2011-01-01
Background Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. Methods In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. Results A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. Conclusion ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered. PMID:21418634
Engelbert, Raoul; Gorter, Jan Willem; Uiterwaal, Cuno; van de Putte, Elise; Helders, Paul
2011-03-21
Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.
Neurodevelopment in preschool idiopathic toe-walkers.
Martín-Casas, P; Ballestero-Pérez, R; Meneses-Monroy, A; Beneit-Montesinos, J V; Atín-Arratibel, M A; Portellano-Pérez, J A
2017-09-01
Idiopathic toe walking, a differential diagnosis for neurological and orthopaedic disorders, has been associated with neurodevelopmental alterations. Neurodevelopmental assessment at early ages using specific tests may improve management and follow-up of these patients. The aim of our study is to analyse the neurodevelopmental characteristics of preschool idiopathic toe-walkers (ITW) by comparing them to a control group. Our descriptive cross-sectional study compared possible risk factors, neurodevelopmental characteristics, and scores on the Child Neuropsychological Maturity Questionnaire (CUMANIN) between a group of 56 ITWs aged 3 to 6 and a control group including 40 children. The proportion of males was significantly higher in the ITW group (P=.008). The percentage of patients with a family history (P=.000) and biological risk factors during the perinatal period (P=.032) was also higher in this group. According to the parents' reports, motor coordination in ITWs was significantly poorer (59%; P=.009). ITWs scored significantly lower on CUMANIN subscales of psychomotricity (=0,001) and memory (P=.001), as well as in verbal development (P=.000), non-verbal development (P=.026), and overall development (P=.004). Foot preference was less marked in the ITW group (P=.047). The neurodevelopmental characteristics of our sample suggest that idiopathic toe walking is a marker of neurodevelopmental impairment. However, further studies are necessary to confirm these findings. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Marcus, Ann; Sinnott, Brigit; Bradley, Stephen; Grey, Ian
2010-01-01
This study aimed to examine the effectiveness of a simplified habit reversal procedure (SHR) using differential reinforcement of incompatible behaviour (DRI) and a stimulus prompt (GaitSpot Auditory Squeakers) to reduce the frequency of idiopathic toe-walking (ITW) and increase the frequency of correct heel-to-toe-walking in three children with…
Soto Insuga, Víctor; Moreno Vinués, Beatriz; Losada Del Pozo, Rebeca; Rodrigo Moreno, María; Martínez González, Marta; Cutillas Ruiz, Raquel; Mateos Carmen, Carmen
2018-04-01
Idiopathic toe-walking (ITW) is described as a gait pattern with no contact between the heels and the ground in children older than 3years. The diagnosis is clinical, making it necessary to rule out other neurological and orthopaedic conditions. A relationship between ITW and vestibular dysfunction and/or proprioceptive sensibility has been proposed. Children with neurodevelopmental disorders (autism, language and cognitive disorders) often have ITW. To determine the frequency of ITW in children with attention deficit disorder and hyperactivity (ADHD). A study was conducted on children diagnosed with ADHD, with normal neurological examination, with no alterations in MRI scan, cognitive disorder or autism. A complete clinical anamnesis was performed and Achilles shortening was measured with a goniometer. The study included 312 children with a mean age of 11 years (73.7% boys). The ADHD combined subtype was the most frequent (53.8%), followed by the inattentive (44.9%), and hyperactive (1.3%). ITW was observed in 20.8% of patients, particularly in the combined subtype (P=.054). Only 32 of them (49.2%) had Achilles shortening. ITW was associated with sociability disorders (P=.01), absence of pain in legs (P=.022), and family history of ITW (P=.004). Only 11% had previously visited a doctor for this reason. As in other neurodevelopmental disorders, children with ADHD have frequently more ITW and Achilles shortening than controls, especially if they presented with a social communication disorder or a family history of ITW. An early diagnosis is essential to establish effective treatments. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
McArdle's disease: A differential diagnosis of idiopathic toe walking.
Pomarino, David; Martin, Stephan; Pomarino, Andrea; Morigeau, Stefanie; Biskup, Saskia
2018-06-01
Idiopathic toe walking (ITW) is a pathological gait pattern in which children walk on their tip toes with no orthopedic or neurological reason. Physiological characteristics of the gastrocnemius muscles, the Achilles tendon, and the foot of toe walkers differ from subjects with a plantigrade walking pattern. McArdle's disease is characterized by the inability to break down muscle glycogen. It is an autosomal-recessive condition, characterized by low exercise tolerance, muscular atrophy at the shoulder girdle, episodes of myoglobinuria after vigorous physical activities and the occurrence of the second wind phenomenon. The aim of this review is to present the case studies of two subjects who were originally diagnosed as idiopathic toe walkers, but were then found to have McArdle's disease. This review will describe some physical characteristics that distinguish McArdle´s disease from Idiopathic toe walkers.
Khan, Soobia Saad; Khan, Saad Jawaid; Usman, Juliana
2017-03-01
Toe-out/-in gait has been prescribed in reducing knee joint load to medial knee osteoarthritis patients. This study focused on the effects of toe-out/-in at different walking speeds on first peak knee adduction moment (fKAM), second peak KAM (sKAM), knee adduction angular impulse (KAAI), net mechanical work by lower limb as well as joint-level contribution to the total limb work during level walking. Gait analysis of 20 healthy young adults was done walking at pre-defined normal (1.18m/s), slow (0.85m/s) and fast (1.43m/s) walking speeds with straight-toe (natural), toe-out (15°>natural) and toe-in (15°
Barkocy, Marybeth; Dexter, James; Petranovich, Colleen
2017-07-01
To evaluate the effectiveness of serial casting in a child with autism spectrum disorder (ASD) exhibiting a toe-walking gait pattern with equinus contractures. Although many children with ASD toe walk, little research on physical therapy interventions exists for this population. Serial casting has been validated for use in idiopathic toe walking to increase passive dorsiflexion and improve gait, but not for toe walking in children with ASD. Serial casting followed by ankle-foot orthosis use was implemented to treat a child with ASD who had an obligatory equinus gait pattern. Gait analysis supported improvements in kinematic, spatial, and temporal parameters of gait, and the child maintained a consistent heel-toe gait at 2-year follow-up. STATEMENT OF CONCLUSION AND RECOMMENDATIONS FOR CLINICAL PRACTICE:: Serial casting followed by ankle-foot orthosis use is a viable treatment option for toe walking in children with ASD.
... walking sometimes can result from certain conditions, including cerebral palsy, muscular dystrophy and autism spectrum disorder. Symptoms Toe ... can prevent the heel from touching the ground. Cerebral palsy. Toe walking can be caused by a disorder ...
Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees.
Armand, Stéphane; Watelain, Eric; Roux, Emmanuel; Mercier, Moïse; Lepoutre, François-Xavier
2007-03-01
Toe-walking is one of the most prevalent gait deviations and has been linked to many diseases. Three major ankle kinematic patterns have been identified in toe-walkers, but the relationships between the causes of toe-walking and these patterns remain unknown. This study aims to identify these relationships. Clearly, such knowledge would increase our understanding of this gait deviation, and could help clinicians plan treatment. The large quantity of data provided by gait analysis often makes interpretation a difficult task. Artificial intelligence techniques were used in this study to facilitate interpretation as well as to decrease subjective interpretation. Of the 716 limbs evaluated, 240 showed signs of toe-walking and met inclusion criteria. The ankle kinematic pattern of the evaluated limbs during gait was assigned to one of three toe-walking pattern groups to build the training data set. Toe-walker clinical measurements (range of movement, muscle spasticity and muscle strength) were coded in fuzzy modalities, and fuzzy decision trees were induced to create intelligible rules allowing toe-walkers to be assigned to one of the three groups. A stratified 10-fold cross validation situated the classification accuracy at 81%. Twelve rules depicting the causes of toe-walking were selected, discussed and characterized using kinematic, kinetic and EMG charts. This study proposes an original approach to linking the possible causes of toe-walking with gait patterns.
Oetgen, Matthew E; Peden, Sean
2012-05-01
Toe walking is a bilateral gait abnormality in which a normal heel strike is absent and most weight bearing occurs through the forefoot. This abnormality may not be pathologic in patients aged <2 years, but it is a common reason for referral to an orthopaedic surgeon. Toe walking can be caused by several neurologic and developmental abnormalities and may be the first sign of a global developmental problem. Cases that lack a definitive etiology are categorized as idiopathic. A detailed history, with careful documentation of the developmental history, and a thorough physical examination are required in the child with a primary report of toe walking. Treatment is based on age and the severity of the abnormality. Management includes observation, stretching, casting, bracing, chemodenervation, and surgical lengthening of the gastrocnemius-soleus complex and/or Achilles tendon. An understanding of idiopathic toe walking as well as treatment options and their outcomes can help the physician individualize treatment to achieve optimal results.
NASA Technical Reports Server (NTRS)
Miller, Christopher A.; Feiveson, Al; Bloomberg, Jacob J.
2007-01-01
Toe trajectory during swing phase is a precise motor control task that can provide insights into the sensorimotor control of the legs. The purpose of this study was to determine changes in vertical toe trajectory during treadmill walking due to changes in walking speed and target distance. For each trial, subjects walked on a treadmill at one of five speeds while performing a dynamic visual acuity task at either a far or near target distance (five speeds two targets distances = ten trials). Toe clearance decreased with increasing speed, and the vertical toe peak just before heel strike increased with increasing speed, regardless of target distance. The vertical toe peak just after toe-off was lower during near-target visual acuity tasks than during far-target tasks, but was not affected by speed. The ankle of the swing leg appeared to be the main joint angle that significantly affected all three toe trajectory events. The foot angle of the swing leg significantly affected toe clearance and the toe peak just before heel strike. These results will be used to enhance the analysis of lower limb kinematics during the sensorimotor treadmill testing, where differing speeds and/or visual target distances may be used.
Feedforward neural control of toe walking in humans.
Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo
2018-03-23
Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K
2015-07-12
Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce the likelihood of toe-ground contacts is to attain higher mid-swing clearance by eliminating the MTC event, i.e. demonstrating non-MTC gaits cycles.
User’s Supplement to MIL-STD-740-2 Modified for Measurements to 20 KHz
1989-10-01
Process Compressor Div. 100 Chemung Street 1 AMI Research Painted Post, NY 14870 2 Captain Walk 1 James Seibert New London, CT 06320 1 Mark Clifton 1...CT 06340-4909 942 Memorial Pkwy. 1 Wilf Kalbach Phillipsburg, NJ 08865 1 David Mewha 1 Timothy Luce 1 Ed Miller 1 Kevin Brimmer 2 ITW Linac 1 Robert
Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints
NASA Astrophysics Data System (ADS)
Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming
2012-10-01
Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.
Hunt, M A; Charlton, J M; Krowchuk, N M; Tse, C T F; Hatfield, G L
2018-04-27
To compare changes in knee pain, function, and loading following a 4-month progressive walking program with or without toe-out gait modification in people with medial tibiofemoral knee osteoarthritis. Individuals with medial knee osteoarthritis were randomized to a 4-month program to increase walking activity with (toe-out) or without (progressive walking) concomitant toe-out gait modification. The walking program was similar between the two groups, except that the gait modification group was trained to walk with 15° more toe-out. Primary outcomes included: knee joint pain (WOMAC), foot progression angles and knee joint loading during gait (knee adduction moment (KAM)). Secondary outcomes included WOMAC function, timed stair climb, and knee flexion moments during gait. Seventy-nine participants (40 in toe-out group, 39 in progressive walking group) were recruited. Intention-to-treat analysis showed no between-group differences in knee pain, function, or timed stair climb. However, the toe-out group exhibited significantly greater changes in foot progression angle (mean difference = -9.04° (indicating more toe-out), 95% CI: -11.22°, -6.86°; P < 0.001), late stance KAM (mean difference = -0.26 %BW*ht, 95% CI: -0.39 %BW*ht, -0.12 %BW*ht, P < 0.001) and KAM impulse (-0.06 %BW*ht*s, 95% CI: -0.11 %BW*ht*s, -0.01 %BW*ht*s; P = 0.031) compared to the progressive walking group at follow-up. The only between-group difference that remained at a 1-month retention assessment was foot progression angle, with greater changes in the toe-out group (mean difference = -6.78°, 95% CI: -8.82°, -4.75°; P < 0.001). Though both groups experienced improvements in self-reported pain and function, only the toe-out group experienced biomechanical improvements. NCT02019108. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Arik, Atilla; Aksoy, Cemalettin; Aysev, Ayla; Akçakin, Melda
2018-04-24
The aim of this study was to establish the torsional and toe-walking profiles of children with autism spectrum disorder (ASD), and to analyze the correlations between torsion, toe-walking, autism severity score, and age. In total, 79 consecutive children with autism were examined to determine their hip rotations, thigh-foot angle, degree of toe-walking, and autism severity. Femoral and tibial torsion values, of the preschool patients, were compared statistically with age-matched controls. The hip rotation profile of the patients was similar to the normal group. Nearly a half of the patients with ASD present excessive external tibial torsion. The difference in the tibial torsion between patients and normal children was statistically significant. A weak correlation was found only between tibial torsion and the autism severity score, but no correlation was found between the other parameters. External tibial torsion is the cardinal and persistent orthopedic manifestation among patients with ASD. Toe-walking is the second most common such manifestation and is an independent orthopedic feature in these patients. External tibial torsion may potentially contribute toward the described gait abnormalities in patients with ASD.
Effects of shoe sole geometry on toe clearance and walking stability in older adults.
Thies, S B; Price, C; Kenney, L P J; Baker, R
2015-07-01
Thirty-five percent of people above age 65 fall each year, and half of their falls are associated with tripping: tripping, an apparently 'mundane' everyday problem, therefore, significantly impacts on older people's health and associated medical costs. To avoid tripping and subsequent falling, sufficient toe clearance during the swing phase is crucial. We previously found that a rocker-shaped shoe sole enhances toe clearance in young adults, thereby decreasing their trip-risk. This study investigates whether such sole design also enhances older adults' toe clearance, without inadvertently affecting their walking stability. Toe clearance and its variability are reported together with measures of walking stability for twelve older adults, walking in shoes with rocker angles of 10°, 15°, and 20°. Surface inclinations (flat, incline, decline) were chosen to reflect a potential real-world environment. Toe clearance increased substantially from the 10° to the 15° rocker angle (p=0.003) without compromising measures of walking stability (p>0.05). A further increase in rocker angle to 20° resulted in less substantial enhancement of toe clearance and came at the cost of a decrease in gait speed on the decline. The novelty of this investigation lies in the exploration of the trade-off between reduction of trip-risk through footwear design and adverse effects on walking stability on real-life relevant surfaces. Our two studies suggest that the current focus on slip-resistance in footwear design may need to be generalised to include other factors that affect trip-risk. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Effect of hoof boots and toe-extension shoes on the forelimb kinetics of horses during walking.
Amitrano, Fernando N; Gutierrez-Nibeyro, Santiago D; Schaeffer, David J
2016-05-01
OBJECTIVE To determine and compare the effect of hoof boots (HBs) and shoes with a toe extension on stance duration, ground reaction force, and sole length in contact with the ground in nonlame horses during walking. ANIMALS 6 nonlame Standardbreds. PROCEDURES Force plate gait analyses of the forelimbs were performed while the horses were walking barefoot before manipulation of feet (baseline), while the horses were walking fitted with HBs, while the horses were walking shod with toe-extension shoes, and while the horses were walking barefoot after shoe removal. Horses underwent radiography of both forelimb feet to determine the sole length in contact with the ground when barefoot, wearing HBs, and shod with toe-extension shoes. Stance duration, ground reaction force, and sole length were compared among the various walking sessions. RESULTS Compared with baseline findings, stance duration increased significantly when horses were fitted with HBs (7%) or toe-extension shoes (5%). Peak forelimb ground reaction force was similar among walking sessions; however, time of braking force peak was significantly greater during the stance phase only when horses wore HBs. Also, the sole length in contact with the ground was significantly longer in horses fitted with HBs (14.3 cm) or shod with the toe-extension shoes (17.6 cm), compared with that for one of the barefoot hooves (12.7 cm). CONCLUSIONS AND CLINICAL RELEVANCE In nonlame horses, use of HBs prolonged the stance time and time of braking force peak, which is indicative of a slower deceleration phase during limb impact with the ground. Also, the use of HBs prolonged the deceleration phase of the stride and increased the sole length in contact with the ground.
Walking, running and the evolution of short toes in humans.
Rolian, Campbell; Lieberman, Daniel E; Hamill, Joseph; Scott, John W; Werbel, William
2009-03-01
The phalangeal portion of the forefoot is extremely short relative to body mass in humans. This derived pedal proportion is thought to have evolved in the context of committed bipedalism, but the benefits of shorter toes for walking and/or running have not been tested previously. Here, we propose a biomechanical model of toe function in bipedal locomotion that suggests that shorter pedal phalanges improve locomotor performance by decreasing digital flexor force production and mechanical work, which might ultimately reduce the metabolic cost of flexor force production during bipedal locomotion. We tested this model using kinematic, force and plantar pressure data collected from a human sample representing normal variation in toe length (N=25). The effect of toe length on peak digital flexor forces, impulses and work outputs was evaluated during barefoot walking and running using partial correlations and multiple regression analysis, controlling for the effects of body mass, whole-foot and phalangeal contact times and toe-out angle. Our results suggest that there is no significant increase in digital flexor output associated with longer toes in walking. In running, however, multiple regression analyses based on the sample suggest that increasing average relative toe length by as little as 20% doubles peak digital flexor impulses and mechanical work, probably also increasing the metabolic cost of generating these forces. The increased mechanical cost associated with long toes in running suggests that modern human forefoot proportions might have been selected for in the context of the evolution of endurance running.
Early reduction in toe flexor strength is associated with physical activity in elderly men.
Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi
2016-05-01
[Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and elderly men, and to examine the association between toe flexor strength and physical activity or inactivity levels. [Subjects and Methods] Young (n=155, 18-23 years) and elderly (n=60, 65-88 years) men participated in this study. Toe flexor, hand grip, and knee extensor strength were measured. Physical activity (time spent standing/walking per day) and inactivity (time spent sitting per day) were assessed using a self-administered questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly men were significantly lower than those of the young men. Standing/walking and sitting times of the elderly men were lower than those of the young men. Toe flexor strength correlated with hand grip and knee extensor strength in both groups. In elderly men, toe flexor strength correlated with standing/walking time. In comparison to the young men's mean values, toe flexor strength was significantly lower than knee extensor and hand grip strength in the elderly group. [Conclusion] The results suggest that age-related reduction in toe flexor strength is greater than those of hand grip and knee extensor strengths. An early loss of toe flexor strength is likely associated with reduced physical activity in elderly men.
Effects of interdisciplinary teamwork on patient-reported experience of cancer care.
Tremblay, Dominique; Roberge, Danièle; Touati, Nassera; Maunsell, Elizabeth; Berbiche, Djamal
2017-03-20
Interdisciplinary teamwork (ITW) is deemed necessary for quality cancer care practices. Nevertheless, variation in ITW intensity among cancer teams is understudied, and quantitative evidence of the effect of different ITW intensities among cancer teams on patients' perceived experience of care is limited. This study aims to compare patient-reported experience measures (PREMs) of cancer outpatients followed by teams characterized by high vs. low ITW intensity. The study is designed as an ex post facto quasi-experimental study. Participants (n = 1379) were recruited in nine outpatient oncology clinics characterized by different ITW intensities. ITW intensities were evaluated using the characteristics of structure (team composition and size) and process (interactions among team members), as per West's seminal work on team effectiveness. ITW intensity was dichotomized (high vs. low ITW intensity). PREMs were classified and measured using validated scales corresponding to six dimensions: Prompt access to care, Person-centred response, Quality of patient-professional communication, Quality of the care environment, Continuity of care, and Results of care. Dichotomous variables were created for each dimension (positive vs. less positive experience). Multiple logistic regression analyses were performed to assess the association between ITW intensities and the six PREMs dimensions, while controlling for patient and organizational characteristics. PROC GENMOD was used to fit logistic models for categorical variables. Outpatients treated by teams characterized by high ITW intensity reported almost four times more positive perceptions of Prompt access to care compared to patients treated by low ITW intensity teams (OR = 3.99; CI = 1.89-8.41). High ITW intensity also positively affected patients' perceptions of Quality of patient-professional communication (OR = 2.37; CI = 1.25-4.51), Person-centred response (OR = 2.11; CI = 1.05-4.24], and Continuity of care (OR = 2.18; CI = 1.07-4.45). No significant association was found between ITW intensity and perceived Results of care (OR = 1.31; CI = 0.68-2.52) or Quality of the care environment (OR = 0.66; CI = 0.31-1.39). This study provides empirical evidence, from the patient's perspective, that ITW intensity affects some critical aspects of patient-reported quality of care. Future research will allow explaining how and why ITW structure and processes may contribute to positive cancer care experiences.
Science 101: Why Are Hippos Unguligrades?
ERIC Educational Resources Information Center
Robertson, Bill
2014-01-01
In this article, Bill Robinson describes the three main classifications of gait for animals: (1) Plantigrade--animals that walk on their entire foot; (2) Digitigrade--animals that walk on their "toes"; and (3) Unguligrade--animals that walk on the tips of their toes or hooves. Robinson explains each gait in great detail, but leaves his…
Non-MTC gait cycles: An adaptive toe trajectory control strategy in older adults.
Santhiranayagam, Braveena K; Sparrow, W A; Lai, Daniel T H; Begg, Rezaul K
2017-03-01
Minimum-toe-clearance (MTC) above the walking surface is a critical representation of toe-trajectory control due to its association with tripping risk. Not all gait cycles exhibit a clearly defined MTC within the swing phase but there have been few previous accounts of the biomechanical characteristics of non-MTC gait cycles. The present report investigated the within-subject non-MTC gait cycle characteristics of 15 older adults (mean 73.1 years) and 15 young controls (mean 26.1 years). Participants performed the following tasks on a motorized treadmill: preferred speed walking, dual task walking (carrying a glass of water) and a dual-task speed-matched control. Toe position-time coordinates were acquired using a 3 dimensional motion capture system. When MTC was present, toe height at MTC (MTC height ) was extracted. The proportion of non-MTC gait cycles was computed for the age groups and individuals. For non-MTC gait cycles an 'indicative' toe height at the individual's average swing phase time (MTC time ) for observed MTC cycles was averaged across multiple non-MTC gait cycles. In preferred-speed walking Young demonstrated 2.9% non-MTC gait cycles and Older 18.7%. In constrained walking conditions both groups increased non-MTC gait cycles and some older adults revealed over 90%, confirming non-MTC gait cycles as an ageing-related phenomenon in lower limb trajectory control. For all participants median indicative toe-height on non-MTC gait cycles was greater than median MTC height . This result suggests that eliminating the biomechanically hazardous MTC event by adopting more of the higher-clearance non-MTC gait cycles, is adaptive in reducing the likelihood of toe-ground contact. Copyright © 2017 Elsevier B.V. All rights reserved.
Bennett, Hunter J; Shen, Guangping; Cates, Harold E; Zhang, Songning
2017-12-01
Increased peak external knee adduction moments exist for individuals with knee osteoarthritis and varus knee alignments, compared to healthy and neutrally aligned counterparts. Walking with increased toe-in or increased step width have been individually utilized to successfully reduce 1st and 2nd peak knee adduction moments, respectfully, but have not previously been combined or tested among all alignment groups. The purpose of this study was to compare toe-in only and toe-in with wider step width gait modifications in individuals with neutral, valgus, and varus alignments. Thirty-eight healthy participants with confirmed varus, neutral, or valgus frontal-plane knee alignment through anteroposterior radiographs, performed level walking in normal, toe-in, and toe-in with wider step width gaits. A 3×3 (group×intervention) mixed model repeated measures ANOVA compared alignment groups and gait interventions (p<0.05). The 1st peak knee adduction moment was reduced in both toe-in and toe-in with wider step width compared to normal gait. The 2nd peak adduction moment was increased in toe-in compared to normal and toe-in with wider step width. The adduction impulse was also reduced in toe-in and toe-in with wider step width compared to normal gait. Peak knee flexion and external rotation moments were increased in toe-in and toe-in with wider step width compared to normal gait. Although the toe-in with wider step width gait seems to be a viable option to reduce peak adduction moments for varus alignments, sagittal, and transverse knee loadings should be monitored when implementing this gait modification strategy. Copyright © 2017 Elsevier B.V. All rights reserved.
Early reduction in toe flexor strength is associated with physical activity in elderly men
Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi
2016-01-01
[Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and elderly men, and to examine the association between toe flexor strength and physical activity or inactivity levels. [Subjects and Methods] Young (n=155, 18–23 years) and elderly (n=60, 65–88 years) men participated in this study. Toe flexor, hand grip, and knee extensor strength were measured. Physical activity (time spent standing/walking per day) and inactivity (time spent sitting per day) were assessed using a self-administered questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly men were significantly lower than those of the young men. Standing/walking and sitting times of the elderly men were lower than those of the young men. Toe flexor strength correlated with hand grip and knee extensor strength in both groups. In elderly men, toe flexor strength correlated with standing/walking time. In comparison to the young men’s mean values, toe flexor strength was significantly lower than knee extensor and hand grip strength in the elderly group. [Conclusion] The results suggest that age-related reduction in toe flexor strength is greater than those of hand grip and knee extensor strengths. An early loss of toe flexor strength is likely associated with reduced physical activity in elderly men. PMID:27313353
Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.
Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka
2018-05-31
The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.
Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J
2015-09-18
Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phalangeal joints kinematics during ostrich (Struthio camelus) locomotion
Ji, Qiaoli; Luo, Gang; Xue, Shuliang; Ma, Songsong; Li, Jianqiao
2017-01-01
The ostrich is a highly cursorial bipedal land animal with a permanently elevated metatarsophalangeal joint supported by only two toes. Although locomotor kinematics in walking and running ostriches have been examined, these studies have been largely limited to above the metatarsophalangeal joint. In this study, kinematic data of all major toe joints were collected from gaits with double support (slow walking) to running during stance period in a semi-natural setup with two selected cooperative ostriches. Statistical analyses were conducted to investigate the effect of locomotor gait on toe joint kinematics. The MTP3 and MTP4 joints exhibit the largest range of motion whereas the first phalangeal joint of the 4th toe shows the largest motion variability. The interphalangeal joints of the 3rd and 4th toes present very similar motion patterns over stance phases of slow walking and running. However, the motion patterns of the MTP3 and MTP4 joints and the vertical displacement of the metatarsophalangeal joint are significantly different during running and slow walking. Because of the biomechanical requirements, osctriches are likely to select the inverted pendulum gait at low speeds and the bouncing gait at high speeds to improve movement performance and energy economy. Interestingly, the motions of the MTP3 and MTP4 joints are highly synchronized from slow to fast locomotion. This strongly suggests that the 3rd and 4th toes really work as an “integrated system” with the 3rd toe as the main load bearing element whilst the 4th toe as the complementary load sharing element with a primary role to ensure the lateral stability of the permanently elevated metatarsophalangeal joint. PMID:28097064
Effects of Walking Speed and Visual-Target Distance on Toe Trajectory During Swing Phase
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Brady, Rachel; Warren, Liz; Richards, Jason; Mulavara, Ajitkumar; Sung, Hsi-Guang; Bloomberg, Jacob
2006-01-01
After spaceflight, astronauts experience disturbances in their ability to walk and maintain postural stability (Bloomberg, et al., 1997). One of the post-flight neurovestibular assessments requires that the astronaut walk on a treadmill at 1.8 m/sec (4.0 mph), while performing a visual acuity test, set at two different distances ( far and near ). For the first few days after landing, some crewmembers can not maintain the required pace, so a lower speed may be used. The slower velocity must be considered in the kinematic analysis, because Andriacchi, et al. (1977) showed that in clinical populations, changes in gait parameters may be attributable more to slower gait speed than pathology. Studying toe trajectory gives a global view of control of the leg, since it involves coordination of muscles and joints in both the swing and stance legs (Karst, et al., 1999). Winter (1992) and Murray, et al. (1984) reported that toe clearance during overground walking increased slightly as speed increased, but not significantly. Also, toe vertical peaks in both early and late swing phase did increase significantly with increasing speed. During conventional testing of overground locomotion, subjects are usually asked to fix their gaze on the end of the walkway a far target. But target (i.e., visual fixation) distance has been shown to affect head and trunk motion during treadmill walking (Bloomberg, et al., 1992; Peters, et al., in review). Since the head and trunk can not maintain stable gaze without proper coordination with the lower body (Mulavara & Bloomberg, 2003), it would stand to reason that lower body kinematics may be altered as well when target distance is modified. The purpose of this study was to determine changes in toe vertical trajectory during treadmill walking due to changes in walking speed and target distance.
Changes in toe clearance during treadmill walking after long-duration spaceflight.
Miller, Christopher A; Peters, Brian T; Brady, Rachel R; Richards, Jason R; Ploutz-Snyder, Robert J; Mulavara, Ajitkumar P; Bloomberg, Jacob J
2010-10-01
Astronauts exhibit sensorimotor changes upon return from long-duration spaceflight that can result in altered gait kinematics and possibly an increased risk of tripping. Toe trajectory during locomotion is a precise motor control task involving both legs, thus providing a composite metric of locomotor control. The purpose of this study was to determine whether astronauts are at an increased risk of tripping after their return from long-duration spaceflight. This was accomplished by assessing the pre- to postflight changes in toe clearance during treadmill walking. Ten crewmembers walked on a treadmill while performing a visual-acuity task pre- and postflight. In the three subjects on whom landing day data were available, each exhibited a characteristic of increased tripping risk on landing day: either a decreased median toe clearance or an increased interquartile range (a measure of variance). For all crewmembers, toe clearance median and interquartile range were not significantly different from preflight for the other postflight sessions (the earliest being 1 d after landing). A follow-up analysis showed that changes in foot pitch, ankle dorsiflexion, and pelvis roll angles were significant predictors of changes in toe clearance. The landing-day observations indicated an increased risk of tripping, which may pose a hazard during locomotion immediately upon return to Earth, especially in an emergency scenario. However, tripping risk on subsequent days was not different than preflight. The joint angle analysis suggested that the crewmembers tried to reestablish their normal walking pattern postflight, instead of developing a new motor control strategy.
Nonlinear finite element analysis of the plantar fascia due to the windlass mechanism.
Cheng, Hsin-Yi Kathy; Lin, Chun-Li; Chou, Shih-Wei; Wang, Hsien-Wen
2008-08-01
Tightening of plantar fascia by passively dorsiflexing the toes during walking has functional importance. The purpose of this research was to evaluate the influence of big toe dorsiflexion angles upon plantar fascia tension (the windlass effect) with a nonlinear finite element approach. A two-dimensional finite element model of the first ray was constructed for biomechanical analysis. In order to imitate the windlass effect and to evaluate the mechanical responses of the plantar fascia under various conditions, 12 model simulations--three dorsiflexion angles of the big toe (45 degrees, 30 degrees, and 15 degrees), two plantar fascia properties (linear, nonlinear), and two weightbearing conditions (with body weight, without body weight)--were designed and analyzed. Our results demonstrated that nonlinear modeling of the plantar fascia provides a more sophisticated representation of experimental data than the linear one. Nonlinear plantar fascia setting also predicted a higher stress distribution along the fiber directions especially with larger toe dorsiflexion angles (45 degrees>30 degrees>15 degrees). The plantar fascia stress was found higher near the metatarsal insertion and faded as it moved toward the calcaneal insertion. Passively dorsiflexing the big toe imposes tension onto the plantar fascia. Windlass mechanism also occurs during stance phase of walking while the toes begin to dorsiflex. From a biomechanical standpoint, the plantar fascia tension may help propel the body upon its release at the point of push off. A controlled stretch via dorsiflexing the big toe may have a positive effect on treating plantar fasciitis by providing proper guidance for collagen regeneration. The windlass mechanism is also active during the stance phase of walking when the toes begin to dorsiflex.
Three-Axis Ground Reaction Force Distribution during Straight Walking.
Hori, Masataka; Nakai, Akihito; Shimoyama, Isao
2017-10-24
We measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe. The three-axis force distribution during straight walking was measured, and the local features of the three-axis force under the sole of the shoe were analyzed. The heel area played a role in receiving the braking force, the base area of the fourth and fifth toes applied little vertical or shear force, the base area of the second and third toes generated a portion of the propulsive force and received a large vertical force, and the base area of the big toe helped move the body's center of mass to the other foot. The results demonstrate that measuring the three-axis GRF distribution is useful for a detailed analysis of bipedal locomotion.
Effects of Long-duration Space Flight on Toe Clearance During Treadmill Walking
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Brady, Rachel; Mulavara, Ajitkumar; Richards, Jason; Hayat, Matthew; Bloomberg, Jacob
2008-01-01
Upon returning from long-duration space flight, astronauts and cosmonauts must overcome physiologic and sensorimotor changes induced by prolonged exposure to microgravity as they readapt to a gravitational environment. Their compromised balance and coordination lead to an altered and more variable walking pattern (Bloomberg & Mulavara, 2003; McDonald, et al., 1996). Toe trajectory during the swing phase of locomotion has been identified as a precise motor control task (Karst, et al., 1999), thus providing an indication of the coordination of the lower limbs (Winter, 1992). Failure to achieve sufficient toe clearance may put the crew member at a greater risk of tripping and falling, especially if an emergency egress from the vehicle should be necessary upon landing. The purpose of this study was to determine the pre- to post-flight changes in toe clearance in crew members returning from long-duration missions and the recovery thereafter.
Uljarević, Mirko; Hedley, Darren; Alvares, Gail A; Varcin, Kandice J; Whitehouse, Andrew J O
2017-06-01
This study explored the relationships between the later age of achievement of early motor milestones, current motor atypicalities (toe walking), and the severity of restricted and repetitive behaviors (RRBs) in individuals with autism spectrum disorder (ASD). Parents of 147 children and adolescents with ASD (M age = 8.09 years, SD = 4.28; 119 males) completed an early developmental milestones questionnaire and the Social Responsiveness Scale as a measure of Insistence on Sameness (IS) and Repetitive Mannerisms (RM). Two hierarchical regression analyses were conducted to test whether RM and IS behaviors were predicted by early motor milestones, or current toe walking. The final model predicting RM accounted for 15% of the variance (F = 3.02, p = .009), with toe walking as a unique and independent predictor of RM scores (t = 3.568, p = .001). The final model predicting IS accounted for 19.1% of variance in IS scores (F = 4.045, p = .001), with chronological age (CA) (t = 2.92, p = .004), age when first standing (t = 2.09, p = .038), and toe walking (t = 2.53, p = .013) as unique independent predictors. Toe walking (t = 2.4, p = .018) and age when first sitting (t = 2.08, p = .04) predicted the severity of RRBs on the Autism Diagnostic Observation Schedule (F = 2.334, p = .036). Our study replicates previous findings on the relationship between concurrent motor impairments and RRBs, and provides the first evidence for the association between RRBs and age of attainment of early motor milestones. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1163-1168. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Deis, B. C. (Inventor)
1986-01-01
A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.
Ko, Mansoo; Hughes, Lynne; Lewis, Harriet
2012-03-01
The impact of walking speed has not been evaluated as a feasible outcome measure associated with peak plantar pressure (PPP) distribution, which may result in tissue damage in persons with diabetic foot complications. The objective of this pilot study was to determine the walking speed and PPP distribution during barefoot walking in persons with diabetes. Nine individuals with diabetes and nine age-gender matched individuals without diabetes participated in this study. Each individual was marked at 10 anatomical landmarks for vibration and tactile pressure sensation tests to determine the severity of sensory deficits on the plantar surface of the dominant limb foot. A steady state walking speed, PPP, the fore and rear foot (F/R) PPP ratio and gait variables were measured during barefoot walking. Persons with diabetes had a significantly slower walking speed than the age-gender matched group resulting in a significant reduction of PPP at the F/R foot during barefoot walking (p < 0.05). There was no significant difference in F/R foot PPP ratio in the diabetic group compared with the age-gender matched group during barefoot walking (p > 0.05). There was a significant difference between the diabetic and non-diabetic groups for cadence, step time, toe out angle and the anterior-posterior excursion (APE) for centre of force (p < 0.05). Walking speed may be a potential indicator for persons with diabetes to identify PPP distribution during barefoot walking in a diabetic foot. However, the diabetic group demonstrated a more cautious walking pattern than the age-gender matched group by decreasing cadence, step length and APE, and increasing step time and toe in/out angle. People with diabetes may reduce the risk of foot ulcerations as long as they are able to prevent severe foot deformities such as callus, hammer toe or charcot foot. Copyright © 2011 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; La Martire, Maria L.; Oliva, Doretta; Groeneweg, Jop
2012-01-01
These two case studies assessed technology-based programs for promoting walking fluency and improving foot-ground contact during walking with a man and a woman with multiple disabilities, respectively. The man showed breaks during walking and the woman presented with toe walking. The technology used in the studies included a microprocessor with…
In-Toeing and Out-Toeing in Toddlers
... life. Often this is most noticeable when a child learns to walk because if the tibia or femur ... a neuromuscular condition in rare cases. Have your child evaluated by a doctor if ... such as not learning to talk as expected gait abnormalities that worsen ...
Mojaver, Ali; Arazpour, Mokhtar; Aminian, Gholamreza; Ahmadi Bani, Monireh; Bahramizadeh, Mahmood; Sharifi, Guive; Sherafatvaziri, Arash
2017-10-01
Knee-ankle-foot orthoses (KAFOs) are used by people with poliomyelitis to ambulate. Whist advances in orthotic knee joint designs for use in KAFOs such the provision of stance control capability have proven efficacy, little attention has been paid to shoe adaptations which may also improve gait. The aim of this study was to evaluate the alteration to the kinematics and temporal-spatial parameters of gait caused by the use of heel-to-toe rocker-soled footwear when ambulating with KAFOs. Nine adults with a history of poliomyelitis who routinely wore KAFOs participated in the study. A heel-to-toe rocker sole was added to footwear and worn on the affected side. A three-dimensional motion capture system was used to quantify the resulting alteration to specific gait parameters. Maximum hip joint extension was significantly increased (p = 0.011), and hip abduction and adduction were both significantly reduced (p = 0.011 and p = 0.007, respectively) when walking with the rocker sole. A significant increase in stride length (p = 0.035) was demonstrated but there were no significant increases in either walking speed or cadence. A heel-to-toe rocker sole adaptation may be useful for walking in patients with poliomyelitis who use KAFOs. Implications for Rehabilitation The poor functionality and difficulty in walking when using an orthotic device such as a KAFO which keeps the knee locked during ambulation, plus the significant energy required to walk, are complications of orthoses using. Little evidence exists regarding the biomechanical effect of walking with a KAFO incorporating fixed knee joints, in conjunction with rocker-soled footwear. The main aim of walking with a heel-to-toe rocker sole is to facilitate forward progression of the tibia when used with an AFO or KAFO or to provide easier walking for patients who have undergone an ankle arthrodesis. In this study, a rocker sole profile adaptation produced no significant alteration to hip joint flexion, but hip joint maximum extension was significantly increased in subjects suffering from poliomyelitis, and maximum hip adduction and abduction were both significantly reduced. The most significant alterations were seen in stride length, and although there was a significant increase in this parameter, there was no statistically significant increase in walking velocity or cadence.
Frequency-velocity mismatch: a fundamental abnormality in parkinsonian gait.
Cho, Catherine; Kunin, Mikhail; Kudo, Koji; Osaki, Yasuhiro; Olanow, C Warren; Cohen, Bernard; Raphan, Theodore
2010-03-01
Gait dysfunction and falling are major sources of disability for patients with advanced Parkinson's disease (PD). It is presently thought that the fundamental defect is an inability to generate normal stride length. Our data suggest, however, that the basic problem in PD gait is an impaired ability to match step frequency to walking velocity. In this study, foot movements of PD and normal subjects were monitored with an OPTOTRAK motion-detection system while they walked on a treadmill at different velocities. PD subjects were also paced with auditory stimuli at different frequencies. PD gait was characterized by step frequencies that were faster and stride lengths that were shorter than those of normal controls. At low walking velocities, PD stepping had a reduced or absent terminal toe lift, which truncated swing phases, producing shortened steps. Auditory pacing was not able to normalize step frequency at these lower velocities. Peak forward toe velocities increased with walking velocity and PD subjects could initiate appropriate foot dynamics during initial phases of the swing. They could not control the foot appropriately in terminal phases, however. Increased treadmill velocity, which matched the natural PD step frequency, generated a second toe lift, normalizing step size. Levodopa increased the bandwidth of step frequencies, but was not as effective as increases in walking velocity in normalizing gait. We postulate that the inability to control step frequency and adjust swing phase dynamics to slower walking velocities are major causes for the gait impairment in PD.
Frequency-Velocity Mismatch: A Fundamental Abnormality in Parkinsonian Gait
Kunin, Mikhail; Kudo, Koji; Osaki, Yasuhiro; Olanow, C. Warren; Cohen, Bernard; Raphan, Theodore
2010-01-01
Gait dysfunction and falling are major sources of disability for patients with advanced Parkinson's disease (PD). It is presently thought that the fundamental defect is an inability to generate normal stride length. Our data suggest, however, that the basic problem in PD gait is an impaired ability to match step frequency to walking velocity. In this study, foot movements of PD and normal subjects were monitored with an OPTOTRAK motion-detection system while they walked on a treadmill at different velocities. PD subjects were also paced with auditory stimuli at different frequencies. PD gait was characterized by step frequencies that were faster and stride lengths that were shorter than those of normal controls. At low walking velocities, PD stepping had a reduced or absent terminal toe lift, which truncated swing phases, producing shortened steps. Auditory pacing was not able to normalize step frequency at these lower velocities. Peak forward toe velocities increased with walking velocity and PD subjects could initiate appropriate foot dynamics during initial phases of the swing. They could not control the foot appropriately in terminal phases, however. Increased treadmill velocity, which matched the natural PD step frequency, generated a second toe lift, normalizing step size. Levodopa increased the bandwidth of step frequencies, but was not as effective as increases in walking velocity in normalizing gait. We postulate that the inability to control step frequency and adjust swing phase dynamics to slower walking velocities are major causes for the gait impairment in PD. PMID:20042701
Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
Xu, Xu; McGorry, Raymond W; Chou, Li-Shan; Lin, Jia-Hua; Chang, Chien-Chi
2015-07-01
The measurement of gait parameters normally requires motion tracking systems combined with force plates, which limits the measurement to laboratory settings. In some recent studies, the possibility of using the portable, low cost, and marker-less Microsoft Kinect sensor to measure gait parameters on over-ground walking has been examined. The current study further examined the accuracy level of the Kinect sensor for assessment of various gait parameters during treadmill walking under different walking speeds. Twenty healthy participants walked on the treadmill and their full body kinematics data were measured by a Kinect sensor and a motion tracking system, concurrently. Spatiotemporal gait parameters and knee and hip joint angles were extracted from the two devices and were compared. The results showed that the accuracy levels when using the Kinect sensor varied across the gait parameters. Average heel strike frame errors were 0.18 and 0.30 frames for the right and left foot, respectively, while average toe off frame errors were -2.25 and -2.61 frames, respectively, across all participants and all walking speeds. The temporal gait parameters based purely on heel strike have less error than the temporal gait parameters based on toe off. The Kinect sensor can follow the trend of the joint trajectories for the knee and hip joints, though there was substantial error in magnitudes. The walking speed was also found to significantly affect the identified timing of toe off. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure some gait parameters for treadmill walking, depending on the desired accuracy level. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Comparison of Two Alternate Methods for Tracking Toe Clearance
NASA Technical Reports Server (NTRS)
Miller, Christopher A.; Feiveson, Alan H.; Bloomberg, Jacob J.
2007-01-01
Analyses of toe clearance during the swing phase of locomotion has often been utilized in determining a subject s propensity to trip while either walking or stepping over an obstacle. In the literature, toe clearance has been studied using a marker on the superior aspect of the second toe (rtoe), a marker on the lateral aspect of the fifth metatarsal head (mth5), or a virtual marker positioned at the anterior tip of the toe (vtoe). The purpose of this study was to compute toe clearance and associated parameters using a fifth metatarsal marker and a virtual toe marker, and compare the results with those of the standard toe marker. Subjects walked on a motorized treadmill at five different speeds while performing a visual acuity task at two separate target distances (ten 60-second trials). The minimum vertical height (TCl) was determined for each stride, along with its point of occurence in the gait cycle, and the angles of the foot and ankle at that time. A regression analysis was performed on the vtoe and mth5 results versus rtoe individually. For all TCl parameters, the mth5 marker did not correlate well with rtoe; the vtoe marker showed better agreement. Most importantly, the mth5 marker predicted a later occurence of TCl than rtoe and vtoe - thereby missing the most dangerous point in swing phase for a trip. From this analysis, the vtoe marker proved to be a better analog to rtoe than mth5, especially for determining a subject s propensity to trip.
Vestibular ataxia and its measurement in man
NASA Technical Reports Server (NTRS)
Fregly, A. R.
1974-01-01
Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.
Foot trajectory approximation using the pendulum model of walking.
Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J
2014-01-01
Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.
Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo
2014-01-01
Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness and facilitate heel strike in children with CP? Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied stretches below and above reflex threshold. Gait kinematics were recorded by 3-D video-analysis during treadmill walking. Foot pressure was measured by force-sensitive foot soles during treadmill and over-ground walking. Children with increased passive stiffness showed a significant reduction in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.
Ma, Zhi-Guo; Guo, Yong-Jun; Yan, Hou-Jun; Li, Qi-Ming; Ma, Bin
2017-02-01
The function of the donor foot has been affected after using big toe wrap-around flap for thumb reconstruction. A modified operation method has been developed to reduce the adverse effect on the donor foot. The current study compared the long-term effect of the classic and the modified operation methods on the donor foot. Gait analysis was carried out, including how the patient walked, the walking speed and walking distance, and how the patient jumped and ran. Plantar pressure was measured while the patient was standing and moving. A total of 45 patients who received the 2 different operation methods were included. The follow-up time was 4-10 years with a mean of 6.5 years. Various degrees of complications occurred for the 21 patients who received the classic operation method. For these patients, plantar pressure of the donor foot was obviously different comparing with the healthy unaffected foot while the patient was standing or walking. For the 24 patients who received the modified operation method, no obvious complications were observed and the plantar pressure of the donor foot and the healthy unaffected foot was similar while the patient was standing or walking. In conclusion, both the classic and the modified operation methods have affected the function of the donor foot after using the big toe wrap-around flap for thumb reconstruction. However, the donor foot was less affected when the modified operation method was used.
Posture alteration as a measure to accommodate uneven ground in able-bodied gait
Blickhan, Reinhard; Muller, Roy; Rode, Christian
2017-01-01
Though the effects of imposed trunk posture on human walking have been studied, less is known about such locomotion while accommodating changes in ground level. For twelve able participants, we analyzed kinematic parameters mainly at touchdown and toe-off in walking across a 10-cm visible drop in ground level (level step, pre-perturbation step, step-down, step-up) with three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). Two-way repeated measures ANOVAs revealed step-specific effects of posture on the kinematic behavior of gait mostly at toe-off of the pre-perturbation step and the step-down as well as at touchdown of the step-up. In preparation to step-down, with increasing trunk flexion the discrepancy in hip−center of pressure distance, i.e. effective leg length, (shorter at toe-off versus touchdown), compared with level steps increased largely due to a greater knee flexion at toe-off. Participants rotated their trunk backwards during step-down (2- to 3-fold backwards rotation compared with level steps regardless of trunk posture) likely to control the angular momentum of their whole body. The more pronounced trunk backwards rotation in trunk-flexed walking contributed to the observed elevated center of mass (CoM) trajectories during the step-down which may have facilitated drop negotiation. Able-bodied individuals were found to recover almost all assessed kinematic parameters comprising the vertical position of the CoM, effective leg length and angle as well as hip, knee and ankle joint angles at the end of the step-up, suggesting an adaptive capacity and hence a robustness of human walking with respect to imposed trunk orientations. Our findings may provide clinicians with insight into a kinematic interaction between posture and locomotion in uneven ground. Moreover, a backward rotation of the trunk for negotiating step-down may be incorporated into exercise-based interventions to enhance gait stability in individuals who exhibit trunk-flexed postures during walking. PMID:29281712
... walking. People with this problem are likely to fall because they have poor balance and are always trying to catch up. Provide ... a walker is recommended for those with poor balance. Medicines (muscle ... a person to stub a toe and fall. Leg braces and in-shoe splints can help ...
Diagnosis and Management of Common Foot Fractures.
Bica, David; Sprouse, Ryan A; Armen, Joseph
2016-02-01
Foot fractures are among the most common foot injuries evaluated by primary care physicians. They most often involve the metatarsals and toes. Patients typically present with varying signs and symptoms, the most common being pain and trouble with ambulation. Diagnosis requires radiographic evaluation, although emerging evidence demonstrates that ultrasonography may be just as accurate. Management is determined by the location of the fracture and its effect on balance and weight bearing. Metatarsal shaft fractures are initially treated with a posterior splint and avoidance of weight-bearing activities; subsequent treatment consists of a short leg walking cast or boot for four to six weeks. Proximal fifth metatarsal fractures have different treatments depending on the location of the fracture. A fifth metatarsal tuberosity avulsion fracture can be treated acutely with a compressive dressing, then the patient can be transitioned to a short leg walking boot for two weeks, with progressive mobility as tolerated after initial immobilization. A Jones fracture has a higher risk of nonunion and requires at least six to eight weeks in a short leg non-weight-bearing cast; healing time can be as long as 10 to 12 weeks. Great toe fractures are treated with a short leg walking boot or cast with toe plate for two to three weeks, then a rigid-sole shoe for an additional three to four weeks. Lesser toe fractures can be treated with buddy taping and a rigid-sole shoe for four to six weeks.
Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu
2017-11-01
Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.
This report presents the results of the verification test of the DeVilbiss GTi-600G high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss GTi, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refinis...
This report presents the results of the verification test of the DeVilbiss FLG-631-318 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss FLG, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refi...
Osis, Sean T; Hettinga, Blayne A; Ferber, Reed
2016-05-01
An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamic self-cleaning in gecko setae via digital hyperextension
Hu, Shihao; Lopez, Stephanie; Niewiarowski, Peter H.; Xia, Zhenhai
2012-01-01
Gecko toe pads show strong adhesion on various surfaces yet remain remarkably clean around everyday contaminants. An understanding of how geckos clean their toe pads while being in motion is essential for the elucidation of animal behaviours as well as the design of biomimetic devices with optimal performance. Here, we test the self-cleaning of geckos during locomotion. We provide, to our knowledge, the first evidence that geckos clean their feet through a unique dynamic self-cleaning mechanism via digital hyperextension. When walking naturally with hyperextension, geckos shed dirt from their toes twice as fast as they would if walking without hyperextension, returning their feet to nearly 80 per cent of their original stickiness in only four steps. Our dynamic model predicts that when setae suddenly release from the attached substrate, they generate enough inertial force to dislodge dirt particles from the attached spatulae. The predicted cleaning force on dirt particles significantly increases when the dynamic effect is included. The extraordinary design of gecko toe pads perfectly combines dynamic self-cleaning with repeated attachment/detachment, making gecko feet sticky yet clean. This work thus provides a new mechanism to be considered for biomimetic design of highly reuseable and reliable dry adhesives and devices. PMID:22696482
2D trajectory estimation during free walking using a tiptoe-mounted inertial sensor.
Sagawa, Koichi; Ohkubo, Kensuke
2015-07-16
An estimation method for a two-dimensional walking trajectory during free walking, such as forward walking, side stepping and backward walking, was investigated using a tiptoe-mounted inertial sensor. The horizontal trajectory of the toe-tip is obtained by double integration of toe-tip acceleration during the moving phase in which the sensor is rotated before foot-off or after foot-contact, in addition to the swing phase. Special functions that determine the optimum moving phase as the integral duration in every one step are developed statistically using the gait cycle and the resultant angular velocity of dorsi/planter flexion, pronation/supination and inversion/eversion so that the difference between the estimated trajectory and actual one gives a minimum value during free walking with several cadences. To develop the functions, twenty healthy volunteers participated in free walking experiments in which subjects performed forward walking, side stepping to the right, side stepping to the left, and backward walking at 39 m down a straight corridor with several predetermined cadences. To confirm the effect of the developed functions, five healthy subjects participated in the free walking experiment in which each subject performed free walking with different velocities of normal, fast, and slow based on their own assessment in a square course with 7 m side. The experimentally obtained results of free walking with a combination of forward walking, backward walking, and side stepping indicate that the proposed method produces walking trajectory with high precision compared with the constant threshold method which determines swing phase using the size of the angular velocity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nouman, Muhammad; Leelasamran, Wipawan; Chatpun, Surapong
2017-08-01
Using a total contact orthosis (TCO) is an effective method to offload in diabetic patients with foot neuropathy. However, the redistribution of peak plantar pressure is mostly observed during level walking, which may differ from other walking activities. The aim of this study was to investigate the plantar pressure from 4 regions of the foot during different walking activities (level walking, ramp ascending, ramp descending, stair ascending, and stair descending) in neuropathic diabetic patients with and without a TCO. Sixteen neuropathic diabetic patients aged 40 to 60 years with calluses and hallux valgus were included in this study and were provided with TCOs made up of multifoam, Plastazote, and microcellular rubber. The plantar pressure and contact area with the TCO and without the TCO were recorded using the Pedar X system during different walking activities. A significant reduction of plantar pressure during different walking activities at the toes and forefoot regions was observed while walking with the TCO compared with walking without the TCO (control condition). Plantar pressure increased at the midfoot region when walking with the TCO, and no significant difference was observed at the hindfoot region between the control and TCO conditions. Furthermore, maximum contact area was observed during level walking with the TCO compared with other walking activities. The TCO significantly reduced and redistributed the peak plantar pressure from the sites where the ulceration rate is higher at the toes and forefoot compared with the other regions of the foot. Therapeutic level II, lesser quality randomized controlled trial.
