beam were deliveredmore » for each set up. Similarly, the measurements were repeated using lithium fluoride (LiF) thermoluminescent dosimeter (TLD) chips (1X1X1 mm{sup 3}). Two TLD chips were placed for each gantry angle and field size. The calibration curves were produced for both film and TLD. The computed tomography (CT) was also performed on the same cylindrical phantom and dose was evaluated at the phantom surface using Eclipse treatment planning system ( AAA algorithm) for skin dose comparison. Results: Data showed small differences at smaller angles among EBT2, TLD and Eclipse treatment planning system. But Eclipse treatment planning system under estimated the skin dose between 20% and 50% at larger gantry angles (between 40° and 80°) at all field sizes before dose differences began to converge. Conclusion: Given this data, we can conclude that Eclipse treatment planning system under estimated the dose especially between 40 and 80 degrees of obliquity compared to the measurements results. Ideally, this study can be applied largely to head and neck patients where contours differ drastically and where skin dose is paramount.« less

  19. Measurements of eye lens doses in interventional cardiology using OSL and electronic dosemeters†.

    PubMed

    Sanchez, R M; Vano, E; Fernandez, J M; Ginjaume, M; Duch, M A

    2014-12-01

    The purpose of this paper is to test the appropriateness of OSL and electronic dosemeters to estimate eye lens doses at interventional cardiology environment. Using TLD as reference detectors, personal dose equivalent was measured in phantoms and during clinical procedures. For phantom measurements, OSL dose values resulted in an average difference of -15 % vs. TLD. Tests carried out with other electronic dosemeters revealed differences up to ±20 % versus TLD. With dosemeters positioned outside the goggles and when TLD doses were >20 μSv, the average difference OSL vs. TLD was -9 %. Eye lens doses of almost 700 μSv per procedure were measured in two cases out of a sample of 33 measurements in individual clinical procedures, thus showing the risk of high exposure to the lenses of the eye when protection rules are not followed. The differences found between OSL and TLD are acceptable for the purpose and range of doses measured in the survey. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. An assessment of the use of skin flashes in helical tomotherapy using phantom and in-vivo dosimetry.

    PubMed

    Tournel, Koen; Verellen, Dirk; Duchateau, Michael; Fierens, Yves; Linthout, Nadine; Reynders, Truus; Voordeckers, Mia; Storme, Guy

    2007-07-01

    In helical tomotherapy the nature of the optimizing and planning systems allows the delivery of dose on the skin using a build-up compensating technique (skin flash). However, positioning errors or changes in the patient's contour can influence the correct dosage in these regions. This work studies the behavior of skin-flash regions using phantom and in-vivo dosimetry. The dosimetric accuracy of the tomotherapy planning system in skin-flash regions is checked using film and TLD on phantom. Positioning errors are induced and the effect on the skin dose is investigated. Further a volume decrease is simulated using bolus material and the results are compared. Results show that the tomotherapy planning system calculates dose on skin regions within 2 SD using TLD measurements. Film measurements show drops of dose of 2.8% and 26% for, respectively, a 5mm and 10mm mispositioning of the phantom towards air and a dose increase of 9% for a 5mm shift towards tissue. These measurements are confirmed by TLD measurements. A simulated volume reduction shows a similar behavior with a 2.6% and 19.4% drop in dose, measured with TLDs. The tomotherapy system allows adequate planning and delivery of dose using skin flashes. However, exact positioning is crucial to deliver the dose at the exact location.

  1. LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zullo, John R.; Kudchadker, Rajat J.; Zhu, X. Ronald

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly inmore » the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.« less

  2. Organ radiation exposure with EOS: GATE simulations versus TLD measurements

    NASA Astrophysics Data System (ADS)

    Clavel, A. H.; Thevenard-Berger, P.; Verdun, F. R.; Létang, J. M.; Darbon, A.

    2016-03-01

    EOS® is an innovative X-ray imaging system allowing the acquisition of two simultaneous images of a patient in the standing position, during the vertical scan of two orthogonal fan beams. This study aimed to compute organs radiation exposure to a patient, in the particular geometry of this system. Two different positions of the patient in the machine were studied, corresponding to postero-anterior plus left lateral projections (PA-LLAT) and antero-posterior plus right lateral projections (AP-RLAT). To achieve this goal, a Monte-Carlo simulation was developed based on a GATE environment. To model the physical properties of the patient, a computational phantom was produced based on computed tomography scan data of an anthropomorphic phantom. The simulations provided several organs doses, which were compared to previously published dose results measured with Thermo Luminescent Detectors (TLD) in the same conditions and with the same phantom. The simulation results showed a good agreement with measured doses at the TLD locations, for both AP-RLAT and PA-LLAT projections. This study also showed that the organ dose assessed only from a sample of locations, rather than considering the whole organ, introduced significant bias, depending on organs and projections.

  3. SU-E-J-101: Retroactive Calculation of TLD and Film Dose in Anthropomorphic Phantom as Assessment of Updated TPS Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkhatib, H; Oves, S

    Purpose: To demonstrate a quick and comprehensive method verifying the accuracy of the updated dose model by recalculating dose distribution in an anthropomorphic phantom with a new version of the TPS and comparing the results to measured values. Methods: CT images and IMRT plan of an RPC anthropomorphic head phantom, previously calculated by Pinnacle 9.0, was re-computed using Pinnacle 9.2 and 9.6. The dosimeters within the phantom include four TLD capsules representing a primary PTV, two TLD capsules representing a secondary PTV, and two TLD capsules representing an organ at risk. Also included were three sheets of Gafchromic film. Performancemore » of the updated TPS version was assessed by recalculating point doses and dose profiles corresponding to TLD and film position respectively and then comparing the results to reported values by the RPC. Results: Comparing calculated doses to reported measured doses from the RPC yielded an average disagreement of 1.48%, 2.04% and 2.10% for versions 9.0, 9.2, 9.6 respectively. Computed doses points all meet the RPC's passing criteria with the exception of the point representing the superior organ at risk in version 9.6. However, qualitative analysis of the recalculated dose profiles showed improved agreement with those of the RPC, especially in the penumbra region. Conclusion: This work has demonstrated the calculation results of Pinnacle 9.2 and 9.6 vs 9.0 version. Additionally, this study illustrates a method for the user to gain confidence upgrade to a newer version of the treatment planning system.« less

  4. Evaluation of clinical use of OneDose™ metal oxide semiconductor field-effect transistor detectors compared to thermoluminescent dosimeters to measure skin dose for adult patients with acute lymphoblastic leukemia

    PubMed Central

    Al-Mohammed, Huda Ibrahim

    2011-01-01

    Background: Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to their bone marrow transplant. It involves the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore, it is important to measure and monitor the skin dose during the treatment. Thermoluminescent dosimeters (TLDs) and the OneDose™ metal oxide semiconductor field effect transistor (MOSFET) detectors are used during treatment delivery to measure the radiation dose and compare it with the target prescribed dose. Aims: The primary goal of this study was to measure the variation of skin dose using OneDose MOSFET detectors and TLD detectors, and compare the results with the target prescribed dose. The secondary aim was to evaluate the simplicity of use and determine if one system was superior to the other in clinical use. Material and Methods: The measurements involved twelve adult patients diagnosed with acute lymphoblastic leukemia. TLD and OneDose MOSFET dosimetry were performed at ten different anatomical sites of each patient. Results: The results showed that there was a variation between skin dose measured with OneDose MOSFET detectors and TLD in all patients. However, the variation was not significant. Furthermore, the results showed for every anatomical site there was no significant different between the prescribed dose and the dose measured by either TLD or OneDose MOSFET detectors. Conclusion: There were no significant differences between the OneDose MOSFET and TLDs in comparison to the target prescribed dose. However, OneDose MOSFET detectors give a direct read-out immediately after the treatment, and their simplicity of use to compare with TLD detectors may make them preferred for clinical use. PMID:22171243

  5. SU-E-T-87: Comparison Study of Dose Reconstruction From Cylindrical Diode Array Measurements, with TLD Measurements and Treatment Planning System Calculations in Anthropomorphic Head and Neck and Lung Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhabib, S; Cardan, R; Huang, M

    Purpose: To assess dose calculated by the 3DVH software (Sun Nuclear Systems, Melbourne, FL) against TLD measurements and treatment planning system calculations in anthropomorphic phantoms. Methods: The IROC Houston (RPC) head and neck (HN) and lung phantoms were scanned and plans were generated using Eclipse (Varian Medical Systems, Milpitas, CA) following IROC Houston procedures. For the H and N phantom, 6 MV VMAT and 9-field dynamic MLC (DMLC) plans were created. For the lung phantom 6 MV VMAT and 15 MV 9-field dynamic MLC (DMLC) plans were created. The plans were delivered to the phantoms and to an ArcCHECK (Sunmore » Nuclear Systems, Melbourne, FL). The head and neck phantom contained 8 TLDs located at PTV1 (4), PTV2 (2), and OAR Cord (2). The lung phantom contained 4 TLDs, 2 in the PTV, 1 in the cord, and 1 in the heart. Daily outputs were recorded before each measurement for correction. 3DVH dose reconstruction software was used to project the calculated dose to patient anatomy. Results: For the HN phantom, the maximum difference between 3DVH and TLDs was -3.4% and between 3DVH and Eclipse was 1.2%. For the lung plan the maximum difference between 3DVH and TLDs was 4.3%, except for the spinal cord for which 3DVH overestimated the TLD dose by 12%. The maximum difference between 3DVH and Eclipse was 0.3%. 3DVH agreed well with Eclipse because the dose reconstruction algorithm uses the diode measurements to perturb the dose calculated by the treatment planning system; therefore, if there is a problem in the modeling or heterogeneity correction, it will be carried through to 3DVH. Conclusion: 3DVH agreed well with Eclipse and TLD measurements. Comparison of 3DVH with film measurements is ongoing. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)« less

  6. The Thermoluminescent Response of Several Phosphors to Monoenergetic Photon Beams with Energies from 275 TO 2,550 EV.

    NASA Astrophysics Data System (ADS)

    Carrillo Beltran, Ricardo Enrique

    The thermoluminescent (TL) response of LiF:Mg,Ti (TLD-100) and CaF_2:Dy (TLD-200) to monoenergetic photon beams was measured for photons with energies between 275 and 2,550 eV produced by the Aladdin synchrotron accelerator of the UW-Madison. The change of the TL response, as measured by the 130-215 ^circC integrated light output for TLD-100, the 170-250^circC TL interval for TLD-200 and the height of the main dosimetric peak at 200^circC for both phosphors as a function of total energy deposited up to saturation is described. Glow curves were determined for TLDs annealed in helium and irradiated at various photon energies. Glow curves showing the adverse effect of air annealing upon the TL sensitivity of these phosphors are presented as well. Supralinearity factors for each TLD type were calculated using the integrated TL and the main peak height and are listed for the photon energy beams employed. High surface doses were achieved with these irradiations because of the short mean free path of the photons and the even shorter range of the freed electrons, both plotted. Despite the shallower penetration of the photons in TLD-200 as compared to TLD-100, the former phosphor was found to be more suitable for routine use as a synchrotron radiation monitor because its TL properties change very little with photon energy as shown by its constant glow curve obtained. TLD-100 glow curve, either from a chip or a crystal, changed according to the photon energy employed; this adverse effect was more pronounced with the chips.

  7. The response of a thermoluminescent dosimeter to low energy protons in the range 30-100 keV.

    PubMed

    Chu, T C; Lin, S Y; Hsu, C C; Li, J P

    2001-11-01

    This study demonstrates the thermoluminescence (TL) response of CaF2:Tm (commercial name TLD-300) to 30-100 keV protons which were generated by means of a Cockcroft-Walton accelerator. The phenomenon in which the total thermoluminescent output from CaF2:Tm (TLD-300) decreases with proton energy from 30 to 100 keV (with increase of LET) can be interpreted by the track structure theory (TST). The analysis of the glow peaks: P2 (131 degrees C), P3 (153.5 degrees C) and P6 (259 degrees C), of TLD-300 show the oscillatory decreasing phenomenon as a function of incident proton energy, which can be interpreted with the TST and the oscillatory emission of electrons in a thermoluminescent dosimeter (TLD) that is caused by resonant or quasi-resonant charge transfer in ion-atom interactions in this TLD-300.

  8. A study of a tissue equivalent gelatine based tissue substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to amore » liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.« less

  9. A study of a tissue equivalent gelatine based tissue substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, Jody L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to amore » liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.« less

  10. FADING EFFECT OF LiF:Mg,Ti AND LiF:Mg,Cu,P Ext-Rad AND WHOLE-BODY DETECTORS.

    PubMed

    Pereira, J; Pereira, M F; Rangel, S; Saraiva, M; Santos, L M; Cardoso, J V; Alves, J G

    2016-09-01

    Thermoluminescence dosemeters are widely used in individual and environmental monitoring. The aim of this work was to compare the thermal stability of dosemeters of the Ext-Rad and whole-body card types with LiF:Mg,Ti and LiF:Mg,Cu,P detectors stored at different temperatures and periods. The dosemeters were stored at 0°C, room temperature and 40°C for periods that lasted 8, 30, 45, 90 and 120 d. In general, TLD-100H detectors present higher TL signal stability than TLD-100 detectors. The intensity of the signal remained constant for both materials for storage periods at 0°C. At RT the same results was observed for TLD-100H. For TLD-100 detectors, a maximum variation of 22 % was registered for the longest period. At 40°C the TL signal decreased with storage time for both detectors. The TL signal of TLD-100H detectors presented maximum variations of 12 % whereas for TLD-100 detectors, larger variations of 25 % were observed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides.

    PubMed

    Antolak, J A; Cundiff, J H; Ha, C S

    1998-01-01

    The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended.

  12. Dosimetry of high-energy electron linac produced photoneutrons and the bremsstrahlung gamma-rays using TLD-500 and TLD-700 dosimeter pairs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar; Makowski, Dariusz; Simrock, Stefan

    2005-06-01

    The neutron and gamma doses are crucial to interpreting the radiation effects in microelectronic devices operating in a high-energy accelerator environment. This report highlights a method for an accurate estimation of photoneutron and the accompanying bremsstrahlung (gamma) doses produced by a 450 MeV electron linear accelerator (linac) operating in pulsed mode. The principle is based on the analysis of thermoluminescence glow-curves of TLD-500 (Aluminium Oxide) and TLD-700 (Lithium Fluoride) dosimeter pairs. The gamma and fast neutron response of the TLD-500 and TLD-700 dosimeter pairs were calibrated with a 60Co (gamma) and a 241Am-Be (α, n) neutron standard-source, respectively. The Kinetic Energy Released in Materials (kerma) conversion factor for photoneutrons was evaluated by folding the neutron kerma (dose) distribution in 7LiF (the main component of the TLD-700 dosimeter) with the energy spectra of the 241Am-Be (α, n) neutrons and electron accelerator produced photoneutrons. The neutron kerma conversion factors for 241Am-Be neutrons and photoneutrons were calculated to be 2.52×10 -3 and 1.37×10 -3 μGy/a.u. respectively. The bremsstrahlung (gamma) dose conversion factor was evaluated to be 7.32×10 -4 μGy/a.u. The above method has been successfully utilised to assess the photoneutron and bremsstrahlung doses from a 450 MeV electron linac operating at DESY Research Centre in Hamburg, Germany.

  13. Design and Calibration of a X-Ray Millibeam

    DTIC Science & Technology

    2005-12-01

    developed for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride thermoluminescent dosimetry ( TLD ), and EBT GafChromic...thermoluminescent dosimetry ( TLD ), and EBT GafChromic film to characterize the spatial distribution and accuracy of the doses produced by the Faxitron. A...absorbed dose calibration factors for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride (LiF) TLD , and EBT GafChromic film. The

  14. LiF TLD-100 as a dosimeter in high energy proton beam therapy--can it yield accurate results?

    PubMed

    Zullo, John R; Kudchadker, Rajat J; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T

    2010-01-01

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within +/-5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within +/- 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy. Copyright 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, Wen C.; Fagundes, Marcio; Zeidan, Omar

    Purpose: To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. Methods: TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markersmore » were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. Results: A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Conclusions: Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.« less

  16. Image-guided method for TLD-based in vivo rectal dose verification with endorectal balloon in proton therapy for prostate cancer.

    PubMed

    Hsi, Wen C; Fagundes, Marcio; Zeidan, Omar; Hug, Eugen; Schreuder, Niek

    2013-05-01

    To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markers were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.

  17. In vivo verification of radiation dose delivered to healthy tissue during radiotherapy for breast cancer

    NASA Astrophysics Data System (ADS)

    Lonski, P.; Taylor, M. L.; Hackworth, W.; Phipps, A.; Franich, R. D.; Kron, T.

    2014-03-01

    Different treatment planning system (TPS) algorithms calculate radiation dose in different ways. This work compares measurements made in vivo to the dose calculated at out-of-field locations using three different commercially available algorithms in the Eclipse treatment planning system. LiF: Mg, Cu, P thermoluminescent dosimeter (TLD) chips were placed with 1 cm build-up at six locations on the contralateral side of 5 patients undergoing radiotherapy for breast cancer. TLD readings were compared to calculations of Pencil Beam Convolution (PBC), Anisotropic Analytical Algorithm (AAA) and Acuros XB (XB). AAA predicted zero dose at points beyond 16 cm from the field edge. In the same region PBC returned an unrealistically constant result independent of distance and XB showed good agreement to measured data although consistently underestimated by ~0.1 % of the prescription dose. At points closer to the field edge XB was the superior algorithm, exhibiting agreement with TLD results to within 15 % of measured dose. Both AAA and PBC showed mixed agreement, with overall discrepancies considerably greater than XB. While XB is certainly the preferable algorithm, it should be noted that TPS algorithms in general are not designed to calculate dose at peripheral locations and calculation results in such regions should be treated with caution.

  18. Radiation Surveys of the Naval Postgraduate School LINAC.

    DTIC Science & Technology

    1992-06-01

    personnel dosimetry at the NPS LINAC. This will result in the reduction of the TLD measured neutron dose evaluation for personnel. Accession For NTIS F. A...29 ix Figure 16: Average TLD NECF for electron energy and slit width co m b inatio ns...values obtained at 90 MeV electron energy, or NECFfmal = 0.341 ± 0.015 TABLE 5: AVERAGE TLD NEUTRON ENERGY CORRECTION FACTORS Electron Energy S lit

  19. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  20. Can mental health and readjustment be improved in UK military personnel by a brief period of structured postdeployment rest (third location decompression)?

    PubMed

    Jones, Norman; Jones, Margaret; Fear, Nicola T; Fertout, Mohammed; Wessely, Simon; Greenberg, Neil

    2013-07-01

    Third Location Decompression (TLD) is an activity undertaken by UK Armed Forces (UK AF) personnel at the end of an operational deployment which aims to smooth the transition between operations and returning home. We assessed whether TLD impacted upon both mental health and postdeployment readjustment. Data collected during a large cohort study was examined to identify personnel who either engaged in TLD or returned home directly following deployment. Propensity scores were generated and used to calculate inverse probability of treatment weights in adjusted regression analyses to compare mental health outcomes and postdeployment readjustment problems. TLD had a positive impact upon mental health outcomes (post-traumatic stress disorder (PTSD) and multiple physical symptoms) and levels of harmful alcohol use. However, when the samples were stratified by combat exposure, although postdeployment readjustment was similar for all exposure levels, personnel experiencing low and moderate levels of combat exposure experienced the greatest positive mental health effects. We found no evidence to suggest that TLD promotes better postdeployment readjustment; however, we found a positive impact upon alcohol use and mental health with an interaction with degree of combat exposure. This study suggests that TLD is a useful postdeployment transitional activity that may help to improve PTSD symptoms and alcohol use in UK AF personnel.

  1. Long-term outcome of surgical disconnection of the epileptic zone as an alternative to resection for nonlesional mesial temporal epilepsy.

    PubMed

    Massager, Nicolas; Tugendhaft, Patrick; Depondt, Chantal; Coppens, Thomas; Drogba, Landry; Benmebarek, Nadir; De Witte, Olivier; Van Bogaert, Patrick; Legros, Benjamin

    2013-12-01

    Pharmacoresistant epilepsy can be treated by either resection of the epileptic focus or functional isolation of the epileptic focus through complete disconnection of the pathways of propagation of the epileptic activity. To evaluate long-term seizure outcome and complications of temporal lobe disconnection (TLD) without resection for mesial temporal lobe epilepsy (MTLE). Data of 45 patients operated on for intractable MTLE using a functional disconnection procedure have been studied. Indication of TLD surgery was retained after a standard preoperative evaluation of refractory epilepsy and using the same criteria as for standard temporal resection. Mean follow-up duration was 3.7 years. At the last follow-up, 30 patients (67%) were completely seizure-free (Engel-Ia/International League Against Epilepsy class 1) and 39 patients (87%) remained significantly improved (Engel-I or -II) by surgery. Actuarial outcome displays a 77.7% probability of being seizure-free and an 85.4% probability of being significantly improved at 5 years. No patient died after surgery and no subdural haematoma or hygroma occurred. Permanent morbidity included hemiparesis, hemianopia and oculomotor paresis found in three, five and one patient, respectively, after TLD. TLD is acceptable alternative surgical technique for patients with intractable MTLE. The results of TLD are in the range of morbidity and long-term seizure outcome rates after standard surgical resection. We observed a slightly higher rate of complications after TLD in comparison with usual rates of morbidity of resection procedures. TLD may be used as an alternative to resection and could reduce operating time and the risks of subdural collections.

  2. Response of TLD-100 in mixed fields of photons and electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff

    Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less

  3. Response of TLD-100 in mixed fields of photons and electrons.

    PubMed

    Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A

    2013-01-01

    Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.

  4. SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.

    PubMed

    Lawless, M; Junell, S; Hammer, C; DeWerd, L

    2012-06-01

    Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.

  5. A study of the radiation environment on board the space shuttle flight STS-57

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Benton, E. V.; Frank, A. L.; Keegan, R. P.; Dudkin, V. E.; Karpov, O. N.; Potapov, V.; Akopova, A. B.; Magradze, N. V.

    1995-01-01

    A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on space shuttle flight STS-57 was conducted. The shuttle flew in a nearly circular orbit of 28.5 deg inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTD's) and thermoluminescent detectors (TLD's), and Russian nuclear emulsions, PNTD's, and TLD's. All the detector systems were shielded by the same shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micron and 200 keV/micron. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than TLD's, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLD's to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.

  6. TLD postal dose intercomparison for megavoltage units in Poland.

    PubMed

    Izewska, J; Gajewski, R; Gwiazdowska, B; Kania, M; Rostkowska, J

    1995-08-01

    The aim of the TLD pilot study was to investigate and to reduce the uncertainties involved in the measurements of absorbed dose and to improve the consistency in dose determination in the regional radiotherapy centres in Poland. The intercomparison was organized by the SSDL. It covered absorbed dose measurements under reference conditions for Co-60, high energy X-rays and electron beams. LiF powder type MT-N was used for the irradiations and read with the Harshaw TLD reader model 2000B/2000C. The TLD system was set up and an analysis of the factors influencing the accuracy of absorbed dose measurements with TL-detectors was performed to evaluate and minimize the measurement uncertainty. A fading not exceeding 2% in 12 weeks was found. The relative energy correction factor did not exceed 3% for X-rays in the range 4-15 MV, and 4% for electron beams between 6 and 20 MeV. A total of 34 beams was checked. Deviation of +/- 3.5% stated and evaluated dose was considered acceptable for photons and +/- 5% for electron beams. The results for Co-60, high energy X-rays and electron beams showed that there were two, three and no centres, respectively, beyond acceptance levels. The sources of errors for all deviations out of this range were thoroughly investigated, discussed and corrected, however two deviations remained unexplained. The pilot study resulted in an improvement of the accuracy and consistency of dosimetry in Poland.

  7. Performance of Harshaw TLD-100H two-element Dosemeter.

    PubMed

    Luo, L Z; Rotunda, J E

    2006-01-01

    One of the advantages of LiF based thermoluminescent (TL) materials is its tissue-equivalent property. The Harshaw TLD-100H (LiF:Mg,Cu,P) material has demonstrated that it has a near-flat photon energy response and high sensitivity. With the optimized dosemeter filters built into the holder, the Harshaw TLD-100H two-element dosemeter can be used as a whole body personnel dosemeter for gamma, X ray and beta monitoring without the use of an algorithm or correction factor. This paper presents the dose performance of the Harshaw TLD-100H two-element dosemeter against the ANSI N13.11-2001 standard and the results of tests that are required in IEC 1066 International Standard.

  8. Investigation of LiF, Mg and Ti (TLD-100) Reproducibility

    PubMed Central

    Sadeghi, M.; Sina, S.; Faghihi, R.

    2015-01-01

    LiF, Mg and Ti cubical TLD chips (known as TLD-100) are widely used for dosimetry purposes. The repeatability of TL dosimetry is investigated by exposing them to doses of (81, 162 and 40.5 mGy) with 662keV photons of Cs-137. A group of 40 cubical TLD chips was randomly selected from a batch and the values of Element Correction Coefficient (ECC) were obtained 4 times by irradiating them to doses of 81 mGy (two times), 162mGy and 40.5mGy. Results of this study indicate that the average reproducibility of ECC calculation for 40 TLDs is 1.5%, while these values for all chips do not exceed 5%. PMID:26688801

  9. Investigation of LiF, Mg and Ti (TLD-100) Reproducibility.

    PubMed

    Sadeghi, M; Sina, S; Faghihi, R

    2015-12-01

    LiF, Mg and Ti cubical TLD chips (known as TLD-100) are widely used for dosimetry purposes. The repeatability of TL dosimetry is investigated by exposing them to doses of (81, 162 and 40.5 mGy) with 662keV photons of Cs-137. A group of 40 cubical TLD chips was randomly selected from a batch and the values of Element Correction Coefficient (ECC) were obtained 4 times by irradiating them to doses of 81 mGy (two times), 162mGy and 40.5mGy. Results of this study indicate that the average reproducibility of ECC calculation for 40 TLDs is 1.5%, while these values for all chips do not exceed 5%.

  10. In vitro Dosimetric Study of Biliary Stent Loaded with Radioactive 125I Seeds

    PubMed Central

    Yao, Li-Hong; Wang, Jun-Jie; Shang, Charles; Jiang, Ping; Lin, Lei; Sun, Hai-Tao; Liu, Lu; Liu, Hao; He, Di; Yang, Rui-Jie

    2017-01-01

    Background: A novel radioactive 125I seed-loaded biliary stent has been used for patients with malignant biliary obstruction. However, the dosimetric characteristics of the stents remain unclear. Therefore, we aimed to describe the dosimetry of the stents of different lengths — with different number as well as activities of 125I seeds. Methods: The radiation dosimetry of three representative radioactive stent models was evaluated using a treatment planning system (TPS), thermoluminescent dosimeter (TLD) measurements, and Monte Carlo (MC) simulations. In the process of TPS calculation and TLD measurement, two different water-equivalent phantoms were designed to obtain cumulative radial dose distribution. Calibration procedures using TLD in the designed phantom were also conducted. MC simulations were performed using the Monte Carlo N-Particle eXtended version 2.5 general purpose code to calculate the radioactive stent's three-dimensional dose rate distribution in liquid water. Analysis of covariance was used to examine the factors influencing radial dose distribution of the radioactive stent. Results: The maximum reduction in cumulative radial dose was 26% when the seed activity changed from 0.5 mCi to 0.4 mCi for the same length of radioactive stents. The TLD's dose response in the range of 0–10 mGy irradiation by 137Cs γ-ray was linear: y = 182225x − 6651.9 (R2= 0.99152; y is the irradiation dose in mGy, x is the TLDs’ reading in nC). When TLDs were irradiated by different energy radiation sources to a dose of 1 mGy, reading of TLDs was different. Doses at a distance of 0.1 cm from the three stents’ surface simulated by MC were 79, 93, and 97 Gy. Conclusions: TPS calculation, TLD measurement, and MC simulation were performed and were found to be in good agreement. Although the whole experiment was conducted in water-equivalent phantom, data in our evaluation may provide a theoretical basis for dosimetry for the clinical application. PMID:28469106

  11. Feasibility study of entrance in vivo dose measurements with mailed thermoluminescence detectors.

    PubMed

    Swinnen, Ans; Verstraete, Jan; Huyskens, Dominique Pierre

    2004-10-01

    The aim of this work is to set-up mailed entrance in vivo dosimetry by means of thermoluminescence dosimeters (TLDs) in the form of LiF powder in order to assess the overall accuracy of patient treatment delivery by comparing the doses delivered to patients with the doses calculated by the treatment planning system (TPS) in different institutions. Two millimeter thick copper (for 6 MV photon beams) and 1.3 mm thick aluminium (for (60)Co gamma beams) build-up caps are developed. The characteristics of these build-up caps are tested by phantom measurements: the response of the TLD inside the build-up cap is compared to the ionisation chamber (IC) signal in the same irradiation conditions. A pilot study using the copper build-up cap is performed on 8 patients, treated with a 6 MV photon beam at the radiotherapy department of the University Hospital of Leuven. Additionally, a first run of mailed entrance in vivo dosimetry is performed by 18 radiotherapy centres in Europe. For 80 different phantom set-ups using copper and aluminium build-up caps, the mean TLD dose compared to the IC dose is 0.993+/-0.015 (1SD). Regarding the patient measurements in the radiotherapy department of the University Hospital of Leuven, the mean ratio of the measured entrance dose (TLD) to the entrance dose calculated by the TPS, is equal to 0.986+/-0.017 (1SD) (N=8), after correction of an error detected in one of the patient treatments. For the 18 radiotherapy centres participating in the mailed in vivo TLD study, the mean measured versus stated entrance dose for patients treated in a (60)Co and 6 MV photon beam is 1.004+/-0.021 (1SD) (N=143). From the results, it can be deduced that the build-up caps and the proposed calibration methodology allow the use of TLD in the form of powder to be applied in large scale in vivo dose audits.

  12. A LiF and BeO TLD based microdosimeter for space radiation risk assessment of astronauts

    NASA Astrophysics Data System (ADS)

    Mukherjee, B.

    2018-06-01

    The ratio of thermoluminescence glow curve area of BeO and LiF dosimeters was found to be proportional to average LET and quality factor (Q) of impinging mixed radiations. Using this phenomenon and widely available Thermoluminescence Dosimeter TLD-700 (7LiF: Mg,Ti) and BeO (Thermolux 995) chips a TLD-Microdosimeter (LiBe-14) emulating a much larger gas-filled Tissue Equivalent Proportional Counter (TEPC) was developed. The TEPC is an essential device of space radiation dosimetry widely used by international space agencies. The LiBe-14 is capable of assessing the LETTissue (5–300 keV/μm), quality factor Q (1–30) and associated dose equivalent H (0.1–1000 mSv) of any mixed radiation fields of interest, including space radiations predominant in Low Earth Orbit (LEO) environment. The TLD microdosimeter was calibrated using the secondary radiation fields produced by bombarding a 25 cm × 25 cm × 35 cm polystyrene phantom with 81, 119, 150, 177, 201 and 231 MeV protons from a Proton Therapy Medical Cyclotron. The TLD pair (BeO/LiF) was attached to the TEPC and placed lateral to the proton beam. The characteristics of space radiation inside the spacecraft are complex. Hence, personal dosimetry of astronauts in the space habitat is performed using "multi-element" dosimeters made of different types of TLD and CR-39 plastic nuclear track detector (PNTD). The TLD and PNTD are used to assess the sparsely (low LET) and densely (high LET) ionising radiation component respectively. This report elucidates the feasibility of LiBe-14 microdosimeter for the estimation of overall dose equivalent and "risk of exposure induced death" (REID) of astronauts working in LEO space stations.

  13. The use of in vivo thermoluminescent dosimeters in the quality assurance programme for the START breast fractionation trial.

    PubMed

    Venables, Karen; Miles, Elizabeth A; Aird, Edwin G A; Hoskin, Peter J

    2004-06-01

    The use of in vivo dosimetry for patient measurement is recommended in many publications. It provides an additional check to verify that the dose delivered to the patient corresponds to the prescribed dose. In the context of a clinical trial investigating the effects of different fractionation regimens, it is imperative that the dose given is that prescribed to ensure that noise in the data between centres does not mask the results of the trial. The methodology for in vivo measurement in a clinical trial of breast radiotherapy was developed and verified. A cohort of patients in the STAndardisation of breast RadioTherapy (START) trial was monitored using postal thermoluminescent dosimeters chips (TLD). All TLD were processed and analysed at Mount Vernon Hospital. Patients for in vivo measurements were identified at randomisation as a random 1 in 9 samples for the first 2500 patients randomised (282 TLD) increasing to 1 in 3 thereafter. The TLD were left in place for the duration of the tangential field treatment and thus a composite entrance and exit dose was recorded. TLD measurements were performed on 429 patients from 33 hospitals. The average ratio of dose measured using TLD to that prescribed was 0.99+/-0.04. Eight patients had initial measurements more than 10% different to the prescribed dose. The mean TLD results for a given centre correlated well with dose measurements performed using an ionisation chamber in a breast shaped phantom at that centre as part of the START trial audit. Thermoluminescence dosimetry has provided useful quality assurance information on the doses received by patients in centres participating in the START trial.

  14. Inhaled corticosteroid metered-dose inhalers: how do variations in technique for solutions versus suspensions affect drug distribution?

    PubMed

    Robinson, Christie A; Tsourounis, Candy

    2013-03-01

    To assess the literature that evaluates how variations in metered-dose inhaler (MDI) technique affect lung distribution for inhaled corticosteroids (ICSs) formulated as MDI suspensions and solutions. PubMed (up to November 2012) and Cochrane Library (up to November 2012) were searched using the terms metered-dose inhalers, HFA 134a, Asthma/*drug therapy, and inhaled corticosteroids. In addition, reference citations from publications identified were reviewed. All articles in English from the data sources that assessed MDI technique comparing total lung distribution (TLD) of MDI solutions or suspensions formulated with ICSs were included in the review. Five relevant studies were identified. Five controlled studies compared how variations in MDI technique affect TLD for ICS MDI solutions with suspensions. MDI solutions resulted in greater TLD compared with larger particle MDI suspensions. Delayed or early inspiration upon device actuation of MDI solutions resulted in less TLD than coordinated actuation, but with a 3- to 4-times greater TLD than MDI suspensions inhaled using a standard technique. A sixth study evaluated inspiratory flow rates (IFR) for small, medium, and large particles. Rapid and slow IFRs resulted in similar TLD for small particles, while far fewer particles reached the airways with medium and large particles at rapid, rather than slow, IFRs. Based on the literature evaluated, standard MDI technique should be used for ICS suspensions. ICS MDI solutions can provide a higher average TLD than larger-particle ICS suspensions using standard technique, discoordinated inspiration and medication actuation timing, or rapid and slow IFRs. ICS MDI solutions allow for a more forgiving technique, which makes them uniquely suitable options for patients with asthma who have difficultly with MDI technique.

  15. An approach to an analysis of the energy response of LiF-TLD to high energy electrons.

    PubMed

    Shiragai, A

    1977-05-01

    Responses of LiF-TLD to high energy electrons relative to 60Co gamma-rays were investigated experimentally and theoretically. The Burlin et al. theory, its modified version by Almond and McCray and the Holt et al. semi-empirical theory were examined in comparison with each experiment. An approximate approach to theoretical analysis of energy response of LiF-TLD was attempted and compared with some experimental results.

  16. Evaluation of the Sensitivity and Signal Response of the DT-702 LiF:Mg,Cu,P TLD

    DTIC Science & Technology

    2007-06-27

    energy stored from the radiation interactions that occurs prior to the TLD being read. Electrons can absorb additional energy from sources other...thermoluminescent dosimetry , annealing is the 24 process used to clear any radiation exposure information from a TLD , preparing it for reuse...702 four-chip TLDs were obtained from the Naval Dosimetry Center (NDC), Bethesda, MD. Each card was tested by Thermo prior to delivery to NDC to

  17. [Roentgenomorphological substantiation of drainage of the thoracic duct in patients with liver cirrhosis].

    PubMed

    Riabukhin, I A; Nazyrov, F G; Vorozheĭkin, V M; Khamidov, P M; Kirichenko, I P

    1983-04-01

    On the basis of an analysis of rentgeno-morphological investigations of the thoracic lymphatic duct (TLD) in 115 patients with complications of hepatocirrhosis and 50 postmortem observations the authors make a conclusion that one of the main factors of the development of insufficiency of TLD in hepatocirrhosis is an excess of lymph resulting in congestion in the duct. It may be considered as a cause for drainage of the TLD in patients with hepatocirrhosis.

  18. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com; Huang, Chih-Jen; Department of Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skinmore » dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT.« less

  19. Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques.

    PubMed

    Duch, M A; Ginjaume, M; Chakkor, H; Ortega, X; Jornet, N; Ribas, M

    1998-06-01

    In total body irradiation (TBI) treatments in vivo dosimetry is recommended because it makes it possible to ensure the accuracy and quality control of dose delivery. The aim of this work is to set up an in vivo thermoluminescence dosimetry (TLD) system to measure the dose distribution during the TBI technique used prior to bone marrow transplant. Some technical problems due to the presence of lung shielding blocks are discussed. Irradiations were performed in the Hospital de la Santa Creu i Sant Pau by means of a Varian Clinac-1800 linear accelerator with 18 MV X-ray beams. Different TLD calibration experiments were set up to optimize in vivo dose assessment and to analyze the influence on dose measurement of shielding blocks. An algorithm to estimate midplane doses from entrance and exit doses is proposed and the estimated dose in critical organs is compared to internal dose measurements performed in an Alderson anthropomorphic phantom. The predictions of the dose algorithm, even in heterogeneous zones of the body such as the lungs, are in good agreement with the experimental results obtained with and without shielding blocks. The differences between measured and predicted values are in all cases lower than 2%. The TLD system described in this work has been proven to be appropriate for in vivo dosimetry in TBI irradiations. The described calibration experiments point out the difficulty of calibrating an in vivo dosimetry system when lung shielding blocks are used.

  20. Thermoluminescent dosimetry in electron beams: energy dependence.

    PubMed

    Robar, V; Zankowski, C; Olivares Pla, M; Podgorsak, E B

    1996-05-01

    The response of thermoluminescent dosimeters to electron irradiations depends on the radiation dose, mean electron energy at the position of the dosimeter in phantom, and the size of the dosimeter. In this paper the semi-empirical expression proposed by Holt et al. [Phys. Med. Biol. 20, 559-570 (1975)] is combined with the calculated electron dose fraction to determine the thermoluminescent dosimetry (TLD) response as a function of the mean electron energy and the dosimeter size. The electron and photon dose fractions, defined as the relative contributions of electrons and bremsstrahlung photons to the total dose for a clinical electron beam, are calculated with Monte Carlo techniques using EGS4. Agreement between the calculated and measured TLD response is very good. We show that the considerable reduction in TLD response per unit dose at low electron energies, i.e., at large depths in phantom, is offset by an ever-increasing relative contribution of bremsstrahlung photons to the total dose of clinical electron beams. This renders the TLD sufficiently reliable for dose measurements over the entire electron depth dose distribution despite the dependence of the TLD response on electron beam energy.

  1. The Development of a Beta-Gamma Personnel Dosimeter

    NASA Astrophysics Data System (ADS)

    Tsakeres, Frank Steven

    The assessment of absorbed dose in mixed beta and gamma radiation fields is an extremely complex task. For many years, the assessment of the absorbed dose to tissue from the weakly penetrating components of a radiation field (i.e., beta particles, electrons) has been largely ignored. Beta radiation fields are encountered routinely in a nuclear facility and may represent the major radiation component under certain accident or emergency conditions. Many attempts have been made to develop an accurate mixed field personnel dosimeter. However, all of these dosimeters have exhibited numerous response problems which have limited their usefulness for personnel dose assessment. Consequently, the determination of the absorbed dose at the epidermal depth (i.e., 7 mg/cm('2)) has been difficult to measure accurately. The objective of this research project was to design, build, and test a sensitive and accurate personnel dosimeter for mixed field applications. The selection of the various dosimeter elements were determined by evaluating several types of phosphors, filters, and backscatter materials. After evaluating the various response characteristics of the badge components, a prototype dosimeter, the CHEMM (CaF(,2):Dy Highly Efficient Multiple Element Multiple Filter) personnel dosimeter, was developed and tested at Georgia Tech, Emory University and the National Bureau of Standards. This dosimeter was comprised of four large CaF(,2):Dy (TLD-200) TLD's and a standard LiF (TLD-100) chip. The weakly penetrating and penetrating components of a radiation field were separated using a series of TLD/filter combinations and a new dose assessment algorithm. The large TLD-200 chips, along with a series of tissue-equivalent filters, were used to determine the absorbed dose due to the weakly penetrating radiation while a LiF/filter combination was used to measure the penetrating component. In addition, a new backscatter material was included in the badge design to better simulate a tissue-equivalent response. The CHEMM personnel dosimeter performance tests were conducted to simulate actual mixed radiation field environments. This dosimeter provided a high degree of sensitivity with accuracies well within the ANSI recommended performance standards for personnel dosimeters. In addition, it was concluded that the CHEMM dosimetry system provided a practical dosimeter alternative with a higher dose assessment accuracy and measurement sensitivity than the personnel dosimetry systems presently used in the nuclear power industry.

  2. Investigating Time and Spectral Dependence in Neutron Radiation Environments for Semiconductor Damage Studies

    DTIC Science & Technology

    2014-09-18

    each of the four 20-min dosimetry -focused irradiations, a TLD crystal was included in the dosimetry package placed next to the BJTs. This TLD was then...4.75× 103 rad(Si). One reason the measured TLD response would be higher than the calculated value may be due to neutron-induced electron excitation that...there were also 14 TLDs . The dosimetry packet 122 for the 23.4% irradiation did not contain TLDs because they would have become too radioactive and would

  3. Basic Characteristics of Laser Heating in Thermoluminescence and of Laser-Stimulated Luminescence

    DTIC Science & Technology

    1990-07-15

    as examples. These include LiF:Mg,Ti ( TLD -100, Harshaw Chemical Corporation) in form of chips, which are widely used in the dosimetry of ionizing...take dosimetry ( TLD ) of ionizing radiation because it holds pro- the form of discrete circular spots whose diameter is smaller mise as a solution to...function of typical phosphor, we choose the most widely used dosimetry time after onset of the laser exposure, the time-dependent material LiF:Mg,Ti ( TLD

  4. Poster - 24: Characterization of the energy dependence of high-sensitivity MCP-N TLD and Al2O3:C OSLD in-vivo dosimetry systems for 40–100 kVp energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, Yannick; Kuznetsova, Svetlana; Barajas, E

    Purpose: To characterize the energy dependence of high-sensitivity MCP-N TLD and Al{sub 2}O{sub 3}:C OSLD dosimetry systems at low (40–100 kVp) energies for in-vivo dosimetry. Methods: We assessed the variation of response with energy of two detectors in the 40–100 kVp energy range: high-sensitivity MCP-N TLDs (LiF:Mg,Cu,P) and OSLDs (Al{sub 2}O{sub 3}:C). The detectors were irradiated with an XRad 320ix biological irradiator under reference conditions. The delivered dose was 10 cGy for 7 beam qualities ranging from 40–100 kVp, 1.7–4.0 mm Al, and effective energies 26.9–37.9 keV. Both sets of detectors were also irradiated under reference conditions at 6 MVmore » using a Varian Clinac 21Ex to assess the change in response from high-energy beams. Results: The MCP-N high-sensitivity TLDs were relatively insensitive to energies in the kV range, as their response varied by ±5%, i.e. well within the reproducibility limits of these detectors. However, the OSLDs exhibited a linearly-decreasing response with energy with a response 18.7% higher at 40 kVp than at 100 kVp for the same nominal dose. Compared to the 6 MV beams used in conventional radiotherapy, OSLDs responded 3.3–3.9 times higher depending on beam quality while the MCP-N TLD response was unchanged within experimental uncertainty. Conclusions: Unlike the more commonly used TLD-100, the high-sensitivity MCP-N TLDs exhibit little to no energy response. OSLDs are shown to be highly energy-dependent, both from MV to kV and within the kV range.« less

  5. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer.

    PubMed

    Sun, Li-Min; Huang, Chih-Jen; Chen, Hsiao-Yun; Chang, Gia-Hsin; Tsao, Min-Jen

    2016-01-01

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skin dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. Analysis and recent advances in gamma heating measurements in MINERVE facility by using TLD and OSLD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Di Salvo, J.; Lyoussi, A.

    2011-07-01

    The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo-Luminescent Detector (TLD) and Optically Stimulated Luminescent Detectors (OSLD) experiments in the UO{sub 2} core of the MINERVE research reactor at the CEA Cadarache. The experimental sources of uncertainties on the gamma dose have been reduced by improving the conditions, as well as the repeatability, of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account calculation of cavity correction factors, related to calibration and irradiation configurations, as well asmore » neutron corrections calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. TLD and OSLD are positioned inside aluminum pillboxes. The comparison between calculated and measured integral gamma-ray absorbed doses using TLD, shows that calculation slightly overestimates the measurement with a C/E value equal to 1.05 {+-} 5.3 % (k = 2). By using OSLD, the calculation slightly underestimates the measurement with a C/E value equal to 0.96 {+-} 7.0% (k = 2. (authors)« less

  7. Relative Efficiency of TLD-100 to High Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  8. Relative Efficiency of TLD-100 to Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  9. Feasibility study of glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams.