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Basdogan, C.; Bloomberg, J. J.; Layne, C. S.
1996-01-01
We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
McDonald, P V; Basdogan, C; Bloomberg, J J; Layne, C S
1996-11-01
We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.
Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo
2016-10-01
This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.
... in the big toe during use (walking, standing, bending, etc.) Pain and stiffness aggravated by cold, damp ... ps.position.alert.message}} Getting your location, one moment... Please enter a 5-digit zip code. Please ...
... thallium, and lead Solvents such as toluene or carbon tetrachloride Other causes include: Certain cancers, in which ... system and muscles, paying careful attention to walking, balance, and coordination of pointing with fingers and toes. ...
... from a lying or sitting up position Trouble running and jumping Waddling gait Walking on the toes ... begins in the face and shoulders. The shoulder blades might stick out like wings when a person ...
2011-01-01
Background It is not yet established if the use of body weight support (BWS) systems for gait training is effective per se or if it is the combination of BWS and treadmill that improves the locomotion of individuals with gait impairment. This study investigated the effects of gait training on ground level with partial BWS in individuals with stroke during overground walking with no BWS. Methods Twelve individuals with chronic stroke (53.17 ± 7.52 years old) participated of a gait training program with BWS during overground walking, and were evaluated before and after the gait training period. In both evaluations, individuals were videotaped walking at a self-selected comfortable speed with no BWS. Measurements were obtained for mean walking speed, step length, stride length and speed, toe-clearance, durations of total double stance and single-limb support, and minimum and maximum foot, shank, thigh, and trunk segmental angles. Results After gait training, individuals walked faster, with symmetrical steps, longer and faster strides, and increased toe-clearance. Also, they displayed increased rotation of foot, shank, thigh, and trunk segmental angles on both sides of the body. However, the duration of single-limb support remained asymmetrical between each side of the body after gait training. Conclusions Gait training individuals with chronic stroke with BWS during overground walking improved walking in terms of temporal-spatial parameters and segmental angles. This training strategy might be adopted as a safe, specific and promising strategy for gait rehabilitation after stroke. PMID:21864373
NASA Astrophysics Data System (ADS)
Nomoto, Yohei; Yamashita, Kazuhiko; Ohya, Tetsuya; Koyama, Hironori; Kawasumi, Masashi
There is the increasing concern of the society to prevent the fall of the aged. The improvement in aged people's the muscular strength of the lower-limb, postural control and walking ability are important for quality of life and fall prevention. The aim of this study was to develop multiple evaluation methods in order to advise for improvement and maintenance of lower limb function between aged and young. The subjects were 16 healthy young volunteers (mean ± S.D: 19.9 ± 0.6 years) and 10 healthy aged volunteers (mean ± S.D: 80.6 ± 6.1 years). Measurement items related to lower limb function were selected from the items which we have ever used. Selected measurement items of function of lower are distance of extroversion of the toe, angle of flexion of the toe, maximum width of step, knee elevation, moving distance of greater trochanter, walking balance, toe-gap force and rotation range of ankle joint. Measurement items summarized by the principal component analysis into lower ability evaluation methods including walking ability and muscle strength of lower limb and flexibility of ankle. The young group demonstrated the factor of 1.6 greater the assessment score of walking ability compared with the aged group. The young group demonstrated the factor of 1.4 greater the assessment score of muscle strength of lower limb compared with the aged group. The young group demonstrated the factor of 1.2 greater the assessment score of flexibility of ankle compared with the aged group. The results suggested that it was possible to assess the lower limb function of aged and young numerically and to advise on their foot function.
Sustaining the U.S. Air Force Nuclear Mission
2013-01-01
B61 -7 B83 B61 -11 B-2 NC3 ITW Tornado F-16...F-15E MMIII W78 W87 Mk-12A Mk-21 B61 -3/4 Gravity bomb: Tactical delivery Long- range standoff ICBM Gravity bomb: Strategic delivery 6...1 Follow-on ALCM B61 -7 B83 B61 -11 Next generation bomber NC3 ITW F-35 New GBSD Follow-on to W87/W78 Next generation fuse B61 -3/4 Gravity
Neuromuscular activation patterns during treadmill walking after space flight
NASA Technical Reports Server (NTRS)
Layne, C. S.; McDonald, P. V.; Bloomberg, J. J.
1997-01-01
Astronauts adopt a variety of neuromuscular control strategies during space flight that are appropriate for locomoting in that unique environment, but are less than optimal upon return to Earth. We report here the first systematic investigation of potential adaptations in neuromuscular activity patterns associated with postflight locomotion. Astronaut-subjects were tasked with walking on a treadmill at 6.4 km/h while fixating a visual target 30 cm away from their eyes after space flights of 8-15 days. Surface electromyography was collected from selected lower limb muscles and normalized with regard to mean amplitude and temporal relation to heel strike. In general, high correlations (more than 0.80) were found between preflight and postflight activation waveforms for each muscle and each subject: however relative activation amplitude around heel strike and toe off was changed as a result of flight. The level of muscle cocontraction and activation variability, and the relationship between the phasic characteristics of the ankle musculature in preparation for toe off also were altered by space flight. Subjects also reported oscillopsia during treadmill walking after flight. These findings indicate that, after space flight, the sensory-motor system can generate neuromuscular-activation strategies that permit treadmill walking, but subtle changes in lower-limb neuromuscular activation are present that may contribute to increased lower limb kinematic variability and oscillopsia also present during postflight walking.
Said, Catherine M; Galea, Mary P; Lythgo, Noel
2013-03-01
Obstacle crossing is impaired in people following stroke. It is not known whether people with stroke who fail an obstacle crossing task have more falls or whether the gait adjustments used to cross an obstacle differ from those used by people who pass the task. The purposes of this study were (1) to identify whether a group of people with stroke who failed an obstacle crossing task had a greater incidence of falling and (2) to determine whether people who fail an obstacle crossing task utilize different gait adjustments. This was a prospective, observational study. Thirty-two participants with a recent stroke were recruited. Participants walked at self-selected speed and stepped over a 4-cm-high obstacle. Performance was rated as pass or fail, and spatiotemporal, center of mass (COM), and center of pressure (COP) data were collected. Prospective falls data were recorded for 20 participants over a 6-month period. The incidence of fallers was significantly higher (incidence rate=0.833) in the group that failed the obstacle crossing task than in the group that passed the task (incidence rate=0.143). The group that failed the task had a slower walking speed and greater normalized separation between the trail heel (unaffected support limb) and COM as the affected lead toe cleared the obstacle. This group exhibited greater normalized times from affected lead toe clearance to landing, unaffected trail toe clearance to landing, and affected trail toe-off to toe clearance. The sample size was small, and falls data were available for only 20 participants. Obstacle crossing is an important task to consider in people following stroke and may be useful in identifying those at risk of falls.
[Effect of walking speed on pressure distribution of orthopedic shoe technology].
Drerup, B; Hafkemeyer, U; Möller, M; Wetz, H H
2001-03-01
Lesions to the diabetic foot have various causes. However, there is broad consensus that excessive plantar pressure plays a major role in the chain of events leading to ulcerations and gangrenes. During walking, on the other hand, peak values of plantar pressure are likely to increase with velocity even in therapeutic shoes. Therefore, the question arises whether a moderate velocity should be recommended to diabetic patients to reduce the risk of foot lesions. In this study, two velocities were compared for different types of therapeutic footwear. The velocities selected were considered moderate (0.7 m/s) and normal (1.3 m/s) for diabetic patients. A specially designed mathematical algorithm (velocity normalization) provided the pressure distributions from a common set of measurements: seven trials at different velocities for each subject and each type of footwear. Ten test subjects with healthy feet were studied. The shoes were ready-made and all had a midfoot rocker. The following four conditions were tested: flexible or rigid outsole respectively in combination with a flat insole or molded foot bed respectively. Pressure distribution measurements were performed with the Pedar in-shoe system, and the Pedar software package was used for analysis. The foot was divided into six regions: first toe, second to fifth toes, metatarsal region, medial midfoot, lateral midfoot, and heel. Only peak pressures were taken into account. Gait velocity was found to have an effect on plantar pressure distribution, mainly in the toes and heel region. Peak pressure in the heels increased significantly by about 20%. In the toe region, the increase was about the same, but was not statistically significant. At a higher velocity, pressure even slightly decreased in the midfoot region. The percentage variation was similar for all four conditions. Thus, walking slowly prevented the foot from high peak pressures, and the combination of rigid outsole and molded foot bed was best suited for both slow and higher velocities.
Warabi, Tateo; Kato, Masamichi; Kiriyama, Kiichi; Yoshida, Toshikazu; Kobayashi, Nobuyoshi
2004-12-01
Sole-floor reaction forces were recorded from five anatomically discrete points to analyze characteristics of human locomotion. Strain gauge of 14 mm diameter were firmly attached to the sole of bare-foot for recording force changes from the following five points: (1) medial process of calcaneus, (2) head of 1st metatarsal, (3) head of 3rd metatarsal, (4) head of 5th metatarsal and (5) great toe. Fifteen healthy adults were asked to walk at 2, 4, 6 and 8 km/h and to run at 8 km/h on the treadmill. Sole-floor reaction forces from 1st to 5th metatarsals show reciprocal changes during stance phase, while force from 1st metatarsal is strong 5th metatarsal shows weak reaction and vice versa. This phenomenon may be an expression of locomotor program to maintain vertical stability of the body during stance phase. There was a linear relation between walking speeds and sum of force from the five points, although sum of forces from three metatarsals did not change significantly during the walking speeds, indicating mainly calcaneus and great toe contribute to increasing walking speed. During running the sum of force from the three metatarsals increased sharply, joining the other two points to increase thrust.
Breathing difficulties - first aid
... walk around every few hours to avoid forming blood clots in your legs. While seated, do ankle circles ... lower your heels, toes, and knees to increase blood flow in your legs. Clots can break off and lodge in your lungs. ...
At similar angles, slope walking has a greater fall risk than stair walking.
Sheehan, Riley C; Gottschall, Jinger S
2012-05-01
According to the CDC, falls are the leading cause of injury for all age groups with over half of the falls occurring during slope and stair walking. Consequently, the purpose of this study was to compare and contrast the different factors related to fall risk as they apply to these walking tasks. More specifically, we hypothesized that compared to level walking, slope and stair walking would have greater speed standard deviation, greater ankle dorsiflexion, and earlier peak activity of the tibialis anterior. Twelve healthy, young male participants completed level, slope, and stair trials on a 25-m walkway. Overall, during slope and stair walking, medial-lateral stability was less, anterior-posterior stability was less, and toe clearance was greater in comparison to level walking. In addition, there were fewer differences between level and stair walking than there were between level and slope walking, suggesting that at similar angles, slope walking has a greater fall risk than stair walking. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Takatori, Katsuhiko; Matsumoto, Daisuke
2015-10-01
To investigate the relationships between toe elevation ability in the standing position and dynamic balance and fall risk among community-dwelling older adults. Cross-sectional survey. General community. Community-dwelling older adults (N = 287). Toe elevation angles in the standing position. Intra-rater and inter-rater reliability of measurements of the toe elevation angle was high (internal coefficient of correlation [ICC] (1,2) = 0.94 for the former and ICC (2,1) = 0.90 for the latter). Significant correlations were found between the toe elevation angle and age (r = -0.20, P < .01), 5-m walking time (r = -0.31, P < .01), Functional Reach Test (r = 0.36, P < .01), Timed Up and Go Test (r = -0.36, P < .01), and Chair Stand Test (r = 0.26, P < .01). Subjects who experienced a fall in the previous 6 months had a significantly lower toe elevation angle compared with subjects who did not experience a fall (t = 2.19, P < .05). Multiple regression analysis revealed that results of the Functional Reach Test (β = .22, P < .001) and Timed Up and Go Test (β = -0.74, P < .001) were significantly associated with the toe elevation angle. Toe elevation angle was an index of dynamic balance ability and appears to be a simple screening test for fall risk in community-dwelling older adults. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.
2011-01-01
Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).
Khandelwal, Siddhartha; Wickström, Nicholas
2017-01-01
Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.
Balance and postural skills in normal-weight and overweight prepubertal boys.
Deforche, Benedicte I; Hills, Andrew P; Worringham, Charles J; Davies, Peter S W; Murphy, Alexia J; Bouckaert, Jacques J; De Bourdeaudhuij, Ilse M
2009-01-01
This study investigated differences in balance and postural skills in normal-weight versus overweight prepubertal boys. Fifty-seven 8-10-year-old boys were categorized overweight (N = 25) or normal-weight (N = 32) according to the International Obesity Task Force cut-off points for overweight in children. The Balance Master, a computerized pressure plate system, was used to objectively measure six balance skills: sit-to-stand, walk, step up/over, tandem walk (walking on a line), unilateral stance and limits of stability. In addition, three standardized field tests were employed: standing on one leg on a balance beam, walking heel-to-toe along the beam and the multiple sit-to-stand test. Overweight boys showed poorer performances on several items assessed on the Balance Master. Overweight boys had slower weight transfer (p < 0.05), lower rising index (p < 0.05) and greater sway velocity (p < 0.001) in the sit-to-stand test, greater step width while walking (p < 0.05) and lower speed when walking on a line (p < 0.01) compared with normal-weight counterparts. Performance on the step up/over test, the unilateral stance and the limits of stability were comparable between both groups. On the balance beam, overweight boys could not hold their balance on one leg as long (p < 0.001) and had fewer correct steps in the heel-to-toe test (p < 0.001) than normal-weight boys. Finally, overweight boys were slower in standing up and sitting down five times in the multiple sit-to-stand task (p < 0.01). This study demonstrates that when categorised by body mass index (BMI) level, overweight prepubertal boys displayed lower capacity on several static and dynamic balance and postural skills.
Cnossen, Ingrid C; van Uden-Kraan, Cornelia F; Eerenstein, Simone E J; Jansen, Femke; Witte, Birgit I; Lacko, Martin; Hardillo, José A; Honings, Jimmie; Halmos, Gyorgy B; Goedhart-Schwandt, Noortje L Q; de Bree, Remco; Leemans, C René; Verdonck-de Leeuw, Irma M
2016-03-01
The purpose of this study was to investigate the feasibility of an online self-care education program supporting early rehabilitation of patients after total laryngectomy (TLPs) and factors associated with satisfaction. Health care professionals (HCPs) were invited to participate and to recruit TLPs. TLPs were informed on the self-care education program "In Tune without Cords" (ITwC) after which they gained access. A study specific survey was used (at baseline T0 and postintervention T1) on TLPs' uptake. Usage, satisfaction (general impression, willingness to use, user-friendliness, satisfaction with self-care advice and strategies, Net Promoter Score (NPS)), sociodemographic, and clinical factors were analyzed. HCPs of 6 out of 9 centers (67% uptake rate) agreed to participate and recruited TLPs. In total, 55 of 75 TLPs returned informed consent and the baseline T0 survey and were provided access to ITwC (73% uptake rate). Thirty-eight of these 55 TLPs used ITwC and completed the T1 survey (69% usage rate). Most (66%) TLPs were satisfied (i.e., score ≥7 (scale 1-10) on 4 survey items) with the self-care education program (mean score 7.2, SD 1.1). NPS was positive (+5). Satisfaction with the self-care education program was significantly associated with (higher) educational level and health literacy skills (P = .004, P = .038, respectively). No significant association was found with gender, age, marital status, employment status, Internet use, Internet literacy, treatment modality, time since total laryngectomy, and quality of life. The online self-care education program ITwC supporting early rehabilitation was feasible in clinical practice. In general, TLPs were satisfied with the program.
Tsai, Liang-Ching; Ren, Yupeng; Gaebler-Spira, Deborah J; Revivo, Gadi A; Zhang, Li-Qun
2017-07-01
This preliminary study examined the effects of off-axis elliptical training on reducing transverse-plane gait deviations and improving gait function in 8 individuals with cerebral palsy (CP) (15.5 ± 4.1 years) who completed an training program using a custom-made elliptical trainer that allows transverse-plane pivoting of the footplates during exercise. Lower-extremity off-axis control during elliptical exercise was evaluated by quantifying the root-mean-square and maximal angular displacement of the footplate pivoting angle. Lower-extremity pivoting strength was assessed. Gait function and balance were evaluated using 10-m walk test, 6-minute-walk test, and Pediatric Balance Scale. Toe-in angles during gait were quantified. Participants with CP demonstrated a significant decrease in the pivoting angle (root mean square and maximal angular displacement; effect size, 1.00-2.00) and increase in the lower-extremity pivoting strength (effect size = 0.91-1.09) after training. Reduced 10-m walk test time (11.9 ± 3.7 seconds vs. 10.8 ± 3.0 seconds; P = 0.004; effect size = 1.46), increased Pediatric Balance Scale score (43.6 ± 12.9 vs. 45.6 ± 10.8; P = 0.042; effect size = 0.79), and decreased toe-in angle (3.7 ± 10.5 degrees vs. 0.7 ± 11.7 degrees; P = 0.011; effect size = 1.22) were observed after training. We present an intervention to challenge lower-extremity off-axis control during a weight-bearing and functional activity for individuals with CP. Our preliminary findings suggest that this intervention was effective in enhancing off-axis control, gait function, and balance and reducing in-toeing gait in persons with CP.
Improving Maladaptive Behaviors Using Sensory Integration Techniques.
ERIC Educational Resources Information Center
Shuman, Theresa
A study examined the use of sensory integration techniques to reduce the maladaptive behaviors that interfered with the learning of nine high school students with mental impairments attending a special school. Maladaptive behaviors identified included rocking, toe walking, echolalia, resistance to change, compulsive behaviors, aggression,…
Lightweight, Economical Device Alleviates Drop Foot
NASA Technical Reports Server (NTRS)
Deis, B. C.
1983-01-01
Corrective apparatus alleviates difficulties in walking for victims of drop foot. Elastic line attached to legband provides flexible support to toe of shoe. Device used with flat (heelless) shoes, sneakers, crepe-soled shoes, canvas shoes, and many other types of shoes not usable with short leg brace.
Williams, Cylie M; Michalitsis, Joanne; Murphy, Anna T; Rawicki, Barry; Haines, Terry P
2016-08-01
This study aimed to determine the impact of multiple doses of whole-body vibration on heel strike, spatial and temporal gait parameters, and ankle range of motion of children with idiopathic toe walking. Whole-body vibration was applied for 5 sets of 1 minute vibration/1 minute rest. Gait measures were collected pre intervention, 1, 5, 10, and 20 minutes postintervention with the GaitRite(®) electronic walkway. Ankle range of motion was measured preintervention, immediately postintervention, and 20 minutes postintervention. The mean (SD) age of the 15 children (n = 10 males) was 5.93 (1.83) years. An immediate increase in heel contact (P = .041) and ankle range of motion (P = .001 and P = .016) was observed. These changes were unsustained 20 minutes postvibration (P > .05). The gait improvement from whole-body vibration could potentially be due to a rapid increase in ankle range of motion or a neuromodulation response. © The Author(s) 2016.
Napolitano, Christopher M; Job, Veronika
2018-05-21
Why do some people struggle with self-control (colloquially called willpower) whereas others are able to sustain it during challenging circumstances? Recent research showed that a person's implicit theories of willpower-whether they think self-control capacity is a limited or nonlimited resource-predict sustained self-control on laboratory tasks and on goal-related outcomes in everyday life. The present research tests the Implicit Theory of Willpower for Strenuous Mental Activities Scale (or ITW-M) Scale for measurement invariance across samples and gender within each culture, and two cultural contexts (the U.S. and Switzerland/Germany). Across a series of multigroup confirmatory factor analyses, we found support for the measurement invariance of the ITW-M scale across samples within and across two cultures, as well as across men and women. Further, the analyses showed expected patterns of convergent (with life-satisfaction and trait-self-control) and discriminant validity (with implicit theory of intelligence). These results provide guidelines for future research and clinical practice using the ITW-M scale for the investigation of latent group differences, for example, between gender or cultures. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
2013-01-01
Background Ill-fitting footwear can be detrimental to foot health with the forefoot being an area for most discomfort. Studies on footwear have primarily examined sports or orthopaedic prescription shoes and little is known about the effects that everyday flat shoes have on the forefoot. The aim of this study was to investigate the effect of toe box shape in a popular slip-on pump on dorsal and plantar pressures with particular interest around the forefoot in a healthy female population. Method A convenience sample of 27 female participants with no known foot pathologies was recruited. After assessment of foot size, plantar foot pressure and interdigital pressures were recorded for each of the 3 different toe box styles; round, square and pointed. Participants walked at a self-selected speed over a 10 m walkway whilst wearing each of the 3 styles of shoe and also whilst barefoot. Processed and analysed data extracted included peak pressure, time to peak pressure, contact time and pressure time integral. ANOVA and Freidman analysis was used to test for statistical significance. Results Shoes with a round toe showed least pressure around the medial aspect of the toes whilst the pointed shoe had least pressure on the lateral toes. Contact times for the plantar regions were not altered in any shoe condition yet contact around the medial aspect of the toes was highest in the pointed shoe. Conclusion This study highlights that the shape of the toe box in footwear can significantly influence the amount of pressure applied to the forefoot. Furthermore, the contours of the shoe also have an impact on the contact time and pressure time integral around the forefoot and also the peak plantar pressure in the toe region. The changes observed could be significant in the development of pathology in certain footwear toe box shapes. Consideration should be given to footwear design around the toe box to improve fit and reduce pressure. Further work is required to investigate the effect of toe box shape and volume on a pathological population with pressure related lesions. PMID:23886242
Plantar pressure distribution of ostrich during locomotion on loose sand and solid ground
Han, Dianlei; Ma, Songsong; Luo, Gang; Ji, Qiaoli; Xue, Shuliang; Yang, Mingming; Li, Jianqiao
2017-01-01
Background The ostrich is a cursorial bird with extraordinary speed and endurance, especially in the desert, and thus is an ideal large-scale animal model for mechanic study of locomotion on granular substrate. Methods The plantar pressure distributions of ostriches walking/running on loose sand/solid ground were recorded using a dynamic pressure plate. Results The center of pressure (COP) on loose sand mostly originated from the middle of the 3rd toe, which differed from the J-shaped COP trajectory on solid ground. At mid-stance, a high-pressure region was observed in the middle of the 3rd toe on loose sand, but three high-pressure regions were found on solid ground. The gait mode significantly affected the peak pressures of the 3rd and 4th toes (p = 1.5 × 10−6 and 2.39 × 10−8, respectively), but not that of the claw (p = 0.041). The effects of substrate were similar to those of the gait mode. Discussion Ground reaction force trials of each functional part showed the 3rd toe bore more body loads and the 4th toe undertook less loads. The pressure distributions suggest balance maintenance on loose sand was provided by the 3rd and 4th toes and the angle between their length axes. On loose sand, the middle of the 3rd toe was the first to touch the sand with a smaller attack angle to maximize the ground reaction force, but on solid ground, the lateral part was the first to touch the ground to minimize the transient loading. At push-off, the ostrich used solidification properties of granular sand under the compression of the 3rd toe to generate sufficient traction. PMID:28761792
A prototype wireless inertial-sensing device for measuring toe clearance.
Lai, Daniel T H; Charry, E; Begg, R; Palaniswami, M
2008-01-01
Tripping and slipping are serious health concerns for the elderly because they result in life threatening injuries i.e., fractures and high medical costs. Our recent work in detection of tripping gait patterns has demonstrated that minimum toe clearance (MTC) is a sensitive falls risk predictor. MTC measurement has previously been done in gait laboratories and on treadmills which potentially imposes controlled walking conditions. In this paper, we describe a prototype design of a wireless device for monitoring vertical toe clearance. The sensors consists of a tri-axis accelerometer and dual-axis gyroscope connected to Crossbow sensor motes for wireless data transmission. Sensor data are transmitted to a laptop and displayed on a Matlab graphic user interface (GUI). We have performed zero base and treadmill experiments to investigate sensor performance to environmental variations and compared the calculated toe clearance against measurements made by an Optotrak motion system. It was found that device outputs were approximately independent of small ambient temperature variations, had a reliable range of 20m indoors and 50m outdoors and a maximum transmission rate of 20 packets/s. Toe clearance measurements were found to follow the Optotrak measurement trend but could be improved further by dealing with double integration errors and improving data transmission rates.
Multimedia-assisted breathwalk-aware system.
Yu, Meng-Chieh; Wu, Huan; Lee, Ming-Sui; Hung, Yi-Ping
2012-12-01
Breathwalk is a science of combining specific patterns of footsteps synchronized with the breathing. In this study, we developed a multimedia-assisted Breathwalk-aware system which detects user's walking and breathing conditions and provides appropriate multimedia guidance on the smartphone. Through the mobile device, the system enhances user's awareness of walking and breathing behaviors. As an example application in slow technology, the system could help meditator beginners learn "walking meditation," a type of meditation which aims to be as slow as possible in taking pace, to synchronize footstep with breathing, and to land every footstep with toes first. In the pilot study, we developed a walking-aware system and evaluated whether multimedia-assisted mechanism is capable of enhancing beginner's walking awareness while walking meditation. Experimental results show that it could effectively assist beginners in slowing down the walking speed and decreasing incorrect footsteps. In the second experiment, we evaluated the Breathwalk-aware system to find a better feedback mechanism for learning the techniques of Breathwalk while walking meditation. The experimental results show that the visual-auditory mechanism is a better multimedia-assisted mechanism while walking meditation than visual mechanism and auditory mechanism.
21 CFR 888.5940 - Cast component.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cast component. 888.5940 Section 888.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... the cast heel, toe cap, cast support, and walking iron. (b) Classification. Class I (general controls...
21 CFR 888.5940 - Cast component.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cast component. 888.5940 Section 888.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... the cast heel, toe cap, cast support, and walking iron. (b) Classification. Class I (general controls...
Plantar pressure changes after long-distance walking.
Stolwijk, Niki M; Duysens, Jacques; Louwerens, Jan Willem K; Keijsers, Noël L W
2010-12-01
The popularity of long-distance walking (LDW) has increased in the last decades. However, the effects of LDW on plantar pressure distribution and foot complaints, in particular, after several days of walking, have not been studied. We obtained the plantar pressure data of 62 subjects who had no history of foot complaints and who walked a total distance of 199.8 km for men (n = 30) and 161.5 km for women (n = 32) during four consecutive days. Plantar pressure was measured each day after the finish (posttests I–IV) and compared with the baseline plantar pressure data, which was obtained 1 or 2 d before the march (pretest). Mean, peak, and pressure–time integral per pixel as well as the center of pressure (COP) trajectory of each foot per measurement day were calculated using the normalization method of Keijsers et al. A paired t-test with an adjusted P value was used to detect significant differences between pretest and posttest. Short-term adjustment to LDW resulted in a significant decreased loading on the toes accompanied with an increased loading on the metatarsal head III–V (P < 0.001). At all stages, particularly at later stages, there was significantly more heel loading (P < 0.001). Furthermore, the COP significantly displaced in the posterior direction but not in the mediolateral direction after marching. Contact time increased slightly from 638.5 +/- 24.2 to 675.4 +/- 22.5 ms (P < 0.001). The increased heel loading and decreased function of the toes found after marching indicate a change of walking pattern with less roll-off. It is argued that these changes reflect the effect of fatigue of the lower leg muscles and to avoid loading of the most vulnerable parts of the foot.
The Effects of Walking Workstations on Biomechanical Performance.
Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill
2018-04-03
Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.
McLoda, T A; Hansen, A J; Birrer, D A
2004-06-01
The purpose of this investigation was to determine the pre-activity of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) prior to foot contact during three conditions. Twenty-six subjects (age 22 +/- 2 yrs; 15 male, 11 female) with no lower extremity injuries reported for data collection. Data were collected from each subject's dominant leg using surface electromyography (EMG). EMG electrodes were applied over the test muscles using a standard protocol. A heel-toe strike transducer was affixed to the bottom of the subject's shoe. The subject completed two randomized trials of walking on a treadmill (5.6 kph), jogging on a treadmill (9.3 kph) and drop landing from a 38 cm box. Isometric reference positions (IRPs) were recorded for the TA, PL, and PB. Muscle data were normalized to IRPs and the average processed EMG for the 200 ms prior to heel strike during walking and jogging and prior to toe strike when dropping from the box was used for analysis. A one-way repeated measures MANOVA was used to detect differences in pre-activity of the muscles between the three conditions. Univariate tests were used to determine differences for each muscle and Tukey's was applied post hoc to determine individual effect differences. The MANOVA revealed significant differences among the three conditions (F2.50 = 10.770; P < .0005). Average TA activity was significantly higher during jogging (Tukey's; P < .0005). Significant differences existed between each condition for the TA. Average PL and PB activity was significantly higher when drop landing (Tukey's; P < .0005). There was no significant difference between walking and jogging for the PL and PB. The amount of muscle pre-activity occurring before heel or toe strike provides useful information for the examination of reaction times to unexpected inversion during dynamic activities.
Yavuz, Ferdi; Balaban, Birol
2016-01-01
Diagnosis of Adult Idiopathic Toe Walking (AITW) is very rare in clinical practice. High quality studies regarding AITW and its treatment options have not been conducted previously. A 28-year-old male patient complaining of lower leg pain was referred to outpatient rehabilitation clinic. Physical examination revealed a gait abnormality of insufficient heel strike at initial contact. The aetiology was investigated and the patient’s walking parameters were assessed using a computerized gait analysis system. The AITW was diagnosed. Botulinum toxin-A (Dysport®) was injected to the bilateral gastrocnemius muscles. A combined 10-days rehabilitation program was designed, including a daily one-hour physiotherapist supervised exercise program, ankle dorsiflexion exercises using an EMG-biofeedback unit assisted virtual rehabilitation system (Biometrics) and virtual gait training (Rehawalk) every other day. After treatment, the patient was able to heel strike at the initiation of the stance phase of the gait. Ankle dorsiflexion range of motions increased. The most prominent improvement was seen in maximum pressure and heel force. In addition center of pressure evaluations were also improved. To the best of our knowledge this is the first case, of AITW treated with combined botulinum toxin, exercise and virtual rehabilitation systems. This short report demonstrates the rapid effect of this 10-days combined therapy. PMID:27504395
Dimensions of the foot muscles in the lowland gorilla.
Oishi, Motoharu; Ogihara, Naomichi; Endo, Hideki; Komiya, Teruyuki; Kawada, Shin-Ichiro; Tomiyama, Tae; Sugiura, Yosuke; Ichihara, Nobutsune; Asari, Masao
2009-06-01
We dissected the hindlimb of a female western lowland gorilla and determined the muscle dimensions (mass, fascicle length, and physiological cross-sectional area: PCSA). Comparisons of the muscle parameters of the measured gorilla with corresponding reported human data demonstrated that the triceps surae muscles were larger and had more capacity to generate force than the other muscle groups in both species, but this tendency was more prominent in the human, probably as an adaptation to strong toe-off during bipedal walking. On the other hand, PCSAs of the extrinsic pedal digital flexors and digiti minimi muscles were larger in the western lowland gorilla, suggesting that the foot, particularly the fifth toe, has a relatively high grasping capability in the lowland gorilla.
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2014-04-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. This study investigated the effects of habitual wearing of high-heeled shoes on the body's center of mass (COM) motion relative to the center of pressure (COP) during gait. Fifteen female experienced wearers and 15 matched controls walked with high-heeled shoes (7.3cm) while kinematic and ground reaction force data were measured and used to calculate temporal-distance parameters, joint moments, COM-COP inclination angles (IA) and the rate of IA changes (RCIA). Compared with inexperienced wearers, experienced subjects showed significantly reduced frontal IA with increased ankle pronator moments during single-limb support (p<0.05). During double-limb support (DLS), they showed significantly increased magnitudes of the frontal RCIA at toe-off and contralateral heel-strike, and reduced DLS time (p<0.05) but unaltered mean RCIA over DLS. In the sagittal plane experienced wearers showed significantly increased mean RCIA (p<0.05) and significant differences in the RCIA at toe-off and contralateral heel-strike (p<0.05). Significantly increased hip flexor moments and knee extensor moments at toe-off (p<0.05) were needed for forward motion of the trailing limb. The current results identified the change in the balance control in females after long-term use of high-heeled shoes, providing a basis for future design of strategies to minimize the risk of falling during high-heeled gait. Copyright © 2014 Elsevier B.V. All rights reserved.
Sharpe, T; Malone, A; French, H; Kiernan, D; O'Brien, T
2016-05-01
Flip-flops are a popular footwear choice in warm weather however their minimalist design offers little support to the foot. To investigate the effect of flip-flops on lower limb gait kinematics in healthy adults, to measure adherence between the flip-flop and foot, and to assess the effect on toe clearance in swing. Fifteen healthy adults (8 male, mean age 27 years) completed a three-dimensional gait analysis assessment using Codamotion. Kinematic and lower limb temporal-spatial data were captured using the Modified Helen Hayes marker set with additional markers on the hallux and flip-flop sole. Compared to barefoot walking, there were no differences in temporal-spatial parameters walking with flip-flops. There was an increase in peak knee flexion in swing (mean difference 4.6°, 95 % confidence interval (CI) [-5.8°, -3.4°], p < 0.001) and peak ankle dorsiflexion at terminal swing (mean difference 2°, 95 % CI [-3°, -1°], p = 0.001). Other kinematic parameters were unchanged. Peak separation between foot and flip-flop was 8.8 cm (SD 1.48), occurring at pre-swing. Minimum toe clearance of the hallux in barefoot walking measured 4.2 cm (SD 0.8). Minimum clearance of the flip-flop was 1.6 cm (SD 0.56). Healthy adults adapted well to flip-flops. However, separation of the flip-flop from the foot led to increased knee flexion and ankle dorsiflexion in swing, probably to ensure that the flip-flop did not contact the ground and to maximise adherence to the foot. Minimum clearance of the flip-flop was low compared to barefoot clearance. This may increase the risk of tripping over uneven ground.
Chern, Jen-Suh; Kao, Chia-Chi; Lai, Po-Lian; Lung, Chi-Wen; Chen, Wen-Jer
2014-01-01
Center of pressure (CoP) progression during level walking in subjects with Adolescents Idiopathic Scoliosis (AIS) was measured. Participants were divided into three groups according to scoliosis severity. CoP progression among groups was compared quantitatively and qualitatively. The results showed that scoliosis severity affects CoP progression significantly in the hind-foot and forefoot areas. This result indicated that spine alignment might affect the control of heel, ankle and toe rockers in the ankle-foot complex. The effects of scoliosis severity is mainly on the CoP of right foot plantar surface, indicating asymmetrical influence of IS on bilateral lower limb coordination during walking. These results might contribute to musculoskeletal complains over the apparatus within trunk-foot in the later lives of this population.
Effects of Knee Alignments and Toe Clip on Frontal Plane Knee Biomechanics in Cycling.
Shen, Guangping; Zhang, Songning; Bennett, Hunter J; Martin, James C; Crouter, Scott E; Fitzhugh, Eugene C
2018-06-01
Effects of knee alignment on the internal knee abduction moment (KAM) in walking have been widely studied. The KAM is closely associated with the development of medial knee osteoarthritis. Despite the importance of knee alignment, no studies have explored its effects on knee frontal plane biomechanics during stationary cycling. The purpose of this study was to examine the effects of knee alignment and use of a toe clip on the knee frontal plane biomechanics during stationary cycling. A total of 32 participants (11 varus, 11 neutral, and 10 valgus alignment) performed five trials in each of six cycling conditions: pedaling at 80 rpm and 0.5 kg (40 Watts), 1.0 kg (78 Watts), and 1.5 kg (117 Watts) with and without a toe clip. A motion analysis system and a customized instrumented pedal were used to collect 3D kinematic and kinetic data. A 3 × 2 × 3 (group × toe clip × workload) mixed design ANOVA was used for statistical analysis (p < 0.05). There were two different knee frontal plane loading patterns, internal abduction and adduction moment, which were affected by knee alignment type. The knee adduction angle was 12.2° greater in the varus group compared to the valgus group (p = 0.001), yet no difference was found for KAM among groups. Wearing a toe clip increased the knee adduction angle by 0.95º (p = 0.005). The findings of this study indicate that stationary cycling may be a safe exercise prescription for people with knee malalignments. In addition, using a toe clip may not have any negative effects on knee joints during stationary cycling.
Stooped postures are modified by pretask walking in a simulated weed-pulling task.
Hudson, D S; Copeland, J L; Hepburn, C G; Doan, J B
2014-01-01
Seasonal agricultural workers are hired in some sectors for intermittent manual weed removal, a stoop and grasp harvesting task likely similar to those associated with the high prevalence of musculoskeletal disorders in agriculture. Evaluation of this task in an experimental situation would be useful for identifying and controlling musculoskeletal injury risks, presuming a valid experimental model of the task can be created. The purpose of the present study was to examine how a relevant work-related task, namely prolonged walking, altered the biomechanics of manual weed removal in a laboratory setting. Preliminary field assessments informed the development and analysis of a simulated manual weed removal with two separate conditions: not primed, where 11 participants (4 female, mean age 21.6 years) manually removed a simulated weed six times, and primed, where 23 participants (13 female, mean age 22.1 years) walked 1600 m prior to manually removing the same simulated weed six successive times. Segment end point markers and experimental motion capture were used to determine hip, knee, and ankle angles, as well as toe-target proximity, during weed removal. Significant differences between primed and not primed participants were found for angular displacement at the ankle (t(32) = 5.08, P < .001) and toe-target proximity (t(32) = 2.78, P = .008), where primed participants had increased ankle flexion and a greater distance to the weed, leading to decreased trunk flexion during the harvesting task. These findings suggest that priming can positively influence whole-body postures for manual weed removal.
The World at Your Feet: Immersive Interactive Displays Might Have a Bright Future in Education
ERIC Educational Resources Information Center
Simkins, Michael
2006-01-01
A reactor is an example of an immersive interactive play in which animated images are projected onto the floor. A reactor allows people to walk on images and interact with them using their feet. With reactors, people can stomp on kernels of popcorn, shoot a pool using their big toes, or wade through a shallow surf on pristine beaches. This…
Schülein, Samuel; Barth, Jens; Rampp, Alexander; Rupprecht, Roland; Eskofier, Björn M; Winkler, Jürgen; Gaßmann, Karl-Günter; Klucken, Jochen
2017-02-27
In an increasing aging society, reduced mobility is one of the most important factors limiting activities of daily living and overall quality of life. The ability to walk independently contributes to the mobility, but is increasingly restricted by numerous diseases that impair gait and balance. The aim of this cross-sectional observation study was to examine whether spatio-temporal gait parameters derived from mobile instrumented gait analysis can be used to measure the gait stabilizing effects of a wheeled walker (WW) and whether these gait parameters may serve as surrogate marker in hospitalized patients with multifactorial gait and balance impairment. One hundred six patients (ages 68-95) wearing inertial sensor equipped shoes passed an instrumented walkway with and without gait support from a WW. The walkway assessed the risk of falling associated gait parameters velocity, swing time, stride length, stride time- and double support time variability. Inertial sensor-equipped shoes measured heel strike and toe off angles, and foot clearance. The use of a WW improved the risk of spatio-temporal parameters velocity, swing time, stride length and the sagittal plane associated parameters heel strike and toe off angles in all patients. First-time users (FTUs) showed similar gait parameter improvement patterns as frequent WW users (FUs). However, FUs with higher levels of gait impairment improved more in velocity, stride length and toe off angle compared to the FTUs. The impact of a WW can be quantified objectively by instrumented gait assessment. Thus, objective gait parameters may serve as surrogate markers for the use of walking aids in patients with gait and balance impairments.
Humphriss, Rachel; Hall, Amanda; May, Margaret; Macleod, John
2011-01-01
The literature contains many reports of balance function in children, but these are often on atypical samples taken from hospital-based clinics and may not be generalisable to the population as a whole. The purpose of the present study is to describe balance test results from a large UK-based birth cohort study. Data from the Avon Longitudinal Study of Parents and Children (ALSPAC) were analysed. A total of 5402 children completed the heel-to-toe walking test at age 7 years. At age 10 years, 6915 children underwent clinical tests of balance including beam-walking, standing heel-to-toe on a beam and standing on one leg. A proportion of the children returned to the clinic for retesting within 3 months allowing test-retest agreement to be measured. Frequency distributions for each of the balance tests are given. Correlations between measures of dynamic balance at ages 7 and 10 years were weak. The static balance of 10 year old children was found to be poorer with eyes closed than with eyes open, and poorer in boys than in girls for all measures. Balance on one leg was poorer than heel-to-toe balance on a beam. A significant learning effect was found when first and second attempts of the tests were compared. Measures of static and dynamic balance appeared independent. Consistent with previous reports in the literature, test-retest reliability was found to be low. This study provides information about the balance ability of children aged 7 and 10 years and provides clinicians with reference data for balance tests commonly used in the paediatric clinic. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Hunt, M A; Takacs, J
2014-07-01
To examine the feasibility of a 10-week gait modification program in people with medial tibiofemoral knee osteoarthritis (OA), and to assess changes in clinical and biomechanical outcomes. Fifteen people with medial knee OA completed 10 weeks of gait modification focusing on increasing toe-out angle during stance 10° compared to their self-selected angle measured at baseline. In addition to adherence and performance difficulty outcomes, knee joint symptoms (Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale and total score, numerical rating scale (NRS) of pain), and knee joint loading during gait (late stance peak knee adduction moment (KAM)) were assessed. Participants were able to perform the toe-out gait modification program with minimal to moderate difficulty, and exhibited significant increases in self-selected toe-out angle during walking (P < 0.001). Joint discomfort was reported by five participants (33%) in the hip or knee joints, though none lasted longer than 2 weeks. Participants reported statistically significant reductions in WOMAC pain (P = 0.02), NRS pain (P < 0.001), WOMAC total score (P = 0.02), and late stance KAM (P = 0.04). These preliminary findings suggest that toe-out gait modification is feasible in people with medial compartment knee OA. Preliminary changes in clinical and biomechanical outcomes provide the impetus for conducting larger scale studies of gait modification in people with knee OA to confirm these findings. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Effect of different flooring systems on claw conformation of dairy cows.
Telezhenko, E; Bergsten, C; Magnusson, M; Nilsson, C
2009-06-01
The effect of different flooring surfaces in walking and standing areas on claw conformation, claw horn growth, and wear was studied in 2 experiments during 2 consecutive housing seasons in a research dairy herd of 170 cows. In experiment 1, the flooring systems tested were solid rubber mats, mastic asphalt with and without rubber-matted feed-stalls, and aged concrete slats. In experiment 2, slatted concrete flooring was compared with slatted rubber flooring. The cows were introduced to the respective flooring systems in early lactation and their claws were trimmed before the exposure period. Toe length, toe angle, sole concavity, and claw width, as well as claw growth and wear rates were recorded for lateral and medial claws of the left hind limb. Claw asymmetry calculations were based on these claw measurements and on differences in sole protrusion between lateral and medial soles. Asphalt floors caused shorter toe length and steeper toe angle. They also increased wear on rear claws (5.30 +/- 0.31 and 5.95 +/- 0.33 mm/mo for lateral and medial claw, respectively; LSM +/- SE) and horn growth rate (5.12 +/- 0.36 and 5.83 +/- 0.31 mm/mo of lateral and medial claws, respectively). Rubber mats instead of asphalt in walking areas reduced wear (1.36 +/- 0.19 and 2.02 +/- 0.20 mm/mo for lateral and medial claw, respectively) and claw growth (3.83 +/- 0.23 and 3.94 +/- 0.17 mm/mo for lateral and medial claw, respectively). Rubber-matted feed-stalls together with asphalt walkways decreased claw wear (3.29 +/- 0.31 and 4.10 +/- 0.32 mm/mo for lateral and medial claw, respectively). The concavity of claw soles was reduced on asphalt, especially in the lateral rear claws. Rubber matting in feed-stalls prevented loss of sole concavity compared with asphalt. Claw asymmetry did not differ between flooring systems. While different access to abrasive flooring affected claw conformation, there was no evidence that flooring system influenced the disproportion between lateral and medial claws.
Selected abstracts on aviation weather hazard research
DOT National Transportation Integrated Search
1996-01-01
This paper consists of bibliographic information and abstracts for literature on the topics of weather-related aviation hazards. These abstracts were selected from reports written for the ASR-9, ITWS, TDWR programs, sponsored by the Federal Aviation ...
Shah, Kshamata M.; Mueller, Michael J.
2012-01-01
BACKGROUND In people with diabetes and peripheral neuropathy (DM+PN), injury risk is not clearly known for weight bearing (WB) vs. non-weight bearing (NWB) exercise. In-shoe peak plantar pressures (PPP) often are used as a surrogate indicator of injury to the insensitive foot. OBJECTIVE Compare PPPs in people with DM+PN during selected WB and NWB exercises. METHODS 15 subjects with DM+PN participated. PPPs were recorded for the forefoot, midfoot, and heel during level walking and compared to; WB exercises - treadmill walking, heel and toe raises, sit to stands, stair climbing, single leg standing; and NWB exercises - stationary bicycling, balance ball exercise and plantar flexion exercise. RESULTS Compared to level walking; mean forefoot PPP during treadmill walking was 13% higher, but this difference was eliminated when walking speed was used as a covariate. Mean PPPs were similar or substantially lower for other exercises, except for higher forefoot PPP with heel raise exercises. CONCLUSIONS Slow progression and regular monitoring of insensitive feet are recommended for all exercises, but especially for heel raises, and increases in walking speed. The remaining WB and NWB exercises pose no greater risk to the insensitive foot due to increases in PPP compared to level walking. PMID:22677098
Phillips, Megan; Bazrgari, Babak; Shapiro, Robert
2015-01-01
While effective in the prevention of otherwise lethal injuries, military body armour (BA) has been suggested to reduce warfighter's performance and increase injury-related musculoskeletal conditions. Providing the significant role of joint biomechanics in both performance and risk of injury, the immediate and prolonged effects of wearing BA on biomechanics of the lower back and knee during toe-touch (TT) and two-legged squat (TLS) tasks were investigated. The immediate effects of BA were an increase of >40 ms (p ≤ 0.02) in flexion duration of the dominant joint and an ∼1 s (p ≤ 0.02) increase in overall task duration as well as an ∼18% (p = 0.03) decrease in the lumbopelvic rhythm ratio near the mid-range of trunk flexion. In general the prolonged duration of wearing BA (i.e. 45 min of walking) was not found to cause more changes in our measures than walking without BA. The effects of wearing military BA on biomechanics of the lower back and knee during TT and TLS tasks were investigated. The immediate effects of BA were increased flexion duration, increased overall trial duration and decreased lumbopelvic rhythm near the mid-range of trunk flexion.
The potential of toe flexor muscles to enhance performance.
Goldmann, Jan-Peter; Sanno, Maximilian; Willwacher, Steffen; Heinrich, Kai; Brüggemann, Gert-Peter
2013-01-01
The metatarsal phalangeal joint (MPJ) and its crossing toe flexor muscles (TFM) represent the link between the large energy generating leg extensor muscles and the ground. The purpose of this study was to examine the functional adaptability of TFM to increased mechanical stimuli and the effects on walking, running and jumping performance. Fifteen men performed a heavy resistance TFM strength training with 90% of the maximal voluntary isometric contraction (MVIC) for 7 weeks (560 contractions) for the left and right foot. Maximal MPJ and ankle plantar flexion moments during MVICs were measured in dynamometers before and after the intervention. Motion analyses (inverse dynamics) were performed during barefoot walking, running, and vertical and horizontal jumping. Athletic performance was determined by measuring jump height and distance. Left (0.21 to 0.38 Nm · kg(-1); P < 0.001) and right (0.24 to 0.40 Nm · kg(-1); P < 0.001) MPJ plantar flexion moments in the dynamometer, external MPJ dorsiflexion moments (0.69 to 0.75 Nm · kg(-1); P = 0.012) and jump distance (2.25 to 2.31 m; P = 0.006) in horizontal jumping increased significantly. TFM responded highly to increased loading within a few weeks. The increased force potential made a contribution to an athlete's performance enhancement.
Estimation of end point foot clearance points from inertial sensor data.
Santhiranayagam, Braveena K; Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu
2011-01-01
Foot clearance parameters provide useful insight into tripping risks during walking. This paper proposes a technique for the estimate of key foot clearance parameters using inertial sensor (accelerometers and gyroscopes) data. Fifteen features were extracted from raw inertial sensor measurements, and a regression model was used to estimate two key foot clearance parameters: First maximum vertical clearance (m x 1) after toe-off and the Minimum Toe Clearance (MTC) of the swing foot. Comparisons are made against measurements obtained using an optoelectronic motion capture system (Optotrak), at 4 different walking speeds. General Regression Neural Networks (GRNN) were used to estimate the desired parameters from the sensor features. Eight subjects foot clearance data were examined and a Leave-one-subject-out (LOSO) method was used to select the best model. The best average Root Mean Square Errors (RMSE) across all subjects obtained using all sensor features at the maximum speed for m x 1 was 5.32 mm and for MTC was 4.04 mm. Further application of a hill-climbing feature selection technique resulted in 0.54-21.93% improvement in RMSE and required fewer input features. The results demonstrated that using raw inertial sensor data with regression models and feature selection could accurately estimate key foot clearance parameters.
Hawaiian Goose (Branta sandvicensis)
Banko, Paul C.; Black, Jeffrey M.; Banko, Winston E.
1999-01-01
Evolving in the remote Hawaiian Archipelago and having the smallest range of any living goose, the Hawaiian Goose, or better known by its Hawaiian name—Nënë, is among the most isolated, sedentary, and threatened of waterfowl. The Nënë is also highly terrestrial, and several structural features demonstrate its adaptation to life on islands with limited freshwater habitat: It stands taller and more upright than geese of similar weight, enabling it to reach high to browse the fruits, seeds, and foliage that constitute its herbivorous diet; its legs and padded toes are long and strong, promoting swift, sure walking and running over rugged terrain; webbing is reduced between the toes; and though it is a capable swimmer and readily uses freshwater habitats when available, the Nënë does not require freshwater or oceanic habitats in the same way that many other waterfowl do.
Maleki, Maryam; Badri, Samaneh; Shayestehepour, Hamed; Arazpour, Mokhtar; Farahmand, Farzam; Mousavi, Mohamad Ebrahim; Abdolahi, Ehsan; Farkhondeh, Hasan; Head, John S; Golchin, Navid; Mardani, Mohammad Ali
2018-03-12
The aim of this study was to assess the performance of an original powered foot clearance creator (PFCC) mechanism worn in conjunction with an isocentric reciprocal gait orthosis (IRGO) and evaluate its effect on trunk compensatory movements and spatiotemporal parameters in nine healthy subjects. A PFCC motorized mechanism was designed that incorporated twin sole plates, the movements of which enabled increased toe to floor clearance during swing phase. A prototype was constructed in combination with an IRGO, and hence was re-named as an IRGO-PFCC orthosis. The effects of IRGO-PFCC usage on the spatiotemporal parameters and trunk compensatory movements during walking were then analyzed under two conditions, firstly with the PFCC 'active' i.e., with the motorized device functioning, and secondly inactive, where floor clearance was standard. Ambulating with IRGO-PFCC orthosis resulted in reduction in the spatiotemporal parameters of gait (speed of walking, cadence and stride length) in nine healthy subjects. Walking with IRGO-PFCC orthosis led to significant differences in lateral (p = .007) and vertical (p = .008) trunk compensatory movements. In other words, through using IRGO-PFCC orthosis, the lateral and vertical trunk compensatory movements decreased by 51.32% and 42.7%, respectively. An adapted PFCC mechanism, with a relatively small motor and power supply could effectively increase toe to floor clearance during swing phase and thereby decrease trunk compensatory motions and potentially improve energy consumption. Implications for rehabilitations •The High rejection rates of reciprocal gait orthoses are related to the increasing in energy expenditure and burden loads on the upper limb joints during walking following trunk compensatory movements.•An original powered foot clearance creator mechanism was designed and constructed to assisting floor clearance capability and reduce trunk compensatory movements in subjects with spinal cord injury during swing phase of gait.•This original powered foot clearance creator mechanism by using moveable soleplates and motorized actuation could decrease the trunk compensatory motions during the ambulation of nine healthy subjects.•More experiments are needed to investigate this mechanism on trunk compensatory movements of SCI subjects.
Effects of Knee Alignments and Toe Clip on Frontal Plane Knee Biomechanics in Cycling
Shen, Guangping; Zhang, Songning; Bennett, Hunter J.; Martin, James C.; Crouter, Scott E.; Fitzhugh, Eugene C.
2018-01-01
Effects of knee alignment on the internal knee abduction moment (KAM) in walking have been widely studied. The KAM is closely associated with the development of medial knee osteoarthritis. Despite the importance of knee alignment, no studies have explored its effects on knee frontal plane biomechanics during stationary cycling. The purpose of this study was to examine the effects of knee alignment and use of a toe clip on the knee frontal plane biomechanics during stationary cycling. A total of 32 participants (11 varus, 11 neutral, and 10 valgus alignment) performed five trials in each of six cycling conditions: pedaling at 80 rpm and 0.5 kg (40 Watts), 1.0 kg (78 Watts), and 1.5 kg (117 Watts) with and without a toe clip. A motion analysis system and a customized instrumented pedal were used to collect 3D kinematic and kinetic data. A 3 × 2 × 3 (group × toe clip × workload) mixed design ANOVA was used for statistical analysis (p < 0.05). There were two different knee frontal plane loading patterns, internal abduction and adduction moment, which were affected by knee alignment type. The knee adduction angle was 12.2° greater in the varus group compared to the valgus group (p = 0.001), yet no difference was found for KAM among groups. Wearing a toe clip increased the knee adduction angle by 0.95º (p = 0.005). The findings of this study indicate that stationary cycling may be a safe exercise prescription for people with knee malalignments. In addition, using a toe clip may not have any negative effects on knee joints during stationary cycling. Key points Varus or valgus alignment did not cause increased frontal-plane knee joint loading, suggesting stationary cycling is a safe exercise. This study supports that using a toe clip did not lead to abnormal frontal-plane knee loading during stationary cycling. Two different knee frontal plane loading patterns, knee abduction and adduction moment, were observed during stationary cycling, which are likely affected by the type of knee alignment. PMID:29769833
Stepping over obstacles: anticipatory modifications in children with and without Down syndrome.
Virji-Babul, Naznin; Brown, Michelle
2004-12-01
The purpose of this study was to explore the mechanism of anticipatory control of gait in relation to the perception of an obstacle. Typically developing (TD) children (4-7 years of age) and children with Down syndrome (5-6 years of age) walked and stepped over obstacles of two different heights-a "subtle" obstacle that was placed at a very low distance from the floor (1% of total body height) and an "obvious" obstacle that was placed at a much higher distance from the floor (15% of total body height). Spatial and temporal measures of the gait cycle were analyzed. TD children showed increased variability in pre-obstacle step lengths only in response to the higher obstacle. Children with DS showed a decrease in variability in response to the higher obstacle and marked qualitative changes in their gait cycle. Both groups of children were able to scale toe clearance with obstacle height. These results show that TD young children can make task-specific anticipatory adjustments by modulating step length and toe clearance. Children with DS show appropriate scaling of toe clearance and are beginning to show the emergence of anticipatory responses under specific environmental conditions.
O'Brien, Davida Louise; Tyndyk, Magdalena
2014-01-01
Several factors have been associated with the presence of abnormally high plantar foot pressure including: (i) increased body weight, (ii) foot structure and (iii) walking strategy. It is predicted that the biomechanics of the foot is influenced by the structure of the foot, primarily the Medial Longitudinal Arch. The objective of this study was to examine if Body Mass Index and the foot arch have a direct effect on dynamic peak plantar pressure for healthy subjects. Following a clinical lower limb examination, the Tekscan HR mat was utilised for this study, plantar pressure was profiled at specific events during stance phase of gait including heel strike, midstance and toe off. Results indicated to the preferable normal arch as this produced a low plantar pressure distribution in all cases. The 2nd and 3rd metatarsal head region recorded the highest pressure for all arch types during dynamic analysis. The lowest pressure for the normal and overweight BMI was at toe-off. While the obese BMI group showed highest pressure during toe-off. The obese BMI flat arch subcategory indicated to functional ambulation differences. Future work involves comparing this healthy database to a demographically matched diabetic group.
2000-08-01
forefoot with the foot in the neutral position, and (b) similar to (a) but with heel landing. Although the authors reported no absolute strain values...diameter of sensors (or, in the case of a rectangular sensor, width as measured along pin axis). Worst case : Strike line from inside edges of sensors...potoroo it is just prior to "toe strike ". The locomotion of the potoroo is described as digitigrade, unlike humans, who walk in a plantigrade manner
Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet
Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion. PMID:24592154
Kunzler, Marcos R; da Rocha, Emmanuel S; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P
2017-07-01
In negotiating stairs, low foot clearance increases the risk of tripping and a fall. Foot clearance may be related to physical fitness, which differs between active and sedentary participants, and be acutely affected by exercise. Impaired stair negotiation could be an acute response to exercise. Here we determined acute changes in foot clearances during stair walking in sedentary (n = 15) and physically active older adults (n = 15) after prolonged exercise. Kinematic data were acquired during negotiation with a 3-steps staircase while participants walked at preferred speed, before and after 30 min walking at preferred speed and using a treadmill. Foot clearances were compared before and after exercise and between the groups. Sedentary older adults presented larger (0.5 cm for lead and 2 cm for trail leg) toe clearances in ascent, smaller (0.7 cm) heel clearance in the leading foot in descent, and larger (1 cm) heel clearance in the trailing foot in descent than physically active. Sedentary older adults negotiate stairs in a slightly different way than active older adults, and 30 min walking at preferred speed does not affect clearance in stair negotiation.
Foot placement modification for a biped humanoid robot with narrow feet.
Hashimoto, Kenji; Hattori, Kentaro; Otani, Takuya; Lim, Hun-Ok; Takanishi, Atsuo
2014-01-01
This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot's feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.
Data Requirements for Ceiling and Visibility Products Development
1994-04-13
and Water - Cycle Experiment (GEWEX), STORM 1, and the Naval Research Laboratory’s Coastal Me- teorology Accelerated Research Initiative field... Water - Cycle Experiment HPCN High Plains Climate Network lOP Intensive Observation Period ICN Illinois Climate Network ITWS Integrated Terminal Weather
[Double toe to hand transfer in children with symbrachydactyly].
Rivas, S; López-Gutiérrez, J C; Lovic, A; Díaz, M; Andrés, A M; Ros, Z
2006-07-01
Symbrachydactyly is fairly frequent congenital malformation that appears during first weeks of pregnancy. The range of clinical presentations goes from hypoplastic fingers to true agenesis. Although it usually appears in a random fashion, sometimes it is associated to other systemic malformations. The aim of this study is to check the functional, cosmetic and psychological results of those patients affected of grade IV symbrachydactyly treated using a double second toe transfer. The method employed is a retrospective study of the clinical records from 6 patients (5 males and 1 female) operated in our Department during the last five years. The follow up period was from 3 months to five years. Transfer from the second toe to the first ray was performed during the first surgical period, while transfer to the fourth ray was done in a second procedure. The mean age for the first operation was 19 months, and 30 months for the second one. There were no flap failure or major surgical complications. Tenolysis and tenoplasty was done in two patients to improve flap function and position. Motion rehabilitation was installed during the postoperative period. Functional, opposing pinch, and cosmetic results were satisfactory. Parents "and patients" psychological acceptance was also good. No walk disturbance was observed. Double second toe to hand transfer is a good option for the symbrachydactyly treatment in cases of thumb agenesis. Rehabilitation is the key clue for functional recovery. Surgery improves social and family relationships.
[Digital gigantism of the foot: a clinical study of 12 cases].
Wang, Hai-hua; Tian, Guang-lei; Zhu, Yin; Zhang, You-le; Zhao, Jun-hui; Tian, Wen
2008-03-15
To summarize the clinical characteristic and outcome of digital gigantism of the foot. Retrospectively analyze the clinical documents of cases of digital gigantism of the foot. Twelve 12 cases with 13 feet in this study included 8 male and 4 female with an average 4.6-years-old. All the deformities were found at birth. Multiple toes involved were more than single toe, and tibial toe involved more than fibular. Forefoot was enlarged. All the phalanges involved and partial metatarsal bones were enlarged. Marked increase in subcutaneous fat was found in all cases in the operation which infiltrated interossei and articular capsules. The appearance of the nerves and its branches in the foot were normal and fat infiltrating was not discovered. The operation types included debulking, epiphyseal arrest, amputation, nerve stripping and anastomosis. Seven cases were followed up with mean periods 25.6 months. Functional evaluation according to a criterion formulated by author revealed a result of 2 excellent, 2 good and 3 fair. Digital gigantism of the foot is an uncommon congenital deformity of the foot characterized by overgrowth of both the soft-tissue and the osseous elements of the enlarged toe and forefoot. Surgical treatment is the unique method, and the goal is to reduce the size of the foot to allow fitting regular shoes and walking readily. There are several types of operations which to be chosen. The indication, the timing of operative intervention and the selection of operation type should be paid more attention.
A pelvic motion driven electrical stimulator for drop-foot treatment.
Chen, Shih-Wei; Chen, Shih-Ching; Chen, Chiun-Fan; Lai, Jin-Shin; Kuo, Te-Son
2009-01-01
Foot switches operating with force sensitive resistors placed in the shoe sole were considered as an effective way for driving FES assisted walking systems in gait restoration. However, the reliability and durability of the foot switches run down after a certain number of steps. As an alternative for foot switches, a simple, portable, and easy to handle motion driven electrical stimulator (ES) is provided for drop foot treatment. The device is equipped with a single tri-axis accelerometer worn on the pelvis, a commercial dual channel electrical stimulator, and a controller unit. By monitoring the pelvic rotation and acceleration during a walking cycle, the events including heel strike and toe off of each step is thereby predicted by a post-processing neural network model.
Physical rehabilitation of the canine neurologic patient.
Drum, Marti G
2010-01-01
Rehabilitation therapy is a key component of recovery from neurologic disease. Each patient requires a rehabilitation protocol designed specifically for the patient's neurologic condition, owner expectations and level of participation, and expertise of the veterinary team. Initial therapy for nonambualtory patients may include standing exercises, range of motion, pain control, toe pinch exercise, aquatic exercise, and basic nursing care. Sling assisted walking with foot protection, cavaletti rails, and physioroll balancing are used commonly for ambulatory patients. As recovery progresses, stair climbing, carrying or pulling weights, resistance band walking, swimming against resistance, and exercises specific to the home environment are added. Modalities such as electrical stimulation, ultrasound, cryotherapy, and heat therapy are useful adjuncts but do not take the place of active exercise.
Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R
2013-01-01
Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.
Quantifying Dynamic Changes in Plantar Pressure Gradient in Diabetics with Peripheral Neuropathy.
Lung, Chi-Wen; Hsiao-Wecksler, Elizabeth T; Burns, Stephanie; Lin, Fang; Jan, Yih-Kuen
2016-01-01
Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP) and peak pressure gradient (PPG) during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA) has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG, and PGA were calculated for four foot regions - first toe (T1), first metatarsal head (M1), second metatarsal head (M2), and heel (HL). Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared with non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P = 0.02) and PPG was 214% (P < 0.001) larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P = 0.04), suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers.
Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response
Gwin, Joseph T.; Makeig, Scott; Ferris, Daniel P.
2013-01-01
Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4–7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12–30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments. PMID:23926037
Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P
2013-11-01
Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.
Najafi, Bijan; Khan, Tahir; Fleischer, Adam; Wrobel, James
2013-01-01
We explored gait differences in patients with diabetes and peripheral neuropathy (DPN) and aged-matched controls over short and long walking distances. The potential benefit of footwear for improving gait in patients with DPN was also explored. Twelve patients with DPN and eight controls walked at their habitual speed over short (7 m) and long (20 m) distances under two conditions: barefoot and regular shoes. A validated system of body-worn sensors was used to extract spatiotemporal gait parameters. Neuropathy severity was quantified using vibratory perception threshold measured at the great toe. Gait deterioration in the DPN group was observed during all of the walking trials. However, the difference between patients with DPN and participants in the control group achieved statistical significance only during long walking distance trials. Shod and barefoot double support times were longer in the DPN group during long walking distances (>20%, P = .03). Gait unsteadiness, defined as coefficient of variation of gait velocity, was also significantly higher in the DPN group when barefoot walking over long distances (83%, P = .008). Furthermore, there was a high correlation between neuropathy severity and gait unsteadiness best demonstrated during the barefoot walking/long walking distance condition (r = 0.77, P < .001). The addition of footwear improved gait steadiness in the DPN group by 46% (P = .02). All differences were independent of age, sex, and body mass index (P > .05). This study suggests that gait alteration in patients with DPN is most pronounced while walking barefoot over longer distances and that footwear may improve gait steadiness in patients with DPN.
Mueller, M J; Strube, M J; Allen, B T
1997-04-01
To compare how footwear (full-length shoe or short shoe), a total contact insert, a rigid rocker-bottom (RRB) sole, and an ankle-foot orthosis (AFO) affect peak plantar pressure (PPP) on the distal residuum and contralateral extremity of patients with diabetes and transmetatarsal amputation (TMA). Thirty patients with diabetes and TMA participated (mean age 62 +/- 4 years). In-shoe plantar pressures during walking were measured in six types of footwear. Each measurement occurred after a 1-month adjustment period. Repeated measure analysis of variance (ANOVA) was used to compare treatments. All five types of therapeutic footwear reduced plantar pressures compared with regular shoes with a toe-filler (P < 0.05). A full-length shoe, total contact insert, and RRB sole resulted in lower pressures on the distal residuum (222 vs. 284 kPa) and forefoot of the contralateral extremity (197 vs. 239 kPa), compared with a regular shoe and toe-filler. Footwear with an AFO showed reduced PPP on the residuum, but most patients complained of reduced ankle motion during walking. A short shoe reduced pressures on the residuum, but not on the contralateral extremity, and many patients had complaints regarding cosmesis of the shoe. The full-length shoe, total contact insert, and an RRB sole provided the best pressure reduction for the residuum and contralateral foot, with the optimal compromise for cosmetic acceptance and function.
Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu
2007-01-01
As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (p<0.01) different between young and healthy elderly group. Results also suggest that the Beta between scales 1 to 2 are effective for recognizing falls risk gait patterns. Results have implication for quantifying gait dynamics in normal, ageing and pathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.
DOT National Transportation Integrated Search
1996-07-18
The Federal Aviation Administration (FAA) Integrated Terminal Weather System (ITWS) is supporting the development of products aimed at providing automated guidance to the air traffic managers for the anticipation of changes in ceiling and visibility ...
Variability in energy cost and walking gait during race walking in competitive race walkers.
Brisswalter, J; Fougeron, B; Legros, P
1998-09-01
The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.
NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae
Jain, Dharamdeep; Stark, Alyssa Y.; Niewiarowski, Peter H.; Miyoshi, Toshikazu; Dhinojwala, Ali
2015-01-01
Lipid and protein aggregates are one of the fundamental materials of biological systems. Examples include cell membranes, insect cuticle, vertebrate epidermis, feathers, hair and adhesive structures known as ‘setae’ on gecko toes. Until recently gecko setae were assumed to be composed entirely of keratin, but analysis of footprints left behind by geckos walking on surfaces revealed that setae include various kinds of lipids. However, the arrangement and molecular-level behavior of lipids and keratin in the setae is still not known. In the present study we demonstrate, for the first time, the use of Nuclear Magnetic Resonance (NMR) spectroscopy techniques to confirm the presence of lipids and investigate their association with keratin in ‘pristine' sheds, or natural molts of the adhesive toe pad and non-adhesive regions of the skin. Analysis was also carried on the sheds after they were ‘delipidized’ to remove surface lipids. Our results show a distribution of similar lipids in both the skin and toe shed but with different dynamics at a molecular level. The present study can help us understand the gecko system both biologically and for design of synthetic adhesives, but the findings may be relevant to the characteristics of lipid-protein interactions in other biological systems. PMID:25902194
78 FR 3425 - Ocean Transportation Intermediary License Revocations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
...., Suite 208, Artesia, CA 90701. Date Revoked: November 11, 2012. Reason: Failed to maintain a valid bond... of Industry, CA 91748. Date Revoked: November 18, 2012. Reason: Failed to maintain a valid bond...: November 5, 2012. Reason: Voluntary Surrender of License. License No.: 021296NF. Name: ITW International...
Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki
2014-01-01
Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P < .05). Persons with visual acuity problems had higher cadence and shorter stance time. In addition, persons with pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.
Shull, Peter B; Huang, Yangjian; Schlotman, Taylor; Reinbolt, Jeffrey A
2015-09-18
While gait retraining paradigms that alter knee loads typically focus on modifying kinematics, the underlying muscle force modifications responsible for these kinematic changes remain largely unknown. As humans are generally thought to select uniform gait muscle patterns such as strategies based on fatigue cost functions or energy minimization, we hypothesized that a kinematic gait change known to reduce the knee adduction moment (i.e. toe-in gait) would be accompanied by a uniform muscle force modification strategy for individuals with symptomatic knee osteoarthritis. Ten subjects with self-reported knee pain and radiographic evidence of medial compartment knee osteoarthritis performed normal gait and toe-in gait modification walking trials. Two hundred muscle-actuated dynamic simulations (10 steps for normal gait and 10 steps from toe-in gait for each subject) were performed to determine muscle forces for each gait. Results showed that subjects internally rotated their feet during toe-in gait, which decreased the foot progression angle by 7° (p<0.01) and reduced the first peak knee adduction moment by 20% (p<0.01). While significant muscle force modifications were evidenced within individuals, there were no consistent muscle force modifications across all subjects. It may be that self-selected muscle pattern changes are not uniform for gait modification particularly for individuals with knee pain. Future studies focused on altering knee loads should not assume consistent muscle force modifications for a given kinematic gait change across subjects and should consider muscle forces in addition to kinematics in gait retraining paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu
2016-10-01
This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2015-01-01
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the joint angles in underwater gait more than these two factors considered separately. The inertial and magnetic sensors, by means of fast set-up and data analysis, can supply an immediate gait analysis report to the therapist during the aquatic therapy session.
Characteristics of Plantar Loads During Walking in Patients with Knee Osteoarthritis.
Zhang, Zhiwang; Wang, Lin; Hu, Kaijun; Liu, Yu
2017-12-01
BACKGROUND Knee osteoarthritis (KOA) is a common disease that can change the load on lower limbs during walking. Plantar loads in patients with KOA may provide a basis for clinical decisions regarding footwear and foot orthoses. This study aimed to compare plantar loads in females with and without KOA during gait. MATERIAL AND METHODS Plantar pressure during walking was recorded in 23 females with KOA and 23 females without KOA. Maximum force (MF), contact area (CA), and peak pressure (PP) were measured at 7 different regions underneath the foot, named heel (M1), midfoot (M2), first metatarsophalangeal joint (MPJ) (M3), second MPJ (M4), third to fifth MPJ (M5), hallux (M6), and lesser toes (M7). RESULTS PPs for M2 and (M3) in females with KOA were higher than those in females without KOA. High PPs were also found in females with KOA for M2, M3, and M4. CONCLUSIONS Increased plantar loading in females with KOA may lead to foot pronation and gait changes during walking. Plantar loading may be offered to patients with KOA when considering footwear and foot orthoses.
Biomechanical implications of walking with indigenous footwear.
Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan
2017-04-01
This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians. Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel-mounted 3D-accelerometer recording peak impact at heel contact, (2) an ankle-mounted 3D-goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe-off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered "minimal". © 2017 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DEVILBISS JGHV-531-46FF HVLP SPRAY GUN
This report presents the results of the verification test of the DeVilbiss JGHV-531-46FF high-volume, low-pressure pressure-feed spray gun, hereafter referred to as the DeVilbiss JGHV, which is designed for use in industrial finishing. The test coating chosen by ITW Industrial Fi...
Bunion: Strengthening Foot Muscles to Reduce Pain and Improve Mobility.
2016-07-01
Foot pain discourages physical activity, and less activity harms overall health. Bunion, extra bone and tissue at the base of the big toe, is a frequent cause of foot pain. More than 64 million Americans have bunions that can lead to painful walking. Bunions affect some 35% of women over the age of 65. Bunions can be removed by surgery, which can reduce pain and improve your ability to walk and exercise, but up to 15% of bunions return. Weak muscles may play a role in bunion-related pain and movement problems. In a review of prior research and commentary on this topic published in the July 2016 issue of JOSPT, the author identifies muscle-strengthening exercises that may help people with bunions. J Orthop Sports Phys Ther 2016;46(7):606. doi:10.2519/jospt.2016.0504.
Biofeedback training effects on minimum toe clearance variability during treadmill walking.
Tirosh, Oren; Cambell, Amity; Begg, Rezaul K; Sparrow, W A
2013-08-01
A number of variability analysis techniques, including Poincaré plots and detrended fluctuation analysis (DFA) were used to investigate minimum toe clearance (MTC) control during walking. Ten young adults walked on a treadmill for 10 min at preferred speed in three conditions: (i) no-intervention baseline, (ii) with biofeedback of MTC within a target range, and (iii) no-biofeedback retention. Mean, median, standard deviation (SD), and inter quartile range of MTC during biofeedback (45.57 ± 11.65, 44.98 ± 11.57, 7.08 ± 2.61, 8.58 ± 2.77 mm, respectively) and retention (56.95 ± 20.31, 56.69 ± 20.94, 10.68 ± 5.41, 15.38 ± 10.19 mm) were significantly greater than baseline (30.77 ± 9.49, 30.51 ± 9.49, 3.04 ± 0.77, 3.66 ± 0.91 mm). Relative to baseline, skewness was reduced in biofeedback and retention but only significantly for retention (0.88 ± 0.51, 0.63 ± 0.55, and 0.40 ± 0.40, respectively). Baseline Poincaré measures (SD1 = 0.25, SD2 = 0.34) and DFA (α1 = 0.72 and α2 = 0.64) were lower than biofeedback (SD1 = 0.58, SD2 = 0.83, DFA α1 = 0.76 and α2 = 0.92) with significantly greater variability in retention compared to biofeedback only in the long-term SD2 and α2 analyses. Increased DFA longer-term correlations α2 in retention confirm that a novel gait pattern was acquired with a longer-term variability structure. Short- and long-term variability analyses were both useful in quantifying gait adaptations with biofeedback. The findings provide evidence that MTC can be modified with feedback, suggesting future applications in gait training procedures for impaired populations designed to reduce tripping risk.
Evidence for self-cleaning in gecko setae
NASA Astrophysics Data System (ADS)
Hansen, W. R.; Autumn, K.
2005-01-01
A tokay gecko can cling to virtually any surface and support its body mass with a single toe by using the millions of keratinous setae on its toe pads. Each seta branches into hundreds of 200-nm spatulae that make intimate contact with a variety of surface profiles. We showed previously that the combined surface area of billions of spatulae maximizes van der Waals interactions to generate large adhesive and shear forces. Geckos are not known to groom their feet yet retain their stickiness for months between molts. How geckos manage to keep their feet clean while walking about with sticky toes has remained a puzzle until now. Although self-cleaning by water droplets occurs in plant and animal surfaces, no adhesive has been shown to self-clean. In the present study, we demonstrate that gecko setae are a self-cleaning adhesive. Geckos with dirty feet recovered their ability to cling to vertical surfaces after only a few steps. Self-cleaning occurred in arrays of setae isolated from the gecko. Contact mechanical models suggest that self-cleaning occurs by an energetic disequilibrium between the adhesive forces attracting a dirt particle to the substrate and those attracting the same particle to one or more spatulae. We propose that the property of self-cleaning is intrinsic to the setal nanostructure and therefore should be replicable in synthetic adhesive materials in the future. adhesion | contact mechanics | locomotion | reptilia | nanotechnology
Schauer, Michael; Mauritz, Karl-Heinz
2003-11-01
To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.
In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.
Péter, A; Hegyi, A; Finni, T; Cronin, N J
2017-12-01
Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A mechanical protocol to replicate impact in walking footwear.
Price, Carina; Cooper, Glen; Graham-Smith, Philip; Jones, Richard
2014-01-01
Impact testing is undertaken to quantify the shock absorption characteristics of footwear. The current widely reported mechanical testing method mimics the heel impact in running and therefore applies excessive energy to walking footwear. The purpose of this study was to modify the ASTM protocol F1614 (Procedure A) to better represent walking gait. This was achieved by collecting kinematic and kinetic data while participants walked in four different styles of walking footwear (trainer, oxford shoe, flip-flop and triple-density sandal). The quantified heel-velocity and effective mass at ground-impact were then replicated in a mechanical protocol. The kinematic data identified different impact characteristics in the footwear styles. Significantly faster heel velocity towards the floor was recorded walking in the toe-post sandals (flip-flop and triple-density sandal) compared with other conditions (e.g. flip-flop: 0.36±0.05 ms(-1) versus trainer: 0.18±0.06 ms(-1)). The mechanical protocol was adapted by altering the mass and drop height specific to the data captured for each shoe (e.g. flip-flop: drop height 7 mm, mass 16.2 kg). As expected, the adapted mechanical protocol produced significantly lower peak force and accelerometer values than the ASTM protocol (p<.001). The mean difference between the human and adapted protocol was 12.7±17.5% (p<.001) for peak acceleration and 25.2±17.7% (p=.786) for peak force. This paper demonstrates that altered mechanical test protocols can more closely replicate loading on the lower limb in walking. This therefore suggests that testing of material properties of footbeds not only needs to be gait style specific (e.g. running versus walking), but also footwear style specific. Copyright © 2014 Elsevier B.V. All rights reserved.
Differences in foot kinematics between young and older adults during walking.
Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic
2014-02-01
Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = <0.001), a smaller sagittal plane range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = <0.001) and smaller coronal plane ROM of the metatarsus (3.2° vs. 4.3°, d = 1.1, p = 0.006) compared to the young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluation of ADINA. Part I. Theory and Programing Descriptions.
1980-06-08
Problem," Numerical and Computer Methods in Structural Mechanics, S. J. Feaves, N. Pe-rone, J. Robinson and W.C. Schnobrich, eds., Academic Press, New...connectivity array N102 ’NDM*NlJME-ITW0 YL Element nodal coordinates N103 ---- NUME IELT Element number of nodes N104 NUME IPST Stress printing flag N105 NUME
An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.
Regnaux, Jean-Philippe; Saremi, Kaveh; Marehbian, Jon; Bussel, Bernard; Dobkin, Bruce H
2008-01-01
Two commercial robotic devices, the Gait Trainer (GT) and the Lokomat (LOKO), assist task-oriented practice of walking. The gait patterns induced by these motor-driven devices have not been characterized and compared. A healthy participant chose the most comfortable gait pattern on each device and for treadmill (TM) walking at 1, 2 (maximum for the GT), and 3 km/h and over ground at similar speeds. A system of accelerometers on the thighs and feet allowed the calculation of spatiotemporal features and accelerations during the gait cycle. At the 1 and 2 km/h speed settings, single-limb stance times were prolonged on the devices compared with overground walking. Differences on the LOKO were decreased by adjusting the hip and knee angles and step length. At the 3 km/h setting, the LOKO approximated the participant's overground parameters. Irregular accelerations and decelerations from toe-off to heel contact were induced by the devices, especially at slower speeds. The LOKO and GT impose mechanical constraints that may alter leg accelerations-decelerations during stance and swing phases, as well as stance duration, especially at their slower speed settings, that are not found during TM and overground walking. The potential impact of these perturbations on training to improve gait needs further study.
Hallux valgus surgery affects kinematic parameters during gait
Klugarova, J.; Janura, M.; Svoboda, Z.; Sos, Z.; Stergiou, N.; Klugar, M.
2017-01-01
Background The aim of our study was to compare spatiotemporal parameters and lower limb and pelvis kinematics during the walking in patients with hallux valgus before and after surgery and in relation to a control group. Methods Seventeen females with hallux valgus, who underwent first metatarsal osteotomy, constituted our experimental group. The control group consisted of thirteen females. Kinematic data during walking were obtained using the Vicon MX system. Findings Our results showed that hallux valgus before surgery affects spatiotemporal parameters and lower limb and pelvis kinematics during walking. Hallux valgus surgery further increased the differences that were present before surgery. Specifically after hallux valgus surgery, the walking speed decreased even more (p=0.09, η2= 0.19) while step time increased (p=0.002, η2=0.44) on both legs. The maximum ankle plantar flexion of the operated leg during toe off decreased to a greater extend (p=0.03, η2=0.26). The asymmetry in the hip and the pelvis movements in the frontal plane (present preoperatively) persisted after surgery. Interpretation Hallux valgus is not an isolated problem of the first ray, which could be just surgically addressed by correcting the foot’s alignment. It is a long-term progressive malfunction of the foot affecting the entire kinematic chain of the lower extremity. PMID:27792950
Evidence of isometric function of the flexor hallucis longus muscle in normal gait.
Kirane, Y M; Michelson, J D; Sharkey, N A
2008-01-01
Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.
Associations of Region-Specific Foot Pain and Foot Biomechanics: The Framingham Foot Study
Hagedorn, Thomas J.; Dufour, Alyssa B.; Hannan, Marian T.
2015-01-01
Background. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. Methods. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. Results. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. Conclusions. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain. PMID:25995291
The mechanism of force transference in feet of children ages two to six.
Hu, Mingyu; Zhou, Nan; Xu, Bo; Chen, Wuyong; Wu, Jianxin; Zhou, Jin
2017-05-01
The aim of this study was to design an algorithm to quantify the plantar force transference of children from ages 2-6. In total, 319 healthy children without abnormal gait patterns, foot deformities or injuries, able to walk independently, and with normal BMIs were recruited, and their plantar force distributions were measured. Their plantar areas were divided into ten parts: the hallux, toes #2-5, the first to fifth metatarsal heads (1st-5th MTH), the mid-foot (MF), medial heel (MH) and lateral heel (LH), in which a relative force-time integral (FTIrel) (%) was calculated. Our results show that the FTIrel was significantly transferred along either the transverse or longitudinal arches. The middle of the forefoot and the toe areas were the two main loading regions in children aged 2-3, and posterior to anterior FTIrel shifting was typical. However, anterior to posterior and lateral to medial FTI transferences were found in children aged 5-6, and major loading was found in the heel area. Further, loading in the mid-foot varied with the child's development and was observed to tend to decrease over time. Overall, according to the algorithm designed in this study, these results demonstrated that the development of the arches, both in transverse and longitudinal directions, had already begun in early stages of toddlerhood. Meanwhile, the arches were an important attractor engaged in the windlass mechanism while walking, and they played a major role as bridges to promote posterior to anterior and medial to lateral force transference. Copyright © 2017 Elsevier B.V. All rights reserved.
Swing limb mechanics and minimum toe clearance in people with knee osteoarthritis.
Levinger, Pazit; Lai, Daniel T H; Menz, Hylton B; Morrow, Adam D; Feller, Julian A; Bartlett, John R; Bergman, Neil R; Begg, Rezaul
2012-02-01
Knee osteoarthritis (OA) has been shown to be a risk factor for falls. Reductions in foot clearance during the swing phase of walking can cause a trip and potentially lead to a fall. This study examined the swing phase mechanics of people with and without knee OA during walking. Minimum toe clearance (MTC) height, joint angles at the time of MTC and the influence of the angular changes of the hip, knee and ankle of the swing leg on foot clearance using sensitivity analysis were investigated in 50 knee OA participants and 28 age-matched asymptomatic controls. Although both groups had a similar MTC height (controls: 12.8±6.7 mm, knee OA: 13.4±7.0 mm), the knee OA group used a different strategy to achieve the same foot clearance, as evidenced by greater knee flexion (52.5±5.3° vs 49.4±4.8°, p=0.007), greater hip abduction (-3.6±3.3° vs -1.8±3.3°, p=0.03) and less ankle adduction (2.8±1.9° vs 4.2±2.1°, p=0.01). MTC height was comparable between the groups, however a different swing phase mechanism was used by the knee OA. Although adequate MTC is an important component of safe locomotion, it does not appear to be impaired in people with knee OA. Other factors, such as inadequate responses to postural perturbation, may be responsible for falls in this group. Copyright © 2011 Elsevier B.V. All rights reserved.
Kinematic adaptations of the hindfoot, forefoot, and hallux during cross-slope walking.
Damavandi, Mohsen; Dixon, Philippe C; Pearsall, David J
2010-07-01
Despite cross-slope surfaces being a regular feature of our environment, little is known about segmental adaptations required to maintain both balance and forward locomotion. The purpose of this study was to determine kinematic adaptations of the foot segments in relation to transverse (cross-sloped) walking surfaces. Ten young adult males walked barefoot along an inclinable walkway (level, 0° and cross-slope, 10°). Kinematic adaptations of hindfoot with respect to tibia (HF/TB), forefoot with respect to hindfoot (FF/HF), and hallux with respect to forefoot (HX/FF) in level walking (LW), inclined walking up-slope (IWU), i.e., the foot at the higher elevation, and inclined walking down-slope (IWD), i.e., the foot at the lower elevation, were measured. Multivariate analysis of variance (MANOVA) for repeated measures was used to analyze the data. In the sagittal plane, the relative FF/HF and HX/FF plantar/dorsiflexion angles differed across conditions (p=0.024 and p=0.026, respectively). More importantly, numerous frontal plane alterations occurred. For the HF/TB angle, inversion of IWU and eversion of IWD was seen at heel-strike (p<0.001). This pattern reversed with IWU showing eversion and IWD inversion in early stance (p=0.024). For the FF/HF angle, significant differences were observed in mid-stance with IWD revealing inversion while IWU was everted (p<0.004). At toe-off, the pattern switched to eversion of IWD and inversion of IWU (p=0.032). The information obtained from this study enhances our understanding of the kinematics of the human foot in stance during level and cross-slope walking. Copyright © 2010 Elsevier B.V. All rights reserved.
Walking variations in healthy women wearing high-heeled shoes: Shoe size and heel height effects.
Di Sipio, Enrica; Piccinini, Giulia; Pecchioli, Cristiano; Germanotta, Marco; Iacovelli, Chiara; Simbolotti, Chiara; Cruciani, Arianna; Padua, Luca
2018-05-03
The use of high heels is widespread in modern society in professional and social contests. Literature showed that wearing high heels can produce injurious effects on several structures from the toes to the pelvis. No studies considered shoe length as an impacting factor on walking with high heels. The aim of this study is to evaluate walking parameters in young healthy women wearing high heels, considering not only the heel height but also the foot/shoe size. We evaluate spatio-temporal, kinematic and kinetic data, collected using a 8-camera motion capture system, in a sample of 21 healthy women in three different walking conditions: 1) barefoot, 2) wearing 12 cm high heel shoes independently from shoe size, and 3) wearing shoes with heel height based on shoe size, keeping the ankles' plantar flexion angle constant. The main outcome measures were: spatio-temporal parameters, gait harmony measurement, range of motion, flexion and extension maximal values, power and moment of lower limb joints. Comparing the three walking conditions, the Mixed Anova test, showed significant differences between both high heeled conditions (variable and constant height) and barefoot in spatio-temporal, kinematic and kinetic parameters. Regardless of the shoe size, both heeled conditions presented a similar gait pattern and were responsible for negative effects on walking parameters. Considering our results and the relevance of the heel height, further studies are needed to identify a threshold, over which it is possible to observe that wearing high heels could cause harmful effects, independently from the foot/shoe size. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, W Y; Chang, J J
1997-08-01
In the present study, we hypothesized that the enhancements obtained from the practice of jumping activity could be transferred to improve the walking balance in children with mental retardation (MR) and Down's syndrome (DS). Fourteen children with the diagnosis of MR or DS, aged 3 to 6 years, were recruited from a day care institution. They were ambulant but without jumping ability. Sixty-one non-handicapped children was used to serve as a normative comparison group. Before the training program, the performances of walking balance, jump skills and jumping distances were assessed individually by one physical therapist. The balance sub-test in the Bruininks Oseretsky Test of Motor Proficiency (BOTMP) was administered to assess the walking balance. Motor Skill Inventory (MSI) was used to assess the qualitative levels of jumping skills. A jumping skill training lesson that included horizontal jumps and vertical jumps was designed and integrated into the educational program. The recruited children received 3 sessions of training per-week for 6 weeks. A post-training test and a follow-up test were administered to the handicapped children. In BOTMP scores, statistical differences exited between the pre-training and post-training tests in the tested items of floor walk and beam walk. However, no significant difference was found in the items of floor stand, beam stand and floor heel-toe walk. MSI scales revealed there were significant differences between pre-training and post-training tests. There was no significant difference between the scores of post-training test and the follow-up test. The results implicated that the jumping activity might effectively evoke the automatic and dynamic postural control. Moreover, the significant improvements of the floor walk and beam walk performances might be due to the transferred effects via the practice of dynamic jumping activity. Furthermore, implications and suggestions are discussed.
Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers
Chen, Tony Lin-Wei; Wong, Duo Wai-Chi; Xu, Zhi; Tan, Qitao; Wang, Yan; Luximon, Ameersing
2018-01-01
Flip-flops may change walking gait pattern, increase muscle activity and joint loading, and predispose wearers to foot problems, despite that quantitative evidence is scarce. The purpose of this study was to examine the lower limb muscle co-contraction and joint contact force in flip-flops gait, and compare with those of barefoot and sports shoes walking. Ten healthy males were instructed to perform over-ground walking at self-selected speed under three footwear conditions: 1) barefoot, 2) sports shoes, and 3) thong-type flip-flops. Kinematic, kinetic and EMG data were collected and input to a musculoskeletal model to estimate muscle force and joint force. One-way repeated measures ANOVA was conducted to compare footwear conditions. It was hypothesized that flip-flops would induce muscle co-contraction and produce different gait kinematics and kinetics. Our results demonstrated that the musculoskeletal model estimation had a good temporal consistency with the measured EMG. Flip-flops produced significantly lower walking speed, higher ankle and subtalar joint range of motion, and higher shear ankle joint contact force than sports shoes (p < 0.05). There were no significant differences between flip-flops and barefoot conditions in terms of muscle co-contraction index, joint kinematics, and joint loading of the knee and ankle complex (p > 0.05). The variance in walking speed and footwear design may be the two major factors that resulted in the comparable joint biomechanics in flip-flops and barefoot walking. From this point of view, whether flip-flops gait is potentially harmful to foot health remains unclear. Given that shod walking is more common than barefoot walking on a daily basis, sports shoes with close-toe design may be a better footwear option than flip-flops for injury prevention due to its constraint on joint motion and loading. PMID:29561862
Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers.
Chen, Tony Lin-Wei; Wong, Duo Wai-Chi; Xu, Zhi; Tan, Qitao; Wang, Yan; Luximon, Ameersing; Zhang, Ming
2018-01-01
Flip-flops may change walking gait pattern, increase muscle activity and joint loading, and predispose wearers to foot problems, despite that quantitative evidence is scarce. The purpose of this study was to examine the lower limb muscle co-contraction and joint contact force in flip-flops gait, and compare with those of barefoot and sports shoes walking. Ten healthy males were instructed to perform over-ground walking at self-selected speed under three footwear conditions: 1) barefoot, 2) sports shoes, and 3) thong-type flip-flops. Kinematic, kinetic and EMG data were collected and input to a musculoskeletal model to estimate muscle force and joint force. One-way repeated measures ANOVA was conducted to compare footwear conditions. It was hypothesized that flip-flops would induce muscle co-contraction and produce different gait kinematics and kinetics. Our results demonstrated that the musculoskeletal model estimation had a good temporal consistency with the measured EMG. Flip-flops produced significantly lower walking speed, higher ankle and subtalar joint range of motion, and higher shear ankle joint contact force than sports shoes (p < 0.05). There were no significant differences between flip-flops and barefoot conditions in terms of muscle co-contraction index, joint kinematics, and joint loading of the knee and ankle complex (p > 0.05). The variance in walking speed and footwear design may be the two major factors that resulted in the comparable joint biomechanics in flip-flops and barefoot walking. From this point of view, whether flip-flops gait is potentially harmful to foot health remains unclear. Given that shod walking is more common than barefoot walking on a daily basis, sports shoes with close-toe design may be a better footwear option than flip-flops for injury prevention due to its constraint on joint motion and loading.
Development of an ankle torque measurement device for measuring ankle torque during walking.
Tanino, Genichi; Tomita, Yutaka; Mizuno, Shiho; Maeda, Hirofumi; Miyasaka, Hiroyuki; Orand, Abbas; Takeda, Kotaro; Sonoda, Shigeru
2015-05-01
[Purpose] To develop a device for measuring the torque of an ankle joint during walking in order to quantify the characteristics of spasticity of the ankle and to verify the functionality of the device by testing it on the gait of an able-bodied individual and an equinovarus patient. [Subjects and Methods] An adjustable posterior strut (APS) ankle-foot orthosis (AFO) was used in which two torque sensors were mounted on the aluminum strut for measuring the anterior-posterior (AP) and medial-lateral (ML) directions. Two switches were also mounted at the heel and toe in order to detect the gait phase. An able-bodied individual and a left hemiplegic patient with equinovarus participated. They wore the device and walked on a treadmill to investigate the device's functionality. [Results] Linear relationships between the torques and the corresponding output of the torque sensors were observed. Upon the analyses of gait of an able-body subject and a hemiplegic patient, we observed toque matrices in both AP and ML directions during the gait of the both subjects. [Conclusion] We developed a device capable of measuring the torque in the AP and ML directions of ankle joints during gait.
Texting during stair negotiation and implications for fall risk.
Hashish, Rami; Toney-Bolger, Megan E; Sharpe, Sarah S; Lester, Benjamin D; Mulliken, Adam
2017-10-01
Walking requires the integration of the sensory and motor systems. Cognitive distractions have been shown to interfere with negotiation of complex walking environments, especially in populations at greater risk for falls (e.g. the elderly). With the pervasiveness of mobile messaging and the recent introduction of augmented reality mobile gaming, it is increasingly important to understand how distraction associated with the simultaneous use of a mobile device impacts navigation of the complex walking environments experienced in daily life. In this study, we investigated how gait kinematics were altered when participants performed a texting task during step negotiation. Twenty participants (13 female, 7 males) performed a series of walking trials involving a step-deck obstacle, consisting of at least 3 texting trials and 3 non-texting trials. When texting, participants ascended more slowly and demonstrated reduced dual-step foot toe clearance. Participants similarly descended more slowly when texting and demonstrated reduced single-step foot heel clearance as well as reduced dual-step foot fore-aft heel clearance. These data support the conclusion that texting during stair negotiation results in changes to gait kinematics that may increase the potential for gait disruptions, falls, and injury. Further research should examine the effect texting has on performing other common complex locomotor tasks, actual fall risk, and the patterns of resulting injury rate and severity when negotiating complex environments. Copyright © 2017 Elsevier B.V. All rights reserved.
Compression therapy in mixed ulcers increases venous output and arterial perfusion.
Mosti, Giovanni; Iabichella, Maria Letizia; Partsch, Hugo
2012-01-01
This study was conducted to define bandage pressures that are safe and effective in treating leg ulcers of mixed arterial-venous etiology. In 25 patients with mixed-etiology leg ulcers who received inelastic bandages applied with pressures from 20 to 30, 31 to 40, and 41 to 50 mm Hg, the following measurements were performed before and after bandage application to ensure patient safety throughout the investigation: laser Doppler fluxmetry (LDF) close to the ulcer under the bandage and at the great toe, transcutaneous oxygen pressure (TcPo(2)) on the dorsum of the foot, and toe pressure. Ejection fraction (EF) of the venous pump was performed to assess efficacy on venous hemodynamics. LDF values under the bandages increased by 33% (95% confidence interval [CI], 17-48; P < .01), 28% (95% CI, 12-45; P < .05), and 10% (95% CI, -7 to 28), respectively, under the three pressure ranges applied. At toe level, a significant decrease in flux of -20% (95% CI, -48 to 9; P < .05) was seen when bandage pressure >41 mm Hg. Toe pressure values and TcPo(2) showed a moderate increase, excluding a restriction to arterial perfusion induced by the bandages. Inelastic bandages were highly efficient in improving venous pumping function, increasing the reduced ejection fraction by 72% (95% CI, 50%-95%; P < .001) under pressure of 21 to 30 mm Hg and by 103% (95% CI, 70%-128%; P < .001) at 31 to 40 mm Hg. In patients with mixed ulceration, an ankle-brachial pressure index >0.5 and an absolute ankle pressure of >60 mm Hg, inelastic compression of up to 40 mm Hg does not impede arterial perfusion but may lead to a normalization of the highly reduced venous pumping function. Such bandages are therefore recommended in combination with walking exercises as the basic conservative management for patients with mixed leg ulcers. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Iwasaki, Motoyuki; Akiyama, Masahiko; Koyanagi, Izumi; Niiya, Yoshimasa; Ihara, Tatsuo; Houkin, Kiyohiro
2017-01-01
We present a case of double-crushed L5 nerve root symptoms caused by inside and outside of the spinal canal with spur formation of the lumbosacral transitional vertebra (LSTV). A 78-year-old man presented with 7-year history of moderate paresis of his toe and left leg pain when walking. Magnetic resonance imaging (MRI) revealed spinal stenosis at the L3/4 and 4/5 spinal levels and he underwent wide fenestration of both levels. Leg pain disappeared and 6-min walk distance (6MWD) improved after surgery, however, the numbness in his toes increased and 6MWD decreased 9 months after surgery. Repeated MR and 3D multiplanar reconstructed computed tomography (CT) images showed extraforaminal impingement of the L5 root by bony spur of the left LSTV. He underwent second decompression surgery of the L5/S via the left sided Wiltse approach, resulting in the improvement of his symptoms. The impingement of L5 spinal nerve root between the transverse process of the fifth lumbar vertebra and the sacral ala is a rare entity of the pathology called “far-out syndrome (FOS)”. Especially, the bony spur formation secondary to the anomalous articulation of the LSTV (LSPA) has not been reported. These articulations could be due to severe disc degeneration, following closer distance and contact between the transverse process and the sacral ala. To our knowledge, this is the first report describing a case with this pathology and may be considered in cases of failed back surgery syndromes (FBSS) of the L5 root symptoms. PMID:29018654
Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard
2017-02-01
Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.
Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114
Friction in total hip joint prosthesis measured in vivo during walking.
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.
Determinants of footwear difficulties in people with plantar heel pain.
Sullivan, Justin; Pappas, Evangelos; Adams, Roger; Crosbie, Jack; Burns, Joshua
2015-01-01
Plantar heel pain is a common foot disorder aggravated by weight-bearing activity. Despite considerable focus on therapeutic interventions such as orthoses, there has been limited investigation of footwear-related issues in people with plantar heel pain. The aim of this study was to investigate whether people with plantar heel pain experience footwear-related difficulties compared to asymptomatic individuals, as well as identifying factors associated with footwear comfort, fit and choice. The footwear domain of the Foot Health Status Questionnaire (FHSQ) was assessed in 192 people with plantar heel pain and 69 asymptomatic controls. The plantar heel pain group was also assessed on a variety of measures including: foot posture, foot strength and flexibility, pedobarography and pain level. A univariate analysis of covariance, with age as the covariate, was used to compare the heel pain and control groups on the FHSQ footwear domain score. A multiple regression model was then constructed to investigate factors associated with footwear scores among participants with plantar heel pain. When compared to asymptomatic participants, people with plantar heel pain reported lower FHSQ footwear domain scores (mean difference -24.4; p < 0.001; 95 % CI: -32.0 to -17.0). In the participants with heel pain, footwear scores were associated with maximum force beneath the postero-lateral heel during barefoot walking, toe flexor strength and gender. People with plantar heel pain experience difficulty with footwear comfort, fit and choice. Reduced heel loading during barefoot walking, toe flexor weakness and female gender are all independently associated with reports of footwear difficulties in people with heel pain. Increased focus, in both clinical and research settings, is needed to address footwear-related issues in people with plantar heel pain.
Peebles, Alexander T; Bruetsch, Adam P; Lynch, Sharon G; Huisinga, Jessie M
2017-10-03
Around 60% of persons with multiple sclerosis (MS) experience falls, however the dynamic balance differences between those who fall and those who don't are not well understood. The purpose of this study is to identify distinct biomechanical features of dynamic balance during gait that are different between fallers with MS, non-fallers with MS, and healthy controls. 27 recurrent fallers with MS, 28 persons with MS with no falls history, and 27 healthy controls walked on a treadmill at their preferred speed for 3min. The variability of trunk accelerations and the average and variability of minimum toe clearance, spatiotemporal parameters, and margin of stability were compared between groups. Fallers with MS exhibited a slower cautious gait compared to non-fallers and healthy controls, but had decreased anterior-posterior margin of stability and minimum toe clearance. Fallers walked with less locally stable and predictable trunk accelerations, and increased variability of step length, stride time, and both anterior-posterior and mediolateral margin of stability compared to non-fallers and healthy controls. The present work provides evidence that within a group of persons with MS, there are gait differences that are influenced by falls history. These differences indicate that in persons with MS who fall, the center of mass is poorly controlled through base of support placement and the foot is closer to the ground during swing phase relative to the non-fallers. These identified biomechanical differences could be used to evaluate dynamic balance in persons with MS and to help improve fall prevention strategies. Copyright © 2017. Published by Elsevier Ltd.
Street, Brian D; Gage, William
2013-04-01
The external knee adduction moment is an accurate estimation of the load distribution of the knee and is a valid predictor for the presence, severity and progression rate of medial compartment knee osteoarthritis. Gait modification strategies have been shown to be an effective means of reducing the external adduction moment. The purpose of this study was to test narrow gait as a mechanism to reduce the external adduction moment and investigate if limb dominance affects this pattern. Fifteen healthy male participants (mean age: 23.8 (SD=3.1) years, mean height: 1.8 (SD=0.1) m, and mean body mass: 82.9 (SD=16.1 kg) took part in this study. Five walking trials were performed for each of the three different gait conditions: normal gait, toe-out gait, and narrow gait. Adoption of the narrow gait strategy significantly reduced the early stance phase external knee adduction moment compared to normal and toe-out gait (p<.002). However, it was observed that this reduction only occurred in the non-dominant limb. Gait modification can reduce the external knee adduction moment. However, asymmetrical patterns between the dominant and non-dominant limbs, specifically during gait modification, may attenuate the effectiveness of this intervention. The mechanism of limb dominance and the specific roles of each limb during gait may account for an asymmetrical pattern in the moment arm and center of mass displacement during stance. This new insight into how limb-dominance effects gait modification strategies will be useful in the clinical setting when identifying appropriate patients, when indicating a gait modification strategy and in future research methodology. Copyright © 2013 Elsevier B.V. All rights reserved.
Lam, Tania; Pauhl, Katherine; Krassioukov, Andrei; Eng, Janice J
2011-01-01
The efficacy of task-specific gait training for people with spinal cord injury (SCI) is premised on evidence that the provision of gait-related afferent feedback is key for the recovery of stepping movements. Recent findings have shown that sensory feedback from flexor muscle afferents can facilitate flexor muscle activity during the swing phase of walking. This case report was undertaken to determine the feasibility of using robot-applied forces to resist leg movements during body-weight-supported treadmill training (BWSTT) and to measure its effect on gait and other health-related outcomes. The patient described in this case report was a 43-year-old man with a T11 incomplete chronic SCI. He underwent 36 sessions of BWSTT using a robotic gait orthosis to provide forces that resist hip and knee flexion. Tolerance to the training program was monitored using the Borg CR10 scale and heart rate and blood pressure changes during each training session. Outcome measures (ie, 10-Meter Walk Test, Six-Minute Walk Test, modified Emory Functional Ambulation Profile [mEFAP], Activities-specific Balance Confidence Scale, and Canadian Occupational Performance Measure) were completed and kinematic parameters of gait, lower-extremity muscle strength (force-generating capacity), lower-limb girth, and tolerance to orthostatic stress were measured before and after the training program. The patient could tolerate the training. Overground walking speed, endurance, and performance on all subtasks of the mEFAP improved and were accompanied by increased lower-limb joint flexion and toe clearance during gait. The patient's ambulatory self-confidence and self-perceived performance in walking also improved. These findings suggest that this new approach to BWSTT is a feasible and potentially effective therapy for improving skilled overground walking performance.
Wu, Ming; Kim, Janis; Gaebler-Spira, Deborah J; Schmit, Brian D; Arora, Pooja
2017-11-01
To determine whether applying controlled resistance forces to the legs during the swing phase of gait may improve the efficacy of treadmill training as compared with applying controlled assistance forces in children with cerebral palsy (CP). Randomized controlled study. Research unit of a rehabilitation hospital. Children with spastic CP (N=23; mean age, 10.6y; range, 6-14y; Gross Motor Function Classification System levels, I-IV). Participants were randomly assigned to receive controlled assistance (n=11) or resistance (n=12) loads applied to the legs at the ankle. Participants underwent robotic treadmill training 3 times a week for 6 weeks (18 sessions). A controlled swing assistance/resistance load was applied to both legs starting from the toe-off to mid-swing phase of gait during training. Outcome measures consisted of overground walking speed, 6-minute walk distance, and Gross Motor Function Measure scores and were assessed pre and post 6 weeks of training and 8 weeks after the end of training. After 6 weeks of treadmill training in participants from the resistance training group, fast walking speed and 6-minute walk distance significantly improved (18% and 30% increases, respectively), and 6-minute walk distance was still significantly greater than that at baseline (35% increase) 8 weeks after the end of training. In contrast, overground gait speed and 6-minute walk distance had no significant changes after robotic assistance training. The results of the present study indicated that robotic resistance treadmill training is more effective than assistance training in improving locomotor function in children with CP. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Acoustooptical Spectrum Analysis Modeling.