    PubMed

    Mizuno, Hideyuki; Kanai, Tatsuaki; Kusano, Yohsuke; Ko, Susumu; Ono, Mari; Fukumura, Akifumi; Abe, Kyoko; Nishizawa, Kanae; Shimbo, Munefumi; Sakata, Suoh; Ishikura, Satoshi; Ikeda, Hiroshi

    2008-02-01

    The characteristics of a glass dosimeter were investigated for its potential use as a tool for postal dose audits. Reproducibility, energy dependence, field size and depth dependence were compared to those of a thermoluminescence dosimeter (TLD), which has been the major tool for postal dose audits worldwide. A glass dosimeter, GD-302M (Asahi Techno Glass Co.) and a TLD, TLD-100 chip (Harshaw Co.) were irradiated with gamma-rays from a (60)Co unit and X-rays from a medical linear accelerator (4, 6, 10 and 20 MV). The dosimetric characteristics of the glass dosimeter were almost equivalent to those of the TLD, in terms of utility for dosimetry under the reference condition, which is a 10 x 10 cm(2) field and 10 cm depth. Because of its reduced fading, compared to the TLD, and easy quality control with the ID number, the glass dosimeter proved to be a suitable tool for postal dose audits. Then, we conducted postal dose surveys of over 100 facilities and got good agreement, with a standard deviation of about 1.3%. Based on this study, postal dose audits throughout Japan will be carried out using a glass dosimeter.

  10. A model for calculating the costs of in vivo dosimetry and portal imaging in radiotherapy departments.

    PubMed

    Kesteloot, K; Dutreix, A; van der Schueren, E

    1993-08-01

    The costs of in vivo dosimetry and portal imaging in radiotherapy are estimated, on the basis of a detailed overview of the activities involved in both quality assurance techniques. These activities require the availability of equipment, the use of material and workload. The cost calculations allow to conclude that for most departments in vivo dosimetry with diodes will be a cheaper alternative than in vivo dosimetry with TLD-meters. Whether TLD measurements can be performed cheaper with an automatic reader (with a higher equipment cost, but lower workload) or with a semi-automatic reader (lower equipment cost, but higher workload), depends on the number of checks in the department. LSP-systems (with a very high equipment cost) as well as on-line imaging systems will be cheaper portal imaging techniques than conventional port films (with high material costs) for large departments, or for smaller departments that perform frequent volume checks.

  11. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)

    NASA Astrophysics Data System (ADS)

    Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah

    2017-11-01

    The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.

  12. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    PubMed

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Thermoluminescence Response of CaF2:Mn, CaFz:Dy and CaSO4:Tm to Protons and Alpha-Particles,

    DTIC Science & Technology

    1987-06-01

    TLD ) in diverse radiation fields, such as mixed neutron-gamma fields. TL responses of the detector may depend not only on the photon and neutron energy...response of three TLD materials: CaF 2 :Mn, CaF?:Dy and CaSO 4 :Tm. These three materials are commonly used in TLDs , because of their high sensitivities...and suitable readout temperatures. CaS04:Tm powder embedded in polyethylene was investiaged at DREO (Ref. (4)) as a combined neutron/gamma TLD , but

  14. Dosimetry around metallic ports in tissue expanders in patients receiving postmastectomy radiation therapy: an ex vivo evaluation.

    PubMed

    Moni, Janaki; Graves-Ditman, Maria; Cederna, Paul; Griffith, Kent; Krueger, Editha A; Fraass, Benedick A; Pierce, Lori J

    2004-01-01

    Postmastectomy breast reconstruction can be accomplished utilizing tissue expanders and implants. However, in patients who require postoperative radiotherapy, the complication rate with tissue expander/implant reconstruction can exceed 50%. One potential cause of this high complication rate may be the metallic port in the tissue expander producing altered dosimetry in the region of the metallic device. The purpose of this study was to quantify the radiation dose distribution in the vicinity of the metallic port and determine its potential contribution to this extremely high complication rate. The absolute dosimetric effect of the tissue expander's metallic port was quantified using film and thermoluminescent dosimetry (TLD) studies with a single beam incident on a metallic port extracted from an expander. TLD measurements were performed at 11 reproducible positions on an intact expander irradiated with tangential fields. A computed tomography (CT)-based treatment plan without inhomogeneity corrections was used to derive expected doses for all TLD positions. Multiple irradiation experiments were performed for all TLD data. Confidence intervals for the dose at TLD sites with the metallic port in place were compared to the expected dose at the site without the metallic port. Film studies did not reveal a significant component of scatter around the metallic port. TLD studies of the extracted metallic port revealed highest doses within the casing of the metallic port and no consistent increased dose at the surface of the expander. No excess dose due to the metallic port in the expander was noted with the phantom TLD data. Based upon these results, it does not appear that the metallic port in tissue expanders significantly contributes to the high complication rate experienced in patients undergoing tissue expander breast reconstruction and receiving radiation therapy. Strategies designed to reduce the breast reconstruction complication rate in this clinical setting will need to focus on factors other than adjusting the dosimetry around the tissue expander metallic port.

  15. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique.

    PubMed

    Lee, YoungJu; Won, Yuho; Kang, Kidoo

    2015-04-01

    Passive integrating dosemeters [thermoluminescent dosimeter (TLD) and optically stimulated luminescence (OSL)] are the only legally permitted individual dosemeters for occupational external radiation exposure monitoring in Korea. Also its maximum issuing cycle does not exceed 3 months, and the Korean regulations require personal dosemeters for official assessment of external radiation exposure to be issued by an approved or rather an accredited dosimetry service according to ISO/IEC 17025. KHNP (Korea Hydro & Nuclear Power, LTD), a unique operating company of nuclear power plants (NPPs) in Korea, currently has a plan to extend a TLD issuing cycle from 1 to 3 months under the authors' fading error criteria, ±10%. The authors have performed a feasibility study that minimises post-irradiation fading effects within their maximum reading cycle employing pre-heating technique. They repeatedly performed irradiation/reading a bare TLD chip to determine optimum pre-heating conditions by analysing each glow curve. The optimum reading conditions within the maximum reading cycle of 3 months were decided: a pre-heating temperature of 165°C, a pre-heating time of 9 s, a heating rate of 25°C s(-1), a reading temperature of 300°C and an acquisition time of 10 s. The fading result of TLD-600 and TLD-700 carried by newly developed time temperature profile (TTP) showed a much smaller fading effect than that of current TTP. The result showed that the fading error due to a developed TTP resulted in a ∼5% signal loss, whereas a current TTP caused a ∼15% loss. The authors also carried out a legal performance test on newly developed TTP to confirm its possibility as an official dosemeter. The legal performance tests that applied the developed TTP satisfied the criteria for all the test categories. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauk, Sabar, E-mail: sabar@usm.my; Hussin, Siti Fatimah; Alam, Md. Shah

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peakmore » 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.« less

  17. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations

    PubMed Central

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by 241Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy-1 for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy-1 achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production. PMID:24600167

  18. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations.

    PubMed

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by (241)Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy(-1) for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy(-1) achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.

  19. X-ray surface dose measurements using TLD extrapolation.

    PubMed

    Kron, T; Elliot, A; Wong, T; Showell, G; Clubb, B; Metcalfe, P

    1993-01-01

    Surface dose measurements in therapeutic x-ray beams are of importance in determining the dose to the skin of patients undergoing radiotherapy. Measurements were performed in the 6-MV beam of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD) using a solid water phantom. TLD chips (surface area 3.17 x 3.17 cm2) of three different thicknesses (0.230, 0.099, and 0.038 g/cm2) were used to extrapolate dose readings to an infinitesimally thin layer of LiF. This surface dose was measured for field sizes ranging from 1 x 1 cm2 to 40 x 40 cm2. The surface dose relative to maximum dose was found to be 10.0% for a field size of 5 x 5 cm2, 16.3% for 10 x 10 cm2, and 26.9% for 20 x 20 cm2. Using a 6-mm Perspex block tray in the beam increased the surface dose in these fields to 10.7%, 17.7%, and 34.2% respectively. Due to the small size of the TLD chips, TLD extrapolation is applicable also for intracavity and exit dose determinations. The technique used for in vivo dosimetry could provide clinicians information about the build up of dose up to 1-mm depth in addition to an extrapolated surface dose measurement.

  20. [The application of non-annealing thermoluminescent dosimetry (TLD)].

    PubMed

    Wu, J M; Chen, C S; Lan, R H

    1993-06-01

    Conventional use of Thermoluminescence (TL) in radiation dosimetry is very time-consuming. It requires repeating the procedures of preheating and annealing. In an attempt to simplify these procedures, we conducted an experiment of non-annealing TL dosimetry. This article reports the experiment's results. We adopted Lithium Fluoride (LiF) chip (TLD-100) in polystyrene under the exposure of Co-60, and the result was taken by HAR-SHAW-4000 TL reading system. The TL response was analyzed, including linearity, reproducibility and fading test. Because non-annealing TL response was greatly influenced by residual electron, TLD calibration curves were separated into two parts: (1) high dose region (HDR, 50-1500 cGy); (2) low dose region (LDR, 0-50 cGy). When TL dosimeters were exposed to a single high does (about 500 cGy), the HDR could be reproduced within 3% and fit a good linearity. For LDR, we had to give up the tail of glow curve in the high temperature region. We could then get good linearity and reproducibility. Furthermore, fading of non-annealing was apparently larger than annealing. We could control the fading of non-annealing was apparently larger than annealing. We could control the fading influence within 1% by taking the TL reading one hour after exposure. On the other hand, a combination of photon and electron exposure was also performed by non-annealing TL dosimetry. The results were compatible with Co-60 exposure in the same system.

  1. TL detectors for gamma ray dose measurements in criticality accidents.

    PubMed

    Miljanić, Saveta; Zorko, Benjamin; Gregori, Beatriz; Knezević, Zeljka

    2007-01-01

    Determination of gamma ray dose in mixed neutron+gamma ray fields is still a demanding task. Dosemeters used for gamma ray dosimetry are usually in some extent sensitive to neutrons and their response variations depend on neutron energy i.e., on neutron spectra. Besides, it is necessary to take into account the energy dependence of dosemeter responses to gamma rays. In this work, several types of thermoluminescent detectors (TLD) placed in different holders used for gamma ray dose determination in the mixed fields were examined. Dosemeters were from three different institutions: Ruder Bosković Institute (RBI), Croatia, JoZef Stefan Institute (JSI), Slovenia and Autoridad Regulatoria Nuclear (ARN), Argentina. All dosemeters were irradiated during the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002. Three accidental scenarios were reproduced and in each irradiation the dosemeters were exposed placed on the front of phantom and 'free in air'. Following types of TLDs were used: 7LiF (TLD-700), CaF2:Mn and Al2O3:Mg,Y-all from RBI; CaF2:Mn from JSI and 7LiF (TLD-700) from ARN. Reported doses were compared with the reference values as well as with the values obtained from the results of all participants. The results show satisfactory agreement with other dosimetry systems used in the Intercomparison. The influence of different types of holders and applied corrections of dosemeters' readings are discussed.

  2. In vivo dosimetry with TLD in conservative treatment of breast cancer patients treated with the EORTC protocol 22881.

    PubMed

    Hamers, H P; Johansson, K A; Venselaar, J L; de Brouwer, P; Hansson, U; Moudi, C

    1993-01-01

    Two anthropomorphic phantom breasts and six patients with breast carcinoma were irradiated according the prescriptions of the EORTC protocol 22881 on the conservative management of breast carcinoma by tumorectomy and radiotherapy. During the implantation procedure for an iridium-192 boost, three tubes were implanted, enabling the measurement with TLD rods of the dose within the breasts of the phantom and the patients during one fraction of the external x-ray therapy and during the interstitial therapy. Measured doses were compared with calculated values from a 2-D dose planning system. In general a fair agreement was found between the measured and calculated doses in points within the breast for the external beam therapy as well as for the interstitial treatment.

  3. NOTE: Monte Carlo simulation of correction factors for IAEA TLD holders

    NASA Astrophysics Data System (ADS)

    Hultqvist, Martha; Fernández-Varea, José M.; Izewska, Joanna

    2010-03-01

    The IAEA standard thermoluminescent dosimeter (TLD) holder has been developed for the IAEA/WHO TLD postal dose program for audits of high-energy photon beams, and it is also employed by the ESTRO-QUALity assurance network (EQUAL) and several national TLD audit networks. Factors correcting for the influence of the holder on the TL signal under reference conditions have been calculated in the present work from Monte Carlo simulations with the PENELOPE code for 60Co γ-rays and 4, 6, 10, 15, 18 and 25 MV photon beams. The simulation results are around 0.2% smaller than measured factors reported in the literature, but well within the combined standard uncertainties. The present study supports the use of the experimentally obtained holder correction factors in the determination of the absorbed dose to water from the TL readings; the factors calculated by means of Monte Carlo simulations may be adopted for the cases where there are no measured data.

  4. TU-F-BRE-07: In Vivo Neutron Detection in Patients Undergoing Stereotactic Ablative Radiotherapy (SABR) for Primary Kidney Cancer Using 6Li and 7Li Enriched TLD Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonski, P; Kron, T; RMIT University, Melbourne, Victoria

    Purpose: Stereotactic ablative radiotherapy (SABR) for primary kidney cancer often involves the use of high-energy photons combined with a large number of monitor units. While important for risk assessment, the additional neutron dose to untargeted healthy tissue is not accounted for in treatment planning. This work aims to detect out-of-field neutrons in vivo for patients undergoing SABR with high-energy (>10 MV) photons and provides preliminary estimates of neutron effective dose. Methods: 3 variations of high-sensitivity LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) material, each with varying {sup 6}Li / {sup 7}Li concentrations, were used in custom-made Perspex holders for in vivo measurements. Themore » variation in cross section for thermal neutrons between Li isotopes was exploited to distinguish neutron from photon signal. Measurements were made out-of-field for 7 patients, each undergoing 3D-conformal SABR treatment for primary kidney cancer on a Varian 21iX linear accelerator. Results: In vivo measurements show increased signal for the {sup 6}Li enriched material for patients treated with 18 MV photons. Measurements on one SABR patient treated using only 6 MV showed no difference between the 3 TLD materials. The out-of-field photon signal decreased exponentially with distance from the treatment field. The neutron signal, taken as the difference between {sup 6}Li enriched and {sup 7}Li enriched TLD response, remains almost constant up to 50 cm from the beam central axis. Estimates of neutron effective dose from preliminary TLD calibration suggest between 10 and 30 mSv per 1000 MU delivered at 18 MV for the 7 patients. Conclusion: TLD was proven to be a useful tool for the purpose of in vivo neutron detection at out-of-field locations. Further work is required to understand the relationship between TL signal and neutron dose. Dose estimates based on preliminary TLD calibration in a neutron beam suggest the additional neutron dose was <30 mSv per 1000 MU at 18 MV.« less

  5. In vivo thermoluminescence dosimetry for total body irradiation.

    PubMed

    Palkosková, P; Hlavata, H; Dvorák, P; Novotný, J; Novotný, J

    2002-01-01

    An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).

  6. Comparison of thermoluminescence response of different sized Ge-doped flat fibers as a dosimeter

    NASA Astrophysics Data System (ADS)

    Begum, Mahfuza; Mizanur Rahman, A. K. M.; Abdul-Rashid, H. A.; Yusoff, Z.; Mat-Sharif, K. A.; Zulkifli, M. I.; Muhamad-Yasin, S. Z.; Ung, N. M.; Kadir, A. B. A.; Amin, Y. M.; Bradley, D. A.

    2015-11-01

    Prime dosimetric properties, including dose-response, linearity with dose, energy response, fading and threshold doses were investigated for three different dimension Ge-doped flat fibers. The results of measurement were also compared with two of the more commonly used standard TLD media, TLD-100 (LiF:Mg,Ti-7.5%6LiF) and TLD-700 (7LiF:Mg,Ti-99.9%7LiF) chips. The flat cross-section samples (60×180) μm2, (100×350) μm2 and (200×750) μm2 were fabricated using the Modified Chemical Vapor Deposition (MCVD) process and pulled from the same "preform." In the study, all flat fiber samples provided good linear dose-response for the photon and electron beams generated using a medical linear accelerator (LINAC), for doses in the range 0.5-8 Gy. Among the samples, the smallest dimension flat fiber provided the best response, with a sensitivity of some 61% and 54%, respectively of that of the TLD-100 and TLD-700 chips. The energy responses of the samples were studied for various photon (6 MV, 10 MV) and electron (6 MeV, 9 MeV) beam energies. TL fading of around 20% was observed over a period of thirty (30) days. These favorable TL characteristics point towards promising development of Ge-doped flat fibers for use in radiotherapy dosimetry.

  7. Calibration of TLD badges for photons of energy above 6 MeV and dosimetric intricacies in high energy gamma ray fields encountered in nuclear power plants.

    PubMed

    Pradhan, A S; Bakshi, A K

    2002-01-01

    CaSO4:Dy and LiF TLDs do not exhibit photon energy dependence beyond +/-55% for photons in the energy range from 1 MeV to about 7 MeV. However, when sandwiched between metal filters or used in TLD badge holders having metal filters, the response changes for irradiation from high energy photons as compared to that from 60Co gamma rays (generally used for reference calibrations). This effect is about the same for both the lower atomic number TLD (LiF) and higher atomic number TLD (CaSO4:Dy). For TLDs held on the surface of the phantom and irradiated in collimated photon beams, the response of TLDs without any filter or those under the open window of the TLD badge is considerably reduced due to insufficient build-up to high energy photons, whereas for uncollimated radiation fields from power reactors, an over-response is observed. It is observed that the use of inappropriate encapsulation of dosemeters would cause a significant error not only in the estimation of doses due to penetrating radiations but also in the estimation of beta doses in the mixed fields of beta radiation, high energy gamma rays and high energy electrons often encountered in the fields of pressurised heavy water reactors.

  8. A comparative evaluation of luminescence detectors: RPL-GD-301, TLD-100 and OSL-AL2O3:C, using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Benali, A.-H.; Medkour Ishak-Boushaki, G.; Nourreddine, A.-M.; Allab, M.; Papadimitroulas, P.

    2017-07-01

    The luminescent dosimeters are widely used in clinical practice, for the monitoring of patient dose in external radiation therapy. Three of the most common dosimeter categories are the thermoluminescence (TLDs), the radiophotoluminescence (RPLs) and the optically stimulated luminescence (OSLs), with similar physical processes on their properties. The aim of the present study is to compare and evaluate the dosimetric properties of three specific luminescent detectors namely: a) RPL glass dosimeter, commercially known as GD-301, b) lithium fluoride TLD-100 (LiF:Mg,Ti) and c) carbon-doped aluminum oxide (Al2O3:C). For this purpose, Monte Carlo simulations were applied, using the MCNP5 code to estimate the responses of these dosimeters in terms of absorbed dose, output factor, the angular and energy dependence. In the present study, we found that the differences between the output factors were less than ± 4.2% for all detector materials RPLGD, TLD and OSLD. The variations in sensitivity for angles up to ± 80 degrees from the central axis of the beam were approximately 0.5%, 0.8% and 1.5% for the TLD-100, GD-301 and Al2O3:C, respectively. The energy dependence of the RPL and OSL dosimeters are stated as less than a 2.2%, and within 5.8% for TLD.

  9. SU-E-T-101: Determination and Comparison of Correction Factors Obtained for TLDs in Small Field Lung Heterogenous Phantom Using Acuros XB and EGSnrc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, R; Lee, J; Harianto, F

    Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute materialmore » for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.« less

  10. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system.

    PubMed

    Deme, S; Apathy, I; Hejja, I; Lang, E; Feher, I

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  11. Proceedings: TRIAGE of Irradiated Personnel, 25-27 September 1996

    DTIC Science & Technology

    1998-03-01

    thermoluminescent dosimeter project group (PG-29) has recommended grani- (TLD) systems accredited by the National Volun- setron as the deployable...individual phylactic antiemetic medications and regimens dosimeter system currently fielded is the high-range were evaluated prior to adoption of...granisetron. photoluminescent AN/PDR-75. This system con- sists of the ruggedized DT-236 wristband dosimeter Two drugs exceeded the criteria (shown below

  12. Upper-Bound Radiation Dose Assessment for Military Personnel at McMurdo Station, Antarctica, between 1962 and 1979, Revision 1

    DTIC Science & Technology

    2016-07-29

    using Equation 2 (DTRA, 2010, ED01): Dmonitor highest average HT TLD D = (2) where: TLDhighest = Highest TLD measurement during environmental...the processing of administrative claims or litigation. For use by Agency officials, employees, and authorized contractors . ROUTINE USES

  13. Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system.

    PubMed

    Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe

    2007-11-15

    To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  14. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    PubMed

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.

  15. A fast and sensitive TLD method for measurement of energy and homogeneity of electron beams using transmitted radiation through lead.

    PubMed

    Pradhan, A S; Quast, U; Sharma, P K

    1994-09-01

    A simple and fast, but sensitive TLD method for the measurement of energy and homogeneity of therapeutically used electron beams has been developed and tested. This method is based on the fact that when small thicknesses of high-Z absorbers such as lead are interposed in the high-energy electron beams, the transmitted radiation increases with the energy of the electron beams. Consequently, the ratio of readouts of TLDS held on the two sides of a lead plate varied sharply (by factor of 70) with a change in energy of the electron beam from 5 MeV to 18 MeV, offering a very sensitive method for the measurement of the energy of electron beams. By using the ratio of TL readouts of two types of TLD ribbon with widely different sensitivities, LiF TLD-700 ribbons on the upstream side and highly sensitive CaF2:Dy TLD-200 ribbons on the downstream side, an electron energy discrimination of better than +/- 0.1 MeV could be achieved. The homogeneity of the electron beam energy and the absorbed dose was measured by using a jig in which the TLDS were held in the desired array on both sides of a 4 mm thick lead plate. The method takes minimal beam time and makes it possible to carry out measurements for the audit of the quality of electron beams as well as for intercomparison of beams by mail.

  16. Upregulation of interleukin 7 receptor alpha and programmed death 1 marks an epitope-specific CD8+ T-cell response that disappears following primary Epstein-Barr virus infection.

    PubMed

    Sauce, Delphine; Larsen, Martin; Abbott, Rachel J M; Hislop, Andrew D; Leese, Alison M; Khan, Naeem; Papagno, Laura; Freeman, Gordon J; Rickinson, Alan B

    2009-09-01

    In immunocompetent individuals, the stability of the herpesvirus-host balance limits opportunities to study the disappearance of a virus-specific CD8(+) T-cell response. However, we noticed that in HLA-A 0201-positive infectious mononucleosis (IM) patients undergoing primary Epstein-Barr virus (EBV) infection, the initial CD8 response targets three EBV lytic antigen-derived epitopes, YVLDHLIVV (YVL), GLCTLVAML (GLC), and TLDYKPLSV (TLD), but only the YVL and GLC reactivities persist long-term; the TLD response disappears within 10 to 27 months. While present, TLD-specific cells remained largely indistinguishable from YVL and GLC reactivities in many phenotypic and functional respects but showed unique temporal changes in two markers of T-cell fate, interleukin 7 receptor alpha (IL-7Ralpha; CD127) and programmed death 1 (PD-1). Thus, following the antigen-driven downregulation of IL-7Ralpha seen on all populations in acute IM, in every case, the TLD-specific population recovered expression unusually quickly post-IM. As well, in four of six patients studied, TLD-specific cells showed very strong PD-1 upregulation in the last blood sample obtained before the cells' disappearance. Our data suggest that the disappearance of this individual epitope reactivity from an otherwise stable EBV-specific response (i) reflects a selective loss of cognate antigen restimulation (rather than of IL-7-dependent signals) and (ii) is immediately preceded, and perhaps mediated, by PD-1 upregulation to unprecedented levels.

  17. Biokinetics of radiolabeled Iodophenylpentadecanoic acid (I-123-IPPA) and thallium-201 in a rabbit model of chronic myocardial infarction measured using a series of thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Medich, David Christopher

    1997-09-01

    The biokinetics of Iodophenylpentadecanoic acid (123I-IPPA) during a chronic period of myocardial infarction were determined and compared to 201Tl. IPPA was assessed as a perfusion and metabolic tracer in the scintigraphic diagnosis of coronary artery disease. The myocardial clearance kinetics were measured by placing a series of thermoluminescent dosimeters (TLDs) on normal and infarcted tissue to measure the local myocardial activity content over time. The arterial blood pool activity was fit to a bi-exponential function for 201Tl and a tri-exponential function for 123I-IPPA to estimate the left ventricle contribution to TLD response. At equilibrium, the blood pool contribution was estimated experimentally to be less than 5% of the total TLD response. The method was unable to resolve the initial uptake of the imaging agent due in part to the 2 minute TLD response integration time and in part to the 30 second lag time for the first TLD placement. A noticeable disparity was observed between the tracer concentrations of IPPA in normal and ischemic tissue of approximately 2:1. The fitting parameters (representing the biokinetic eigenvalue rate constants) were related to the fundamental rate constants of a recycling biokinetic model. The myocardial IPPA content within normal tissue was elevated after approximately 130 minutes post injection. This phenomenon was observed in all but one (950215) of the IPPA TLD kinetics curves.

  18. Peripheral dose measurements with diode and thermoluminescence dosimeters for intensity modulated radiotherapy delivered with conventional and un-conventional linear accelerator

    PubMed Central

    Kinhikar, Rajesh; Gamre, Poonam; Tambe, Chandrashekhar; Kadam, Sudarshan; Biju, George; Suryaprakash; Magai, C. S.; Dhote, Dipak; Shrivastava, Shyam; Deshpande, Deepak

    2013-01-01

    The objective of this paper was to measure the peripheral dose (PD) with diode and thermoluminescence dosimeter (TLD) for intensity modulated radiotherapy (IMRT) with linear accelerator (conventional LINAC), and tomotherapy (novel LINAC). Ten patients each were selected from Trilogy dual-energy and from Hi-Art II tomotherapy. Two diodes were kept at 20 and 25 cm from treatment field edge. TLDs (LiF:MgTi) were also kept at same distance. TLDs were also kept at 5, 10, and 15 cm from field edge. The TLDs were read with REXON reader. The readings at the respective distance were recorded for both diode and TLD. The PD was estimated by taking the ratio of measured dose at the particular distance to the prescription dose. PD was then compared with diode and TLD for LINAC and tomotherapy. Mean PD for LINAC with TLD and diode was 2.52 cGy (SD 0.69), 2.07 cGy (SD 0.88) at 20 cm, respectively, while at 25 cm, it was 1.94 cGy (SD 0.58) and 1.5 cGy (SD 0.75), respectively. Mean PD for tomotherapy with TLD and diode was 1.681 cGy SD 0.53) and 1.58 (SD 0.44) at 20 cm, respectively. The PD was 1.24 cGy (SD 0.42) and 1.088 cGy (SD 0.35) at 25 cm, respectively, for tomotherapy. Overall, PD from tomotherapy was found lower than LINAC by the factor of 1.2-1.5. PD measurement is essential to find out the potential of secondary cancer. PD for both (conventional LINAC) and novel LINACs (tomotherapy) were measured and compared with each other. The comparison of the values for PD presented in this work and those published in the literature is difficult because of the different experimental conditions. The diode and TLD readings were reproducible and both the detector readings were comparable. PMID:23531765

  19. Surface dose measurements with commonly used detectors: a consistent thickness correction method.

    PubMed

    Reynolds, Tatsiana A; Higgins, Patrick

    2015-09-08

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30-360) with other parallel plate chambers RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial. Measurements of surface dose for 6MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (-0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid-state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three-detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth-dose curves and is not recommended for these types of measurements.

  20. New design of textile light diffusers for photodynamic therapy.

    PubMed

    Cochrane, Cédric; Mordon, Serge R; Lesage, Jean Claude; Koncar, Vladan

    2013-04-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm(2): 5×20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/ cm(2)) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18±2.5 mw/cm(2). Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm(2)) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Environmental monitoring through use of silica-based TLD.

    PubMed

    Rozaila, Z Siti; Khandaker, M U; Abdul Sani, S F; Sabtu, Siti Norbaini; Amin, Y M; Maah, M J; Bradley, D A

    2017-09-25

    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil, 226 Ra, 232 Th and 40 K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.

  2. In vivo dosimetry of thyroid doses from different irradiated sites in children and adolescents: a cross-sectional study.

    PubMed

    Bonato, Cassiane Cardoso; Dias, Henrique Bregolin; Alves, Michele da Silva; Duarte, Lucas Ost; Dias, Telpo Martins; Dalenogare, Maiara Oliveira; Viegas, Claudio Castelo Branco; Elnecave, Regina Helena

    2014-01-30

    Scattered radiation can be assessed by in vivo dosimetry. Thyroid tissue is sensitive to radiation, even at doses <10 cGy. This study compared the scattered dose to the thyroid measured by thermoluminescent dosimeters (TLDs) and the estimated one by treatment planning system (TPS). During radiotherapy to sites other than the thyroid of 16 children and adolescents, seventy-two TLD measurements at the thyroid were compared with TPS estimation. The overall TPS/TLD bias was 1.02 (95% LA 0.05 to 21.09). When bias was stratified by treatment field, the TPS overestimated TLD values at doses <1 cGy and underestimated them at doses >10 cGy. The greatest bias was found in pelvis and abdomen: 15.01 (95% LA 9.16 to 24.61) and 5.12 (95% LA 3.04 to 8.63) respectively. There was good agreement in orbit, head, and spine: bias 1.52 (95% LA 0.48 to 4.79), 0.44 (95% LA 0.11 to 1.82) and 0.83 (0.39 to 1.76) respectively. There was small agreement with broad limits for lung and mediastinum: 1.13 (95% LA 0.03 to 40.90) and 0.39 (95% LA 0.02 to 7.14) respectively. The scattered dose can be measured with TLDs, and TPS algorithms for outside structures should be improved.

  3. MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131

    NASA Astrophysics Data System (ADS)

    Schwarcke, M.; Marques, T.; Garrido, C.; Nicolucci, P.; Baffa, O.

    2010-11-01

    MAGIC-f gel applicability in Nuclear Medicine dosimetry was investigated by exposure to a 131I source. Calibration was made to provide known absorbed doses in different positions around the source. The absorbed dose in gel was compared with a Monte Carlo Simulation using PENELOPE code and a thermoluminescent dosimetry (TLD). Using MRI analysis for the gel a R2-dose sensitivity of 0.23 s-1Gy-1was obtained. The agreement between dose-distance curves obtained with Monte Carlo simulation and TLD was better than 97% and for MAGIC-f and TLD was better than 98%. The results show the potential of polymer gel for application in nuclear medicine where three dimensional dose distribution is demanded.

  4. Experimental verification of bremsstrahlung production and dosimetry predictions for 15.5 MeV electrons

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Beutler, D. E.; Halbleib, J. A.; Knott, D. P.

    1991-12-01

    The radiation produced by a 15.5-MeV monoenergetic electron beam incident on optimized and nonoptimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and nonequilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. The comparisons provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established.

  5. TLD extrapolation for skin dose determination in vivo.

    PubMed

    Kron, T; Butson, M; Hunt, F; Denham, J

    1996-11-01

    Prediction of skin reactions requires knowledge of the dose at various depths in the human skin. Using thermoluminescence dosimeters of three different thicknesses, the dose can be extrapolated to the surface and interpolated between the different depths. A TLD holder was designed for these TLD extrapolation measurements on patients during treatment which allowed measurements of entrance and exit skin dose with a day to day variability of +/-7% (S.D. of mean reading). In a pilot study on 18 patients undergoing breast irradiation, it was found that the angle of incidence of the radiation beam is the most significant factor influencing skin entrance dose. In most of these measurements the beam exit dose contributed 50% more to the surface dose than the entrance dose.

  6. TU-G-BRD-05: Results From Multi-Institutional Measurements with An Anthropomorphic Spine Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molineu, A; Hernandez, N; Alvarez, P

    Purpose: To analyze the results from an anthropomorphic spine phantom used for credentialing institutions for National Cancer Institute (NCI) sponsored clinical trial. Methods: An anthropomorphic phantom that contains left and right lungs, a heart, an esophagus, spinal cord, bony material and a PTV was sent to institutions wishing to be credentialed for NCI trials. The PTV holds 4 TLD and radiochromic film in the axial and sagittal planes. The heart holds one TLD. Institutions created IMRT plans to cover ≥90% of the PTV with 6 Gy and limit the cord dose to <0.35cc receiving 3.75 Gy and <1.2cc receiving 2.63more » Gy. They were instructed to treat the phantom as they would a patient, including making plan specific IMRT/SBRT QA measurements before treatment. The TLD results in the PTV were required to be within ±7% of the plan dose. A gamma calculation was performed using the film results and the submitted DICOM plan. ≥85% of the analyzed region was required to pass a 5%/3 mm criteria. Results: 176 institutions irradiated the spine phantom for a total of 255 results. The pass rate was 73% (187 irradiations) overall. 44 irradiations failed only the gamma criteria, 2 failed only the dose criteria and 22 failed both. The most used planning systems were Eclipse (116) and Pinnacle (52) and they had pass rates of 76% and 71%, respectively. The AAA algorithm had a pass rate of 77% while superposition type algorithms had a 71% pass rate. The average TLD measurement to institution calculation ratio was 0.99 (0.04 std dev.). The average percent pixels passing the gamma criteria for films was 89% (12% std dev.) Conclusion: Results show that this phantom is an important part of credentialing and that we have room for improvement in IMRT/SBRT spine treatments. This work was supported by PHS CA180803 and CA037422 awarded by NCI, DHHS.« less

  7. Ge and B doped collapsed photonic crystal optical fibre, a potential TLD material for low dose measurements

    NASA Astrophysics Data System (ADS)

    Rozaila, Z. Siti; Alyahyawi, Amjad; Khandaker, M. U.; Amin, Y. M.; Bradley, D. A.; Maah, M. J.

    2016-09-01

    Offering a number of advantageous features, tailor-made silica-based fibres are attracting attention as thermoluminesence (TL) dosimeters. We have performed a detailed study of the TL properties of Ge-doped and Ge-B-doped collapsed photonic crystal fibres (PCFc), most particularly with regard to their potential use for the environmental and X-ray diagnostic dose monitoring. Extrinsic doping and defects generated by strain at the fused inner walls of the collapsed fibres result in the PCFc-Ge-B and PCFc-Ge fibres producing markedly greater TL response than that of the phosphor-based dosimeter TLD-100, by some 9 and 7×, respectively. The linearity of TL yield has been investigated for X-ray doses from 0.5 mGy to 10 mGy. For a dose of 1 Gy, the energy response of the PCFs and TLD-100 has been studied using X-rays generated at accelerating potentials from 20 kVp through to 200 kVp and for the 1.25 MeV mean gamma-ray energy from 60Co. The effective atomic number , Zeffof PCFc-Ge and PCFc-Ge-B was estimated to be 12.5 and 14.4, respectively. Some 35 days post-irradiation, fading of the stored TL signal from PCFc-Ge-B and PCFc-Ge were found to be ∼15% and 20% respectively, with mean loss in TL emission of 0.4-0.5% per day. The present doped-silica collapsed PCFs provide greatly improved TLD performance compared to that of previous fibre designs and phosphor-based TLD-100.

  8. Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance

    PubMed Central

    Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura

    2015-01-01

    Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065

  9. Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.

    PubMed

    Liuzzi, Raffaele; Savino, Federica; D'Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura

    2015-01-01

    Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.

  10. Upregulation of Interleukin 7 Receptor Alpha and Programmed Death 1 Marks an Epitope-Specific CD8+ T-Cell Response That Disappears following Primary Epstein-Barr Virus Infection▿ †

    PubMed Central

    Sauce, Delphine; Larsen, Martin; Abbott, Rachel J. M.; Hislop, Andrew D.; Leese, Alison M.; Khan, Naeem; Papagno, Laura; Freeman, Gordon J.; Rickinson, Alan B.

    2009-01-01

    In immunocompetent individuals, the stability of the herpesvirus-host balance limits opportunities to study the disappearance of a virus-specific CD8+ T-cell response. However, we noticed that in HLA-A*0201-positive infectious mononucleosis (IM) patients undergoing primary Epstein-Barr virus (EBV) infection, the initial CD8 response targets three EBV lytic antigen-derived epitopes, YVLDHLIVV (YVL), GLCTLVAML (GLC), and TLDYKPLSV (TLD), but only the YVL and GLC reactivities persist long-term; the TLD response disappears within 10 to 27 months. While present, TLD-specific cells remained largely indistinguishable from YVL and GLC reactivities in many phenotypic and functional respects but showed unique temporal changes in two markers of T-cell fate, interleukin 7 receptor alpha (IL-7Rα; CD127) and programmed death 1 (PD-1). Thus, following the antigen-driven downregulation of IL-7Rα seen on all populations in acute IM, in every case, the TLD-specific population recovered expression unusually quickly post-IM. As well, in four of six patients studied, TLD-specific cells showed very strong PD-1 upregulation in the last blood sample obtained before the cells’ disappearance. Our data suggest that the disappearance of this individual epitope reactivity from an otherwise stable EBV-specific response (i) reflects a selective loss of cognate antigen restimulation (rather than of IL-7-dependent signals) and (ii) is immediately preceded, and perhaps mediated, by PD-1 upregulation to unprecedented levels. PMID:19605492

  11. Investigation of the Entrance Surface Dose and Dose to Different Organs in Lumbar Spine Imaging

    PubMed Central

    Sina, S; Zeinali, B; Karimipoorfard, M; Lotfalizadeh, F; Sadeghi, M; Zamani, E; Faghihi, R

    2014-01-01

    Background: Dose assessment using proper dosimeters is especially important in radiation protection optimization and imaging justification in diagnostic radiology. Objective: The aim of this study is to obtain the Entrance Skin Dose (ESD) of patients undergoing lumbar spine imaging using two thermoluminescence dosimeters TLD-100 (LiF: Mg, Ti) and GR-200 (LiF: Mg, Cu, P) and also to obtain the absorbed dose to different organs in lumbar spine imaging with several views. Methods: To measure the ESD values of the patients undergoing lumbar spine imaging, the two TLD types were put on their skin surface. The ESD values for different views of lumbar spine imaging were also measured by putting the TLDs at the surface of the Rando phantom. Several TLD chips were inserted inside different organs of Rando phantom to measure the absorbed dose to different organs in lumbar spine imaging. Results: The results indicate that there is a close agreement between the results of the two dosimeters. Based on the results of this experiment, the ESD dose of the 16 patients included in this study varied between 2.71 mGy and 26.29 mGy with the average of 11.89 mGy for TLD-100, and between 2.55 mGy and 27.41 mGy with the average of 12.32 mGy for GR-200 measurements. The ESDs obtained by putting the two types of TLDs at the surface of Rando phantom are in close agreement. Conclusion: According to the results, the GR200 has greater sensitivity than the TLD-100. PMID:25599058

  12. Languaging in Translation Tasks Used in a University Setting: Particular Potential for Student Agency?

    ERIC Educational Resources Information Center

    Kallkvist, Marie

    2013-01-01

    This article explores the value of judiciously used first language (L1)-to-second language (L2) translation in meaning-focused, advanced-level academic language education. It examines languaging in the teacher-led discourse (TLD) that arises when translation tasks are used and compares it to languaging during the TLD engendered by 4 other…

  13. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lye, Jessica, E-mail: jessica.lye@arpansa.gov.au; Dunn, Leon; Kenny, John

    Purpose: On 1 July 2012, the Australian Clinical Dosimetry Service (ACDS) released its Optically Stimulated Luminescent Dosimeter (OSLD) Level I audit, replacing the previous TLD based audit. The aim of this work is to present the results from this new service and the complete uncertainty analysis on which the audit tolerances are based. Methods: The audit release was preceded by a rigorous evaluation of the InLight® nanoDot OSLD system from Landauer (Landauer, Inc., Glenwood, IL). Energy dependence, signal fading from multiple irradiations, batch variation, reader variation, and dose response factors were identified and quantified for each individual OSLD. The detectorsmore » are mailed to the facility in small PMMA blocks, based on the design of the existing Radiological Physics Centre audit. Modeling and measurement were used to determine a factor that could convert the dose measured in the PMMA block, to dose in water for the facility's reference conditions. This factor is dependent on the beam spectrum. The TPR{sub 20,10} was used as the beam quality index to determine the specific block factor for a beam being audited. The audit tolerance was defined using a rigorous uncertainty calculation. The audit outcome is then determined using a scientifically based two tiered action level approach. Audit outcomes within two standard deviations were defined as Pass (Optimal Level), within three standard deviations as Pass (Action Level), and outside of three standard deviations the outcome is Fail (Out of Tolerance). Results: To-date the ACDS has audited 108 photon beams with TLD and 162 photon beams with OSLD. The TLD audit results had an average deviation from ACDS of 0.0% and a standard deviation of 1.8%. The OSLD audit results had an average deviation of −0.2% and a standard deviation of 1.4%. The relative combined standard uncertainty was calculated to be 1.3% (1σ). Pass (Optimal Level) was reduced to ≤2.6% (2σ), and Fail (Out of Tolerance) was reduced to >3.9% (3σ) for the new OSLD audit. Previously with the TLD audit the Pass (Optimal Level) and Fail (Out of Tolerance) were set at ≤4.0% (2σ) and >6.0% (3σ). Conclusions: The calculated standard uncertainty of 1.3% at one standard deviation is consistent with the measured standard deviation of 1.4% from the audits and confirming the suitability of the uncertainty budget derived audit tolerances. The OSLD audit shows greater accuracy than the previous TLD audit, justifying the reduction in audit tolerances. In the TLD audit, all outcomes were Pass (Optimal Level) suggesting that the tolerances were too conservative. In the OSLD audit 94% of the audits have resulted in Pass (Optimal level) and 6% of the audits have resulted in Pass (Action Level). All Pass (Action level) results have been resolved with a repeat OSLD audit, or an on-site ion chamber measurement.« less

  14. Implementation of a Lateral TBI protocol in a Mexican Cancer Center

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko; Sosa, Modesto A.

    2008-08-01

    The development of a Lateral Total Body Irradiation protocol to be implemented at a High Specialty Medical Unit in Mexico as preparatory regimen for bone marrow transplant and treatment of several lymphomas is presented. This protocol was developed following AAPM specifications and has been validated for application at a cancer care center in United States. This protocol fundamentally focuses on patient care, avoiding instability and discomfort that may be encountered by other treatment regimes. In vivo dose verification with TLD-100 chips for each anatomical region of interest was utilized. TLD-100 chips were calibrated using a 6 MV photon beam for 10-120 cGy. Experimental results show TLD measurements with an error less than 1%. Standard deviations for calculated and measured doses for seven patients have been obtained. Data gathered for different levels of compensation indicate that a 3% measured tolerance level is acceptable. TLD point-dose measurements have been used to verify the dose beyond partial transmission lung blocks. Dose measurements beyond the lung block showed variation about 50% respects to prescribe dose. Midplane doses to the other anatomical sites were less than 2.5% respect of the prescribed dose.

  15. Determination of the Sensibility Factors for TLD-100 Powder on the Energy of X-Ray of 50, 250 kVp; 192Ir, 137Cs and 60Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loaiza, Sandra P.; Alvarez, Jose T.

    2006-09-08

    TLD-100 powder is calibrated in terms of absorbed dose to water Dw, using the protocols AAPM TG61, AAPM TG43 and IAEA-TRS 398, for the energy of RX 50, 250 kVp, 137Cs and 60Co respectively. The calibration curves, TLD Response R versus Dw, are fitted by weighted least square by a quadratic polynomials; which are validated with the lack of fit and the Anderson-Darling normality test. The slope of these curves corresponds to the sensibility factor: Fs R/DW, [Fs] = nC Gy-1. The expanded uncertainties U's for these factors are obtained from the ANOVA tables. Later, the Fs' values are interpolatedmore » using the effective energy hvefec for the 192Ir. The SSDL sent a set of capsules with powder TLD-100 for two Hospitals. These irradiated them a nominal dose of Dw = 2 Gy. The results determined at SSDL are: for the Hospital A the Dw is overestimated in order to 4.8% and the Hospital B underestimates it in the range from -1.4% to -17.5%.« less

  16. Radiological properties of plastics and TLD materials its application in radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Jabaseelan Samuel, E. James; Srinivasan, K.; Poopathi, V.

    2017-05-01

    In the current study, we evaluated the tissue equivalency of nine different commonly used thermoluminescence compounds and six plastic materials over the photon energy range of 15 KeV to 20 MeV. Our result confirmed that the ratio of number of electrons per gram, electron density of the entire TLD compounds and plastic materials to ICRU-44 soft tissue was lesser than unity, except in the case of polypropylene plastics. The effective atomic number ratio of all the plastic materials was also <1 excluding Poly-vinyl-chloride, and for TLD lithium borate material, it was <1 others which showed the deviation with respect to photon energy. Mass attenuation coefficient (µ/ϼ), mass absorption coefficient (µen/ρ) was calculated and the results are discussed in this paper.

  17. A comparative study of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters

    NASA Astrophysics Data System (ADS)

    Bogani, F.; Borchi, E.; Bruzzi, M.; Leroy, C.; Sciortino, S.

    1997-02-01

    The thermoluminescent (TL) response of Chemical Vapour Deposited (CVD) diamond films to beta irradiation has been investigated. A numerical curve-fitting procedure, calibrated by means of a set of LiF TLD100 experimental spectra, has been developed to deconvolute the complex structured TL glow curves. The values of the activation energy and of the frequency factor related to each of the TL peaks involved have been determined. The TL response of the CVD diamond films to beta irradiation has been compared with the TL response of a set of LiF TLD100 and TLD700 dosimeters. The results have been discussed and compared in view of an assessment of the efficiency of CVD diamond films in future applications as in vivo dosimeters.