1981-06-01
broadband applications of acoustooptical spectrum analysis will result in nonuniform frequency responses requiring such modifications before using the AOSA...Ofl itW W Z Ztc 11 kAlI 11 (A* I -z -1 41 lz - 4-- a f~d V) LAIR 2 *ZF43 t0i Oc c U -x v~ w. >IUJU U .4J >U 114 " lU -- M 0aLI-- ftplx 4 cc C <oo - n
Barisch-Fritz, Bettina; Schmeltzpfenning, Timo; Plank, Clemens; Grau, Stefan
2014-01-01
The complex functions of feet require a specific composition, which is progressively achieved by developmental processes. This development should take place without being affected by footwear. The aim of this study is to evaluate differences between static and dynamic foot morphology in developing feet. Feet of 2554 participants (6-16 years) were recorded using a new scanner system (DynaScan4D). Each foot was recorded in static half and full weight-bearing and during walking. Several foot measures corresponding to those used in last construction were calculated. The differences were identified by one-way ANOVA and paired Student's t-test. Static and dynamic values of each foot measure must be considered to improve the fit of footwear. In particular, footwear must account for the increase of forefoot width and the decrease of midfoot girth. Furthermore, the toe box should have a more rounded shape. The findings are important for the construction of footwear for developing feet.
Evaluation and management of crouch gait.
Kedem, Paz; Scher, David M
2016-02-01
Crouch gait is defined as excessive ankle dorsiflexion, knee and hip flexion during the stance phase. This gait disorder is common among patients with cerebral palsy. The present article brings an up-to-date literature review on the pathoanatomy, natural history, and treatment of this frequent gait abnormality. Hamstrings are often not shortened in patients with crouch. Patella alta must be addressed if surgery is performed. Surgical correction of joint contractures and lever arm dysfunction can be effectively achieved through a single-event multilevel surgery. Crouch gait is a common gait deviation, often seen among ambulatory diplegic and quadriplegic patients, once they reach the pubertal spurt, when weak muscles can no longer support a toe walking pattern because of rapidly increased weight. This form of gait is highly ineffective and might compromise walking ability over time. The anterior knee is overloaded; pain, extensor mechanism failure, and arthritis might develop. Its progressive nature often requires surgical intervention. The cause of crouch gait is multifactorial, and surgery should be tailored to meet the individual's specific anatomic and physiologic abnormalities.
Foot care and footwear practices among patients attending a specialist diabetes clinic in Jamaica
Gayle, Krystal A.T.; Tulloch Reid, Marshall K.; Younger, Novie O.; Francis, Damian K.; McFarlane, Shelly R.; Wright-Pascoe, Rosemarie A.; Boyne, Michael S.; Wilks, Rainford J.; Ferguson, Trevor S.
2012-01-01
This study aimed to estimate the proportion of patients at the University Hospital of the West Indies (UHWI) Diabetes Clinic who engage in recommended foot care and footwear practices. Seventy-two participants from the UHWI Diabetes Clinic completed an interviewer-administered questionnaire on foot care practices and types of footwear worn. Participants were a subset of a sex-stratified random sample of clinic attendees and were interviewed in 2010. Data analysis included frequency estimates of the various foot care practices and types of footwear worn. Participants had a mean age of 57.0±14.3 years and mean duration of diabetes of 17.0±10.3 years. Fifty-three percent of participants reported being taught how to care for their feet, while daily foot inspection was performed by approximately 60% of participants. Most participants (90%) reported daily use of moisturizing lotion on the feet but almost 50% used lotion between the toes. Approximately 85% of participants reported wearing shoes or slippers both indoors and outdoors but over 40% reported walking barefoot at some time. Thirteen percent wore special shoes for diabetes while over 80% wore shoes without socks at some time. Although much larger proportions reported wearing broad round toe shoes (82%) or leather shoes (64%), fairly high proportions reported wearing pointed toe shoes (39%), and 43% of women wore high heel shoes. In conclusion, approximately 60% of patients at the UHWI diabetic clinic engage in daily foot inspection and other recommended practices, but fairly high proportions reported foot care or footwear choices that should be avoided. PMID:24765484
Hereditary Neuropathy With Liability to Pressure Palsies: Diverse Phenotypes in Childhood.
Harada, Yohei; Puwanant, Araya; Herrmann, David N
2016-12-01
Hereditary neuropathy with liability to pressure palsies (HNPP) is a rare autosomal-dominant disorder that most commonly produces recurrent painless focal sensory and motor neuropathies often preceded by minor, mechanical stress, or minor trauma. Herein, we report 2 pediatric cases of HNPP with atypical presentations; isolated muscle cramping and toe walking. Electrophysiologic testing disclosed multifocal sensorimotor polyneuropathy with slowing of sensory conduction velocities in both cases, which prompted PMP 22 gene deletion testing. Multifocal sensorimotor electrophysiologic abnormalities, with slowing of sensory conduction velocities should raise consideration of HNPP in childhood. These case reports emphasize that the diagnosis of HNPP in children requires a high index of suspicion.
Galvez, Jose A; Budovitch, Amy; Harkema, Susan J; Reinkensmeyer, David J
2011-01-01
Robotic devices are being developed to automate repetitive aspects of walking retraining after neurological injuries, in part because they might improve the consistency and quality of training. However, it is unclear how inconsistent manual training actually is or whether stepping quality depends strongly on the trainers' manual skill. The objective of this study was to quantify trainer variability of manual skill during step training using body-weight support on a treadmill and assess factors of trainer skill. We attached a sensorized orthosis to one leg of each patient with spinal cord injury and measured the shank kinematics and forces exerted by different trainers during six training sessions. An expert trainer rated the trainers' skill level based on videotape recordings. Between-trainer force variability was substantial, about two times greater than within-trainer variability. Trainer skill rating correlated strongly with two gait features: better knee extension during stance and fewer episodes of toe dragging. Better knee extension correlated directly with larger knee horizontal assistance force, but better toe clearance did not correlate with larger ankle push-up force; rather, it correlated with better knee and hip extension. These results are useful to inform robotic gait-training design.
Proper shoe sizes for Thai elderly.
Chaiwanichsiri, Dootchai; Tantisiriwat, Natthiya; Janchai, Siriporn
2008-12-01
Problems from improper shoe fitting are common, but there are limited foot data for the older Thai population. To study foot dimensions and determine proper shoe sizes for Thai elderly. Healthy older people: 108 men, 105 women, aged 60-80 years, who were independent in walking, were recruited. Thirteen foot dimensions and current shoes used were measured. Side-to-side, gender difference, and correlations of main foot measurements were analyzed. About 50% women and 34% men wore too narrow shoes, and this was found to be associated with foot pain. At the same foot length (FL), men had larger foot width (FW) and toe depth. Foot width=2.39+(0.29 x FL), r=0.50, p=0.001 for women and=2.48+(0.31 x FL), r=0.56, p=0.002 for men. Arch length=1.0+(0.7 x FL), r=0.93, p=0.001 for both genders. Toe depth had constant values in all shoe sizes of each gender. Correlations of other foot parameters were reported. These anthropometric data is essential for proper shoe fitting in order to provide foot ergonomics and prevent foot problems for older Thai people.
Lovell, Nancy C
2016-06-01
Salvage excavation of a Roman cemetery (1st-2nd century CE) at the site of ancient Erculam (region of Campania), Italy, yielded the skeleton of an older male with a healed fracture of the femoral neck that reduced the femoral neck angle and resulted in leg shortening. The right foot shows bony alterations that appear to have developed as a consequence. The distal joint surfaces of the first and second metatarsals extend dorsally for articulation of the proximal phalanges in hyper-dorsiflexion. I argue that, in order to compensate for the shortened leg, the man lengthened it functionally by bearing weight primarily on his toes when he walked, rather than striking the heel first and then pushing off from the toe. The severity of degenerative joint disease in the right knee and in the metatarsophalangeal joints suggests that the injury occurred years before the man's death. This case adds to the bioarchaeological record of individuals who adapted to impaired mobility in the past, and it may be of interest to scholars who study the bioarchaeology of impairment and disability. Copyright © 2016 Elsevier Inc. All rights reserved.
Unertan syndrome: a case series demonstrating human devolution.
Tan, Uner; Karaca, Sibel; Tan, Meliha; Yilmaz, Bekir; Bagci, Namik Kemal; Ozkur, Ayhan; Pence, Sadrettin
2008-01-01
A large family with six individuals exhibiting the Unertan syndrome (UTS) was identified residing in southern Turkey. All of the individuals had mental impairments and walked on all four extremities. The practice of intra-familial marriages suggested that the UTS may be an autosomal recessive disorder, similar to previously described cases. The inferior portions of the cerebellum and vermis were absent as evidenced by MRI and CT scans. The height and head circumference of those affected were within normal ranges. Barany's test suggested normal vestibular system function. The subjects could not name objects or their close relatives. The males (n = 4) could understand simple questions and commands, but answered questions with only one or two sounds. The females (n = 2) were superior to the males with respect to language skills and walking, suggesting an association between walking and speaking abilities. One male exhibited three walking patterns at the same time: quadripedal, tiptoe, and scissor walking. Another male used two walking styles: quadripedal and toe-walking. It is emphasized that there are important differences between the UTS and the disequilibrium syndrome. It is suggested that the inability to walk upright in those affected with the UTS may be best explained by a disturbance in lateral-balance mechanisms, without being related to the cerebello-vestibular system. An interruption of locomotor development during the transition from quadripedality to bipedality may result in habitual walking on all four extremities and is normal in some children. Because quadripedal gait is an ancestral trait, individuals with the UTS, exhibiting a manifestation of reverse evolution in humans, may be considered an experiment of nature, useful in understanding the mechanisms underlying the transition from quadripedality to bipedality during human evolution. The proposed mutant gene or gene pool playing a role in human quadrupedality may also be responsible for human bipedality at the same time. Herein there is no intent to insult or injure; rather, this report is an endeavor to better understand human beings. Supplementary materials are available for this article. Go to the publisher's online edition of International Journal of Neuroscience for the following free supplemental resource(s): video clips.
A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes.
Zhang, Xiuli; Paquette, Max R; Zhang, Songning
2013-11-06
Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear.
Effect of thong style flip-flops on children's barefoot walking and jogging kinematics.
Chard, Angus; Greene, Andrew; Hunt, Adrienne; Vanwanseele, Benedicte; Smith, Richard
2013-03-05
Thong style flip-flops are a popular form of footwear for children. Health professionals relate the wearing of thongs to foot pathology and deformity despite the lack of quantitative evidence to support or refute the benefits or disadvantages of children wearing thongs. The purpose of this study was to compare the effect of thong footwear on children's barefoot three dimensional foot kinematics during walking and jogging. Thirteen healthy children (age 10.3 ± 1.6 SD years) were recruited from the metropolitan area of Sydney Australia following a national press release. Kinematic data were recorded at 200 Hz using a 14 camera motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, USA) and simultaneous ground reaction force were measured using a force platform (Model 9281B, Kistler, Winterthur, Switzerland). A three-segment foot model was used to describe three dimensional ankle, midfoot and one dimensional hallux kinematics during the stance sub-phases of contact, midstance and propulsion. Thongs resulted in increased ankle dorsiflexion during contact (by 10.9°, p; = 0.005 walk and by 8.1°, p; = 0.005 jog); increased midfoot plantarflexion during midstance (by 5.0°, p; = 0.037 jog) and propulsion (by 6.7°, p; = 0.044 walk and by 5.4°, p;= 0.020 jog); increased midfoot inversion during contact (by 3.8°, p;= 0.042 jog) and reduced hallux dorsiflexion during walking 10% prior to heel strike (by 6.5°, p; = 0.005) at heel strike (by 4.9°, p; = 0.031) and 10% post toe-off (by 10.7°, p; = 0.001). Ankle dorsiflexion during the contact phase of walking and jogging, combined with reduced hallux dorsiflexion during walking, suggests a mechanism to retain the thong during weight acceptance. Greater midfoot plantarflexion throughout midstance while walking and throughout midstance and propulsion while jogging may indicate a gripping action to sustain the thong during stance. While these compensations exist, the overall findings suggest that foot motion whilst wearing thongs may be more replicable of barefoot motion than originally thought.
Effect of thong style flip-flops on children’s barefoot walking and jogging kinematics
2013-01-01
Background Thong style flip-flops are a popular form of footwear for children. Health professionals relate the wearing of thongs to foot pathology and deformity despite the lack of quantitative evidence to support or refute the benefits or disadvantages of children wearing thongs. The purpose of this study was to compare the effect of thong footwear on children’s barefoot three dimensional foot kinematics during walking and jogging. Methods Thirteen healthy children (age 10.3 ± 1.6 SD years) were recruited from the metropolitan area of Sydney Australia following a national press release. Kinematic data were recorded at 200 Hz using a 14 camera motion analysis system (Cortex, Motion Analysis Corporation, Santa Rosa, USA) and simultaneous ground reaction force were measured using a force platform (Model 9281B, Kistler, Winterthur, Switzerland). A three-segment foot model was used to describe three dimensional ankle, midfoot and one dimensional hallux kinematics during the stance sub-phases of contact, midstance and propulsion. Results Thongs resulted in increased ankle dorsiflexion during contact (by 10.9°, p; = 0.005 walk and by 8.1°, p; = 0.005 jog); increased midfoot plantarflexion during midstance (by 5.0°, p; = 0.037 jog) and propulsion (by 6.7°, p; = 0.044 walk and by 5.4°, p;= 0.020 jog); increased midfoot inversion during contact (by 3.8°, p;= 0.042 jog) and reduced hallux dorsiflexion during walking 10% prior to heel strike (by 6.5°, p; = 0.005) at heel strike (by 4.9°, p; = 0.031) and 10% post toe-off (by 10.7°, p; = 0.001). Conclusions Ankle dorsiflexion during the contact phase of walking and jogging, combined with reduced hallux dorsiflexion during walking, suggests a mechanism to retain the thong during weight acceptance. Greater midfoot plantarflexion throughout midstance while walking and throughout midstance and propulsion while jogging may indicate a gripping action to sustain the thong during stance. While these compensations exist, the overall findings suggest that foot motion whilst wearing thongs may be more replicable of barefoot motion than originally thought. PMID:23497571
NASA Astrophysics Data System (ADS)
Crown, David A.; Baloga, Stephen M.
Pahoehoe toe dimensions, morphology, and branching relationships were analyzed in flows emplaced during 1972 at Mauna Ulu, a satellitic shield on the east rift zone of Kilauea Volcano, Hawai'i. In order to characterize regions within flow fields dominated by networks of pahoehoe toes, measurements of toe length, width, thickness, and orientation were completed for 445 toes at 13 sites. Variations in site characteristics, including slope, substrate, and position in the flow field allow an evaluation of the effects of such parameters on toe dimensions. Toe surface morphology (ropy or smooth), local flow lobe position (interior or margin), and connective relationships between toes were documented in the form of detailed toe maps. These maps show the number of branches connecting a given toe to other toes in its local pahoehoe network and illustrate branching patterns. Statistical analyses of toe dimensions and comparisons of pahoehoe toe study sites and sub-populations combined with field observations, evaluation of toe maps, and qualitative examination of toe dimension size distributions show the following: (a) Although there are significant variations at a given site, toes typically have mean lengths (101cm) greater than mean widths (74cm) and mean widths greater than mean thicknesses (19cm) sites that have mean widths greater than mean lengths are those with lower slopes. (b) Where significant site-to-site variations in mean values of a given toe dimension were apparent, these differences could not be directly related to site characteristics. (c) Ropy toes have significantly larger mean values of length, width, and number of branches than smooth toes, and toes with three or more branches have greater lengths, widths, and thicknesses than toes with two or fewer branches, suggesting concentration of flow in these toe types. (d) The skewness of all size distributions of toe length and width to larger values suggests that toes are transitional to larger sheets and channels, consistent with field observations; and (e) Two distinct types of branching patterns (called monolayer and centrally ridged) were observed in preserved pahoehoe flow lobes. The significant variability in measured toe dimensions at Mauna Ulu suggests that toe dimensions are influenced by numerous locally defined, random factors, and that an approach based on stochastic methods can be used to model pahoehoe flow emplacement.
21 CFR 888.3730 - Toe joint phalangeal (hemi-toe) polymer prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Toe joint phalangeal (hemi-toe) polymer prosthesis. 888.3730 Section 888.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... (hemi-toe) polymer prosthesis. (a) Identification. A toe joint phalangeal (hemi-toe) polymer prosthesis...
21 CFR 888.3730 - Toe joint phalangeal (hemi-toe) polymer prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Toe joint phalangeal (hemi-toe) polymer prosthesis. 888.3730 Section 888.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... (hemi-toe) polymer prosthesis. (a) Identification. A toe joint phalangeal (hemi-toe) polymer prosthesis...
21 CFR 888.3730 - Toe joint phalangeal (hemi-toe) polymer prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Toe joint phalangeal (hemi-toe) polymer prosthesis. 888.3730 Section 888.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... (hemi-toe) polymer prosthesis. (a) Identification. A toe joint phalangeal (hemi-toe) polymer prosthesis...
21 CFR 888.3730 - Toe joint phalangeal (hemi-toe) polymer prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Toe joint phalangeal (hemi-toe) polymer prosthesis. 888.3730 Section 888.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... (hemi-toe) polymer prosthesis. (a) Identification. A toe joint phalangeal (hemi-toe) polymer prosthesis...
21 CFR 888.3730 - Toe joint phalangeal (hemi-toe) polymer prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Toe joint phalangeal (hemi-toe) polymer prosthesis. 888.3730 Section 888.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... (hemi-toe) polymer prosthesis. (a) Identification. A toe joint phalangeal (hemi-toe) polymer prosthesis...
Effect of medial arch-heel support in inserts on reducing ankle eversion: a biomechanics study
Fong, Daniel TP; Lam, Mak-Ham; Lao, Miko LM; Chan, Chad WN; Yung, Patrick SH; Fung, Kwai-Yau; Lui, Pauline PY; Chan, Kai-Ming
2008-01-01
Background Excessive pronation (or eversion) at ankle joint in heel-toe running correlated with lower extremity overuse injuries. Orthotics and inserts are often prescribed to limit the pronation range to tackle the problem. Previous studies revealed that the effect is product-specific. This study investigated the effect of medial arch-heel support in inserts on reducing ankle eversion in standing, walking and running. Methods Thirteen pronators and 13 normal subjects participated in standing, walking and running trials in each of the following conditions: (1) barefoot, and shod condition with insert with (2) no, (3) low, (4) medium, and (5) high medial arch-heel support. Motions were captured and processed by an eight-camera motion capture system. Maximum ankle eversion was calculated by incorporating the raw coordinates of 15 anatomical positions to a self-compiled Matlab program with kinematics equations. Analysis of variance with repeated measures with post-hoc Tukey pairwise comparisons was performed on the data among the five walking conditions and the five running conditions separately. Results Results showed that the inserts with medial arch-heel support were effective in dynamics trials but not static trials. In walking, they successfully reduced the maximum eversion by 2.1 degrees in normal subjects and by 2.5–3.0 degrees in pronators. In running, the insert with low medial arch support significantly reduced maximum eversion angle by 3.6 and 3.1 degrees in normal subjects and pronators respectively. Conclusion Medial arch-heel support in inserts is effective in reducing ankle eversion in walking and running, but not in standing. In walking, there is a trend to bring the over-pronated feet of the pronators back to the normal eversion range. In running, it shows an effect to restore normal eversion range in 84% of the pronators. PMID:18289375
First record of a pterosaur landing trackway
Mazin, Jean-Michel; Billon-Bruyat, Jean-Paul; Padian, Kevin
2009-01-01
The terrestrial progression of pterosaurs, the flying reptiles of the Mesozoic Era, has been debated for over two centuries. The recent discovery of quadrupedal pterodactyloid pterosaur tracks from Late Jurassic sediments near Crayssac, France, shows that the hindlimbs moved parasagittally, as in mammals, birds and other dinosaurs, and the hypertrophied forelimbs could make tracks both close to the body wall and far outside it. Their manus tracks are unique in form, position and kinematics, which would be expected because the forelimbs were used for flight. Here, we report the first record of a pterosaur landing track, which differs substantially from typical walking trackways. The individual landed on both hind feet in parallel fashion, dragged its toes slightly as it left the track, landed again almost immediately and placed the hindfeet parallel again, then placed its forelimbs on the ground, took another short step with both hindlimbs and adjusted its forelimbs, and then began to walk off normally. The trackway shows that pterosaurs stalled to land, a reflection of their highly developed capacity for flight control and manoeuverability. PMID:19692407
A proof of the conjecture on the twin primes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo-ling, Zhou
2016-06-08
In this short note, we have proved the conjecture on twin primes using some thoughts of the set theory. Firstly, using the original sieve method and a new notation(concept)introduced by myself, the conjecture on twin primes is summed up as an elementary successive limit, afterwards we form a subsequence of positive integers,and using it,we prove that the successive limits are commutative and complete the proof of the conjecture on twin primes We also give a more straightforward proof of the conjecture.
KBSA Project Management Assistant. Volume 1.
1987-07-01
perforrim automiated syitim,’i. of j)r)gIiIIm, fm r specified ,,al-. ti ,. forth. The rationale for and benefits deriving foint tt,- 1. l* ’m m , arc...efficiently, as well as its interface to human user,. It is therefore of priun iiiict an,’," " to employ a language that allows the formalization of...km wledge th It i convenienT . I ;ITw the conceptual level of humans and efficiently manipulable by the PM A.. ’ In order to achieve these somewhat
The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads
Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali
2014-01-01
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70–90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties. PMID:25323067
Estimation of Temporal Gait Parameters Using a Wearable Microphone-Sensor-Based System
Wang, Cheng; Wang, Xiangdong; Long, Zhou; Yuan, Jing; Qian, Yueliang; Li, Jintao
2016-01-01
Most existing wearable gait analysis methods focus on the analysis of data obtained from inertial sensors. This paper proposes a novel, low-cost, wireless and wearable gait analysis system which uses microphone sensors to collect footstep sound signals during walking. This is the first time a microphone sensor is used as a wearable gait analysis device as far as we know. Based on this system, a gait analysis algorithm for estimating the temporal parameters of gait is presented. The algorithm fully uses the fusion of two feet footstep sound signals and includes three stages: footstep detection, heel-strike event and toe-on event detection, and calculation of gait temporal parameters. Experimental results show that with a total of 240 data sequences and 1732 steps collected using three different gait data collection strategies from 15 healthy subjects, the proposed system achieves an average 0.955 F1-measure for footstep detection, an average 94.52% accuracy rate for heel-strike detection and 94.25% accuracy rate for toe-on detection. Using these detection results, nine temporal related gait parameters are calculated and these parameters are consistent with their corresponding normal gait temporal parameters and labeled data calculation results. The results verify the effectiveness of our proposed system and algorithm for temporal gait parameter estimation. PMID:27999321
The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads
NASA Astrophysics Data System (ADS)
Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali
2014-10-01
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.
Lauzière, Séléna; Miéville, Carole; Betschart, Martina; Duclos, Cyril; Aissaoui, Rachid; Nadeau, Sylvie
2014-10-01
To assess plantarflexion moment and hip joint moment after-effects following walking on a split-belt treadmill in healthy individuals and individuals post-stroke. Cross-sectional study. Ten healthy individuals (mean age 57.6 years (standard deviation; SD 17.2)) and twenty individuals post-stroke (mean age 49.3 years (SD 13.2)). Participants walked on an instrumented split-belt treadmill under 3 gait periods: i) baseline (tied-belt); ii) adaptation (split-belt); and iii) post-adaptation (tied-belt). Participants post-stroke performed the protocol with the paretic and nonparetic leg on the faster belt when belts were split. Kinematic data were recorded with the Optotrak system and ground reaction forces were collected via the instrumented split-belt treadmill. In both groups, the fast plantarflexion moment was reduced and the slow plantarflexion moment was increased from mid-stance to toe-off in the post-adaptation period. Significant relationships were found between the plantarflexion moment and contralateral step length. Split-belt treadmills could be useful for restoring step length symmetry in individuals post-stroke who present with a longer paretic step length because the use of this type of intervention increases paretic plantarflexion moments. This intervention might be less recommended for individuals post-stroke with a shorter paretic step length because it reduces the paretic plantarflexion moment.
A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes
2013-01-01
Background Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Methods Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. Results A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. Conclusions The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear. PMID:24196492
Fractured toe - self-care; Broken bone - toe - self-care; Fracture - toe - self-care; Fracture phalanx - toe ... often treated without surgery and can be taken care of at home. Severe injuries include: Breaks that ...
Rupp, Rüdiger; Schließmann, Daniel; Plewa, Harry; Schuld, Christian; Gerner, Hans Jürgen; Weidner, Norbert; Hofer, Eberhard P; Knestel, Markus
2015-01-01
The compact Motorized orthosis for home rehabilitation of Gait (MoreGait) was developed for continuation of locomotion training at home. MoreGait generates afferent stimuli of walking with the user in a semi-supine position and provides feedback about deviations from the reference walking pattern. Prospective, pre-post intervention, proof-of-concept study to test the feasibility of an unsupervised home-based application of five MoreGait prototypes in subjects with incomplete spinal cord injury (iSCI). Twenty-five (5 tetraplegia, 20 paraplegia) participants with chronic (mean time since injury: 5.8 ± 5.4 (standard deviation, SD) years) sensorimotor iSCI (7 ASIA Impairment Scale (AIS) C, 18 AIS D; Walking Index for Spinal Cord Injury (WISCI II): Interquartile range 9 to 16) completed the training (45 minutes / day, at least 4 days / week, 8 weeks). Baseline status was documented 4 and 2 weeks before and at training onset. Training effects were assessed after 4 and 8 weeks of therapy. After therapy, 9 of 25 study participants improved with respect to the dependency on walking aids assessed by the WISCI II. For all individuals, the short-distance walking velocity measured by the 10-Meter Walk Test showed significant improvements compared to baseline (100%) for both self-selected (Mean 139.4% ± 35.5% (SD)) and maximum (Mean 143.1% ± 40.6% (SD)) speed conditions as well as the endurance estimated with the six-minute walk test (Mean 166.6% ± 72.1% (SD)). One device-related adverse event (pressure sore on the big toe) occurred in over 800 training sessions. Home-based robotic locomotion training with MoreGait is feasible and safe. The magnitude of functional improvements achieved by MoreGait in individuals with iSCI is well within the range of complex locomotion robots used in hospitals. Thus, unsupervised MoreGait training potentially represents an option to prolong effective training aiming at recovery of locomotor function beyond in-patient rehabilitation. German Clinical Trials Register (DKRS) DRKS00005587.
Comparison of Two Alternative Methods for Tracking Toe Trajectory
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Brady, Rachel; Mulavara, Ajitkumar; Warren, Liz; Feiveson, Al; Bloomberg, Jacob
2007-01-01
Toe trajectory during the swing phase of locomotion has been identified as a precise motor control task (Karst, et al., 1999). The standard method for tracking toe trajectory is to place a marker on the superior aspect of the distal end of the 2nd toe itself (Karst, et al., 1999; Winter, 1992). However, others have based their toe trajectory results either on a marker positioned on the lateral aspect of the 5th metatarsal head (Dingwell, et al., 1999; Osaki, et al., 2007), or on a virtual toe marker computed at the anterior tip of the second toe based on the positions of other real foot markers (Miller, et al., 2006). While these methods for tracking the toe may seem similar, their results may not be directly comparable. The purpose of this study was to compute toe trajectory parameters using a 5th metatarsal marker and a virtual toe marker, and compare their results with those of the standard toe marker.
Impact on DARCOM of Nonstandard MTOE.
1981-03-01
DIFFERENCES BETWEEN TOE AND MTOE TYPE NR RECORDS TOTAL QTY OF TOTAL QTY OF TOTAL DIFF ORGN IDENTIFIED ITEMS AUTH ITEMS AUTH BETWEEN TOE BY TOE BY MTOE AND MTOE...BETWEEN TOE AND MTOE TYPE NR RECORDS TOTAL QTY OF TOTAL QTY OF TOTAL DIFF ORGN IDENTIFIED ITEMS AUTH ITEMS AUTH BETWEEN TOE BY TOE BY MTOE AND MTOE 01
Development of a Subject-Specific Foot-Ground Contact Model for Walking.
Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J
2016-09-01
Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments-a hindfoot (HF) segment and a forefoot (FF) segment-connected by a pin joint representing the toes flexion-extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior-posterior (AP) CoP, 8 mm for medial-lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The largest errors in AP CoP occurred at the beginning and end of stance phase when the vertical ground reaction force (vGRF) was small. Subject-specific deformable foot-ground contact models created using this approach should enable changes in foot-ground contact pattern to be predicted accurately by gait optimization studies, which may lead to improvements in personalized rehabilitation medicine.
Development of a Subject-Specific Foot-Ground Contact Model for Walking
Jackson, Jennifer N.; Hass, Chris J.; Fregly, Benjamin J.
2016-01-01
Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments—a hindfoot (HF) segment and a forefoot (FF) segment—connected by a pin joint representing the toes flexion–extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior–posterior (AP) CoP, 8 mm for medial–lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The largest errors in AP CoP occurred at the beginning and end of stance phase when the vertical ground reaction force (vGRF) was small. Subject-specific deformable foot-ground contact models created using this approach should enable changes in foot-ground contact pattern to be predicted accurately by gait optimization studies, which may lead to improvements in personalized rehabilitation medicine. PMID:27379886
Turcato, Anna Maria; Godi, Marco; Giordano, Andrea; Schieppati, Marco; Nardone, Antonio
2015-01-09
Turning involves complex reorientation of the body and is accompanied by asymmetric motion of the lower limbs. We investigated the distribution of the forces under the two feet, and its relation to the trajectory features and body medio-lateral displacement during curved walking. Twenty-six healthy young participants walked under three different randomized conditions: in a straight line (LIN), in a circular clockwise path and in a circular counter-clockwise path. Both feet were instrumented with Pedar-X insoles. An accelerometer was fixed to the trunk to measure the medio-lateral inclination of the body. We analyzed walking speed, stance duration as a percent of gait cycle (%GC), the vertical component of the ground reaction force (vGRF) of both feet during the entire stance, and trunk inclination. Gait speed was faster during LIN than curved walking, but not affected by the direction of the curved trajectory. Trunk inclination was negligible during LIN, while the trunk was inclined toward the center of the path during curved trajectories. Stance duration of LIN foot and foot inside the curved trajectory (Foot-In) was longer than for foot outside the trajectory (Foot-Out). vGRF at heel strike was larger in LIN than in curved walking. At mid-stance, vGRF for both Foot-In and Foot-Out was higher than for LIN foot. At toe off, vGRF for both Foot-In and Foot-Out was lower than for LIN foot; in addition, Foot-In had lower vGRF than Foot-Out. During curved walking, a greater loading of the lateral heel occurred for Foot-Out than Foot-In and LIN foot. On the contrary, a smaller lateral loading of the heel was found for Foot-In than LIN foot. At the metatarsal heads, an opposite behaviour was seen, since lateral loading decreased for Foot-Out and increased for Foot-In. The lower gait speed during curved walking is shaped by the control of trunk inclination and the production of asymmetric loading of heel and metatarsal heads, hence by the different contribution of the feet in producing the body inclination towards the centre of the trajectory.
NASA Astrophysics Data System (ADS)
Schmincke, Hans-Ulrich; Rausch, Juanita; Kutterolf, Steffen; Freundt, Armin
2010-10-01
We analyzed bare human footprints in Holocene tuff preserved in two pits in the Acahualinca barrio in the northern outskirts of Managua (Nicaragua). Lithology, volcanology, and age of the deposits are discussed in a companion paper (Schmincke et al. Bull Volcanol doi:
Reintegration Difficulty of Military Couples Following Deployment
2015-07-01
about facets of his father’s daily activities, “Well, I had questions for him, like asking him, ‘What was Iraq like? What did you eat ?’ And all, like...questioning and avoidance: Kevin: Yeah, I asked him, like, what do they do there, and how do they eat , and, yeah, stuff like that. Interviewer: And how does it...We just like pick a night that we go out to eat , like random nights, and it’s like weird because in the first few minutes we’re like, ‘Four people
Spotlight on GME/GHSE Supported Research
2017-12-07
REPORT TYPE 3. DATES COVERED (From- To) 12/07/2017 Poster 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Spotlight on GME/GHSE-Supported Research Sb...Clinical Research Division ., 4t€t.>Jc~"-\\. ~[lJI~IT~&[L IT~W~~UIT@&lYIT©~~ ~~@@~[RJ ~[0@1J[LI1@ 1r (Q)~ @~ An example of a "Parent" 59 MDW/ST R&D Project...ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 59th Clinical Research Division REPORT NUMBER 1100 Willford Hall Loop, Bldg 4430 JBSA
Cruz-Almeida, Yenisel; Black, Mieniecia L.; Christou, Evangelos A.; Clark, David J.
2014-01-01
Introduction: Impaired somatosensation is common in older adults and contributes to age-related loss of mobility function. However, little is known about whether somatosensation at different sites on the plantar surface of the foot are differentially related to mobility function. Such a finding may have important implications for clinical care of older adults and other at-risk populations, such as for optimizing interventions (e.g., footwear for augmenting somatosensory feedback) and for improving the efficiency of clinical assessment. Materials and Methods: Tactile perception was evaluated with a 10 g monofilament at four sites on the plantar surface of each foot: great toe (GT), first metatarsal head (MT1), heel (H) and fifth metatarsal head (MT5). Mobility function was assessed with the Berg Balance Scale and walking speed. Results: Sixty-one older adults participated. Tactile perception was significantly positively associated with Berg Balance Score (adjusted r = 0.30 − 0.75; p = 0.03 − < 0.001), with the strongest association found at the site of the MT1. Only at this site was tactile perception found to be significantly associated with usual walking speed (adjusted r = 0.51; p < 0.001) and maximal walking speed (adjusted r = 0.38, p = 0.004). Clinically mild somatosensory impairment at MT1, but not at other sites, was found to yield substantial deficits in both Berg Balance Score and walking speed. Discussion: The present findings indicate that tactile perception at MT1 is more closely linked to mobility function than is tactile perception at GT, MT5 or H. These findings warrant further research to examine whether interventions (e.g., textured insoles) and assessments that preferentially or exclusively focus on the site of MT1 may be more effective for optimizing clinical care. PMID:24782765
Bunterngchit, Yuthachai; Lockhart, Thurmon; Woldstad, Jeffrey C.; Smith, James L.
2010-01-01
A laboratory study was conducted to examine gait changes between younger and older subjects as they walked across different floor surfaces. Twenty subjects participated in the experiment (five each of older and younger males and females). For half of the trials, subjects carried light loads that blocked their view of the floor surface immediately in front of them. Subjects walked on slippery (soapy water on vinyl) and stable (outdoor carpet) floor surfaces, as well as transitioning from one surface to another. Responses studied included: required coefficient of friction (RCOF), stride length (SL), and minimum toe clearance (MTC). Significant effects were found for the floor surface, load versus no load condition, and some interactions involving age (older versus younger subjects). Not all expected differences due to age were found in this experiment. The lack of significant differences between younger and older subjects could be due to the older subjects that participated in the experiment. They were volunteers at a local medical center, were in good physical shape, and were probably not typical of the population of people over 65 years of age. Relevance to industry Slips and falls in industry are costly safety issues in terms of human suffering as well as financial compensation. In many facilities and at home, people make transitions from one floor surface to another many times each day, while carrying loads or just walking. A better understanding of characteristics of people as they walk on slippery floor surfaces and the changes that might occur with age, will allow engineers to design better floor surfaces to reduce the incidence of slips and falls. PMID:20607122
Verlinden, Vincentius J A; de Kruijf, Marjolein; Bierma-Zeinstra, Sita M A; Hofman, Albert; Uitterlinden, André G; Ikram, M Arfan; van Meurs, Joyce B J; van der Geest, Jos N
2017-05-01
Hip and knee osteoarthritis (OA) are debilitating diseases that impair gait at severe stages. Although associations between OA and gait are established for normal walking, little is known about its relation with turning and tandem (heel-to-toe) walking. Furthermore, it is unknown how asymptomatic OA associates with gait, and whether associations differ by sex. We investigated how symptomatic and asymptomatic hip and knee OA associate with gait in community-dwelling individuals. In 2706 participants of a population-based cohort study, gait was assessed by electronic walkway and summarised into seven gait domains. Hip and knee radiographs were graded for radiographic OA (ROA) using the Kellgren and Lawrence (K&L) score. Linear regression was used to investigate associations between ROA and gait. Analyses were repeated including only participants with asymptomatic ROA, defined as a K&L-score of 2 without pain. In total, 177 participants (6.5%) had hip ROA and 441 (16.3%) knee ROA. We found no associations of knee ROA with gait. Hip ROA associated with Rhythm, Tandem, and Turning. Furthermore, unilateral hip ROA associated with larger gait asymmetry and gait differences in osteoarthritic and non-osteoarthritic leg, when compared to people without hip ROA. Associations between hip ROA and gait were generally stronger for women than men. Associations for hip ROA remained after restricting to asymptomatic ROA. Hip ROA, but not knee ROA, associates with gait differences in normal walking, turning, and tandem walking in community-dwelling individuals. These associations differ between the sexes, and are already present for asymptomatic ROA. Copyright © 2017 Elsevier B.V. All rights reserved.
Roach, J M; Pfau, T; Bryars, J; Unt, V; Channon, S B; Weller, R
2014-10-01
Kinematic evaluation of the distal limb of the horse using standard methods is challenging, mainly due to the hoof capsule restricting visualisation, but the recent development of a high-speed fluoroscopy (HSF) system has allowed in vivo cineradiographic assessment of moving skeletal structures at high speeds. The application of this non-invasive method to the equine distal limb is used to describe 'internal' distal limb kinematics including intra-horse and inter-horse variability, and variability between walk and trot. Distal limb kinematic data were collected at walk and trot from six non-lame horses using HSF set over a force plate. The dorsal proximal interphalangeal joint (PIPJ) angle and the dorsal distal interphalangeal joint (DIPJ) angle were measured at toe-on and at 25%, 50% and 75% of stance. The PIPJ and DIPJ showed overall extension through stance. The mean ± SD range of motion (ROM) during stance of the PIPJ was 9.7 ± 2.7° (walk) and 8.7 ± 3.0° (trot) and of the DIPJ was 28.6 ± 4.6° (walk) and 26.5 ± 6.3° (trot) showing significant differences between gaits and changes through stance (P < 0.001). Inter- and intra- horse variations were also significant for both joint angles (P < 0.001). HSF allowed for kinematic assessment of the distal limb within the hoof capsule. The ROM of the PIPJ observed was similar to results published in the literature whilst the ROM for the DIPJ was less than values previously reported. Future studies will use HSF to estimate strain in the tendons and ligaments within the hoof capsule, which are a common site of lameness in the horse. Copyright © 2014. Published by Elsevier Ltd.
Qianqian, Wang; Sihua, Liu; Yang, Wang; Guoyan, Liu; Jia, Lu; Xuting, Ye; Liming, Zhang
2012-01-01
Our previous studies have confirmed that the crude tentacle-only extract (cTOE) from the jellyfish Cyanea capillata (Cyaneidae) exhibits hemolytic and cardiovascular toxicities simultaneously. So, it is quite difficult to discern the underlying active component responsible for heart injury caused by cTOE. The inactivation of the hemolytic toxicity from cTOE accompanied with a removal of plenty of precipitates would facilitate the separation of cardiovascular component and the investigation of its cardiovascular injury mechanism. In our research, after the treatment of one-step alkaline denaturation followed by twice dialysis, the protein concentration of the treated tentacle-only extract (tTOE) was about 1/3 of cTOE, and SDS-PAGE showed smaller numbers and lower density of protein bands in tTOE. The hemolytic toxicity of tTOE was completely lost while its cardiovascular toxicity was well retained. The observations of cardiac function, histopathology and ultrastructural pathology all support tTOE with significant cardiovascular toxicity. Blood gas indexes and electrolytes changed far less by tTOE than those by cTOE, though still with significant difference from normal. In summary, the cardiovascular toxicity of cTOE can exist independently of the hemolytic toxicity and tTOE can be employed as a better venom sample for further purification and mechanism research on the jellyfish cardiovascular toxic proteins. PMID:22905209
Foot pressure distributions during walking in African elephants (Loxodonta africana)
Pataky, Todd C.; Day, Madeleine; Hensman, Michael C.; Hensman, Sean; Hutchinson, John R.; Clemente, Christofer J.
2016-01-01
Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples. PMID:27853539
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Gigli, Emanuele; Muzi, Luca; Renda, Roberto; Simoni, Silvano
2010-01-01
GHG emissions, eutrophication and energy dependence are problems that the EU has to face in the near future. The BioWALK4Biofuels project aims to find a common response to these challenges, taking advantage of spontaneous biological processes: the growth of algae and anaerobic digestion of biomass. This project is being built thanks to European funding under the 7th Framework Programme. To evaluate the results obtained, a first LCA study was carried out that, as regards the data on infrastructure and on the assembly of the plant, refers to data supplied by manufacturers, while the study of algal growth was made on the basis of a model of cultivation that takes account of the aspects that most affect this key process among all the ones that cooperate in the whole plant. The electricity and heat produced through a co-generator fueled by biogas produced from algal biomass, according to this study, are responsible for GHG emissions reduced by 52% compared to traditional technologies. The biogas produced during the 4 years of the project allows the substitution of 85 tonnes of oil equivalent (toe).
Rozin Kleiner, Ana Francisca; Galli, Manuela; Araujo do Carmo, Aline; Barros, Ricardo M L
2015-09-01
The aim of this study was to investigate the effect of flooring on barefoot gait according to age and gender. Two groups of healthy subjects were analyzed: the elderly adult group (EA; 10 healthy subjects) and the middle-aged group (MA; 10 healthy subjects). Each participant was asked to walk at his or her preferred speed over two force plates on the following surfaces: 1) homogeneous vinyl (HOV), 2) carpet, 3) heterogeneous vinyl (HTV) and 4) mixed (in which the first half of the pathway was covered by HOV and the second by HTV). Two force plates (Kistler 9286BA) embedded in the data collection room floor measured the ground reaction forces and friction. The required coefficient of friction (RCOF) was analyzed. For the statistical analysis, a linear mixed-effects model for repeated measures was performed. During barefoot gait, there were differences in the RCOF among the flooring types during the heel contact and toe-off phases. Due to better plantar proprioception during barefoot gait, the EA and MA subjects were able to distinguish differences among the flooring types. Moreover, when the EA were compared with the MA subjects, differences could be observed in the RCOF during the toe-off phase, and gender differences in the RCOF could also be observed during the heel contact phase in barefoot gait. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Takeuchi, Masaki
2013-01-01
Background: This study describes the use of a bioabsorbable suture for skin suturing during surgery for lateral ray polydactyly followed by favorable postoperative outcome without the need for postoperative suture removal. Methods: A 5-0 Vicryl Rapide suture was used for skin suturing during surgery for lateral ray polydactyly in 9 children (mean age, 12.4 mo). Children were allowed to walk and bathe 2 weeks after surgery when over-the-suture taping therapy was started. Results: In all cases, the Vicryl Rapide suture disappeared completely within 3 weeks of surgery, and no removal of residual suture was required. No postoperative complications, such as suture abscess, wound dehiscence, or ulcer, were observed. During a mean 24-month postoperative follow-up, no elevation of the interdigital space due to hypertrophic scarring or scar contracture was observed, and no revision surgery was required. Conclusions: Although the breaking strength of Vicryl Rapide declines within the first 10 days after surgery, this property will unlikely lead to postoperative wound dehiscence due to a relatively light load being applied to the lateral toes. The use of a bioabsorbable suture for skin suturing during surgery for lateral lay polydactyly is highly beneficial as it eliminates pain caused by suture removal and the risk of tissue damage while reducing the burden on medical staff. PMID:25289236
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd
Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral tomore » narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.« less
Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty
NASA Astrophysics Data System (ADS)
Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd; Tamin, Mohd Nasir; Kadir, Mohammed Rafiq Abdul
2010-10-01
Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3° at anterior/posterior, 3° at medial/lateral and 10° from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.
Implicit theories of writing and their impact on students' response to a SRSD intervention.
Limpo, Teresa; Alves, Rui A
2014-12-01
In the field of intelligence research, it has been shown that some people conceive intelligence as a fixed trait that cannot be changed (entity beliefs), whereas others conceive it as a malleable trait that can be developed (incremental beliefs). What about writing? Do people hold similar implicit theories about the nature of their writing ability? Furthermore, are these beliefs likely to influence students' response to a writing intervention? We aimed to develop a scale to measure students' implicit theories of writing (pilot study) and to test whether these beliefs influence strategy-instruction effectiveness (intervention study). In the pilot and intervention studies participated, respectively, 128 and 192 students (Grades 5-6). Based on existing instruments that measure self-theories of intelligence, we developed the Implicit Theories of Writing (ITW) scale that was tested with the pilot sample. In the intervention study, 109 students received planning instruction based on the self-regulated strategy development model, whereas 83 students received standard writing instruction. Students were evaluated before, in the middle, and after instruction. ITW's validity was supported by piloting results and their successful cross-validation in the intervention study. In this, intervention students wrote longer and better texts than control students. Moreover, latent growth curve modelling showed that the more the intervention students conceived writing as a malleable skill, the more the quality of their texts improved. This research is of educational relevance because it provides a measure to evaluate students' implicit theories of writing and shows their impact on response to intervention. © 2014 The British Psychological Society.
[Hand reconstruction by microsurgical free toe transfer].
Stamate, T; Budurcă, A R; Hermeziu, Oana
2003-01-01
Reconstruction of complex hand mutilations with multi-digital or thumb amputations are best treated with microsurgical toe transfers. We present the results of the first 15 cases operated by the first author, of which 12 are thumb reconstructions (6 great toe and 6 second toe transfers) and 3 long fingers reconstructions with combined second and third toe transfers. There were no microsurgical complications. Cortical integration and functional integration was achieved for all transferred toes, with discriminatory sensibility (m2PD between 5 and 13 mm) and active mobility range between 30 and 60 degrees.
... fracture is severe — particularly if it involves your big toe — you may need a cast or even surgery to ensure proper healing. Most broken toes heal well, usually within four to six weeks. Sometimes, a broken toe may become infected ...
Interaction of the body, head, and eyes during walking and turning
NASA Technical Reports Server (NTRS)
Imai, T.; Moore, S. T.; Raphan, T.; Cohen, B.
2001-01-01
Body, head, and eye movements were measured in five subjects during straight walking and while turning corners. The purpose was to determine how well the head and eyes followed the linear trajectory of the body in space and whether head orientation followed changes in the gravito-inertial acceleration vector (GIA). Head and body movements were measured with a video-based motion analysis system and horizontal, vertical, and torsional eye movements with video-oculography. During straight walking, there was lateral body motion at the stride frequency, which was at half the frequency of stepping. The GIA oscillated about the direction of heading, according to the acceleration and deceleration associated with heel strike and toe flexion, and the body yawed in concert with stepping. Despite the linear and rotatory motions of the head and body, the head pointed along the forward motion of the body during straight walking. The head pitch/roll component appeared to compensate for vertical and horizontal acceleration of the head rather than orienting to the tilt of the GIA or anticipating it. When turning corners, subjects walked on a 50-cm radius over two steps or on a 200-cm radius in five to seven steps. Maximum centripetal accelerations in sharp turns were ca.0.4 g, which tilted the GIA ca.21 degrees with regard to the heading. This was anticipated by a roll tilt of the head of up to 8 degrees. The eyes rolled 1-1.5 degrees and moved down into the direction of linear acceleration during the tilts of the GIA. Yaw head deviations moved smoothly through the turn, anticipating the shift in lateral body trajectory by as much as 25 degrees. The trunk did not anticipate the change in trajectory. Thus, in contrast to straight walking, the tilt axes of the head and the GIA tended to align during turns. Gaze was stable in space during the slow phases and jumped forward in saccades along the trajectory, leading it by larger angles when the angular velocity of turning was greater. The anticipatory roll head movements during turning are likely to be utilized to overcome inertial forces that would destabilize balance during turning. The data show that compensatory eye, head, and body movements stabilize gaze during straight walking, while orienting mechanisms direct the eyes, head, and body to tilts of the GIA in space during turning.
Age-related reduction and independent predictors of toe flexor strength in middle-aged men.
Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Iwase, Mitsunori; Yokochi, Takashi
2017-01-01
Toe flexor muscles play an important role in posture and locomotion, and poor toe flexor strength is a risk factor for falls. In this cross-sectional study, we estimated the age-related change in toe flexor strength and compared it with that of handgrip strength. Independent factors predicting toe flexor and handgrip strength were also determined. A total of 1401 male (aged 35-59 years) study participants were divided into five groups according to their chronological age; 35-39, 40-44, 45-49, 50-54, and 55-59 years. Toe flexor and handgrip strength, anthropometry, and resting blood pressure were measured. Fasting blood samples were collected to measure blood glucose, triglycerides, high- and low-density lipoprotein-cholesterols, and albumin. A self-administered lifestyle questionnaire was conducted. Decline in absolute toe flexor and handgrip strength began in the age groups 50-55 and 55-59 years, respectively. In comparison to the mean values of the youngest group, relative toe flexor strength (87.0 ± 26.6%) was significantly lower than handgrip strength (94.4 ± 13.1%) for the oldest group. Multiple regression analyses showed that independent factors predicting both toe flexor and handgrip strength were lean body mass, age, serum albumin, drinking habit, and fat mass. Additionally, fasting blood glucose, diastolic blood pressure, sleeping time and exercise habit were predicting factors of toe flexor strength but not of handgrip strength. Age-related reduction in toe flexor strength was earlier and greater than handgrip strength, and toe flexor strength reflects body composition and metabolic status.
Toe-to-hand transfer: Evolving Indications and Relevant Outcomes
Waljee, Jennifer F.; Chung, Kevin C.
2014-01-01
In the late 19th century, the first toe to hand transfer was performed in Vienna, Switzerland as a staged procedure by Nicolandi.(1) Since that time, the advent of microsurgery has revolutionized toe to hand transfers. In 1966, Buncke performed the first microvascular toe to thumb transfer in a rhesus monkey.(2) The first toe to thumb transfer using microsurgical techniques in humans was performed by Cobbett in 1969, followed shortly thereafter by the first transfer of a second toe to the thumb position.(3,4) Today, due to expanding microsurgical techniques and surgeon innovation, the indications and techniques for toe-to-hand transfer procedures continue to evolve and now encompass patients with a variety of acquired and congenital hand defects.(5) PMID:23790426
... toe turned toward the other toes and may cross over the second toe. Corns and calluses develop as a result where the first and second toes overlap. Difficulty wearing regular shoes. You may have problems finding shoes that fit or that do not cause pain.
Toe spreading ability in men with chronic pelvic pain syndrome
Yilmaz, Ugur; Rothman, Ivan; Ciol, Marcia A; Yang, Claire C; Berger, Richard E
2005-01-01
Background We examined toe-spreading ability in subjects with chronic pelvic pain syndrome (CPPS) to test the hypothesis that subjects with CPPS could have deficiencies in lower extremity functions innervated by sacral spinal roots. Methods Seventy two subjects with CPPS and 98 volunteer controls were examined as part of a larger study on CPPS. All the subjects underwent a detailed urologic and neurological examination including a toe-spreading examination with a quantitative scoring system. We compared the groups in terms of ability of toe-spreading as either "complete" (all toes spreading) or "incomplete" (at least one interdigital space not spreading) and also by comparing the number of interdigital spaces. For CPPS subjects only, we also analyzed the variation of the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) scales by toe-spreading categories. Results CPPS subjects were less often able to spread all toes than subjects without CPPS (p = 0.005). None of the NIH-CPSI sub-scales (pain, urinary symptoms, and quality of life), nor the total score showed an association with toe spreading ability. Conclusion We found toe spreading to be diminished in subjects with CPPS. We hypothesize that incomplete toe spreading in subjects with CPPS may be related to subtle deficits involving the most caudal part of the spinal segments. PMID:15949041
Vertical ground reaction forces in patients after calcaneal trauma surgery.
van Hoeve, S; Verbruggen, J; Willems, P; Meijer, K; Poeze, M
2017-10-01
Vertical ground reaction forces (VGRFs) are altered in patients after foot trauma. It is not known if this correlates with ankle kinematics. The aim of this study was to analyze VGRFs in patients after calcaneal trauma and correlate them to patient-reported outcome measures (PROMs), radiographic findings and kinematic analysis, using a multi-segment foot model. In addition, we determined the predictive value of VGRFs to identify patients with altered foot kinematics. Thirteen patients (13 feet) with displaced intra-articular calcaneal fractures, were included an average of two years after trauma surgery. PROMs, radiographic findings on postoperative computed tomography scans, gait analysis using the Oxford foot model and VGRFs were analysed during gait. Results were compared with those of 11 healthy subjects (20 feet). Speed was equal in both groups, with healthy subjects walking at self-selected slow speed (0.94±0.18m/s) and patients after surgery walking at self-selected normal speed (0.94±0.29m/s). ROC curves were used to determine the predictive value. Patients after calcaneal surgery showed a lower minimum force during midstance (p=0.004) and a lower maximum force during toe-off (p=0.011). This parameter correlated significantly with the range of motion in the sagittal plane during the push-off phase (r 0.523, p=0.002), as well as with PROMs and with postoperative residual step-off (r 0.423, p=0.016). Combining these two parameters yielded a cut-off value of 193% (p<0.001), area under the curve 0.93 (95%confidence interval 0.84-1.00). Patients after calcaneal fracture showed lower minimum force during midstance and lower maximum force during toe-off compared to healthy subjects. This lower maximum force during push-off correlated significantly with PROMs, range of motion in the sagittal plane during push-off and radiographic postoperative residual step-off in the posterior facet of the calcaneal bone. VGRFs are a valuable screening tool for identifying patients with altered gait patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
Narayan, Edward J; Molinia, Frank C; Kindermann, Christina; Cockrem, John F; Hero, Jean-Marc
2011-11-01
Toe-clipping, the removal of one or more toes, is a common method used to individually mark free-living animals. Whilst this method is widely used in studies of amphibians, the appropriateness of the method, and its potential detrimental effects have been the subject of debate. Here, we provide for the first time, evidence that toe-clipping is a stressor in a wild amphibian. We measured urinary corticosterone responses of male cane toads (Rhinella marina) to capture and handling only, and to toe-clipping under field conditions. Urinary testosterone concentrations and white blood cell proportions were also measured. Urinary corticosterone metabolite concentrations increased 6h after capture and handling only and remained high for 24h; corticosterone returned to baseline levels after 48 h and remained low at 72 h post capture and handling. Corticosterone concentrations in toads subjected to toe-clipping increased at 6h to significantly higher concentrations than after capture and handling only, then decreased more slowly than after capture and handling, and were still elevated (approximately double basal level) 72 h after toe-clipping. Testosterone did not change significantly after capture and handling only, whereas after toe-clipping testosterone decreased at 6h and remained low at 72 h. There were weak short-term effects of toe-clipping compared with capture and handling only on white blood cell proportions. We have clearly shown that toe-clipping is a distinctly stronger stressor than capture and handling alone. This indicates that there is an ethical cost of toe-clipping, and this should be considered when planning studies of amphibians. Copyright © 2011 Elsevier Inc. All rights reserved.
Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.;
2016-01-01
BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (one hour post-landing), or at the airport (four hours post-landing). The USOS crewmembers were also tested at the refueling stop (12 hours post-landing) and at the NASA Johnson Space Center (24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also performed as part of pilot FT. To perform the Tandem Walk, subjects begin with their feet together, their arms crossed at their chest and eyes closed. When ready, they brought one foot forward and touched the heel of their foot to their toe, repeating with the other foot, and continuing for about 10 steps. Three trials were collected with the eyes closed and a fourth trial was collected with eyes open. There are four metrics which are used to determine the performance level of the Tandem Walk. The first is percent correct steps. For a step to be counted as correct, the foot could not touch the ground while bringing it forward (no side stepping), eyes must stay closed during the eyes closed trials, the heel and toe should be touching, or almost touching (no large gaps) and there shouldn't be more than a three second pause between steps. Three judges score each step and the median of the three scores is kept. The second metric is the average step speed, or the number of steps/time to complete them. Thirdly, the root mean squared (RMS) error in the resultant trunk acceleration is used to determine the amount of upper body instability observed during the task. Finally, the RMS error of the mediolateral center of pressure as measured by the Moticon insoles is used to determine the mediolateral instability at the foot level. These four parameters are combined into a new overall Tandem Walk Parameter. RESULTS: Preliminary results show that crewmembers perform the Tandem Walk significantly worse the first 24 hours after landing as compared to their baseline performance. We find that each of the four performance metrics is significantly worse immediately after landing. We will present the results of tandem walk performance during the FT thus far. We will also combine these with the 18 crewmembers that participated in the pilot FT, concentrating on the level of performance and recovery rate. CONCLUSION: The Tandem Walk data collected as part of the FT experiment will provide invaluable information on the performance capabilities of astronauts during the first 24 hours after returning from long-duration spaceflight that can be used in planning future Mars, or other deep-space missions with unassisted landings. FT will determine the average sensorimotor recovery timeline and inform return-to-duty guidelines for unassisted landings.
21 CFR 888.3720 - Toe joint polymer constrained prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Toe joint polymer constrained prosthesis. 888.3720... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3720 Toe joint polymer constrained prosthesis. (a) Identification. A toe joint polymer constrained prosthesis is a device made of silicone...
21 CFR 888.3720 - Toe joint polymer constrained prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Toe joint polymer constrained prosthesis. 888.3720... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3720 Toe joint polymer constrained prosthesis. (a) Identification. A toe joint polymer constrained prosthesis is a device made of silicone...
21 CFR 888.3720 - Toe joint polymer constrained prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Toe joint polymer constrained prosthesis. 888.3720... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3720 Toe joint polymer constrained prosthesis. (a) Identification. A toe joint polymer constrained prosthesis is a device made of silicone...
21 CFR 888.3720 - Toe joint polymer constrained prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Toe joint polymer constrained prosthesis. 888.3720... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3720 Toe joint polymer constrained prosthesis. (a) Identification. A toe joint polymer constrained prosthesis is a device made of silicone...
21 CFR 888.3720 - Toe joint polymer constrained prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Toe joint polymer constrained prosthesis. 888.3720... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3720 Toe joint polymer constrained prosthesis. (a) Identification. A toe joint polymer constrained prosthesis is a device made of silicone...
Fox, Aaron S; Carty, Christopher P; Modenese, Luca; Barber, Lee A; Lichtwark, Glen A
2018-03-01
Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimal foot shape for a passive dynamic biped.
Kwan, Maxine; Hubbard, Mont
2007-09-21
Passive walking dynamics describe the motion of a biped that is able to "walk" down a shallow slope without any actuation or control. Instead, the walker relies on gravitational and inertial effects to propel itself forward, exhibiting a gait quite similar to that of humans. These purely passive models depend on potential energy to overcome the energy lost when the foot impacts the ground. Previous research has demonstrated that energy loss at heel-strike can vary widely for a given speed, depending on the nature of the collision. The point of foot contact with the ground (relative to the hip) can have a significant effect: semi-circular (round) feet soften the impact, resulting in much smaller losses than point-foot walkers. Collisional losses are also lower if a single impulse is broken up into a series of smaller impulses that gradually redirect the velocity of the center of mass rather than a single abrupt impulse. Using this principle, a model was created where foot-strike occurs over two impulses, "heel-strike" and "toe-strike," representative of the initial impact of the heel and the following impact as the ball of the foot strikes the ground. Having two collisions with the flat-foot model did improve efficiency over the point-foot model. Representation of the flat-foot walker as a rimless wheel helped to explain the optimal flat-foot shape, driven by symmetry of the virtual spoke angles. The optimal long period foot shape of the simple passive walking model was not very representative of the human foot shape, although a reasonably anthropometric foot shape was predicted by the short period solution.
Lichtwark, G A; Wilson, A M
2008-06-21
Muscles generate force to resist gravitational and inertial forces and/or to undertake work, e.g. on the centre of mass. A trade-off in muscle architecture exists in muscles that do both; the fibres should be as short as possible to minimise activation cost but long enough to maintain an appropriate shortening velocity. Energetic cost is also influenced by tendon compliance which modulates the timecourse of muscle mechanical work. Here we use a Hill-type muscle model of the human medial gastrocnemius to determine the muscle fascicle length and Achilles tendon compliance that maximise efficiency during the stance phase of walking (1.2m/s) and running (3.2 and 3.9 m/s). A broad range of muscle fascicle lengths (ranging from 45 to 70 mm) and tendon stiffness values (150-500 N/mm) can achieve close to optimal efficiency at each speed of locomotion; however, efficient walking requires shorter muscle fascicles and a more compliant tendon than running. The values that maximise efficiency are within the range measured in normal populations. A non-linear toe-region region of the tendon force-length properties may further influence the optimal values, requiring a stiffer tendon with slightly longer muscle fascicles; however, it does not alter the main results. We conclude that muscle fibre length and tendon compliance combinations may be tuned to maximise efficiency under a given gait condition. Efficiency is maximised when the required volume of muscle is minimised, which may also help reduce limb inertia and basal metabolic costs.
Modeling the effect of toe clipping on treefrog survival: Beyond the return rate
Waddle, J.H.; Rice, K.G.; Mazzotti, F.J.; Percival, H.F.
2008-01-01
Some studies have described a negative effect of toe clipping on return rates of marked anurans, but the return rate is limited in that it does not account for heterogeneity of capture probabilities. We used open population mark-recapture models to estimate both apparent survival (ϕ) and the recapture probability (p) of two treefrog species individually marked by clipping 2–4 toes. We used information-theoretic model selection to examine the effect of toe clipping on survival while accounting for variation in capture probability. The model selection results indicate strong support for an effect of toe clipping on survival of Green Treefrogs (Hyla cinerea) and only limited support for an effect of toe clipping on capture probability. We estimate there was a mean absolute decrease in survival of 5.02% and 11.16% for Green Treefrogs with three and four toes removed, respectively, compared to individuals with just two toes removed. Results for Squirrel Treefrogs (Hyla squirella) indicate little support for an effect of toe clipping on survival but may indicate some support for a negative effect on capture probability. We believe that the return rate alone should not be used to examine survival of marked animals because constant capture probability must be assumed, and our examples demonstrate how capture probability may vary over time and among groups. Mark-recapture models provide a method for estimating the effect of toe clipping on anuran survival in situations where unique marks are applied.
Woo, Sang-Hyun; Kim, Joo-Sung; Seul, Jung-Hyun
2004-03-01
In the past 5 years, 25 mutilated digits were reconstructed with immediate toe-to-hand transfers after acute hand injuries, for 21 patients. The overall results of the immediate toe-to-hand transfers were evaluated and compared with the results of 65 elective procedures performed during the same period by the same surgeon. There were 15 cases of great toe-to-hand transfer for thumb reconstruction, two cases of second toe transfer for index finger reconstruction, and four cases of simultaneous two-toe transfer for reconstruction of multiple-digit amputations. Two cases (two of 25 cases, 8 percent) were successfully salvaged with emergency reexploration. The incidences of emergency reexploration and postoperative infection were not significantly different from those for elective toe-to-hand transfer cases. The duration of industrial insurance coverage was much shorter than for elective cases, averaging 225 days (p < 0.001). Approximately 44 percent of the patients maintained their original jobs after immediate toe-to-hand transfer. The subjective satisfaction self-assessment scores of aesthetic appearance and function for the newly reconstructed thumb averaged 80 and 88 (of a total score of 100), respectively. Although satisfaction was lower than for elective reconstruction (p < 0.001), it was higher than for reconstruction of other digits. The donor-site appearance after great toe harvesting was mostly unsatisfactory. Immediate toe-to-hand transfer provides many advantages over the elective procedure in acute hand injuries, including single-stage reconstruction, shortened convalescence, early return to work, and socioeconomic efficiency. Because there were no significant differences in the success rates, frequencies of complications, or ultimate functional results, immediate toe-to-hand transfer is a safe and reliable procedure that is indicated for specific cases of acute digital amputation.
Foot use during vertical climbing in chimpanzees (Pan troglodytes).
Wunderlich, R E; Ischinger, S B
2017-08-01
Upright bipedalism is a hallmark of hominin locomotion, however debates continue regarding the extent of arboreal locomotion and the nature of bipedalism practiced by early hominins. Pedal form and function play a prominent role in these debates, as the foot is the element that directly interacts with the locomotor substrate. Recent finds have substantially increased the availability of associated foot remains of early hominins and emphasized the enigmatic nature of the early evolution of human bipedalism. New discoveries of associated forefoot remains have afforded the opportunity to assess relative proportions across the forefoot of fossil hominins and illuminated the need for data on relative loading across the forefoot in extant hominoids. In order to provide functional data with which to examine the relationship between bony features and load distribution across the forefoot during climbing, we present the first analysis of plantar pressure distribution across the forefoot of chimpanzees climbing a vertical support. Chimpanzees load the medial metatarsals and first toe disproportionately during vertical climbing. Peak pressures on these elements occur at the end of stance phase during climbing and are higher than on any other elements of the foot. Toe pressures are considerably higher during vertical climbing than during knuckle-walking or movement on horizontal poles, supporting the notion that the plantarly-broad and dorsally-narrow metatarsal heads in chimpanzees and some early hominins are associated with close-packing of the metatarsophalangeal joint during climbing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R
2012-05-01
Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet.
Hollis, Sharon; McClure, Philip
2017-12-01
Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.
Simulation of Cooling and Pressure Effects on Inflated Pahoehoe Lava Flows
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.
2016-01-01
Pahoehoe lobes are often emplaced by the advance of discrete toes accompanied by inflation of the lobe surface. Many random effects complicate modeling lobe emplacement, such as the location and orientation of toe breakouts, their dimensions, mechanical strength of the crust, micro-topography and a host of other factors. Models that treat the movement of lava parcels as a random walk have explained some of the overall features of emplacement. However, cooling of the surface and internal pressurization of the fluid interior has not been modeled. This work reports lobe simulations that explicitly incorporate 1) cooling of surface lava parcels, 2) the propensity of breakouts to occur at warmer margins that are mechanically weaker than cooler ones, and 3) the influence of internal pressurization associated with inflation. The surface temperature is interpreted as a surrogate for the mechanic strength of the crust at each location and is used to determine the probability of a lava parcel transfer from that location. When only surface temperature is considered, the morphology and dimensions of simulated lobes are indistinguishable from equiprobable simulations. However, inflation within a lobe transmits pressure to all connected fluid locations with the warmer margins being most susceptible to breakouts and expansion. Simulations accounting for internal pressurization feature morphologies and dimensions that are dramatically different from the equiprobable and temperature-dependent models. Even on flat subsurfaces the pressure-dependent model produces elongate lobes with distinct directionality. Observables such as topographic profiles, aspect ratios, and maximum extents should be readily distinguishable in the field.
Branthwaite, Helen; Chockalingam, Nachiappan; Greenhalgh, Andrew; Chatzistergos, Panagiotis
2014-09-01
Uncomfortable shoes have been attributed to poor fit and the cause of foot pathologies. Assessing and evaluating comfort and fit have proven challenging due to the subjective nature. The aim of this paper is to investigate the relationship between footwear characteristics and perceived comfort. Twenty-seven females assessed three different styles of ballet pump shoe for comfort using a comfort scale whilst walking along a 20 m walkway. The physical characteristics of the shoes and the progression of centre of pressure during walking were assessed. There were significant physical differences between each style, square shoe being the shortest, widest and stiffest and round shoe having the least volume at the toe box. Centre of pressure progression angle was centralised to the longitudinal axis of the foot when wearing each of the three shoes compared to barefoot. Length, width and cantilever bending stiffness had no impact on perceived comfort. Wearing snug fitting flexible soled round ballet flat pump is perceived to be the most comfortable of the shoe shapes tested producing a faster more efficient gait. Further investigations are required to assess impact/fit and upper material on perceived comfort to aid consumers with painful feet in purchasing shoes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue.
Hunt, Michael A; Hatfield, Gillian L
2017-08-01
The purpose of this study was to investigate the immediate effects of unilateral ankle plantarflexor fatigue on bilateral knee and ankle biomechanics during gait. Lower leg kinematics, kinetics, and muscle activation were assessed before and after an ankle plantarflexor fatiguing protocol in 31 healthy individuals. Fatigue (defined as >10% reduction in maximal isometric ankle plantarflexor torque production and a downward shift in the median power frequency of both heads of the gastrocnemius muscle of the fatigued limb) was achieved in 18 individuals, and only their data were used for analysis purposes. Compared to pre-fatigue walking trials, medial gastrocnemius activity was significantly reduced in the study (fatigued) limb. Other main changes following fatigue included significantly more knee flexion during loading, and an associated larger external knee flexion moment in the study limb. At the ankle joint, participants exhibited significantly less peak plantarflexion (occurring at toe-off) with fatigue. No significant differences were observed in the contralateral (non-fatigued) limb. Findings from this study indicate that fatigue of the ankle plantarflexor muscle does not produce widespread changes in gait biomechanics, suggesting that small to moderate changes in maximal ankle plantarflexor force production capacity (either an increase or decrease) will not have a substantial impact on normal lower limb functioning during gait. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fatigue testing of energy storing prosthetic feet.
Toh, S L; Goh, J C; Tan, P H; Tay, T E
1993-12-01
This paper describes a simple approach to the fatigue testing of prosthetic feet. A fatigue testing machine for prosthetic feet was designed as part of the programme to develop an energy storing prosthetic foot (ESPF). The fatigue tester does not simulate the loading pattern on the foot during normal walking. However, cyclic vertical loads are applied to the heel and forefoot during heel-strike and toe-off respectively, for 500,000 cycles. The maximum load applied was chosen to be 1.5 times that applied by the bodyweight of the amputee and the test frequency was chosen to be 2 Hz to shorten the test duration. Four prosthetic feet were tested: two Lambda feet (a newly developed ESPF), a Kingsley SACH foot and a Proteor SACH foot. It was found that the Lambda feet have very good fatigue properties. The Kingsley SACH foot performed better than the Proteor model, with no signs of wear at the heel. The results obtained using the simple approach was found to be comparable to the results from more complex fatigue machines which simulate the load pattern during normal walking. This suggests that simple load simulating machines, which are less costly and require less maintenance, are useful substitutes in studying the fatigue properties of prosthetic feet.
Nonvascularized toe phalangeal transfer and distraction lengthening for symbrachydactyly.
Patterson, Ryan W; Seitz, William H
2010-04-01
Symbrachydactyly describes a spectrum of congenital hand differences consisting of digital loss resulting in fused short fingers. As the principles for distraction lengthening have evolved, the technique of nonvascularized toe phalangeal transfer to the hand with shortened digits has provided patients with improved outcomes. Nonvascularized toe phalanx to hand transplant with distraction lengthening restores functional length to a skeletally deficient, poorly functioning hand while maintaining an overlying layer of vascular and sensate tissue. The primary goal is improvement of digital length to enhance mechanical advantage and prehension. We describe the technique of nonvascularized toe phalangeal transfer and distraction lengthening for symbrachydactyly, including the following steps: nonvascularized proximal toe phalanx harvest, toe phalanx transfer to hand, pin placement, osteotomy, and closure.
Intermittent gravity: How much, how often, how long?
NASA Technical Reports Server (NTRS)
Vernikos, Joan; Ludwig, David A.
1994-01-01
Continuous exposure to gravity may not be necessary to prevent the deconditioning effects of microgravity. It is not known, however, what the minimum gravity (G) exposure reguirements are, whether they vary for different physiological systems, or whether passive Gz (gravity in the head-to-toe vector) or activity in a G field is more effective in preventing deconditioning. It is also not known what the optimal characteristics of the G stimulus should be in terms of amplitude, duration, and frequency. To begin to address these questions, a 4-day -6 deg head-down bed rest (HDBR) study was conducted. Nine males (aged 30-50 yr) were subjected, over a period of seven months, to four different +1 Gz exposure protocols (periodic standing or controlled walking each for a total of 2 or 4 hr/day in individual 15-min doses), plus a control (0 Gz) of continuous HDBR. The study consisted of one ambulatory control day, 4 full days of -6 deg HDBR, and a recovery day when subjects were released at the end of HDBR after completion of tests. A battery of tests was selected and standardized in order to evaluate the known early responses to HDBR. Dependent variables of interest included orthostatic tolerance (30 min at 60 deg head-up tilt) and hemodynamics during head-up tilt, peak oxygen consumption (VO2(sub peak)) plasma volume (PV), and urinary calcium (Ca). The results were as follows: 4 hr standing completely prevented and 2 hr walking partially prevented post-HDBR orthostatic intolerance. Walking at 3 mi/hr for 4 hr/day provided no additional benefit. Intermittent walking attenuated, but did not prevent, the decrease in VO2(sub peak). Both 4 hr conditions showed less PV loss by the end of HDBR; both 2 hr conditions were without effect. Both 2 and 4 hr walking essentially prevented urinary Ca excretion and were more effective than standing. It is concluded that different physiological systems benefit differentially from passive +1 Gz or activity in +1 Gz, and the intensity of the stimulus may be an important contributing factor.
Phase-dependent organization of postural adjustments associated with arm movements while walking.
Nashner, L M; Forssberg, H
1986-06-01
This study examines the interactions between anteroposterior postural responses and the control of walking in human subjects. In the experimental paradigm, subjects walked upon a treadmill, gripping a rigid handle with one hand. Postural responses at different phases of stepping were elicited by rapid arm pulls or pushes against the handle. During arm movements, EMG's recorded the activity of representative arm, ankle, and thigh segment muscles. Strain gauges in the handle measured the force of the arm movement. A Selspot II system measured kinematics of the stepping movements. The duration of support and swing phases were marked by heel and toe switches in the soles of the subjects' shoes. In the first experiment, subjects were instructed to pull on the handle at their own pace. In these trials all subjects preferred to initiate pulls near heel strikes. Next, when instructed to pull as rapidly as possible in response to tone stimuli, reaction times were similar for all phases of the step cycle. Leg muscle responses associated with arm pulls and pushes, referred to as "postural activations," were directionally specific and preceded arm muscle activity. The temporal order and spatial distribution of postural activations in the muscles of the support leg were similar when arm pull movements occurred while the subject was standing in place and after heel strike while walking. Activations began in the ankle and radiated proximally to the thigh and then the arm. Activations of swing leg muscles were also directionally specific and involved flexion and forward or backward thrust of the limb. When arm movements were initiated during transitions from support by one leg to the other, patterns of postural activations were altered. Alterations usually occurred 10-20 ms before hell strikes and involved changes in the timing and sometimes the spatial structure of postural activations. Postural activation patterns are similar during in-place standing and during the support phase of locomotion. Walking and posture control appear to be separately organized but interrelated activities. Our results also suggest that the stepping generators, not peripheral feedback time locked to heel strikes, modulate postural activation patterns.
Fey, Nicholas P; Klute, Glenn K; Neptune, Richard R
2012-11-01
Unilateral below-knee amputees develop abnormal gait characteristics that include bilateral asymmetries and an elevated metabolic cost relative to non-amputees. In addition, long-term prosthesis use has been linked to an increased prevalence of joint pain and osteoarthritis in the intact leg knee. To improve amputee mobility, prosthetic feet that utilize elastic energy storage and return (ESAR) have been designed, which perform important biomechanical functions such as providing body support and forward propulsion. However, the prescription of appropriate design characteristics (e.g., stiffness) is not well-defined since its influence on foot function and important in vivo biomechanical quantities such as metabolic cost and joint loading remain unclear. The design of feet that improve these quantities could provide considerable advancements in amputee care. Therefore, the purpose of this study was to couple design optimization with dynamic simulations of amputee walking to identify the optimal foot stiffness that minimizes metabolic cost and intact knee joint loading. A musculoskeletal model and distributed stiffness ESAR prosthetic foot model were developed to generate muscle-actuated forward dynamics simulations of amputee walking. Dynamic optimization was used to solve for the optimal muscle excitation patterns and foot stiffness profile that produced simulations that tracked experimental amputee walking data while minimizing metabolic cost and intact leg internal knee contact forces. Muscle and foot function were evaluated by calculating their contributions to the important walking subtasks of body support, forward propulsion and leg swing. The analyses showed that altering a nominal prosthetic foot stiffness distribution by stiffening the toe and mid-foot while making the ankle and heel less stiff improved ESAR foot performance by offloading the intact knee during early to mid-stance of the intact leg and reducing metabolic cost. The optimal design also provided moderate braking and body support during the first half of residual leg stance, while increasing the prosthesis contributions to forward propulsion and body support during the second half of residual leg stance. Future work will be directed at experimentally validating these results, which have important implications for future designs of prosthetic feet that could significantly improve amputee care.
Modified toe pulp fillet flap coverage: Better wound healing and satisfactory length preservation.
Baek, Sang Oon; Suh, Hyo Wan; Lee, Jun Yong
2018-01-01
Amputation is commonly performed for toe necrosis secondary to peripheral vascular diseases, such as diabetes mellitus. When amputating a necrotic toe, preservation of the bony structure is important for preventing the collapse of adjacent digits into the amputated space. However, in the popular terminal Syme's amputation technique, partial amputation of the distal phalanx could cause increased tension on the wound margin. Herein, we introduce a new way to resect sufficient bony structure while maintaining the normal length, based on a morphological analysis of the toes. Unlike the pulp of the finger in the distal phalanx, the toe has abundant teardrop-shaped pulp tissue. The ratio of the vertical length to the longitudinal length in the distal phalanx was compared between the toes and fingers. Amputation was performed at the proximal interphalangeal joint level. Then, a mobilizable pulp flap was rotated 90° cephalad to replace the distal soft tissue defect. This modified toe fillet flap was performed in 5 patients. The toe pulp was found to have a vertically oriented morphology compared to that of the fingers, enabling length preservation through cephalad rotation. All defects were successfully covered without marginal ischemia. While conventional toe fillet flap coverage focuses on the principle of length preservation as the first priority, our modified method takes both wound healing and length into account. The fattiest part of the pulp is advanced to the toe tip, providing a cushioning effect and enough length to substitute for phalangeal bone loss. Our modified method led to satisfactory functional and aesthetic outcomes.
A Midterm Review of Lesser Toe Arthrodesis With an Intramedullary Implant.
Harmer, James Lee; Wilkinson, Anthony; Maher, Anthony John
2017-10-01
Lesser toe deformities are one of the most common conditions encountered by podiatric surgeons. When conservative treatments fail surgical correction is indicated. Many surgical options have been described to address the complex nature of these deformities but no perfect solution has been reported to date. However, with the continued advancement of internal fixation technology, interphalangeal joint (IPJ) arthrodesis with an intramedullary implant may be a good option. This retrospective study presents patient reported outcomes and complications at 6 months and 3 years following lesser toe proximal interphalangeal joint (PIPJ) arthrodesis with a polyketone intrameduallary implant (Toe Grip, Orthosolutions, UK). Between September 2011 and November 2012, a total of 38 patients attended for second toe PIPJ arthrodesis by means of the Toe Grip device. At 6 months postoperation, 94.7% of patients and at 3 years postoperation, 92.8% of patients felt that their original complaint was better or much better. Health-related quality of life scores continued to improve overtime as measured by the Manchester Oxford Foot Questionnaire. Complications were generally observational and asymptomatic. The most common complications were floating toes (17.8%), mallet deformities (14.2%), metatarsalgia (17.8%), and transverse plane deformity of the toe (10.7%). This study demonstrates excellent patient-eported outcomes with minimal symptomatic complications making the "Toe Grip" implant a safe and effective alternative fixation device for IPJ arthrodesis when dealing with painful digital deformities. Therapeutic, Level IV: Case series.
Almdal, T; Nielsen, A Anker; Nielsen, K E; Jørgensen, M E; Rasmussen, A; Hangaard, S; Siersma, V; Holstein, P E
2015-12-01
To study toe ulcer healing in patients with diabetic foot ulcers attending a multidisciplinary foot clinic over a 10 years period. The study was retrospective, consecutive and observational during 2001 through 2011. The patients were treated according to the International Consensus on the Diabetic Foot. During the period the chiropodist staffing in the foot clinic was doubled; new offloading material and orthopedic foot corrections for recalcitrant ulcers were introduced. Healing was investigated in toe ulcers in Cox regression models. 2634 patients developed foot ulcers, of which 1461 developed toe ulcers; in 790 patients these were neuropathic, in 551 they were neuro-ischemic and in 120 they were critically ischemic. One-year healing rates increased in the period 2001-2011 from 75% to 91% for neuropathic toe ulcers and from 72% to 80% for neuro-ischemic toe ulcers, while no changes was observed for ischemic toe ulcers. Adjusted for changes in the patient population, the overall rate of healing for neuropathic and neuro-ischemic toe ulcers almost doubled (HR=1.95 [95% CI: 1.36-2.80]). The results show that the healing of toe ulcers improved. This outcome could not be explained by changes in the patient characteristics, but coincided with a number of improvements in organization and therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Tactile Toe Agnosia and Percept of a "Missing Toe" in Healthy Humans.
Cicmil, Nela; Meyer, Achim P; Stein, John F
2016-03-01
A disturbance of body representation is central to many neurological and psychiatric conditions, but the mechanisms by which body representations are constructed by the brain are not fully understood. We demonstrate a directional disturbance in tactile identification of the toes in healthy humans. Nineteen young adult participants underwent tactile stimulation of the digits with the eyes closed and verbally reported the identity of the stimulated digit. In the majority of individuals, responses to the second and third toes were significantly biased toward the laterally neighboring digit. The directional bias was greater for the nondominant foot and was affected by the identity of the immediately preceding stimulated toe. Unexpectedly, 9/19 participants reported the subjective experience of a "missing toe" or "missing space" during the protocol. These findings challenge current models of somatosensory localization, as they cannot be explained simply by a lack of distinct representations for toes compared with fingers, or by overt toe-finger correspondences. We present a novel theory of equal spatial representations of digit width combined with a "preceding neighbor" effect to explain the observed phenomena. The diagnostic implications for neurological disorders that involve "digit agnosia" are discussed. © The Author(s) 2015.
Effect of toe extension on EMG of triceps surae muscles during isometric dorsiflexion.
Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh
2016-12-01
The protocol for estimating force of contraction by triceps surae (TS) muscles requires the immobilization of the ankle during dorsiflexion and plantar flexion. However, large variability in the results has been observed. To identify the cause of this variability, experiments were conducted where ankle dorsiflexion force and electromyogram (EMG) of the TS were recorded under two conditions: (i) toes were strapped and (ii) toes were unstrapped, with all other conditions such as immobilization of the ankle remaining unchanged. The root mean square (RMS) of the EMG and the force were analyzed and one-tail Student's t-test was performed for significance between the two conditions. The RMS of the EMG from TS muscles was found to be significantly higher (~55%) during dorsiflexion with toes unstrapped compared with when the toes were strapped. The torque corresponding to dorsiflexion was also higher with toes unstrapped. Our study has shown that it is important to strap the toes when measuring the torque at the ankle and EMG of the TS muscles.
Kelly, Carolyn; Fleischer, Adam; Yalla, Sai; Grewal, Gurtej S.; Albright, Rachel; Berns, Dana; Crews, Ryan; Najafi, Bijan
2016-01-01
Background Patients with diabetic peripheral neuropathy (DPN) demonstrate gait alterations compared with their nonneuropathic counterparts, which may place them at increased risk for falling. However, it is uncertain whether patients with DPN also have a greater fear of falling. Methods A voluntary group of older adults with diabetes was asked to complete a validated fear of falling questionnaire (Falls Efficacy Scale International [FES-I]) and instructed to walk 20 m in their habitual shoes at their habitual speed. Spatiotemporal parameters of gait (eg, stride velocity and gait speed variability) were collected using a validated body-worn sensor technology. Balance during walking was also assessed using sacral motion in the mediolateral and anteroposterior directions. The level of DPN was quantified using vibration perception threshold from the great toe. Results Thirty-four diabetic patients (mean ± SD: age, 67.6 ± 9.2 years; body mass index, 30.9 ± 5.7; hemoglobin A1c, 7.9% ± 2.3%) with varying levels of neuropathy (mean ± SD vibration perception threshold, 34.6 ± 22.9 V) were recruited. Most participants (28 of 34, 82%) demonstrated moderate to high concern about falling based on their FES-I score. Age (r = 0.6), hemoglobin A1c level (r = 0.39), number of steps required to reach steady-state walking (ie, gait initiation) (r = 0.4), and duration of double support (r = 0.44) were each positively correlated with neuropathy severity (P < .05). Participants with a greater fear of falling also walked with slower stride velocities and shorter stride lengths (r = −0.3 for both, P < .05). However, no correlation was observed between level of DPN and the participant’s actual concern about falling. Conclusions Fear of falling is prevalent in older adults with diabetes mellitus but is unrelated to level of neuropathy. PMID:24297984
Pilot Sensorimotor and Cardiovascular Results from the Joint Russian/U.S. Field Test
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.;
2014-01-01
The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible (< 2 hours) with an additional two follow-up measurements sessions on the day of landing. This goal has both sensorimotor and cardiovascular elements, including evaluations of NASA's new anti-orthostatic compression garment and the Russian Kentavr garment. Functional sensorimotor measurements will include, but are not limited to, assessing hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with both the hands and legs, recovering from a fall (standing from a prone position), coordinated walking involving tandem heel-to-toe placement, and determining postural ataxia while standing. The cardiovascular portion of the investigation includes measuring blood pressure and heart rate during a timed stand test in conjunction with postural ataxia testing (quiet stance sway) as well as cardiovascular responses during the other functional tasks. In addition to the immediate post-landing collection of data for the full FT, postflight data is being acquired twice more within the 24 hours after landing and will continue over the subsequent weeks until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a initial evaluation of the feasibility of testing in the field, and is comprised of a jointly agreed upon subset of tests from the full FT and relies heavily on Russia's Institute of Biomedical Problems Sensory-Motor and Countermeasures Laboratories for content and implementation. The PFT has been collected on several ISS missions. Testing on the U.S. side has included: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember began in the prone position on the ground and then stood for 3 minutes while cardiovascular stability was determined and postural ataxia data were acquired, and (3) a tandem heel-to-toe walk test to determine changes in the central locomotor program. Video, cardiovascular parameters (heart rate and blood pressure), data from bodyworn inertial sensors, and severity of postflight motion sickness were collected during each test session. Our Russian investigators have added measurements associated with: (a) obstacle avoidance, (b) muscle compliance and (c) postural adjustments to perturbations (push) applied to the subject's chest area. The level of functional deficit observed in the crew tested to date is typically beyond what was expected and is clearly triggered by the acquisition of gravity loads immediately after landing when the demands for crew intervention in response to emergency operations will be greatest. Clearly measureable performance parameters such as ability to perform a seat egress, recover from a fall or the ability to see clearly when walking, and related physiologic data (orthostatic responses) are required to provide an evidence base for characterizing programmatic risks and the degree of variability among crewmembers for exploration missions where the crew will be unassisted after landing. Overall, these early functional and related physiologic measurements will allow the estimation of nonlinear sensorimotor and cardiovascular recovery trends that have not been previously captured
... hammertoe and mallet toe may involve changing your footwear and wearing shoe inserts. If you have a ... linked to: Certain shoes. High-heeled shoes or footwear that's too tight in the toe box can ...
Tran, Andrew A; Gatewood, Corey; Harris, Alex H S; Thompson, Julie A; Dragoo, Jason L
2016-12-01
Identification of biomechanical risk factors associated with anterior cruciate ligament (ACL) injury can facilitate injury prevention. The purpose of this study is to investigate the effects of three foot landing positions, "toe-in", "toe-out" and "neutral", on biomechanical risk factors for ACL injury in males and females. The authors hypothesize that 1) relative to neutral, the toe-in position increases the biomechanical risk factors for ACL injury, 2) the toe-out position decreases these biomechanical risk factors, and 3) compared to males, females demonstrate greater changes in lower extremity biomechanics with changes in foot landing position. Motion capture data on ten male and ten female volunteers aged 20-30 years (26.4 ± 2.50) were collected during double-leg jump landing activities. Subjects were asked to land on force plates and target one of three pre-templated foot landing positions: 0° ("neutral"), 30° internal rotation ("toe-in"), and 30° external rotation ("toe-out") along the axis of the anatomical sagittal plane. A mixed-effects ANOVA and pairwise Tukey post-hoc comparison were used to detect differences in kinematic and kinetic variables associated with biomechanical risk factors of ACL injury between the three foot landing positions. Relative to neutral, landing in the toe-in position increased peak hip adduction, knee internal rotation angles and moments (p < 0.01), and peak knee abduction angle (p < 0.001). Landing in the toe-in position also decreased peak hip flexion angle (p < 0.001) and knee flexion angle (p = 0.023). Landing in the toe-out position decreased peak hip adduction, knee abduction, and knee internal rotation angles (all p < 0.001). Male sex was associated with a smaller increase in hip adduction moment (p = 0.043) and knee internal rotation moment (p = 0.032) with toe-in landing position compared with female sex. Toe-in landing position exacerbates biomechanical risk factors associated with ACL injury, while toe-out landing position decreases these factors.
Park, Maxwell C; Peterson, Alexander; Patton, John; McGarry, Michelle H; Park, Chong J; Lee, Thay Q
2014-03-01
Rotator cuff repair involving fewer tendon suture passes without compromising biomechanical performance would represent a technical advancement. An inter-implant "medial pulley-mattress" transosseous-equivalent (MP-TOE) repair requiring fewer tendon suture-passes was hypothesized to provide equivalent biomechanical characteristics compared to the control. In 6 human cadaveric shoulders, a transosseous-equivalent (TOE) repair (control) was performed utilizing 2 separate medial mattresses resulting in 4 tendon-bridging sutures. In 6 matched-pairs, 2 single-loaded anchors were used to create a medial inter-implant mattress construct (all sutures shuttled in 1 tendon pass per anchor)-after knot-tying, the same tendon-bridging pattern as the control was created. A materials testing machine cyclically loaded each repair from 10-180 N for 30 cycles; each repair subsequently underwent failure testing. Gap and strain were measured with a video digitizing system. A "technical efficiency ratio" (TER) was defined as: (#knots + #suture passes + #suture limbs)/#fixation points. Cyclic and failure testing demonstrated no significant differences between constructs. Gap formation at cycle 30 was 5.3 ± 0.8 mm (TOE) and 5.0 ± 0.3 mm (MP-TOE) (P = .62). Cycle 30 anterior strain values were -16.0 ± 7.3% (TOE) and -15.8 ± 6.6% (MP-TOE) (P = .99). Yield loads were 208.7 ± 2.7 N (TOE) and 204.0 ± 1.3 N (MP-TOE) (P = .17). Mode of failure demonstrated less tendon cut-out with the MP-TOE repair. The MP-TOE repair has a TER of 2.0 vs 2.5 for the control. The MP-TOE repair requiring fewer tendon suture passes, yet creating an additional inter-implant mattress configuration, is biomechanically equivalent to the original TOE technique, and may limit failure with improved medial load-sharing capacity. A TER may help quantify technical ease and help standardize comparisons between repair techniques. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.
Safety and efficiency of the new micro-multiplane transoesophageal probe in paediatric cardiology.
Hascoët, Sébastien; Peyre, Marianne; Hadeed, Khaled; Alacoque, Xavier; Chausseray, Gérald; Fesseau, Rose; Amadieu, Romain; Léobon, Bertrand; Berthomieu, Lionel; Dulac, Yves; Acar, Philippe
2014-01-01
Transoesophageal echocardiography (TOE) is feasible in neonates using a miniaturized probe, but is not widely used because of low imaging quality. To assess handling and imaging quality of a new release of a micro-TOE probe in children. Thirty-eight consecutive children, enrolled during February and May 2013, underwent TOE with the Philips S8-3t probe. Insertion, handling and image quality were assessed. The 38 children (aged 7days to 12years; weight 3.1-27kg) underwent 75 TOE (30 [40.0%] before cardiac surgery, 31 [41.3%] after cardiac surgery, 4 [5.3%] during a percutaneous procedure, 10 [13.3%] in the intensive care unit). Insertion of the micro-TOE probe was 'very easy' in 37/38 patients (97.4%). Handling was better in the lightest children (P=0.001). Image quality was mainly 'good' or 'very good', with no significant changes between preoperative and postoperative examinations or over time. Total scores (insertion, handling, image quality) were significantly better in the lightest children (P=0.02). Preoperative TOE did not provide additional information over transthoracic echocardiography. Postoperative TOE was useful to assess surgical results, but no residual lesions required extracorporeal circulation return. Micro-TOE was useful during the postoperative care of neonatal surgery with open breastbone to assess the surgical result and ventricular function. It was also useful to guide extracorporeal membrane oxygenation (ECMO) indication and withdrawal; and was a useful guide for percutaneous procedures. Micro-multiplane TOE is safe and efficient for use in neonates and children. This minimally invasive tool increases the impact of TOE in paediatric cardiology. Copyright © 2014. Published by Elsevier Masson SAS.
Long-term donor site morbidity after free nonvascularized toe phalangeal transfer.
Garagnani, Lorenzo; Gibson, Marc; Smith, Paul J; Smith, Gillian D
2012-04-01
Free nonvascularized toe phalangeal transfer is an established surgical option for the reconstruction of hypoplastic digits. This study assessed long-term morbidity in the feet using this technique. We reviewed 40 children treated between 1991 and 2007 by free nonvascularized toe phalangeal transfer. The diagnosis was digital hypoplasia resulting from symbrachydactyly in 33 cases, constriction ring syndrome in 3 cases, thumb hypoplasia in 3 cases, and perinatal subclavian venous thrombosis in 1 case. The patients were followed up after surgery for a mean of 10 years (range, 3-19 y). The Oxford Ankle Foot Questionnaire was administered to patients and families to assess patient symptoms and patient and parental satisfaction. We assessed toe length ratio, the presence of visible deformity, and distal hypoplasia of the donor toes clinically and radiographically. Emotional problems related to foot appearance were common. We also found functional problems with footwear in some patients. All patients had floppy unstable toes with visible deformity. Increasing foot deformity was seen with growth, which led to deterioration in foot aesthetics, particularly where multiple donor toes had been harvested. We identified distal and middle phalangeal and metatarsal hypoplasia in the donor toes. Donor site morbidity for free toe phalangeal transfer is greater than previously documented. This should be considered during surgical decision making for reconstruction of hypoplastic digits. Preoperative counseling should include discussion regarding possible consequences of phalangeal harvest on donor toes and options for donor site reconstruction. Long-term follow-up of the donor site is essential to accurately assess results. Therapeutic III. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Toe transfer in congenital hand malformations.
Foucher, G; Medina, J; Navarro, R; Nagel, D
2001-01-01
Fifty-eight patients with congenital hand abnormalities underwent 65 toe-to-hand transfers. Symbrachydactyly (51 cases) was the most frequent indication. Forty-seven second toe-to-hand transfers were performed in 44 patients. The mean follow-up time was 5.2 years. Two failures occurred in cases in which only one artery was anastomosed; no failures were noted when more than one artery fed the transfer. Two patients with a single second-toe transfer presented with lateral instability of the transferred metatarsophalangeal joint. The mean active range of motion was 38 degrees, with a mean extension lag of 25 degrees. The mean two-point discrimination was 5 mm. Forty-one patients used the transferred toe well, when performing activities of daily living and playing games. Toe-to-hand transfer, prior to the establishment of the grip pattern, facilitates integration of the transfer.
Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong
2015-01-01
Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.
A headache not to be sneezed at.
Garry, D; Forrest-Hay, A
2009-05-01
A 32-year-old male patient presented to the emergency department (ED) complaining of a headache and vertigo precipitated by sneezing. He had a recent history of neck trauma. Examination revealed horizontal nystagmus and a gait that veered to the left, exacerbated by heel to toe walking. A diagnosis of vertebral artery dissection (VAD) was suspected. A bleed was ruled out in the ED by computerised tomography, after which the patient was loaded with aspirin. The diagnosis was confirmed by magnetic resonance imaging and magnetic resonance angiography. Although optimal treatment for VAD is unknown, the Cervical Artery Dissection in Stroke Study (CADISS) is an ongoing randomised multicentre prospective study comparing antiplatelet therapy with anticoagulation for patients with both carotid artery dissection and VAD. Headache is a very common presentation to the ED and a full neurological examination is essential if rarer causes are not to be missed.
Schoenecker, Kathryn A.
2018-01-01
Perissodactyla (Schoch 1989) includes tapirs, rhinoceros, wild asses, horses, and zebras. It is the order of hoofed mammals referred to as “odd-toed ungulates” because its members have one to three weight-bearing toes and walk on hoofs or “ungules.” They are herbivores that are specialized to exploit grasslands and brushy habitat (rhinos, horses, asses, zebras) or dense tropical forests (tapirs). All share a common digestive system called hindgut fermentation, or cecal digestion (in the cecum), and can consume relatively tough, coarse forage. Some perissodactyls are “browsers” that forage primarily on woody shrubs and trees, whereas others are “grazers” with a graminoid-dominated diet. They are all predominantly opportunistic feeders and select for quantity over quality of forage; that is, they consume more abundant low-quality forage instead of searching and selecting for higher-quality forage because it gives them the advantage of reducing search effort, which conserves energy.
Manor, Brad; Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong
2018-01-30
Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and "dual-task" walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. We created an iPhone app that used the phone's motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user's pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard-instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times-a clinically meaningful metric of locomotor control-from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses. Across all detected strides in the laboratory, stride times derived from the app and GAITRite mat were highly correlated (P<.001, r 2 =.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived stride-time dual-task costs were also highly correlated (P<.001, r 2 =.95). The error of app-derived stride times (mean 16.9, SD 9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both laboratory and home-based assessments (intraclass correlation coefficient range .82-.94). The iPhone app we created enabled valid and reliable assessment of stride timing-with the smartphone in the pocket-during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work is warranted to expand the functionality of this tool to older adults and other patient populations. ©Brad Manor, Wanting Yu, Hao Zhu, Rachel Harrison, On-Yee Lo, Lewis Lipsitz, Thomas Travison, Alvaro Pascual-Leone, Junhong Zhou. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 30.01.2018.
Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong
2018-01-01
Background Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and “dual-task” walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. Objective The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. Methods We created an iPhone app that used the phone’s motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user’s pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard–instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times—a clinically meaningful metric of locomotor control—from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses. Results Across all detected strides in the laboratory, stride times derived from the app and GAITRite mat were highly correlated (P<.001, r2=.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived stride-time dual-task costs were also highly correlated (P<.001, r2=.95). The error of app-derived stride times (mean 16.9, SD 9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both laboratory and home-based assessments (intraclass correlation coefficient range .82-.94). Conclusions The iPhone app we created enabled valid and reliable assessment of stride timing—with the smartphone in the pocket—during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work is warranted to expand the functionality of this tool to older adults and other patient populations. PMID:29382625
In-Toeing and Out-Toeing in Children
Wiley, James J.
1987-01-01
In-toeing and out-toeing problems are generally physiologic variants that arise from in utero posturing, and that gradually correct spontaneously during the active growing years of the child. Few torsional deformities result in genuine problems. Most residual effects are cosmetic, compounded by the anguish of concerned relatives and friends. Rarely is operative correction warranted. If corrective surgery comes under consideration, it is usually deferred until the patient reaches the age of 10. PMID:21263851
Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.
Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun
2016-08-01
[Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.
The effects of Taraxacum officinale extracts (TOE) supplementation on physical fatigue in mice.
Jinchun, Zhang; Jie, Chen
2011-01-01
The study is to investigate the effect of Taraxacum officinale extracts (TOE) supplementation on physical fatigue based on the forced swimming capacity in mice. Forty Kunming male mice were randomly divided into 4 groups, i.e., normal control (NC) and three doses of TOE treated group (High-dose, Middle-dose and Low-dose). Three TOE treated groups were treated by oral TOE with 10, 30 and 100mg/kg b.w respectively for a period of 42 days. The normal control group was given a corresponding volume of sterile distilled water. After 6 weeks, the forced swimming capacity and blood biochemical parameters in mice were measured, and the result showed that TOE had an anti- physical fatigue effect. It enhanced the maximum swimming capacity of mice, effectively delayed the lowering of glucose in the blood, and prevented the increase in lactate and triglyceride concentrations.
Nailfold Capillaroscopy of Fingers and Toes - Variations of Normal.
Lambova, Sevdalina Nikolova; Muller-Ladner, Ulf
2018-04-20
Nailfold capillaroscopy is the only method for morphological assessment of nutritive capillaries. The literature data about capillaroscopic findings in healthy individuals are scarce. To evaluate and compare the capillaroscopic findings of fingers and toes in healthy subjects. 22 healthy individuals were included in the study. Capillaroscopic examination was performed with videocapillaroscope Videocap 3.0 (DS Medica). Exclusion criteria were as follows: history of vasospasm, presence of accompanying diseases, taking any medications, arterial hypertension in first degree relatives, overweight or obesity (body mass index > 25kg/m2) and presence of chronic arterial or venous insufficiency. Poor visibility of nailfold capillaries was found significantly more frequently in the toes (22.7%, 5/22) as compared with fingers (0/22). Slight irregularities in capillary distribution and orientation to their parallel axis were significantly more common in the toes (31.8%, 7/22) as compared with fingers (9%, 2/22), (p<0.05). The mean diameter of the arterial (0.012±0.002mm) and the venous limb (0.017±0.002mm) of the toes did not differ significantly as compared to the respective parameters in the fingers (0.013±0.002mm for the arterial limb, p=0.46 and 0.018±0.002mm for the venous limb, p=0.25). The mean capillary density also did not differ significantly in the fingers and toes. The mean capillary length of the toes (0.165±0.096mm) was shorter as compared with hands (0.220±0.079mm), but the difference was not statistically significant (p=0.37). Presence of tortuous capillaries (>10%) was found significantly more often in the toes (12/22) as compared with fingers (6/22, χ2=6.769, p<0.05). Short capillary loops (length<100µm) were observed significantly more often in the toes (11/22 - toes, 1/22 - fingers, χ2=14.666, p<0.05). Capillaroscopic examination of the toes shows some differences as compared to those of the fingers such as greater number of cases with poor visibility and slight irregularities of distribution, greater number of shorter capillaries and increased tortuosity, which might be related to the thicker epidermis of the toes and increased capillary pressure due to gravity. The values of the major capillaroscopic parameters such as capillary diameters and capillary density in fingers and toes do not differ significantly. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin
2016-10-01
Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses.
Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin
2016-01-01
Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses. PMID:27706086
Caron, Robert R; Wagenaar, Robert C; Lewis, Cara L; Saltzman, Elliot; Holt, Kenneth G
2013-01-04
Maintaining the normal shape and amplitude of the vertical trajectory of the center of mass (COM) during stance has been shown to maximize the efficiency of unloaded gait. Kinematic adaptations to load carriage, such as forward lean have yet to be understood in relation to COM movement. The purpose of this study is to better understand how load impacts the vertical COM(TSYS) trajectory and to clarify the impact of forward lean as it relates to the dynamics of sagittal plane COM(TSYS) movement during stance with changing load. 17 subjects walked on treadmill at a constant preferred walking velocity while nine different loads ranging from 12.5% to 40% bodyweight were systematically added and removed from a backpack. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system and used to estimate position of the COM as well as segment and COM-to-joint vector orientation angles. The shape and amplitude of the COM vertical trajectory was maintained across all loaded conditions. The orientations of COM-to-ankle and -knee vectors were maintained in all loaded conditions except the heaviest load (40% BW). Results suggest that forward lean changed linearly with changes in load to maintain the COM-to-ankle and -knee vector orientations. COM vertical trajectory was maintained by a combination of invariants including lower-limb segment angles and a constant direction of toe-off impulse vector. The kinematic invariants found suggest a simplified control mechanism by which the system limits degrees of freedom and potentially minimizes torque about lower-extremity joints with added load. Copyright © 2012 Elsevier Ltd. All rights reserved.
McFadyen, Bradford J; Cantin, Jean-François; Swaine, Bonnie; Duchesneau, Guylaine; Doyon, Julien; Dumas, Denyse; Fait, Philippe
2009-09-01
To study the effects of sensory modality of simultaneous tasks during walking with and without obstacles after moderate to severe traumatic brain injury (TBI). Group comparison study. Gait analysis laboratory within a postacute rehabilitation facility. Volunteer sample (N=18). Persons with moderate to severe TBI (n=11) (9 men, 3 women; age, 37.56+/-13.79 y) and a comparison group (n=7) of subjects without neurologic problems matched on average for body mass index and age (4 men, 3 women; age, 39.19+/-17.35 y). Not applicable. Magnitudes and variability for walking speeds, foot clearance margins (ratio of foot clearance distance to obstacle height), and response reaction times (both direct and as a relative cost because of obstacle avoidance). The TBI group had well-recovered walking speeds and a general ability to avoid obstacles. However, these subjects did show lower trail limb toe clearances (P=.003) across all conditions. Response reaction times to the Stroop tasks were longer in general for the TBI group (P=.017), and this group showed significant increases in response reaction times for the visual modality within the more challenging obstacle avoidance task that was not observed for control subjects. A measure of multitask costs related to differences in response reaction times between obstructed and unobstructed trials also only showed increased attention costs for the visual over the auditory stimuli for the TBI group (P=.002). Mobility is a complex construct, and the present results provide preliminary findings that, even after good locomotor recovery, subjects with moderate to severe TBI show residual locomotor deficits in multitasking. Furthermore, our results suggest that sensory modality is important, and greater multitask costs occur during sensory competition (ie, visual interference).