  18. SU-F-P-55: Testicular Scatter Dose Determination During Prostate SBRT with and Without Pelvic Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venencia, C; Garrigo, E; Castro Pena, P

    Purpose: The elective irradiation of pelvis lymph node for prostate cancer is still controversial. Including pelvic lymph node as part of the planning target volume could increase the testicular scatter dose, which could have a clinical impact. The objective of this work was to measure testicular scatter dose for prostate SBRT treatment with and without pelvic lymph nodes using TLD dosimetry. Methods: A 6MV beam (1000UM/min) produce by a Novalis TX (BrainLAB-VARIAN) equipped HDMLC was used. Treatment plan were done using iPlan v4.5.3 (BrainLAB) treatment planning system with sliding windows IMRT technique. Prostate SBRT plan (PLAN-1) uses 9 beams withmore » a dose prescription (D95%) of 4000cGy in 5 fractions. Prostate with lymph nodes SBRT plan (PLAN-2) uses 11 beams with a dose prescription (D95%) of 4000cGy to the prostate and 2500cGy to the lymph node in 5 fractions. An anthropomorphic pelvic phantom with a testicular volume was used. Phantom was positioned using ExacTrac IGRT system. Phosphor TLDs LiF:Mg, Ti (TLD700 Harshaw) were positioned in the anterior, posterior and inferior portion of the testicle. Two set of TLD measurements was done for each treatment plan. TLD in vivo dosimetry was done in one patient for each treatment plan. Results: The average phantom scatter doses per fraction for the PLAN-1 were 10.9±1cGy (anterior), 7.8±1cGy (inferior) and 10.7±1cGy (posterior) which represent an average total dose of 48±1cGy (1.2% of prostate dose prescription). The doses for PLAN-2 plan were 17.7±1cGy (anterior), 11±1cGy (inferior) and 13.3±1cGy (posterior) which represent an average total dose of 70.1±1cGy (1.8% of prostate dose prescription). The average dose for in vivo patient dosimetry was 60±1cGy for PLAN-1 and 85±1cGy for PLAN-2. Conclusion: Phantom and in vivo dosimetry shows that the pelvic lymph node irradiation with SBRT slightly increases the testicular scatter dose, which could have a clinical impact.« less

  19. Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.

    2014-11-01

    Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.

  20. Characterization and Comparison of New Concepts in Neutron Detection

    DTIC Science & Technology

    2010-05-12

    because a single detector can be reused many times. The TLDs used in this experiment were typical of those used in the United States Navy for dosimetry ...5 1.5.1 TLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5.2 Bubble Dosimeters . . . . . . . . . . . . . . . . . . . . 5 1.5.3...67 v List of Figures 1.1 TLD card (left) and holder (right). The four sensitive areas are on the card and contain

  1. Deployment Health

    DTIC Science & Technology

    2006-08-11

    thermo luminescent dosimeter ( TLD badge)) are required for performing specific tasks in a safe manner while deployed, personnel must be trained on the...monitoring devices (e.g., thermo luminescent dosimeter ( TLD badge)) as required by occupational specialty of personnel. (E4.A1.1.5.) 5.5.8 X X...assigned, attached, on temporary duty, or temporary additional duty to deployed units. Report the data electronically to the DMDC (at the SECRET level

  2. Thermal and Optical Characteristics of Defect Centers in Irradiated TLD-100 Dosimeters.

    NASA Astrophysics Data System (ADS)

    Sadeghi-Zamani, Hossein

    Sensitivity loss of a sensitized LiF:Mg,Ti,Al (TLD-100) dosimeter subject to repeated standard 673 K thermal treatments has been a major problem in radiation dosimetry. The cause for this loss in radiation response of the dosimeters has not been understood. If a used TLD is not annealed at an elevated temperature prior to reuse, there are residual deep electron trap centers still present in the dosimeter. These defect centers will interact with new incoming radiation and produce thermoluminescent trap centers. This will introduce a significant error in low dose measurements. In this research, first, thermal and optical characteristics of various defect centers produced in an irradiated TLD-100 single crystal were investigated and then an improved pre-irradiation isothermal/optical treatment process was introduced to bleach the TLD dosimeters prior to reuse and reduce the loss of sensitivity of sensitized dosimeter. Thermoluminescent materials were irradiated by gamma-rays from Co-60 source to produce sufficient concentration of various defect centers, then the crystals were heated or exposed to UV light at different temperature to change the concentration of various defect centers. The change in concentration of each trap center was determined by measuring the change in absorbance of light at a fixed photon energy as a function of temperature. The thermal activation energy and the frequency factor for each trap center were evaluated assuming a first order kinetic model over a specified temperature range. The value of activation energy and the frequency factor for Z_2 ^', Z_2, Z_3, and F trap centers in TLD-100 single crystals were found to be 1.49 +/- 0.04 eV, 4.76 times 10 ^{15} sec^{ -1}, 2.23 +/- 0.02 eV, 1.65 times 10^{23 } sec^{-1}; 3.01 +/- 0.02 eV, 2.90 times 10^{17} sec ^{-1}; and 2.81 +/- 0.08 eV, 5.43 times 10 ^{17} sec^{ -1}; respectively. After a correlation was made between the trap centers and TL glow peaks, kinetic parameters obtained from absorption spectrum analysis were used to obtain a mathematical model describing different glow peaks.

  3. SU-F-19A-06: Experimental Investigation of the Energy Dependence of TLD Sensitivity in Low-Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z; Nath, R

    Purpose: To measure the energy dependence of TLD sensitivity in lowenergy photon beams with equivalent mono-energetic energy matching those of 103Pd, 125I and 131Cs brachytherapy sources. Methods: A Pantek DXT 300 x-ray unit (Precision X-ray, Branford, CT), with stable digital voltage control down to 20 kV, was used to establish three lowenergy photon beams with narrow energy spread and equivalent monoenergetic energies matching those of 103Pd, 125I and 131Cs brachytherapy sources. The low-energy x-ray beams and a reference 6 MV photon beam were calibrated according to the AAPM TG-61 and TG-51 protocols, respectively, using a parallel-plate low-energy chamber and amore » Farmer cylindrical chamber with NIST traceable calibration factors. The dose response of model TLD-100 micro-cubes (1×1×1 mm{sup 3}) in each beam was measured for five different batches of TLDs (each contained approximately 100 TLDs) that have different histories of irradiation and usage. Relative absorbed dose sensitivity was determined as the quotient of the slope of dose response for a beam-of-interest to that of the reference beam. Results: Equivalent mono-energetic photon energies of the low-energy beams established for 103Pd, 125I and 131Cs sources were 20.5, 27.5, and 30.1 keV, respectively. Each beam exhibited narrow spectral spread with energyhomogeneity index close to 90%. The relative absorbed-dose sensitivity was found to vary between different batches of TLD with maximum differences of up to 8%. The mean and standard deviation determined from the five TLD batches was 1.453 ± 0.026, 1.541 ± 0.035 and 1.529 ± 0.051 for the simulated 103P, 125I and 131Cs beams, respectively. Conclusion: Our measured relative absorbed-dose sensitivities are greater than the historically measured value of 1.41. We find that the relative absorbed-dose sensitivity of TLD in the 103P beam is approximately 5% lower than that of 125I and 131Cs beams. Comparison of our results with other studies will be presented.« less

  4. SU-E-T-90: Accuracy of Calibration of Lithium-6 and -7 Enriched LiF TLDs for Neutron Measurements in High Energy Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keehan, S; Franich, R; Taylor, M

    Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and themore » ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.« less

  5. BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam

    NASA Astrophysics Data System (ADS)

    Sharma, Kanika; Bahl, Shaila; Singh, Birendra; Kumar, Pratik; Lochab, S. P.; Pandey, Anant

    2018-04-01

    BaSO4:Eu nanophosphor is delicately optimized by varying the concentration of the impurity element and compared to the commercially available thermoluminescent dosimeter (TLD) LiF:Mg,Ti (TLD-100) and by extension also to CaSO4:Dy (TLD-900) so as to achieve its maximum thermoluminescence (TL) sensitivity. Further, the energy dependence property of this barite nanophosphor is also explored at length by exposing the phosphor with 1.25 MeV of Co-60, 0.662 MeV of Cs-137, 85 MeV and 65 MeV of Carbon ion beams. Various batches of the phosphor at hand (with impurity concentrations being 0.05, 0.10, 0.20, 0.50 and 1.00 mol%) are prepared by the chemical co-precipitation method out of which BaSO4:Eu with 0.20 mol% Eu exhibits the maximum TL sensitivity. Further, the optimized nanophosphor exhibits a whopping 28.52 times higher TL sensitivity than the commercially available TLD-100 and 1.426 times higher sensitivity than TLD-900, a noteworthy linear response curve for an exceptionally wide range of doses i.e. 10 Gy to 2 kGy and a simple glow curve structure. Furthermore, when the newly optimized nanophosphor is exposed with two different energies of gamma radiations, namely 1.25 MeV of Co-60 (dose range- 10-300 Gy) and 0.662 MeV of Cs-137 (dose range- 1-300 Gy), it is observed that the shape and structure of the glow curves remain remarkably similar for different energies of radiation while the TL response curve shows little to no variation. When exposed to different energies of carbon ion beam BaSO4:Eu displays energy independence at lower doses i.e. from 6.059 to 14.497 kGy. Finally, even though energy independence is lost at higher doses, the material shows high sensitivity to higher energy (85 MeV) of carbon beam compared to the lower energy (65 MeV of C6+) and saturation is apparent only after 121.199 kGy. Therefore the present nanophosphor displays potential as an energy independent TLD.

  6. Surface dose measurements with commonly used detectors: a consistent thickness correction method

    PubMed Central

    Higgins, Patrick

    2015-01-01

    The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30‐360) with other parallel plate chambers RMI‐449 (Attix), Capintec PS‐033, PTW 30‐329 (Markus) and Memorial. Measurements of surface dose for 6 MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (−0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid‐state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three‐detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth‐dose curves and is not recommended for these types of measurements. PACS number: 87.56.‐v PMID:26699319

  7. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    PubMed

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right inferior longitudinal fasciculus may be unique to children with SLI and Reading Disability. It was significantly associated to reading comprehension of sentences and receptive language composite z-score, especially receptive vocabulary and oral comprehension of stories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Results from the first five years of radiation exposure monitoring aboard the ISS

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Semones, E.; Shelfer, T.; Johnson, S.; Zapp, N.; Weyland, M.

    NASA uses a variety of radiation monitoring devices aboard the International Space Station as part of its space flight radiation health program. This operational monitoring system consists of passive dosimeters, internal and external charged particle telescopes, and a tissue equivalent proportional counter (TEPC). Sixteen passive dosimeters, each consisting of TLD-100, TLD-300, TLD-600, and TLD-700 chips in a small acrylic holder, are placed throughout the habitable volume of the ISS. The TEPC and internal charged particle telescopes are portable and can be relocated to multiple locations in the Lab Module or Service Module. The external charged particle telescopes are mounted to a fixed boom attached to the starboard truss. Passive dosimeters were used in eleven monitoring periods over the period 20 May 1999 to 04 May 2003. Over this period exposure rates from TLD-100 measurements ranged from 0.120-0.300 mGy/d. Exposure rates inside the habitable volume are non-uniform: exposures vary by a factor of ˜ 1.7 from minimum to maximum, with the greatest non-uniformity occurring in the Lab Module. Highest daily exposure rates are near the window in the Lab Module, inside the Joint Airlock, and the sleep stations inside the Service Module, while the lowest rates occur inside the polyethylene-lined Temporary Sleep Station in the Lab Module, adjacent to the port ``arm'' of Node 1, and the aft end of the Service Module. The minimum exposure rates as measured by the passive dosimeters occurred in the spring of 2002, very close to the solar F10.7 emission maximum (Feb 2002), and two years after the sunspot maximum (Apr 2000). Exposure rates have since gradually increased as the sun's activity transitions towards solar minimum conditions. Since 01 Jun 2002, dose rates measured by the IV-CPDS, estimated from the count rate in first detector of the telescope's stack, ranged from ˜ 0.170-0.390 mGy/d. The maximum measured dose rate occurred 28 Oct 2003 during the ``Halloween'' space weather event. Interestingly, the minimum dose rate occurred 31 Oct 2003, near the end of the same remarkable space weather event, when the Earth was experiencing a significant Forbush decrease. The average IV-CPDS-measured dose rate increased from 0.194 to 0.234 mGy/d since 01 Jun 2002--an increase of ˜ 21% and a further indication that the low-Earth radiation environment is transitioning from solar maximum conditions towards solar minimum.

  9. The dosimetric impact of implants on the spinal cord dose during stereotactic body radiotherapy.

    PubMed

    Yazici, Gozde; Sari, Sezin Yuce; Yedekci, Fazli Yagiz; Yucekul, Altug; Birgi, Sumerya Duru; Demirkiran, Gokhan; Gultekin, Melis; Hurmuz, Pervin; Yazici, Muharrem; Ozyigit, Gokhan; Cengiz, Mustafa

    2016-05-25

    The effects of spinal implants on dose distribution have been studied for conformal treatment plans. However, the dosimetric impact of spinal implants in stereotactic body radiotherapy (SBRT) treatments has not been studied in spatial orientation. In this study we evaluated the effect of spinal implants placed in sawbone vertebra models implanted as in vivo instrumentations. Four different spinal implant reconstruction techniques were performed using the standard sawbone lumbar vertebrae model; 1. L2-L4 posterior instrumentation without anterior column reconstruction (PI); 2. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (AIAC); 3. L2-L4 posterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (PIAC); 4. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with chest tubes filled with bone cement (AIABc). The target was defined as the spinous process and lamina of the lumbar (L) 3 vertebra. A thermoluminescent dosimeter (TLD, LiF:Mg,Ti) was located on the measurement point anterior to the spinal cord. The prescription dose was 8 Gy and the treatment was administered in a single fraction using a CyberKnife® (Accuray Inc., Sunnyvale, CA, USA). We performed two different treatment plans. In Plan A beam interaction with the rod was not limited. In plan B the rod was considered a structure of avoidance, and interaction between the rod and beam was prevented. TLD measurements were compared with the point dose calculated by the treatment planning system (TPS). In plan A, the difference between TLD measurement and the dose calculated by the TPS was 1.7 %, 2.8 %, and 2.7 % for the sawbone with no implant, PI, and PIAC models, respectively. For the AIAC model the TLD dose was 13.8 % higher than the TPS dose; the difference was 18.6 % for the AIABc model. In plan B for the AIAC and AIABc models, TLD measurement was 2.5 % and 0.9 % higher than the dose calculated by the TPS, respectively. Spinal implants may be present in the treatment field in patients scheduled to undergo SBRT. For the types of implants studied herein anterior rod instrumentation resulted in an increase in the spinal cord dose, whereas use of a titanium cage had a minimal effect on dose distribution. While planning SBRT in patients with spinal reconstructions, avoidance of the rod and preventing interaction between the rod and beam might be the optimal solution for preventing unexpectedly high spinal cord doses.

  10. Quality control in interstitial brachytherapy of the breast using pulsed dose rate: treatment planning and dose delivery with an Ir-192 afterloading system.

    PubMed

    Mangold, C A; Rijnders, A; Georg, D; Van Limbergen, E; Pötter, R; Huyskens, D

    2001-01-01

    In the Radiotherapy Department of Leuven, about 20% of all breast cancer patients treated with breast conserving surgery and external radiotherapy receive an additional boost with pulsed dose rate (PDR) Ir-192 brachytherapy. An investigation was performed to assess the accuracy of the delivered PDR brachytherapy treatment. Secondly, the feasibility of in vivo measurements during PDR dose delivery was investigated. Two phantoms are manufactured to mimic a breast, one for thermoluminescent dosimetry (TLD) measurements, and one for dosimetry using radiochromic films. The TLD phantom allows measurements at 34 dose points in three planes including the basal dose points. The film phantom is designed in such a way that films can be positioned in a plane parallel and orthogonal to the needles. The dose distributions calculated with the TPS are in good agreement with both TLD and radiochromic film measurements (average deviations of point doses <+/-5%). However, close to the interface tissue-air the dose is overestimated by the TPS since it neglects the finite size of a breast and the associated lack of backscatter (average deviations of point doses -14%). Most deviations between measured and calculated doses, are in the order of magnitude of the uncertainty associated with the source strength specification, except for the point doses measured close to the skin. In vivo dosimetry during PDR brachytherapy treatment was found to be a valuable procedure to detect large errors, e.g. errors caused by an incorrect data transfer.

  11. In vivo dosimetry of thyroid doses from different irradiated sites in children and adolescents: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Scattered radiation can be assessed by in vivo dosimetry. Thyroid tissue is sensitive to radiation, even at doses <10 cGy. This study compared the scattered dose to the thyroid measured by thermoluminescent dosimeters (TLDs) and the estimated one by treatment planning system (TPS). Methods During radiotherapy to sites other than the thyroid of 16 children and adolescents, seventy-two TLD measurements at the thyroid were compared with TPS estimation. Results The overall TPS/TLD bias was 1.02 (95% LA 0.05 to 21.09). When bias was stratified by treatment field, the TPS overestimated TLD values at doses <1 cGy and underestimated them at doses >10 cGy. The greatest bias was found in pelvis and abdomen: 15.01 (95% LA 9.16 to 24.61) and 5.12 (95% LA 3.04 to 8.63) respectively. There was good agreement in orbit, head, and spine: bias 1.52 (95% LA 0.48 to 4.79), 0.44 (95% LA 0.11 to 1.82) and 0.83 (0.39 to 1.76) respectively. There was small agreement with broad limits for lung and mediastinum: 1.13 (95% LA 0.03 to 40.90) and 0.39 (95% LA 0.02 to 7.14) respectively. Conclusions The scattered dose can be measured with TLDs, and TPS algorithms for outside structures should be improved. PMID:24479890

  12. [Prostate radiation therapy: in vivo measurement of the dose delivered by kV-CBCT].

    PubMed

    Marinello, G; Mege, J-P; Besse, M-C; Kerneur, G; Lagrange, J-L

    2009-09-01

    To investigate if the regular use of kV-CBCT notably increases the dose delivered to tumor and surrounding healthy tissues. Images were obtained using a Varian equipment (OBI version 1.3, 645 to 650 projections in 370 degrees to acquire image), and patients were irradiated at source-tumor distance: 100cm. In vivo measurements were performed using radio-thermoluminescent dosimeters Harshaw-TLD700H (TLD) at skin (anterior-posterior and lateral axis crossing the rotation axis), with a fourth TLD group under the table thanks to a retrolaser. TLD's were calibrated at the kV-CBCT effective energy (64 keV), and the method validated using an anthropomorphic phantom, in which Gafchromic EBT films were also inserted. The phantom study showed that the dose distribution depends on the phantom position relative to the axis and that the doses measured at the phantom surface using TLD and films (good agreement) were maximum at the entrance of the anterior-posterior axis. Their arithmetic mean was equal, or a slightly greater than doses measured at mid-thickness of the phantom and at the level of the rectum (OAR). In vivo measurements performed on the five first patients (125 kV-CBCT) yield a mean skin dose per kV-CBCT varying from 5.8+/-0.1 to 7.3+/-0.2 cGy on the anterior-posterior axis. Lateral skin doses vary from 3.4+/-0.2 to 4.5+/-0.2 cGy. Doses delivered by repeated kV-CBCT are not negligible. They should be taken into account, but questions about the RBE to be applied to kilovoltage X-rays are raised.

  13. Evaluation of Exposure From a Low Energy X-Ray Device Using Thermoluminescent Dosimeters

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Harris, William S., Jr.

    1997-01-01

    The exposure from an electron beam welding device was evaluated using thermoluminescent dosimeters (TLDs). The device generated low energy X-rays which the current dose equivalent conversion algorithm was not designed to evaluate making it necessary to obtain additional information relating to TLD operation at the photon energies encountered with the device. This was accomplished by performing irradiations at the National Institute of Standards and Technology (NIST) using low energy X-ray techniques. The resulting data was used to determine TLD badge response for low energy X-rays and to establish the relationship between TLD element response and the dose equivalent at specific depths in tissue for these photon energies. The new energy/dose equivalent calibration data was used to calculate the shallow and eye dose equivalent of badges exposed to the device.

  14. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigsby, P.W.; Perez, C.A.; Eichling, J.

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2more » mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01).« less

  15. JPRS Report, Science & Technology, Europe & Latin America

    DTIC Science & Technology

    1987-08-12

    there is significant international interest in this today. Going beyond the original applications the thermoluminescent dosimeters ( TLD ) developed...manufacturing; --Applications in the health and teaching sectors; —Correspondence management; -- Electronic mail. The competitive advantages of the multimedia...objective of the MOSES project is to make the multimedia electronic documentation system much more powerful than its paper counterpart. To achieve

  16. Effects of High Energy Electron Irradiation on a Yttrium Barium(2) Copper(3) Oxygen(7-delta) High Temperature Superconductor

    DTIC Science & Technology

    1991-09-01

    2 2. Dosimetry ............................................. 4 C. OVERVIEW OF EXPERIMENT............................... 5 11. ELECTRON BEAM...From these measurements, the dose was calculated and then compared to a measured dose obtained from TLD dosimetry . Technical 5 problems with the...LINAC precluded TLD dosimetry from being accomplished during the first run and, therefore, was performed on the second run only. After irradiation, a NaI

  17. Characterization of the Radiological Environment at J-Village during Operation Tomodachi

    DTIC Science & Technology

    2013-02-01

    individual as compared to those for the helicopter crew members (Appendix A). 3.2.2. Other Relevant Dosimetry Results Thermoluminescent dosimeter ( TLD ...internal monitoring results are available for 14 of these individuals. External dosimetry data (EPD and TLD ) showed that the maximum recorded dose for an...Washington, DC. http://www.NNSAResponseData.net. Accessed December 7. USAFCRD (U. S. Air Force Center for Radiation Dosimetry ), 2011. Electronic Pocket

  18. AFRRI Reports, April-June 1990

    DTIC Science & Technology

    1990-07-01

    described in detail in the companion paper (4). In vivo dosimetry was done using Harshaw (Solon, Ohio) TLD -100 lith- ium fluoride thermoluminescent...provide replicate measurements. Two separate dosimetry tubes were developed (Fig. 1). The first contained 30 TLD cap- sules loaded in a 90-cm length...situ Dosimetry Tube 55 3 LIF TLDs In gelatin capsule TUBEB LIF TLDs Nylon Balls Steel Ball Epoxy Plug I Scale 3 cm - J FIG. I

  19. The Effect of Irradiation on Bone Remodelling and the Structural Integrity of the Vertebral Column

    DTIC Science & Technology

    1990-01-01

    thermoluminescent dosimetry calculations were also used. Seventy-four lithium fluoride thermoluminescent dosimeters ( TLDs ) were selected from 120...and thermoluminescent dosimetry ( TLD ) were used to evaluate the actual doses administered. The TLD analysis was completed with five strips of five...professional help with the dose administration and the dosimetry . And especially to my husband. Kevin, without whose help and encouragement I could not have

  20. Thermoluminescent response of LiF (TLD-100) to 5-30 keV electrons and the effect of annealing in various atmospheres.

    PubMed

    Lasky, J B; Moran, P R

    1977-09-01

    The response of single crystal and extruded ribbons of TLD-100 to 5-30 keV electrons was investigated. If annealing is done in a vacuum, the sensitivity of TLD-100 single crystals to these electrons and the resultant glow curve are essentially the same as when irradiation are carried out with 137Cs gamma rays. All discrepancies in sensitivity can then be accounted for by the higher LET of electrons. The commonly used 'standard annealing' at 400 degrees C for one hour produced a change in the glow curve shape and a loss in sensitivity in contrast to the vacuum anneal results. Diffusion of hydroxyl ions into the sample during air annealing is believed to be the primary cause for this change. These results explain the source of the 'dead layer' proposed to explain the variation with particle size of the luminescent efficiency of X-ray irradiated TLD-100 powder and the low TL efficiency from low energy electron irradiations. With the use of the vacuum annealing procedure, the same sensitivity and reproducibility can be achieved for the dosimetry of low energy electrons and other shallowly penetrating radiation as is currently achieved for the dosimetry of X-rays.

  1. An optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system.

    PubMed

    Shen, L; Levine, S H; Catchen, G L

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  2. TL dosimetry for quality control of CR mammography imaging systems

    NASA Astrophysics Data System (ADS)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  3. A new paradigm in personal dosimetry using LiF:Mg,Cu,P.

    PubMed

    Cassata, J R; Moscovitch, M; Rotunda, J E; Velbeck, K J

    2002-01-01

    The United States Navy has been monitoring personnel for occupational exposure to ionising radiation since 1947. Film was exclusively used until 1973 when thermoluminescence dosemeters were introduced and used to the present time. In 1994, a joint research project between the Naval Dosimetry Center, Georgetown University, and Saint Gobain Crystals and Detectors (formerly Bicron RMP formerly Harshaw TLD) began to develop a state of the art thermoluminescent dosimetry system. The study was conducted from a large-scale dosimetry processor point of view with emphasis on a systems approach. Significant improvements were achieved by replacing the LiF:Mg,Ti with LiF:Mg,Cu,P TL elements due to the significant sensitivity increase, linearity, and negligible hiding. Dosemeter filters were optimised for gamma and X ray energy discrimination using Monte Carlo modelling (MCNP) resulting in significant improvement in accuracy and precision. Further improvements were achieved through the use of neural-network based dose calculation algorithms. Both back propagation and functional link methods were implemented and the data compared with essentially the same results. Several operational aspects of the system are discussed, including (1) background subtraction using control dosemeters, (2) selection criteria for control dosemeters, (3) optimisation of the TLD readers, (4) calibration methodology, and (5) the optimisation of the heating profile.

  4. The Role of Teachers' Future Self Guides in Creating L2 Development Opportunities in Teacher-Led Classroom Discourse: Reclaiming the Relevance of Language Teacher Cognition

    ERIC Educational Resources Information Center

    Kubanyiova, Magdalena

    2015-01-01

    Understanding the relationship between teachers' use of language in teacher-led discourse (TLD; Toth, 2008) and opportunities for L2 development is a well-established area of SLA research. This study examines one teacher's role in creating such opportunities in TLD in her EFL classes in a state secondary school by examining the inner resources…

  5. Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.

    PubMed

    Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E

    1997-04-01

    In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.

  6. Reference Dosimetry for the 1992 NATO Battlefield Dosimetry Intercomparison at the Army Pulse Radiation Facility

    DTIC Science & Technology

    1993-04-01

    dosimeter using the Rh -103(n,n’) Rh - 103m reaction. Health Physics 25: 291-297, 1973. 11. Zeman, G. H. Rhodium-103 and indium-115 inelastic scattering... Rh foil 203 .... A120 3 TLD -- 17.0 -- TE-Mg ICI 205 16.1 221 93 APRF TE-Mg IC 205 17.6 223 92 CaF TLD -- 22.1 .... Average 204 17.5 222 92 +/- 1.5

  7. Thermoluminescence glow-curve characteristics of LiF phosphors at high doses of gamma radiation

    NASA Astrophysics Data System (ADS)

    Benny, P. G.; Khader, S. A.; Sarma, K. S. S.

    2013-05-01

    High doses of ionising radiation are becoming increasingly common for radiation-processing applications of various medical, agricultural and polymer products using gamma and electron beams. The objective of this work was to study thermoluminescence (TL) glow-curve characteristics of commonly used commercial LiF TL phosphors at high doses of radiation with a view to use them in dosimetry of radiation-processing applications. The TL properties of TLD 100 and 700 phosphors, procured from the Thermo-Scientific (previously Harshaw) company, have been studied in the dose range of 1-60 kGy. The shift in glow peaks was observed in this dose range. Integral TL responses of TLD 100 and TLD 700 were found to decrease as a linear function of dose in the range of 5-50 kGy. The paper describes initial results related to the glow-curve characteristics of these phosphors.

  8. Thermoluminescence response of flat optical fiber subjected to 9 MeV electron irradiations

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Omar, S. S. Che; Ibrahim, S. A.; Hassan, W. M. S. Wan; Ung, N. M.; Mahdiraji, G. A.; Bradley, D. A.; Alzimami, K.

    2015-01-01

    We describe the efforts of finding a new thermoluminescent (TL) media using pure silica flat optical fiber (FF). The present study investigates the dose response, sensitivity, minimum detectable dose and glow curve of FF subjected to 9 MeV electron irradiations with various dose ranges from 0 Gy to 2.5 Gy. The above-mentioned TL properties of the FF are compared with commercially available TLD-100 rods. The TL measurements of the TL media exhibit a linear dose response over the delivered dose using a linear accelerator. We found that the sensitivity of TLD-100 is markedly 6 times greater than that of FF optical fiber. The minimum detectable dose was found to be 0.09 mGy for TLD-100 and 8.22 mGy for FF. Our work may contribute towards the development of a new dosimeter for personal monitoring purposes.

  9. Evaluation of the uncertainties in the TLD radiosurgery postal dose system

    NASA Astrophysics Data System (ADS)

    Campos, L. T.; Leite, S. P.; de Almeida, C. E. V.; Magalhães, L. A. G.

    2018-03-01

    Stereotactic radiosurgery is a single-fraction radiation therapy procedure for treating intracranial lesions using a stereotactic apparatus and multiple narrow beams delivered through noncoplanar isocentric arcs. To guarantee a high quality standard, a comprehensive Quality Assurance programme is extremely important to ensure that the measured dose is consistent with the tolerance considered to improve treatment quality. The Radiological Science Laboratory operates a postal audit programme in SRT and SRS. The purpose of the programme is to verify the target localization accuracy in known geometry and the dosimetric conditions of the TPS. The programme works in such a way those thermoluminescence dosimeters, consisting of LiF chips, are sent to the centre where they are to be irradiated to a certain dose. The TLD are then returned, where they are evaluated and the absorbed dose is obtained from TLDs readings. The aim of the present work is estimate the uncertainties in the process of dose determination, using experimental data.

  10. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less

  11. In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution

    PubMed Central

    Ranaei-Siadat, Ehsan; Mérigoux, Cécile; Seijo, Bili; Ponchon, Luc; Saliou, Jean-Michel; Bernauer, Julie; Sanglier-Cianférani, Sarah; Dardel, Fréderic

    2014-01-01

    TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg2+ drives compaction of the RNA structure and that, in the absence of Mg2+, SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule. PMID:25135523

  12. In vivo tmRNA protection by SmpB and pre-ribosome binding conformation in solution.

    PubMed

    Ranaei-Siadat, Ehsan; Mérigoux, Cécile; Seijo, Bili; Ponchon, Luc; Saliou, Jean-Michel; Bernauer, Julie; Sanglier-Cianférani, Sarah; Dardel, Fréderic; Vachette, Patrice; Nonin-Lecomte, Sylvie

    2014-10-01

    TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg(2+) drives compaction of the RNA structure and that, in the absence of Mg(2+), SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule. © 2014 Ranaei-Siadat et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Dose measurements in space by the Hungarian Pille TLD system.

    PubMed

    Apathy, I; Deme, S; Feher, I; Akatov, Y A; Reitz, G; Arkhanguelski, V V

    2002-10-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 microGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised. c2002 Elsevier Science Ltd. All rights reserved.

  14. Developmental roles of the BMP1/TLD metalloproteinases.

    PubMed

    Ge, Gaoxiang; Greenspan, Daniel S

    2006-03-01

    The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF-beta-like morphogens BMP2 and 4 and their invertebrate ortholog decapentaplegic, from latent complexes with the vertebrate extracellular antagonist chordin and its invertebrate ortholog short gastrulation (SOG), respectively. The result is formation of the BMP signaling gradients that form the dorsal-ventral axis in embryogenesis. Thus, BMP1/TLD-like proteinases appear to be key to regulating and orchestrating formation of the ECM and signaling by various TGF-beta-like proteins in morphogenetic and homeostatic events. Copyright 2006 Wiley-Liss, Inc.

  15. Determination of gonad doses during robotic stereotactic radiosurgery for various tumor sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorlu, Faruk; Dugel, Gozde; Ozyigit, Gokhan

    Purpose: The authors evaluated the absorbed dose received by the gonads during robotic stereotactic radiosurgery (SRS) for the treatment of different tumor localizations. Methods: The authors measured the gonad doses during the treatment of head and neck, thoracic, abdominal, or pelvic tumors in both RANDO phantom and actual patients. The computerized tomography images were transferred to the treatment planning system. The contours of tumor and critical organs were delineated on each slice, and treatment plans were generated. Measurements for gonad doses were taken from the geometric projection of the ovary onto the skin for female patients, and from the scrotalmore » skin for male patients by attaching films and Thermoluminescent dosimeters (TLDs). SRS was delivered with CyberKnife (Accuray Inc., Sunnyvale, CA). Results: The median gonadal doses with TLD and film dosimeter in actual patients were 0.19 Gy (range, 0.035-2.71 Gy) and 0.34 Gy (range, 0.066-3.18 Gy), respectively. In the RANDO phantom, the median ovarian doses with TLD and film dosimeter were 0.08 Gy (range, 0.03-0.159 Gy) and 0.05 Gy (range, 0.015-0.13 Gy), respectively. In the RANDO phantom, the median testicular doses with TLD and film dosimeter were 0.134 Gy (range 0.056-1.97 Gy) and 0.306 Gy (range, 0.065-2.25 Gy). Conclusions: Gonad doses are below sterility threshold in robotic SRS for different tumor localizations. However, particular attention should be given to gonads during robotic SRS for pelvic tumors.« less

  16. A collimated detection system for assessing leakage dose from medical linear accelerators at the patient plane.

    PubMed

    Lonski, P; Taylor, M L; Franich, R D; Kron, T

    2014-03-01

    Leakage radiation from linear accelerators can make a significant contribution to healthy tissue dose in patients undergoing radiotherapy. In this work thermoluminescent dosimeters (LiF:Mg,Cu,P TLD chips) were used in a focused lead cone loaded with TLD chips for the purpose of evaluating leakage dose at the patient plane. By placing the TLDs at one end of a stereotactic cone, a focused measurement device is created; this was tested both in and out of the primary beam of a Varian 21-iX linac using 6 MV photons. Acrylic build up material of 1.2 cm thickness was used inside the cone and measurements made with either one or three TLD chips at a given distance from the target. Comparing the readings of three dosimeters in one plane inside the cone offered information regarding the orientation of the cone relative to a radiation source. Measurements in the patient plane with the linac gantry at various angles demonstrated that leakage dose was approximately 0.01% of the primary beam out of field when the cone was pointed directly towards the target and 0.0025% elsewhere (due to scatter within the gantry). No specific 'hot spots' (e.g., insufficient shielding or gaps at abutments) were observed. Focused cone measurements facilitate leakage dose measurements from the linac head directly at the patient plane and allow one to infer the fraction of leakage due to 'direct' photons (along the ray-path from the bremsstrahlung target) and that due to scattered photons.

  17. Evaluation of the Energy Distribution of Unknown Photon Radiation Fields by Interpreting the Responses of Tld's and Modification of Burlin Cavity Theory.

    NASA Astrophysics Data System (ADS)

    Abdulhay, Ibrahim Shakib

    1995-01-01

    The thermoluminescent dosimeter (TLD) response (integrated light output per unit exposure) of a high Z material increases more rapidly with decreasing photon energy and with energy above the pair production threshold than that of lower Z materials. The ratio of the responses obtained when two thermoluminescent dosimeter (TLD) materials are simultaneously exposed to gamma or x-rays could be used to obtain information about the incident photon energies. In addition, the responses are affected by the presence of the material surrounding the dosimeters. Two TLD's, LiF and CaSO_4, with respective effective atomic number of 8.2 and 15.3, have been chosen to be sandwiched between different absorber materials (Al, Cu, and Pb) and irradiated at selected distances from gamma radiation sources. The photon energies used in this investigation were 60 keV, 142 keV, 662 keV, 1.25 MeV, and 6.129 MeV. Fit equations of the responses of the dosimeters to different energies have been obtained and used to evaluate the energy distributions of unknown ionizing radiation fields. In addition, the electron mass attenuation coefficient beta used in Burlin and Burlin-Horowitz Cavity Theory has been modified to produce better agreement with experimental data at low photon energies and at high energies.

  18. Comparison of TLD calibration methods for  192Ir dosimetry

    PubMed Central

    Butler, Duncan J.; Wilfert, Lisa; Ebert, Martin A.; Todd, Stephen P.; Hayton, Anna J.M.; Kron, Tomas

    2013-01-01

    For the purpose of dose measurement using a high‐dose rate  192Ir source, four methods of thermoluminescent dosimeter (TLD) calibration were investigated. Three of the four calibration methods used the  192Ir source. Dwell times were calculated to deliver 1 Gy to the TLDs irradiated either in air or water. Dwell time calculations were confirmed by direct measurement using an ionization chamber. The fourth method of calibration used 6 MV photons from a medical linear accelerator, and an energy correction factor was applied to account for the difference in sensitivity of the TLDs in  192Ir and 6 M V. The results of the four TLD calibration methods are presented in terms of the results of a brachytherapy audit where seven Australian centers irradiated three sets of TLDs in a water phantom. The results were in agreement within estimated uncertainties when the TLDs were calibrated with the  192Ir source. Calibrating TLDs in a phantom similar to that used for the audit proved to be the most practical method and provided the greatest confidence in measured dose. When calibrated using 6 MV photons, the TLD results were consistently higher than the  192Ir−calibrated TLDs, suggesting this method does not fully correct for the response of the TLDs when irradiated in the audit phantom. PACS number: 87 PMID:23318392

  19. Thermoluminescence dosimetry and its applications in medicine--Part 2: History and applications.

    PubMed

    Kron, T

    1995-03-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of microGy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. Therefore TLD is a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review (Australas. Phys. Eng. Sci. Med. 17: 175-199, 1994).

  20. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors.

    PubMed

    Karsch, L; Beyreuther, E; Burris-Mog, T; Kraft, S; Richter, C; Zeil, K; Pawelke, J

    2012-05-01

    The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10(11) Gy∕s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. The dosimeters are dose rate independent up to 4●10(9) Gy∕s within 2% (OSL and TLD) and up to 15●10(9) Gy∕s within 5% (EBT films). The diamond detectors show strong dose rate dependence. TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  1. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the numbermore » of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.« less

  2. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologiesmore » identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.« less

  3. SU-F-T-406: Verification of Total Body Irradiation Commissioned MU Lookup Table Accuracy Using Treatment Planning System for Wide Range of Patient Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D; Chi, P; Tailor, R

    Purpose: To verify the accuracy of total body irradiation (TBI) measurement commissioning data using the treatment planning system (TPS) for a wide range of patient separations. Methods: Our institution conducts TBI treatments with an 18MV photon beam at 380cm extended SSD using an AP/PA technique. Currently, the monitor units (MU) per field for patient treatments are determined using a lookup table generated from TMR measurements in a water phantom (75 × 41 × 30.5 cm3). The dose prescribed to an umbilicus midline point at spine level is determined based on patient separation, dose/ field and dose rate/MU. One-dimensional heterogeneous dosemore » calculations from Pinnacle TPS were validated with thermoluminescent dosimeters (TLD) placed in an average adult anthropomorphic phantom and also in-vivo on four patients with large separations. Subsequently, twelve patients with various separations (17–47cm) were retrospectively analyzed. Computed tomography (CT) scans were acquired in the left and right decubitus positions from vertex to knee. A treatment plan for each patient was generated. The ratio of the lookup table MU to the heterogeneous TPS MU was compared. Results: TLD Measurements in the anthropomorphic phantom and large TBI patients agreed with Pinnacle calculated dose within 2.8% and 2%, respectively. The heterogeneous calculation compared to the lookup table agreed within 8.1% (ratio range: 1.014–1.081). A trend of reduced accuracy was observed when patient separation increases. Conclusion: The TPS dose calculation accuracy was confirmed by TLD measurements, showing that Pinnacle can model the extended SSD dose without commissioning a special beam model for the extended SSD geometry. The difference between the lookup table and TPS calculation potentially comes from lack of scatter during commissioning when compared to extreme patient sizes. The observed trend suggests the need for development of a correction factor between the lookup table and TPS dose calculations.« less

  4. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, M; Wen, Z; Tailor, R

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in amore » Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.« less

  5. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.

  6. Calculated and TLD-based absorbed dose estimates for I-131-labeled 3F8 monoclonal antibody in a human neuroblastoma xenograft nude mouse model.

    PubMed

    Ugur, O; Scott, A M; Kostakoglu, L; Hui, T E; Masterson, M E; Febo, R; Sgouros, G; Rosa, E; Mehta, B M; Fisher, D R

    1995-01-01

    Preclinical evaluation of the therapeutic potential of radiolabeled antibodies is commonly performed in a xenografted nude mouse model. To assess therapeutic efficacy it is important to estimate the absorbed dose to the tumor and normal tissues of the nude mouse. The current study was designed to accurately measure radiation does to human neuroblastoma xenografts and normal organs in nude mice treated with I-131-labeled 3F8 monoclonal antibody (MoAb) against disialoganglioside GD2 antigen. Absorbed dose estimates were obtained using two different approaches: (1) measurement with teflon-imbedded CaSO4:Dy mini-thermoluminescent dosimeters (TLDs) and (2) calculations using mouse S-factors. The calculated total dose to tumor one week after i.v. injection of the 50 microCi I-131-3F8 MoAb was 604 cGy. The corresponding decay corrected and not corrected TLD measurements were 109 +/- 9 and 48.7 +/- 3.4 cGy respectively. The calculated to TLD-derived dose ratios for tumor ranged from 6.1 at 24 h to 5.5 at 1 week. The light output fading rate was found to depend upon the tissue type within which the TLDs were implanted. The decay rate in tumor, muscle, subcutaneous tissue and in vitro, were 9.5, 5.0, 3.7 and 0.67% per day, respectively. We have demonstrated that the type of tissue in which the TLD was implanted strongly influenced the in vivo decay of light output. Even with decay correction, a significant discrepancy was observed between MIRD-based calculated and CaSO4:Dy mini-TLD measured absorbed doses. Batch dependence, pH of the tumor or other variables associated with TLDs which are not as yet well known may account for this discrepancy.

  7. Thinking aloud: effects on text comprehension by children with specific language impairment and their peers.

    PubMed

    McClintock, Brenna; Pesco, Diane; Martin-Chang, Sandra

    2014-11-01

    Many lines of evidence now suggest that inferencing plays a substantial role in text comprehension. However, inferencing appears to be difficult for children with language impairments, many of whom are also struggling readers. To assess the effects of a 'think-aloud' procedure on inference generation and narrative text comprehension by children with expressive-receptive specific language impairment (SLI) and age-matched peers with typical language development (TLD). An SLI group (n = 12; mean age = 10;5) and an age-matched TLD group (n = 12) participated in the study. Narrative passages were read silently by participants and simultaneously read aloud by the examiner in two conditions: (1) uninterrupted reading and (2) a think-aloud, in which children verbalized their understanding as the text was read. Following the passages in both conditions, children responded to comprehension questions requiring either literal or inferential information (specifically, 'informational' and 'causal' inferences). The children's comprehension scores were analysed by group, condition and question type. The statements children generated during the think-aloud were also compared by group and examined in relation to children's comprehension scores. The SLI group scored lower than the TLD group on all questions (literal, informational and causal), in both conditions. For both groups, however, comprehension scores on all three types of questions increased when the think-aloud procedure was implemented. During the think-aloud, the SLI group generated a comparable number of literal statements compared with the TLD group, but fewer informational and causal statements. The number of causal statements children made correlated with their scores on the inferential comprehension questions. Children with expressive-receptive SLI showed poorer comprehension of narrative texts than children with TLD, as expected. However, both groups' comprehension improved when participating in the think-aloud condition. While further investigation is warranted, the think-aloud procedure shows promise as a strategy to enhance narrative text comprehension in school-age children with, and without, language impairments. © 2014 Royal College of Speech and Language Therapists.

  8. Neutron Fading Characteristics of Copper Doped Lithium Fluoride (LiF: MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2008-05-21

    Albedo Dosimetry TLDs that are used for neutron or neutron-photon personnel dosimetry are albedo dosimeters. The word albedo simply means the proportion... dosimetry . When LiF: MCP is exposed to thermal neutron irradiation, there is no obvious change in the glow curve shape. In the case of TLD -100, the...LiF: MCP undergoes compared to TLD -100. Therefore, LET results in significant variations in TL output for LiF: MCP. Limitations of Albedo Dosimetry

  9. Thermoluminescent dosimetry for LDEF experiment M0006

    NASA Technical Reports Server (NTRS)

    Chang, J. Y.; Giangano, D.; Kantorcik, T.; Stauber, M.; Snead, L.

    1992-01-01

    Experiment M0006 on the Long Duration Exposure Facility had as its objective the investigation of space radiation effects on various electronic and optical components, as well as on seed germination. The Grumman Corporate Research Center provided the radiation dosimetric measurements for M0006, comprising the preparation of thermoluminescent dosimeters (TLD) and the subsequent measurement and analysis of flight exposed and control samples. In addition, various laboratory exposures of TLD's with gamma rays and protons were performed to obtain a better understanding of the flight exposures.