Hsu, Wei-Chun; Wang, Ting-Ming; Lu, Hsuan-Lun; Lu, Tung-Wu
2015-01-01
Adapting to a predictable moving surface such as an escalator is a crucial part of daily locomotor tasks in modern cities. However, the associated biomechanics have remained unexplored. In a gait laboratory, fifteen young adults walked from the ground onto a moving or a static surface while their kinematic and kinetic data were obtained for calculating foot and pelvis motions, as well as the angles and moments of the lower limb joints. Between-surface-condition comparisons were performed using a paired t-test (α = 0.05). The results showed that anticipatory locomotor adjustments occurred at least a stride before successfully walking onto the moving surface, including increasing step length and speed in the trailing step (p < 0.05), but the opposite in the leading step (p < 0.05). These modifications reduced the plantarflexor moment of the trailing ankle needed for stabilizing the body, while placing increased demand on the knee extensors of the trailing stance limb. For a smooth landing and to reduce the risk of instability, the subjects adopted a flat foot contact pattern with reduced leading toe-clearance (p < 0.05) at an instantaneous speed matching that of the moving surface (p > 0.05), mainly through reduced extension of the trailing hip but increased pelvic anterior tilt and leading swing ankle plantarflexion (p < 0.05). The current results provide baseline data for future studies on other populations, which will contribute to the design and development of strategies to address falls while transferring onto moving surfaces such as escalators. Copyright © 2014 Elsevier B.V. All rights reserved.
Ihlen, Espen A. F.; van Schooten, Kimberley S.; Bruijn, Sjoerd M.; van Dieën, Jaap H.; Vereijken, Beatrix; Helbostad, Jorunn L.; Pijnappels, Mirjam
2018-01-01
Age and age-related diseases have been suggested to decrease entropy of human gait kinematics, which is thought to make older adults more susceptible to falls. In this study we introduce a new entropy measure, called phase-dependent generalized multiscale entropy (PGME), and test whether this measure improves fall-risk prediction in community-dwelling older adults. PGME can assess phase-dependent changes in the stability of gait dynamics that result from kinematic changes in events such as heel strike and toe-off. PGME was assessed for trunk acceleration of 30 s walking epochs in a re-analysis of 1 week of daily-life activity data from the FARAO study, originally described by van Schooten et al. (2016). The re-analyzed data set contained inertial sensor data from 52 single- and 46 multiple-time prospective fallers in a 6 months follow-up period, and an equal number of non-falling controls matched by age, weight, height, gender, and the use of walking aids. The predictive ability of PGME for falls was assessed using a partial least squares regression. PGME had a superior predictive ability of falls among single-time prospective fallers when compared to the other gait features. The single-time fallers had a higher PGME (p < 0.0001) of their trunk acceleration at 60% of their step cycle when compared with non-fallers. No significant differences were found between PGME of multiple-time fallers and non-fallers, but PGME was found to improve the prediction model of multiple-time fallers when combined with other gait features. These findings suggest that taking into account phase-dependent changes in the stability of the gait dynamics has additional value for predicting falls in older people, especially for single-time prospective fallers. PMID:29556188
Ihlen, Espen A F; van Schooten, Kimberley S; Bruijn, Sjoerd M; van Dieën, Jaap H; Vereijken, Beatrix; Helbostad, Jorunn L; Pijnappels, Mirjam
2018-01-01
Age and age-related diseases have been suggested to decrease entropy of human gait kinematics, which is thought to make older adults more susceptible to falls. In this study we introduce a new entropy measure, called phase-dependent generalized multiscale entropy (PGME), and test whether this measure improves fall-risk prediction in community-dwelling older adults. PGME can assess phase-dependent changes in the stability of gait dynamics that result from kinematic changes in events such as heel strike and toe-off. PGME was assessed for trunk acceleration of 30 s walking epochs in a re-analysis of 1 week of daily-life activity data from the FARAO study, originally described by van Schooten et al. (2016). The re-analyzed data set contained inertial sensor data from 52 single- and 46 multiple-time prospective fallers in a 6 months follow-up period, and an equal number of non-falling controls matched by age, weight, height, gender, and the use of walking aids. The predictive ability of PGME for falls was assessed using a partial least squares regression. PGME had a superior predictive ability of falls among single-time prospective fallers when compared to the other gait features. The single-time fallers had a higher PGME ( p < 0.0001) of their trunk acceleration at 60% of their step cycle when compared with non-fallers. No significant differences were found between PGME of multiple-time fallers and non-fallers, but PGME was found to improve the prediction model of multiple-time fallers when combined with other gait features. These findings suggest that taking into account phase-dependent changes in the stability of the gait dynamics has additional value for predicting falls in older people, especially for single-time prospective fallers.
Lai, Daniel T H; Begg, Rezaul K; Taylor, Simon; Palaniswami, Marimuthu
2008-01-01
Elderly tripping falls cost billions annually in medical funds and result in high mortality rates often perpetrated by pulmonary embolism (internal bleeding) and infected fractures that do not heal well. In this paper, we propose an intelligent gait detection system (AR-SVM) for screening elderly individuals at risk of suffering tripping falls. The motivation of this system is to provide early detection of elderly gait reminiscent of tripping characteristics so that preventive measures could be administered. Our system is composed of two stages, a predictor model estimated by an autoregressive (AR) process and a support vector machine (SVM) classifier. The system input is a digital signal constructed from consecutive measurements of minimum toe clearance (MTC) representative of steady-state walking. The AR-SVM system was tested on 23 individuals (13 healthy and 10 having suffered at least one tripping fall in the past year) who each completed a minimum of 10 min of walking on a treadmill at a self-selected pace. In the first stage, a fourth order AR model required at least 64 MTC values to correctly detect all fallers and non-fallers. Detection was further improved to less than 1 min of walking when the model coefficients were used as input features to the SVM classifier. The system achieved a detection accuracy of 95.65% with the leave one out method using only 16 MTC samples, but was reduced to 69.57% when eight MTC samples were used. These results demonstrate a fast and efficient system requiring a small number of strides and only MTC measurements for accurate detection of tripping gait characteristics.
The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning.
Jung, Jae-Hoon; Lee, Sangmin; Yun, Ju; Lee, Minyoung; Park, Chung-Mo
2014-02-01
microRNA172 (miR172) regulates phase transition and floral patterning in Arabidopsis by repressing targets that encode the APETALA2 (AP2) and AP2-like transcription factors. The miR172-mediated repression of the AP2 gene restricts AGAMOUS (AG) expression. In addition, most miR172 targets, including AP2, redundantly act as floral repressors, and the overexpression of the target genes causes delayed flowering. However, how miR172 targets other than AP2 regulate both of the developmental processes remains unclear. Here, we demonstrate that miR172-mediated repression of the TARGET OF EAT 3 (TOE3) gene is critical for floral patterning in Arabidopsis. Transgenic plants that overexpress a miR172-resistant TOE3 gene (rTOE3-ox) exhibit indeterminate flowers with numerous stamens and carpelloid organs, which is consistent with previous observations in transgenic plants that overexpress a miR172-resistant AP2 gene. TOE3 binds to the second intron of the AG gene. Accordingly, AG expression is significantly reduced in rTOE3-ox plants. TOE3 also interacts with AP2 in the nucleus. Given the major role of AP2 in floral patterning, miR172 likely regulates TOE3 in floral patterning, at least in part via AP2. In addition, a miR156 target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 directly activates TOE3 expression, revealing a novel signaling interaction between miR156 and miR172 in floral patterning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Gurling, Mark; Talavera, Karla; Garriga, Gian
2014-01-01
Neuroblast divisions in the nematode Caenorhabditis elegans often give rise to a larger neuron and a smaller cell that dies. We have previously identified genes that, when mutated, result in neuroblast divisions that generate daughter cells that are more equivalent in size. This effect correlates with the survival of daughter cells that would normally die. We now describe a role for the DEP domain-containing protein TOE-2 in promoting the apoptotic fate in the Q lineage. TOE-2 localized at the plasma membrane and accumulated in the cleavage furrow of the Q.a and Q.p neuroblasts, suggesting that TOE-2 might position the cleavage furrow asymmetrically to generate daughter cells of different sizes. This appears to be the case for Q.a divisions where loss of TOE-2 led to a more symmetric division and to survival of the smaller Q.a daughter. Localization of TOE-2 to the membrane is required for this asymmetry, but, surprisingly, the DEP domain is dispensable. By contrast, loss of TOE-2 led to loss of the apoptotic fate in the smaller Q.p daughter but did not affect the size asymmetry of the Q.p daughters. This function of TOE-2 required the DEP domain but not localization to the membrane. We propose that TOE-2 ensures an apoptotic fate for the small Q.a daughter by promoting asymmetry in the daughter cell sizes of the Q.a neuroblast division but by a mechanism that is independent of cell size in the Q.p division. PMID:24961802
The Pace of Perceivable Extreme Climate Change
NASA Astrophysics Data System (ADS)
Tan, X.; Gan, T. Y.
2015-12-01
When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.
29 CFR 1910.132 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Personal Protective Equipment § 1910.132 General requirements. (a... pay for non-specialty safety-toe protective footwear (including steel-toe shoes or steel-toe boots...
Reliability of metatarsophalangeal and ankle joint torque measurements by an innovative device.
Man, Hok-Sum; Leung, Aaron Kam-Lun; Cheung, Jason Tak-Man; Sterzing, Thorsten
2016-07-01
The toe flexor muscles maintain body balance during standing and provide push-off force during walking, running, and jumping. Additionally, they are important contributing structures to maintain normal foot function. Thus, weakness of these muscles may cause poor balance, inefficient locomotion and foot deformities. The quantification of metatarsophalangeal joint (MPJ) stiffness is valuable as it is considered as a confounding factor in toe flexor muscles function. MPJ and ankle joint stiffness measurement is still largely depended on manual skills as current devices do not have good control on alignment, angular joint speed and displacement during measurement. Therefore, this study introduces an innovative dynamometer and protocol procedures for MPJ and ankle Joint torque measurement with precise and reliable foot alignment, angular joint speed and displacement control. Within-day and between-day test-retest experiments on MPJ and ankle joint torque measurement were conducted on ten and nine healthy male subjects respectively. The mean peak torques of MPJ and ankle joint of between-day and within-day measurement were 1.50±0.38Nm/deg and 1.19±0.34Nm/deg. The corresponding torques of the ankle joint were 8.24±2.20Nm/deg and 7.90±3.18Nm/deg respectively. Intraclass-correlation coefficients (ICC) of averaged peak torque of both joints of between-day and within-day test-retest experiments were ranging from 0.91 to 0.96, indicating the innovative device is systematic and reliable for the measurements and can be used for multiple scientific and clinical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Obese older adults suffer foot pain and foot-related functional limitation.
Mickle, Karen J; Steele, Julie R
2015-10-01
There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI <25). Obese participants were found to have a significantly higher prevalence of foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Foot forces induced through Tai Chi push-hand exercises.
Wong, Shiu Hong; Ji, Tianjian; Hong, Youlian; Fok, Siu Lun; Wang, Lin
2013-08-01
The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.
NASA Astrophysics Data System (ADS)
Crown, D. A.; Ramsey, M.; Hon, K.
2010-12-01
Pahoehoe lava flows are compound features that consist of multiple overlapping and interfingering lobes and exhibit morphologically diverse surfaces characterized by channelized zones, smooth-surfaced sheets, and numerous, small toe networks. Previous work compiled detailed planform maps of solidified pahoehoe toe networks to document their morphology, morphometry and connective relationships in order to provide constraints on lava transport models. In order to expand this research to active flow emplacement, we observed slow-moving, tube-fed pahoehoe flows on the coastal plain near Kalapana, Hawaii in May, 2010. The evolution of pahoehoe toe and toe network characteristics over their emplacement history was examined and the role of small-scale flow inflation on the advance of pahoehoe lobes evaluated. We collected both visible video footage and high-speed, high-precision thermal infrared (TIR) data using a FLIR S-40 camera. The TIR data provide surface temperature maps that can be easily used to identify formation of new toes and track their growth and surface cooling. From these maps, lobe development, connective relationships, and frontal and lateral spreading rates can be analyzed. Preliminary results suggest that regular cycles of activity characterize the development of these pahoehoe lobes: 1) emplacement of new toes in local topographic lows at the front, margin, and within the interior of an active lobe forming small interconnected networks, 2) decline and sometimes temporary cessation in the production of new pahoehoe toes, 3) inflation of the recently emplaced flow surface, either partially or en masse depending on the rate of influx of new lava, the degree of irregularity of the pre-flow surface, and/or the slope across the recently emplaced lava surface, and 4) fracturing of the recently emplaced surface crust that feeds emplacement of new toes. Inflation fractures typically cut across several previously emplaced toes and can occur at the front, along the margins, or within the active lobe, even at significant distances behind the flow front.
... the Big Toe Ailments of the Smaller Toes Diabetic Foot Treatments Injections and other Procedures Treatments of the ... Shoe IQ How to "Read" Your Shoes Custom Diabetic Shoes 10 Points of Proper Shoe Fit ... Footwear Page Content Do you experience disabling foot problems like bunions, corns, calluses or hammer toes? ...
Paluch, Lee-Ronn; Lieggi, Christine C; Dumont, Magali; Monette, Sebastien; Riedel, Elyn R; Lipman, Neil S
2014-01-01
Toe clipping is used to identify and genotype preweanling mice, but the procedure generates concerns relevant to pain and distress. The few pertinent studies available evaluated mice between postnatal days (PND) 3 and 7, advocate the use of toe clipping in mice PND 7 or younger, and identify handling as the most distressing aspect of the procedure. Because both toe and tail clipping may be necessary in older mice to obtain sufficient DNA for genotyping, we surmised that performing these procedures concurrently to minimize handling would be beneficial. We also examined reflex development until PND 21 and adult behavior at 8 to 10 wk of age in mice toe clipped at PND 7 or 17 and the benefits of using topical vapocoolant anesthesia. C57BL/6J pups at PND 7 and 17 were assigned to 1 of 4 groups: 1) clipping of digit 3 of contralateral fore- and hindpaws; 2) toe clipping after topical vapocoolant anesthesia; 3) unclipped, unsprayed controls; and, 4) unclipped and vapocoolant-sprayed. Compared with unanesthetized pups, those sprayed with vapocoolant vocalized and struggled more when handled and had more bleeding, erythema, and swelling, which persisted for as long as 12 h after toe clipping. Reflex development, anxiety, locomotion, and motor coordination were not different among groups or with regard to the age of toe clipping. No tissue reaction was noted microscopically in paws collected at 10 wk of age. We conclude that the use of vapocoolant cannot be recommended due to its harmful effects and that toe clipping at PND 7 or 17 does not significantly affect the long-term welfare of mice. PMID:24602538
Ajisafe, Toyin; Wu, Jianhua; Geil, Mark
2017-03-01
Studies have typically treated the first and second floor-to-stair transition steps (TS1 and TS2) as one stride. However, because the foot is devoid of plantar cutaneous input from the stair surface at TS1, these steps may have different toe spatiotemporal profiles, and resultantly, different susceptibilities to a trip and/or a fall. This study compared vertical toe clearance, forward velocity, and their respective variability magnitudes between TS1 and TS2 when ascending stairs of different heights. Twenty young adults (seven males and 13 females) (21.68 ± 2.49 years; 169.70 ± 9.56 cm; 63.91 ± 9.62 kg) negotiated an intervening three-step staircase placed midpoint on a 10 m walkway. There were three stair heights: low stairs (LS), medium stairs (MS), and high stairs (HS). Vertical toe clearance, forward velocity, and their variability magnitudes were calculated. Vertical toe clearance was only higher (P < 0.05) at TS1 than TS2 in the medium and high stairs. Vertical toe clearance was more variable (P < 0.05) in the low compared to medium stairs. Also, forward toe velocity was greater at TS1 than TS2, but was lower in the medium and high stairs. The locomotor system appeared cautious by exaggerating vertical toe clearance at both TS1 and TS2 only in low stairs, possibly due to higher forward toe velocity. If the exaggeration strategy consistently persists, this finding may suggest decreased trip or fall risk at both TS1 and TS2 only when transitioning onto low stairs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antiphospholipid Antibodies and Recurrent Thrombotic Events: Persistence and Portfolio
Amory, Colum F.; Levine, Steve R.; Brey, Robin L.; Gebregziabher, Mulugeta; Tuhrim, Stanley; Tilley, Barbara C.; Simpson, Ann-Catherin N.; Sacco, Ralph L.; Mohr, J.P.
2015-01-01
Background There are very limited prospective data on the significance of persistent of antiphospholipid antibodies (aPL) and recurrent thrombo-occlusive events (TOEs). We investigated the prognostic value of (1) two newer aPL assays, (2) an aPL portfolio, and (3) persistent aPL positivity following stroke. Methods 1,770 subjects from the APASS-WARSS study underwent further aPL testing for antibodies to phosphatidylserine (aPS) and β2-glycoprotein-I (anti-β2GPI) from stored sera. Follow-up aPL status was also tested in a subset of subjects. Primary analysis was based on time to any TOE (ischemic stroke, MI, TIA, DVT, PE, or systemic arterial occlusion)/death at 2 years. Cox proportional hazard analyses assessed whether aPL independently related to outcome. Results Persistent anti-β2GPI decreased the time to TOE/death after adjustment for potential confounders (HR=2.86, CI 1.21-6.76, p=0.017). When persistent anti-β2GPI was combined with another persistently positive aPL, time to TOE/death was also reduced (HR=3.79, CI 1.18-12.14, p=0.025). Neither persistent aCL, persistent aPS alone, nor a single positive anti-β2GPI or aPS was associated with decreased time to TOE/death. No single positive aPL, portfolio of baseline aPL, or any persistent aPL increased the rate of TOE/death. Conclusions Rates of TOE/death were not influenced by aPL results at baseline or follow-up. Persistent anti-β2GPI alone and with persistent second aPL were independently associated with decreased time to TOE/death. Persistent aPL, an aPL portfolio, and newer aPL in ischemic stroke patients are not helpful in predicting an increased rate of recurrent TOEs. PMID:26513489
Effect of Sweating on Insulation of Footwear.
Kuklane, Kalev; Holmér, Ingvar
1998-01-01
The study aimed to find out the influence of sweating on footwear insulation with a thermal foot model. Simultaneously, the influence of applied weight (35 kg), sock, and steel toe cap were studied. Water to 3 sweat glands was supplied with a pump at the rate of 10 g/hr in total. Four models of boots with steel toe caps were tested. The same models were manufactured also without steel toe. Sweating reduced footwear insulation 19-25% (30-37% in toes). During static conditions, only a minimal amount of sweat evaporated from boots. Weight affected sole insulation: Reduction depended on compressibility of sole material. The influence of steel toe varied with insulation. The method of thermal foot model appears to be a practical tool for footwear evaluation.
Koehler-McNicholas, Sara R.; Lipschutz, Robert D.; Gard, Steven A.
2017-01-01
Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (ANT), subjects significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, subjects also decreased the rate at which they loaded their prosthesis, decreased their step length, increased their trunk flexion, and maintained their limb in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, no significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee-joint control. PMID:28355034
Therapeutic footwear: enhanced function in people with diabetes and transmetatarsal amputation.
Mueller, M J; Strube, M J
1997-09-01
Patients with diabetes mellitus (DM) and a transmetatarsal amputation (TMA) have considerable deficits in function compared with age-matched controls. The purpose of this study was to determine if therapeutic footwear could improve the functional mobility of patients with DM and TMA. Repeated-measures design. Academic medical center. Thirty subjects (10 women, 20 men) with DM and a TMA, with a mean age of 61.7 +/- 4.0 yrs. Six types of footwear evaluating the following components: length of shoe (full-length or short shoe), a rigid rocker-bottom sole, and an ankle-foot-orthosis. Physical Performance Test (PPT), functional reach, and walking speed. Measurements in each footwear condition occurred after a 1-month adjustment period. Patients wearing full-length custom-made shoes with a total-contact insert, a rigid rocker-bottom sole or a short shoe with a rigid rocker-bottom sole (with or without an ankle-foot-orthosis) had similar and significantly higher scores in the PPT and faster walking speed than when wearing regular shoes with a toe filler (p < .05). The short shoe and the ankle-foot-orthosis, however, generated many patient complaints about cosmesis and restriction at the ankle, respectively. There were no differences in any of the measures of functional reach. Although there are individual exceptions, we recommend the full-length shoe, total-contact insert, and a rigid rocker-bottom sole for most patients with DM and a TMA.
Koehler-McNicholas, Sara R; Lipschutz, Robert D; Gard, Steven A
2016-01-01
Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (i.e., the ANT condition), participants significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, participants also decreased the rate at which they loaded their prosthesis, decreased their affected-side step length, increased their trunk flexion, and maintained their prosthesis in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, comparatively few significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee joint control.
Molded foot orthosis after great toe or medial ray amputations in diabetic feet.
Due, T M; Jacobs, R L
1985-12-01
Necrosis of the tip of the next lateral remaining toe has been found to be a late complication of great toe and medial ray amputations in diabetic feet. The use of custom-molded insert foot orthoses helps avoid this complication.
29 CFR 1917.96 - Payment for protective equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... employer at no cost to employees. (b) The employer is not required to pay for non-specialty safety-toe protective footwear (including steel-toe shoes or steel-toe boots) and non-specialty prescription safety...
29 CFR 1917.96 - Payment for protective equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... employer at no cost to employees. (b) The employer is not required to pay for non-specialty safety-toe protective footwear (including steel-toe shoes or steel-toe boots) and non-specialty prescription safety...
29 CFR 1917.96 - Payment for protective equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... employer at no cost to employees. (b) The employer is not required to pay for non-specialty safety-toe protective footwear (including steel-toe shoes or steel-toe boots) and non-specialty prescription safety...
IBHVG2 (Interior Ballistics of High Velocity Guns, Version 2)--A User’s Guide
1987-07-01
AT GAGE LOCATIONS - BREECH, CA 0 38 -- > ORIGINAL PROJECTILE BASE, AND AT 10 INCHES OF TRAVEL CARD 39 -*SGUN CARD 40-- NAMEaE1SS-MN 198’ CNAMu1150...03 SAMIE AS RPT 0 Wr’C usr*s Un14lassile _____ V~nNAUS1&1 n c’’ e Isn D UA (301) 27蔶 SLCl3R- 10 -A DD FOM 147. . AR ;3 APF4 Z70tiQfli*m b mosw itw...004vlted xi t CAS .’Np~ A( All othof Eatt n$ 4( )M,’ UNCLASSI FIED Noec Lert lntentiontly bllank CONTENTS L INTRODUCTION ............. . . . . 4 IL
Effect of turf toe on foot contact pressures in professional American football players.
Brophy, Robert H; Gamradt, Seth C; Ellis, Scott J; Barnes, Ronnie P; Rodeo, Scott A; Warren, Russell F; Hillstrom, Howard
2009-05-01
The relationship between turf toe and plantar foot pressures has not been extensively studied. Two hypotheses were tested in a cohort of professional American football players: first, that a history of turf toe is associated with increased peak hallucal and first metatarsophalangeal (MTP) plantar pressures; second, that decreased range of motion (ROM) of the first MTP correlates with increased peak hallucal and first MTP plantar pressures. Forty-four athletes from one National Football League (NFL) team were screened for a history of turf toe during preseason training. Dorsal passive MTP ROM and dynamic plantar pressures were measured in both feet of each player. Anatomical masking was used to assess peak pressure at the first MTP and hallux. First MTP dorsiflexion was significantly lower in halluces with a history of turf toe (40.6 +/- 15.1 degrees versus 48.4 +/- 12.8 degrees, p = 0.04). Peak hallucal pressures were higher in athletes with turf toe (535 +/- 288 kPa versus 414 +/- 202 kPa, p = 0.05) even after normalizing for athlete body mass index (p = 0.0003). Peak MTP pressure was not significantly different between the two groups tested. First MTP dorsiflexion did not correlate with peak hallucal or first MTP pressures. This study showed that turf toe is associated with decreased MTP motion. In addition, increased peak hallucal pressures were found. Further study is warranted to determine whether these pressures correlate with the severity of symptoms or progression of turf toe to first MTP arthritis.
Lee, Lydia C; Charlton, Timothy P; Thordarson, David B
2013-12-01
A floating toe deformity occurs in many patients who undergo Weil osteotomies. It is likely caused by the failure of the windlass mechanism in shortening the metatarsal. For patients who require a proximal interphalangeal (PIP) joint arthroplasty or fusion in addition to a Weil osteotomy, the transfer of the flexor digitorum brevis (FDB) tendon to the PIP joint might restore the windlass mechanism and decrease the incidence of floating toes. Fourteen cadaveric foot specimens were examined to determine the effects of changing metatarsal length as well as tensioning the FDB tendon on the angle of the metatarsophalangeal (MTP) joint as a measure of a floating toe. Shortening and lengthening the second metatarsal resulted in a significant change in MTP angle (P = .03 and .02, respectively), though there was no clear relationship found between the amount of change in metatarsal length and the change in MTP angle. Transferring the FDB to a PIP arthroplasty site plantarflexed the MTP joint and corrected floating toes; the change in angle was significant compared with the control and shortening groups (P = .0001 and .002, respectively). This study supports the theory that change in length of the metatarsal, possibly via the windlass mechanism, plays a role in the pathophysiology of the floating toe deformity. Tensioning and transferring the FDB tendon into the PIP joint helped prevent the floating toe deformity in this cadaveric model. Continued research in this subject will help to refine methods of prevention and correction of the floating toe deformity.
30 CFR 56.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fixed ladder anchorage and toe clearance. 56.11005 Section 56.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Travelways § 56.11005 Fixed ladder anchorage and toe clearance. Fixed ladders shall be anchored securely and...
30 CFR 56.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fixed ladder anchorage and toe clearance. 56.11005 Section 56.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Travelways § 56.11005 Fixed ladder anchorage and toe clearance. Fixed ladders shall be anchored securely and...
30 CFR 56.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fixed ladder anchorage and toe clearance. 56.11005 Section 56.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Travelways § 56.11005 Fixed ladder anchorage and toe clearance. Fixed ladders shall be anchored securely and...
30 CFR 56.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fixed ladder anchorage and toe clearance. 56.11005 Section 56.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Travelways § 56.11005 Fixed ladder anchorage and toe clearance. Fixed ladders shall be anchored securely and...
30 CFR 56.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fixed ladder anchorage and toe clearance. 56.11005 Section 56.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Travelways § 56.11005 Fixed ladder anchorage and toe clearance. Fixed ladders shall be anchored securely and...
1989-09-01
Rehabilitation of Rubble-Mound Structure Toes. The first objective of this work unit was to gain an iinderstanding of the toe stability problems experi- enced ...6.75-FT WAVE FLUMES 12.0- 11.0 - Be10.0- z 0 8.0 0 n- 7.0- _U Z 0 0 6.0 --- (0cc 5.0- h 0 0 LADo cc 4.0 0 . 0 -3 -P - -2 - - 01.0-0.0- - 0_0 co 2.0
Foucher, G
1995-01-01
A technique is described for reconstruction of a pincer, by a second toe transfer, in traumatic and congenital deformities, leaving only the wrist. Transfer on the anterior aspect of the radius allows to benefit from the wrist mobility to compensate for the limited range of motion of the second toe. Proximal situation of the toe gives the possibility of harvesting plenty of tendons to balance the toe. Results have been encouraging in two traumatic and 6 congenital cases of peromelic type of symbrachydactyly.
Extreme Cost Growth: Themes from Six U.S. Air Force Major Defense Acquisition Programs
2015-01-01
launch company SpaceX brought anti-trust litigation against the ULA as early as 2005, arguing that the agreement foreclosed competition. Legal maneuvering...was still under way through 2014. See “ SpaceX and ULA Go Toe-to-Toe Over EELV Contracts,” NASA Spaceflight.com, March 5, 2014. 16 Again, it is...December 9, 2014: http://www.rand.org/pubs/papers/P4748.html “ SpaceX and ULA Go Toe-to-Toe Over EELV Contracts,” NASA Spaceflight.com, March 5
Li, Jie; Zhang, Yan-Ping; Zarei, Mina; Zhu, Linjian; Sierra, Jose Ollague; Mertz, Patricia M; Davis, Stephen C
2015-08-01
Oxygen is an essential substance for wound healing. Limited studies have shown that topical oxygen can influence healing. This study evaluated the effects of a Topical Oxygen Emulsion (TOE) on burn wound healing. A porcine second-degree burn wound model was used in the study. Burn wounds were randomly assigned to TOE, vehicle control, and no-treatment (air) groups. Effects of TOE on the granulation tissue formation and angiogenesis were studied using hematoxylin and eosin histological analysis. Protein production and gene expression of types I and III collagen and vascular endothelial growth factor (VEGF) were determined using immunofluorescent staining and Reverse Transcription and Polymerase Chain Reaction (RT-PCR), respectively. The TOE treated wounds exhibited better angiogenesis and granulation tissue formation by histology examination. The immunofluorescence staining and RT-PCR analysis demonstrated that protein production and mRNA expression of VEGF and collagen III were significantly higher in TOE treatment group than vehicle alone and air control groups, while there was no significant difference in the level of collagen I. Our data demonstrate that TOE enhances burn wound healing via stimulating the expression of VEGF and type III collagen and strongly indicates the potential use of TOE in wounds. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Hatton, Anna L; Dixon, John; Rome, Keith; Brauer, Sandra G; Williams, Katrina; Kerr, Graham
2016-04-21
Many people with multiple sclerosis experience problems with walking, which can make daily activities difficult and often leads to falls. Foot sensation plays an important role in keeping the body balanced whilst walking; however, people with multiple sclerosis often have poor sensation on the soles of their feet. Wearing a specially designed shoe insole, which enhances plantar sensory information, could help people with multiple sclerosis to walk better. This study will explore whether long-term wear of a textured insole can improve walking in people with multiple sclerosis. A prospective randomised controlled trial with two parallel groups will be conducted aiming to recruit 176 people with multiple sclerosis living in the community (Brisbane, Australia). Adults with a clinical diagnosis of multiple sclerosis, Disease Steps score 1-4, who are ambulant over 100 m and who meet specific inclusion criteria will be recruited. Participants will be randomised to a smooth control insole (n = 88) or textured insole (n = 88) group. The allocated insole will be worn for 12-weeks within participants' own footwear, with self-report wear diaries and falls calendars being completed over this period. Blinded assessors will conduct two baseline assessments and one post-intervention assessment. Gait tasks will be completed barefoot, wearing standardised footwear only, and wearing standardised footwear with smooth and textured insoles. The primary outcome measure will be mediolateral base of support when walking over even and uneven surfaces. Secondary measures include spatiotemporal gait parameters (stride length, stride time variability, double-limb support time, velocity), gait kinematics (hip, knee, and ankle joint angles, toe clearance, trunk inclination, arm swing, mediolateral pelvis/head displacement), foot sensation (light touch-pressure, vibration, two-point discrimination) and proprioception (ankle joint position sense). Group allocation will be concealed and all analyses will be based on an intention-to-treat principle. This study will explore the effects of wearing textured insoles over 12-weeks on gait, foot sensation and proprioception in people with multiple sclerosis. The study has the potential to identify a new, evidence-based footwear intervention which has the capacity to enhance mobility and independent living in people with multiple sclerosis. Australian New Zealand Clinical Trials Registry ACTRN12615000421538 . Registered 4 May 2015.
Pedal symphalangism in modern American and Japanese skeletons.
Case, D T; Heilman, J
2005-01-01
Pedal symphalangism is a surprisingly common heritable trait of the human foot. In individuals exhibiting the trait, the joint between the intermediate and distal phalanges of one or more lateral toes never develops, resulting in toes with two phalanges rather than three. This study was undertaken to explore variation in the frequency of pedal symphalangism among groups with widely different geographic ancestry, and to consider the applicability of this trait to skeletal biological distance studies. A total of 460 Euro-American, 191 African-American and 99 Japanese skeletons were examined for presence of pedal symphalangism. The American individuals date to the first half of the 20th c, while the Japanese individuals date to the late 19th and early 20th c. Although the country of ancestry is unknown for most of the American individuals, the Euro-Americans appear to be largely northern European, with roots in Germany, Ireland and Scandinavia, while the African-Americans are primarily descendants of slaves with roots in west African countries such as Nigeria, Benin, Togo, Ghana and Sierra Leone. Frequencies of fifth toe pedal symphalangism were calculated and compared among all three samples and found to be significantly higher in modern Japanese (83.7%) than in either Euro-Americans (46.4%) or African-Americans (44.0%). The Euro- and African-American frequencies were statistically indistinguishable for symphalangism of the fifth toe. In the fourth toe, however, the opposite result was found. The African-American frequency (7.9%) was significantly higher than the Euro-American frequency (2.6%), while no difference was found between the African-Americans and Japanese (11.7%). Since fourth toe pedal symphalangism has never been observed in the absence of fifth toe involvement, some of the same genes are clearly involved in producing the trait in both toes. However, differences in the pattern of fourth and fifth toe expression among the three groups identified in this study suggest that additional genetic or developmental factors may play a role in expression of pedal symphalangism in each of the toes.
Pfleeger, Adam Z; Eagles-Smith, Collin A; Kowalski, Brandon M; Herring, Garth; Willacker, James J; Jackson, Allyson K; Pierce, John R
2016-04-01
Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0-2 cm segment performed the best across all salamander species, explaining between 82 and 92% of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79% of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.
... part of the foot is similar to the hand, with five bones. Each toe has three tiny bones, except for your big toe, which has just two. This brings the bone total in both feet and ankles to 52! Most people don't use their toes and feet for grabbing stuff or writing, but they do use them for two very ...
Pahl, Christina; Ebelt, Henning; Sayahkarajy, Mostafa; Supriyanto, Eko; Soesanto, Amiliana
2017-08-15
This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.
NASA Astrophysics Data System (ADS)
Nguyen, Thuy-Huong; Min, Seung-Ki; Paik, Seungmok; Lee, Donghyun
2018-01-01
This study conducted an updated time of emergence (ToE) analysis of regional precipitation changes over land regions across the globe using multiple climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5). ToEs were estimated for 14 selected hotspots over two seasons of April to September (AS) and October to March (OM) from three RCP scenarios representing low (RCP2.6), medium (RCP4.5), and high (RCP8.5) emissions. Results from the RCP8.5 scenario indicate that ToEs would occur before 2040 over seven hotspots including three northern high-latitude regions (OM wettening), East Africa (OM wettening), South Asia (AS wettening), East Asia (AS wettening) and South Africa (AS drying). The Mediterranean (both OM and AS drying) is expected to experience ToEs in the mid-twenty-first century (2040-2080). In order to measure possible benefits from taking low-emission scenarios, ToE differences were examined between the RCP2.6 scenario and the RCP4.5 and RCP8.5 scenarios. Significant ToE delays from 26 years to longer than 67 years were identified over East Africa (OM wettening), the Mediterranean (both AS and OM drying), South Asia (AS wettening), and South Africa (AS drying). Further, we investigated ToE differences between CMIP3-based and CMIP5-based models using the same number of models for the comparable scenario pairs (SRESA2 vs. RCP8.5, and SRESB1 vs. RCP4.5). Results were largely consistent between two model groups, indicating the robustness of ToE results. Considerable differences in ToEs (larger than 20 years) between two model groups appeared over East Asia and South Asia (AS wettening) and South Africa (AS drying), which were found due to stronger signals in CMIP5 models. Our results provide useful information on the timing of emerging signals in regional and seasonal hydrological changes, having important implications for associated adaptation and mitigation plans.
Operative Outcomes of Grade 3 Turf Toe Injuries in Competitive Football Players.
Smith, Kenneth; Waldrop, Norman
2018-06-01
Turf toe is a term used to describe a hyperextension injury to the first metatarsophalangeal joint. Although the vast majority of turf toe injuries can be treated successfully without operative intervention, there are instances where surgery is required to allow the athlete to return to play. Although there is a plethora of literature on turf toe injuries and nonoperative management, there are currently few reports on operative outcomes in athletes. We obtained all cases of turf toe repair according to the ICD-10 procedural code. The inclusion criteria included: age greater than 16, turf toe injury requiring operative management and at least a varsity level high school football player. The charts were reviewed for age, BMI, level of competition, injury mechanism, football position, setting of injury and playing surface. In addition, we recorded the specifics of the operative procedure, a listing of all injured structures, the implants used and the great toe range of motion at final follow-up visit. The AOFAS Hallux score and VAS was used postoperatively as our outcome measures. Our patient population included 15 patients. The average follow-up time was 27.5 months. The average patient was 19.3 years old with a body mass index of 32.3. The average playing time missed was 16.5 weeks. The average dorsiflexion range of motion at the final follow-up was 42.3 degrees. At final follow-up, the average AOFAS Hallux score was 91.3. The average VAS pain score was 0.7 at rest and 0.8 with physical activity. Complete turf toe injuries are often debilitating and may require operative management to restore a pain-free, stable, and functional forefoot. This study represents the largest cohort of operatively treated grade 3 turf toe injuries in the literature and demonstrates that good clinical outcomes were achieved with operative repair. Level IV, case series.
Antiphospholipid Antibodies and Recurrent Thrombotic Events: Persistence and Portfolio.
Amory, Colum F; Levine, Steven R; Brey, Robin L; Gebregziabher, Mulugeta; Tuhrim, Stanley; Tilley, Barbara C; Simpson, Ann-Catherin C; Sacco, Ralph L; Mohr, Jay P
2015-01-01
There are very limited prospective data on the significance of persistent antiphospholipid antibodies (aPL) and recurrent thrombo-occlusive events (TOEs). We investigated the prognostic value of (1) 2 newer aPL assays, (2) an aPL portfolio and (3) persistent aPL positivity following stroke. A total of 1,770 subjects from the APASS-WARSS study underwent further aPL testing for antibodies to phosphatidylserine (aPS) and anti-β2-glycoprotein-I (anti-β2GPI) from stored sera. Follow-up aPL status was also tested in a subset of subjects. Primary analysis was based on time to any TOE (ischemic stroke, myocardial infarction, transient ischemic attack, deep vein thrombosis, pulmonary embolism or systemic arterial occlusion)/death at 2 years. Cox proportional hazard analyses assessed whether aPL independently related to outcome. Persistent anti-β2GPI decreased the time to TOE/death after adjustment for potential confounders (hazards ratio (HR) 2.86, 95% CI 1.21-6.76, p = 0.017). When persistent anti-β2GPI was combined with another persistently positive aPL, time to TOE/death was also reduced (HR 3.79, 95% CI 1.18-12.14, p = 0.025). Neither persistent anticardiolipin antibodies nor persistent aPS alone nor a single positive anti-β2GPI nor aPS was associated with decreased time to TOE/death. No single positive aPL, portfolio of baseline aPL or any persistent aPL increased the rate of TOE/death. Rates of TOE/death were not influenced by aPL results at baseline or follow-up. Persistent anti-β2GPI alone, and with persistent second aPL, was independently associated with decreased time to TOE/death. Persistent aPL, an aPL portfolio and newer aPL in ischemic stroke patients are not helpful in predicting an increased rate of recurrent TOEs. © 2015 S. Karger AG, Basel.
Lamm, Bradley M; Ades, Joe K
2009-01-01
Iatrogenic flail toe is a complication of hammertoe surgery that occurs when an overaggressive resection of the proximal phalanx occurs. This can cause both functional and cosmetic concerns for the patient. We present a case report of the correction of a flail second toe in a patient with Raynaud's disease. The correction was achieved by means of gradual soft tissue lengthening with external fixation and an interposition autologous bone graft digital arthrodesis. After 5 months, this 2-stage procedure lengthened, stabilized, and restored the function of the toe. 4.
Yoshimura, M
1980-07-01
Toe-to-hand transfer was performed in 28 patients, involving 33 fingers, using microvascular technique. Of this number, 26 patients (31 fingers) had experienced trauma, and the remaining 2 patients (2 fingers) had a congenital deformity. The toew used for grafting were the great toe (1), the second tow (30), and third toe (2). Success was achieved in all cases, sensory recovery was good, and remarkable improvement was attained in function and cosmetic appearance. Metacarpal hand, amputation of thumb, and amputation thumb and three fingers were good indications for this procedure, which gave satisfactory aesthetic results, even in patients with amputation of single digits.
Omura, Y
1994-01-01
Accuracy of the widely used organ representation areas, currently used in different schools of foot and hand reflexology was evaluated using Bi-Digital O-Ring test resonance phenomenon. Our previous study indicated that mapping organ representation areas of the tongue using Bi-Digital O-Ring Test resonance phenomenon between 2 identical substances often provided more reliable clinical information for both diagnosis and treatment than the 2 widely used, but crude, traditional schools of Chinese tongue diagnosis. This same method was applied for the mapping of the organ representation areas on the feet and hands. We succeeded in mapping the following areas on human feet: 1) Middle (3rd) toe on the sole side represents the following starting from the tip: A) Head, B) Face with eye, ear, nose, and mouth (1st Digit) C) Neck and organs within the neck (narrow band of space between 1st crease after the 1st digit and crease at the junction of the beginning of the sole); 2) 2nd and 4th toe represent upper extremities, the beginning tip being fingers and hands. The crease at the base of these toes represents the shoulder. The 2nd toe represents right upper extremity, and the 4th toe represents left upper extremity; 3) 1st and 5th toes in both the right and left feet represent lower extremities with the tip being the toes and soles of feet. The crease at the base of these toes represents the inguinal area. The 1st toe of each foot represents right lower extremity, and 5th toe represents left lower extremity. The sole of the foot is divided into the following 3 distinctive sections. 1) Upper (1st) section represents organs in the chest cavity including 2 thymus glands, trachea, 2 lungs, with the heart between them, and with the esophagus appearing as a narrow band outside of the lung near and below the 1st and 2nd toe depending upon the individual. Chest section occupies the first 1/3 to 1/5 (on a relatively long foot) of the entire sole. The boundary between the chest and G.I. system can be approximately estimated by extending the length of the entire toe or up to 25% longer to the sole, but it can be accurately determined using a diaphragm tissue microscope slide as a reference control substance. 2) Middle (2nd) section represents Gastro-Intestinal system, including lower end of the esophagus, liver, stomach, spleen, gall bladder, pancreas, duodenum, jejunum, ileum, appendix, colon, and anus.(ABSTRACT TRUNCATED AT 400 WORDS)
Material and biofilm load of K wires in toe surgery: titanium versus stainless steel.
Clauss, Martin; Graf, Susanne; Gersbach, Silke; Hintermann, Beat; Ilchmann, Thomas; Knupp, Markus
2013-07-01
Recurrence rates for toe deformity correction are high and primarily are attributable to scar contractures. These contractures may result from subclinical infection. We hypothesized that (1) recurrence of toe deformities and residual pain are related to low-grade infections from biofilm formation on percutaneous K wires, (2) biofilm formation is lower on titanium (Ti) K wires compared with stainless steel (SS) K wires, and (3) clinical outcome is superior with the use of Ti K wires compared with SS K wires. In this prospective nonrandomized, comparative study, we investigated 135 lesser toe deformities (61 patients; 49 women; mean ± SD age, 60 ± 15 years) temporarily fixed with K wires between August 2010 and March 2011 (81 SS, 54 Ti). K wires were removed after 6 weeks. The presence of biofilm-related infections was analyzed by sonication. High bacterial loads (> 500 colony-forming units [CFU]/mL) were detected on all six toes requiring revision before 6 months. Increased bacterial load was associated with pain and swelling but not recurrence of the deformity. More SS K wires had greater than 100 CFU/mL bacteria than Ti K wires. For K wires with a bacterial count greater than 100 CFU/mL, toes with Ti K wires had a lower recurrence rate, less pain, and less swelling than toes with SS K wires. Ti K wires showed superior clinical outcomes to SS K wires. This appears to be attributable to reduced infection rates. Although additional study is needed, we currently recommend the use of Ti K wires for the transfixation of toe deformities. Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Importance and challenges of measuring intrinsic foot muscle strength
2012-01-01
Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles during intrinsic foot muscle strength testing. PMID:23181771
Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene
2014-09-01
Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two devices was performed for both toe and ankle level. A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg, respectively. Comparison between the mercury and the indium-gallium strain gauge showed a difference in toe blood pressure values of - 0.7 mm Hg (SD: 7.0). At the ankle level, a difference of 2.0 mm Hg (SD: 8.6) was found. The two different devices agree sufficiently in the measurements of systolic ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.
[Second toe transfer in congenital hand differences].
Dautel, G; Barbary, S
2008-12-01
In congenital hand differences, microsurgical toe transfer involves the creation of one or several rays in a child that never possessed them before. Second toe transplantation was uniformly used in this series that include 65 consecutive cases. Etiologies were represented by symbrachydactyly, constriction band syndrome or central cleft hand. Second toe transfer was performed with or without the MTP joint and followed by proximal ray resection of the donor toe. In the vast majority of theses cases, transplantation was performed in adactylic or monodactylic hand, the ultimate functional goal was the creation of a "tip-to-tip" two fingers pinch. Implantation site was chosen according to the situation of the existing finger(s). The existence of a functioning recipient MCP joint was one of the key factors of the final functional outcome. There were two vascular failures in this series with complete necrosis of the transplanted toe. Two additional toes appeared mediocre with respect to the overall transfer integration. The final mobility of the fingers reconstructed was measured using the total active motion score. Average TAM was poor (42 degrees +/-24 degrees ). In 12 out of 15 patients that were evaluated with a follow-up of at least five years, the static two-point discrimination was found to be excellent (less than 6mm). Our series did not allow us to establish a firm correlation between the type of nerve suture used and the quality of sensory recovery. Growth was measured as a percentage of the intact second toe (68 to 95%). All children on a long term basis had a normal gait without any impediment during sports or leisure activities. Clinical results obtained in this series lead to think that the cerebral cortex has got some plasticity which allows the integration of the transplants.
Black, Eric M; Austin, Luke S; Narzikul, Alexa; Seidl, Adam J; Martens, Kelly; Lazarus, Mark D
2016-09-01
We investigated the cost savings associated with arthroscopic transosseous (anchorless) double-row rotator cuff repair compared with double-row anchored (transosseous-equivalent [TOE]) repair. All patients undergoing double-row arthroscopic rotator cuff repair from 2009 to 2012 by a single surgeon were eligible for inclusion. The study included 2 consecutive series of patients undergoing anchorless or TOE repair. Excluded from the study were revision repairs, subscapularis repairs, patients with poor tendon quality or excursion requiring medialized repair, and partial repairs. Rotator cuff implant costs (paid by the institution) and surgical times were compared between the 2 groups, controlling for rotator cuff tear size and additional procedures performed. The study included 344 patients, 178 with TOE repairs and 166 with anchorless repairs. Average implant cost for TOE repairs was $1014.10 ($813.00 for small, $946.67 for medium, $1104.56 for large, and $1507.29 for massive tears). This was significantly more expensive compared with anchorless repairs, which averaged $678.05 ($659.75 for small, $671.39 for medium, $695.55 for large, and $716.00 for massive tears). Average total operative time in TOE and anchorless groups was not significantly different (99 vs. 98 minutes). There was larger (although not statistically significant) case time variation in the TOE group. Compared with TOE repair, anchorless rotator cuff repair provides substantial implant-related cost savings, with no significant differences in surgical time for medium and large rotator cuff tears. Case time for TOE repair varied more with extremes in tear size. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Pfleeger, Adam Z.; Eagles-Smith, Collin A.; Kowalski, Brandon M.; Herring, Garth; Willacker, James J.; Jackson, Allyson K.; Pierce, John
2016-01-01
Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0–2 cm segment performed the best across all salamander species, explaining between 82 and 92 % of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79 % of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.
Richards, P M; Persinger, M A
2004-01-01
The differential representation of the toes/feet and fingers/hands along the medial and lateral surfaces of the cerebral cortices, respectively, may have diagnostic utility. Normative data for errors for toe and finger graphaesthesia and gnosis, as well as foot and finger agility, were collected for 86 children (ages 7 to 14). The fingers were more agile than the feet, and the right side of the body was more agile than the left side, regardless of age. A marked improvement in toe gnosis, but not in finger gnosis occurred in children after 11-12 years of age. A statistically significant interaction between laterality and gender was due to the greater numbers of errors for both toe and finger gnosis, displayed by girls for the left sides of their bodies compared to their right sides. This discrepancy was not significant for boys.
Kilic, Ayhan; Cepni, Kamil Serdar; Aybar, Ahmet; Polat, Halil; May, Cuneyt; Parmaksizoglu, Atilla Sancar
2013-12-01
The aim was to evaluate the results of two different methods in surgical treatment for patients with late-stage avascular necrosis of the metatarsal head. Between 2007 and 2012, fourteen consecutive patients (13 females, 1 male; mean age 29 yrs; range, 12-58 yrs) with metatarsal head infarction were enrolled for this study. The main presenting symptom was pain on walking or daily activities. According to the Smillie classification all of lesions were classified as in stage IV-V. Six patients had cheilectomy and microfracture procedure in Group A, 8 patients had received cheilectomy and dorsal crescentic osteotomy in Group B. Clinical outcomes were evaluated according to American Orthopaedic Foot and Ankle Society (AOFAS) lesser toe metatarsophalangeal-interphalangeal scale and range of motion (ROM) of metatarsophalangeal (MTP) joint. Metatarsal shortening and osteotomy-site healing were evaluated with AP and oblique view X-rays. The mean follow-up period was 22 months (range, 12-53). The clinical outcomes were excellent in 11(78%) patients and in the 3(22%) patients the results were good. The AOFAS scores increased from a mean of 66.3 points (range, 55-75) preoperatively to 92 points (range, 84-100) at last follow-up in Group A. The mean AOFAS score increased 55.8 points (range, 45-64) to 90.6 points (range, 84-95) in Group B. In the patients that osteotomy have been applied there were no limitation of movement or fixed deformity of the toe. These results suggest that both surgical techniques may provide significant improvement in pain and ROM of the MTP joint. Copyright © 2013 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Sylos-Labini, F.; Magnani, S.; Cappellini, G.; La Scaleia, V.; Fabiano, A.; Picone, S.; Paolillo, P.; Di Paolo, A.; Lacquaniti, F.; Ivanenko, Y.
2017-01-01
Stepping on ground can be evoked in human neonates, though it is rather irregular and stereotyped heel-to-toe roll-over pattern is lacking. Such investigations can provide insights into the role of contact- or load-related proprioceptive feedback during early development of locomotion. However, the detailed characteristics of foot placements and their association with motor patterns are still incompletely documented. We elicited stepping in 33 neonates supported on a table. Unilateral limb kinematics, bilateral plantar pressure distribution and EMG activity from up to 11 ipsilateral leg muscles were recorded. Foot placement characteristics in neonates showed a wide variation. In ~25% of steps, the swinging foot stepped onto the contralateral foot due to generally small step width. In the remaining steps with separate foot placements, the stance phase could start with forefoot (28%), midfoot (47%), or heel (25%) touchdowns. Despite forefoot or heel initial contacts, the kinematic and loading patterns markedly differed relatively to toe-walking or adult-like two-peaked vertical force profile. Furthermore, while the general stepping parameters (cycle duration, step length, range of motion of proximal joints) were similar, the initial foot contact was consistently associated with specific center-of-pressure excursion, range of motion in the ankle joint, and the center-of-activity of extensor muscles (being shifted by ~5% of cycle toward the end of stance in the “heel” relative to “forefoot” condition). In sum, we found a variety of footfall patterns in conjunction with associated changes in motor patterns. These findings suggest the potential contribution of load-related proprioceptive feedback and/or the expression of variations in the locomotor program already during early manifestations of stepping on ground in human babies. PMID:29066982
Hession, Caren E; Eastwood, Brian; Watterson, David; Lehane, Christine M; Oxley, Nigel; Murphy, Barbara A
2014-01-01
The objectives of this study were to evaluate the effects of the physical motion of a horse (riding therapy) combined with the audiovisual perception of this motion on a group of children with dyspraxia in terms of cognition, mood arousal, and gait variability. The study design was a pretest/post-test. The study was conducted at the Fettercairn Youth Horse Project, Fettercairn, Tallaght, Dublin. Forty (40) children ranging from 6 to 15 years of age with a primary diagnosis of dyspraxia were the study subjects. Children meeting inclusion criteria participated in six 30-minute horse-riding sessions and two 30-minute audiovisual screening sessions. A Standard Progressive Matrices test (also known as the Ravens test) was used to measure aspects of general intelligence. A Childhood Depression Inventory (CDI) questionnaire was used to assess cognitive, affective, and behavioral signs of depression. A GAITRite Pressure Mapping System analyzed foot function and gait variability by measuring single and double support, cycle time, cadence, toe in/out, and stride length. Significant improvements were evident on the Ravens test and the CDI by the end of the study period. The amount of both single and double support required while completing the walking task also was significantly reduced. Improvements were visible on toe in/out values, cycle time, and cadence. Changes in stride length did not reach statistical significance. These findings support the theory that riding therapy and/or the perception of beat-based rhythms, as experienced by the rider on the horse, stimulates cognition, mood, and gait parameters. In addition, the data also pointed to the potential value of an audiovisual approach to equine therapy.