  10. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and

  11. Development and Validation of Radiation-Responsive Protein Bioassays for Biodosimetry Applications

    DTIC Science & Technology

    2005-01-01

    radiation protein biomarker studies using an in vivo murine radiation model. Male BALB/c mice were exposed to 25-cGy 60Co- gamma radiation. Dosimetry ...Csoke, I. Hejja, An on-board TLD system for dose monitor- ing on the International Space Station, Radiation Protection Dosimetry , 84(1-4 Pt1): 321-323...diagnostic information after exposure. Using an ex vivo model system of human peripheral lymphocytes as well as an in vivo murine model, we demonstrated

  12. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  13. Observations on personnel dosimetry for radiotherapy personnel operating high-energy LINACs.

    PubMed

    Glasgow, G P; Eichling, J; Yoder, R C

    1986-06-01

    A series of measurements were conducted to determine the cause of a sudden increase in personnel radiation exposures. One objective of the measurements was to determine if the increases were related to changing from film dosimeters exchanged monthly to TLD-100 dosimeters exchanged quarterly. While small increases were observed in the dose equivalents of most employees, the dose equivalents of personnel operating medical electron linear accelerators with energies greater than 20 MV doubled coincidentally with the change in the personnel dosimeter program. The measurements indicated a small thermal neutron radiation component around the accelerators operated by these personnel. This component caused the doses measured with the TLD-100 dosimeters to be overstated. Therefore, the increase in these personnel dose equivalents was not due to changes in work habits or radiation environments. Either film or TLD-700 dosimeters would be suitable for personnel monitoring around high-energy linear accelerators. The final choice would depend on economics and personal preference.

  14. Evaluation of film and thermoluminescent dosimetry of high-energy electron beams in heterogeneous phantoms.

    PubMed

    el-Khatib, E; Antolak, J; Scrimger, J

    1992-01-01

    Film and thermoluminescent dosimetry (TLD) are investigated in heterogeneous phantoms irradiated by high-energy electron beams. Both film and TLD are practical dosimeters for multiple and moving beam radiotherapy. The accuracy and precision of these dosimeters for radiation dose measurements in homogeneous water-equivalent phantoms has been discussed in the literature. However, film and TLD are often used for dose measurements in heterogeneous phantoms. In those situations perturbations are produced which are related to the density and atomic number of the phantom material and the physical size and orientation of the dosimeter. In our experiments the relative dose measurements in homogeneous phantoms were the same regardless of dosimeter or dosimeter orientation. However, significant differences were observed between the dose measurements within the inhomogeneity. These differences were influenced by the type and orientation of the dosimeter in addition to the properties of the heterogeneity. These differences could be reproduced with Monte Carlo calculations and modeling of the experimental conditions.

  15. Response of thermoluminescent lithium fluoride (TLD-100) to photon beams of 275, 400, 500, 600, 730, 900, 1200, 1500, and 2500 eV.

    PubMed

    Carrillo, R E; Pearson, D W; DeLuca, P M; MacKay, J F; Lagally, M G

    1994-11-01

    LiF:Mg,Ti (TLD-100) extruded ribbons and cleaved crystals were exposed to monoenergetic photons of 275-2550 eV energy to determine their potential usefulness as radiation dosimeters for radiobiology experiments at these energies. The radiation source was synchrotron radiation from the 1 GeV electron storage ring, Aladdin. The authors report TLD response and glow curves for He- and air-annealed dosimeters. The undesirable effects of air annealing increase with decreasing photon penetration in the dosimeter. Under certain experimental conditions, UV radiation produced anomalous bleaching of high-temperature traps. The crystals and the chips presented a supralinear response, Supralinearity factors were determined to be of the order of 1.5 for crystals, and 1.7 for the chips. The authors' results indicate that TLDs are a reliable means to monitor the total energy deposited in irradiated cells and are now used routinely for radiobiology cell irradiations.

  16. Towards in vivo TLD dosimetry in mammography.

    PubMed

    Warren-Forward, H M; Duggan, L

    2004-05-01

    While phantoms are used for quality control assessment of the mammography unit, in vivo dose measurements are necessary to account for the variation in size and composition of the female breast. The use of thermoluminescent dosimeters (TLDs) in mammography has been limited due to TLD visibility. The aim of this current investigation was to access the suitability of a paper-thin LiF:Mg,Cu,P TLD (GR-200F) for in vivo dosimetric mammography measurements. The visibility of GR-200F has been directly compared with LiF:Mg,Cu,P TLDs (GR-200A) using a number of commercially available phantoms. The phantoms of thickness 2-5 cm were imaged over the range of tube potentials (24-28 kVp) used clinically. Both types of TLD were placed on the surface of the phantoms allowing assessment of visibility, entrance surface dose (ESD) and field homogeneity. In vivo assessment of ESD and visibility was also carried out on a volunteer undergoing a routine mammography examination. The positions of the GR-200F TLDs were not identified either on the image of the Leeds TOR(MAM) phantom or the patient mammograms. The average ESD for the Leeds phantom was 8.8 mGy, while the patient ESD was 13 mGy. It is now possible to perform in vivo measurements with the potential of increasing the accuracy of the doses measured for women that do not conform to a standard breast thickness or density.

  17. Comparison of Three Methods of Calculation, Experimental and Monte Carlo Simulation in Investigation of Organ Doses (Thyroid, Sternum, Cervical Vertebra) in Radioiodine Therapy

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Ayat, Saba

    2012-01-01

    Radioiodine therapy is an effective method for treating thyroid cancer carcinoma, but it has some affects on normal tissues, hence dosimetry of vital organs is important to weigh the risks and benefits of this method. The aim of this study is to measure the absorbed doses of important organs by Monte Carlo N Particle (MCNP) simulation and comparing the results of different methods of dosimetry by performing a t-paired test. To calculate the absorbed dose of thyroid, sternum, and cervical vertebra using the MCNP code, *F8 tally was used. Organs were simulated by using a neck phantom and Medical Internal Radiation Dosimetry (MIRD) method. Finally, the results of MCNP, MIRD, and Thermoluminescent dosimeter (TLD) measurements were compared by SPSS software. The absorbed dose obtained by Monte Carlo simulations for 100, 150, and 175 mCi administered 131I was found to be 388.0, 427.9, and 444.8 cGy for thyroid, 208.7, 230.1, and 239.3 cGy for sternum and 272.1, 299.9, and 312.1 cGy for cervical vertebra. The results of paired t-test were 0.24 for comparing TLD dosimetry and MIRD calculation, 0.80 for MCNP simulation and MIRD, and 0.19 for TLD and MCNP. The results showed no significant differences among three methods of Monte Carlo simulations, MIRD calculation and direct experimental dosimetry using TLD. PMID:23717806

  18. Correlation-based static correction of 4D seismic data with a demonstration at the Ketzin CO2 storage site, Germany

    NASA Astrophysics Data System (ADS)

    Bergmann, P.; Kashubin, A.; Ivandic, M.; Lueth, S.; Juhlin, C.

    2013-12-01

    Statics are time-shifts that occur in reflection seismic trace data and are generally considered to be mainly due to shallow velocity variations. Since the refraction static correction is most often based on first break picking and subsequent velocity model estimation, it is even today a labor-consuming and error-prone procedure. Time-lapse seismic also faces this issue in a temporal sense, since changes in statics, due to temporally variable near-surface conditions, are known to be first-order contributors to time-lapse noise. Considerable changes in the statics of repeated on-shore seismic surveys can occur due to precipitation-related changes in soil moisture and in the groundwater table, or may be due to man-made earthworks. Production-related or injection-related processes can cause considerable velocity changes, which leave time-shift imprints on time-lapse seismic data that can be very similar to that of near-surface velocity variations. In this context it is crucial to consider that refraction static corrections are in many cases of limited use, as they aim to enhance the stack coherency of the individual time-lapse data sets only. As an alternative, we propose a time-lapse difference (TLD) static correction that is focused on the accommodation of static changes between the time-lapse data sets. This TLD static correction decomposes the static differences that are determined from cross-correlations in a surface-consistent manner. It therefore does not require first break picking and inversion for velocities from repeat data sets. We tested the TLD static correction for a 4D case study from the Ketzin CO2 storage site, Germany. As a reference we used the results that were obtained from a recent processing in which refraction static corrections were performed individually on the time-lapse data sets. Although the TLD static corrections method is considerably less time-consuming, we found that it is providing a stack difference with enhanced S/N. This is particularly demonstrated for a 4D seismic signature that is proven to be due to injected CO2. This Ketzin case study shows further that the pattern of the TLD statics is highly consistent with patterns in the cumulative precipitation data. This observation confirms that near-surface velocity changes are due to changes in the soil-moisture saturation and that an efficient compensation for them can be achieved by the TLD static correction.

  19. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  20. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    PubMed

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Thermoluminescence dosimetry for in-vivo verification of high dose rate brachytherapy for prostate cancer.

    PubMed

    Das, R; Toye, W; Kron, T; Williams, S; Duchesne, G

    2007-09-01

    It was the aim of the study to verify dose delivered in urethra and rectum during High Dose Rate brachytherapy boost (HDRBB) of prostate cancer patients. During the first fraction of HDRBB measurement catheters were placed in the urethra and rectum of prostate cancer patients. These contained LiF:Mg,Ti Thermoluminescence Dosimetry (TLD) rods of 1 mm diameter, with up to 11 detectors positioned every 16 mm separated by radio-opaque markers. A Lorentzian peak function was used to fit the data. Measurements from 50 patients were evaluated and measured doses were compared with predictions from the treatment planning system (Plato Vs 13.5 to 14.1). Prospective urinary and rectal toxicity scores were collected following treatment. In more than 90% of cases, the Lorentzian peak function provided a good fit to both experimental and planning urethral data (r2 > 0.9). In general there was good agreement between measured and predicted doses with the average difference between measured and planned maximum dose being 0.1 Gy. No significant association between dose and any clinical endpoints was observed in 43 patients available for clinical evaluation. An average inferior shift of 2 mm between the plan and the measurement performed approximately 1 hour after the planning CT scan was found for the dose distribution in the cohort of patients for the urethra measurements. Rectal measurements proved to be more difficult to interpret as there is more variability of TLD position between planning and treatment. TLD in-vivo measurements are easily performed in urethra and rectum during HDR brachytherapy of prostate patients. They verify the delivery and provide information about the dose delivered to critical structures. The latter may be of particular interest if higher doses are to be given per fraction such as in HDR monotherapy.

  2. SU-F-T-667: Development and Validation of Dose Calculation for An Open-Source KV Treatment Planning System for Small Animal Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajapati, S; Mo, X; Bednarz, B

    Purpose: An open-source, convolution/superposition based kV-treatment planning system(TPS) was developed for small animal radiotherapy from previously existed in-house MV-TPS. It is flexible and applicable to both step and shoot and helical tomotherapy treatment delivery. For initial commissioning process, the dose calculation from kV-TPS was compared with measurements and Monte Carlo(MC) simulations. Methods: High resolution, low energy kernels were simulated using EGSnrc user code EDKnrc, which was used as an input in kV-TPS together with MC-simulated x-ray beam spectrum. The Blue Water™ homogeneous phantom (with film inserts) and heterogeneous phantom (with film and TLD inserts) were fabricated. Phantom was placed atmore » 100cm SSD, and was irradiated with 250 kVp beam for 10mins with 1.1cm × 1.1cm open field (at 100cm) created by newly designed binary micro-MLC assembly positioned at 90cm SSD. Gafchromic™ EBT3 film was calibrated in-phantom following AAPM TG-61 guidelines, and were used for measurement at 5 different depths in phantom. Calibrated TLD-100s were obtained from ADCL. EGS and MNCP5 simulation were used to model experimental irradiation set up calculation of dose in phantom. Results: Using the homogeneous phantom, dose difference between film and kV-TPS was calculated: mean(x)=0.9%; maximum difference(MD)=3.1%; standard deviation(σ)=1.1%. Dose difference between MCNP5 and kV-TPS was: x=1.5%; MD=4.6%; σ=1.9%. Dose difference between EGS and kV-TPS was: x=0.8%; MD=1.9%; σ=0.8%. Using the heterogeneous phantom, dose difference between film and kV-TPS was: x=2.6%; MD=3%; σ=1.1%; and dose difference between TLD and kV-TPS was: x=2.9%; MD=6.4%; σ=2.5%. Conclusion: The inhouse, open-source kV-TPS dose calculation system was comparable within 5% of measurements and MC simulations in both homogeneous and heterogeneous phantoms. The dose calculation system of the kV-TPS is validated as a part of initial commissioning process for small animal radiotherapy. The kV-TPS has the potential for accurate dose calculation for any kV treatment or imaging modalities.« less

  3. Radiological and microwave Protection at NRL, January - December 1983

    DTIC Science & Technology

    1984-06-27

    reduced to background. 18 Surveys with TLD badges were made on pulsed electron beam machines in Buildings 101 and A68 throughout the year. The Gamble...calibration of radiation dosimetry systems required by the Laboratory’s radiological safety program, or by other Laboratory or Navy groups. The Section...provides consultation and assistance on dosimetry problems to the Staff, Laboratory, and Navy. The Section maintains and calibrates fixed-field radiac

  4. Improvement and Analysis of the Radiation Response of RADFET Dosimeters

    DTIC Science & Technology

    1992-06-15

    TLD ), silicon p-i-n diode responses and silicon calorimetry (AWE Dosimetry Service). Intensive preparations were made by REM and the experiments were...SUB-GROUP dose: RADFET : tactical dosimetry silicon : metal-oxide- 0705 emiconductor (MOS) field effect transistor (FET) : silicon Idioxide space...1.1 Principle of a dosimetry system, based on the RADFET (radiation-sensitive field-effect transistor) (a) microscopic cross-section of chip (b) chip

  5. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    PubMed Central

    Lee, J. H.; Chang, L. T.; Shiau, A. C.; Chen, C. W.; Liao, Y. J.; Li, W. J.; Lee, M. S.; Hsu, S. M.

    2015-01-01

    A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs) were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions. PMID:25883980

  6. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  7. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  8. The effect of different dopant concentration of tailor-made silica fibers in radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Begum, Mahfuza; Mizanur Rahman, A. K. M.; Zubair, H. T.; Abdul-Rashid, H. A.; Yusoff, Z.; Begum, Mahbuba; Alkhorayef, M.; Alzimami, K.; Bradley, D. A.

    2017-12-01

    In thermoluminescence (TL) material dopant concentration has an important effect on their characteristics as a ;radiation-sensor;. The study investigates dosimetric properties of four different concentration (4 mol%, 5 mol%, 7 mol% and 25 mol%) tailor-made Ge-doped silica fibers. The intention is to seek development of alternative TL materials that offer exceptional advantages over existing passive systems of dosimetry, including improved spatial resolution, a water impervious nature and low cost. Photon beams (6 MV and 10 MV) from a clinical linear accelerator were used for irradiation of the fiber samples over radiation therapy doses, ranging from 0.5 Gy to 8 Gy. SEM-EDX analysis was also performed to investigate the homogeneity of distribution of Ge dopant concentration from the fiber samples. The results of measurement were also compared with two of the more commonly used standard TLDs, TLD-100 (LiF: Mg,Ti-7.5% 6LiF) and TLD-700 ((7LiF: Mg,Ti-99.9%7LiF) chips respectively. The TL intensity of the fiber samples was found to strongly depend on Ge dopant concentration, with samples showing enhanced TL yields with decreasing Ge dopant concentration. 4 mol% Ge-doped silica fiber provided the greatest response whereas the 25 mol% samples showed the least, indicative of the well-known concentration quenching effects All fiber TLDs provided linear dose response over the delivered radiotherapy dose-range, the fibers also showing a weak dependence on photon beam energies in comparing the TL yields at 6 and 10 MV. The fading behavior of the different concentration Ge doped TLD-materials were also measured over a period of thirty (30) days subsequent to irradiation. The relative sensitivity of the samples with respect to standard TLD-100 were found to be 0.37, 0.26, 0.13 and 0.02 in respect of the 4, 5, 7 and 25 mol% fibers. The primary dosimetry peak, which was by far the most prominent of any other feature covered by the glow curve, was found to be around 244 °C using the most sensitive silica fiber. The study is expected to pave the way in making more comprehensive investigations aimed at defining improved TL response fiber samples.

  9. Implementation of radiochromic film dosimetry protocol for volumetric dose assessments to various organs during diagnostic CT procedures

    PubMed Central

    Brady, Samuel; Yoshizumi, Terry; Toncheva, Greta; Frush, Donald

    2010-01-01

    Purpose: The authors present a means to measure high-resolution, two-dimensional organ dose distributions in an anthropomorphic phantom of heterogeneous tissue composition using XRQA radiochromic film. Dose distributions are presented for the lungs, liver, and kidneys to demonstrate the organ volume dosimetry technique. XRQA film response accuracy was validated using thermoluminescent dosimeters (TLDs). Methods: XRQA film and TLDs were first exposed at the center of two CTDI head phantoms placed end-to-end, allowing for a simple cylindrical phantom of uniform scatter material for verification of film response accuracy and sensitivity in a computed tomography (CT) exposure geometry; the TLD and film dosimeters were exposed separately. In a similar manner, TLDs and films were placed between cross-sectional slabs of a 5 yr old anthropomorphic phantom’s thorax and abdomen regions. The anthropomorphic phantom was used to emulate real pediatric patient geometry and scatter conditions. The phantom consisted of five different tissue types manufactured to attenuate the x-ray beam within 1%–3% of normal tissues at CT beam energies. Software was written to individually calibrate TLD and film dosimeter responses for different tissue attenuation factors, to spatially register dosimeters, and to extract dose responses from film for TLD comparison. TLDs were compared to film regions of interest extracted at spatial locations corresponding to the TLD locations. Results: For the CTDI phantom exposure, the film and TLDs measured an average difference in dose response of 45% (SD±2%). Similar comparisons within the anthropomorphic phantom also indicated a consistent difference, tracking along the low and high dose regions, for the lung (28%) (SD±8%) and liver and kidneys (15%) (SD±4%). The difference between the measured film and TLD dose values was due to the lower response sensitivity of the film that arose when the film was oriented with its large surface area parallel to the main axis of the CT beam. The consistency in dose response difference allowed for a tissue specific correction to be applied. Once corrected, the average film response agreed to better than 3% (SD±2%) for the CTDI scans, and for the anthropomorphic phantom scans: 3% (SD±3%) for the lungs, 5% (SD±3%) for the liver, and 4% (SD±3%) for the kidneys. Additionally, XRQA film measured a heterogeneous dose distribution within the organ volumes. The extent of the dose distribution heterogeneity was not measurable with the TLDs due to the limitation on the number of TLDs loadable in the regions of the phantom organs. In this regard, XRQA film demonstrated an advantage over the TLD method by discovering a 15% greater maximum dose to lung in a region unmeasured by TLDs. Conclusions: The films demonstrated a lower sensitivity to absorbed dose measurements due to the geometric inefficiency of measuring dose from a beam situated end-on to the film. Once corrected, the film demonstrated equivalent dose measurement accuracy as TLD detectors with the added advantage of relatively simple measurement of high-resolution dose distributions throughout organ volumes. PMID:20964198

  10. Absorbed dose determination using experimental and analytical predictions of x-ray spectra

    NASA Astrophysics Data System (ADS)

    Edwards, David Lee

    1999-10-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.

  11. Variations in photon energy spectra of a 6 MV beam and their impact on TLD response

    PubMed Central

    Scarboro, Sarah B.; Followill, David S.; Howell, Rebecca M.; Kry, Stephen F.

    2011-01-01

    Purpose: Measurement of the absorbed dose from radiotherapy beams is an essential component of providing safe and reproducible treatment. For an energy-dependent dosimeter such as thermoluminescent dosimeters (TLDs), it is generally assumed that the energy spectrum is constant throughout the treatment field and is unperturbed by field size, depth, field modulation, or heterogeneities. However, this does not reflect reality and introduces error into clinical dose measurements. The purpose of this study was to evaluate the variability in the energy spectrum of a Varian 6 MV beam and to evaluate the impact of these variations in photon energy spectra on the response of a common energy-dependent dosimeter, TLD. Methods: Using Monte Carlo methods, we calculated variations in the photon energy spectra of a 6 MV beam as a result of variations of treatment parameters, including field size, measurement location, the presence of heterogeneities, and field modulation. The impact of these spectral variations on the response of the TLD is largely based on increased photoelectric effect in the dosimeter, and this impact was calculated using Burlin cavity theory. Measurements of the energy response were also made to determine the additional energy response due to all intrinsic and secondary effects. Results: For most in-field measurements, regardless of treatment parameter, the dosimeter response was not significantly affected by the spectral variations (<1% effect). For measurement points outside of the treatment field, where the spectrum is softer, the TLD over-responded by up to 12% due to an increased probability of photoelectric effect in the TLD material as well as inherent ionization density effects that play a role at low photon energies. Conclusions: It is generally acceptable to ignore the impact of variations in the photon spectrum on the measured dose for locations within the treatment field. However, outside the treatment field, the spectra are much softer, and a correction factor is generally appropriate. The results of this work have determined values for this factor, which range from 0.88 to 0.99 depending on the specific irradiation conditions. PMID:21776799

  12. SU-E-T-543: Is It Feasible to Tighten the Criteria for IROC's Anthropomorphic Phantoms?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molineu, A; Alvarez, P; Kry, S

    Purpose: To analyze results of IROC Houston QA center's (RPC) H and N and prostate IMRT phantoms to determine the effect that tightening criteria would have on the phantom pass rate. Methods: IROC Houston's anthropomorphic H and N and prostate phantoms are used to credential institution's to participate in NCI clinical trials that allow the use of IMRT. The phantoms are shipped to institutions where they are filled with water and undergo imaging, treatment planning, and irradiation as a patient would. Each phantom houses targets and organs at risk. They also hold film and TLD. Dosimeter results are compared tomore » the institution's treatment plan using the criteria of 7% for PTV TLD doses and ≥85% pixels must pass 7%/4 mm global gamma analyses. Pass rates for the H and N and prostate phantoms were recalculated using the following tighter criteria options: 1) 5% TLD and 85% pixels 7%/4 gamma2) 5% TLD and 90% pixels 7%/4 gamma3) 5% TLD and 85% pixels 5%/4 gammaGamma analysis was repeated for the 30 most recent irradiations of each phantom to estimate results for criteria 3. Results: Pass rates using current criteria for the H and N and prostate phantoms are 84% and 85% respectively. Pass rates since gamma criteria were introduced in 2012 are 90% and 87%. Criteria 1 applied to all irradiations drops pass rates to 78% and 82%. Applying it to only irradiations with gamma results give 77% and 84%. Applying criteria 2 to only phantoms with gamma results drops pass rates to 80% and 74% and they fall to 83% and 67% respectively using criteria 3. Conclusion: Applying tighter criteria to phantom results has potential to increase quality in clinical trials. The results of the 30 most recent irradiations indicate that there may be room to tighten H and N phantom criteria in the future. Work supported by PHS grant CA10953 and CA081647 (NCI, DHHS)« less

  13. Assessment of target dose delivery in anal cancer using in vivo thermoluminescent dosimetry.

    PubMed

    Weber, D C; Nouet, P; Kurtz, J M; Allal, A S

    2001-04-01

    To measure anal dose during external beam radiotherapy (EBRT) using in vivo dosimetry, to study the difference of measured from prescribed dose values, and to evaluate possible associations of such differences with acute and late skin/mucosal toxicity and anorectal function. Thirty-one patients with localized anal carcinoma underwent in vivo measurements during the first EBRT session. Themoluminescent dosimeters (TLD) were placed at the center of the anal verge according to a localization protocol. No bolus was used. Patients received a median dose of 39.6 Gy (range: 36-45 Gy) by anteroposterior opposed AP/PA pelvic fields with 6 or 18 MV photons, followed by a median boost dose of 20 Gy (range: 13-24 Gy). Concomitant chemotherapy (CCT), consisting of 1-2 cycles of continuous infusion 5-fluorouracil (5-FU) and bolus mitomycin-C (MMC), was usually administered during the first weeks of the pelvic and boost EBRT courses. Acute and late skin/mucosal reactions were recorded according to the Radiation Therapy Oncology Group (RTOG) toxicity scale. Anal sphincter function was assessed using the Memorial Sloan Kettering Cancer Center (MSKCC) scale. TLD anal doses differed by a mean of 5.8% (SD: 5.8) in comparison to the central axis prescribed dose. Differences of at least 10% and at least 15% were observed in eight (26%) and three (9.7%) patients, respectively. TLD doses did not significantly correlate with acute or late grade 2-3 skin or mucosal toxicity. However, patients having good-fair MSKCC anal function had a significantly greater mean difference in anal TLD dose (10.5%, SD: 5.9) than patients having excellent function (3.8%, SD: 4.6) (P = 0.004). Prescribed dose values, length of follow-up, and age at diagnosis did not correlate with late sphincter function. These data show that AP/PA fields using megavoltage photons deliver adequate dose to the anal verge. However, in about one quarter of patients treated with this technique the anal dose varied from the prescribed dose by at least 10%. The observed correlation of TLD values and late sphincter function suggests that direct measurement of the dose delivered to the anal verge might be clinically relevant.

  14. Nanocrystalline materials for the dosimetry of heavy charged particles: A review

    NASA Astrophysics Data System (ADS)

    Salah, Numan

    2011-01-01

    Thermally stimulated luminescence or better known as thermoluminescence (TL) is a powerful technique extensively used for dosimetry of ionizing radiations. TL dosimeter (TLD) materials presently in use are inorganic crystalline materials. They are in the form of chips, single crystals or microcrystalline size powder. The most popular are LiF:Mg,Ti, LiF:Mg,Cu,P, CaSO 4:Dy, CaF 2:Dy and Al 2O 3:C. However, these TLD materials are not capable of precisely detecting heavy charged particles (HCP) irradiations in their present forms. The saturation effect is the major problem, which occurs at relatively low fluences (doses). Moreover, there is a significant variation in the TL glow curves structure with increase in doses, which is undesirable for the use in dosimetry. However, with the use of very tiny particles such as nanoscale TLD materials, this problem is overcome to a major extent. The TL results of the recently reported nanomaterials have revealed very imperative characteristics such as high sensitivity and saturation at very high doses. Recent studies on different luminescent nanomaterials showed that they have a potential application in dosimetry of heavy charged particles using TL technique, where the conventional microcrystalline phosphors saturate. This paper is a review on the prepared TLD nanomaterials, studied for their TL response to HCP. These are CaSO 4:Dy, LiF:Mg,Cu,P, K 2Ca 2(SO 4) 3:Eu and Ba 0.97Ca 0.03SO 4:Eu nanomaterials. The important results obtained in these nanomaterials and the possibility of using them as HCP dosimeters are discussed.

  15. Thermoluminescent response of TLD-100 irradiated with 20 keV electrons and the use of radiochromic dye films for the fluence determination

    NASA Astrophysics Data System (ADS)

    Mercado-Uribe, H.; Brandan, M. E.

    2004-07-01

    We have measured the LiF:Mg,Ti (TLD-100) fluence response and supralinearity function to 20 keV electrons in the fluence interval between 5 × 10 9 and 4 × 10 12 cm -2. TLD-100 shows linear response up to 2 × 10 10 cm -2, followed by supralinearity and saturation after 10 12 cm -2. Peak 5 is slightly supralinear, f( n) max=1.1±0.1, while high temperature peaks reach up to f( n) max≈8. Peak 5 saturates at n≈1×10 11 cm -2, fluence smaller than any of the saturating fluences of the high temperature peaks. We have also measured the glow curve shape of TLD-100 irradiated with 40 keV electrons, beta particles from a 90Sr/ 90Y source and 1.3 and 6.0 MeV electrons from accelerators. Results are interesting and unexpected in that, for a given macroscopic dose, electrons show a smaller relative contribution of high-temperature peaks with respect to peak 5 than heavy ions or X- and γ-rays. The 20 and 40 keV electron irradiations were performed with a scanning electron microscope using radiochromic dye film to measure fluence. Since film calibrations were performed using 60Co γ-rays which expose the totality of the film volume, the use of this method with low energy electrons required to develop a formalism that takes into account the sensitive thickness of the film in relation to the range of the incident particles.

  16. TLD assessment of mouse dosimetry during microCT imaging

    PubMed Central

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-01-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837

  17. Atypical audio-visual speech perception and McGurk effects in children with specific language impairment

    PubMed Central

    Leybaert, Jacqueline; Macchi, Lucie; Huyse, Aurélie; Champoux, François; Bayard, Clémence; Colin, Cécile; Berthommier, Frédéric

    2014-01-01

    Audiovisual speech perception of children with specific language impairment (SLI) and children with typical language development (TLD) was compared in two experiments using /aCa/ syllables presented in the context of a masking release paradigm. Children had to repeat syllables presented in auditory alone, visual alone (speechreading), audiovisual congruent and incongruent (McGurk) conditions. Stimuli were masked by either stationary (ST) or amplitude modulated (AM) noise. Although children with SLI were less accurate in auditory and audiovisual speech perception, they showed similar auditory masking release effect than children with TLD. Children with SLI also had less correct responses in speechreading than children with TLD, indicating impairment in phonemic processing of visual speech information. In response to McGurk stimuli, children with TLD showed more fusions in AM noise than in ST noise, a consequence of the auditory masking release effect and of the influence of visual information. Children with SLI did not show this effect systematically, suggesting they were less influenced by visual speech. However, when the visual cues were easily identified, the profile of responses to McGurk stimuli was similar in both groups, suggesting that children with SLI do not suffer from an impairment of audiovisual integration. An analysis of percent of information transmitted revealed a deficit in the children with SLI, particularly for the place of articulation feature. Taken together, the data support the hypothesis of an intact peripheral processing of auditory speech information, coupled with a supra modal deficit of phonemic categorization in children with SLI. Clinical implications are discussed. PMID:24904454

  18. Atypical audio-visual speech perception and McGurk effects in children with specific language impairment.

    PubMed

    Leybaert, Jacqueline; Macchi, Lucie; Huyse, Aurélie; Champoux, François; Bayard, Clémence; Colin, Cécile; Berthommier, Frédéric

    2014-01-01

    Audiovisual speech perception of children with specific language impairment (SLI) and children with typical language development (TLD) was compared in two experiments using /aCa/ syllables presented in the context of a masking release paradigm. Children had to repeat syllables presented in auditory alone, visual alone (speechreading), audiovisual congruent and incongruent (McGurk) conditions. Stimuli were masked by either stationary (ST) or amplitude modulated (AM) noise. Although children with SLI were less accurate in auditory and audiovisual speech perception, they showed similar auditory masking release effect than children with TLD. Children with SLI also had less correct responses in speechreading than children with TLD, indicating impairment in phonemic processing of visual speech information. In response to McGurk stimuli, children with TLD showed more fusions in AM noise than in ST noise, a consequence of the auditory masking release effect and of the influence of visual information. Children with SLI did not show this effect systematically, suggesting they were less influenced by visual speech. However, when the visual cues were easily identified, the profile of responses to McGurk stimuli was similar in both groups, suggesting that children with SLI do not suffer from an impairment of audiovisual integration. An analysis of percent of information transmitted revealed a deficit in the children with SLI, particularly for the place of articulation feature. Taken together, the data support the hypothesis of an intact peripheral processing of auditory speech information, coupled with a supra modal deficit of phonemic categorization in children with SLI. Clinical implications are discussed.

  19. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding.

    PubMed

    Lin, Jeng-Shane; Lin, Chih-Ching; Lin, Hsin-Hung; Chen, Yu-Chi; Jeng, Shih-Tong

    2012-10-01

    MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Analysis of Systems Hardware Flown on LDEF-Results of the Systems Special Investigation Group

    DTIC Science & Technology

    1992-04-01

    applied, should bring calculations and data into closer agreement. A few dosimeters were placed on LDEF at shallow enough shielding locations to...SHIELDING THICKNESS (g/cm2) Radiation absorbed dose (RAD) measurements with thermoluminescent dosimeters (TLD) from leading and trailing sides of LDEF...oxide In^ OsL aluminum oxide, Au plated Al [2024-T351], Au plated Al [6003] Au on Si02, Ir on Si02, Nb on Si02, Os on Si02, Pt on Si02, Cu on Si02, Ag

  1. Implementation of alanine/EPR as transfer dosimetry system in a radiotherapy audit programme in Belgium.

    PubMed

    Schaeken, B; Cuypers, R; Lelie, S; Schroeyers, W; Schreurs, S; Janssens, H; Verellen, D

    2011-04-01

    A measurement procedure based on alanine/electron paramagnetic resonance (EPR) dosimetry was implemented successfully providing simple, stable, and accurate dose-to-water (D(w)) measurements. The correspondence between alanine and ionization chamber measurements in reference conditions was excellent. Alanine/EMR dosimetry might be a valuable alternative to thermoluminescent (TLD) and ionization chamber based measuring procedures in radiotherapy audits. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Modeling the Total Dose Radiation Effects of Hg(1-x)Cd(x)Te Photodiodes Using Numerical Device Simulators

    DTIC Science & Technology

    1994-01-01

    Dosimetry : Analysis of dosimetry in two dewar/liquid nitrogen systems. TIME Estimate: One hour for setup, irradiation and TLD reading/analysis. IV...point indicates both electron and hole trapping at the boundary ........................ 12 3.3 Relationship between current and dose for irradiated...peak value. Carriers are collected across the vertical junction within a diffusion length. Since the electron diffusion length is much larger than for

  3. Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code

    DTIC Science & Technology

    1979-06-01

    dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was

  4. Absolute Two-Photon Absorption Coefficients in UltraViolet Window Materials

    DTIC Science & Technology

    1977-12-01

    fvtt* tld » II ntctHB,-y md Idtnlll’ by block number; The absolute two-photon absorption coefficiehts of u. v. transmitting materials have been...measured using well-calibrated single picosecond pulses, at the third and fourth harmonic of a mode locked Nd:YAG laser systems. Twc photon...30, 1977. Work in the area of laser induced breakdown and multiphoton absorption in ultraviolet and infrared laser window materials was carried

  5. Magnetic removal of electron contamination for 60Co panoramic gamma ray exposure--Investigations with CaSO4:Dy and LiF based dosimeters.

    PubMed

    Kumar, Munish; Sahani, G; Chourasiya, G

    2010-06-01

    Electron contamination from a sealed (60)Co radiation source has been investigated comprehensively using a CaSO(4):Dy based TLD badge and LiF crystals. It has been found that due to electron contamination, the thermoluminescence (TL) detectors exhibit over response which can be corrected by applying a magnetic field. It has also been found that for a source-to-dosimeter distance of 50 cm, the ratio of the TL readouts of the third to first discs of the TLD badge reduces from approximately 1.5 to approximately 1.00 after applying a magnetic field. Hence detectors which are sensitive to electrons as well as photons, and are capable of distinguishing them, can lead to an erroneous measurement. This happens because the contribution due to electron contamination interferes with pure gamma calibration. The study is helpful in establishing accurate calibration and appropriate correction factors for personnel monitoring carried out using CaSO(4):Dy based TLD badge. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Measurements of the dose due to cosmic rays in aircraft

    NASA Astrophysics Data System (ADS)

    Vuković, B.; Lisjak, I.; Radolić, V.; Vekić, B.; Planinić, J.

    2006-06-01

    When the primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The cosmic radiation dose aboard A320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured with the Alpha Guard radon detector. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed by the flights Zagreb-Paris-Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the TLD dosimeter registered the total dose of 75 μSv and the average dose rate was 2.7 μSv/h. In the same month, February 2005, a traveling to Japan (24 h flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h.

  7. The 1998 Australian external beam radiotherapy survey and IAEA/WHO TLD postal dose quality audit.

    PubMed

    Huntley, R; Izewska, J

    2000-03-01

    The results of an updated Australian survey of external beam radiotherapy centres are presented. Most of the centres provided most of the requested information. The relative caseloads of various linear accelerator photon and electron beams have not changed significantly since the previous survey in 1995. The mean age of Australian LINACs is 7.1 years and that of other radiotherapy machines is 14.7 years. Every Australian radiotherapy centre participated in a special run of the IAEA/WHO TLD postal dose quality audit program, which was provided for Australian centres by the IAEA and WHO in May 1998. The dose quoted by the centres was in nearly every case within 1.5% of the dose assessed by the IAEA. This is within the combined standard uncertainty of the IAEA TLD service (1.8%). The results confirm the accuracy and precision of radiotherapy dosimetry in Australia and the adequate dissemination of the Australian standards from ARL (now ARPANSA) to the centres. The Australian standards have recently been shown to agree with those of other countries to within 0.25% by comparison with the BIPM.

  8. A survey of current in vivo radiotherapy dosimetry practice.

    PubMed

    Edwards, C R; Grieveson, M H; Mountford, P J; Rolfe, P

    1997-03-01

    A questionnaire was sent out to 57 radiotherapy physics departments in the United Kingdom to determine the type of dosemeters used for in vivo measurements inside and outside X-ray treatment fields, and whether any correction is made for energy dependence when the dose to critical organs outside the main beam is estimated. 44 responses were received. 11 centres used a semi-conductor for central axis dosimetry compared with only two centres which used thermoluminescent dosimetry (TLD). 37 centres carried out dosimetry measurements outside the main beam; 25 centres used TLD and 12 centres used a semi-conductor detector. Of the 16 centres measuring the dose at both sites. 11 used a semi-conductor for the central axis measurement, but only four of those 11 changed to TLD for critical organ dosimetry despite the latter's lower variation in energy response. None of the centres stated that they made a correction for the variation in detector energy response when making measurements outside the main beam, indicating a need for a more detailed evaluation of the energy response of these detectors and the energy spectra outside the main beam.

  9. Analysis of DNS Cache Effects on Query Distribution

    PubMed Central

    2013-01-01

    This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally. PMID:24396313

  10. Analysis of DNS cache effects on query distribution.

    PubMed

    Wang, Zheng

    2013-01-01

    This paper studies the DNS cache effects that occur on query distribution at the CN top-level domain (TLD) server. We first filter out the malformed DNS queries to purify the log data pollution according to six categories. A model for DNS resolution, more specifically DNS caching, is presented. We demonstrate the presence and magnitude of DNS cache effects and the cache sharing effects on the request distribution through analytic model and simulation. CN TLD log data results are provided and analyzed based on the cache model. The approximate TTL distribution for domain name is inferred quantificationally.

  11. Evaluation of the response to xenon-133 radiations by thermoluminescent dosimeters used during the accident at Three Mile Island.

    PubMed

    Riley, R J; Zanzonico, P B; Masterson, M E; St Germain, J M; Laughlin, J S

    1982-03-01

    An evaluation is presented of the accuracy and sensitivity of three types of TLD's used during the accident at the Three Mile Island Nuclear Station. This evaluation indicated that, due to the method of calibration, all the dosimeters over-responded to 133Xe radiations. The response ranged from slightly above unity to almost two. Exposures of the TLD's were of two types, namely, the characteristic X-rays either were or were not filtered from the beam. The angular sensitivity of the dosimeters is also reported.

  12. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system.

    PubMed

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali

    2012-01-01

    The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72-18.55 Gy) and 5.17 Gy (range 0.72-15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system.

  13. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali

    2012-01-01

    Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037

  14. Adaptation and Study of AIDS Viruses in Animal and Cell Culture Systems

    DTIC Science & Technology

    1989-01-30

    When irradiated,mice were exposed to 609+/-15 Roentgens (R) of gamma radiation at the body surface (determined by thermal luminescent dosimetry TLD ...vaccines and therapeutic agents. Therefore, it is imperative that common laboratory animals such as the rabbit and mouse be used as in vivo models for...infected with appropriate manipulation. It is clear that rabbits infected with HIV-1 offer much for HIV in vivo experimentation due to the large volume of

  15. Evaluation and clinical implementation of in vivo dosimetry for kV radiotherapy using radiochromic film and micro-silica bead thermoluminescent detectors.

    PubMed

    Palmer, Antony L; Jafari, Shakardokht M; Mone, Ioanna; Muscat, Sarah

    2017-10-01

    kV radiotherapy treatment calculations are based on flat, homogenous, full-scatter reference conditions. However, clinical treatments often include surface irregularities and inhomogeneities, causing uncertainty. Therefore, confirmation of actual delivered doses in vivo is valuable. The current study evaluates, and implements, radiochromic film and micro silica bead TLD for in vivo kV dosimetry. The kV energy and dose response of EBT3 film and silica bead TLD was established and uncertainty budgets determined. In vivo dosimetry measurements were made for a consecutive series of 30 patients using the two dosimetry systems. Energy dependent calibration factors were required for both dosimetry systems. The standard uncertainty estimate for in vivo measurement with film was 1.7% and for beads was 1.5%. The mean measured dose was -2.1% for film and -2.6% for beads compared to prescription. Deviations up to -9% were found in cases of large surface irregularity, or with underlying air cavities or bone. Dose shielding by beads could be clinically relevant at low kV energies and superficial depths. Both film and beads may be used to provide in vivo verification of delivered doses in kV radiotherapy, particularly for complex situations that are not well represented by standard reference condition calculations. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of effective dose for a patient under Ga-67 nuclear examination using TLD, water phantom and a simplified model

    PubMed Central

    Chu, Kuang Hua; Lin, Yu Ting; Hsu, Chia Chun; Chen, Chien Yi; Pan, Lung Kwang

    2012-01-01

    This study evaluated the effective dose of Ga-67 for a patient undergoing Ga-67 citrate nuclear examination by applying thermoluminescent dosimeter (TLD) technique and an indigenous water phantom. The Ga-67 radionuclide remaining in the body inevitably generated a measurable internal dose even though gamma camera scanning took only minutes to complete the clinical examination. For effective simulation of the cumulated effective dose for a patient undergoing examination, 150 TLDs were placed inside the water phantom for 6 days to monitor the gamma ray dose from the distributed Ga-67 citrate solution. The inserted TLDs represented internal organs, and the effective dose was calculated according to data in the ICRP-60 report. The water phantom was designed to model the body of a healthy human weighing 70 kg, and the water that was mixed with Ga-67 citrate solution was slowly replaced with fresh feed water to yield the required biological half life of the phantom. After continuously feeding in fresh water throughout the 6 days of TLD exposure, the TLDs were analyzed to determine the effective doses from the various biological half lives of the phantom. The derived effective dose of 185 MBq Ga-67 citrate solution for male/female (M/F) was 10.7/12.2, 10.7/12.0, 8.7/9.9 and 6.0/6.8 mSv, of biological half lives of 6.0, 4.5, 3.0 and 1.5 days, respectively. Although these experimental results correlated well with earlier empirical studies, they were lower than most calculated values. The cumulated uncertainty in the effective dose was 12.5–19.4%, which was acceptable in terms of both TLD counting statistic and reproducibility. PMID:22915780

  17. SRAG Measurements Performed During the Orion EFT-1 Mission

    NASA Technical Reports Server (NTRS)

    Gaza, Ramona

    2015-01-01

    The Exploration Flight Test 1 (EFT-1) was the first flight of the Orion Multi-Purpose Crew Vehicle (MPCV). The flight was launched on December 5, 2014, by a Delta IV Heavy rocket and lasted 4.5 hours. The EFT-1 trajectory involved one low altitude orbit and one high altitude orbit with an apogee of almost 6000 km. As a result of this particular flight profile, the Orion MPCV passed through intense regions of trapped protons and electron belts. In support of the radiation measurements aboard the EFT-1, the Space Radiation Analysis Group (SRAG) provided a Battery-operated Independent Radiation Detector (BIRD) based on Timepix radiation monitoring technology similar to that employed by the ISS Radiation Environmental Monitors (REM). In addition, SRAG provided a suite of optically and thermally stimulated luminescence detectors, with 2 Radiation Area Monitor (RAM) units collocated with the BIRD instrument for comparison purposes, and 6 RAM units distributed at different shielding configurations within the Orion MPCV. A summary of the EFT-1 Radiation Area Monitors (RAM) mission dose results obtained from measurements performed in the Space Radiation Dosimetry Laboratory at the NASA Johnson Space Center will be presented. Each RAM included LiF:Mg,Ti (TLD-100), (6)LiF:Mg,Ti (TLD-600), (7)LiF:Mg,Ti (TLD-700), Al2O3:C (Luxel trademark), and CaF2:Tm (TLD-300). The RAM mission dose values will be compared with the BIRD instrument total mission dose. In addition, a similar comparison will be shown for the ISS environment by comparing the ISS RAM data with data from the six Timepix-based REM units deployed on ISS as part of the NASA REM Technology Demonstration.

  18. Tracking-Learning-Detection.

    PubMed

    Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri

    2012-07-01

    This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

  19. Results From the Imaging and Radiation Oncology Core Houston's Anthropomorphic Phantoms Used for Proton Therapy Clinical Trial Credentialing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paige A., E-mail: pataylor@mdanderson.org; Kry, Stephen F.; Alvarez, Paola

    Purpose: The purpose of this study was to summarize the findings of anthropomorphic proton phantom irradiations analyzed by the Imaging and Radiation Oncology Core Houston QA Center (IROC Houston). Methods and Materials: A total of 103 phantoms were irradiated by proton therapy centers participating in clinical trials. The anthropomorphic phantoms simulated heterogeneous anatomy of a head, liver, lung, prostate, and spine. Treatment plans included those for scattered, uniform scanning, and pencil beam scanning beam delivery modalities using 5 different treatment planning systems. For every phantom irradiation, point doses and planar doses were measured using thermoluminescent dosimeters (TLD) and film, respectively. Differencesmore » between measured and planned doses were studied as a function of phantom, beam delivery modality, motion, repeat attempt, treatment planning system, and date of irradiation. Results: The phantom pass rate (overall, 79%) was high for simple phantoms and lower for phantoms that introduced higher levels of difficulty, such as motion, multiple targets, or increased heterogeneity. All treatment planning systems overestimated dose to the target, compared to TLD measurements. Errors in range calculation resulted in several failed phantoms. There was no correlation between treatment planning system and pass rate. The pass rates for each individual phantom are not improving over time, but when individual institutions received feedback about failed phantom irradiations, pass rates did improve. Conclusions: The proton phantom pass rates are not as high as desired and emphasize potential deficiencies in proton therapy planning and/or delivery. There are many areas for improvement with the proton phantom irradiations, such as treatment planning system dose agreement, range calculations, accounting for motion, and irradiation of multiple targets.« less

  20. Ambient Dose Equivalent in S. Paulo and Bauru cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umisedo, Nancy K.; Okuno, Emico; Cancio, Francisco S.