Buldt, Andrew K; Forghany, Saeed; Landorf, Karl B; Levinger, Pazit; Murley, George S; Menz, Hylton B
2018-03-05
Variations in foot posture, such as pes planus (low medial longitudinal arch) or pes cavus (high medial longitudinal arch) are associated with some lower limb injuries. However, the mechanism that links foot posture to injury is not clear. Research question The aim of this study was to compare plantar pressure between healthy individuals with normal, planus or cavus feet. Ninety-two healthy volunteers (aged 18 to 45) were classified as either normal (n = 35), pes planus (n = 31) or pes cavus (n = 26) based on the Foot Posture Index, Arch Index and normalised navicular height truncated. Barefoot walking trials were conducted using an emed ® -x400 plantar pressure system (Novel GmbH, Munich, Germany). An 11 region mask was used that included the medial heel, lateral heel, midfoot, 1st, 2nd, 3rd, 4th and 5th metatarsophalangeal joints, hallux, 2nd toe, and the 3rd, 4th and 5th toes. Peak pressure, pressure-time integral, maximum force, force-time integral and contact area were calculated for each region. One way analyses of variance and effect sizes were used to compare the three foot posture groups. Overall, the largest differences were between the planus and cavus foot groups in forefoot pressure and force. In particular, peak pressures at the 4th and 5th MTPJs in the planus foot group were lower compared to the normal and cavus foot groups, and displayed the largest effect sizes. Significance This study confirms that foot posture does influence plantar pressures, and that each foot posture classification displays unique plantar pressure characteristics. Copyright © 2018 Elsevier B.V. All rights reserved.
Dynamic legged locomotion in robots and animals
NASA Astrophysics Data System (ADS)
Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl
1995-01-01
This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.
Weakening iliopsoas muscle in healthy adults may induce stiff knee pattern.
Akalan, N Ekin; Kuchimov, Shavkat; Apti, Adnan; Temelli, Yener; Nene, Anand
2016-12-01
The goal of the present study was to investigate the relationship between iliopsoas muscle group weakness and related hip joint velocity reduction and stiff-knee gait (SKG) during walking in healthy individuals. A load of 5% of each individual's body weight was placed on non-dominant thigh of 15 neurologically intact, able-bodied participants (average age: 22.4 ± 0.81 years). For 33 min (135 s × 13 repetitions × 5 s rest), a passive stretch (PS) was applied with the load in place until hip flexor muscle strength dropped from 5/5 to 3+/5 according to manual muscle test. All participants underwent gait analysis before and after PS to compare sagittal plane hip, knee, and ankle kinematics and kinetics and temporo-spatial parameters. Paired t-test was used to compare pre- and post-stretch findings and Pearson correlation coefficient (r) was calculated to determine strength of correlation between SKG parameters and gait parameters of interest (p < 0.05). Reduced hip flexion velocity (mean: 21.5%; p = 0.005) was a contributor to SKG, decreasing peak knee flexion (PKF) (-20%; p = 0.0008), total knee range (-18.9%; p = 0.003), and range of knee flexion between toe-off and PKF (-26.7%; p = 0.001), and shortening duration between toe-off to PKF (-16.3%; p = 0.0005). These findings verify that any treatment protocol that slows hip flexion during gait by weakening iliopsoas muscle may have great potential to produce SKG pattern combined with reduced gait velocity. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
On Heels and Toes: How Ants Climb with Adhesive Pads and Tarsal Friction Hair Arrays.
Endlein, Thomas; Federle, Walter
2015-01-01
Ants are able to climb effortlessly on vertical and inverted smooth surfaces. When climbing, their feet touch the substrate not only with their pretarsal adhesive pads but also with dense arrays of fine hairs on the ventral side of the 3rd and 4th tarsal segments. To understand what role these different attachment structures play during locomotion, we analysed leg kinematics and recorded single-leg ground reaction forces in Weaver ants (Oecophylla smaragdina) climbing vertically on a smooth glass substrate. We found that the ants engaged different attachment structures depending on whether their feet were above or below their Centre of Mass (CoM). Legs above the CoM pulled and engaged the arolia ('toes'), whereas legs below the CoM pushed with the 3rd and 4th tarsomeres ('heels') in surface contact. Legs above the CoM carried a significantly larger proportion of the body weight than legs below the CoM. Force measurements on individual ant tarsi showed that friction increased with normal load as a result of the bending and increasing side contact of the tarsal hairs. On a rough sandpaper substrate, the tarsal hairs generated higher friction forces in the pushing than in the pulling direction, whereas the reverse effect was found on the smooth substrate. When the tarsal hairs were pushed, buckling was observed for forces exceeding the shear forces found in climbing ants. Adhesion forces were small but not negligible, and higher on the smooth substrate. Our results indicate that the dense tarsal hair arrays produce friction forces when pressed against the substrate, and help the ants to push outwards during horizontal and vertical walking.
16 CFR Figures 6 and 7 to Part 1512 - Toe Clearance and Chain Guard Requirements
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Toe Clearance and Chain Guard Requirements 6 Figures 6 and 7 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Figs. 6 and 7 Figures 6 and 7 to Part 1512—Toe...
16 CFR Figures 6 and 7 to Part 1512 - Toe Clearance and Chain Guard Requirements
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Toe Clearance and Chain Guard Requirements 6 Figures 6 and 7 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Figs. 6 and 7 Figures 6 and 7 to Part 1512—Toe...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... the vertical frame, the handling area and the projecting edges or toe plate, and any combination... edge or edges, or toe plate, perpendicular or angled to the vertical frame, at or near the lower section of the vertical frame. The projecting edge or edges, or toe plate, slides under a load for...
Toe-to-hand transfer in symbrachydactyly.
Richardson, Philip W F; Johnstone, Bruce R; Coombs, Christopher J
2004-07-01
Symbrachydactyly, or central atypical cleft, is classified as a failure of formation. For the adactylous or monodactylous forms, free toe transfer is the treatment of choice. We present 18 free toe transfers in 13 patients for symbrachydactyly. Despite abnormal anatomy, the functional building blocks have always been available and transfer technically possible. The result has been improved function and high levels of parental satisfaction.
Persinger, M A; Richards, P M
1995-06-01
A protocol was designed to identify quantitative indicators of the function of the medial surfaces of the cerebral hemispheres. Normative data were collected from 40 volunteers for foot agility, toe gnosis, and toe graphaesthesia. A total of 100 patients (most of whom had been referred for possible closed-head injuries) completed thorough neuropsychological and cognitive assessments. Deficits for toe graphaesthesia were most consistently correlated with general brain impairment and with scores for tasks whose normal performance requires the integrity of structures within the dorsal half of the medial cerebral hemispheres.
Rupture of the extensor hood of the fifth toe: a rare injury.
Venturini, Sara; Gaba, Suchi; Mangwani, Jitendra
2017-02-27
Closed injuries of the extensor hood of the lesser toes are rare and seldom reported in the literature. We present the case of a woman aged 25 years who presented to the orthopaedic fracture clinic with a 2-week history of pain in the left fifth toe and inability to extend following a ballet dancing session. Investigations showed no fracture on plain radiographs, but an ultrasound scan demonstrated rupture to the extensor hood of the little toe. Successful surgical repair of the extensor hood was performed, and the patient made a good recovery with return to dancing activities. 2017 BMJ Publishing Group Ltd.
Plantar-plate disruptions: "the severe turf-toe injury." three cases in contact athletes.
Drakos, Mark C; Fiore, Russell; Murphy, Conor; DiGiovanni, Christopher W
2015-05-01
To present 3 cases of plantar-plate rupture and turf-toe injury in contact athletes at 1 university and to discuss appropriate diagnosis and treatment algorithms for each case. Turf toe is a common injury in athletes participating in outdoor cutting sports. However, it has been used as an umbrella term to describe many different injuries of the great toe. In some cases, the injury can be so severe that the plantar plate and sesamoid apparatus may be ruptured. These patients may be better managed with surgery than with traditional nonoperative interventions. Turf toe, plantar-plate disruption, sesamoid fracture. For stable injuries in which the plantar plate is not completely disrupted, nonoperative treatment with casting or a stiff-soled shoe, gradual weight bearing, and rehabilitation is the best practice. Unstable injuries require surgical intervention and plantar-plate repair. Turf toe and injury to the first metatarsophalangeal joint are relatively common injuries in athletes, but few researchers have detailed the operative and nonoperative treatments of plantar-plate disruption in these patients. We examine 3 cases that occurred over 4 seasons on a collegiate football team. Turf toe represents a wide array of pathologic conditions involving the first metatarsophalangeal joint. Stress and instability testing are key components to assess in determining whether surgical intervention is warranted to restore optimal function. Stiffer-soled shoes or shoes with steel-plate insertions may help to prevent these injuries and are useful tools for protection during the rehabilitation period.
Fiz, Nicolás; Delgado, Diego; Sánchez, Xabier; Sánchez, Pello; Bilbao, Ane Miren; Oraa, Jaime; Sánchez, Mikel
2017-10-01
In some surgical techniques like femoral derotation osteotomy, accuracy is a key factor that often is not optimal because of the lack of appropriate technology. 3D printing is emerging in many professional areas and its use in the medical field may enhance the results of certain surgeries. This case describes a patient who underwent an intramedullary nail fixation to treat a femoral shaft fracture. After nine months, the patient presented hip pain and "in toe" walking caused by a malrotation produced during the surgery. To address the consequent femoral derotation osteotomy, 3D technology was used throughout the whole process. A 3D model of the patient's femur was created to conduct a real and accuracy assessment of femoral anteversion. Then, a customized surgical guide was designed and printed to ensure the proper alignment during surgery. Given the success of this surgery, 3D printing can be considered a quick and inexpensive tool to improve surgical results.
Secondary nerve lengthening to obtain full knee extension in popliteal pterygium syndrome.
Boeckx, Willy; Misani, Marta; Vandermeeren, Liesbeth; Franck, Diane; Zirak, Christophe; Demey, Albert
2014-05-01
Microsurgical nerve lengthening was performed in two siblings presenting a popliteal pterigium syndrome with a knee flexion contracture of 80 degrees. After the first attempt for nerve lengthening and knee extension elsewhere, a repeated lengthening was required due to continuing tip-toe walking and recurrent knee contracture at the age of 3 years. An extensive external and internal interfascicular microsurgical neurolysis resulted in a lengthening of the nerves. A full length of leg procedure had to be performed, inclusive of Achilles tendon lengthening to obtain a complete extension of the knee and a 90-degree ankle flexion. Maintaining the leg in a fully extended position was obtained with a dynamic splinting in the first month after the operation. When timing the operation we have to consider the importance of adequate precision of the microsurgical neurolysis, down to the identification of the Fontana bands, and the adequate postoperative splinting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Aguilar, María Bravo; Abián-Vicén, Javier; Halstead, Jill; Gijon-Nogueron, Gabriel
2016-04-01
To determine the effect kinesiotaping (KT) versus sham kinesiotaping (sham KT) in the repositioning of pronated feet after a short running. Prospective, randomised, double-blinded, using a repeated-measures design with no cross-over. 116 amateur runners were screened by assessing the post-run (45min duration) foot posture to identify pronated foot types (defined by Foot Posture Index [FPI] score of ≥6). Seventy-three runners met the inclusion criteria and were allocated into two treatment groups, KT (n=49) and sham KT (n=24). After applying either the KT or sham KT and completing 45min of running (mean speed of 12km/h), outcome measures were collected (FPI and walking Pedobarography). FPI was reduced in both groups, more so in the KT group (mean FPI between group difference=0.9, CI 0.1-1.9), with a score closer to neutral. There were statistically significant differences between KT and sham KT (p<.05 and p<.01) in pressure time integral, suggesting that sham KT had a greater effect. KT may be of some assistant to clinicians in correction of pronated foot posture in a short-term. There was no effect of KT, however on pressure variables at heel strike or toe-off following a short duration of running, the sham KT technique had a greater effect. Therapy, level 1b. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Balance performance and self-perceived handicap among dizzy patients in primary health care.
Hansson, Eva Ekvall; Månsson, Nils-Ove; Håkansson, Anders
2005-12-01
To study the diagnostic panorama at a primary health care centre where the physiotherapist is specialized in dizziness. To study balance measures of dizzy patients as well as measures of self-perceived handicap and to analyse whether these measures correlate. Retrospective study of computerized medical records. A primary health care centre in Malmö, Sweden. A total of 119 patients with dizziness, 73 women and 46 men, aged from 22 to 90 years. Diagnoses according to specified criteria. Four balance measures: tandem standing, standing on one leg, walking in a figure of eight, and walking heel to toe on a line. The Dizziness Handicap Inventory (DHI). Six different groups of diagnoses were found: multisensory dizziness, peripheral vestibular disorder, dizziness as a symptom caused by whiplash-associated disorder, unspecific dizziness, phobic postural vertigo, and dizziness of cervical origin. The group with multisensory dizziness performed poorer on the balance measures than the other groups. The group with phobic postural vertigo had the highest total scores on DHI, while the vestibular group had the lowest total score. Subjects over 65 years old had more disturbances in balance, but a lower level of self-perceived handicap, than subjects aged 65 or younger. DHI did not correlate with any of the balance measures. Self-perceived handicap, measured with DHI, and disturbed balance measured with clinical methods, do not necessarily correlate. Elderly patients with dizziness seem to have more disturbances in balance than younger patients but a lower level of self-perceived handicap.
The effect of unstable sandals on instability in gait in healthy female subjects.
Price, Carina; Smith, Laura; Graham-Smith, Philip; Jones, Richard
2013-07-01
Unstable footwear generally lacks thorough peer-review published research to support concepts and marketing claims. The purpose of this study was to investigate the instability induced by four (FitFlop, Masai Barefoot Technology, Reebok Easy-Tone and Skechers Tone-Ups) commercially available unstable sandals and one stable control sandal (Earth) in walking in 15 females (mean±SD age was 29±6.7 years, mass 62.6±6.9kg and height 167.1±4.2cm). Three-dimensional motion with synchronised electromyography and kinetic data were collected. Walking speed and step length remained consistent between conditions, however double support time decreased in Masai Barefoot Technology. Centre of pressure data identified no consistent difference between the stable control and the unstable sandals, however Masai Barefoot Technology reduced the anterior-posterior range of centre of pressure. Muscle activity differed significantly at the ankle in the unstable footwear. FitFlop, Reebok and Skechers increased peroneal activity during pre-swing, whereas Masai Barefoot Technology increased medial gastrocnemius and decreased tibialis anterior activity in loading response and mid-stance. The larger rocker sole of the Masai Barefoot Technology altered gait and muscle activation with regard to braking and progression in the sagittal plane. Reebok, Skechers and FitFlop, with softer, less stable foreparts increased evertor action at toe-off, having their effect in the coronal plane. The study highlighted that any instability induced by the shoes is design-specific. Copyright © 2013 Elsevier B.V. All rights reserved.
Adaptive control reduces trip-induced forward gait instability among young adults.
Wang, Ting-Yun; Bhatt, Tanvi; Yang, Feng; Pai, Yi-Chung
2012-04-30
A vital functional plasticity of humans is their ability to adapt to threats to posture stability. The purpose of this study was to investigate adaptation to repeated trips in walking. Sixteen young adults were recruited and exposed to the sudden (electronic-mechanical) release of an obstacle, 11-cm in height, in the path of over ground walking during the mid-to-late left swing phase. Although none of the subjects fell on the first of eight unannounced, consecutive trips, all of them had to rely on compensatory step with a step length significantly longer than their regular to reduce their instability. In the subsequent trials, they were able to rapidly make adaptive adjustments in the control of their center-of-mass (COM) stability both proactively and reactively (i.e., before and after hitting or crossing the obstacle), such that the need for taking compensatory step was substantially diminished. The proactive adaptations included a reduced forward COM velocity that lessened forward instability in mid-to-late stance and an elevated toe clearance that reduced the likelihood of obstacle contact. The reactive adjustments were characterized by improved trunk control (by reducing its forward rotation) and limb support (by increasing hip height), and reduced forward instability (by both the posterior COM shift and the reduction in its forward velocity). These findings suggest that young adults can adapt appropriately to repeated trip perturbations and to reduce trip-induced excessive instability in both proactive and reactive manners. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tsai, Fu-Hsing
2013-01-01
This study developed a game-based formative assessment, called tic-tac-toe quiz for single-player version (TRIS-Q-SP), in an energy education e-learning system. This assessment game combined tic-tac-toe with online assessment, and revised the rule of tic-tac-toe for stimulating students to use online formative assessment actively. Additionally, to…
Sandyk, R
1990-12-01
The syndrome of "painful legs and moving toes" is characterised by spontaneous causalgic pain in the lower extremities associated with peculiar involuntary movements of the toes and feet. It has been observed after a variety of lesions affecting the posterior nerve roots, the spinal ganglia and the peripheral nerves. The pathophysiology of the syndrome is unknown. I report a patient who developed the syndrome during treatment for schizophrenia with the antipsychotic agent molindone hydrochloride. The patient's response to the combination of clonazepam and baclofen suggests that the pathophysiology of the "painful legs and moving toes" may be linked to impairment of spinal serotonergic and GABA functions.
[Therapy of the peromelic form of symbrachydactyly by double second-toe transplantation].
Hülsemann, W; Preisser, P; Habenicht, R; Partecke, B-D
2002-09-01
From 1989 to 2001 eleven children with the peromelic type of symbrachydactyly underwent a staged double second toes transplantation for restoration of two finger rays. The second toe of the feet were transplanted first to the small finger position and in the second step to the thumb position. One failure occurred in the first toe transplantation and another developed a venous thrombosis with partial necrosis and eventually a useless ray. Eight children were reviewed retrospectively in a mean follow-up of 5.3 years. The ability to pinch was restored in four children. In all patients without complications the function of the hand improved and the sensitivity was good.
Elastic modulus of tree frog adhesive toe pads.
Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N
2011-10-01
Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.
When will trends in European mean and heavy daily precipitation emerge?
NASA Astrophysics Data System (ADS)
Maraun, Douglas
2013-03-01
A multi-model ensemble of regional climate projections for Europe is employed to investigate how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation depends on spatial scale. The TOE is redefined for emergence from internal variability only; the spread of the TOE due to imperfect climate model formulation is used as a measure of uncertainty in the TOE itself. Thereby, the TOE becomes a fundamentally limiting timescale and translates into a minimum spatial scale on which robust conclusions can be drawn about precipitation trends. Thus, minimum temporal and spatial scales for adaptation planning are also given. In northern Europe, positive winter trends in mean and heavy precipitation, and in southwestern and southeastern Europe, summer trends in mean precipitation already emerge within the next few decades. However, across wide areas, especially for heavy summer precipitation, the local trend emerges only late in the 21st century or later. For precipitation averaged to larger scales, the trend, in general, emerges earlier.
SPECT (HMPAO) support for activation of the medial prefrontal cortices during toe graphaesthesia.
Persinger, M A; Webster, D; Tiller, S G
1998-08-01
This experiment was designed to test the construct validity of psychometric analyses that suggested a strong functional association between the accuracy for toe graphaesthesia and selective activation of neurons within the medial prefrontal regions. Single Photon Emission Computerized Tomography (SPECT) profiles were obtained for three volunteers (2 men, 1 woman) after they had been exposed to a toe graphaesthesia task or had been exposed to the control setting. The two measurements for each participant were separated by at least one week. Qualitative evaluation, using criteria employed for clinical diagnoses, of serial coronal, sagittal, and horizontal sections clearly indicated a specific increase in uptake of tracer within the rostral one-third to one-half of the medial prefrontal cortices of all three subjects during the toe graphaesthesia task compared to that during baseline conditions. The results are consistent with our neuropsychological research which indicates that toe graphaesthesia may be an accurate and useful indicator of the functional integrity of the medial surfaces of the anterior cerebral hemispheres.
A simplified model for TIG-dressing numerical simulation
NASA Astrophysics Data System (ADS)
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
Plantar-Plate Disruptions: “The Severe Turf-Toe Injury.” Three Cases in Contact Athletes
Drakos, Mark C.; Fiore, Russell; Murphy, Conor; DiGiovanni, Christopher W.
2015-01-01
Objective: To present 3 cases of plantar-plate rupture and turf-toe injury in contact athletes at 1 university and to discuss appropriate diagnosis and treatment algorithms for each case. Background: Turf toe is a common injury in athletes participating in outdoor cutting sports. However, it has been used as an umbrella term to describe many different injuries of the great toe. In some cases, the injury can be so severe that the plantar plate and sesamoid apparatus may be ruptured. These patients may be better managed with surgery than with traditional nonoperative interventions. Differential Diagnosis: Turf toe, plantar-plate disruption, sesamoid fracture. Treatment: For stable injuries in which the plantar plate is not completely disrupted, nonoperative treatment with casting or a stiff-soled shoe, gradual weight bearing, and rehabilitation is the best practice. Unstable injuries require surgical intervention and plantar-plate repair. Uniqueness: Turf toe and injury to the first metatarsophalangeal joint are relatively common injuries in athletes, but few researchers have detailed the operative and nonoperative treatments of plantar-plate disruption in these patients. We examine 3 cases that occurred over 4 seasons on a collegiate football team. Conclusions: Turf toe represents a wide array of pathologic conditions involving the first metatarsophalangeal joint. Stress and instability testing are key components to assess in determining whether surgical intervention is warranted to restore optimal function. Stiffer-soled shoes or shoes with steel-plate insertions may help to prevent these injuries and are useful tools for protection during the rehabilitation period. PMID:25695855
Loh, Charles Yuen Yung; Hsu, Chung-Chen; Lin, Cheng-Hung; Chen, Shih-Heng; Lien, Shwu-Huei; Lin, Chih-Hung; Wei, Fu-Chan; Lin, Yu-Te
2017-04-01
Vascularized toe proximal interphalangeal joint transfer allows the restoration of damaged joints. However, extensor lag and poor arc of motion have been reported. The authors present their outcomes of treatment according to a novel reconstructive algorithm that addresses extensor lag and allows for consistent results postoperatively. Vascularized toe joint transfers were performed in a consecutive series of 26 digits in 25 patients. The average age was 30.5 years, with 14 right and 12 left hands. Reconstructed digits included eight index, 10 middle, and eight ring fingers. Simultaneous extensor reconstructions were performed and eight were centralization of lateral bands, five were direct extensor digitorum longus-to-extensor digitorum communis repairs, and 13 were central slip reconstructions. The average length of follow-up was 16.7 months. The average extension lag was 17.9 degrees. The arc of motion was 57.7 degrees (81.7 percent functional use of pretransfer toe proximal interphalangeal joint arc of motion). There was no significant difference in the reconstructed proximal interphalangeal joint arc of motion for the handedness (p = 0.23), recipient digits (p = 0.37), or surgical experience in vascularized toe joint transfer (p = 0.25). The outcomes of different techniques of extensor mechanism reconstruction were similar in terms of extensor lag, arc of motion, and reconstructed finger arc of motion compared with the pretransfer toe proximal interphalangeal joint arc of motion. With this treatment algorithm, consistent outcomes can be produced with minimal extensor lag and maximum use of potential toe proximal interphalangeal joint arc of motion. Therapeutic, IV.
The development of hoof balance and landing preference in the post-natal period.
Gorissen, B M C; Serra Bragança, F M; Wolschrijn, C F; Back, W; van Weeren, P R
2018-04-20
Foals can follow the herd within hours of birth, but it has been shown that kinetic gait parameters and static balance still have to mature. However, development of dynamic balance has not been investigated. To objectively quantify landing and pressure pattern dynamics under the hoof during the first half year of life. Prospective, cohort study performed at a single stud farm. Pressure plate measurements at walk and trot from ten Dutch warmblood foals during the first 24 weeks of life were used to quantify toe-heel and medial-lateral hoof balance asymmetry indexes and to determine preferred landing strategy. Concurrently, radiographs of the tarsocrural and femoropatellar joints were taken at 4-6 weeks and after 6 months to check for osteochondrosis. A linear mixed model was used to determine the effects of time point, limb pair (front/hind), side (left/right) and osteochondrosis status of every foal. At 25% of stance duration at walk, front limbs were more loaded in the heel region in weeks 6-20 (P≤0.04), the medial-lateral balance was more to the lateral side from week 6 onwards at both walk and trot (P≤0.04). Landing preference gradually changed in the same directions. Variability in pressure distribution decreased over time. (Subclinical) osteochondrosis did not influence any of the measured parameters. This study is limited by the relatively small sample size only containing one breed from a single stud farm. Dynamic hoof balance in new-born foals is more variable and less oriented towards the lateral side of the hoof and to the heel than in mature horses. This pattern changes gradually during the first weeks of life. Knowledge of this process is essential for the clinician when considering interventions in this area in early life. © 2018 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Malik, Raza Naseem; Cote, Rachel; Lam, Tania
2017-01-01
Skilled walking, such as obstacle crossing, is an essential component of functional mobility. Sensorimotor integration of visual and proprioceptive inputs is important for successful obstacle crossing. The objective of this study was to understand how proprioceptive deficits affect obstacle-crossing strategies when controlling for variations in motor deficits in ambulatory individuals with spinal cord injury (SCI). Fifteen ambulatory individuals with SCI and 15 able-bodied controls were asked to step over an obstacle scaled to their motor abilities under full and obstructed vision conditions. An eye tracker was used to determine gaze behaviour and motion capture analysis was used to determine toe kinematics relative to the obstacle. Combined, bilateral hip and knee proprioceptive sense (joint position sense and movement detection sense) was assessed using the Lokomat and customized software controls. Combined, bilateral hip and knee proprioceptive sense in subjects with SCI varied and was significantly different from able-bodied subjects. Subjects with greater proprioceptive deficits stepped higher over the obstacle with their lead and trail limbs in the obstructed vision condition compared with full vision. Subjects with SCI also glanced at the obstacle more frequently and with longer fixation times compared with controls, but this was not related to proprioceptive sense. This study indicates that ambulatory individuals with SCI rely more heavily on vision to cross obstacles and show impairments in key gait parameters required for successful obstacle crossing. Our data suggest that proprioceptive deficits need to be considered in rehabilitation programs aimed at improving functional mobility in ambulatory individuals with SCI. This work is unique since it examines the contribution of combined, bilateral hip and knee proprioceptive sense on the recovery of skilled walking function, in addition to characterizing gaze behavior during a skilled walking task in people with motor-incomplete spinal cord injury. Copyright © 2017 the American Physiological Society.
Walk on Floor Eyes Closed Test as a Measure of Postflight Ataxia
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Fisher, E. A.; Kofman, I. S.; Cerisano, J. M.; Harm, D.L.; Peters, B. T.; Bloomberg, J. J.
2010-01-01
INTRODUCTION: Astronauts returning from space flight universally exhibit impaired posture and locomotion. Measurement of this impairment is an evolving process. The walk on the floor line test with the eyes closed (WOFEC) provides a unique procedure for quantifying postflight ataxia. Data from a modified WOFEC were obtained as part of an ongoing NASA interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate astronaut postflight functional performance. METHODS: Seven astronauts (5 short duration with flights of 12-16 days; 2 long duration crewmembers with flights of 6 months) were tested twice before flight, on landing day (short duration only), and 1, 6, and 30 days after flight. The WOFEC consisted of walking for 10 steps (repeated twice) with the feet heel to toe in tandem, arms folded across the chest and the eyes closed. The performance metric (scored by three examiners from video) was the percentage of correct steps completed over the three trials. A step was not counted as correct if the crewmember sidestepped, opened their eyes, or paused for more than three seconds between steps. RESULTS/ CONCLUSIONS: There was a significant decrease in percentage of correct steps on landing day (short duration crew) and on first day following landing (long duration) with partial recovery the following day, and full recovery beginning on day sixth after flight. Both short and long duration fliers appeared to be unaware of foot position relative to their bodies or the floor. Postflight, deviation from a straight path was common, and the test for two crewmembers elicited motion sickness symptoms. These data clearly demonstrate the sensorimotor challenges facing crewmembers after returning from spaceflight. The WOFEC test has value providing the investigator or crew surgeon with a simple method to quantify vestibular ataxia, as well as providing instant feedback of postural ataxia without the use of complex test equipment.
Hellberg, Matthias; Höglund, Peter; Svensson, Philippa; Abdulahi, Huda; Clyne, Naomi
2017-07-01
Physical performance in chronic kidney disease affects morbidity and mortality. The aim was to find out which measures of physical performance are important in chronic kidney disease (CKD) and if there are associations with declining measured glomerular filtration rate (GFR). Endurance was assessed by 6 min walk test (6-MWT) and stair climbing, muscular endurance by 30 s sit to stand, heel rises and toe lifts, strength by quadriceps- and handgrip-strength, balance by functional reach and Berg's balance scale, and fine motor skills by Moberg's picking-up test. GFR was measured by Iohexol clearance. The study comprised 101 patients with CKD 3b-5 not started dialysis, 40 women and 61 men, with a mean age of 67 ± 13 (range: 22 - 87) years. All measures of physical performance were impaired. A decrease in GFR of 10 mL/min per 1.73 m 2 corresponded to a 35 metre shorter walking distance in the 6-MWT. Multivariable linear regression analysis showed significant relationships between decline in GFR and the 6-MWT (P = 0.04), isometric quadriceps strength left (P = 0.04), balance measured as functional reach (P = 0.02) and fine motor skills in the left hand as measured by Moberg's picking-up test (P = 0.01), respectively, after sex, age, comorbidity and the interaction between sex and age had been taken into account. Endurance, muscular endurance, strength, balance and fine motor skills were impaired in patients with CKD 3b-5. Walking capacity, isometric quadriceps strength, balance, and fine motor skills were associated with declining GFR. The left extremities were more susceptible to GFR, ageing and comorbidities and seem thus to be more sensitive. © 2016 Asian Pacific Society of Nephrology.
NASA Technical Reports Server (NTRS)
Fisher, E. A.; Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.; Harm, D. L.
2010-01-01
INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postflight ataxia can be quantified easily by using the walk on the floor line test with the eyes closed (WOFEC). Data from a modified WOFEC were obtained as part of an ongoing interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both postflight functional performance of astronauts and related physiological changes. METHODS Five astronauts with flight durations of 12 to 16 days participated in this study. Performance measurements were obtained in 2 preflight sessions, on landing day, and 1, 6, and 30 days after landing. The WOFEC test consisted of walking with the feet placed heel to toe in tandem, arms folded across the chest and eyes closed, for 10 steps. A trial was initiated after the eyes were closed and the front foot was aligned with the rear foot. The performance metric was the average percentage of correct steps completed over 3 trials. A step was not counted as correct if the crewmember sidestepped, opened eyes, or paused for more than 3 seconds between steps. Step accuracy was scored independently by 3 examiners. RESULTS Immediately after landing subjects seemed to be unaware of their foot position relative to their body or the floor. The percentage of correct steps was significantly decreased on landing day. Partial recovery was observed the next day, and full recovery to baseline on the sixth day post landing. CONCLUSION These data clearly demonstrate the sensorimotor challenges facing crewmembers after they return from space flight. Although this simple test is intended to complement the FTT battery of tests, it has some stand-alone value as it provides investigators with a means to quantify vestibular ataxia as well as provide instant feedback on postural stability without the use of complex test equipment.
Kanagala, P; Bradley, C; Hoffman, P; Steeds, R P
2011-10-01
The clinical utility of transoesophageal echocardiography (TOE) is well established. Being a semi-invasive procedure, however, the potential for transmission of infection between sequential patients exists. This has implications for the protection of both patients and medical staff. Guidelines for disinfection during gastrointestinal endoscopy (GIE) have been in place for many years.(1,2) Unfortunately, similar guidance is lacking with respect to TOE. Although traversing the same body cavities and sharing many similarities with upper GIE, there are fundamental structural and procedural differences with TOE which merit special consideration in establishing a decontamination protocol. This document provides recommendations for TOE probe decontamination based on the available evidence, expert opinion, and modification of the current British Society of Gastroenterology guidelines.
Kim, Eunkuk; Choi, Hokyung; Cha, Jung-Hoon; Park, Jong-Chul; Kim, Taegyu
2017-01-01
The aims of this study were to investigate the ankle position, the changes and persistence of ankle kinematics after neuromuscular training in athletes with chronic ankle instability (CAI). A total of 21 national women’s field hockey players participated (CAI = 12, control = 9). Ankle position at heel strike (HS), midstance (MS), and toe touch (TT) in the frontal plane during walking, running and landing were measured using 3D motion analysis. A 6-week neuromuscular training program was undertaken by the CAI group. Measurements of kinematic data for both groups were measured at baseline and the changes in kinematic data for CAI group were measured at 6 and 24 weeks. The kinematic data at HS during walking and running demonstrated that the magnitude of the eversion in the CAI group (−5.00° and −4.21°) was less than in the control group (−13.45°and −9.62°). The kinematic data at MS also exhibited less ankle eversion in the CAI group (−9.36° and −8.18°) than in the control group (−18.52° and −15.88°). Ankle positions at TT during landing were comparable between groups. Following the 6-week training, the CAI participants demonstrated a less everted ankle at HS during walking and running (−1.77° and −1.76°) compared to the previous positions. They also showed less ankle eversion at MS (−5.14° and −4.19°). Ankle orientation at TT changed significantly to an inverted ankle position (from −0.26° to 4.11°). The ankle kinematics were restored back to the previous positions at 24 weeks except for landing. It appeared that athletes with unstable ankle had a relatively inverted ankle position, and that 6-week neuromuscular training had an immediate effect on changing ankle orientation toward a less everted direction. The changed ankle kinematics seemed to persist during landing but not during walking and running. Key points Athletes with unstable ankles had a relatively inverted ankle position during the initial contact and midstance. Six-week neuromuscular training for unstable ankles had an immediate effect on changing ankle orientation toward a relatively more inverted direction. The changed ankle kinematics persisted during jump landing but not during walking and running. PMID:28344462
NASA Astrophysics Data System (ADS)
McColl, Samuel; Holdsworth, Charlotte; Massey, Chris
2017-04-01
New Zealand has 7000 mapped large (> 2 ha) landslides, most of which occur in the Neogene cover rocks, and many of which are active. Active landslides in New Zealand damage lifeline infrastructure, entire suburbs, agricultural land, and they deliver large but little-quantified sediment load to rivers. Despite their prevalence in the landscape and these impacts, much remains unknown of their initiation, movement patterns and processes, or their contributions to landscape evolution. This research assesses how toe cutting and rainfall at a daily to seasonal timescale drive movement of a large (50 hectare) slow-moving, translational rockslide that is severely damaging a farm in the Rangitikei catchment, central North Island. Geomorphological mapping has been undertaken to define the landslide boundary, drainage lines and to assess zones of movements. Since July 2015, 3-monthly GPS-occupations of a survey mark network, and hourly time-lapse photography of the toe of the landslide have been used to identify the distribution and patterns of landslide movement. Pixel-tracking software is being used to quantify movement at the toe from the time-lapse photography at an daily timescale. Movement data are being compared with river flow data (i.e. toe cutting potential) and local rainfall and groundwater from a nearby site (i.e. a proxy for porewater-pressure changes at the landslide). Results so far indicate movement of several mm to cm per year in the upper part of the landslide through a block sliding mechanism, increasing to several metres per year towards the toe where block-sliding transitions sharply to more mobile earth flow-slide behaviour. In the upper part of the landslide, vertical displacements are larger closer to earth flow-slide zone, expressed as decimetre to metre-scale scarps and mini-grabens. The failure surface is exposed at the toe, which is being actively cut by a major river, and reveals a highly remoulded landslide body 1-3 metres thick, overlaying intact sandstone. Based on existing structural data and the landslide surface morphology it is assumed that the landslide thickens to about 60 m towards the head. The geomorphology suggests extension and thinning of the landslide body - which corroborates the movement data showing movement rates at the head (mm per year) increasing downslope to some metres per year at the toe - and without a zone of compression at the toe, suggesting near-continuous toe-unloading. Movement is fastest in the winter-spring months when water tables are high due to reduced evapotranspiration and slightly greater rainfall. However, this period also coincides with a period of higher river flow and flood events (i.e. toe cutting), and the landslide appears to be particularly sensitive (i.e. surges forward) following high river flow events that cut the toe. This observation suggests that movement is driven by both local and catchment-scale rainfall events.
A systematic review of discomfort due to toe or ear clipping in laboratory rodents
Geessink, Florentine J.; Brouwer, Michelle A. E.; Tillema, Alice; Ritskes-Hoitinga, Merel
2017-01-01
Toe clipping and ear clipping (also ear notching or ear punching) are frequently used methods for individual identification of laboratory rodents. These procedures potentially cause severe discomfort, which can reduce animal welfare and distort experimental results. However, no systematic summary of the evidence on this topic currently exists. We conducted a systematic review of the evidence for discomfort due to toe or ear clipping in rodents. The review methodology was pre-specified in a registered review protocol. The population, intervention, control, outcome (PICO) question was: In rodents, what is the effect of toe clipping or ear clipping, compared with no clipping or sham clipping, on welfare-related outcomes? Through a systematic search in PubMed, Embase, Web of Science and grey literature, we identified seven studies on the effect of ear clipping on animal welfare, and five such studies on toe clipping. Studies were included in the review if they contained original data from an in vivo experiment in rodents, assessing the effect of toe clipping or ear clipping on a welfare-related outcome. Case studies and studies applying unsuitable co-interventions were excluded. Study quality was appraised using an extended version of SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE)’s risk of bias tool for animal studies. Study characteristics and outcome measures were highly heterogeneous, and there was an unclear or high risk of bias in all studies. We therefore present a narrative synthesis of the evidence identified. None of the studies reported a sample size calculation. Out of over 60 different outcomes, we found evidence of discomfort due to ear clipping in the form of increased respiratory volume, vocalization and blood pressure. For toe clipping, increased vocalization and decreased motor activity in pups were found, as well as long-term effects in the form of reduced grip strength and swimming ability in adults. In conclusion, there is too little evidence to reliably assess discomfort due to toe or ear clipping, and the quality of the available evidence is uncertain. Adequately powered, high-quality studies reporting reliable, relevant outcome measures are needed to accurately assess the impact of these identification techniques. Until more reliable evidence is available, any effect of toe clipping or ear clipping on animal welfare and study results cannot be confirmed or excluded. PMID:28429644
Teng, P S P; Kong, P W; Leong, K F
2017-06-01
Non-contact anterior cruciate ligament (ACL) injuries commonly occur when athletes land in high risk positions such as knee valgus. The position of the foot at landing may influence the transmission of forces from the ankle to the knee. Using an experimental approach to manipulate foot rotation positions, this study aimed to provide new insights on how knee valgus during single-leg landing may be influenced by foot positions. Eleven male recreational basketball players performed single-leg drop landings from a 30-cm high platform in three foot rotation positions (toe-in, toe-forward and toe-out) at initial contact. A motion capture system and a force plate were used to measure lower extremity kinematics and kinetics. Knee valgus angles at initial contact (KVA) and maximum knee valgus moments (KVM), which were known risk factors associated with ACL injury, were measured. A one-way repeated measures Analysis of Variance was conducted (α=0.05) to compare among the three foot positions. Foot rotation positions were found to have a significant effect on KVA (p<0.001, η 2 =0.66) but the difference between conditions (about 1°) was small and not clinically meaningful. There was a significant effect of foot position on KVM (p<0.001, η 2 =0.55), with increased moment observed in the toe-out position as compared to toe-forward (p=0.012) or toe-in positions (p=0.002). When landing with one leg, athletes should avoid extreme toe-out foot rotation positions to minimise undesirable knee valgus loading associated with non-contact ACL injury risks. Copyright © 2017 Elsevier B.V. All rights reserved.
Point Judith, Rhode Island, Breakwater Risk Assessment
2015-08-01
output stations. Beach zones considered included the sandy beach to the west side of the HoR, which had significant dune features and was fronting...time dependency for crest height and wave parameters is assumed, hc = total damaged crest height of structure from toe , Lp is the local wave length...computed using linear wave theory and Tp, h is the toe depth, hc’ = total undamaged crest height of structure from toe , At = area of structure enclosed
Toe pressure determination by audiophotoplethysmography.
Fronek, A; Blazek, V; Curran, B
1994-08-01
The purpose of this study was to evaluate the performance of audiophotoplethysmography as a modality to measure toe pressure without the requirement of a recorder. A portable photoplethysmograph with an audio output was used to determine toe pressures, and the results were compared with those obtained by a commercial photoplethysmograph with a recorder. Thirty-one measurements in control subjects and 62 measurements in patients with arterial occlusive disease were performed. The average toe pressure recorded with oscillography with standard photoplethysmography was 103.5 mm Hg +/- 14.7 SD and 95.9 mm Hg +/- 13.4 SD with audio-photoplethysmography. In the patient group the pressure recorded with a commercial photoplethysmograph was 65.3 mm Hg +/- 34.9 SD compared with 61.6 mm Hg +/- 34.8 SD obtained with audio-photoplethysmography. The difference in both groups was insignificant, and the correlation between both methods was very good. A portable hand-held photoplethysmograph equipped with an audio output was used to measure toe pressure in control subjects and in patients with arterial occlusive disease. The results have been compared with the oscillometric method by a standard commercial photoplethysmograph connected to a recorder. The correlation was very good in the control and patient groups, and the difference between both methods was below the level of statistical significance. The fact that no recorder is needed may help in introducing toe pressure measurement into everyday office diagnostic practice.
In-toeing in children with type I osteogenesis imperfecta: an observational descriptive study.
Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Salvadores Fuentes, Paloma
2009-01-01
Osteogenesis imperfecta is an autosomal-dominant disorder of the connective tissue. Also known as brittle bone disease, it renders those affected susceptible to fractures after minimal trauma. Therefore, it is important to minimize the risk of falls and subsequent fractures in patients with this disease. In-toeing is a common condition in children that can result from various pathologic entities, including anteversion, internal tibial torsion, and metatarsus adductus. These conditions can result in frequent tripping and other functional problems. A descriptive study was undertaken to determine the prevalence of in-toeing gait attributable to tibial or femoral torsion or metatarsus adductus in children with type I osteogenesis imperfecta. The study involved orthopedic and biomechanical examination of 15 children (9 girls and 6 boys) aged 4 to 9 years with confirmed type I osteogenesis imperfecta. Patients who used assistive ambulatory devices, such as canes, crutches, and wheelchairs, were excluded from the study. Of the 15 children studied, 12 (80%) demonstrated previously undiagnosed in-toeing gait attributable to torsional deformity or metatarsus adductus in all but one child. Many children with confirmed type I osteogenesis imperfecta have in-toeing gait caused by torsional deformity or metatarsus adductus. Detection and control of in-toeing gait in children with osteogenesis imperfecta is important to prevent fractures resulting from trauma directly related to these conditions.
... Hammertoe What Is Hammertoe? Hammertoe is a contracture (bending) deformity of one or both joints of the ... third, fourth or fifth (little) toes. This abnormal bending can put pressure on the toe when wearing ...
When at what scale will trends in European mean and heavy precipitation emerge
NASA Astrophysics Data System (ADS)
Maraun, Douglas
2013-04-01
A multi-model ensemble of regional climate projections for Europe is employed to investigate how the time of emergence (TOE) for seasonal sums and maxima of daily precipitation depends on spatial scale. The TOE is redefined for emergence from internal variability only, the spread of the TOE due to imperfect climate model formulation is used as a measure of uncertainty in the TOE itself. Thereby the TOE becomes a fundamentally limiting time scale and translates into a minimum spatial scale on which robust conclusions can be drawn about precipitation trends. Thus also minimum temporal and spatial scales for adaptation planning are given. In northern Europe, positive winter trends in mean and heavy precipitation, in southwestern and southeastern Europe summer trends in mean precipitation emerge already within the next decades. Yet across wide areas, especially for heavy summer precipitation, the local trend emerges only late in the 21st century or later. For precipitation averaged to larger scales, the trend in general emerges earlier. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.
Cavallo, A V; Smith, P J; Morley, S; Morsi, A W
2003-12-01
Many options of varying complexity are available for the management of congenital short digits resulting from aphalangia in symbrachydactyly and constriction ring syndrome. We have used non-vascularized free toe phalanx transfers for these children when a vascularized toe transfer has been contraindicated. We describe our technique and experience with 22 children who underwent a total of 64 transfers of the proximal (35) or middle (29) toe phalanges (average 3 per child). The mean age at initial surgery was 15 months, and the mean follow-up was 5 years. Duration of time until epiphyseal closure could not be determined accurately, but total digital elongation averaged 6mm. Complications of this technique include joint instability, premature epiphyseal closure and, in one patient, infection and graft loss. Donor site deformity was determined according to measured growth deficit and toe function. This technique is a simple option for digital elongation and, if performed in the appropriate age group in short fingered and monodactylous subtypes of symbrachydactyly, has the potential to allow growth and function with minimal donor site deficit.
Alarm toe switch. [Patent application
Ganyard, F.P.
1980-11-18
An alarm toe switch inserted within a shoe for energizing an alarm circuit in a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch.
Verma, Vineet; Batra, Amit; Singla, Rohit; Gogna, Paritosh; Magu, Narender; Gupta, Rakesh
2014-02-01
Longitudinal bracketed epiphysis (delta phalanx) is a rare congenital anomaly that affects phalanges in the hand more commonly than toes. We present a rare case of congenital hallux varus with longitudinal bracketed epiphysis of proximal phalanx with bifid distal phalanx of the great toe, which was managed with monorail type of external fixator. To the best of our knowledge, this is the first report of its successful implementation in simultaneous treatment of longitudinal bracketed epiphysis of the proximal phalanx of the great toe and hallux varus. Apart from adding to the literature a case of rare subtype of delta phalanx with hallux varus, the present study highlights the role of a reliable alternative in its management.
... coldness in your foot, or your toes look dark. You cannot move your toes. You have increased ... to the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein ...
2013-06-01
outer bank threatened a Fed- eral levee that protects adjacent homes and farmland. The eroded chute bank approached the toe of the levee causing...design drawing for repairing the levee toe . Approximately 30,000 tons of riprap were placed to re-establish the bank in front of the scour hole...Sediment was needed to fill and stabilize the scour hole between the riprap bank and the toe of the levee. The volume required to fill the scour hole
Dune Erosion Models and Swash Zone Kinematics from Remote Video Observations
2010-12-09
system. Thus, successful prediction of dune erosion requires knowledge of the expected trajectory of the eroding dune toe . If we describe the... dune toe trajectory as following a slope, βT, two end member retreat trajectories exist. The first would be direct landward erosion so that zb never...changes 0 0 T bb ztz (2.24) The second end member trajectory is that erosion moves the dune toe directly up the foreshore slope
2011-06-17
collected in the berm area. In the control areas, surface sediment samples were taken at approximately the toe of the dune (where present...In the berm area, surface sediment samples were taken at approximately the toe of the dune (where 29 present), backbeach, high tide line, mean...samples were taken at approximately the toe of the dune (where present), backbeach, high tide line, mean sea level, low tide line, 2 ft water depth
Interventions for treating osteoarthritis of the big toe joint.
Zammit, Gerard V; Menz, Hylton B; Munteanu, Shannon E; Landorf, Karl B; Gilheany, Mark F
2010-09-08
Osteoarthritis affecting of the big toe joint of the foot (hallux limitus or rigidus) is a common and painful condition. Although several treatments have been proposed, few have been adequately evaluated. To identify controlled trials evaluating interventions for osteoarthritis of the big toe joint and to determine the optimum intervention(s). Literature searches were conducted across the following electronic databases: CENTRAL; MEDLINE; EMBASE; CINAHL; and PEDro (to 14th January 2010). No language restrictions were applied. Randomised controlled trials, quasi-randomised trials, or controlled clinical trials that assessed treatment outcomes for osteoarthritis of the big toe joint. Participants of any age or gender with osteoarthritis of the big toe joint (defined either radiographically or clinically) were included. Two authors examined the list of titles and abstracts identified by the literature searches. One content area expert and one methodologist independently applied the pre-determined inclusion and exclusion criteria to the full text of identified trials. To minimise error and reduce potential bias, data were extracted independently by two content experts. Only one trial satisfactorily fulfilled the inclusion criteria and was included in this review. This trial evaluated the effectiveness of two physical therapy programs in 20 individuals with osteoarthritis of the big toe joint. Assessment outcomes included pain levels, big toe joint range of motion and plantar flexion strength of the hallux. Mean differences at four weeks follow up were 3.80 points (95% CI 2.74 to 4.86) for self reported pain, 28.30 degrees (95% CI 21.37 to 35.23) for big toe joint range of motion, and 2.80 kg (95% CI 2.13 to 3.47) for muscle strength. Although differences in outcomes between treatment and control groups were reported, the risk of bias was high. The trial failed to employ appropriate randomisation or adequate allocation concealment, used a relatively small sample and incorporated a short follow up (four weeks). No adverse reactions were reported. The reviewed trial presented a high risk of bias, which limited conclusions that could be drawn from the presented data. The inclusion of only one trial indicates the need for more robust randomised controlled trials to determine the efficacy of interventions for this condition.
Khan, Saad Jawaid; Khan, Soobia Saad; Usman, Juliana; Mokhtar, Abdul Halim; Abu Osman, Noor Azuan
2018-02-01
This study aims to investigate the effects of varying toe angles at different platform settings on Overall Stability Index of postural stability and fall risk using Biodex Balance System in healthy participants and medial knee osteoarthritis patients. Biodex Balance System was employed to measure postural stability and fall risk at different foot progression angles (ranging from -20° to 40°, with 10° increments) on 20 healthy (control group) and 20 knee osteoarthritis patients (osteoarthritis group) randomly (age: 59.50 ± 7.33 years and 61.50 ± 8.63 years; body mass: 69.95 ± 9.86 kg and 70.45 ± 8.80 kg). Platform settings used were (1) static, (2) postural stability dynamic level 8 (PS8), (3) fall risk levels 12 to 8 (FR12) and (4) fall risk levels 8 to 2 (FR8). Data from the tests were analysed using three-way mixed repeated measures analysis of variance. The participant group, platform settings and toe angles all had a significant main effect on balance ( p ≤ 0.02). Platform settings had a significant interaction effect with participant group F(3, 144) = 6.97, p < 0.01 and toe angles F(21, 798) = 2.83, p < 0.01. Non-significant interactions were found for group × toe angles, F(7, 266) = 0.89, p = 0.50, and for group × toe angles × settings, F(21, 798) = 1.07, p = 0.36. The medial knee osteoarthritis group has a poorer postural stability and increased fall risk as compared to the healthy group. Changing platform settings has a more pronounced effect on balance in knee osteoarthritis group than in healthy participants. Changing toe angles produced similar effects in both the participant groups, with decreased stability and increased fall risk at extreme toe-in and toe-out angles.
Toe and Metatarsal Fractures (Broken Toes)
... badly displaced. Follow-up care. Your foot and ankle surgeon will provide instructions for care following surgical or nonsurgical treatment. Physical therapy, exercises and rehabilitation may be included in a schedule for return ...
... second toe is a result of abnormal foot mechanics, where the ball of the foot beneath the ... options for early treatment of capsulitis: Rest and ice. Staying off the foot and applying ice packs ...
... causing: Pain Irritation Sores Problems finding shoes that fit Skin infections Surgery may not be advised if: Treatment with paddings and strapping works You can still straighten your toe Changing to different shoe types can alleviate symptoms
Hamatani, Masako; Mori, Taketoshi; Oe, Makoto; Noguchi, Hiroshi; Takehara, Kimie; Amemiya, Ayumi; Ohashi, Yumiko; Ueki, Kohjiro; Kadowaki, Takashi; Sanada, Hiromi
2016-11-01
The aim of this study is to identify whether plantar shear stress in neuropathic patients with diabetes with callus is increased compared with those without callus. The differences in foot deformity, limited joint mobility, repetitive stress of walking, and ill-fitting shoes between patients with callus and those without callus were also determined. Subjects were recruited from the Diabetic Foot Outpatient Clinic. A newly developed in-shoe measurement system, which has flexible and thin insoles, enabled measurement of both plantar pressure and shear stress simultaneously when subjects walked as usual on a 10 m walkway. It was found that plantar shear stress adjusted for weight during the push-off phase was increased by 1.32 times in patients with callus compared with those without callus (mean ± SD: 0.0500 ± 0.0160 vs 0.0380 ± 0.0144, P = .031). Moreover, hallux valgus deformity, reduction in dorsiflexion of the ankle joint and increase in plantar flexion were showed in feet with callus. Increased plantar shear stress may be caused by gait change that patients having callus push off with the metatarsal head instead of the toe as a result of foot deformity and limited joint mobility. It was found that plantar shear stress adjusted for weight during the push-off phase was increased in patients with callus compared with those without callus by using the newly developed measurement system. These results suggest that reduction of plantar shear stress during the push-off phase can prevent callus formation in neuropathic patients with diabetes. © 2016 Diabetes Technology Society.