    2008-08-07

    The Laboratory of Dosimetry (Institute of Physics, University of S. Paulo) performs since 1981 the external individual monitoring of workers exposed to X and gamma rays based on thermoluminescent dosimetry (TLD). Personal dose equivalent refers only to the exposure of workers due to the working activities, and the dose due to background radiation, also measured with TLD, must be subtracted to evaluate it. A compilation of ambient dose equivalent was done to evaluate the dose due to the background radiation in the work places, and also to contribute to the knowledge of the level of indoor radiation to which themore » public is exposed.« less

  1. External audits of electron beams using mailed TLD dosimetry: preliminary results.

    PubMed

    Gomola, I; Van Dam, J; Isern-Verdum, J; Verstraete, J; Reymen, R; Dutreix, A; Davis, B; Huyskens, D

    2001-02-01

    A feasibility study has been performed to investigate the possibility of using mailed thermoluminescence dosimetry (TLD) for external audits of clinical electron beams in Europe. In the frame of the EC Network Project for Quality Assurance in Radiotherapy, instruction sheets and mailing procedures have been defined for mailed TLD dosimetry using the dedicated holder developed by a panel of experts of the International Atomic Energy Agency (IAEA). Three hundred and thirty electron beam set-ups have been checked in the reference centres and some local centres of the EC Network Project and in addition through the centres participating to the EORTC Radiotherapy Group trial 22922. The mean ratio of measured dose to stated dose is 0.2% and the standard deviation of measured dose to stated dose is 3.2%. In seven beam set-ups, deviations greater than 10% were observed (max. 66%), showing the usefulness of these checks. The results of this feasibility study (instruction sheets, mailing procedures, holder) are presently endorsed by the EQUAL-ESTRO structure in order to offer in the future to all ESTRO members the possibility to request external audits of clinical electron beams.

  2. Dose algorithm for EXTRAD 4100S extremity dosimeter for use at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles Augustus

    An updated algorithm for the EXTRAD 4100S extremity dosimeter has been derived. This algorithm optimizes the binning of dosimeter element ratios and uses a quadratic function to determine the response factors for low response ratios. This results in lower systematic bias across all test categories and eliminates the need for the 'red strap' algorithm that was used for high energy beta/gamma emitting radionuclides. The Radiation Protection Dosimetry Program (RPDP) at Sandia National Laboratories uses the Thermo Fisher EXTRAD 4100S extremity dosimeter, shown in Fig 1.1 to determine shallow dose to the extremities of potentially exposed individuals. This dosimeter consists ofmore » two LiF TLD elements or 'chipstrates', one of TLD-700 ({sup 7}Li) and one of TLD-100 (natural Li) separated by a tin filter. Following readout and background subtraction, the ratio of the responses of the two elements is determined defining the penetrability of the incident radiation. While this penetrability approximates the incident energy of the radiation, X-rays and beta particles exist in energy distributions that make determination of dose conversion factors less straightforward in their determination.« less

  3. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.

    PubMed

    Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F

    2015-02-01

    The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  4. Control of Auditory Attention in Children With Specific Language Impairment.

    PubMed

    Victorino, Kristen R; Schwartz, Richard G

    2015-08-01

    Children with specific language impairment (SLI) appear to demonstrate deficits in attention and its control. Selective attention involves the cognitive control of attention directed toward a relevant stimulus and simultaneous inhibition of attention toward irrelevant stimuli. The current study examined attention control during a cross-modal word recognition task. Twenty participants with SLI (ages 9-12 years) and 20 age-matched peers with typical language development (TLD) listened to words through headphones and were instructed to attend to the words in 1 ear while ignoring the words in the other ear. They were simultaneously presented with pictures and asked to make a lexical decision about whether the pictures and auditory words were the same or different. Accuracy and reaction time were measured in 5 conditions, in which the stimulus in the unattended channel was manipulated. The groups performed with similar accuracy. Compared with their peers with TLD, children with SLI had slower reaction times overall and different within-group patterns of performance by condition. Children with TLD showed efficient inhibitory control in conditions that required active suppression of competing stimuli. Participants with SLI had difficulty exerting control over their auditory attention in all conditions, with particular difficulty inhibiting distractors of all types.

  5. RNA-methyltransferase TrmA is a dual-specific enzyme responsible for C5-methylation of uridine in both tmRNA and tRNA

    PubMed Central

    Ranaei-Siadat, Ehsan; Fabret, Céline; Seijo, Bili; Dardel, Frédéric; Grosjean, Henri; Nonin-Lecomte, Sylvie

    2013-01-01

    In bacteria, trans-translation rescues stalled ribosomes by the combined action of tmRNA (transfer-mRNA) and its associated protein SmpB. The tmRNA 5′ and 3′ ends fold into a tRNA-like domain (TLD), which shares structural and functional similarities with tRNAs. As in tRNAs, the UUC sequence of the T-arm of the TLD is post-transcriptionally modified to m5UψC. In tRNAs of gram-negative bacteria, formation of m5U is catalyzed by the SAM-dependent methyltransferase TrmA, while formation of m5U at two different positions in rRNA is catalyzed by distinct site-specific methyltransferases RlmC and RlmD. Here, we show that m5U formation in tmRNAs is exclusively due to TrmA and should be considered as a dual-specific enzyme. The evidence comes from the lack of m5U in purified tmRNA or TLD variants recovered from an Escherichia coli mutant strain deleted of the trmA gene. Detection of m5U in RNA was performed by NMR analysis. PMID:23603891

  6. Effect of heating rate on thermoluminescence output of LiF: Mg, Ti (TLD-100) in dosimetric applications

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh

    2018-07-01

    The luminiscence characteristics of thermoluminscence dosimeter LiF: Mg, Ti (TLD-100) irradiated to X-rays from 6 MV linac have been studied for wide range of 2-50 K/s readout linear heating rates. The reproducibility of glow curves for TLDs is found to be better at lower heating rates and depreciate at higher heating rates. The glow curve spectra were analysed using deconvolution procedure based on general-order kinetics. Shift in the peak maximum temperature per unit rise in heating rate for various peaks were found to decrease with heating rate. The TLDs irradiated with same dose exhibit decreasing TL counts with increase in the heating rate, which indicate the thermal quenching effect in TLD-100. The value of activation energy for each peak within the glow curve increases with heating rate. Calibration curves plotted for the dose range 0.4-1020 cGy exhibit decreasing slope with increasing readout heating rate. Corrections for temperature lag between the heating element and the dosimeter, and the effective heating rate (βeff) across the sample estimated using formulation proposed by Kitis and Tuyn and are found to be fairly applicable.

  7. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd sources. Conclusions: An independent {Lambda} determination has been performed for the Advantage Pd-103 source. The {sub PST}{Lambda} obtained in this work provides additional information needed for establishing a more accurate consensus {Lambda} value for the Advantage Pd-103 source.« less

  8. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    DTIC Science & Technology

    2010-05-01

    mammography," (2008). 4. H. M. Warren-Forward and L. Duggan, "Towards in vivo TLD dosimetry in mammography," Br J Radiol 77, 426-432 (2004). 5. X. Wu, G...thermoluminescent detectors ( TLDs ) were used in the experiments but, after consultation with experts in the field of radiation dosimetry , it was decided...prohibitively expensive to use TLDs for the various study setups and that the dosimetry results from one setup could be extended to similar setups that

  9. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677

  10. A computational model for BMP movement in sea urchin embryos.

    PubMed

    van Heijster, Peter; Hardway, Heather; Kaper, Tasso J; Bradham, Cynthia A

    2014-12-21

    Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction-diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. SU-G-TeP2-12: IROCHouston and MDAPL SRS Anthropomorphic Phantom Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molineu, A; Kry, S; Alvarez, P

    Purpose: To report the results of SRS phantom irradiations Methods: Anthropomorphic SRS head phantoms were sent to institutions participating in NCI sponsored SRS clinical trials and institutions interested in verifying SRS treatment delivery. The phantom shell was purchased from Phantom Laboratory and altered to house dosimetry and imaging inserts. The imaging insert has 1.9 cm diameter spherical target. The dosimetry insert holds two TLD capsules and radiochromic film in the coronal and sagittal planes through the center of the target. Institutions were asked to image, plan and treat the phantom as they would an SRS patient. GammaKnife, CyberKnife and c-armmore » accelerator institutions were asked to cover the target with 15 Gy, 20 Gy and 25 Gy, respectively. Following these guidelines and typical planning protocols for these three types of machines gives roughly 30 Gy to the center of the target for all units. Submission of the DICOM digital data set was required for analysis. Criteria of 5% for TLD results and 85% of pixels passing 5%/3mm gamma analysis were applied beginning in 2013. Results: The phantom was analyzed 269 times between the beginning of 2013 to present. The pass rate is 81%. Nineteen of the irradiation results failed only the TLD criteria, 19 failed only the film criteria and 12 failed both. Irradiations included 32 CyberKnife 23 GammaKnife, 3 TomoTherapy and 211 c-arm units. Planning systems included Eclipse, Ergo, GammaPlan, Hi-Art, iPlan, Monaco, MultiPlan, Pinnacle, RayStation, XiO and XKnife. Irradiations that were not accompanied with DICOM data were not included in this analysis. Conclusion: The phantom is a valuable end-to-end test used to independently verify the accuracy of SRS treatment delivery. This investigation was supported by IROC grant CA180803 awarded by the NCI.« less

  12. SU-F-T-168: Development and Implementation of An Anthropomorphic Head & Neck Phantom for the Assessment of Proton Therapy Treatment Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branco, D; Taylor, P; Frank, S

    2016-06-15

    Purpose: To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. Methods: The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution’s IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsulesmore » were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. Results: The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. Conclusion: An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.« less

  13. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry

    NASA Astrophysics Data System (ADS)

    Guzmán Calcina, Carmen S.; de Almeida, Adelaide; Oliveira Rocha, José R.; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-03-01

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181 8, Nath et al 1995 Med. Phys. 22 209 34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695 702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434 48, Ballester et al 1997 Med. Phys. 24 1221 8, Ballester et al 2001 Phys. Med. Biol. 46 N79 90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032 40).

  14. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry.

    PubMed

    Calcina, Carmen S Guzmán; de Almeida, Adelaide; Rocha, José R Oliveira; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-03-21

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40).

  15. EFFECTIVE DOSE IN TWO DIFFERENT DENTAL CBCT SYSTEMS: NEWTOM VGi AND PLANMECA 3D MID.

    PubMed

    Ghaedizirgar, Mohammad; Faghihi, Reza; Paydar, Reza; Sina, Sedigheh

    2017-11-01

    Cone beam computed tomography, CBCT, is a kind of CT scanner producing conical diverging X-rays, in which a large area of a two-dimensional detector is irradiated in each rotation. Different investigations have been performed on dosimetry of dental CBCT. As there is no special protocol for dental CBCT, CT scan protocols are used for dosimetry. The purpose of this study is measurement of dose to head and neck organs in two CBCT systems, i.e. Planmeca 3D Mid (PM) and NewTom VGi (NT), using thermoluminescence dosimetry and Rando phantom. The thermoluminescent dosimetry (TLD)-100 chips were put at the position of different organs of the head and neck. Two TLD-100 chips were inserted at each position, the dose values were measured for several different field sizes, i.e. 8 × 8, 12 × 8 and 15 × 15 cm2 for NewTom, and 10 × 10 and 20 × 17 cm2 for Planmeca systems. According to the results, the average effective dose in PM is much more than the NT system in the same field size, because of the greater mAs values. For routine imaging protocols used for NT, the effective dose values are 70, 73 and 121 µSv for 8 × 8, 12 × 8 and 15 × 15 cm2 field sizes, respectively. In PM, the effective dose in 10 × 10 cm2 and 17 × 20 cm2 is 259 and 341 µSv, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Neutron H*(10) estimation and measurements around 18MV linac.

    PubMed

    Cerón Ramírez, Pablo Víctor; Díaz Góngora, José Antonio Irán; Paredes Gutiérrez, Lydia Concepción; Rivera Montalvo, Teodoro; Vega Carrillo, Héctor René

    2016-11-01

    Thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the dose of neutron radiation in a treatment room with a linear electron accelerator of 18MV. Measurements were carried out through neutron ambient dose monitors which include pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti), which were placed inside a paraffin spheres. The measurements has allowed to use NCRP 151 equations, these expressions are useful to find relevant dosimetric quantities. In addition, photoneutrons produced by linac head were calculated through MCNPX code taking into account the geometry and composition of the linac head principal parts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Unfolding neutron spectra from simulated response of thermoluminescence dosimeters inside a polyethylene sphere using GRNN neural network

    NASA Astrophysics Data System (ADS)

    Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.

    2017-07-01

    Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.

  18. Lessons Learned from Analyses of the Improved TOW Vehicle with Implications for Future Systems

    DTIC Science & Technology

    1990-01-01

    on ECA on the ITV. This research was de - signed to identify the source of the discrepancy between the ECA and other source data, and to determine ways...not to prevent the transfer of bad ideas (and MANPRINT costs ) from system to system, but to facilitate the transfer of good ideas (and MANPRINT savings...AVERAGE PP 1 2 1.50 4 5 4.00 2.33 TIpo 1 1 1.00 2 5 2.00 1.33 FR 3 4 3.50 4 5 4.00 3.67 TLD 1 1 1.00 2 5 2.00 1.33 TT 1 1 1.00 2 5 2.00 1.33 DR 1 5

  19. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.

    Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less

  20. Control of Auditory Attention in Children With Specific Language Impairment

    PubMed Central

    Schwartz, Richard G.

    2015-01-01

    Purpose Children with specific language impairment (SLI) appear to demonstrate deficits in attention and its control. Selective attention involves the cognitive control of attention directed toward a relevant stimulus and simultaneous inhibition of attention toward irrelevant stimuli. The current study examined attention control during a cross-modal word recognition task. Method Twenty participants with SLI (ages 9–12 years) and 20 age-matched peers with typical language development (TLD) listened to words through headphones and were instructed to attend to the words in 1 ear while ignoring the words in the other ear. They were simultaneously presented with pictures and asked to make a lexical decision about whether the pictures and auditory words were the same or different. Accuracy and reaction time were measured in 5 conditions, in which the stimulus in the unattended channel was manipulated. Results The groups performed with similar accuracy. Compared with their peers with TLD, children with SLI had slower reaction times overall and different within-group patterns of performance by condition. Conclusions Children with TLD showed efficient inhibitory control in conditions that required active suppression of competing stimuli. Participants with SLI had difficulty exerting control over their auditory attention in all conditions, with particular difficulty inhibiting distractors of all types. PMID:26262428

  1. An alternative method for immediate dose estimation using CaSO4:Dy based TLD badges

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Menon, S. N.; Dhabekar, Bhushan; Kadam, Sonal; Chougaonkar, M. P.; Babu, D. A. R.

    2014-11-01

    CaSO4:Dy based Thermoluminescence dosimeters (TLDs) are being used in country wide personnel monitoring program in India. The TL glow curve of CaSO4:Dy consists of a dosimetric peak at 220 °C and a low temperature peak at 120 °C which is unstable at room temperature. The TL integral counts in CaSO4:Dy reduces by 15% in seven days after irradiation due to the thermal fading of 120 °C TL peak. As the dosimetric procedure involves total integrated counts for dose conversion, the dosimeters are typically read about a week after receiving. However in the event of a suspected over exposure, where urgent processing is expected, this poses limitation. Post irradiation annealing treatment is used in such cases of immediate readout of cards. In this paper we report a new and easier to use technique based on optical bleaching for the urgent processing of TLD cards. Optical bleaching with green LED (∼555 nm photons) of 25,000 lux for one and half hour removes the low temperature TL peak without affecting the dosimetric peak. This method can be used for immediate dose estimation using CaSO4:Dy based TLD badges.

  2. Synthesis and study on the luminescence properties of cadmium borate phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annalakshmi, O.; Jose, M.T., E-mail: mtjosein@yahoo.co.in; Venkatraman, B.

    2014-02-01

    Highlights: • Cadmium borate synthesized by solid state sintering technique. • Neutron sensitivity of the material ten times that of TLD-600. • Gamma sensitivity is found to be twice that of TLD-100. • Gamma response is linear from 0.1 to 10{sup 3} mGy. - Abstract: Cadmium borate compound prepared through wet chemical reaction from the starting chemicals followed by high temperature solid state synthesis below the melting point to get the final TL phosphor powder. Phase purity and bond details of cadmium borate crystals are characterized using X-ray diffraction technique and infrared spectroscopy. Feasibility of these materials for radiation dosimetrymore » applications was studied after gamma and neutron irradiation. Gamma irradiation of undoped phosphors show a single peak around 185 °C whereas doping with gadolinium and silver, new more intense peak observed at 290 °C. Irradiation to thermal neutrons revealed single peak around 170 °C for all the phosphors. TL emission spectra and photoluminescence (PL) studies were also carried out on the phosphors. These borate materials are found to be highly sensitive to neutrons and hence can be used for neutron detection. Neutron sensitivity of the material is about ten times that of TLD-600.« less

  3. Patient-specific CT dosimetry calculation: a feasibility study.

    PubMed

    Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W

    2011-11-15

    Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.

  4. SU-E-T-138: Dosimetric Verification For Volumetric Modulated Arc Therapy Cranio-Spinal Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goksel, E; Bilge, H; Yildiz, Yarar

    2014-06-01

    Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less

  5. SU-E-T-354: Peak Temperature Ratio of TLD Glow Curves to Investigate the Spatial Dependence of LET in a Clinical Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reft, C; Pankuch, M; Ramirez, H

    Purpose: Use the ratio of the two high temperature peaks (HTR) in TLD 700 glow curves to investigate spatial dependence of the linear energy transfer (LET) in proton beams. Studies show that the relative biological effectiveness (RBE) depends upon the physical dose as well as its spatial distribution. Although proton therapy uses a spatially invariant RBE of 1.1, studies suggest that the RBE increases in the distal edge of a spread out Bragg peak (SOBP) due to the increased LET. Methods: Glow curve studies in TLD 700 show that the 280 C temperature peak is more sensitive to LET radiationmore » than the 210 C temperature peak. Therefore, the areas under the individual temperature peaks for TLDs irradiated in a proton beam normalized to the peak ratio for 6 MV photons are used to determine the HTR to obtain information on its LET. TLD 700 chips with dimensions 0.31×0.31×0.038 cc are irradiated with 90 MeV protons at varying depths in a specially designed blue wax phantom to investigate LET spatial dependence. Results: Five TLDs were placed at five different depths of the percent depth dose curve (PDD) of range 16.2 cm: center of the SOPB and approximately at the 99% distal edge, 90%, 75% and 25% of the PDD, respectively. HTR was 1.3 at the center of the SOBP and varied from 2.2 to 3.9 which can be related to an LET variation from 0.5 to 18 KeV/μ via calibration with radiation beams of varying LET. Conclusion: HTR data show a spatially invariant LET slightly greater than the 6 MV radiations in the SOBP, but a rapidly increasing LET at the end of the proton range. These results indicate a spatial variation in RBE with potential treatment consequences when selecting treatment margins to minimize the uncertainties in proton RBE.« less

  6. Prediction and Measurement of X-Ray Spectral and Intensity Distributions from Low Energy Electron Impact Sources

    NASA Technical Reports Server (NTRS)

    Edwards, David L.

    1999-01-01

    In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.

  7. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    PubMed

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-07-08

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low.

  8. Energy dependence of the response of lithium fluoride TLD rods in high energy electron fields.

    PubMed

    Holt, J G; Edelstein, G R; Clark, T E

    1975-07-01

    The energy dependence of lithium fluoride dosemeters is a complicated function of energy as well as of cavity size. In the application of TLD to charged particle dosimetry, a cavity perturbation effect may exist even though the ratios of the mass stopping powers are constant over the energies encountered. This effect was investigated for lithium fluoride rods in electron fields ranging in energy from 2-5 to 20 MeV. A 13% change of TL response per unit of absorbed dose was measured over that energy range. A semi-empirical theory was developed to account for the cavity effect, using Burlin cavity theory as a starting point. The agreement between theory and measurement is satisfactory.

  9. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.

    PubMed

    Lucas, P Avilés; Aubineau-Lanièce, I; Lourenço, V; Vermesse, D; Cutarella, D

    2014-01-01

    The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an (192)Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate (192)Ir brachytherapy source. Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an (192)Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an (192)Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the (192)Ir source. The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard (137)Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the (192)Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a maximum uncertainty of 11% (k = 1) found at 1 cm from the source. Radial dose values in water were compared against published results of the American Association of Physicists in Medicine and the European Society for Radiotherapy and Oncology and no significant differences (maximum value of 3.1%) were found within uncertainties except for one position at 9 cm (5.8%). At this location the background contribution relative to the TLD signal is relatively small and an unexpected experimental fluctuation in the background estimate may have caused such a large discrepancy. This paper shows that reliable measurements with TLDs in complex energy spectra require a study of the detector dose response with the radiation quality and specific calibration methodologies which model accurately the experimental conditions where the detectors will be used. The authors have developed and studied a method with highly sensitive TLDs and contributed to its validation by comparison with results from the literature. This methodology can be used to provide direct estimates of the absorbed dose rate in water for irradiations with HDR (192)Ir brachytherapy sources.

  10. MEASUREMENTS OF AIRBORNE CONCENTRATIONS OF RADON AND THORON DECAY PRODUCTS.

    PubMed

    Chalupnik, S; Skubacz, K; Urban, P; Wysocka, M

    2017-11-01

    Liquid scintillation counting (LSC) is a measuring technique, broadly applied in environmental monitoring of radionuclides. One of the possible applications of LSC is the measurement of radon and thoron decay products. But this method is suitable only for grab sampling. For long-term measurements a different technique can be applied-monitors of potential alpha energy concentration (PAEC) with thermoluminescent detectors (TLD). In these devices, called Alfa-2000 sampling probe, TL detectors (CaSO4:Dy) are applied for alpha particles counting. Three independent heads are placed over the membrane filter in a dust sampler's microcyclone. Such solution enables simultaneous measurements of PAEC and dust content. Moreover, the information which is stored in TLD chips is the energy of alpha particles, not the number of counted particles. Therefore, the readout of TL detector shows directly potential alpha energy, with no dependence on equilibrium factor, etc. This technique, which had been used only for radon decay products measurements, was modified by author to allow simultaneous measurements of radon and thoron PAEC. The LSC method can be used for calibration of portable radon decay products monitors. The LSC method has the advantage to be an absolute one, the TLD method to measure directly the (dose relevant) deposited energy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. On the determination of the post-irradiation time from the glow curve of TLD-100.

    PubMed

    Weinstein, M; German, U; Dubinsky, S; Alfassi, Z B

    2003-01-01

    The ratio of peak 3 to the sum of peaks 4 + 5 in TLD-100 was measured for various pre-irradiation and post-irradiation time periods, under conditions characteristic of routine personal dosimetry. It was confirmed that the value of this ratio depends only on the elapsed time between the prior readout and the present one, independent of the moment when the irradiation took place during the total time interval (storage time). This effect indicates that fading of peak 3 seems to be due mainly to changes in the unoccupied traps, and not to decay of trapped charges, being almost independent of the presence of electrons or holes in the traps. This observation leads to the conclusion that the suggestions in the past to use the decay of peak 3 in TLD-100 for the measurement of the elapsed time between irradiation and readout may have been wrong. On the other hand, the decay of peak 2 can be used to measure the elapsed time from irradiation, since the rate of decay is different when related to pre-irradiation and post-irradiation times, indicating a much higher decay rate of the trapped charges (Randall-Wilkins decay). However, because of the fast decay rate of peak 2, its use for determination of the elapsed time since irradiation is of little practical significance.

  12. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    NASA Astrophysics Data System (ADS)

    Gamble, Lisa M.; Farrell, Thomas J.; Jones, Glenn W.; Hayward, Joseph E.

    2003-04-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions.

  13. The measurement of radiation dose profiles for electron-beam computed tomography using film dosimetry.

    PubMed

    Zink, F E; McCollough, C H

    1994-08-01

    The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.

  14. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film.

    PubMed

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-04-07

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions.

  15. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg.

    PubMed

    Alajerami, Y S M; Hashim, S; Ramli, A T; Saleh, M A; Saripan, M I; Alzimami, K; Min Ung, Ngie

    2013-08-01

    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. In vivo evaluating skin doses for lung cancer patients undergoing volumetric modulated arc therapy treatment.

    PubMed

    Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi

    2015-01-01

    This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public.

  17. On the experimental validation of model-based dose calculation algorithms for 192Ir HDR brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Pappas, Eleftherios P.; Zoros, Emmanouil; Moutsatsos, Argyris; Peppa, Vasiliki; Zourari, Kyveli; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2017-05-01

    There is an acknowledged need for the design and implementation of physical phantoms appropriate for the experimental validation of model-based dose calculation algorithms (MBDCA) introduced recently in 192Ir brachytherapy treatment planning systems (TPS), and this work investigates whether it can be met. A PMMA phantom was prepared to accommodate material inhomogeneities (air and Teflon), four plastic brachytherapy catheters, as well as 84 LiF TLD dosimeters (MTS-100M 1  ×  1  ×  1 mm3 microcubes), two radiochromic films (Gafchromic EBT3) and a plastic 3D dosimeter (PRESAGE). An irradiation plan consisting of 53 source dwell positions was prepared on phantom CT images using a commercially available TPS and taking into account the calibration dose range of each detector. Irradiation was performed using an 192Ir high dose rate (HDR) source. Dose to medium in medium, Dmm , was calculated using the MBDCA option of the same TPS as well as Monte Carlo (MC) simulation with the MCNP code and a benchmarked methodology. Measured and calculated dose distributions were spatially registered and compared. The total standard (k  =  1) spatial uncertainties for TLD, film and PRESAGE were: 0.71, 1.58 and 2.55 mm. Corresponding percentage total dosimetric uncertainties were: 5.4-6.4, 2.5-6.4 and 4.85, owing mainly to the absorbed dose sensitivity correction and the relative energy dependence correction (position dependent) for TLD, the film sensitivity calibration (dose dependent) and the dependencies of PRESAGE sensitivity. Results imply a LiF over-response due to a relative intrinsic energy dependence between 192Ir and megavoltage calibration energies, and a dose rate dependence of PRESAGE sensitivity at low dose rates (<1 Gy min-1). Calculations were experimentally validated within uncertainties except for MBDCA results for points in the phantom periphery and dose levels  <20%. Experimental MBDCA validation is laborious, yet feasible. Further work is required for the full characterization of dosimeter response for 192Ir and the reduction of experimental uncertainties.

  18. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.

  19. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications.

    PubMed

    Pradhan, A S; Lee, J I; Kim, J L

    2008-07-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al(2)O(3):C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al(2)O(3):C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF(3):Eu(2+) appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al(2)O(3):C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose measurements in clinical applications. A brief review of the recent developments is presented.

  20. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    PubMed Central

    Pradhan, A. S.; Lee, J. I.; Kim, J. L.

    2008-01-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al2O3:C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al2O3:C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF3:Eu2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al2O3:C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose measurements in clinical applications. A brief review of the recent developments is presented. PMID:19893698

  1. Thermoluminescent response of LiF:Mg,Ti to 20 keV electrons.

    PubMed

    Mercado-Uribe, H; Brandan, M E

    2002-01-01

    The thermoluminescence response of LiF:Mg,Ti (TLD-100) to 20 keV electrons from a scanning electron microscope has been measured. Radiochromic dye films previously calibrated were used to determine the fluence incident on TLD-100 chips. The procedure for irradiation and glow curve deconvolution was adhered to the protocols previously determined in our laboratory for gamma rays and heavy charged particles. The response at electron fluences higher than 4 x 10(10) cm(-2) is supralinear, due to the increasingly relevant contribution of the high temperature peaks. The relative contribution of the high temperature peaks to the TL signal is abnormally small, about half that observed in gamma irradiation and four times smaller than what has been measured in low-energy X ray exposure.

  2. On the effect of updated MCNP photon cross section data on the simulated response of the HPA TLD.

    PubMed

    Eakins, Jonathan

    2009-02-01

    The relative response of the new Health Protection Agency thermoluminescence dosimeter (TLD) has been calculated for Narrow Series X-ray distribution and (137)Cs photon sources using the Monte Carlo code MCNP5, and the results compared with those obtained during its design stage using the predecessor code, MCNP4c2. The results agreed at intermediate energies (approximately 0.1 MeV to (137)Cs), but differed at low energies (<0.1 MeV) by up to approximately 10%. This disparity has been ascribed to differences in the default photon interaction data used by the two codes, and derives ultimately from the effect on absorbed dose of the recent updates to the photoelectric cross sections. The sources of these data have been reviewed.

  3. SU-E-T-118: Dose Verification for Accuboost Applicators Using TLD, Ion Chamber and Gafchromic Film Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisela, W; Yao, R; Dorbu, G

    Purpose: To verify dose delivered with HDR Accuboost applicators using TLD, ion chamber and Gafchromic film measurements and to examine applicator leakage. Methods: A microSelectron HDR unit was used to deliver a dose of 50cGy to the mid-plane of a 62mm thick solid water phantom using dwell times from Monte Carlo pre-calculated nomograms for a 60mm, 70mm Round and 60mm Skin-Dose Optimized (SDO) applicators respectively. GafChromic EBT3+ film was embedded in the phantom midplane horizontally to measure dose distribution. Absolute dose was also measured with TLDs and an ADCL calibrated parallel-plate ion chamber placed in the film plane at fieldmore » center for each applicator. The film was calibrated using 6MV x-ray beam. TLDs were calibrated in a Cs-137 source at UW-Madison calibration laboratory. Radiation leakage through the tungsten alloy shell was measured with a film wrapped around outside surface of a 60mm Round applicator. Results: Measured maximum doses at field center are consistently lower than predicated by 5.8% for TLD, 8.8% for ion chamber, and 2.6% for EBT3+ film on average, with measurement uncertainties of 2.2%, 0.3%, and 2.9% for TLD, chamber, film respectively. The total standard uncertainties for ion chamber and Gafchromic film measurement are 4.9% and 4.6% respectively[1]. The area defined by the applicator aperture was covered by 80% of maximum dose for 62mm compression thickness. When 100cGy is delivered to mid-plane with a 60mm Round applicator, surface dose ranges from 60cGy to a maximum of 145cGy, which occurs at source entrance to the applicator. Conclusion: Measured doses by all three techniques are consistently lower than predicted in our measurements. For a compression thickness of 62 mm, the field size defined by the applicator is only covered by 80% of prescribed dose. Radiation leakage of up to 145cGy was found at the source entrance of applicators.« less

  4. Dosimetric evaluation of the staff working in a PET/CT department

    NASA Astrophysics Data System (ADS)

    Dalianis, K.; Malamitsi, J.; Gogou, L.; Pagou, M.; Efthimiadou, R.; Andreou, J.; Louizï, A.; Georgiou, E.

    2006-12-01

    The dosimetric literature data concerning the medical personnel working in positron emission tomography/computed tomography (PET/CT) departments are limited. Therefore, we measured the radiation dose of the staff working in the first PET/CT department in Greece at the Diagnostic and Therapeutic Center of Athens HYGEIA—Harvard Medical International. As, for the time being, only 2-deoxy-2-[ 18F]fluoro-d-glucose (FDG) PET studies are performed, radiation dose measurements concern those derived from dispensing of the radiopharmaceutical as well as from the patients undergoing FDG-PET imaging. Our aim is to develop more effective protective measures against radionuclide exposure. To estimate the effective dose from external exposure, all seven members of the staff (two nurses, two medical physicists, two technologists, one secretary) had TLD badges worn at the upper pocket of their overall, TLD rings on the right hand and digital dosimeters at their upper side pocket. In addition, isodose curves were measured with thermoluminescence detectors for distances of 20, 50, 70 and 100 cm away from patients who had been injected with 18F-FDG. Dose values of the PET/CT staff were measured with digital detectors, TLD badges and TLD rings over the first 8 months for a total of 160 working days of the department's operation, consisting of a workload of about 10-15 patients/week who received 250-420 MBq of 18F-FDG each. Whole - body collective doses and hand doses for the staff were the following: Nurse #1 received 1.6 mSv as a whole body dose and 2,1 as a hand dose, Nurse #2 received 1.9 and 2.4 mSv respectively. For medical physicist #1 the dose values were 1.45 mSv whole body and 1.7 mSv hand dose, for medical physicist #2 1.67 mSv wholebody dose and 1.55 mSv hand dose and for technologists #1 & #2 the whole body doses were 0.7 and 0.64 mSv respectively. Lastly, the secretary received 0.1 mSv whole body dose. These preliminary data have shown that the dose levels of our PET/CT staff are within acceptable limits.

  5. SU-E-T-108: Development of a Novel Clinical Neutron Dose Monitor for Proton Therapy Based On Twin TLD500 Chips in a Small PE Moderator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschel, R; Mukherjee, B

    2014-06-01

    Purpose: In proton therapy, it could be desirable to measure out-of-field fast neutron doses at critical locations near and outside the patient body. Methods: The working principle of a novel clinical neutron dose monitor is verified by MCNPX simulation. The device is based on a small PE moderator of just 5.5cm side length for easy handling covered with a thermal neutron suppression layer. In the simulation, a polystyrene phantom is bombarded with a standard proton beam. The secondary thermal neutron flux produced inside the moderator by the impinging fast neutrons from the treatment volume is estimated by pairs of α-Al2O3:Cmore » (TLD500) chips which are evaluated offline after the treatment either by TL or OSL methods. The first chip is wrapped with 0.5mm natural Gadolinium foil converting the thermal neutrons to gammas via (n,γ) reaction. The second chip is wrapped with a dummy material. The chip centers have a distance of 2cm from each other. Results: The simulation shows that the difference of gamma doses in the TLD500 chips is correlated to the mean fast neutron dose delivered to the moderator material. Different outer shielding materials have been studied. 0.5mm Cadmium shielding is preferred for cost reasons and convenience. Replacement of PE moderator material by other materials like lead or iron at any place is unfavorable. The spatial orientation of the moderator cube is uncritical. Using variance reduction techniques like splitting/Russian roulette, the TLD500 gamma dose simulation give positive differences up to distances of 0.5m from the treatment volume. Conclusion: Applicability and basic layout of a novel clinical neutron dose monitor are demonstrated. The monitor measures PE neutron doses at locations outside the patient body up to distances of 0.5m from the treatment volume. Tissue neutron doses may be calculated using neutron kerma factors.« less

  6. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Technical Reports Server (NTRS)

    Bourrieau, J.

    1993-01-01

    One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.

  7. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities.

    PubMed

    Bueno, M; Carrasco, P; Jornet, N; Muñoz-Montplet, C; Duch, M A

    2014-08-01

    The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)-two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a (7)Li-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5 x 5 cm2 to 20 x 20 cm2. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs' response was evaluated. TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%-5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a[Formula: see text] thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT's active layer material. TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  8. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Astrophysics Data System (ADS)

    Bourrieau, J.

    1993-04-01

    One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.

  9. Neutron dosimetric measurements in shuttle and MIR.

    PubMed

    Reitz, G

    2001-06-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with anticoincidence logic is under development. c2001 Elsevier Science Ltd. All rights reserved.

  10. SU-E-T-222: Investigation of Pre and Post Irradiation Fading of the TLD100 Thermoluminescence Dosimetry for Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sina, S; Sadeghi, M; Faghihi, R

    2014-06-01

    Purpose: The pre-irradiation and post-irradiation fading of the Thermoluminescense dosimeter signals were investigated in this study. Methods: Two groups of TLD chips with pre-determined ECC values were used in this study. The two groups were divided into 6 series, each composing of 5 TLD chips.The first group was used for pre-irradiation fading. 5 TLDs were exposed to a known amount of radiation from Cs-137 source, and were read out the next day. After seven days, the other 5 TLDs were exposed to the same amount of radiation and were read out after a day. The other series of 5 TLDsmore » were also exposed after 7,19,28, 59, and 90 days, and were read out a day after irradiation. The loss in TLD signal were obtained for all the above cases. The second group, was used for postirradiation fading. All the TLDs of this group were exposed to a known amount of radiation from Cs-137 source. The 6 series composed of 5 TLDs were read out after 1,7,19,28,59, and 90 days. The above-mentioned procedures for obtaining pre-irradiation, and post-irradiation fading were performed for three storage temperatures (25°C, 4°C, and −18°C). Results: According to the results obtained in this study, in case of pre-irradiation fading study, the signal losses after 90 days are 12%, 24%, and 17% for 25°C, 4°C, and −18°C respectively. In case of post-irradiation fading study, the sensitivity losses after 90 days are 25%, 216%, and 20% for 25°C, 4°C, and −18°C respectively. Conclusion: The results indicate that the optimized time between exposing and reading out, and also the optimized time between annealing and exposing is 1 day.The reduction of Storage temperature will reduce the post-irradiation fading, While temperature reduction does not have any effect on pre-irradiation fading.« less

  11. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry.

    PubMed

    McCaw, Travis J; Micka, John A; DeWerd, Larry A

    2014-05-01

    Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.

  12. Patient‐specific CT dosimetry calculation: a feasibility study

    PubMed Central

    Xie, Huchen; Cheng, Jason Y.; Ning, Holly; Zhuge, Ying; Miller, Robert W.

    2011-01-01

    Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of “standard man”. Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient‐specific CT dosimetry. A radiation treatment planning system was modified to calculate patient‐specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose‐volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi‐empirical, measured correction‐based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point‐by‐point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%–20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient‐specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation. PACS numbers: 87.55.D‐, 87.57.Q‐, 87.53.Bn, 87.55.K‐ PMID:22089016

  13. The Acasta Gneiss - a Hadean cratonic nucleus

    NASA Astrophysics Data System (ADS)

    Sprung, P.; Scherer, E. E.; Maltese, A.; Bast, R.; Bleeker, W.; Mezger, K.

    2016-12-01

    The known terrestrial rock record lacks undisputed, chemically intact Hadean crust. Direct evidence from this eon has been restricted to zircon grains within younger rocks [1]. The Acasta Gneiss Complex (AGC; NT, CA) has yielded zircon with Hadean domains [e.g., 2,3], but the time at which AGC rocks became closed chemical systems is unclear [4,5]. Determining this `time of last disturbance' (tld) would provide a minimum protolith age, and is crucial for using radiogenic isotope compositions of bulk rocks to trace crust-mantle evolution. Recent studies mostly focused on the `low-strain' eastern AGC [e.g., 6, 7], which records an evolving, early-mid Archean cratonic nucleus [7]. We also studied the `high-strain' banded gneiss in the western AGC, which hosts >4 Ga zircon domains [2,3], too. Our focusing lay on adjoining, lithologically distinct bands [8] of two distinct chemical groups: A) Mafic, chondrite-normalized LaN/YbN ≦20, slightly HFSE- depleted, and B) TTG-like, LaN/YbN up to 145, markedly HFSE-depleted. Six adjacent bands yield a well-defined 4 Ga Sm-Nd isochron with a ɛNd4Ga of +2 and ɛHf4Ga values from +1 to +6. Within-band Sm-Nd and Lu-Hf systematics imply younger mineral re-equilibration [9]. We interpret the 4 Ga Sm-Nd isochron to date the physical juxtaposition of bands in the gneiss unit and to define tld among bands for elements less mobile and diffusive than Sm and Nd. Contrasting Sm-Nd results from the same unit [10] likely are due to sampling at too fine a scale. Digestion of metamict pre-tld zircon likely caused the scatter in Lu-Hf. Both decay systems hint at the existence of a possibly local, strongly depleted Hadean mantle domain. The TTG-like bands are 0.4 Gyr older than similar rocks in the `low-strain' eastern AGC [7]. The AGC was thus an evolved cratonic nucleus already at 4 Ga, possibly with a depleted lithospheric keel. [1] Cavosie et al. (2004) Prec. Res. 135, 251-279 [2] Bowring & Williams (1999) CMP 134, 3-16 [3] Iizuka et al. (2007) Prec. Res. 153 [4] Bowring & Housh (1995) Science 269, 1535-1540 [5] Moorbath et al. (1997) Chem. Geol. 135, 213-231 [6] Willbold et al. (2015) EPSL 419, 168-177 [7] Reimink et al. (2016) Prec. Res. 281, 453-472 [8] Scherer et al (2010) AGU Fall Meeting, #V44B-01 [9] Maltese et al. (2015) Goldschmidt Abstracts, 1988 [10] Mojzsis et al. (2014) GCA 133, 69-96

  14. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  15. Radiation absorbed dose to bladder walls from positron emitters in the bladder content.

    PubMed

    Powell, G F; Chen, C T

    1987-01-01

    A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.

  16. MOSFET dosimetry in-vivo at superficial and orthovoltage x-ray energies.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2003-06-01

    This note investigates in-vivo dosimetry using a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) for radiotherapy treatment at superficial and orthovoltage x-ray energies. This was performed within one fraction of the patients treatment. Standard measurements along with energy response of the detector are given. Results showed that the MOSFET measurements in-vivo agreed with calculated results on average within +/- 5.6% over all superficial and orthovoltage energies. These variations were slightly larger than TLD results with variations between measured and calculated results being +/- 5.0% for the same patient measurements. The MOSFET device provides adequate in-vivo dosimetry for superficial and orthovoltage energy treatments with the accuracy of the measurements seeming to be relatively on par with TLD in our case. The MOSFET does have the advantage of returning a relatively immediate dosimetric result after irradiation.

  17. Environmental monitoring in interventional radiology

    NASA Astrophysics Data System (ADS)

    Del Sol, S.; Garcia, R.; Sánchez-Guzmán, D.; Ramirez, G.; Chavarin, E. U.; Rivera, T.

    2017-01-01

    The procedures in Interventional Radiology involve long times of exposure and high number of radiographic images that bring higher radiation doses to patients, staff and environmental than those received in conventional Radiology. Currently for monitoring the dose, the thermoluminescent dosimetry use is recommended. The aim of this work was to carry out the monitoring of the environmental scattered radiation inside the IR room using two types of thermoluminescent dosimeters, TLD-100 (reference dosimeter), CaSO4:Dy (synthesized in our laboratory). The results indicate that the TLD-100 is not effective for the environmental monitoring of low-energy Rx rooms. The CaSO4:Dy presented good behaviour over the 6 months of study. The results will be specific to each room so it is recommended such studies as part of the program of quality control of each Rx room.

  18. Preliminary results of radiation measurements on EURECA

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.

  19. SU-F-T-409: Modelling of the Magnetic Port in Temporary Breast Tissue Expanders for a Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, J; Heins, D; Zhang, R

    Purpose: To model the magnetic port in the temporary breast tissue expanders and to improve accuracy of dose calculation in Pinnacle, a commercial treatment planning system (TPS). Methods: A magnetic port in the tissue expander was modeled with a radiological measurement-basis; we have determined the dimension and the density of the model by film images and ion chamber measurement under the magnetic port, respectively. The model was then evaluated for various field sizes and photon energies by comparing depth dose values calculated by TPS (using our new model) and ion chamber measurement in a water tank. Also, the model wasmore » further evaluated by using a simplified anthropomorphic phantom with realistic geometry by placing thermoluminescent dosimeters (TLD)s around the magnetic port. Dose perturbations in a real patient’s treatment plan from the new model and a current clinical model, which is based on the subjective contouring created by the dosimetrist, were also compared. Results: Dose calculations based on our model showed less than 1% difference from ion chamber measurements for various field sizes and energies under the magnetic port when the magnetic port was placed parallel to the phantom surface. When it was placed perpendicular to the phantom surface, the maximum difference was 3.5%, while average differences were less than 3.1% for all cases. For the simplified anthropomorphic phantom, the calculated point doses agreed with TLD measurements within 5.2%. By comparing with the current model which is being used in clinic by TPS, it was found that current clinical model overestimates the effect from the magnetic port. Conclusion: Our new model showed good agreement with measurement for all cases. It could potentially improve the accuracy of dose delivery to the breast cancer patients.« less

  20. SU-E-J-69: Evaluation of the Lens Dose On the Cone Beam IGRT Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomo-Llinares, R; Gimeno-Olmos, J; Carmona Meseguer, V

    Purpose: With the establishment of the IGRT as a standard technique, the extra dose that is given to the patients should be taken into account. Furthermore, it has been a recent decrease of the dose threshold in the lens, reduced to 0.5 Gy (ICRP ref 4825-3093-1464 on 21st April, 2011).The purpose of this work was to evaluate the extra dose that the lens is receive due to the Cone-Beam (CBCT) location systems in Head-and-Neck treatments. Methods: The On-Board Imaging (OBI) v 1.5 of the two Varian accelerators, one Clinac iX and one True Beam, were used to obtain the dosemore » that this OBI version give to the lens in the Head-and-Neck location treatments. All CBCT scans were acquired with the Standard Dose Head protocol (100 kVp, 80 mA, 8 ms and 200 degree of rotation).The measurements were taken with thermoluminescence (TLD) EXTRAD (Harshaw) dosimeters placed in an anthropomorphic phantom over the eye and under 3 mm of bolus material to mimic the lens position. The center of the head was placed at the isocenter. To reduce TLD energy dependence, they were calibrated at the used beam quality. Results: The average lens dose at the lens in the OBI v 1.5 systems of the Clinac iX and the True Beam is 0.071 and 0.076 cGy/CBCT, respectively. Conclusions: The extra absorbed doses that receive the eye lenses due to one CBCT acquisition with the studied protocol is far below the new ICRP recommended threshold for the lens. However, the addition effect of several CBCT acquisition during the whole treatment should be taken into account.« less

  1. SU-E-T-280: Dose Evaluation in Using CT Density Versus Relative Stopping Power for Pencil Beam Planning and Treating IROC Proton Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Ding, X; Rosen, L

    2015-06-15

    Purpose: The purpose of this study is to evaluate any effects of converted CT density variation in treatment planning system (TPS) of spot scanning proton therapy with an IROC proton prostate phantom at our new ProteusOne Proton Therapy Center. Methods: A proton prostate phantom was requested from the Imaging and Radiation Oncology Core Houston (IROC), The University of Texas MD Anderson Cancer Center, Houston, TX, where GAF Chromic films and couples of thermo luminescent dosemeter (TLD) capsules in target and adjacent structures were embedded for imaging and dose monitoring. Various material such as PVC, PBT HI polystyrene as dosimetry insertsmore » and acrylic were within phantom. Relative stopping power (SP) were provided. However our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water in TPS. Phantom was irradiated and the results were compared with IROC measurements. The range of relative density was converted from SP into relative density of water as a new assigned material and tested. Results: The summary of TLD measurements of the prostate and femoral heads were well within 2% of the TPS and met the criteria established by IROC. The film at coronal plane was found to be shift in superior-inferior direction due to locking position of cylinder insert was off and was corrected. The converted CT density worked precisely to correlated relative stopping power. Conclusion: The proton prostate phantom provided by IROC is a useful methodology to evaluate our new commissioned proton pencil beam and TPS within certain confidence in proton therapy. The relative stopping power was converted into relative physical density relatively to water and the results were satisfied.« less

  2. The dosimetric properties of phosphate glass systems prepared by different chemical nanomaterials.

    PubMed

    Abdelhalim, Mohamed Anwar K; Al-Shamrani, Bandar Mora

    2016-12-01

    The synthesis and characterization of glass systems were carried out using prepared nanocrystals injected into a glass matrix as a thermoluminescence (TL) activator using the melt-quenching method. Sample 1 was prepared as [40P 2 O 5 50BaO:2.5MgO, 2.5Na 2 O, 5TiO 2 ], sample 2 as [37.5P 2 O 5 37.5CaO:25TiO 2 ] and sample 3 as [50P 2 O 5 -50Li 2 O]. Formation of the synthesized compound was confirmed by studying the X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images. An annealing procedure was carried out for 1 h at 400 °C. The glow curve position and shape shifted dramatically and linearly to the higher temperature values on increasing the heating rate. A heating rate of 30 °C/s was the most suitable for obtaining a high TL response. Samples 2 and 3 have the highest TL response, which approached the effective atomic number (Z eff ) of natural bone. The observed TL sensitivity of the prepared samples 2 and 3 is less than that of commercially available 'TLD-200 chips' and LiF:Mg,Ti (TLD-100) phosphor. Sample [37.5P 2 O 5 37.5CaO:25TiO 2 ] would be useful in personal and environmental dosimetry for measuring high doses of gamma radiation. Sample [50P 2 O 5 -50Li 2 O] is a good dosimeter, although it requires the addition of an appropriate transitional metal (activator) to overcome the problem of high fading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Developing a mailed phantom to implement a local QA program in Egypt radiotherapy centers

    NASA Astrophysics Data System (ADS)

    Soliman, H. A.; Aletreby, M.

    2016-07-01

    In this work, a simple method that differs from the IAEA/WHO Thermoluminescent dosimeters (TLD) postal quality assurance (QA) program is developed. A small perspex; polymethyl methacrylate (PMMA), phantom measured 50 mm × 50 mm × 50 mm is constructed to be used for absorbed dose verification of high-energy photon beams in some major radiotherapy centers in Egypt. The phantom weighted only 140.7 g with two buildup covers weighted 14.8 and 43.19 g for the Cobalt-60 and the 6-MV X-ray beams, respectively. This phantom is aimed for use in the future's external audit/QA services in Egypt for the first time. TLD-700 chips are used for testing and investigating a convenient and national dosimetry QA program. Although the used methodology is comparable to previously introduced but new system; it has smaller size, less weight, and different more available material. Comparison with the previous similar designs is introduced. Theoretical calculations were done by the commercial Eclipse treatment planning system, implementing the pencil beam convolution algorithm to verify the accuracy of the experimental calculation of the dose conversion factor of water to the perspex phantom. The new constructed small phantom and methodology was applied in 10 participating radiotherapy centers. The absorbed dose was verified under the reference conditions for both 60Co and 6-MV high-energy photon beams. The checked beams were within the 5% limit except for four photon beams. There was an agreement of 0.2% between our experimental data and those previously published confirming the validity of the applied method in verifying radiotherapy absorbed dose.

  4. Voss with Pille TLD reader

    NASA Image and Video Library

    2001-06-26

    ISS002-E-7814 (26 June 2001) --- James S. Voss, Expedition Two flight engineer, sets up the Human Research Facility's (HRF) Dosimetric Mapping (DOSMAP) Power Distribution Unit (PDU) in Destiny. The image was taken with a digital still camera.

  5. Measurement of 241Am-Be spectra (bare and Pb-covered) using TLD pairs in multi-spheres: Spectrum unfolding by different methods

    NASA Astrophysics Data System (ADS)

    Tripathy, S. P.; Bakshi, A. K.; Sathian, V.; Tripathi, S. M.; Vega-carrillo, H. R.; Nandy, M.; Sarkar, P. K.; Sharma, D. N.

    2009-01-01

    The neutron spectra from a Pb-covered and a bare (without Pb-cover) 241Am-Be (α,n) source were measured using thermoluminescent detector (TLD) pairs of 6LiF and 7LiF with high-density polyethylene (HDPE) multi-spheres of seven different diameters. A total of 8 distinct neutron response signals (including a bare mode exposure) were obtained from which the energy distribution for the entire energy range was generated with the help of different neutron spectrum unfolding methods, viz. BUNKI, BUNKIUT and Frascati unfolding interactive tool (FRUIT). Shape of these spectra are matching very well and is also comparable with the standard IAEA 241Am-Be spectrum, thus, validating the unfolding methods used in this work. The effect of Pb-cover on the spectrum and the unfolding details are reported in the paper.

  6. Nonadjacent Dependency Learning in Cantonese-Speaking Children With and Without a History of Specific Language Impairment.

    PubMed

    Iao, Lai-Sang; Ng, Lai Yan; Wong, Anita Mei Yin; Lee, Oi Ting

    2017-03-01

    This study investigated nonadjacent dependency learning in Cantonese-speaking children with and without a history of specific language impairment (SLI) in an artificial linguistic context. Sixteen Cantonese-speaking children with a history of SLI and 16 Cantonese-speaking children with typical language development (TLD) were tested with a nonadjacent dependency learning task using artificial languages that mimic Cantonese. Children with TLD performed above chance and were able to discriminate between trained and untrained nonadjacent dependencies. However, children with a history of SLI performed at chance and were not able to differentiate trained versus untrained nonadjacent dependencies. These findings, together with previous findings from English-speaking adults and adolescents with language impairments, suggest that individuals with atypical language development, regardless of age, diagnostic status, language, and culture, show difficulties in learning nonadjacent dependencies. This study provides evidence for early impairments to statistical learning in individuals with atypical language development.

  7. Kinetic modelling of the optically stimulated conversion of peaks 5a and 5 to peak 4 in LiF:Mg,Ti (TLD-100).

    PubMed

    Weizman, Y; Horowitz, Y S; Oster, L

    2002-01-01

    The TC/LC conversion model for peaks 4, 5a and 5 in LiF:Mg,Ti (TLD-100) has been studied by solution of the coupled differential equations describing the charge carrier traffic following optical stimulation. Aspects of the model investigated were (i) the two-component exponential decay of the composite peak 5 TL intensity following the bleach, (ii) the role of retrapping during bleaching, (iii) the hole nature of peak 4 and (iv) the conversion of peak 5a traps to peak 4 traps. The high conversion efficiency is naturally explained due to the absence of conduction band competitive mechanisms in the optical ionisation of the electron in the e-h occupied structure corresponding to peak 5a and thereby leading to the hole-only occupied TC/LC leading to peak 4.

  8. Radiation mapping on Spacelab 1: Experiment no. INS006

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A.; Cassou, R.; Henke, R.; Rowe, V.

    1985-01-01

    The first attempt at mapping the radiation environment inside Spacelab is described. Measurements were made by a set of passive radiation detectors distributed throughout the volume inside the Spacelab 1 module, in the access tunnel and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the TLD thermoluminescent detectors (TLD) ranged from 92 to 134 mrad, yielding an average low LET dose rate of 10.0 mrads/day inside the module. Because of the higher inclination orbit, substantial fluxes of highly ionizing (HZE particles) high charge and energy galactic cosmic rays were observed for the first time on an STS flight, yielding an overall average mission dose-equivalent of 295 mrem, or 29.5 mrem/day, which is about three times higher than that measured on previous STS missions. Little correlation is found between measured average dose rates or HZE fluences and the estimates shielding throughout the volume of the module.

  9. Clinical in vivo dosimetry using optical fibers.

    PubMed

    Gripp, S; Haesing, F W; Bueker, H; Schmitt, G

    1998-01-01

    Discoloring of glass due to ionizing radiation depends on the absorbed dose. The radiation-induced light attenuation in optical fibers may be used as a measure of the dose. In high-energy photon beams (6 MV X rays), a lead-doped silica fiber can be calibrated. A dosimeter based on an optical fiber was developed for applications in radiation therapy. The diameter of the mounted fiber is 0.25 mm, whereas the length depends on the sensitivity required. To demonstrate the applicability, a customized fiber device was used to determine scattered radiation close to the lens of the eye. Measurements were compared with TLDs (LiF) in an anthropomorphic phantom. The comparison with TLD measurements shows good agreement. In contrast to TLD, optical fibers provide immediate dose values, and the readout procedure is much easier. Owing to its small size and diameter, interesting invasive dose measurements are feasible.

  10. Effects of fluorescent lighting on in vitro micropropagation of Lemna minor

    NASA Astrophysics Data System (ADS)

    Somsri, Kollawat; Pinyopich, Pataradawn; Mohammed, Waleed S.

    2010-05-01

    The vegetative in vitro propagation of Lemna minor stain SING-4 exposed to two different types of fluorescent light sources, Philips TLD 36W/54 and Toshiba FL40T8BRF/36, was studied. The liquid culture medium contained 4.43gl-1 phytohormone-free full-strength Murashige & Skoog (MS) basal medium with vitamins, 30gl-1 sucrose, and 1gl-1 MES. The results showed that both plant cultures had undergone normal asexual reproduction with an exponential increase trend. Cultures exposed to Toshiba FL40T8BRF/36 reproduced at a slightly faster rate while expressing significantly greener foliage (leaf color chart shade No.8), which indicates the presence of more chlorophyll, than cultures exposed to Philips TLD 36W/54 (leaf color chart shade No.4). The data obtained from our experiment reveals that light emitted from Toshiba FL40T8BRF/36 produces healthier and higher quality cultures.

  11. Application of MOSFET detectors for dosimetry in small animal radiography using short exposure times.

    PubMed

    De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G Allan; Yoshizumi, Terry T

    2008-08-01

    Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies.

  12. Application of MOSFET Detectors for Dosimetry in Small Animal Radiography Using Short Exposure Times

    PubMed Central

    De Lin, Ming; Toncheva, Greta; Nguyen, Giao; Kim, Sangroh; Anderson-Evans, Colin; Johnson, G. Allan; Yoshizumi, Terry T.

    2008-01-01

    Digital subtraction angiography (DSA) X-ray imaging for small animals can be used for functional phenotyping given its ability to capture rapid physiological changes at high spatial and temporal resolution. The higher temporal and spatial requirements for small-animal imaging drive the need for short, high-flux X-ray pulses. However, high doses of ionizing radiation can affect the physiology. The purpose of this study was to verify and apply metal oxide semiconductor field effect transistor (MOSFET) technology to dosimetry for small-animal diagnostic imaging. A tungsten anode X-ray source was used to expose a tissue-equivalent mouse phantom. Dose measurements were made on the phantom surface and interior. The MOSFETs were verified with thermoluminescence dosimeters (TLDs). Bland-Altman analysis showed that the MOSFET results agreed with the TLD results (bias, 0.0625). Using typical small animal DSA scan parameters, the dose ranged from 0.7 to 2.2 cGy. Application of the MOSFETs in the small animal environment provided two main benefits: (1) the availability of results in near real-time instead of the hours needed for TLD processes and (2) the ability to support multiple exposures with different X-ray techniques (various of kVp, mA and ms) using the same MOSFET. This MOSFET technology has proven to be a fast, reliable small animal dosimetry method for DSA imaging and is a good system for dose monitoring for serial and gene expression studies. PMID:18666818

  13. New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.

    PubMed

    Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R

    2006-01-01

    At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.

  14. Calibration of an x-ray cabinet unit for radiobiology use

    NASA Astrophysics Data System (ADS)

    McKerracher, Carolyn; Thwaites, David I.

    2006-07-01

    A Faxitron sealed x-ray cabinet, operated at 100 kV, was modified to irradiate monkey testicles, to a uniform, accurately calibrated dose, for work aimed at investigating spermatogenesis in children undergoing radiotherapy. An aluminium filter was added to increase the beam quality and a lead collimating system manufactured to reduce the beam size to between 1 and 4 cm diameter. Percentage depth doses and profiles were analysed and relative in-air outputs measured with a selection of small (0.2 cc, 0.015 cc) ion chambers. The absolute calibration of the unit was carried out in a 10 × 10 cm2 beam with a 0.6 cc chamber. Backscatter factors were based on standard tables, but then modified according to experimental results with thermoluminescent dosimeters (TLD) in a phantom to account for reduced scatter in the irradiation situations. A suitable irradiation set-up was devised for the monkeys, to ensure accuracy of delivered dose to the target volume and minimize the dose to the surrounding healthy tissue. The homogeneity throughout the testes was calculated to be well within ±5%, using a parallel-opposed irradiation technique. The TLD measured doses to the testes on three monkeys were lower than the calculated doses by 3 to 6%. Following modifications to the standard percentage depth doses to account for changes in scatter conditions, these differences became ±3%. The uncertainties on both calculated and measured dose were estimated to be approximately ±3.2% at 1 SD.

  15. Survival of epiphytic bacteria from seed stored on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Norman, Bret L.; Angelo, Joseph A., Jr.

    1991-01-01

    This study was designed to determine the survival of microorganisms exposed to the relatively harsh conditions found in low Earth orbit (LEO). Seed of corn, sunflower, canteloupe, zucchini, bean, pea, and pumpkin cultivars were packaged in two 18 x 2.5 cm aluminum tubes; wall thickness for each tube was 1.33 mm. One seed tube was attacked to payload M0006, tray C-2; a second tube was stored at room temperature in a lab on Earth. Five lithium fluoride thermoluminescent dosimetry wafers (TLD-100 wafers) were placed in each aluminum tube. The total mean dosages for flight and ground-control TLD wafers were 210.0 and 0.9 rads, respectively. Seeds were washed for 2 hrs in a phosphate buffered saline solution. Bacteria were isolated by plating samples of the seed-washings onto dilute tryptic soy agar. Pure isolates of morphologically distinct bacteria were obtained by standard microbiological procedures. Bacteria were grouped according to colony-type and preliminary identification was completed using a fatty-acid analysis system. Bacillus spp. were the primary microoganisms that survived on seed during the experiment. Bacterial diversity and relative abundance were similar for the ground flight seed. Bacillus subtilus, B. pumilus, B. licheniformis, B. polymyxa, B. megaterium, and B. pabuli were isolated most frequently. Members of the genera Kurthia, Listeria, Micrococcus, and Arthrobacter were also isolated from flight and ground control seed. Results support the hypothesis that terrestrial microorganisms can survive long periods of time in the relatively harsh LEO environment.

  16. Two-photon luminescence lifetime imaging microscopy (LIM) to follow up cell metabolism and oxygen consumption during theranostic applications

    NASA Astrophysics Data System (ADS)

    Rück, A.; Breymayer, J.; Lilge, L.; Mandel, A.; Schäfer, P.; von Einem, B.; von Arnim, C.; Kalinina, S.

    2018-02-01

    A common property during tumor development is altered energy metabolism, which could lead to a switch from oxidative phosphorylation and glycolysis. The impact of this switch for theranostic applications could be significant. Interestingly altered metabolism could be correlated with a change in the fluorescence lifetimes of both NAD(P)H and FAD. However, as observed in a variety of investigations, the situation is complex and the result is influenced by parameters like oxidative stress, pH or viscosity. Besides metabolism, oxygen levels and consumption has to be taken into account in order to understand treatment responses. For this, correlated imaging of phosphorescence and fluorescence lifetime parameters has been investigated by us and used to observe metabolic markers simultaneously with oxygen concentrations. The technique is based on time correlated single photon counting to detect the fluorescence lifetime of NAD(P)H and FAD by FLIM and the phosphorescence lifetime of newly developed phosphors and photosensitizers by PLIM. For this, the photosensitizer TLD1433 from Theralase, which is based on a ruthenium (II) coordination complex, was used. TLD1433 which acts as a redox indicator was mainly found in cytoplasmatic organelles. The most important observation was that TLD1433 can be used as a phosphor to follow up local oxygen concentration and consumption during photodynamic therapy. Oxygen consumption was accompanied by a change in cell metabolism, observed by simultaneous FLIM/PLIM. The combination of autofluorescence-FLIM and phosphor-PLIM in luminescence lifetime microscopy provides new insights in light induced reactions.

  17. Thermoluminescent dosimetry in rotary-dual technique of the total skin electron irradiation.

    PubMed

    Piotrowski, T; Fundowicz, D; Pawlaczyk, M; Malicki, J

    2003-01-01

    The aim of the study was to discuss the results of thermoluminescent dosimetry (TLD) in rotary-dual technique of the total skin electron irradiation (TSEI RD), to confirm beam calibration and monitor unit calculations and to provide data for making clinical decisions. Between May 2001 and April 2002, in 3 cases of mycosis fungoides, 736 dosimetric checks were performed in 34 points at the skin. CaF2:MnTLD-400 cubes (1/8"x1/8"x0.015") were used for in vivo dosimetry. Doses were computed and analyzed for all locations. Percent of described dose and SD for the following localizations from 34 points were: anterior abdomen (reference point) 100+/-6%, upper back 100+/-8%, right calf 98+/-10%, left foot (mid dorsum) 97+/-8%, posterior neck 93+/-6%, right hand (mid dorsum) 78+/-10%, hand fingers 57+/-10%, top of right shoulder 56+/-14%, left groin 35+/-20%, perineum 22+/-17%. The correlations between patient's height and measured doses were sufficient for the following localizations: scalp (top rear), occiput, elbows, hand fingers and hands (mid dorsum). The correlations between obesity index and measured doses were sufficient for the following localizations: shoulders and lateral neck, groins, and perineum. Dosimetric checks at the reference point confirm that our beam calibration technique and monitor unit calculation are accurate. TLD shows that for some parts of the skin such as shoulder, hands and perineum boost fields were required. The correlations with obesity index and height for several sites suggest that boost fields must be customized for each patient.

  18. Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters.

    PubMed

    Weaver, R D; Gerbi, B J; Dusenbery, K E

    1995-09-30

    To determine acceptable dose variation using thermoluminescent dosimeters (TLD) in the treatment of Mycosis Fungoides with total skin electron beam (TSEB) irradiation. From 1983 to 1993, 22 patients were treated with total skin electron beam therapy in the standing position. A six-field technique was used to deliver 2 Gy in two days, treating 4 days per week, to a total dose of 35 to 40 Gy using a degraded 9 MeV electron beam. Thermoluminescent dosimeters were placed on several locations of the body and the results recorded. The variations in these readings were analyzed to determine normal dose variation for various body locations during TSEB. The dose to flat surfaces of the body was essentially the same as the dose to the prescription point. The dose to tangential surfaces was within +/- 10% of the prescription dose, but the readings showed much more variation (up to 24%). Thin areas of the body showed large deviations from the prescription dose along with a large amount of variation in the readings (up to 22%). Special areas of the body, such as the perineum and eyelid, showed large deviations from the prescription dose with very large (up to 40%) variations in the readings. The TLD results of this study will be used as a quality assurance check for all new patients treated with TSEB. The results of the TLDs will be compared with this baseline study to determine if the delivered dose is within acceptable ranges. If the TLD results fall outside the acceptable limits established above, then the patient position can be modified or the technique itself evaluated.

  19. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method.

    PubMed

    Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh

    2017-06-15

    Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder.

    PubMed

    Yang, Michael Y; Verschuer, Jordan; Shi, Yuyu; Song, Yang; Katsifis, Andrew; Eberl, Stefan; Wong, Keith; Brannan, John D; Cai, Weidong; Finlay, Warren H; Chan, Hak-Kim

    2016-11-20

    The present study investigates the effect of DPI resistance and inhalation flow rates on the lung deposition of orally inhaled mannitol dry powder. Mannitol powder radiolabeled with 99m Tc-DTPA was inhaled from an Osmohaler™ by healthy human volunteers at 50-70L/min peak inhalation flow rate (PIFR) using both a low and high resistance Osmohaler™, and 110-130L/min PIFR using the low resistance Osmohaler™ (n=9). At 50-70L/min PIFR, the resistance of the Osmohaler™ did not significantly affect the total and peripheral lung deposition of inhaled mannitol [for low resistance Osmohaler™, 20% total lung deposition (TLD), 0.3 penetration index (PI); for high resistance Osmohaler™, 17% TLD, 0.23 PI]. Increasing the PIFR 50-70L/min to 110-130L/min (low resistance Osmohaler™) significantly reduced the total lung deposition (10% TLD) and the peripheral lung deposition (PI 0.21). The total lung deposition showed dependency on the in vitro FPF (R 2 =1.0). On the other hand, the PI had a stronger association with the MMAD (R 2 =1.0) than the FPF (R 2 =0.7). In conclusion the resistance of Osmohaler™ did not significantly affect the total and regional lung deposition at 50-70L/min PIFR. Instead, the total and regional lung depositions are dependent on the particle size of the aerosol and inhalation flow rate, the latter itself affecting the particle size distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electron fluence correction factors for various materials in clinical electron beams.

    PubMed

    Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P

    2001-08-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.

  2. SU-F-19A-05: Experimental and Monte Carlo Characterization of the 1 Cm CivaString 103Pd Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J; Micka, J; Culberson, W

    Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less

  3. Technologist radiation exposure in routine clinical practice with 18F-FDG PET.

    PubMed

    Guillet, Benjamin; Quentin, Pierre; Waultier, Serge; Bourrelly, Marc; Pisano, Pascale; Mundler, Olivier

    2005-09-01

    The use of 18F-FDG for clinical PET studies increases technologist radiation dose exposure because of the higher gamma-radiation energy of this isotope than of other conventional medical gamma-radiation-emitting isotopes. Therefore, 18F-FDG imaging necessitates stronger radiation protection requirements. The aims of this study were to assess technologist whole-body and extremity exposure in our PET department and to evaluate the efficiency of our radiation protection devices (homemade syringe drawing device, semiautomated injector, and video tracking of patients). Radiation dose assessment was performed for monodose as well as for multidose 18F-FDG packaging with both LiF thermoluminescence dosimeters (TLD) and electronic personal dosimeters (ED) during 5 successive 18F-FDG PET steps (from syringe filling to patient departure). The mean +/- SD total effective doses received by technologists (n = 50) during all of the working steps were 3.24 +/- 2.1 and 3.01 +/- 1.4 microSv, respectively, as measured with ED and TLD (345 +/- 84 MBq injected). These values were confirmed by daily TLD technologist whole-body dose measurements (2.98 +/- 1.8 microSv; 294 +/- 78 MBq injected; n = 48). Finger irradiation doses during preparation of single 18F-FDG syringes were 204.9 +/- 24 and 198.4 +/- 23 microSv with multidose vials (345 +/- 93 MBq injected) and 127.3 +/- 76 and 55.9 +/- 47 microSv with monodose vials (302 +/- 43 MBq injected) for the right hand and the left hand, respectively. The protection afforded by the semiautomated injector, estimated as the ratio of the doses received by TLD placed on the syringe shield and on the external face of the injector, was near 2,000. These results showed that technologist radiation doses in our PET department were lower than those reported in the literature. This finding may be explained by the use of a homemade syringe drawing device, a semiautomated injector, and patient video tracking, allowing a shorter duration of contact between the technologist and the patient. Extrapolation of these results to an annual dose (4 patients per day per technologist) revealed that the annual extrapolated exposure values remained under the authorized limits for workers classified to work in a radioactivity-controlled area.

  4. Non-radiation induced signals in TL dosimetry.

    PubMed

    German, U; Weinstein, M

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originates in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curves and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals.

  5. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, Travis J., E-mail: mccaw@wisc.edu; Micka, John A.; DeWerd, Larry A.

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated bymore » 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. Conclusions: The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.« less

  6. Health Domains for Sale: The Need for Global Health Internet Governance

    PubMed Central

    Liang, Bryan A; Kohler, Jillian C; Attaran, Amir

    2014-01-01

    A debate on Internet governance for health, or “eHealth governance”, is emerging with the impending award of a new dot-health (.health) generic top-level domain name (gTLD) along with a host of other health-related domains. This development is critical as it will shape the future of the health Internet, allowing largely unrestricted use of .health second-level domain names by future registrants, raising concerns about the potential for privacy, use and marketing of health-related information, credibility of online health content, and potential for Internet fraud and abuse. Yet, prospective .health gTLD applicants do not provide adequate safeguards for use of .health or related domains and have few or no ties to the global health community. If approved, one of these for-profit corporate applicants would effectively control the future of the .health address on the Internet with arguably no active oversight from important international public health stakeholders. This would represent a lost opportunity for the public health, medical, and broader health community in establishing a trusted, transparent and reliable source for health on the Internet. Countries, medical associations, civil society, and consumer advocates have objected to these applications on grounds that they do not meet the public interest. We argue that there is an immediate need for action to postpone awarding of the .health gTLD and other health-related gTLDs to address these concerns and ensure the appropriate development of sound eHealth governance rules, principles, and use. This would support the crucial need of ensuring access to quality and evidence-based sources of health information online, as well as establishing a safe and reliable space on the Internet for health. We believe, if properly governed, .health and other domains could represent such a promise in the future. PMID:24598602

  7. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  8. A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology

    NASA Astrophysics Data System (ADS)

    Stolz, Douglas C.; Rutledge, Steven A.; Pierce, Jeffrey R.; van den Heever, Susan C.

    2017-07-01

    The objective of this study is to determine the relative contributions of normalized convective available potential energy (NCAPE), cloud condensation nuclei (CCN) concentrations, warm cloud depth (WCD), vertical wind shear (SHEAR), and environmental relative humidity (RH) to the variability of lightning and radar reflectivity within convective features (CFs) observed by the Tropical Rainfall Measuring Mission (TRMM) satellite. Our approach incorporates multidimensional binned representations of observations of CFs and modeled thermodynamics, kinematics, and CCN as inputs to develop approximations for total lightning density (TLD) and the average height of 30 dBZ radar reflectivity (AVGHT30). The results suggest that TLD and AVGHT30 increase with increasing NCAPE, increasing CCN, decreasing WCD, increasing SHEAR, and decreasing RH. Multiple-linear approximations for lightning and radar quantities using the aforementioned predictors account for significant portions of the variance in the binned data set (R2 ≈ 0.69-0.81). The standardized weights attributed to CCN, NCAPE, and WCD are largest, the standardized weight of RH varies relative to other predictors, while the standardized weight for SHEAR is comparatively small. We investigate these statistical relationships for collections of CFs within various geographic areas and compare the aerosol (CCN) and thermodynamic (NCAPE and WCD) contributions to variations in the CF population in a partial sensitivity analysis based on multiple-linear regression approximations computed herein. A global lightning parameterization is developed; the average difference between predicted and observed TLD decreases from +21.6 to +11.6% when using a hybrid approach to combine separate approximations over continents and oceans, thus highlighting the need for regionally targeted investigations in the future.

  9. Increased trends in the use of treatment-limiting decisions in a regional neurosurgical unit.

    PubMed

    Wilson, William T; McMillan, Tristan; Young, Adam M H; White, Mark A J

    2017-04-01

    Treatment-limiting decisions (TLDs) are employed to actively withhold treatment from patients whom clinicians feel would derive no benefit or suffer detrimental effects from further intervention. The use of such decisions has been heavily discussed in the media and clinicians in the past have been reluctant to institute them, even though it is in the best interests of the patients. Their use is influenced by several ethical, religious and social factors all of which have changed significantly over time. This study reports the trends in use of TLDs in a regional neurosurgical unit over 23 years. Patient archives were reviewed to identify the number of admissions and procedures performed at the Institute of Neurological Sciences, Glasgow, in the years 1988, 1997 and 2011. Death certificate records were used to identify mortality in the unit in the year 2011. Patient records were used to obtain details of diagnosis, time from admission to death, and the presence and timing of a TLD. The results show an increase in the use of TLDs, with decisions made for 89% of those who died in 2011, compared to 68% in 1997 and 51% in 1988. The number of admissions has increased substantially since 1988 as has the percentage of patients undergoing surgery (46, 67 and 72% in 1988, 1997 and 2011, respectively). There is a trending increase in the number of patients who have a TLD in our regional neurosurgical unit. This demonstrates an increased willingness of clinicians to recognise poor prognosis and to withdraw or withhold treatment in these cases. Continued appropriate use of the TLD is recommended but it is to only ever reflect the best interests of the patient.

  10. Slowed Speech Input has a Differential Impact on On-line and Off-line Processing in Children’s Comprehension of Pronouns

    PubMed Central

    Walenski, Matthew; Swinney, David

    2009-01-01

    The central question underlying this study revolves around how children process co-reference relationships—such as those evidenced by pronouns (him) and reflexives (himself)—and how a slowed rate of speech input may critically affect this process. Previous studies of child language processing have demonstrated that typical language developing (TLD) children as young as 4 years of age process co-reference relations in a manner similar to adults on-line. In contrast, off-line measures of pronoun comprehension suggest a developmental delay for pronouns (relative to reflexives). The present study examines dependency relations in TLD children (ages 5–13) and investigates how a slowed rate of speech input affects the unconscious (on-line) and conscious (off-line) parsing of these constructions. For the on-line investigations (using a cross-modal picture priming paradigm), results indicate that at a normal rate of speech TLD children demonstrate adult-like syntactic reflexes. At a slowed rate of speech the typical language developing children displayed a breakdown in automatic syntactic parsing (again, similar to the pattern seen in unimpaired adults). As demonstrated in the literature, our off-line investigations (sentence/picture matching task) revealed that these children performed much better on reflexives than on pronouns at a regular speech rate. However, at the slow speech rate, performance on pronouns was substantially improved, whereas performance on reflexives was not different than at the regular speech rate. We interpret these results in light of a distinction between fast automatic processes (relied upon for on-line processing in real time) and conscious reflective processes (relied upon for off-line processing), such that slowed speech input disrupts the former, yet improves the latter. PMID:19343495

  11. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  12. Patient exposure dose for chest and skull radiographies in Mazandaran hospitals.

    PubMed

    Etemadinezhad, Siavash; Rahimi, Seyed Ali

    2010-01-01

    Radiographic techniques are essential methods of diagnosis, and their use has been increased, especially with the development of the new technologies. Inappropriate administration of these techniques may put both the patients and personnel at unnecessary risks. The objective of this research was to measure the skin dose of chest and skull radiographies used in Mazandaran hospitals and to compare these doses with national and international standards. In this cross-sectional study, six X-ray generators at six hospitals affiliated to Mazandaran University of Medical Sciences were included. One hundred and twenty patients referred to the radiology wards for radiographic examinations of chest and skull with normal body mass index (BMI) were selected (20 patients for each radiography unit). The generators were matched for mAs, kvp, type of amplifier sheets, and technical conditions as much as possible. Calibrated thermo luminescence dosimeters (TLD-USA, Lif-100) were used to measure the skin dose by placing them on the patients' back and the absorbed doses by TLDs were read by a TLD reader (model: Harshuu, TLD3500, Japan). The mean values of the skin dose were 0.51 mGray for posteroanterior (PA), chest X-ray (CXR), 3.36 mGray for lateral CXR, 7.25 mGray for anterroposterior (AP) or PA skull X-rays, and 7.59 mGray for lateral skull X-rays. The measured values were higher than the national and international standards. The results of this research revealed that the conditions of the X-ray generators should be monitored and modified periodically. Modifying the X-ray generators plus improving technicians' skills would, to some extent, reduce the radiation exposure of the patients.

  13. Health domains for sale: the need for global health Internet governance.

    PubMed

    Mackey, Tim Ken; Liang, Bryan A; Kohler, Jillian C; Attaran, Amir

    2014-03-05

    A debate on Internet governance for health, or "eHealth governance", is emerging with the impending award of a new dot-health (.health) generic top-level domain name (gTLD) along with a host of other health-related domains. This development is critical as it will shape the future of the health Internet, allowing largely unrestricted use of .health second-level domain names by future registrants, raising concerns about the potential for privacy, use and marketing of health-related information, credibility of online health content, and potential for Internet fraud and abuse. Yet, prospective .health gTLD applicants do not provide adequate safeguards for use of .health or related domains and have few or no ties to the global health community. If approved, one of these for-profit corporate applicants would effectively control the future of the .health address on the Internet with arguably no active oversight from important international public health stakeholders. This would represent a lost opportunity for the public health, medical, and broader health community in establishing a trusted, transparent and reliable source for health on the Internet. Countries, medical associations, civil society, and consumer advocates have objected to these applications on grounds that they do not meet the public interest. We argue that there is an immediate need for action to postpone awarding of the .health gTLD and other health-related gTLDs to address these concerns and ensure the appropriate development of sound eHealth governance rules, principles, and use. This would support the crucial need of ensuring access to quality and evidence-based sources of health information online, as well as establishing a safe and reliable space on the Internet for health. We believe, if properly governed, .health and other domains could represent such a promise in the future.

  14. Sacramento Regional Response Guide to Radiation Emergencies

    DTIC Science & Technology

    2006-09-01

    emergency operations. Additionally, the utilization of thermo luminescence dosimeters ( TLD ) may be beneficial to track long term exposure for...a radiation area. Stakeholder agency emergency response equipment have been issued electronic dosimeters The purpose of the radiation dosimeter is...Incident.............................................................................84 2. Detection/ Dosimeter Equipment

  15. Phenomenological study of the ionisation density-dependence of TLD-100 peak 5a.

    PubMed

    Brandan, Maria-Ester; Angeles, Oscar; Mercado-Uribe, Hilda

    2006-01-01

    Horowitz and collaborators have reported evidence on the structure of TLD-100 peak 5. A satellite peak, called 5a, has been singled out as arising from localised electron-hole recombination in a trap/luminescent centre, its emission mechanism would be geminate recombination and, therefore, its population would depend on incident radiation ionisation density. We report a phenomenological study of peak 4, 5a and 5 strengths for glow curves previously measured at UNAM for gammas, electrons and low-energy ions. The deconvolution procedure has followed strict rules to assure that the glow curve, where the presence of peak 5a is not visually noticeable, is decomposed in a consistent fashion, maintaining fixed widths and relative temperature difference between all the peaks. We find no improvement in the quality of the fit after inclusion of peak 5a. The relative contribution of peak 5a with respect to peak 5 does not seem to correlate with the radiation linear energy transfer.

  16. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña-Jiménez, Salvador, E-mail: zoid-9861@yahoo.com.mx; Gamboa-deBuen, Isabel, E-mail: gamboa@nucleares.unam.mx; Lárraga-Gutiérrez, José Manuel, E-mail: jose.larraga.gtz@gmail.com, E-mail: amanda.garcia.g@gmail.com

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (1×1×1 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurología y Neurocirugía (INNN). Thermoluminescent response as a function of dose wasmore » determined for doses in water between 0.5 and 3 Gy and two field sizes (2×2 cm2 and 10×10 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.« less

  17. Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Breen, S. L.; Battista, J. J.

    1999-08-01

    Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.

  18. Experimental check of bremsstrahlung dosimetry predictions for 0.75 MeV electrons

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Halbleib, J. A.; Beezhold, W.

    Bremsstrahlung dose in CaF2 TLDs from the radiation produced by 0.75 MeV electrons incident on Ta/C targets is measured and compared with that calculated via the CYLTRAN Monte Carlo code. The comparison was made to validate the code, which is used to predict and analyze radiation environments of flash X-ray simulators measured by TLDs. Over a wide range of Ta target thicknesses and radiation angles the code is found to agree with the 5% measurements. For Ta thickness near those that optimize the radiation output, however, the code overestimates the radiation dose at small angles. Maximum overprediction is about 14 + or - 5%. The general agreement, nonetheless, gives confidence in using the code at this energy and in the TLD calibration procedure. For the bulk of the measurements, a standard TLD employing a 2.2 mm thick Al equilibrator was used. In this paper we also show that this thickness can significantly attenuate the free-field dose and introduces significant photon buildup in the equalibrator.

  19. Feasibility of reading LiF thermoluminescent dosimeters by electron spin resonance.

    PubMed

    Breen, S L; Battista, J J

    1999-08-01

    Lithium fluoride is a commonly used solid state dosimeter. During irradiation, electrons and holes become trapped in crystal imperfections; thermoluminescence dosimetry measures their thermally induced recombination. Electron paramagnetic resonance (EPR) spectroscopy can be used to measure the resonant absorption of microwaves by the unpaired electrons trapped in LiF. In an effort to extend the use of LiF dosimeters to smaller sizes and to the harsh environments encountered in internal dosimetry, EPR was evaluated as an alternative technique to read the radiation dose delivered to TLD-100 dosimeters. TLD-100 rods were irradiated with a 60Co source to doses of 10 Gy to 100 Gy. A radiation-induced signal (with a g-value of 2.002) could be detected only at liquid nitrogen temperatures at doses above 20 Gy. The EPR spectrum of irradiated LiF contains three components, one of which correlates positively with dose. However, the low sensitivity of the technique, and difficulty in interpreting the EPR spectrum from polycrystalline dosimeters, preclude its use as a dosimetry technique.

  20. Evaluation of the medical exposure doses regarding dental examinations with different X-ray instruments

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chi; Chuang, Keh-Shih; Yu, Cheng-Ching; Chao, Jiunn-Hsing; Hsu, Fang-Yuh

    2015-11-01

    Modern dental X-ray examination that consists of traditional form, panorama, and cone-beamed 3D technologies is one of the most frequent diagnostic applications nowadays. This study used the Rando Phantom and thermoluminescence dosimeters (TLD) to measure the absorbed doses of radiosensitive organs recommended by International Commission on Radiological Protection (ICRP), and whole body effective doses which were delivered due to dental X-ray examination performed with different types of X-ray instrument. Besides, enamel samples which performed reading with Electronic Paramagnetic Resonance (EPR) procedure were also used to estimate the tooth doses. EPR is a dose reconstruction method of measuring free radicals induced by radiation exposure to the calcified tissue (mainly in the tooth enamel or bone) to evaluate the accepted high dose. The tooth doses estimated by TLD and EPR methods were compared. Relationships between the tooth doses and effective doses by dental X-ray examinations with different types of X-ray equipment were investigated in this work.

  1. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    NASA Astrophysics Data System (ADS)

    Peña-Jiménez, Salvador; Lárraga-Gutiérrez, José Manuel; García-Garduño, Olivia Amanda; Gamboa-deBuen, Isabel

    2014-11-01

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (1×1×1 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurología y Neurocirugía (INNN). Thermoluminescent response as a function of dose was determined for doses in water between 0.5 and 3 Gy and two field sizes (2×2 cm2 and 10×10 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.

  2. Thin thermoluminescent dosimeter and method of making same

    DOEpatents

    Simons, Gale G.; DeBey, Timothy M.

    1987-01-01

    An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.

  3. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  4. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  5. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  6. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  7. 42 CFR 82.14 - What types of information could be used in dose reconstructions?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) External dosimetry data, including external dosimeter readings (film badge, TLD, neutron dosimeters); and, (2) Pocket ionization chamber data. (c) Internal dosimetry data, including: (1) Urinalysis results; (2) Fecal sample results; (3) In Vivo measurement results; (4) Incident investigation reports; (5...

  8. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  9. Nonword Repetition Errors of Children with and without Specific Language Impairments (SLI)

    ERIC Educational Resources Information Center

    Burke, Heidi L.; Coady, Jeffry A.

    2015-01-01

    Background: Two ubiquitous findings from the literature are that (1) children with specific language impairments (SLI) repeat nonwords less accurately than peers with typical language development (TLD), and (2) all children repeat nonwords with frequent phonotactic patterns more accurately than low-probability nonwords. Many studies have examined…

  10. U.S. EPA, Pesticide Product Label, PRO KILL ROSE + FLORAL SPRAY, 08/12/1986

    EPA Pesticide Factsheets

    2011-04-21

    ... I..... hit. nIliliNU. If fIM 1M f ... tlt .... , IIUlit .. ,.tld .IU .,.. • 1111: 11& " •• ,,1, .1\\, ... It ..... lptilwcor"'Ir~"'~tA&I'If_ 1!fI!!'~1'J!,.~.t. IiIIiI II I 0 .. 0_ ••• ...

  11. An in-house developed resettable MOSFET dosimeter for radiotherapy.

    PubMed

    Verellen, Dirk; Van Vaerenbergh, Sven; Tournel, Koen; Heuninckx, Karina; Joris, Laurent; Duchateau, Michael; Linthout, Nadine; Gevaert, Thierry; Reynders, Truus; Van de Vondel, Iwein; Coppens, Luc; Depuydt, Tom; De Ridder, Mark; Storme, Guy

    2010-02-21

    The purpose of this note is to report the feasibility and clinical validation of an in-house developed MOSFET dosimetry system and describe an integrated non-destructive reset procedure. Off-the-shelf MOSFETs are connected to a common PC using an 18 bit/analogue-input and 16 bit/output data acquisition card. A reading algorithm was developed defining the zero-temperature-coefficient point (ZTC) to determine the threshold voltage. A wireless interface was established for ease of use. The reset procedure consists of an internal circuit generating a local heating induced by an electrical current. Sensitivity has been investigated as a function of bias voltage (0-9 V) to the gate. Dosimetric properties have been evaluated for 6 MV and 15 MV clinical photon beams and in vivo benchmarking was performed against thermoluminescence dosimeters (TLD) for conventional treatments (two groups of ten patients for each energy) and total body irradiation (TBI). MOSFETS were pre-irradiated with 20 Gy. Sensitivity of 0.08 mV cGy(-1) can be obtained for 200 cGy irradiations at 5 V bias voltage. Ten consecutive measurements at 200 cGy yield a SD of 2.08 cGy (1.05%). Increasing the dose in steps from 5 cGy to 1000 cGy yields a 1.00 Pearson correlation coefficient and agreement within 2.0%. Dose rate dependence (160-800 cGy min(-1)) was within 2.5%, temperature dependence within 2.0% (25-37 degrees C). A strong angular dependence has been observed for gantry incidences exceeding +/-30 degrees C. Dose response is stable up to 50 Gy (saturation occurs at approximately 90 Gy), which is used as threshold dose before resetting the MOSFET. An average measured-over-calculated dose ratio within 1.05 (SD: 0.04) has been obtained in vivo. TBI midplane-dose assessed by entrance and exit dose measurements agreed within 1.9% with ionization chamber in phantom, and within 1.0% with TLD in vivo. An in-house developed resettable MOSFET-based dosimetry system is proposed. The system has been validated and is currently used for in vivo entrance dose measurement in clinical routine for simple (open field) treatment configurations.

  12. NOTE: An in-house developed resettable MOSFET dosimeter for radiotherapy

    NASA Astrophysics Data System (ADS)

    Verellen, Dirk; Van Vaerenbergh, Sven; Tournel, Koen; Heuninckx, Karina; Joris, Laurent; Duchateau, Michael; Linthout, Nadine; Gevaert, Thierry; Reynders, Truus; Van de Vondel, Iwein; Coppens, Luc; Depuydt, Tom; De Ridder, Mark; Storme, Guy

    2010-02-01

    The purpose of this note is to report the feasibility and clinical validation of an in-house developed MOSFET dosimetry system and describe an integrated non-destructive reset procedure. Off-the-shelf MOSFETs are connected to a common PC using an 18 bit/analogue-input and 16 bit/output data acquisition card. A reading algorithm was developed defining the zero-temperature-coefficient point (ZTC) to determine the threshold voltage. A wireless interface was established for ease of use. The reset procedure consists of an internal circuit generating a local heating induced by an electrical current. Sensitivity has been investigated as a function of bias voltage (0-9 V) to the gate. Dosimetric properties have been evaluated for 6 MV and 15 MV clinical photon beams and in vivo benchmarking was performed against thermoluminescence dosimeters (TLD) for conventional treatments (two groups of ten patients for each energy) and total body irradiation (TBI). MOSFETS were pre-irradiated with 20 Gy. Sensitivity of 0.08 mV cGy-1 can be obtained for 200 cGy irradiations at 5 V bias voltage. Ten consecutive measurements at 200 cGy yield a SD of 2.08 cGy (1.05%). Increasing the dose in steps from 5 cGy to 1000 cGy yields a 1.00 Pearson correlation coefficient and agreement within 2.0%. Dose rate dependence (160-800 cGy min-1) was within 2.5%, temperature dependence within 2.0% (25-37° C). A strong angular dependence has been observed for gantry incidences exceeding ±30° C. Dose response is stable up to 50 Gy (saturation occurs at approximately 90 Gy), which is used as threshold dose before resetting the MOSFET. An average measured-over-calculated dose ratio within 1.05 (SD: 0.04) has been obtained in vivo. TBI midplane-dose assessed by entrance and exit dose measurements agreed within 1.9% with ionization chamber in phantom, and within 1.0% with TLD in vivo. An in-house developed resettable MOSFET-based dosimetry system is proposed. The system has been validated and is currently used for in vivo entrance dose measurement in clinical routine for simple (open field) treatment configurations.

  13. Efficacy of a radiation absorbing shield in reducing dose to the interventionalist during peripheral endovascular procedures: a single centre pilot study.

    PubMed

    Power, S; Mirza, M; Thakorlal, A; Ganai, B; Gavagan, L D; Given, M F; Lee, M J

    2015-06-01

    This prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures. A commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used to measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated. TLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142). Initial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator's body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.

  14. Feasibility Study of Glass Dosimeter for In Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won

    Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with amore » varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.« less

  15. Feasibility study of glass dosimeter for in vivo measurement: dosimetric characterization and clinical application in proton beams.

    PubMed

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won; Kim, Dae-Hyun; Suh, Tae-Suk; Ji, Young Hoon; Shin, Dongho; Lee, Se Byeong; Kim, Dae Yong; Park, Sung Yong

    2012-10-01

    To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Spoken Word Recognition in Adolescents with Autism Spectrum Disorders and Specific Language Impairment

    ERIC Educational Resources Information Center

    Loucas, Tom; Riches, Nick; Baird, Gillian; Pickles, Andrew; Simonoff, Emily; Chandler, Susie; Charman, Tony

    2013-01-01

    Spoken word recognition, during gating, appears intact in specific language impairment (SLI). This study used gating to investigate the process in adolescents with autism spectrum disorders plus language impairment (ALI). Adolescents with ALI, SLI, and typical language development (TLD), matched on nonverbal IQ listened to gated words that varied…

  17. Nonadjacent Dependency Learning in Cantonese-Speaking Children with and without a History of Specific Language Impairment

    ERIC Educational Resources Information Center

    Iao, Lai-Sang; Ng, Lai Yan; Wong, Anita Mei Yin; Lee, Oi Ting

    2017-01-01

    Purpose: This study investigated nonadjacent dependency learning in Cantonese-speaking children with and without a history of specific language impairment (SLI) in an artificial linguistic context. Method: Sixteen Cantonese-speaking children with a history of SLI and 16 Cantonese-speaking children with typical language development (TLD) were…

  18. Passive, Low Cost Neutron Detectors for Neutron Diagnostics at the National Ignition Facility

    DTIC Science & Technology

    2013-03-01

    Facility PTFE Polytetrafluoroethylene TLD Thermoluminescent Dosimeter α Conversion Coefficient (Conversion...because they required a large investment in automated track counting equipment. Thermoluminescent dosimeters ( TLDs ) remained as a viable option. They...necessary to predict radiation damage to measurement electronics . Due to programmatic and facility limitations, traditional neutron measurement

  19. Cathodoluminescence and Thermoluminescence of Undoped LTB and LTB:A (A = Cu, Ag, Mn)

    DTIC Science & Technology

    2013-03-01

    operated, tabletop instrument for thermoluminescent dosimetry (TLD) measurements seen in Figure 3-8. It reads one dosimeter per loading and...the more sophisticated Riso TL/ OSL reader that Brant used at the University of Cincinnati [9]. Figure 4-12: TL data for LTB: Ag irradiated with 5

  20. Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.

    2017-11-01

    In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.

  1. Design and feasibility of a multi-detector neutron spectrometer for radiation protection applications based on thermoluminescent 6LiF:Ti,Mg (TLD-600) detectors

    NASA Astrophysics Data System (ADS)

    Lis, M.; Gómez-Ros, J. M.; Bedogni, R.; Delgado, A.

    2008-01-01

    The design of a neutron detector with spectrometric capability based on thermoluminescent (TL) 6LiF:Ti,Mg (TLD-600) dosimeters located along three perpendicular axis within a single polyethylene (PE) sphere has been analyzed. The neutron response functions have been calculated in the energy range from 10 -8 to 100 MeV with the Monte Carlo (MC) code MCNPX 2.5 and their shape and behaviour have been used to discuss a suitable configuration for an actual instrument. The feasibility of such a device has been preliminary evaluated by the simulation of exposure to 241Am-Be, bare 252Cf and Fe-PE moderated 252Cf sources. The expected accuracy in the evaluation of energy quantities has been evaluated using the unfolding code FRUIT. The obtained results together with additional calculations performed using MAXED and GRAVEL codes show the spectrometric capability of the proposed design for radiation protection applications, especially in the range 1 keV-20 MeV.

  2. Measurement of absorbed dose during the phantom torso experiment on the International Space Station

    NASA Astrophysics Data System (ADS)

    Semones, E.; Gibbons, F.; Golightly, M.; Weyland, M.; Johnson, A.; Smith, G.; Shelfer, T.; Zapp, N.

    The Phantom Torso Experiment (PTE) was flown on the International Space Station (ISS) during Increment 2 (April-August 2001). The experiment was located in the US Lab module Human Research Facility (HRF) rack. The objective of the passive dosimetry portion of the experiment was to measure spatial distributions of absorbed dose in the 34, 1 inch sections of a modified RandoTM phantom. In each section of the phantom, thermoluminescent detectors (TLDs) were placed at various locations (depths) to provide the spatial measurement. TLDs were also located at several radiosensitive organ locations (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin). Active silicon detectors were also placed at these organ locations to provide time resolved results of the absorbed dose rates. Using these detectors, it is possible to separate the trapped and galactic cosmic ray components of the absorbed dose. The TLD results of the spatial and organ dose measurements will be presented and comparisons of the TLD and silicon detector organ absorbed doses will be made.

  3. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere.

    PubMed

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of (137)Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  4. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen; Chen, Bo, E-mail: bochenfys@fudan.edu.cn; Zhuo, Weihai

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of {sup 137}Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmicmore » rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.« less

  5. The responses of three kinds of passive dosimeters to secondary cosmic rays in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Chen, Bo; Zhuo, Weihai; Fan, Dunhuang; Zhao, Chao; Zhang, Yu

    2015-12-01

    For accurate measurements of the secondary cosmic rays by using passive dosimeters, the relative responses of the thermoluminescence dosimeter (TLD), optically stimulated luminescence (OSL) dosimeter, and radiophotoluminescent glass dosimeter (RPLGD) were studied. The cosmic-ray shower generator was used to simulate the secondary cosmic rays at the sea level. Monte Carlo simulations were performed to calculate the air kerma and absorbed doses in each kind of dosimeter. The results showed that compared with their responses to gamma rays of 137Cs, the relative responses of the TLD, OSL, and RPLGD were 0.786, 0.707, and 0.735 to the hard component of cosmic rays, respectively, and the values were 0.904, 0.838, and 0.857 to the soft component of cosmic rays, respectively. To verify the simulations results, an in situ measurement with the three kinds of dosimeters was performed at the same place. The results indicated that the secondary cosmic rays monitored with the three kinds of dosimeters were well consistent with each other provided their relative responses were taken into account.

  6. MO-D-BRB-02: The Radiological Physics Center's Quality Audit Program: Where Can We Improve?

    PubMed

    Followill, D; Lowenstein, J; Molineu, A; Alvarez, P; Aguirre, J; Kry, S; Summers, P; Ibbott, G

    2012-06-01

    To analyze the findings of the Radiological Physics Center's (RPC) QA audits of institutions participating in NCI sponsored clinical trials. The RPC has developed an extensive Quality Assurance (QA) program over the past 44 years. This program includes on-site dosimetry reviews where measurements on therapy machines are made, records are reviewed and personnel are interviewed. The program's remote audit tools include mailed dosimeters (OSLD/TLD) to verify output calibration, comparison of dosimetry data with RPC 'standard' data, evaluation of benchmark and patient calculations to verify the treatment planning algorithms, review of institution's QA procedures and records, and use of anthropomorphic phantoms to verify tumor dose delivery. The RPC endeavors to assist institutions in finding the origins of any detected discrepancies, and to resolve them. Ninety percent of institutions receiving dosimetry recommendations has remained level for the past 5 years. The most frequent recommendations were for not performing TG-40 QA tests, wedge factors, small field size output factors and off-axis factors. Since TG-51 was published, the number of beam calibrations audited during visits with ion chambers, that met the RPC's ±3% criterion, decreased initially but has risen to pre-TG-51 levels. The OSLD/TLD program shows that only ∼3% of the beams are outside our ±5% criteria, but these discrepancies are distributed over 12-20% of the institutions. The percent of institutions with ï, 3 l beam outside the RPC's criteria is approximately the same whether OSLD/TLD or ion chambers were used. The first time passing rate for the anthropomorphic phantoms is increasing with time. The prostate phantom has the highest pass rate while the spine phantom has the lowest. Numerous dosimetry errors continue to be discovered by the RPC's QA program and the RPC continues to play an important role in helping institutions resolve these errors. This work was supported by PHS grants CA10953 and CA081647 awarded by NCI. © 2012 American Association of Physicists in Medicine.

  7. Singing abilities in children with Specific Language Impairment (SLI).

    PubMed

    Clément, Sylvain; Planchou, Clément; Béland, Renée; Motte, Jacques; Samson, Séverine

    2015-01-01

    Specific Language Impairment (SLI) is a heritable neurodevelopmental disorder diagnosed when a child has difficulties learning to produce and/or understand speech for no apparent reason (Bishop et al., 2012). The verbal difficulties of children with SLI have been largely documented, and a growing number of studies suggest that these children may also have difficulties in processing non-verbal complex auditory stimuli (Corriveau et al., 2007; Brandt et al., 2012). In a recent study, we reported that a large proportion of children with SLI present deficits in music perception (Planchou et al., under revision). Little is known, however, about the singing abilities of children with SLI. In order to investigate whether or not the impairments in expressive language extend to the musical domain, we assessed singing abilities in eight children with SLI and 15 children with Typical Language Development (TLD) matched for age and non-verbal intelligence. To this aim, we designed a ludic activity consisting of two singing tasks: a pitch-matching and a melodic reproduction task. In the pitch-matching task, the children were requested to sing single notes. In the melodic reproduction task, children were asked to sing short melodies that were either familiar (FAM-SONG and FAM-TUNE conditions) or unfamiliar (UNFAM-TUNE condition). The analysis showed that children with SLI were impaired in the pitch-matching task, with a mean pitch error of 250 cents (mean pitch error for children with TLD: 154 cents). In the melodic reproduction task, we asked 30 healthy adults to rate the quality of the sung productions of the children on a continuous rating scale. The results revealed that singing of children with SLI received lower mean ratings than the children with TLD. Our findings thus indicate that children with SLI showed impairments in musical production and are discussed in light of a general auditory-motor dysfunction in children with SLI.

  8. Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide.

    PubMed

    Melo, Maria Luisa P; Brito, Gerly A C; Soares, Rudy C; Carvalho, Sarah B L M; Silva, Johan V; Soares, Pedro M G; Vale, Mariana L; Souza, Marcellus H L P; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2008-04-01

    Irinotecan (CPT-11) is an inhibitor of DNA topoisomerase I and is clinically effective against several cancers. A major toxic effect of CPT-11 is delayed diarrhea; however, the exact mechanism by which the drug induces diarrhea has not been established. Elucidate the mechanisms of induction of delayed diarrhea and determine the effects of the cytokine production inhibitor pentoxifylline (PTX) and thalidomide (TLD) in the experimental model of intestinal mucositis, induced by CPT-11. Intestinal mucositis was induced in male Swiss mice by intraperitoneal administration of CPT-11 (75 mg/kg) daily for 4 days. Animals received subcutaneous PTX (1.7, 5 and 15 mg/kg) or TLD (15, 30, 60 mg/kg) or 0.5 ml of saline daily for 5 and 7 days, starting 1 day before the first CPT-11 injection. The incidence of delayed diarrhea was monitored by scores and the animals were sacrificed on the 5th and 7th experimental day for histological analysis, immunohistochemistry for TNF-alpha and assay of myeloperoxidase (MPO) activity, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and KC ELISA. CPT-11 caused significant diarrhea, histopathological alterations (inflammatory cell infiltration, loss of crypt architecture and villus shortening) and increased intestinal tissue MPO activity, TNF-alpha, IL-1beta and KC level and TNF-alpha immuno-staining. PTX inhibited delayed diarrhea of mice submitted to intestinal mucositis and reduced histopathological damage, intestinal MPO activity, tissue level of TNF-alpha, IL-1beta and KC and TNF-alpha immuno-staining. TLD significantly reduced the lesions induced by CPT-11 in intestinal mucosa, decreased MPO activity, TNF-alpha tissue level and TNF-alpha immuno-staining, but did not reduce the severity of diarrhea. These results suggest an important role of TNF-alpha, IL-1beta and KC in the pathogenesis of intestinal mucositis induced by CPT-11.

  9. The use of TLD-700H dosemeters in the assessment of external doses at the former Semipalatinsk nuclear test site.

    PubMed

    Hill, P; Dederichs, H; Pillath, J; Schlecht, W; Hille, R; Artemev, O; Ptitskaya, L; Akhmetov, M

    2002-01-01

    The joint projects performed since 1995 by the Jülich Research Centre in co-operation with the Kazakh National Nuclear Centre in the area of the former nuclear test site near Semipalatinsk, in eastern Kazakhstan, have assessed the current dose rate of the population at and around the test site, as well as determining retrospectively the dose rate of persons affected by the atmospheric tests. Measurements of the population by personal dosemeters depend on reliably wearing these dosemeters over prolonged periods of time, and of a sufficient dosemeter return. In the past, such measurements have been particularly successful whenever short wearing times were possible. This requires high sensitivity of the dosemeters. The suitability of the highly sensitive TLD material of the BICRON TLD 700H type for such personal dosimetry measurements was investigated. It was tested in practical field application at the Semipalatinsk nuclear test site in September 2000. Initial results are available from individual doses received by a group of geologists and a group of herdsmen at the test site. For the first time, the individual dose was measured directly in these population groups. Detection limits below 1 microSv permit informative measurements for wearing times of less than two weeks. Most individual doses did not arise significantly out of local fluctuations of natural background. A conservative assessment from the aspect of practical health physics yielded a mean personal dose of 0.55 microSv per day for the herdsmen, whereas the geologists received a mean personal dose of 0.45 microSv per day. For an annual exposure period of typically, about three months, the radiation dose received by the persons investigated, in addition to the natural radiation exposure, is thus well below the international limit value of 1 mSv x a(-1) for the population dose.

  10. Singing abilities in children with Specific Language Impairment (SLI)

    PubMed Central

    Clément, Sylvain; Planchou, Clément; Béland, Renée; Motte, Jacques; Samson, Séverine

    2015-01-01

    Specific Language Impairment (SLI) is a heritable neurodevelopmental disorder diagnosed when a child has difficulties learning to produce and/or understand speech for no apparent reason (Bishop et al., 2012). The verbal difficulties of children with SLI have been largely documented, and a growing number of studies suggest that these children may also have difficulties in processing non-verbal complex auditory stimuli (Corriveau et al., 2007; Brandt et al., 2012). In a recent study, we reported that a large proportion of children with SLI present deficits in music perception (Planchou et al., under revision). Little is known, however, about the singing abilities of children with SLI. In order to investigate whether or not the impairments in expressive language extend to the musical domain, we assessed singing abilities in eight children with SLI and 15 children with Typical Language Development (TLD) matched for age and non-verbal intelligence. To this aim, we designed a ludic activity consisting of two singing tasks: a pitch-matching and a melodic reproduction task. In the pitch-matching task, the children were requested to sing single notes. In the melodic reproduction task, children were asked to sing short melodies that were either familiar (FAM-SONG and FAM-TUNE conditions) or unfamiliar (UNFAM-TUNE condition). The analysis showed that children with SLI were impaired in the pitch-matching task, with a mean pitch error of 250 cents (mean pitch error for children with TLD: 154 cents). In the melodic reproduction task, we asked 30 healthy adults to rate the quality of the sung productions of the children on a continuous rating scale. The results revealed that singing of children with SLI received lower mean ratings than the children with TLD. Our findings thus indicate that children with SLI showed impairments in musical production and are discussed in light of a general auditory-motor dysfunction in children with SLI. PMID:25918508

  11. A Monte Carlo study of the quality dependence factors of common TLD materials in photon and electron beams.

    PubMed

    Mobit, P N; Nahum, A E; Mayles, P

    1998-08-01

    A Monte Carlo simulation of the quality dependence of different TL materials, in the form of discs 3.61 mm in diameter and 0.9 mm thick, in radiotherapy photon beams relative to 60Co gamma-rays has been performed. The beam qualities ranged from 50 kV to 25 MV x-rays. The TL materials were: CaF2, CaSO4, LiF and Li2B4O7. The effects of the dopants on energy deposition in the TL material have also been determined for the highly sensitive LiF:Mg:Cu:P (TLD-100H) and for CaF2:Mn. It was found that there was a significant difference in the quality dependence factor derived from Monte Carlo simulations between LiF and LiF:Mg:Cu:P but not between CaF2 and CaF2:Mn. The quality dependence factors for Li2B4O7 varied from 0.990 +/- 0.008 (1 sd) for 25 MV x-rays to 0.940 +/- 0.009 (1 sd) for 50 kV x-rays relative to 60Co gamma-rays; Monte Carlo simulations were also performed for Li2B4O7 in megavoltage electron beams. For CaF2, the quality dependence factor varied from 0.927 +/- 0.008 (1 sd) for 25 MV x-rays to 10.561 +/- 0.008 (1 sd) for 50 kV x-rays. The figure for CaSO4 ranged from 0.943 +/- 0.008 (1 sd) for 25 MV x-rays to 9.010 +/- 0.008 (1 sd) for 50 kV x-rays. The quality dependence factor for CaF2 increases by up to 5% with depth and by up to 15% with field size for the kilovoltage x-ray beams. For LiF-TLD, however, there was no significant dependence on the field size or depth of irradiation in the kilovoltage energy range.

  12. On the Nature of Verb-Noun Dissociations in Bilectal SLI: A Psycholinguistic Perspective from Greek

    ERIC Educational Resources Information Center

    Kambanaros, Maria; Grohmann, Kleanthes K.; Michaelides, Michalis; Theodorou, Eleni

    2014-01-01

    We report on object and action picture-naming accuracy in two groups of bilectal speakers in Cyprus, children with typical language development (TLD) and children with specific language impairment (SLI). Object names were overall better retrieved than action names by both groups. Given that comprehension for action names was relatively intact for…

  13. Can Children with SLI Detect Cognitive Conflict? Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Epstein, Baila; Shafer, Valerie L.; Melara, Robert D.; Schwartz, Richard G.

    2014-01-01

    Purpose: This study examined whether children with specific language impairment (SLI) are deficient in detecting cognitive conflict between competing response tendencies in a GO/No-GO task. Method: Twelve children with SLI (ages 10--12), 22 children with typical language development matched group-wise on age (TLD-A), and 16 younger children with…

  14. 78 FR 6811 - Country Code Top-Level Domain (ccTLD) for the United States; Policies and Requirements; Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... governance. This notice of inquiry (NOI) seeks to meet that goal by requesting public comment on current... delegated manager facilitates and manages domain name registrations using this locality name such as tourism... the USG policy supporting the multistakholder model of Internet governance. Input regarding the value...

  15. Syntactic Development in Adolescents with a History of Language Impairments: A Follow-Up Investigation

    ERIC Educational Resources Information Center

    Nippold, Marilyn A.; Mansfield, Tracy C.; Billow, Jesse L.; Tomblin, J. Bruce

    2009-01-01

    Purpose: Syntactic development in adolescents was examined using a spoken discourse task and standardized testing. The primary goal was to determine whether adolescents with a history of language impairments would differ from those with a history of typical language development (TLD). This is a companion study to one that examined these same…

  16. An Initial Study of the Injection of an Intense Relativistic Electron Beam into the Atmosphere.

    DTIC Science & Technology

    1981-03-04

    resolved spectroscopy , thermoluminescent x-ray detectors ( TLDs ), and Schlieren photography. The freely propagating electron beam produced a luminous region...atmosphere and its detection with a TLD ...................................... 17 VIII. REFERENCES...atmospheric even though such stu- dies have application in a number of important areas of research including electron beam sustained lasers , 9 inertial

  17. Response of dosemeters in the radiation field generated by a TW-class laser system.

    PubMed

    Olšovcová, V; Klír, D; Krása, J; Krůs, M; Velyhan, A; Zelenka, Z; Rus, B

    2014-10-01

    State-of-the-art laser systems are able to generate ionising radiation of significantly high energies by focusing ultra-short and intense pulses onto targets. Thus, measures ensuring the radiation protection of both working personnel and the general public are required. However, commercially available dosemeters are primarily designed for measurement in continuous fields. Therefore, it is important to explore their response to very short pulses. In this study, the responses of dosemeters in a radiation field generated by iodine high-power and Ti:Sapphire laser systems are examined in proton and electron acceleration experiments. Within these experiments, electron bunches of femtosecond pulse duration and 100-MeV energy and proton bunches with sub-nanosecond pulse duration and energy of several megaelectronvolts were generated in single-shot regimes. Responses of typical detectors (TLD, films and electronic personal dosemeter) were analysed and compared. Further, a first attempt was carried out to characterise the radiation field generated by TW-class laser systems. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm, and 4cm, 5cm, 6cm, and 7cm, respectively. The Nucletron Freiburg flap applicator is used with the Nucletron remote afterloader HDR machine to deliver dose to surface cancers. Dosimetric data for the Nucletron 192Ir source were generated using Monte Carlo simulation and compared with the published data. Two dimensional dosimetric data were calculated at two source positions; at the center of the sphere of the applicator and between two adjacent spheres. Unlike the TPS dose algorithm, The Monte Carlo code developed for this research accounts for the applicator material, secondary electrons and delta particles, and the air gap between the skin and the applicator. *Standard Imaging, Inc., Middleton, Wisconsin USA † OneDose MOSFET, Sicel Technologies, Morrisville NC ‡ Los Alamos National Laboratory, NM USA

  19. The Non-Word Repetition Task as a Clinical Marker of Specific Language Impairment in Spanish-Speaking Children

    ERIC Educational Resources Information Center

    Girbau, Dolors

    2016-01-01

    Forty native Spanish-speaking children (age 8;0-10;3), 20 with Specific Language Impairment (SLI) and 20 with Typical Language Development (TLD), received a battery of psycholinguistic tests, IQ, hearing screenings, and the Spanish Non-word Repetition Task (NRT). The children's repetition of 20 non-words was scored. The percentage of correct…

  20. FX-25 and FX-100 Propagation Experiments.

    DTIC Science & Technology

    1982-07-01

    Radiochromic Foil Dosimetry Blue cellophane is one of the most widely used radiochromic film dosimeters.6 Blue cellophane exposed to an intense electron ...shown in Fig. 18, Appendix B. Thermoluminescent Dosimetry Lithium flouride thermoluminescent dosimeters ( TLDs ) were on a limited number of shots to...corroboration of the current distribution included radiochromic-film dosimetry , TLD arrays, and openshutter photography. Because of our discovery of the

  1. Properties of Principal TL (Thermoluminescence) Dosimeters.

    DTIC Science & Technology

    1983-10-01

    thermoluminescence dosimetry ( TLD ) emerged as the preferred means because of convenience of batch evaluation, reusability, large detection range, linearity and...personnel dosimetry , thermoluminescence dosimetry has emerged as a superior technique due to its manifold advantages over other methods of dose...their suitability for dosimetry . A brief description of important TL materials and their properties is documented in this report. DD ,JN 1473 EDITION 0

  2. Development of a Hampton University Program for Novel Breast Cancer Imaging and Therapy Research

    DTIC Science & Technology

    2013-04-01

    intracavitary brachytherapy procedures during laboratory pre-clinical imaging and dosimetry equipment testing, calibration and data processing, in collaboration... electronics and detector instrumentation development; 4) breast phantom construction and implantation; 5) laboratory pre-clinical device testing...such as the ionization chamber, diode, radiographic verification 6 films and thermoluminescent dosimeters ( TLD ) but the scintillator fiber detectors

  3. LDEF: Dosimetric measurement results (AO 138-7 experiment)

    NASA Technical Reports Server (NTRS)

    Bourrieau, J.

    1992-01-01

    One of the objectives of the AO 138-7 experiment on board the LDEF was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical cases, both including 5 TLDs inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile induced. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (solar maximum and solar minimum periods) and the cosmic rays; due to the magnetospheric shielding, the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi-infinite plane shield of Al are computed with radiation transport codes. TLD reading are performed after flight; due to the mission duration increase, a post-flight calibration was necessary in order to cover the range of the flight induced dose. The results obtained, similar (+ or - 30 pct.) in both cases, are compared with the dose profile computation. In practice, these LDEF results, with less than a factor 1.4 between measurements and forecasts, reinforce the validity of the computation methods and models used for the long term evaluation of space radiation intensity on low inclination Earth orbits.

  4. Dose estimation of eye lens for interventional procedures in diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Rong; Huang, Chia-Yu; Hsu, Ching-Han; Hsu, Fang-Yuh

    2017-11-01

    The International Commission on Radiological Protection (ICRP) recommended that the equivalent dose limit for the lens of the eye be decreased from 150 mSv/y (ICRP, 2007) to 20 mSv/y averaged over five years (ICRP, 2011). How to accurately measure the eye-lens dose has, therefore, been an issue of interest recently. Interventional radiologists are at a higher risk of radiation-induced eye injury, such as cataracts, than all other occupational radiation workers. The main objective of this study is to investigate the relationship between the doses to the eye lenses of interventional radiologists measured by different commercial eye-lens dosimeters. This study measured a reference eye-lens dose, which involved placing thermoluminescent dosimeter (TLD) chips at the surface of the eye of the Rando Phantom, and the TLD chips were covered by a 3-mm-thick tissue-equivalent bolus. Commercial eye-lens dosimeters, such as a headband dosimeter and standard personnel dose badges, were placed at the positions recommended by the manufacturers. The results show that the personnel dose badge is not an appropriate dosimeter for evaluating eye-lens dose. Dose deviations for different dosimeters are discussed and presented in this study.

  5. Angular and radial dependence of the energy response factor for LIF-TLD micro-rods in 125L permanent implant source.

    PubMed

    Mobit, Paul; Badragan, Iulian

    2006-01-01

    EGSnrc Monte Carlo simulations were used to calculate the angular and radial dependence of the energy response factor for LiF-thermoluminescence dosemeters (TLDs) irradiated with a commercially available (125)I permanent brachytherapy source. The LiF-TLDs were modelled as cylindrical micro-rods of length 6 mm and with diameters of 1 mm and 5 mm. The results show that for a LiF-TLD micro-rod of 1 mm diameter, the energy response relative to (60)Co gamma rays is 1.406 +/- 0.3% for a polar angle of 90 degrees and radial distance of 1.0 cm. When the diameter of the micro-rod is increased from 1 to 5 mm, the energy response decreases to 1.32 +/- 0.3% at the same point. The variation with position of the energy response factor is not >5% in a 6 cm x 6 cm x 6 cm calculation grid for the 5 mm diameter micro-rod. The results show that there is a change in the photon spectrum with angle and radial distance, which causes the variation of the energy response.

  6. SU-E-I-24: Design and Fabrication of a Multi-Functional Neck and Thyroid Phantom for Medical Dosimetry and Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehdizadeh, S; Sina, S; Karimipourfard, M

    Purpose: The purpose of this study is the design and fabrication of a multipurpose anthropomorphic neck and thyroid phantom for use in medical applications (i.e. quality control of images in nuclear medicine, and dosimetry). Methods: The designed neck phantom is composed of seven elliptic cylindrical slices with semi-major axis of 14 and semi-minor axis of 12.5 cm, each having the thickness of 2cm. Thyroid gland, bony part of the neck, and the wind pipe were also built inside the neck phantom. Results: The phantom contains some removable plugs,inside and at its surface to accommodate the TLD chips with different shapesmore » and dimensions, (i.e. rod, cylindrical and cubical TLD chips)for the purpose of medical dosimetry (i.e. in radiology, radiotherapy, and nuclear medicine). For the purpose of quality control of images in nuclear medicine, the removable thyroid gland was built to accommodate the radioactive iodine. The female and male thyroid glands were built in two sizes separately. Conclusion: The designed phantom is a multi-functional phantom which is applicable for dosimetry in diagnostic radiology, radiotherapy, and quality control of images in nuclear medicine.« less

  7. Added aluminum shielding to attenuate back scatter electrons from intra-oral lead shields.

    PubMed

    Weidlich, G A; Nuesch, C E; Fuery, J J

    1996-01-01

    An intra-oral lead shield was developed that consists of a lead base with an aluminum layer that is placed upstream of the lead base. Several such shields with various thicknesses of Al layers were manufactured and quantitatively evaluated in 6 MeV and 12 MeV electron radiation by Thermoluminescent dosimetry (TLD) measurements. The clinical relevance was established by using a 5 cm backscatter block down-stream of the lead shield to simulate anatomical structures of the head and a 0.5 cm superflab bolus upstream of the Al layers of the shield to simulate the patient's lip or cheek. The TLDs were placed between the Al layers of the shield and the superflab to determine the intra-oral skin dose. TLD exposure results revealed that 59.8% of the skin dose at 6 MeV and 45.1% of the skin dose at 12 MeV is due to backscattered electrons. Introduction of a 3.0 mm thick Al layer reduces the backscatter contribution to 13.5% of the back scatter dose at 6 MeV and 56.3% of the back scatter dose at 12 MeV electron radiation.

  8. Dental radiography: tooth enamel EPR dose assessment from Rando phantom measurements

    NASA Astrophysics Data System (ADS)

    Aragno, D.; Fattibene, P.; Onori, S.; Aragno, D.; Fattibene, P.

    2000-09-01

    Electron paramagnetic resonance dosimetry of tooth enamel is now established as a suitable method for individual dose reconstruction following radiation accidents. The accuracy of the method is limited by some confounding factors, among which is the dose received due to medical x-ray irradiation. In the present paper the EPR response of tooth enamel to endoral examination was experimentally evaluated using an anthropomorphic phantom. The dose to enamel for a single exposure of a typical dental examination performed with a new x-ray generation unit working at 65 kVp gave rise to a CO2- signal of intensity similar to that induced by a dose of about 2 mGy of 60Co. EPR measurements were performed on the entire tooth with no attempt to separate buccal and lingual components. Also the dose to enamel for an orthopantomography exam was estimated. It was derived from TLD measurements as equivalent to 0.2 mGy of 60Co. In view of application to risk assessment analysis, in the present work the value for the ratio of the reference dose at the phantom surface measured with TLD to the dose at the tooth measured with EPR was determined.

  9. Localised and delocalised optically induced conversion of composite glow peak 5 in LiF:Mg,Ti (TLD-100) to glow peak 4 as a function of postirradiation annealing temperature.

    PubMed

    Horowitz, Y S; Einav, Y; Biderman, S; Oster, L

    2002-01-01

    The composite structure of glow peak 5 in LiF:Mg,Ti (TLD-100) has been investigated using optical bleaching by 310 nm (4 eV) light. The glow peak conversion efficiency of peak 5a (Tm = 187 degrees C) to peak 4 traps is very high at a value of 3+/-0.5 (1 SD) whereas the glow peak conversion efficiency of peak 5 (Tm = 205 degrees C) to peak 4 traps is 0.0026+/-0.0012 (1 SD). The high conversion efficiency of peak 5a to peak 4 arises from direct optical ionisation of the electron in the electron-hole pair. leaving behind a singly-trapped hole (peak 4), a direct mechanism, relatively free of competitive mechanisms. Optical ionisation of the 'singly-trapped' electron (peak 5), however, can lead to peak 4 only via multi-stage mechanisms involving charge carrier transport in the valence and conduction bands, a mechanism subject to competitive processes. The conduction/valence band competitive processes lead to the factor of one thousand decrease in the conversion efficiency of peak 5 compared to peak 5a.

  10. Radiation effects program

    NASA Astrophysics Data System (ADS)

    1985-09-01

    No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.

  11. The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation

    PubMed Central

    Mat Nawi, Siti Nurasiah Binti; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Md Nor, Roslan Bin; Maah, Mohd Jamil

    2015-01-01

    Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a 60Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium. PMID:26307987

  12. Simulation of angular and energy distributions of the PTB beta secondary standard.

    PubMed

    Faw, R E; Simons, G G; Gianakon, T A; Bayouth, J E

    1990-09-01

    Calculations and measurements have been performed to assess radiation doses delivered by the PTB Secondary Standard that employs 147Pm, 204Tl, and 90Sr:90Y sources in prescribed geometries, and features "beam-flattening" filters to assure uniformity of delivered doses within a 5-cm radius of the axis from source to detector plane. Three-dimensional, coupled, electron-photon Monte Carlo calculations, accounting for transmission through the source encapsulation and backscattering from the source mounting, led to energy spectra and angular distributions of electrons penetrating the source encapsulation that were used in the representation of pseudo sources of electrons for subsequent transport through the atmosphere, filters, and detectors. Calculations were supplemented by measurements made using bare LiF TLD chips on a thick polymethyl methacrylate phantom. Measurements using the 204Tl and 90Sr:90Y sources revealed that, even in the absence of the beam-flattening filters, delivered dose rates were very uniform radially. Dosimeter response functions (TLD:skin dose ratios) were calculated and confirmed experimentally for all three beta-particle sources and for bare LiF TLDs ranging in mass thickness from 10 to 235 mg cm-2.

  13. Measurement and effects of MOSKIN detectors on skin dose during high energy radiotherapy treatment.

    PubMed

    Alnawaf, Hani; Butson, Martin; Yu, Peter K N

    2012-09-01

    During in vivo dosimetry for megavoltage X-ray beams, detectors such as diodes, Thermo luminescent dosimeters (TLD's) and MOSFET devices are placed on the patient's skin. This of course will affect the skin dose delivered during that fraction of the treatment. Whilst the overall impact on increasing skin dose would be minimal, little has been quantified concerning the level of increase in absorbed dose, in vivo dosimeters produce when placed in the beams path. To this extent, measurements have been made and analysis performed on dose changes caused by MOSKIN, MOSFET, skin dose detectors. Maximum increases in skin dose were measured as 15 % for 6 MV X-rays and 10 % for 10 MV X-rays at the active crystal of the MOSKIN device which is the thickest part of the detector. This is compared to 32 and 26 % for a standard 1 mm thick LiF TLD at 10 × 10 cm(2) field size for 6 and 10 MV X-rays respectively. Radiochromic film, EBT2 has been shown to provide a high resolution 2 dimensional map of skin dose from these detectors and measures the effects of in vivo dosimeters used for radiotherapy dose assessment.

  14. An in vivo investigative protocol for HDR prostate brachytherapy using urethral and rectal thermoluminescence dosimetry.

    PubMed

    Toye, Warren; Das, Ram; Kron, Tomas; Franich, Rick; Johnston, Peter; Duchesne, Gillian

    2009-05-01

    To develop an in vivo dosimetry based investigative action level relevant for a corrective protocol for HDR brachytherapy boost treatment. The dose delivered to points within the urethra and rectum was measured using TLD in vivo dosimetry in 56 patients. Comparisons between the urethral and rectal measurements and TPS calculations showed differences, which are related to the relative position of the implant and TLD trains, and allowed shifts of implant position relative to the prostate to be estimated. Analysis of rectal dose measurements is consistent with implant movement, which was previously only identified with the urethral data. Shift corrected doses were compared with results from the TPS. Comparison of peak doses to the urethra and rectum has been assessed against the proposed corrective protocol to limit overdosing these critical structures. An initial investigative level of 20% difference between measured and TPS peak dose was established, which corresponds to 1/3 of patients which was practical for the caseload. These patients were assessed resulting in corrective action being applied for one patient. Multiple triggering for selective investigative action is outlined. The use of a single in vivo measurement in the first fraction optimizes patient benefit at acceptable cost.

  15. Occupational dose constraints in interventional cardiology procedures: the DIMOND approach

    NASA Astrophysics Data System (ADS)

    Tsapaki, Virginia; Kottou, Sophia; Vano, Eliseo; Komppa, Tuomo; Padovani, Renato; Dowling, Annita; Molfetas, Michael; Neofotistou, Vassiliki

    2004-03-01

    Radiation fields involved in angiographic suites are most uneven with intensity and gradient varying widely with projection geometry. The European Commission DIMOND III project addressed among others, the issues regarding optimization of staff doses with an attempt to propose preliminary occupational dose constraints. Two thermoluminescent dosemeters (TLD) were used to assess operators' extremity doses (left shoulder and left foot) during 20 coronary angiographies (CAs) and 20 percutaneous transluminal coronary angioplasties (PTCAs) in five European centres. X-ray equipment, radiation protection measures used and the dose delivered to the patient in terms of dose-area product (DAP) were recorded so as to subsequently associate them with operator's dose. The range of staff doses noted for the same TLD position, centre and procedure type emphasizes the importance of protective measures and technical characteristics of x-ray equipment. Correlation of patient's DAP with staff shoulder dose is moderate whereas correlation of patient's DAP with staff foot dose is poor in both CA and PTCA. Therefore, it is difficult to predict operator's dose from patient's DAP mainly due to the different use of protective measures. A preliminary occupational dose constraint value was defined by calculating cardiologists' annual effective dose and found to be 0.6 mSv.

  16. SU-G-BRB-15: Verifications of Absolute and Relative Dosimetry of a Novel Stereotactic Breast Device: GammaPodTM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, S; Mossahebi, S; Yi, B

    Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breastmore » cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient treatments. An absolute dosimetry and dosimetric verification protocols were successfully created.« less

  17. Comparison of doses to the rectum derived from treatment planning system with in-vivo dose values in vaginal vault brachytherapy using cylinder applicators

    PubMed Central

    Obed, Rachel Ibhade; Akinlade, Bidemi Idayat; Ntekim, Atara

    2015-01-01

    Purpose In-vivo measurements to determine doses to organs-at-risk can be an essential part of brachytherapy quality assurance (QA). This study compares calculated doses to the rectum with measured dose values as a means of QA in vaginal vault brachytherapy using cylinder applicators. Material and methods At the Department of Radiotherapy, University College Hospital (UCH), Ibadan, Nigeria, intracavitary brachytherapy (ICBT) was delivered by a GyneSource high-dose-rate (HDR) unit with 60Co. Standard 2D treatment plans were created with HDR basic 2.6 software for prescription doses 5-7 Gy at points 5 mm away from the posterior surface of vaginal cylinder applicators (20, 25, and 30 mm diameters). The LiF:Mg, Ti thermoluminescent dosimeter rods (1 x 6 mm) were irradiated to a dose of 7 Gy on Theratron 60Co machine for calibration purpose prior to clinical use. Measurements in each of 34 insertions involving fourteen patients were performed with 5 TLD-100 rods placed along a re-usable rectal marker positioned in the rectum. The dosimeters were read in Harshaw 3500 TLD reader and compared with doses derived from the treatment planning system (TPS) at 1 cm away from the dose prescription points. Results The mean calculated and measured doses ranged from 2.1-3.8 Gy and 1.2-5.6 Gy with averages of 3.0 ± 0.5 Gy and 3.1 ± 1.1 Gy, respectively, for treatment lengths 2-8 cm along the cylinder-applicators. The mean values correspond to 48.9% and 50.8% of the prescribed doses, respectively. The deviations of the mean in-vivo doses from the TPS values ranged from –1.9 to 2.1 Gy with a p-value of 0.427. Conclusions This study was part of efforts to verify rectal dose obtained from the TPS during vaginal vault brachytherapy. There was no significant difference in the dose to the rectum from the two methods of measurements. PMID:26816506

  18. WE-G-BRB-08: TG-51 Calibration of First Commercial MRI-Guided IMRT System in the Presence of 0.35 Tesla Magnetic Field.

    PubMed

    Goddu, S; Green, O Pechenaya; Mutic, S

    2012-06-01

    The first real-time-MRI-guided radiotherapy system has been installed in a clinic and it is being evaluated. Presence of magnetic field (MF) during radiation output calibration may have implications on ionization measurements and there is a possibility that standard calibration protocols may not be suitable for dose measurements for such devices. In this study, we evaluated whether a standard calibration protocol (AAPM- TG-51) is appropriate for absolute dose measurement in presence of MF. Treatment delivery of the ViewRay (VR) system is via three 15,000Ci Cobalt-60 heads positioned 120-degrees apart and all calibration measurements were done in the presence of 0.35T MF. Two ADCL- calibrated ionization-chambers (Exradin A12, A16) were used for TG-51 calibration. Chambers were positioned at 5-cm depth, (SSD=105cm: VR's isocenter), and the MLC leaves were shaped to a 10.5cm × 10.5 cm field size. Percent-depth-dose (PDD) measurements were performed for 5 and 10 cm depths. Individual output of each head was measured using the AAPM- TG51 protocol. Calibration accuracy for each head was subsequently verified by Radiological Physics Center (RPC) TLD measurements. Measured ion-recombination (Pion) and polarity (Ppol) correction factors were less-than 1.002 and 1.006, respectively. Measured PDDs agreed with BJR-25 within ±0.2%. Maximum dose rates for the reference field size at VR's isocenter for heads 1, 2 and 3 were 1.445±0.005, 1.446±0.107, 1.431±0.006 Gy/minute, respectively. Our calibrations agreed with RPC- TLD measurements within ±1.3%, ±2.6% and ±2.0% for treatment-heads 1, 2 and 3, respectively. At the time of calibration, mean activity of the Co-60 sources was 10,800Ci±0.1%. This study shows that the TG- 51 calibration is feasible in the presence of 0.35T MF and the measurement agreement is within the range of results obtainable for conventional treatment machines. Drs. Green, Goddu, and Mutic served as scientific consultants for ViewRay, Inc. Dr. Mutic is on the clinical focus group for ViewRay, Inc., and his spouse holds shares in ViewRay, Inc. © 2012 American Association of Physicists in Medicine.

  19. LABRADOR: a learning autonomous behavior-based robot for adaptive detection and object retrieval

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian; Moseley, Mark; Brookshire, Jonathan

    2013-01-01

    As part of the TARDEC-funded CANINE (Cooperative Autonomous Navigation in a Networked Environment) Program, iRobot developed LABRADOR (Learning Autonomous Behavior-based Robot for Adaptive Detection and Object Retrieval). LABRADOR was based on the rugged, man-portable, iRobot PackBot unmanned ground vehicle (UGV) equipped with an explosives ordnance disposal (EOD) manipulator arm and a custom gripper. For LABRADOR, we developed a vision-based object learning and recognition system that combined a TLD (track-learn-detect) filter based on object shape features with a color-histogram-based object detector. Our vision system was able to learn in real-time to recognize objects presented to the robot. We also implemented a waypoint navigation system based on fused GPS, IMU (inertial measurement unit), and odometry data. We used this navigation capability to implement autonomous behaviors capable of searching a specified area using a variety of robust coverage strategies - including outward spiral, random bounce, random waypoint, and perimeter following behaviors. While the full system was not integrated in time to compete in the CANINE competition event, we developed useful perception, navigation, and behavior capabilities that may be applied to future autonomous robot systems.

  20. 3D dosimetry by optical-CT scanning

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2006-12-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.

  1. Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation

    NASA Astrophysics Data System (ADS)

    Best, S.; Ralston, A.; Suchowerska, N.

    2005-12-01

    The OneDose™ Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose™ dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose™ patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  2. Clinical application of the OneDose Patient Dosimetry System for total body irradiation.

    PubMed

    Best, S; Ralston, A; Suchowerska, N

    2005-12-21

    The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  3. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  4. Innovations in Measuring Peer Conflict Resolution Knowledge in Children with LI: Exploring the Accessibility of a Visual Analogue Rating Scale

    ERIC Educational Resources Information Center

    Campbell, Wenonah N.; Skarakis-Doyle, Elizabeth

    2011-01-01

    This preliminary study explored peer conflict resolution knowledge in children with and without language impairment (LI). Specifically, it evaluated the utility of a visual analogue scale (VAS) for measuring nuances in such knowledge. Children aged 9-12 years, 26 with typically developing language (TLD) and 6 with LI, completed a training protocol…

  5. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  6. Thermoluminescent response of LiF:Mg, Ti to low energy electrons

    NASA Astrophysics Data System (ADS)

    Mercado-Uribe, H.; Brandan, M. E.

    2000-10-01

    The dose response curve of LiF:Mg, Ti (TLD-100) exposed to 20 keV electrons from a scanning electron microscope has been measured. The total TL signal shows linear-supralinear behavior. The preliminary results indicate the onset of supralinearity at doses close to 70 Gy. The supralinear response is due to the increasingly important contribution of the high temperature peaks.

  7. ESR/Alanine gamma-dosimetry in the 10-30 Gy range.

    PubMed

    Fainstein, C; Winkler, E; Saravi, M

    2000-05-01

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for gamma-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in gamma-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  8. Shielding Requirements for an Energy-Recovery Linac Free Electron Laser

    DTIC Science & Technology

    2011-12-01

    Radiofrequency TLD Thermo Luminescent Dosimeter xviii THIS PAGE INTENTIONALLY LEFT BLANK xix ACKNOWLEDGMENTS I would like to first thank Professor...FOR AN ENERGY- RECOVERY LINAC FREE ELECTRON LASER by Robert E. Peterson December 2011 Thesis Co-Advisors: William B. Colson Keith...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Shielding Requirements for an Energy-Recovery Linac Free Electron Laser 5. FUNDING NUMBERS 6

  9. USAF Summer Research Program - 1993 High School Apprenticeship Program Final Reports, Volume 12, Armstrong Laboratory

    DTIC Science & Technology

    1993-12-01

    on Panasonic TLD . Panasonic Industrial Company; Secaucus, New Jersey. 5. Thurlow, Ronald M. "Neutron Dosimetry Using a Panasonic Thermoluminescent...Radiation Dosimetry Branch Brooks Air Force Base San Antonio, Texas 78235 Final Report for: AFOSR Summer Research Program Armstrong Laboratory Sponsored...Associate Radiation Dosimetry Branch Armstrong Laboratory Abstract In an attempt to improve personnel monitoring for neutron emissions, Panasonic has

  10. Nuclear Weapon Accident Response Procedures (NARP) Manual

    DTIC Science & Technology

    1990-09-01

    5-E-13 5-E-5 Field M onitoring Data Log ................................................ 5-E-15 5-E-6 TLD Measurement Collection... Dosimetry Program and the USAF Master Radiation Exposure Registery, Oct 73. (u) OPNAVINST 3440.15, Minimum Criteria and Standards for Navy and Marine...ordnance to prevent an unacceptable detonation. Dosimetry . The measurement of radiation doses as it applies to both the devices used idosimeters) and to the

  11. ``In Vivo'' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    NASA Astrophysics Data System (ADS)

    González-Azcorra, S. A.; Mota-García, A.; Poitevín-Chacón, M. A.; Santamaría-Torruco, B. J.; Rodríguez-Ponce, M.; Herrera-Martínez, F. P.; Gamboa de Buen, I.; Ruíz-Trejo, C.; Buenfil, A. E.

    2008-08-01

    In this prospective study, rectal dose was measured "in vivo" using TLD-100 crystals (3×3×1 mm3), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerología (INCan).

  12. 30MM GAU-8/A Plastic Frangible Projectile

    DTIC Science & Technology

    1977-03-01

    20. ABSTRACT fContlnuo on rmvert» tld» 11 nacaaaary and Idontlly by block numbmr) ■feA 30mm target practice (TP) projectile, designed to break...contract to solve these problems. As a result, the Air Force has decided to delay further development of this projectile design concept...Section Title I INTRODUCTION II TECHNICAL DISCUSSION Design Parameters Final Projectile Design Design Evolution Acceptance Testing III

  13. Visuo-spatial processing and executive functions in children with specific language impairment

    PubMed Central

    Marton, Klara

    2007-01-01

    Background Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims The purpose of the study was to examine executive functions and visuo-spatial processing and working memory in children with SLI and in their typically developing peers (TLD). Experiment 1 included 40 children with SLI (age=5;3–6;10) and 40 children with TLD (age=5;3–6;7); Experiment 2 included 25 children with SLI (age=8;2–11;2) and 25 children with TLD (age=8;3–11;0). It was examined whether the difficulties that children with SLI show in verbal working memory tasks are also present in visuo-spatial working memory. Methods & Procedures In Experiment 1, children's performance was measured with three visuo-spatial processing tasks: space visualization, position in space, and design copying. The stimuli in Experiment 2 were two widely used neuropsychological tests: the Wisconsin Card Sorting Test — 64 (WCST-64) and the Tower of London test (TOL). Outcomes & Results In Experiment 1, children with SLI performed more poorly than their age-matched peers in all visuo-spatial working memory tasks. There was a subgroup within the SLI group that included children whose parents and teachers reported a weakness in the child's attention control. These children showed particular difficulties in the tasks of Experiment 1. The results support Engle's attention control theory: individuals need good attention control to perform well in visuo-spatial working memory tasks. In Experiment 2, the children with SLI produced more perseverative errors and more rule violations than their peers. Conclusions Executive functions have a great impact on SLI children's working memory performance, regardless of domain. Tasks that require an increased amount of attention control and executive functions are more difficult for the children with SLI than for their peers. Most children with SLI scored either below average or in the low average range on the neuropsychological tests that measured executive functions. PMID:17852522

  14. Characterization of MOSFET dosimeters for low‐dose measurements in maxillofacial anthropomorphic phantoms

    PubMed Central

    Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-01-01

    The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low. PACS number: 87.50.wj PMID:26219008

  15. Characterization of Low-Energy Photon-Emitting Brachytherapy Sources with Modified Strengths for Applications in Focal Therapy

    NASA Astrophysics Data System (ADS)

    Reed, Joshua L.

    Permanent implants of low-energy photon-emitting brachytherapy sources are used to treat a variety of cancers. Individual source models must be separately characterized due to their unique geometry, materials, and radionuclides, which all influence their dose distributions. Thermoluminescent dosimeters (TLDs) are often used for dose measurements around low-energy photon-emitting brachytherapy sources. TLDs are typically calibrated with higher energy sources such as 60Co, which requires a correction for the change in the response of the TLDs as a function of photon energy. These corrections have historically been based on TLD response to x ray bremsstrahlung spectra instead of to brachytherapy sources themselves. This work determined the TLD intrinsic energy dependence for 125I and 103Pd sources relative to 60Co, which allows for correction of TLD measurements of brachytherapy sources with factors specific to their energy spectra. Traditional brachytherapy sources contain mobile internal components and large amounts of high-Z material such as radio-opaque markers and titanium encapsulations. These all contribute to perturbations and uncertainties in the dose distribution around the source. The CivaString is a new elongated 103Pd brachytherapy source with a fixed internal geometry, polymer encapsulation, and lengths ranging from 1 to 6 cm, which offers advantages over traditional source designs. This work characterized the CivaString source and the results facilitated the formal approval of this source for use in clinical treatments. Additionally, the accuracy of a superposition technique for dose calculation around the sources with lengths >1 cm was verified. Advances in diagnostic techniques are paving the way for focal brachytherapy in which the dose is intentionally modulated throughout the target volume to focus on subvolumes that contain cancer cells. Brachytherapy sources with variable longitudinal strength (VLS) are a promising candidate for use in focal brachytherapy treatments given their customizable activity distributions, although they are not yet commercially available. This work characterized five prototype VLS sources, developed methods for clinical calibration and verification of these sources, and developed an analytical dose calculation algorithm that scales with both source length and VLS.

  16. SU-E-T-263: Luminescent Dosimetry to Measure the Out-Of-Field Low and High LET Dose Components in High Energy Photon and Proton Therapy Beams.

    PubMed

    Reft, C

    2012-06-01

    Luminescent dosimetry using thermoluminescent detectors (TLDs) and optically stimulated luminescent detectors (OSLDs) were used in mixed radiation fields containing both low LET (photons and protons) and high LET (neutrons)components to obtain their out-of-field absorbed dose, dose equivalent and quality factor. LiF Thermoluminescent Detectors (TLDs) 600 and 700 chips with dimensions 0.31×0.31×0.038 cm 3 were used in a 25.4 cm diameter Bonner sphere centered 42 cm from the isocenter of a 15×x15 cm 2 field to measure the secondary doses for 10, 15 and 18 MV photons and a 200 MeV proton therapy beam. From the sensitivity difference to LET radiation between the210 and 280 C peaks in the glow curve, the areas under the peaks were used to obtain the absorbed dose, dose equivalent and QF of the secondary radiation. The OSLD detector measured the low LET dose component to compare with the TLD dose measurement. The neutron calibration of the TLDs was obtained from an Am-Be source at the Argonne National Laboratory. The photon and proton TLD and OSLD calibrations were obtained in 6 MV and 200 MeV beams, respectively. From the two-peak analysis of the TLDs in the Bonner sphere the ratios of the neutron dose to photon dose were 0.001, 0.014 and 0.17 for 10, 15 and 18 MV, respectively. The low LET OSLD measurements agreed within 10% of the TLD results. From the dose equivalent measurements the QFs (+/-14%) obtained were 4.5, 3.9 and 4.0 for these beam energies. For the 200 MeV proton beam the ratio of neutron to proton dose was 0.28 with a measured QF of 13. Luminescent detectors in a Bonner Sphere provide measurements of the secondary photon, proton and neutron doses and provide an estimate of the neutron QF. © 2012 American Association of Physicists in Medicine.

  17. Human cell exposure assays of Bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores.

    PubMed Central

    Tayabali, A F; Seligy, V L

    2000-01-01

    Most contemporary bioinsecticides are derived from scaled-up cultures of Bacillus thuringiensis subspecies israelensis (Bti) and kurstaki (Btk), whose particulate fractions contain mostly B. thuringiensis spores (> 10(12)/L) and proteinaceous aggregates, including crystal-like parasporal inclusion bodies (PIB). Based on concerns over relatedness to B. cereus-group pathogens, we conducted extensive testing of B. thuringiensis (BT) products and their subfractions using seven human cell types. The Bti/Btk products generated nonspecific cytotoxicities involving loss in bioreduction, cell rounding, blebbing and detachment, degradation of immunodetectable proteins, and cytolysis. Their threshold dose (Dt approximately equal.5 times 10(-14)% BT product/target cell) equated to a single spore and a target cell half-life (tLD(50)) of approximately 16 hr. At Dts > 10(4), the tLD(50) rapidly shifted to < 4 hr; with antibiotic present, no component, including PIB-related [delta]-endotoxins, was cytolytic up to an equivalent of approximately 10(9 )Dt. The cytolytic agent(s) within the Bti/Btk-vegetative cell exoprotein (VCP) pool is an early spore outgrowth product identical to that of B. cereus and acting possibly by arresting protein synthesis. No cytolytic effects were seen with VCP from B. subtilis and Escherichia coli. These data, including recent epidemiologic work indicate that spore-containing BT products have an inherent capacity to lyse human cells in free and interactive forms and may also act as immune sensitizers. To critically impact at the whole body level, the exposure outcome would have to be an uncontrolled infection arising from intake of Btk/Bti spores. For humans, such a condition would be rare, arising possibly in equally rare exposure scenarios involving large doses of spores and individuals with weak or impaired microbe-clearance capacities and/or immune response systems. PMID:11049810

  18. Efficacy of a Radiation Absorbing Shield in Reducing Dose to the Interventionalist During Peripheral Endovascular Procedures: A Single Centre Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, S.; Mirza, M.; Thakorlal, A.

    PurposeThis prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures.Materials and MethodsA commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used tomore » measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated.ResultsTLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142).ConclusionInitial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator’s body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.« less

  19. Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies

    PubMed Central

    Izewska, Joanna; Wesolowska, Paulina; Azangwe, Godfrey; Followill, David S.; Thwaites, David I.; Arib, Mehenna; Stefanic, Amalia; Viegas, Claudio; Suming, Luo; Ekendahl, Daniela; Bulski, Wojciech; Georg, Dietmar

    2016-01-01

    Abstract The International Atomic Energy Agency (IAEA) has a long tradition of supporting development of methodologies for national networks providing quality audits in radiotherapy. A series of co-ordinated research projects (CRPs) has been conducted by the IAEA since 1995 assisting national external audit groups developing national audit programs. The CRP ‘Development of Quality Audits for Radiotherapy Dosimetry for Complex Treatment Techniques’ was conducted in 2009–2012 as an extension of previously developed audit programs. Material and methods. The CRP work described in this paper focused on developing and testing two steps of dosimetry audit: verification of heterogeneity corrections, and treatment planning system (TPS) modeling of small MLC fields, which are important for the initial stages of complex radiation treatments, such as IMRT. The project involved development of a new solid slab phantom with heterogeneities containing special measurement inserts for thermoluminescent dosimeters (TLD) and radiochromic films. The phantom and the audit methodology has been developed at the IAEA and tested in multi-center studies involving the CRP participants. Results. The results of multi-center testing of methodology for two steps of dosimetry audit show that the design of audit procedures is adequate and the methodology is feasible for meeting the audit objectives. A total of 97% TLD results in heterogeneity situations obtained in the study were within 3% and all results within 5% agreement with the TPS predicted doses. In contrast, only 64% small beam profiles were within 3 mm agreement between the TPS calculated and film measured doses. Film dosimetry results have highlighted some limitations in TPS modeling of small beam profiles in the direction of MLC leave movements. Discussion. Through multi-center testing, any challenges or difficulties in the proposed audit methodology were identified, and the methodology improved. Using the experience of these studies, the participants could incorporate the auditing procedures in their national programs. PMID:26934916

  20. The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations.

    PubMed

    Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H

    2009-03-01

    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.

  1. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    PubMed

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Preparation and Current Situation of Proton-ICCHIBAN-2 Experiment

    NASA Astrophysics Data System (ADS)

    Uchihori, Yukio; Yasuda, Nakahiro; Kitamura, H.; Kodaira, S.; Benton, Eric; Hajek, Michael; Berger, Thomas; Jadrnickova, Iva; Ploc, Ondrej

    The ICCHIBAN (Inter Comparison for Cosmicrays with Heavy Ion Beams at NIRS) working group has organized and performed various ICCHIBAN runs for active and passive radiation detectors at HIMAC, NIRS, Japan, Loma Linda and Brookhaven, USA and CERN, Switzer-land since the start of the ICCHIBAN project in the year 2002. One of the main focus points of this project is to understand the response of the applied detector systems (either active or passive) for personal and area dosimetry in space environment to a simulated sub-set of the space radiation environment, focusing on the heavy ion response. This is of special importance for the further intercomparison of space radiation data gathered by various international in-stitutes and universities for space radiation experiments as MATROSHKA, DOSIS, DOBIES, BRADOS, MATROSHKA-R etc. The ICCHIBAN experiments have created a big database of response data, especially for all the different passive radiation detectors and detector materials (Thermoluminescence (TLD) and Optical Luminescence (OSL)) over the last 7 years, resulting in a better understanding of how and why we still have differences in the measurement results from common space experiments -as the Space ICCHIBAN 2 experiment. One of the reasons why for the differences in the TLD/OSL results is the lack of intercomparison and response data for low LET particles up to around 10 keV/m, especially protons. Due to the fact, that the main contribution to absorbed dose in low earth orbit is due to protons, the ICCHIBAN working group has started the set-up of a Proton ICCHIBAN intercomparison experiment at NIRS. The Proton ICCHIBAN run has been performed at the cyclotron at NIRS, Chiba in February 2010. 15 institutes from 12 countries sent or brought their dosimeters and exposed them to 40 and 70 MeV proton beams with the same doses and exposure conditions. In this paper, the experiment procedures and current situation of the intercomparision experiments will be shown.

  3. Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies.

    PubMed

    Izewska, Joanna; Wesolowska, Paulina; Azangwe, Godfrey; Followill, David S; Thwaites, David I; Arib, Mehenna; Stefanic, Amalia; Viegas, Claudio; Suming, Luo; Ekendahl, Daniela; Bulski, Wojciech; Georg, Dietmar

    2016-07-01

    The International Atomic Energy Agency (IAEA) has a long tradition of supporting development of methodologies for national networks providing quality audits in radiotherapy. A series of co-ordinated research projects (CRPs) has been conducted by the IAEA since 1995 assisting national external audit groups developing national audit programs. The CRP 'Development of Quality Audits for Radiotherapy Dosimetry for Complex Treatment Techniques' was conducted in 2009-2012 as an extension of previously developed audit programs. The CRP work described in this paper focused on developing and testing two steps of dosimetry audit: verification of heterogeneity corrections, and treatment planning system (TPS) modeling of small MLC fields, which are important for the initial stages of complex radiation treatments, such as IMRT. The project involved development of a new solid slab phantom with heterogeneities containing special measurement inserts for thermoluminescent dosimeters (TLD) and radiochromic films. The phantom and the audit methodology has been developed at the IAEA and tested in multi-center studies involving the CRP participants. The results of multi-center testing of methodology for two steps of dosimetry audit show that the design of audit procedures is adequate and the methodology is feasible for meeting the audit objectives. A total of 97% TLD results in heterogeneity situations obtained in the study were within 3% and all results within 5% agreement with the TPS predicted doses. In contrast, only 64% small beam profiles were within 3 mm agreement between the TPS calculated and film measured doses. Film dosimetry results have highlighted some limitations in TPS modeling of small beam profiles in the direction of MLC leave movements. Through multi-center testing, any challenges or difficulties in the proposed audit methodology were identified, and the methodology improved. Using the experience of these studies, the participants could incorporate the auditing procedures in their national programs.

  4. Modeling of the metallic port in breast tissue expanders for photon radiotherapy.

    PubMed

    Yoon, Jihyung; Xie, Yibo; Heins, David; Zhang, Rui

    2018-03-30

    The purpose of this study was to model the metallic port in breast tissue expanders and to improve the accuracy of dose calculations in a commercial photon treatment planning system (TPS). The density of the model was determined by comparing TPS calculations and ion chamber (IC) measurements. The model was further validated and compared with two widely used clinical models by using a simplified anthropomorphic phantom and thermoluminescent dosimeters (TLD) measurements. Dose perturbations and target coverage for a single postmastectomy radiotherapy (PMRT) patient were also evaluated. The dimensions of the metallic port model were determined to be 1.75 cm in diameter and 5 mm in thickness. The density of the port was adjusted to be 7.5 g/cm 3 which minimized the differences between IC measurements and TPS calculations. Using the simplified anthropomorphic phantom, we found the TPS calculated point doses based on the new model were in agreement with TLD measurements within 5.0% and were more accurate than doses calculated based on the clinical models. Based on the photon treatment plans for a real patient, we found that the metallic port has a negligible dosimetric impact on chest wall, while the port introduced significant dose shadow in skin area. The current clinical port models either overestimate or underestimate the attenuation from the metallic port, and the dose perturbation depends on the plan and the model in a complex way. TPS calculations based on our model of the metallic port showed good agreement with measurements for all cases. This new model could improve the accuracy of dose calculations for PMRT patients who have temporary tissue expanders implanted during radiotherapy and could potentially reduce the risk of complications after the treatment. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  6. Verification of Production Hole Quality. Volume 2

    DTIC Science & Technology

    1977-11-01

    Angular Position Axial Posi t ion Bottom #1 n_ gji #5 0° 7>0 LL± ^5° 90° -2,0 2,0 2X 180° 4jl_ MJ2- 225" ML iJ2 270° a*. 311 £.0...2 CenterdrMI; igM in. pilot drill; Group 1, Omark Drill Reamer (TLD20’»OARl-5) Spindle, rpm .^ gJI Feed: MAA/D - C.S

  7. Post Remedial Action Report, Lansdowne Radioactive Residence Complex, Dismantlement/Removal Project. Volume 1. Government Operations

    DTIC Science & Technology

    1990-06-01

    25 5.1.1.2 Physical Examination ....................................... 26 5.1.1.3 In- Vivo lionitoring...thermoluminescent dosimeters ( TLD ) used on the Lansdowne project utilized a phosphor sensitive to ionizing radiation. The phosphor stored the energy of the...deposited in the body. in- vivo counting Measurements of internal radioactivity made at the surface (outside) of the body and based on the fact that

  8. European Scientific Notes. Volume 34, Number 10,

    DTIC Science & Technology

    1980-10-31

    vivo use because of its short half- According to Pfannenstiel there are life, its favorable photon emissions more than 50 different forms of known thy...of medical professionals from 3 ity, biological half-lives, dosimetry countries. (Moses A. Greenfield) (absorbed dose), and the differential di...for the Advancement The crash was a serious blow for of Siene wre tld hatther isa mjor European scientists including Britain’s ga tatisrapidly

  9. The radiation dose from a proposed measurement of arsenic and selenium in human skin

    NASA Astrophysics Data System (ADS)

    Gherase, Mihai R.; Mader, Joanna E.; Fleming, David E. B.

    2010-09-01

    Dose measurements following 10 min irradiations with a portable x-ray fluorescence spectrometer composed of a miniature x-ray tube and a silicon PiN diode detector were performed using thermoluminescent dosimeters consisting of LiF:Mg,Ti chips of 3 mm diameter and 0.4 mm thickness. The table-top setup of the spectrometer was used for all measurements. The setup included a stainless steel lid which served as a radiation shield. Two rectangular polyethylene skin/soft tissue phantoms with two cylindrical plaster of Paris bone phantoms were used to study the effect of x-ray beam attenuation and backscatter on the measured dose. Eight different irradiation experiments were performed. The average dose rate values measured with TLD chips within a 1 × 1 cm2 area were between 4.8 and 12.8 mGy min-1. The equivalent dose for a 1 × 1 cm2 skin area was estimated to be 13.2 mSv. The maximum measured dose rate values with a single TLD chip were between 7.5 and 25.1 mGy min-1. The effective dose corresponding to a proposed arsenic/selenium skin measurement was estimated to be 0.13 µSv for a 2 min irradiation.

  10. The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck

    NASA Astrophysics Data System (ADS)

    Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.

    2006-03-01

    The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.

  11. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds

    NASA Astrophysics Data System (ADS)

    Gowda, Shivalinge; Krishnaveni, S.; Yashoda, T.; Umesh, T. K.; Gowda, Ramakrishna

    2004-09-01

    Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO_3, CaSO_4, CaSO_4\\cdot2H_2O, SrSO_4, CdSO_4, BaSO_4, C_4H_6BaO_4 and 3CdSO_4\\cdot8H_2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.

  12. [Impact of exposure dose reduction of radiation treatment planning CT using low tube voltage technique].

    PubMed

    Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji

    2015-04-01

    The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.

  13. K3Na(SO4)2 : Eu nanoparticles for high dose of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Sahare, P. D.; Ranjan, Ranju; Salah, Numan; Lochab, S. P.

    2007-02-01

    K3Na(SO4)2 : Eu nanocrystalline powder was synthesized by the chemical co-precipitation method. The x-ray diffraction pattern of the nanomaterials shows a hexagonal structure for its crystals having grain size of ~28 nm. Transmission electron microscopy revealed that the K3Na(SO4)2 : Eu nanoparticles are single crystals with almost a uniform shape and size. Thermoluminescence (TL) was taken after irradiating the samples at various exposures of γ-rays from a 60Co source. A prominent TL glow peak is observed at 423 K along with three small peaks/shoulders at around 382, 460 and 509 K. The observed TL sensitivity of the prepared nanocrystalline powder is around 4 times more than that of LiF : Mg,Ti (TLD-100) phosphor. The 423 K peak of the nanomaterial phosphor eventually shows a near linear response with exposures increasing up to very high values (as high as 70 kGy), where all the other TLD phosphors saturate. This property along with its other desired properties such as high sensitivity, relatively simple glow curve structure and low fading makes the nanocrystalline phosphor a suitable dosimeter to estimate low as well as high exposures of γ-rays. TL analysis using the glow curve deconvolution technique was also done for determining different trapping parameters.

  14. An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological

    PubMed Central

    Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA

    2016-01-01

    Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121

  15. An interlaboratory comparison of dosimetry for a multi-institutional radiobiological research project: Observations, problems, solutions and lessons learned.

    PubMed

    Seed, Thomas M; Xiao, Shiyun; Manley, Nancy; Nikolich-Zugich, Janko; Pugh, Jason; Van den Brink, Marcel; Hirabayashi, Yoko; Yasutomo, Koji; Iwama, Atsushi; Koyasu, Shigeo; Shterev, Ivo; Sempowski, Gregory; Macchiarini, Francesca; Nakachi, Kei; Kunugi, Keith C; Hammer, Clifford G; Dewerd, Lawrence A

    2016-01-01

    An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.

  16. Dose measurement using Al2O3 dosimeter in comparison to LiF:Mg,Ti dosimeter and ionization chamber at low and high energy x-ray

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Yahya, Muhammad Hadzmi; Rosnan, Muhammad Syazwan; Abdullah, Reduan; Kadir, Ahmad Bazlie Abdul

    2017-01-01

    The dose measurement using Al2O3 OSL dosimeter (OSLD) was carried out at low and high energy x-ray. The dose at low energy x-ray was measured at 40, 71 and 125 kVp x-ray energies. The dose ar high energy x-ray was measured at 6 and 10 MV x-ray energies measured at the depth of maximum dose (Zmax). The results were compared to that in ionization chamber and LiF: Mg,Ti thermoluminescent dosimeters (TLD100). The results showed that the dose of OSLD were less in agreement to ionization chamber compared to that in TLD100. The dose of OSLD however was in good agreement to that in ionization chamber at high energy x-ray. The dose measured using OSLD were found to be more consistence at high energy x-ray shown by the standard deviation of the readings. The measurement of x2 showed that the readings of OSLD were close to that in ionization chamber with values of 2.21 and 4.63 for 6 and 10 MV respectively. The results indicated that OSLD is more suitable for dose measurement at high energy x-ray.

  17. High sensitivity flat SiO2 fibres for medical dosimetry

    NASA Astrophysics Data System (ADS)

    Abdul Sani, Siti. F.; Alalawi, Amani I.; Azhar, Hairul A. R.; Amouzad Mahdiraji, Ghafour; Tamchek, Nizam; Nisbet, A.; Maah, M. J.; Bradley, D. A.

    2014-11-01

    We describe investigation of a novel undoped flat fibre fabricated for medical radiation dosimetry. Using high energy X-ray beams generated at a potential of 6 MV, comparison has been made of the TL yield of silica flat fibres, TLD-100 chips and Ge-doped silica fibres. The flat fibres provide competitive TL yield to that of TLD-100 chips, being some 100 times that of the Ge-doped fibres. Pt-coated flat fibres have then been used to increase photoelectron production and hence local dose deposition, obtaining significant increase in dose sensitivity over that of undoped flat fibres. Using 250 kVp X-ray beams, the TL yield reveals a progressive linear increase in dose for Pt thicknesses from 20 nm up to 80 nm. The dose enhancement factor (DEF) of (0.0150±0.0003) nm-1 Pt is comparable to that obtained using gold, agreeing at the 1% level with the value expected on the basis of photoelectron generation. Finally, X-ray photoelectron spectroscopy (XPS) has been employed to characterize the surface oxidation state of the fibre medium. The charge state of Si2p was found to lie on 103.86 eV of binding energy and the atomic percentage obtained from the XPS analysis is 22.41%.

  18. Assessment of GeB doped SiO2 optical fiber for the application of remote radiation sensing system

    NASA Astrophysics Data System (ADS)

    Alawiah, A.; Fadhli, M. M.; Bauk, S.; Abdul-Rashid, H. A.; Maah, M. J.

    2013-12-01

    The research and development efforts on the silica (SiO2) optical fiber for application in radiation sensing and other dosimetry field have become quite active. The widely used LiF based dosimeter (TLD) has shown a relatively low reproducibility and there is a time delay in dose assessment which loses its capability as direct real-time dose assessment dosimeters unlike diodes. The macroscopic size of the optical fiber generally does not allow direct in vivo dose sensing in the inner organ for radiotherapy and medical imaging. A flat optical fiber (FF) with nominal dimensions of (0.08 x10 x 10) mm3 of pure silica SiO2 and GeO2 with Boron doped silica fiber SiO2 was selected for this research. The Germanium was used a dopant to enhance the flat optical fiber to reach much higher responsiveness and dose sensitivity in high energy and high dose irradiation. Together with this combination, both TLD dimension and dose assessment issues was hoped to be overcome. The research conducted by comparing the response of pure silica SiO2 flat optical fiber with a GeO2 with Boron doped silica SiO2 flat optical fiber. The FF sample was annealed at 400°C for one hour before irradiated. Kinetic parameters and dosimetric glow curve of TL response and sensitivity were studied with respect to the electron beam of high dose of micro beam irradiation of 1.0 kGy, 5.0 kGy, 10.0 kGy, 50.0 kGy, 100.0 kGy, 500.0 kGy, and 1.0 MGy using Singapore Synchrotron Light Source's (PCIT) beamline. The PCIT operates at 500mA current with real time current range from 90-100mA, dose rate of 3.03 MGy/hour and energy at 8.9KeV. The source to Source Surface Distance (SSD) was at 6.0 cm, with a field size of 20mm × 8mm diameter of a half circle. The TL response was measured using a TLD reader Harshaw Model 3500. The Time-Temperature-Profile (TTP) of the reader was obtained to a preheat temperature of 150 °C for 5 s, the output signal being acquired at a temperature ramprate of 35 °Cs-1, acquisition time of 10 s and a maximum temperature of 400 °C each of the FF samples. All reading was taken under N2 gas flow, suppressing oxidation and potential triboluminescence. The proposed FF shows the excellent TL response for high energy irradiation and good reproducibility and exhibits a very low rate of fading and low variation background signal. From these results, the proposed FF can be used as a radiation dosimeter in remote radiation sensing and favorably compares with the widely used of LiF based dosimeter on common medical radiotherapy application.

  19. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    PubMed

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  20. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    PubMed Central

    Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto

    2015-01-01

    Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004

  1. Intense Relativistic Electron Beam Investigations

    DTIC Science & Technology

    1979-04-01

    facility early it. the second year of the contract. An extensive X-ray radiation survey using TLD dosimeters indicated the need for some additional... Dosimeter for 105 to 107 Roentgen Range," Analytical Chemistry 28(10), 1580-2 (1956). 9. "Search and Discovery -- Update on free- electron lasers and...AFOSR-TR-7-3t f FINAL REPORT TO THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 00• on INTENSE RELATIVISTIC ELECTRON BEAM INVESTIGAZIONS AFOSR Contract

  2. Computer Simulation of Breast Cancer Screening

    DTIC Science & Technology

    2001-07-01

    21. Tompkins PA, Abreu CC, Carroll FE, Xiao therapeutic medical physics. Med Phys 14. Gentry JR, DeWerd LA. TLD measure- QF, MacDonald CA. Use of...capillary op- 1996; 23:1997-2005. ments of in vivo mammographic expo- tics as a beam intensifier for a Compton 28. Hammerstein GR, Miller DW, White DR...cm), and was only poorly correlated thicker slices. with breast thickness (r2 0.159). The For comparison images and dosimetry , magnification factor

  3. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  4. Experimental Determination of the Low-Energy Spectral Component of Cobalt-60 Sources

    DTIC Science & Technology

    1986-04-01

    dependence of the TLD detectors and the dose enhancement due to the lack of electronic equilibrium have been included in the figure. A series of...energy spectrum of cobalt,60 ir- radiators is essential to the proper interpretation of dosimetry and device test data in radiation response testing...of electronic devices and circuits. It is shown that the relative magnitude of the low-energy spec- tral component of cobalt󈨀 gamma radiation can be

  5. United States Air Force Summer Research Program -- 1993 Summer Research Program Final Reports. Volume 12. Armstrong Laboratory

    DTIC Science & Technology

    1993-01-01

    Panasonic TLD . Panasonic Industrial Company; Secaucus, New Jersey. 5. Thurlow, Ronald M. "Neutron Dosimetry Using a Panasonic Thermoluminescent Dosimeter." A...steps 8-12. 29-15 THE BUILDING OF THE USAF PANASONIC UD-809AS ALGORITHM Katherine M. Arnold Research Associate Radiation Dosimetry Branch Brooks Air...Research August 1993 30-1 THE BUILDING OF THE USAF PANASONIC UD-809AS ALGORITHM Katherine M. Arnold Research Associate Radiation Dosimetry Branch

  6. The Belgian End of Mission Transition Period: Lessons Learned from Third Location Decompression after Operational Deployment

    DTIC Science & Technology

    2011-04-01

    Third Location Decompression after Operational Deployment 11 - 2 RTO-MP-HFM-205 programs is based upon the literature on combat motivation ...exposure to normal leisure activities and tourism . Massage is another interesting element in the French program. Each soldier receives at least one... gastronomy ; during the French TLD, soldiers were allowed to drink wine or beer with their meal starting at 7pm and bars closed at 1am ultimately. Alcohol

  7. Australasian brachytherapy audit: results of the 'end-to-end' dosimetry pilot study.

    PubMed

    Haworth, Annette; Wilfert, Lisa; Butler, Duncan; Ebert, Martin A; Todd, Stephen; Bucci, Joseph; Duchesne, Gillian M; Joseph, David; Kron, Tomas

    2013-08-01

    We present the results of a pilot study to test the feasibility of a brachytherapy dosimetry audit. The feasibility study was conducted at seven sites from four Australian states in both public and private centres. A purpose-built cylindrical water phantom was imaged using the local imaging protocol and a treatment plan was generated to deliver 1 Gy to the central (1 of 3) thermoluminescent dosimeter (TLD) from six dwell positions. All centres completed the audit, consisting of three consecutive irradiations, within a 2-h time period, with the exception of one centre that uses a pulsed dose rate brachytherapy unit. All TLD results were within 4.5% of the predicted value, with the exception of one subset where the dwell position step size was incorrectly applied. While the limited data collected in the study demonstrated considerable heterogeneity in clinical practice, the study proved a brachytherapy dosimetry audit to be feasible. Future studies should include verification of source strength using a Standard Dosimetry Laboratory calibrated chamber, a phantom that more closely mimics the clinical situation, a more comprehensive review of safety and quality assurance (QA) procedures including source dwell time and position accuracy, and a review of patient treatment QA procedures such as applicator position verification. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  8. Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD)

    NASA Astrophysics Data System (ADS)

    Purwaningsih, S.; Lubis, L. E.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    This research was aimed to check the patterns of dose profile on adult and pediatric head scan. We compared measurement result on dose profile along the z- axis rotation at peripheries and center phantom with a variety of pitch, i.e. 0.75, 1, 1.5 for adult and pediatric head protocol, keeping the rest of the scan parameters constant. Measurements were performed on homogeneous, cylindrical PMMA phantom with diameters of 16 and 10 cm using XR-QA2 Gafchromic film and TLD as dosimeters. The measurement result indicated a decrease in the dose about 50% and 47% for adult and pediatric head scan with the increase of pitch. For 0.75 value of pitch adult head scan, dose range for each position were (2.4 - 5.0) cGy, (3.1 - 5.3) cGy, (2.2 - 4.5) cGy, (2.8 - 5.3) cGy, and (3.3 - 5.6) cGy for position of center, 3, 6, 9 and 12 o'clock peripheral phantom position respectively. Dose profile for adult and pediatric head scan protocols has pattern curve with the maximum dose in the middle and tendency of symmetry near the edges, with different the plateau length along z- axis direction in accordance to the measurement position in the phantom.

  9. NUCLEAR HEATING IN LIF DOSEMETERS IN A FUSION NEUTRON FIELD, TRIAL OF DIRECT COMPARISON OF EXPERIMENTAL AND SIMULATED RESULTS.

    PubMed

    Pohorecki, Wladyslaw; Obryk, Barbara

    2017-09-29

    The results of nuclear heating measured by means of thermoluminescent dosemeters (TLD-LiF) in a Cu block irradiated by 14 MeV neutrons are presented. The integral Cu experiment relevant for verification of copper nuclear data at neutron energies characteristic for fusion facilities was performed in the ENEA FNG Laboratory at Frascati. Five types of TLDs were used: highly photon sensitive LiF:Mg,Cu,P (MCP-N), 7LiF:Mg,Cu,P (MCP-7) and standard, lower sensitivity LiF:Mg,Ti (MTS-N), 7LiF:Mg,Ti (MTS-7) and 6LiF:Mg,Ti (MTS-6). Calibration of the detectors was performed with gamma rays in terms of air-kerma (10 mGy of 137Cs air-kerma). Nuclear heating in the Cu block was also calculated with the use of MCNP transport code Nuclear heating in Cu and air in TLD's positions was calculated as well. The nuclear heating contribution from all simulated by MCNP6 code particles including protons, deuterons, alphas tritons and heavier ions produced by the neutron interactions were calculated. A trial of the direct comparison between experimental results and results of simulation was performed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Energy response of CaSO4:Dy teflon TLD disk dosimeters to photons and electrons.

    PubMed

    Sharada, K S

    1983-01-01

    The photon energy response of CaSO4:Dy teflon disk dosimeters used widely in radiation dosimetry is computed using the energy absorption coefficient values for calcium, sulfur, oxygen, and carbon taken from J. H. Hubbell's tables. For fluorine, the energy absorption coefficients were obtained from the values given by F. H. Attix for CaF2 and Ca. The energy response of the radiation-monitoring disk for the range of 10 keV to 10 MeV, relative to air, is computed and plotted. The response is maximum between 20 and 30 keV and then gradually falls to a constant at 200 keV to 10 MeV. This computed response for different energies is compared with the experimental TL response of the dosimeter. The electron energy response of these TLD disks is computed using the stopping-power values for the different component elements. The electron stopping power for sulfur and calcium from 10 keV to 10 MeV is computed using the Bethe-Bloch formula. Those for oxygen and carbon are taken from the tables given by M. J. Berger and S. M. Seltzer. For fluorine, the values are computed from those for Li and LiF given in the same tables. This calculated response is compared with the experimental beta response of the TL dosimeter.

  11. Does the presence of an implant including expander with internal port alter radiation dose? An ex vivo model.

    PubMed

    Strang, Barbara; Murphy, Kyla; Seal, Shane; Cin, Arianna Dal

    2013-01-01

    There is a lack of literature examining the dosimetric implications of irradiating breast implants and expanders with internal ports inserted at the time of mastectomy. To determine whether the presence of breast expanders with port in saline or silicone implants affect the dose uniformity across the breast when irradiated with various photon and electron energies. One tissue-equivalent torso phantom with overlying tissue expanders in saline or silicone implants were irradiated using tangential fields with 6 MV and 18 MV photons and 9 MeV and 12 MeV electrons. All dose measurements were performed using thermoluminescent dosimeters (TLDs). The TLDs were arranged around the port and the perimeters of either the expander, or saline or silicone implant. Comparisons of measured radiation doses, and between the expected and measured doses of radiation from the TLDs on each prosthesis, were performed. Data were analyzed using two-tailed t tests. There were no differences in TLD measurements between the expander and the saline implant for all energy modalities, and for the expected versus actual measurements for the saline implant. Higher than anticipated measurements were recorded for a significant number of TLD positions around the silicone implants. Radiation doses around saline implants or expanders with internal port were unaltered, whereas dose recordings for silicone implants were higher than predicted in the present laboratory/ex vivo study.

  12. beta- and gamma-Comparative dose estimates on Enewetak Atoll.

    PubMed

    Crase, K W; Gudiksen, P H; Robison, W L

    1982-05-01

    Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  13. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    PubMed

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  14. In vivo quality assurance of volumetric modulated arc therapy for ano-rectal cancer with thermoluminescent dosimetry and image-guidance.

    PubMed

    Dipasquale, Giovanna; Nouet, Philippe; Rouzaud, Michel; Dubouloz, Angèle; Miralbell, Raymond; Zilli, Thomas

    2014-06-01

    To assess in vivo dose distribution using cone-beam computed tomography scans (CBCTs) and thermoluminescent dosimeters (TLDs) in patients with anal or rectal cancer treated with volumetric modulated arc therapy (VMAT). Intracavitary (IC) in vivo dosimetry (IVD) was performed in 11 patients using adapted endorectal probes containing TLDs, with extra measurements at the perianal skin (PS) for anal margin tumors. Measured doses were compared to calculated ones obtained from image fusion of CBCT with CT treatments plans. A total of 55 IC and 6 PS measurements were analyzed. IC TLD median planned and measured doses were 1.81 Gy (range, 0.25-2.02 Gy) and 1.82 Gy (range, 0.19-2.12 Gy), respectively. In comparison to the planned doses all IC TLD dose measurements differed by a median dose of 0.02 Gy (range, -0.11/+0.19 Gy, p=0.102) (median difference of 1.1%, range -6.1%/+10.6%). Overall, 95% of IC measurements were within ±7.7% of the expected percentage doses and only 1 value was above +10%. For PS measurements, only one was not within ±7.7% of expected values (i.e., -8.9%). Image guidance using CBCT for IVD with TLDs is helpful to validate the delivered doses in patients treated with VMAT for ano-rectal tumors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Effective doses to family members of patients treated with radioiodine-131

    NASA Astrophysics Data System (ADS)

    Zdraveska Kocovska, M.; Vaskova, O.; Majstorov, V.; Kuzmanovska, S.; Pop Gjorceva, D.; Spasic Jokic, V.

    2011-09-01

    The purpose of this study was to evaluate the effective dose to family members of thyroid cancer and hyperthyroid patients treated with radioiodine-131, and also to compare the results with dose constraints proposed by the International Commission of Radiological Protection (ICRP) and the Basic Safety Standards (BSS) of the International Atomic Energy Agency (IAEA). For the estimation of the effective doses, sixty family members of sixty patients, treated with radioiodine-131, and thermoluminiscent dosimeters (Model TLD 100) were used. Thyroid cancer patients were hospitalized for three days, while hyperthyroid patients were treated on out-patient basis. The family members wore TLD in front of the torso for seven days. The radiation doses to family members of thyroid cancer patients were well below the recommended dose constraint of 1 mSv. The mean value of effective dose was 0.21 mSv (min 0.02 - max 0.51 mSv). Effective doses, higher than 1 mSv, were detected for 11 family members of hyperthyroid patients. The mean value of effective dose of family members of hyperthyroid patients was 0.87 mSv (min 0.12 - max 6.79). The estimated effective doses to family members of hyperthyroid patients were higher than the effective doses to family members of thyroid carcinoma patients. These findings may be considered when establishing new national guidelines concerning radiation protection and release of patients after a treatment with radioiodine therapy.

  16. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  17. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutiérrez Castillo, J. G., E-mail: jggc59@hotmail.com; Álvarez Romero, J. T., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx; Calderón, A. Torres, E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsulesmore » with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.« less

  18. Comparison of Gafchromic EBT2 and EBT3 for patient-specific quality assurance: Cranial stereotactic radiosurgery using volumetric modulated arc therapy with multiple noncoplanar arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiandra, Christian; Fusella, Marco; Filippi, Andrea Riccardo

    2013-08-15

    Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered (up to 30 Gy). Gafchromic{sup TM} EBT2 and EBT3 films may be considered the dosimeter of choice, and the authors here provide some additional data about uniformity correction for this new generation of radiochromic films.Methods: A new analysis method using blue channel for marker dye correction was proposed for uniformity correction both for EBT2 and EBT3more » films. Symmetry, flatness, and field-width of a reference field were analyzed to provide an evaluation in a high-spatial resolution of the film uniformity for EBT3. Absolute doses were compared with thermoluminescent dosimeters (TLD) as baseline. VMAT plans with multiple noncoplanar arcs were generated with a treatment planning system on a selected pool of eleven patients with cranial lesions and then recalculated on a water-equivalent plastic phantom by Monte Carlo algorithm for patient-specific QA. 2D quantitative dose comparison parameters were calculated, for the computed and measured dose distributions, and tested for statistically significant differences.Results: Sensitometric curves showed a different behavior above dose of 5 Gy for EBT2 and EBT3 films; with the use of inhouse marker-dye correction method, the authors obtained values of 2.5% for flatness, 1.5% of symmetry, and a field width of 4.8 cm for a 5 × 5 cm{sup 2} reference field. Compared with TLD and selecting a 5% dose tolerance, the percentage of points with ICRU index below 1 was 100% for EBT2 and 83% for EBT3. Patients analysis revealed statistically significant differences (p < 0.05) between EBT2 and EBT3 in the percentage of points with gamma values <1 (p= 0.009 and p= 0.016); the percent difference as well as the mean difference between calculated and measured isodoses (20% and 80%) were found not to be significant (p= 0.074, p= 0.185, and p= 0.57).Conclusions: Excellent performances in terms of dose homogeneity were obtained using a new blue channel method for marker-dye correction on both EBT2 and EBT3 Gafchromic{sup TM} films. In comparison with TLD, the passing rates for the EBT2 film were higher than for EBT3; a good agreement with estimated data by Monte Carlo algorithm was found for both films, with some statistically significant differences again in favor of EBT2. These results suggest that the use of Gafchromic{sup TM} EBT2 and EBT3 films is appropriate for dose verification measurements in VMAT stereotactic radiosurgery; taking into account the uncertainty associated with Gafchromic film dosimetry, the use of adequate action levels is strongly advised, in particular, for EBT3.« less

  19. Comparison of Calculations and Measurements of the Off-Axis Radiation Dose (SI) in Liquid Nitrogen as a Function of Radiation Length.

    DTIC Science & Technology

    1984-12-01

    radiation lengths. The off-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured using thermal luminescent...various path lengths out to 2 radiation lengths. The cff-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured... using thermal luminescent dosimeters (TLD’s). Calculations were performed on a CDC-7600 computer at Los Alamos National Laboratory and measurements

  20. Lens of Eye Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallett, Michael Wesley

    An analysis of LANL occupational dose measurements was made with respect to lens of eye dose (LOE), in particular, for plutonium workers. Table 1 shows the reported LOE as a ratio of the “deep” (photon only) and “deep+neutron” dose for routine monitored workers at LANL for the past ten years. The data compares the mean and range of these values for plutonium workers* and non-routine plutonium workers. All doses were reported based on measurements with the LANL Model 8823 TLD.

Top