Akkus, Gamze; Evran, Mehtap; Gungor, Dilek; Karakas, Mehmet; Sert, Murat; Tetiker, Tamer
2016-01-01
Impaired cellular immunity and reduced phagocytic function of polymorphonuclear leukocytes facilitate the development of skin fungal and bacterial infections due to uncontrolled hyperglycemia in diabetic patients. In our study, we aimed to assess onychomycosis and/or tinea pedis frequency in diabetic patients, and effects on the development of chronic complications, particularly foot ulcer. We included 227 diabetic patients in the study. Forty-three patients had diabetic foot ulcer. We screened and recorded demographic characteristics, HbA1c levels of patients, and presence of complications We examined patients dermatologically, and collected samples by scalpel from skin between toes, and from sole, toe nail, and area surrounding nails from suspected to have fungal infection. Native positivity between toes was higher in men compared to women (p<0.05). We obtained significant relation between HbA1c elevation and native positivity between toes (p<0.05). Fungal infection between toes, at sole and toe nail significantly increased in patients with diabetic foot ulcer compared to patients without diabetic foot ulcer (p<0.05). Moreover, native positivity in patients with diabetic foot ulcer correlated with presence of fungal infection examination findings (p<0.05). Fungal infections were more frequently observed in the presence of poor glycemic control and peripheral vascular disease in diabetic patients in compliance with the literature, and the presence of fungal infection may also responsible for the development of foot ulcers.
Akkus, Gamze; Evran, Mehtap; Gungor, Dilek; Karakas, Mehmet; Sert, Murat; Tetiker, Tamer
2016-01-01
Objective: Impaired cellular immunity and reduced phagocytic function of polymorphonuclear leukocytes facilitate the development of skin fungal and bacterial infections due to uncontrolled hyperglycemia in diabetic patients. In our study, we aimed to assess onychomycosis and/or tinea pedis frequency in diabetic patients, and effects on the development of chronic complications, particularly foot ulcer. Methods: We included 227 diabetic patients in the study. Forty-three patients had diabetic foot ulcer. We screened and recorded demographic characteristics, HbA1c levels of patients, and presence of complications We examined patients dermatologically, and collected samples by scalpel from skin between toes, and from sole, toe nail, and area surrounding nails from suspected to have fungal infection. Results: Native positivity between toes was higher in men compared to women (p<0.05). We obtained significant relation between HbA1c elevation and native positivity between toes (p<0.05). Fungal infection between toes, at sole and toe nail significantly increased in patients with diabetic foot ulcer compared to patients without diabetic foot ulcer (p<0.05). Moreover, native positivity in patients with diabetic foot ulcer correlated with presence of fungal infection examination findings (p<0.05). Conclusion: Fungal infections were more frequently observed in the presence of poor glycemic control and peripheral vascular disease in diabetic patients in compliance with the literature, and the presence of fungal infection may also responsible for the development of foot ulcers. PMID:27648034
Experimental wave attenuation study over flexible plants on a submerged slope
NASA Astrophysics Data System (ADS)
Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang
2017-12-01
Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.
Fatigue Magnification Factors of Arc-Soft-Toe Bracket Joints
NASA Astrophysics Data System (ADS)
Fu, Qiang; Li, Huajun; Wang, Hongqing; Wang, Shuqing; Li, Dejiang; Li, Qun; Fang, Hui
2018-06-01
Arc-soft-toe bracket (ASTB), as a joint structure in the marine structure, is the hot spot with significant stress concentration, therefore, fatigue behavior of ASTBs is an important point of concern in their design. Since macroscopic geometric factors obviously influence the stress flaws in joints, the shapes and sizes of ASTBs should represent the stress distribution around cracks in the hot spots. In this paper, we introduce a geometric magnification factor for reflecting the macroscopic geometric effects of ASTB crack features and construct a 3D finite element model to simulate the distribution of stress intensity factor (SIF) at the crack endings. Sensitivity analyses with respect to the geometric ratio H t / L b , R/ L b , L t / L b are performed, and the relations between the geometric factor and these parameters are presented. A set of parametric equations with respect to the geometric magnification factor is obtained using a curve fitting technique. A nonlinear relationship exists between the SIF and the ratio of ASTB arm to toe length. When the ratio of ASTB arm to toe length reaches a marginal value, the SIF of crack at the ASTB toe is not influenced by ASTB geometric parameters. In addition, the arc shape of the ASTB slope edge can transform the stress flowing path, which significantly affects the SIF at the ASTB toe. A proper method to reduce stress concentration is setting a slope edge arc size equal to the ASTB arm length.
Thermographic Patterns of the Upper and Lower Limbs: Baseline Data
Cassar, Kevin; Camilleri, Kenneth P.; De Raffaele, Clifford; Mizzi, Stephen; Cristina, Stefania
2015-01-01
Objectives. To collect normative baseline data and identify any significant differences between hand and foot thermographic distribution patterns in a healthy adult population. Design. A single-centre, randomized, prospective study. Methods. Thermographic data was acquired using a FLIR camera for the data acquisition of both plantar and dorsal aspects of the feet, volar aspects of the hands, and anterior aspects of the lower limbs under controlled climate conditions. Results. There is general symmetry in skin temperature between the same regions in contralateral limbs, in terms of both magnitude and pattern. There was also minimal intersubject temperature variation with a consistent temperature pattern in toes and fingers. The thumb is the warmest digit with the temperature falling gradually between the 2nd and the 5th fingers. The big toe and the 5th toe are the warmest digits with the 2nd to the 4th toes being cooler. Conclusion. Measurement of skin temperature of the limbs using a thermal camera is feasible and reproducible. Temperature patterns in fingers and toes are consistent with similar temperatures in contralateral limbs in healthy subjects. This study provides the basis for further research to assess the clinical usefulness of thermography in the diagnosis of vascular insufficiency. PMID:25648145
Effect of Guci powder on toe swelling induced by egg white in rats
NASA Astrophysics Data System (ADS)
Xie, Guoqi; Hao, Shaojun; Shen, Huiling; Ma, Zhenzhen; Zhang, Xuehui; Zhang, Zhengchen
2018-04-01
To observe the effect of Guci Powder on foot swelling induced by egg white in rats. 50 male rats were randomly divided into normal saline group (n=10), white vinegar group (n=10) and Guning lotion group (n=10). There were 10 rats in the high-dose group and 10 in the low-dose group. The rats in each group were treated with the drug on the left and right feet of the rats. 0.5 hours after the last administration, the rats in each group were inflamed. The left hindsole plantar volume was measured respectively, so that the difference of the posterior toe volume before inflammation was taken as the swelling degree, and the swelling degree of each group was calculated. Compared with physiological saline group, the rats' egg white toe swelling (P<0.01) was significantly inhibited at 0.5˜6h after administration. The swelling of egg white toe in rats was inhibited at 0.5˜2h (P<0.05). Bone spur powder has a good intervention effect on the model of toe swelling induced by egg white in rats, and the external application of bone spur powder has anti-inflammatory and swelling effect.
Reynolds, Jamie; Skandan, Savitri P
2016-03-01
Acrometastasis as initial presentation of metastatic cancer is an extremely rare finding. We describe an unusual case of late-stage non-small-cell lung cancer with metastatic lesions to the great toe and index fnger with associated pain in those areas as the only presenting symptom. A 71-year-old white woman was referred to the emergency department by her primary care physician for necrosis and swelling of the left great toe for work-up of possible osteomyelitis (Figure 1). Before she presented to her physician, she had been complaining of severe pain, swelling, and erythema of the left great toe that had lasted for 1-2 months. Infection was initially suspected. She completed 2 courses of oral antibiotics with no improvement. She was also complaining of similar symptoms on the left index finger and attributed her symptoms to an injury a month earlier (Figure 2). The pain was so severe that she was not able to bear weight on her left foot. An outpatient X-ray of her left great toe raised her physician's concerns that it might be osteomyelitis so she was referred to the emergency department. ©2016 Frontline Medical Communications.
González-Durán, Gustavo A
2016-01-18
I describe a new species of a small-sized frog of the genus Pristimantis found in the paramo ecosystem (3700 masl) on the northern slope of Los Nevados National Park, Cordillera Central, department of Caldas, Colombia. This new species is assigned to the Pristimantis leptolophus species-group, given that Toe V is much longer than Toe III and extends to the distal edge of the distal subarticular tubercle on Toe IV. The new species differs from other taxa by its dorsal golden or yellowish color patterns, the absence of nuptial pads, lateral fringes on its fingers and toes, and the absence of vomerine odontophores. Discriminant analyses of morphometric characters of females of P. leptolophus, P. uranobates, and the new species separate the new species by snout-vent length, tibia length, eye diameter, eye-to-nostril distance, tympanum diameter, and length of toe III. Vomer terms frequently used to describe species are reviewed, such as the oblique keels of the vomer and the different forms of the dentigerous process. Species belonging to the high Andean Pristimantis leptolophus species-group are allopatric, suggesting vicariant speciation in different areas of the paramos.
Taniguchi, Seira; Peper, Ferdinand; Shimokawa, Tetsuya
2018-05-01
[Purpose] This study investigates two types of toe tapping, i.e., "closed," with both feet on the floor, and "open," in which the foot does not touch the ground, and evaluates their usefulness in combination with monitoring of muscle activity during toe tapping. [Subjects and Methods] The study enrolled 11 patients with Parkinson's disease (PD) and 9 controls (Controls). The tibialis anterior (TA) and gastrocnemius (GS) muscle activity during toe tapping was measured using surface electromyography. [Results] In closed tapping, the minima in GS activation with the first tap was significantly higher in patients with PD than in Controls. In open tapping, the coefficient of variation (CV) of local maxima in TA activation was significantly higher in patients with PD than in Controls. In both types of tapping, the CV of extrema in GS activities increased with disease duration, but this may be due to the long-term administration of Levodopa, which itself tends to cause excessive GS activities. [Conclusion] Closed tapping is suitable for the assessment of GS activity and can detect excessive activities, which is observed as visible movement. Open tapping, on the other hand, is suitable for assessment of TA activity.
[Lesser toe deformities. Definition, pathogenesis, and options for surgical correction].
Arnold, H
2005-08-01
Whereas in the past resection arthroplasty was - in analogy to hallux valgus surgery - the preferred therapy to correct lesser toe deformities, the point of view has undergone a change. Much interest is directed toward functional aspects that require reconstructive management. Whenever possible the integrity of joint play should be saved. Above all the metatarsophalangeal joint of the lesser toes is worth being preserved to prevent a severe disturbance of the biomechanics of the foot. Tendon transfers and subtle corrective osteotomies such as the Weil procedure allow restricting resection procedures to contraction deformities.
Improvisation in wrap-around toe-to-thumb transfer.
Govila, A
1993-01-01
Wrap-around partial great toe transfer, a one time dream, is now a well established and universally accepted method of thumb reconstruction. In this technique, part of the soft tissue of the great toe are wrapped around and shaped to the size of the graft from iliac bone in such a manner that a thumb of normal dimensions and shape is produced. Instead of the iliac bone graft, we found great merit in using the second metacarpal from the traumatised hand to be reconstructed. In this paper its use and merits are elaborated.
A new treatment for parrot beak deformity of the toe.
Kurokawa, M; Isshiki, N; Inoue, K
1994-03-01
Two cases of congenital parrot beak deformity of the toe were treated by pushing back the nail plate, nailbed, matrix, and proximal skin fold in one piece as a flap. The proximal skin portion of this flap was deepithelialized to facilitate this shift, and thus no dog-ear deformity was produced. The distal skin defect of the pulp was covered by a palmar advancement flap. This method does not require augmentation of the fingertip or toetip and is very useful for correcting parrot beak deformities of the toes.
Intercalary non-vascularised toe phalanx transplantation for short finger-type symbrachydactyly.
Kanauchi, Yumiko; Takahara, Masatoshi; Ogino, Toshihiko; Kashiwa, Hideo; Ishigaki, Daisuke
2003-12-01
A two-year-old boy with short finger-type symbrachydactyly involving the index, middle, and ring fingers was treated with intercalary nonvascularised toe phalanx transplantation into the middle finger to obtain stability of the middle finger before syndactyly release. He underwent syndactyly release one year after the transplantation. Two years after the transplantation, the clinical result was satisfactory, although X-ray showed fibrous union between the transplanted phalanx and the host phalanx. Intercalary nonvascularised toe phalanx transplantation is one of the way of stabilising a finger after syndactyly release.
Double second toe transfer in congenital hand anomalies.
Van Holder, C; Giele, H; Gilbert, A
1999-08-01
A series of 14 patients with congenital hand anomalies who received staged double second toe transfers to the same hand for restoration of function or form were reviewed retrospectively. There were three children with constriction ring syndrome, two with symbrachydactyly and nine with transverse absence (failure of formation). There were different indications, technical difficulties and results with the various anomalies. All transferred toes were mobile and sensate, and were reported to be of benefit in both function and appearance. However, secondary surgical procedures were required in all patients.
Long-Term Evolution of a Long-Term Evolution Model
2011-01-01
equations for the movement of the dune toe yD and the berm crest location yB are dyD/dt=(qw-qo)/DD and dyB/dt=-(qw-qo)/(DB+DC) respectively, where qw...and sand properties, yB and yD = distances to the seaward end of the berm and the dune toe , respectively, with the y-axis pointing offshore, y50...relative to mean sea level, MSL); zD = dune toe elevation (with respect to MSL); T = swash period (taken to be the same as the wave period); and Cs
Calculation of Beach Change Under Interacting Cross-Shore and Longshore Processes
2010-01-01
the dune toe , berm width, and shoreline position are calculated, while maintaining longshore transport rates representative of the regional long-term...during growth together with the dune shape, the seaward movement of the dune toe ΔyDw for a given increase in dune volume ΔVDw is: ΔyDw = ΔVDw DD ð2Þ...Expressing Eq. (1) in terms of dune toe advance yields: dyDw dt = qw DD ð3Þ It is assumed that sand transport to the dune is related to thewidth of the
Neural Networks and Their Application to Air Force Personnel Modeling
1991-11-01
specifications of the error function ( Chauvin , 1990; Hanson & Pratt, 1989) and found that out-of-sample performance can be improved by this modification...X X Black X X X X Hispanic X X - White & female X Black & male X Female X X X X Xŕ] Single or married indicator X X X X X X Age less than or equal 17...administration, female in unknown specialty, and black male in support and administration. 7Five dummies: TOE 4 and YOS 2. TOE 6 and YOS 1. TOE 6 and
Five- and 10-Year Follow-Up of Nonvascularized Toe Phalanx Transfers.
Kawabata, Hidehiko; Tamura, Daisuke
2018-05-01
The purpose of this study was to evaluate long-term outcomes of nonvascularized toe phalanx transfer. We retrospectively reviewed 54 nonvascularized toe phalanx transfers in 29 children with symbrachydactyly. Forty-seven transfers in 24 children were evaluated at 5-year follow-up and 27 transfers in 14 children were evaluated at 10-year follow-up. We recorded the incidence of the early physeal closure and the length of the transferred toe phalanx on plain radiographs at 5- and 10-year follow-up. Growth rate in the first 5 years and the following 5 years were calculated. Function of the metacarpophalangeal joint (motion, stability, and alignment) was also evaluated. The mean age at surgery was 1.5 years. Seven toe phalanges were trimmed because the skin pocket was tight. Five transfers required revision surgery for partial necrosis of the skin pocket. At 5-year follow-up, the physis was closed in 23%, and at 10 years, 78% of physes were closed. The phalanx length was 87% of expected at 5-year follow-up and 71% at 10-year follow-up. Growth rate was 0.83 mm/y in the first 5 years and 0.22 mm/y in the following 5 years. Active motion was rated as good in 24, fair in 7, and poor in 16. Stability and alignment were rated as good in 37 and 33, fair in 8 and 5, and poor in 2 and 9, respectively. Nonvascularized toe phalanx transfer offered a relatively simple method to lengthen short digits and to provide satisfactory function. The transferred toe phalanges grew at a near-normal rate in the first 5 years, but the growth rate decreased between 5 and 10 years. Therapeutic IV. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Efficient generation of H2 by splitting water with an isothermal redox cycle.
Muhich, Christopher L; Evanko, Brian W; Weston, Kayla C; Lichty, Paul; Liang, Xinhua; Martinek, Janna; Musgrave, Charles B; Weimer, Alan W
2013-08-02
Solar thermal water-splitting (STWS) cycles have long been recognized as a desirable means of generating hydrogen gas (H2) from water and sunlight. Two-step, metal oxide-based STWS cycles generate H2 by sequential high-temperature reduction and water reoxidation of a metal oxide. The temperature swings between reduction and oxidation steps long thought necessary for STWS have stifled STWS's overall efficiency because of thermal and time losses that occur during the frequent heating and cooling of the metal oxide. We show that these temperature swings are unnecessary and that isothermal water splitting (ITWS) at 1350°C using the "hercynite cycle" exhibits H2 production capacity >3 and >12 times that of hercynite and ceria, respectively, per mass of active material when reduced at 1350°C and reoxidized at 1000°C.
... the Big Toe Ailments of the Smaller Toes Diabetic Foot Treatments Injections and other Procedures Treatments of the ... Find a Surgeon Información en Español Foot Health Foot ... Diabetic Shoes 10 Points of Proper Shoe Fit All ...
Jehu, Deborah A; Lajoie, Yves; Paquet, Nicole
2017-12-21
The purpose of this study was to investigate obstacle clearance and reaction time parameters when crossing a series of six obstacles in older adults. A second aim was to examine the repeated exposure of this testing protocol once per week for 5 weeks. In total, 10 older adults (five females; age: 67.0 ± 6.9 years) walked onto and over six obstacles of varying heights (range: 100-200 mm) while completing no reaction time, simple reaction time, and choice reaction time tasks once per week for 5 weeks. The highest obstacles elicited the lowest toe clearance, and the first three obstacles revealed smaller heel clearance compared with the last three obstacles. Dual tasking negatively impacted obstacle clearance parameters when information processing demands were high. Longer and less consistent time to completion was observed in Session 1 compared with Sessions 2-5. Finally, improvements in simple reaction time were displayed after Session 2, but choice reaction time gradually improved and did not reach a plateau after repeated testing.
Differences in foot self-care and lifestyle between men and women with diabetes mellitus 1
Rossaneis, Mariana Angela; Haddad, Maria do Carmo Fernandez Lourenço; Mathias, Thaís Aidar de Freitas; Marcon, Sonia Silva
2016-01-01
ABSTRACT Objective: to investigate differences with regard to foot self-care and lifestyle between men and women with diabetes mellitus. Method: cross-sectional study conducted in a sample of 1,515 individuals with diabetes mellitus aged 40 years old or older. Poisson regression models were used to identity differences in foot self-care deficit and lifestyle between sexes, adjusting for socioeconomic and clinical characteristics, smoking and alcohol consumption. Results: foot self-care deficit, characterized by not regularly drying between toes; not regularly checking feet; walking barefoot; poor hygiene and inappropriately trimmed nails, was significantly higher among men, though men presented a lower prevalence of feet scaling and use of inappropriate shoes when compared to women. With regard to lifestyle, men presented less healthy habits, such as not adhering to a proper diet and taking laboratory exams to check for lipid profile at the frequency recommended. Conclusion: the nursing team should take into account gender differences concerning foot self-care and lifestyle when implementing educational activities and interventions intended to decrease risk factors for foot ulceration. PMID:27533270
Should we consider steps with variable height for a safer stair negotiation in older adults?
Kunzler, Marcos R; da Rocha, Emmanuel S; Dos Santos, Christielen S; Ceccon, Fernando G; Priario, Liver A; Carpes, Felipe P
2018-01-01
Effects of exercise on foot clearances are important. In older adults variations in foot clearances during walking may lead to a fall, but there is a lack of information concerning stair negotiation in older adults. Whether a condition of post exercise changes foot clearances between steps of a staircase in older adults still unknown. To determine differences in clearances when older adults negotiate different steps of a staircase before and after a session of aerobic exercise. Kinematics data from 30 older adults were acquired and the toe and heel clearances were determined for each step. Clearances were compared between the steps. Smaller clearances were found at the highest step during ascending and descending, which was not changed by exercise. Smaller clearances suggest higher risk of tripping at the top of the staircase, regardless of exercise. A smaller step at the top of a short flight of stairs could reduce chances of tripping in older adults. It suggests that steps with variable height could make stair negotiation safer in older adults. This hypothesis should be tested in further studies.
Thigpen, Mary T; Cauraugh, James; Creel, Gwen; Day, Kristin; Flynn, Sheryl; Fritz, Stacy; Frost, Shirley; Respess, Robert; Gardner-Smith, Portia; Brack, Mia; Behrman, Andrea
2009-01-01
Incomplete spinal cord injury (ISCI) frequently disrupts afferent and efferent neural pathways underlying co-requisite voluntary and involuntary muscle activation required for functional standing and walking. To understand involuntary postural control mechanisms necessary for standing, we compared eight individuals with ISCI to eight controls with no impairment. The aim of this study was to investigate anticipatory and reactive balance responses in individuals with ISCI. The ability to adapt to changes in balance conditions was assessed by monitoring automatic postural responses (APRs) during a series of expected and unexpected changes in perturbation direction (backward translation versus toes-up rotation). Both groups were able to modulate appropriately within one or two trials following an unexpected change in condition. Onset times of anterior tibialis and medial gastrocnemius (MG) were significantly slower in the ISCI group during expected and unexpected conditions. These findings demonstrate that persons with mild to moderate lower extremity sensorimotor deficits are able to generate and adapt APRs to a rapid and unexpected contextual change during a simple standing balance task.
Obstacle Crossing Differences Between Blind and Blindfolded Subjects After Haptic Exploration.
Forner-Cordero, Arturo; Garcia, Valéria D; Rodrigues, Sérgio T; Duysens, Jacques
2016-01-01
Little is known about the ability of blind people to cross obstacles after they have explored haptically their size and position. Long-term absence of vision may affect spatial cognition in the blind while their extensive experience with the use of haptic information for guidance may lead to compensation strategies. Seven blind and 7 sighted participants (with vision available and blindfolded) walked along a flat pathway and crossed an obstacle after a haptic exploration. Blind and blindfolded subjects used different strategies to cross the obstacle. After the first 20 trials the blindfolded subjects reduced the distance between the foot and the obstacle at the toe-off instant, while the blind behaved as the subjects with full vision. Blind and blindfolded participants showed larger foot clearance than participants with vision. At foot landing the hip was more behind the foot in the blindfolded condition, while there were no differences between the blind and the vision conditions. For several parameters of the obstacle crossing task, blind people were more similar to subjects with full vision indicating that the blind subjects were able to compensate for the lack of vision.
Michelle Welman, F H S; Smit, Albertine E; Jongen, Joost L M; Tibboel, Dick; van der Geest, Jos N; Holstege, Jan C
2018-02-26
Many fMRI studies have shown activity in the cerebellum after peripheral nociceptive stimulation. We investigated whether the areas in the cerebellum that were activated after nociceptive thumb stimulation were separate from those after nociceptive toe stimulation. In an additional experiment, we investigated the same for the anticipation of a nociceptive stimulation on the thumb or toe. For his purpose, we used fMRI after an electrical stimulation of the thumb and toe in 19 adult healthy volunteers. Following nociceptive stimulation, different areas were activated by stimulation on the thumb (lobule VI ipsilaterally and Crus II mainly contralaterally) and toe (lobules VIII-IX and IV-V bilaterally and lobule VI contralaterally), i.e., were somatotopically organized. Cerebellar areas innervated non-somatotopically by both toe and thumb stimulation were the posterior vermis and Crus I, bilaterally. In the anticipation experiment, similar results were found. However, here, the somatotopically activated areas were relatively small for thumb and negligible for toe stimulation, while the largest area was innervated non-somatotopically and consisted mainly of Crus I and lobule VI bilaterally. These findings indicate that nociceptive stimulation and anticipation of nociceptive stimulation are at least partly processed by the same areas in the cerebellum. This was confirmed by an additional conjunction analysis. Based on our findings, we hypothesize that input that is organized in a somatotopical manner reflects direct input from the spinal cord, while non-somatotopically activated parts of the cerebellum receive their information indirectly through cortical and subcortical connections, possibly involved in processing contextual emotional states, like the expectation of pain.
Hong, Yoon No Gregory; Shin, Choongsoo S
2015-12-01
Falls on stairs often result in severe injury and occur twice as frequently in women. However, gender differences in kinetics and kinematics during stair descent are unknown. Thus, this study aimed to determine whether gender differences of knee and ankle biomechanics exist in the sagittal plane during the stair-to-ground descending transition. It was hypothesized that 1) women would reveal higher ground-toe-trochanter angle and lower ground-toe length during stair-to-ground descent transition than men; and 2) women would reveal lower peak knee extension moment during stair-to-ground descent transition than men. Fifteen men and fifteen women were recruited and performed a stair descent activity. Kinetic and kinematic data were obtained using a force plate and motion capture system. The women performed the stair descent with a lower peak knee extension moment and a peak knee power at the early weight acceptance phase. The women also revealed a higher ground-toe-trochanter angle and a lower ground-toe length, which indicated a more forward position of the lower extremity relative to the toe contact point at both the initial contact and at the time of peak kinematic and kinetic events. This study found that knee and ankle kinematics and kinetics differed significantly between the genders due to differences in ground-toe-trochanter angle. Women have a different stair descending strategy that reduces the demand of the lower extremity muscle function, but this strategy seems to increase the risk of falls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Edgell, Heather; Stickland, Michael K; MacLean, Joanna E
2016-06-01
The standard measurement of pulse wave velocity (PWV) is restricted by the need for simultaneous tonometry measurements requiring two technicians and expensive equipment, limiting this technique to well-resourced settings. In this preliminary study, we compared a simplified method of pulse wave detection from the finger and toe to pulse wave detection from the carotid and radial arteries using applanation tonometry in children and young adults. We hypothesized that the simplified method of PWV measurement would strongly correlate with the standard measurement in different age groups and oxygen conditions. Participants included (a) boys and girls aged 8-12 years and (b) men and women aged 18-40 years. Participants rested supine while carotid and radial artery pulse waves were measured using applanation tonometry and finger and toe pulse waves were simultaneously collected using a Finometer Midi and a piezo-electric pulse transducer, respectively. These measurements were repeated under hypoxic conditions. Finger-toe PWV measurements were strongly correlated to carotid-radial PWV in adults (R=0.58; P=0.011), but not in children (R=0.056; P=0.610). Finger-toe PWV was sensitive enough to show increases in PWV with age (P<0.0001) and hypoxia in children (P<0.0001) and adults (P=0.003). These results indicate that the simplified measurement of finger-toe PWV strongly correlates with the standard measurement of carotid-radial PWV in adults, but not in children. However, finger-toe PWV can be used in either population to determine changes with hypoxia.
5. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING ...
5. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT
6. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING ...
6. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, LOOKING SOUTHWEST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT
5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOWWATER DAM, ...
5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOW-WATER DAM, LOOKING NORTHWEST (UPSTREAM). ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL
NASA Astrophysics Data System (ADS)
Ridl, Romy; Bell, David; Villeneuve, Marlene
2017-04-01
Toe buckling deformation is a temporal product of induced stresses concentrated at the base of a slope. Prolonged induced stresses may lead to yielding of an anisotropic rock mass, either through rheological creep deformation (flexural toe buckling) or brittle failure (hinge buckling). Progressive deformation can lead to the breakout at the buckled toe and ultimately result in deep seated displacements on a mountain range scale, referred to as deep seated gravitational slope deformation (DSGSD). DSGSD can have a considerable impact on civil infrastructure and should be well understood for hazard identification, to inform civil engineering design and for resource management purposes. Toe buckling deformation was identified beneath the basal sliding zone of three large (≥50 Mm3) landslides in the Cromwell Gorge, New Zealand. This area was subjected to extensive geotechnical investigations for the Clyde Hydropower Scheme. During these investigations seventeen major landslides were identified in the Cromwell Gorge and subsequently stabilised. The data from the landslide stabilisation project, including 26.7 km of boreholes and 9 km of tunnels, for the three landslides exhibiting toe buckling was made available for this study. This comprehensive database has enabled comparison and validation of numerical simulations carried out for the Cromwell Gorge. The application of numerical modelling has demonstrated that toe buckling within the Cromwell Gorge is a result of the combination of induced stresses acting on an anisotropic schistose rock mass. The induced stresses comprise: i) topographically-induced gravitational stresses parallel to the slope, associated with the evolution of the Cromwell Gorge from a relatively low relief surface to present day topography (1400 m deep valley), and ii) active far-field tectonic stresses associated with the obliquely convergent stress regime of the Australian-Pacific continent plate boundary. Finite Element Method (FEM) numerical models were used to model the anisotropic nature of the schist rock mass, and a sequential unloading method was adopted to simulate valley evolution. Far-field tectonics were incorporated into the model by comparing topographically induced gravitational stresses with in situ field stress measurements. The results of sensitivity analyses demonstrate that the dominant parameters governing toe buckling deformation in the Cromwell Gorge are a function of the anisotropy of the schist (foliation orientation and stiffness), and the intersection of the two induced stress fields near the base of the slopes.
Anatomic relationship of the proximal nail matrix to the extensor hallucis longus tendon insertion.
Palomo López, P; Becerro de Bengoa Vallejo, R; López López, D; Prados Frutos, J C; Alfonso Murillo González, J; Losa Iglesias, M E
2015-10-01
The purpose of this study was to delineate the relationship of the terminal extensor hallucis longus tendon insertion to the proximal limit of the nail matrix of the great toe. Fifty fresh-frozen human cadaver great toes with no evidence of trauma (average age, 62.5 years; 29 males and 21 females) were used for this study. Under 25X magnification, the proximal limit of the nail matrix and the terminal bony insertion of the extensor hallucis longus tendons were identified. The distance from the terminal tendon insertion to the nail matrix was ascertained using precision calipers, an optical microscope, and autocad(®) software for windows. Twenty-five great toes were placed in a neutral formalin solution and further analysed by histological longitudinal-sections. The specimens were stained with haematoxylin and eosin and examined microscopically to determine the presence of the extensor hallucis longus tendon along the dorsal aspect of the distal phalanx of each great toe. The main result we found in great toes was that the extensor tendon is between the matrix and the phalanx and extends dorsally to the distal aspect of the distal phalanx in all, 100%, specimens. The nail matrix of the great toe is not attached to the periosteum of the dorsal aspect of the base of the distal phalanx as is the case for fingers, because the extensor hallucis tendon is plantar or directly underneath the nail matrix and the tendon is dorsal to the bone. We have found that the extensor tendon is between the matrix and the phalanx and extends dorsally to the distal aspect of the distal phalanx. The nail matrix of the great toe is not attached to the periosteum of the dorsal aspect of the base of distal phalanx as is the case in fingers, because the extensor hallucis tendon is plantar or directly underneath the nail matrix and the tendon is dorsal to the bone. Our anatomic study demonstrates that the proximal limit of the matrix and nail bed of the human great toe are dorsal and overlapping the terminal extensor hallucis longus tendon until its distal bony insertion in all specimens. © 2015 European Academy of Dermatology and Venereology.
Fernando, Malindu E.; Crowther, Robert G.; Lazzarini, Peter A.; Yogakanthi, Saiumaeswar; Sangla, Kunwarjit S.; Buttner, Petra; Jones, Rhondda; Golledge, Jonathan
2017-01-01
Objective High plantar pressures are implicated in the development of diabetes-related foot ulcers. Whether plantar pressures remain high in patients with chronic diabetes-related foot ulcers over time is uncertain. The primary aim of this study was to compare plantar pressures at baseline and three and six months later in participants with chronic diabetes-related foot ulcers (cases) to participants without foot ulcers (controls). Methods Standardised protocols were used to measure mean peak plantar pressure and pressure-time integral at 10 plantar foot sites (the hallux, toes, metatarsals 1 to 5, mid-foot, medial heel and lateral heel) during barefoot walking. Measurements were performed at three study visits: baseline, three and six months. Linear mixed effects random-intercept models were utilised to assess whether plantar pressures differed between cases and controls after adjusting for age, sex, body mass index, neuropathy status and follow-up time. Standardised mean differences (Cohen’s d) were used to measure effect size. Results Twenty-one cases and 69 controls started the study and 16 cases and 63 controls completed the study. Cases had a higher mean peak plantar pressure at several foot sites including the toes (p = 0.005, Cohen’s d = 0.36) and mid-foot (p = 0.01, d = 0.36) and a higher pressure-time integral at the hallux (p<0.001, d = 0.42), metatarsal 1 (p = 0.02, d = 0.33) and mid-foot (p = 0.04, d = 0.64) compared to controls throughout follow-up. A reduction in pressure-time integral at multiple plantar sites over time was detected in all participants (p<0.05, respectively). Conclusions Plantar pressures assessed during gait are higher in diabetes patients with chronic foot ulcers than controls at several plantar sites throughout prolonged follow-up. Long term offloading is needed in diabetes patients with diabetes-related foot ulcers to facilitate ulcer healing. PMID:28859075
Wearable sensors objectively measure gait parameters in Parkinson’s disease
Marxreiter, Franz; Gossler, Julia; Kohl, Zacharias; Reinfelder, Samuel; Gassner, Heiko; Aminian, Kamiar; Eskofier, Bjoern M.; Winkler, Jürgen; Klucken, Jochen
2017-01-01
Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson’s disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson’s disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson’s disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects’ preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson’s disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson’s disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson’s disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based gait measurement in Parkinson’s disease reaching high technological readiness levels for both, large scale clinical studies and individual patient care. PMID:29020012
49 CFR 214.115 - Foot protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... shock or burns, or other hazardous condition. (b) Safety-toe footwear for railroad bridge workers shall conform to the national consensus standards for safety-toe footwear (American National Standards Institute, American National Standard Z41-1991, Standard for Personal Protection-Protective Footwear). This...
49 CFR 214.115 - Foot protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... shock or burns, or other hazardous condition. (b) Safety-toe footwear for railroad bridge workers shall conform to the national consensus standards for safety-toe footwear (American National Standards Institute, American National Standard Z41-1991, Standard for Personal Protection-Protective Footwear). This...
49 CFR 214.115 - Foot protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... shock or burns, or other hazardous condition. (b) Safety-toe footwear for railroad bridge workers shall conform to the national consensus standards for safety-toe footwear (American National Standards Institute, American National Standard Z41-1991, Standard for Personal Protection-Protective Footwear). This...
49 CFR 214.115 - Foot protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... shock or burns, or other hazardous condition. (b) Safety-toe footwear for railroad bridge workers shall conform to the national consensus standards for safety-toe footwear (American National Standards Institute, American National Standard Z41-1991, Standard for Personal Protection-Protective Footwear). This...
Bunion removal - series (image)
... causes the joint to thicken and enlarge. This causes the bones of the big toe to angle in toward and over the ... pain-free (general anesthesia) and rarely requires a hospital ... the bones of the big toe into the foot. The deformed joint and ...
[Breast cancer metastasis in distal phalanx of the big toe. Case report].
Carlesimo, B; Tempesta, M; Fioramonti, P; Bistoni, G; Ruggiero, M; Marchetti, F
2009-01-01
Breast cancer represents the most prevalent malignancies in women and bone is the first site of metastasis in 26-50% of cases. Usually metastasis involve limbs in 16%. We present a rare case of 47-year-old woman, who underwent to monolateral mastectomy for lobular cancer. After 8 years from surgery, she presented pain, swelling and functional limitations, gradually increasing, to the left big toe. X-rays and MRI showed a lucent area of bone destruction on the shaft of the distal phalanx of the left big toe. Surgical biopsy on the excised bone assessed for breast cancer metastasis.
2010-08-01
levee crown and flood-side slope toe would have to be greater than 20 ft to maintain a suitable freeboard and still have waves break directly on...dike slope is smooth, and the toe of the flood-side slope is usually dry except during storm events (on average 20 per year). The presence of the...sides to complete the 5-m (16.4 ft) flume width. There was an asphalt covered surface from the toe of the slope up to the +2 m (+6.6 ft) elevation. The
Free toe pulp transfer for digital reconstruction after high-pressure injection injury.
Chan, B K; Tham, S K; Leung, M
1999-10-01
We report two cases of high-pressure injection injuries to the fingertip in which free toe pulp flaps were used to resurface the palmar surface of the finger following extensive wound debridement. There was good return of sensibility and, because of the high durability of the donor skin, both patients regained good functional use of the injured digits and returned to heavy manual work. There was minimal associated morbidity of the donor sites. The free toe pulp flap represents an excellent alternative for resurfacing the digit with a large residual skin defect after high-pressure injection injury.
Prediction of wound healing after minor amputations of the diabetic foot.
Caruana, Luana; Formosa, Cynthia; Cassar, Kevin
2015-08-01
To identify any significant differences in physiological test results between healing and non healing amputation sites. A single center prospective non-experimental study design was conducted on fifty subjects living with type 2 diabetes and requiring a forefoot or toe amputation. Subjects underwent non-invasive physiological testing preoperatively. These included assessment of pedal pulses, preoperative arterial spectral waveforms at the ankle, absolute toe pressures, toe-brachial pressure index and ankle-brachial pressure index. After 6 weeks, patients were examined to assess whether the amputation site was completely healed, was healing, had developed complications, or did not heal. There was no significant difference in ABPI between the healed/healing and the non-healing groups. Mean TBI (p=0.031) and toe pressure readings (p=0.014) were significantly higher in the healed/healing group compared to the non healing group. A significant difference was also found in ankle spectral waveforms between the two groups (p=0.028). TBIs, toe pressures and spectral waveforms at the ankle are better predictors of likelihood of healing and non-healing after minor amputation than ABPIs. ABPI alone is a poor indicator of the likelihood of healing of minor amputations and should not be relied on to determine need for revascularization procedures before minor amputation. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinen, H.
1993-12-31
Finland is one of the leading countries in the use of biofuels. The share of wood derived fuels of the total primary energy requirement was about 14% (ca. 4 million toe) and peat about 5% (1.4 million toe). The possibilities for increasing the use of biofuels in Finland are significant. There is theoretically about 10 million m{sup 3}/a (about 2 million toe/a) of harvestable wood. Areas suitable for fuel peat production (0.5 million ha) could produce ca. 420 million toe of peat. At present rates of use, the peat reserves are adequate for centuries. During the next few years 0.5--1more » million hectares of fields withdrawn from farming could be used for biofuel production. The production potential of this field area is estimated to be about 0.2--0.5 million toe. In addition, the use of wastes in energy production could be increased. The aim of the new Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. New economically competitive biofuels, new equipment and methods for production, handling and use of biofuels will also be developed. The main research areas are production of wood fuels, peat production, use of bioenergy and conversion of biomass.« less
Quigley, Ryan J; Gupta, Akash; Oh, Joo-Han; Chung, Kyung-Chil; McGarry, Michelle H; Gupta, Ranjan; Tibone, James E; Lee, Thay Q
2013-08-01
The transosseous-equivalent (TOE) rotator cuff repair technique increases failure loads and contact pressure and area between tendon and bone compared to single-row (SR) and double-row (DR) repairs, but no study has investigated if this translates into improved healing in vivo. We hypothesized that a TOE repair in a rabbit chronic rotator cuff tear model would demonstrate a better biomechanical profile than SR and DR repairs after 12 weeks of healing. A two-stage surgical procedure was performed on 21 New Zealand White Rabbits. The right subscapularis tendon was transected and allowed to retract for 6 weeks to simulate a chronic tear. Repair was done with the SR, DR, or TOE technique and allowed to heal for 12 weeks. Cyclic loading and load to failure biomechanical testing was then performed. The TOE repair showed greater biomechanical characteristics than DR, which in turn were greater than SR. These included yield load (p < 0.05), energy absorbed to yield (p < 0.05), and ultimate load (p < 0.05). For repair of a chronic, retracted rotator cuff tear, the TOE technique was the strongest biomechanical construct after healing followed by DR with SR being the weakest. Copyright © 2013 Orthopaedic Research Society.
Ganyard, Floyd P.
1982-01-01
An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.
3D Printing Technology in Planning Thumb Reconstructions with Second Toe Transplant.
Zang, Cheng-Wu; Zhang, Jian-Lei; Meng, Ze-Zu; Liu, Lin-Feng; Zhang, Wen-Zhi; Chen, Yong-Xiang; Cong, Rui
2017-05-01
To report preoperative planning using 3D printing to plan thumb reconstructions with second toe transplant. Between December 2013 and October 2015, the thumbs of five patients with grade 3 thumb defects were reconstructed using a wrap-around flap and second toe transplant aided by 3D printing technology. CT scans of hands and feet were analyzed using Boholo surgical simulator software (www.boholo.com). This allowed for the creation of a mirror image of the healthy thumb using the uninjured thumb. Using 3D images of the reconstructed thumb, a model of the big toe and the second toe was created to understand the dimensions of the donor site. This model was also used to repair the donor site defect by designing appropriate iliac bone and superficial circumflex iliac artery flaps. The polylactic acid model of the donor toes and reconstructed thumb was produced using 3D printing. Surgically, the wrap-around flap of the first dorsal metatarsal artery and vein combined with the joint and bone of the second toe was based upon the model donor site. Sensation was reconstructed by anastomosing the dorsal nerve of the foot and the plantar digital nerve of the great toe. Patients commenced exercises 2 weeks after surgery. All reconstructed thumbs survived, although partial flap necrosis occurred in one case. This was managed with regular dressing changes. Patients were followed up for 3-15 months. The lengths of the reconstructed thumbs are 34-49 mm. The widths of the thumb nail beds are 16-19 mm, and the thickness of the digital pulp is 16-20 mm. The thumb opposition function was 0-1.5 cm; the extension angle was 5°-20° (mean, 16°), and the angle of flexion was 38°-55° (mean, 47°). Two-point discrimination was 9-11 mm (mean, 9.6 mm). The reconstructed thumbs had good appearance, function and sensation. Based on the criteria set forth by the Standard on Approval of Reconstructed Thumb and Finger Functional Assessment of the Chinese Medical Association, the results were considered excellent for four cases and good for one case. The success rate was 100%. When planning a wrap-around flap and second toe transplant to reconstruct a thumb, both the donor and recipient sites can be modeled using 3D printing. This can shorten the operative time by supplying digital and accurate schematics for the operation. It can also optimize the function and appearance of the reconstructed thumb while minimizing damage to the donor site. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
... by: C. Benjamin Ma, MD, Assistant Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic Surgery, San Francisco, CA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Toe Injuries and Disorders Read more NIH MedlinePlus ...
Høyer, Christian; Nielsen, Nikolaj Schandorph; Jordansen, Malene Kragh Overvad; Zacho, Helle Damgaard
2017-12-01
To examine the interchangeability of two methods for distal pressure measurement based on photoplethysmography using a truncated or full display of the arterial inflow curve, respectively. Toe and ankle pressures were obtained from 69 patients suspected of peripheral arterial disease (PAD). Observer reproducibility of the curve readings was examined by blinded reassessment of the pressure curves in a randomly selected subgroup (60 limbs). There were no significant differences in mean pressures between the two methods (p for all > .455). The limits of agreement for the differences were -15.0-15.4 mmHg for right toe pressures, -16.3-16.2 mmHg for left toe pressures, -14.2-15.7 mmHg for right ankle pressures, and -18.3-17.7 mmHg for left ankle pressures. Correlation analysis revealed intraclass correlation coefficients ≥0.960 for all measuring sites. Cohen's Kappa showed excellent agreement in diagnostic classification, with κ = 0.930 for the diagnosis of PAD and perfect agreement in the diagnosis of critical limb ischemia (κ = 1.000). The analysis of intra-observer variation for curve reading showed limits of agreement of -3.9-4.0 for toe pressures and -7.6-7.7 for ankle pressures for the method involving truncated display and -3.1-3.2 for toe pressures and -6.3-8.6 for ankle pressures for the method involving full display of the signal. The present study shows minimal differences in diagnostic classification, as well as in ankle and toe pressures, between the full display and the truncated display of the photoplethysmographic pulse signal. Furthermore, the inter-observer variation was low for both of the photoplethysmographic methods investigated.
2014-01-01
Background Measurement of toe and ankle blood pressure is commonly used to evaluate peripheral vascular status, yet the pre-test rest period is inconsistent in published studies and among practitioners, and could affect results. The aim of this systematic review is to evaluate all research that has investigated the effect of different periods of pre-test rest on toe and ankle systolic blood pressure. Methods The following databases were searched up to April 2012: Medline (from 1946), EMBASE (from 1947), CINAHL (from 1937), and Cochrane Central Register of Controlled Trials (CENTRAL) (from 1800). No language or publication restrictions were applied. Eighty-eight content experts and researchers in the field were contacted by email to assist in the identification of published, unpublished, and ongoing studies. Studies evaluating the effect of two or more pre-test rest durations on toe or ankle systolic blood pressure were eligible for inclusion. No restrictions were placed on participant characteristics or the method of blood pressure measurement. Outcomes included toe or ankle systolic blood pressure and adverse effects. Abstracts identified from the search terms were independently assessed by two reviewers for potential inclusion. Results 1658 abstracts were identified by electronic searching. Of the 88 content experts and researchers in the field contacted by email a total of 33 replied and identified five potentially relevant studies. No studies were eligible for inclusion. Conclusions There is no evidence of the effect of different periods of pre-test rest duration on toe and ankle systolic blood pressure measurements. Rigorous trials evaluating the effect of different durations of pre-test rest are required to direct clinical practice and research. PMID:24708870
7. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, WITH ...
7. VIEW SHOWING DOWNSTREAM FACE AND TOE OF DAM, WITH OUTLET CULVERT AND WING RETAINING WALLS, LOOKING NORTH - High Mountain Dams in Upalco Unit, Twin Pots Dam, Ashley National Forest, 10.1 miles North of Mountain Home, Mountain Home, Duchesne County, UT
29 CFR 1926.95 - Criteria for personal protective equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... steel-toe shoes or steel-toe boots) and non-specialty prescription safety eyewear, provided that the... 1926.95 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Personal Protective and Life...
29 CFR 1926.95 - Criteria for personal protective equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... steel-toe shoes or steel-toe boots) and non-specialty prescription safety eyewear, provided that the... 1926.95 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Personal Protective and Life...
NASA Astrophysics Data System (ADS)
Weibust, E.
1981-04-01
A NASA model for computing the subsonic, viscous, attached flow around multielement airfoils was used to determine the amount of energy lost when using double blades rather than single ones. The resulting tangential force for the double or single blade configuration used as a criterion is found. Radial spacing, toe-in toe-out angle and tangential displacement (stagger) were varied to see how tagential force is affected. The greatest tangential force values are found to be achieved for maximum allowable radial spacing, which is determined by structural considerations, and is assumed to be on the order of 1.5 c. At this rather large distance, stagger as well as toe-in toe-out angle only gives slight improvements as long as the flow separation effects (stall region) are not considered. A large part of the energy is captured at relatively high wind speeds when the flow on the blades is partly separated (stalled).
Microsurgical transfer of the second toe for congenital deficiency of the thumb.
Lister, G
1988-10-01
Twelve second-toe transfers have been performed to substitute for thumbs congenitally deficient through constriction ring syndrome, symbrachydactyly, and true transverse arrest. The children were on average 3 years of age, and the youngest was undertaken at 10 months. Anatomic variations were the rule in the six cases of transverse absence and the three cases of symbrachydactyly, requiring nerves, tendons, and vessels in the toe be connected to whatever appropriate structure could be located. All transfers survived, and only one required exploration. Sensation appeared good in the 11 seen in later review, but interphalangeal motion was achieved in only 3. However, good use was made of the digit by all except one patient, an early patient in whom there was not an adequate skeleton on which to base the transfer. This small series suggests that in appropriate cases toe transfer can be undertaken early for congenital deficiency with little fear of encountering microsurgical problems unique to the infant.
A combination of clinical balance measures and FRAX® to improve identification of high-risk fallers.
Najafi, David A; Dahlberg, Leif E; Hansson, Eva Ekvall
2016-05-03
The FRAX® algorithm quantifies a patient's 10-year probability of a hip or major osteoporotic fracture without taking an individual's balance into account. Balance measures assess the functional ability of an individual and the FRAX® algorithm is a model that integrates the individual patients clinical risk factors [not balance] and bone mineral density. Thus, clinical balance measures capture aspects that the FRAX® algorithm does not, and vice versa. It is therefore possible that combining FRAX® and clinical balance measures can improve the identification of patients at high fall risk and thereby high fracture risk. Our study aim was to explore whether there is an association between clinical balance measures and fracture prediction obtained from FRAX®. A cross-sectional study design was used where post hoc was performed on a dataset of 82 participants (54 to 89 years of age, mean age 71.4, 77 female), with a fall-related wrist-fracture between 2008 and 2012. Balance was measured by tandem stance, standing one leg, walking in the figure of eight, walking heel to toe on a line, walking as fast as possible for 30 m and five times sit to stand balance measures [tandem stance and standing one leg measured first with open and then with closed eyes] and each one analyzed for bivariate relations with the 10-year probability values for hip and major osteoporotic fractures as calculated by FRAX® using Spearman's rank correlation test. Individuals with high FRAX® values had poor outcome in balance measures; however the significance level of the correlation differed between tests. Standing one leg eyes closed had strongest correlation to FRAX® (0.610 p = < 0.01) and Five times sit to stand was the only test that did not correlate with FRAX® (0.013). This study showed that there is an association between clinical balance measures and FRAX®. Hence, the use of clinical balance measures and FRAX® in combination, might improve the identification of individuals with high risk of falls and thereby following fractures. Results enable healthcare providers to optimize treatment and prevention of fall-related fractures. The study has been registered in Clinical Trials.gov, registration number NCT00988572 .
Walk on Floor Eyes Closed Test: A Unique Test of Spaceflight Induced Ataxia
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Fisher, E. A.; Kofman, I. S.; Cerisano, J. M.; Harm, D. L.; Bloomberg, J. J.
2011-01-01
Measurement and quantification of posture and locomotion following spaceflight is an evolving process. Based on the data obtained from the current investigation we believe that the walk on the floor line test with the eyes closed (WOFEC) provides a unique procedure for quantifying postflight ataxia. As a part of an ongoing investigation designed to look at functional changes in astronauts returning from spaceflight seven astronauts (5 short duration with flights of 12-16 days; 2 long duration crewmembers with flights of 6 months) were tested twice before flight, on landing day (short duration only), and 1, 6, and 30 days after flight. The WOFEC consisted of walking for 10 steps (repeated twice) with the feet heel to toe in tandem, arms folded across the chest and the eyes closed. The performance metric (scored by three examiners from video) was the percentage of correct steps completed over the three trials. A step was not counted as correct if the crewmember side-stepped, opened their eyes, or paused for more than three seconds between steps. The data reveled a significant decrease in percentage of correct steps on landing day (short duration crew) and on the first day following landing (long duration) with partial recovery the following day, and full recovery beginning on day sixth after flight. Both short and long duration fliers appeared to be unaware of foot position relative to their bodies or the floor. Postflight, deviation from a straight path was common, and seemed to be determined by the angle of foot placement relative to their body. While deviation from a straight line could be either left or right, primary deviations were observed to occur to the right. Furthermore, the test for two crewmembers elicited motion sickness symptoms. These data clearly demonstrate the sensorimotor challenges facing crewmembers after returning from spaceflight. The WOFEC test has value providing the investigator or crew surgeon with a simple method to quantify vestibular ataxia, as well as providing instant feedback of postural ataxia without the use of complex test equipment.
Stella, Stefano; Italia, Leonardo; Geremia, Giulia; Rosa, Isabella; Ancona, Francesco; Marini, Claudia; Capogrosso, Cristina; Giglio, Manuela; Montorfano, Matteo; Latib, Azeem; Margonato, Alberto; Colombo, Antonio; Agricola, Eustachio
2018-02-06
A 3D transoesophageal echocardiography (3D-TOE) reconstruction tool has recently been introduced. The system automatically configures a geometric model of the aortic root and performs quantitative analysis of these structures. We compared the measurements of the aortic annulus (AA) obtained by semi-automated 3D-TOE quantitative software and manual analysis vs. multislice computed tomography (MSCT) ones. One hundred and seventy-five patients (mean age 81.3 ± 6.3 years, 77 men) who underwent both MSCT and 3D-TOE for annulus assessment before transcatheter aortic valve implantation were analysed. Hypothetical prosthetic valve sizing was evaluated using the 3D manual, semi-automated measurements using manufacturer-recommended CT-based sizing algorithm as gold standard. Good correlation between 3D-TOE methods vs. MSCT measurements was found, but the semi-automated analysis demonstrated slightly better correlations for AA major diameter (r = 0.89), perimeter (r = 0.89), and area (r = 0.85) (all P < 0.0001) than manual one. Both 3D methods underestimated the MSCT measurements, but semi-automated measurements showed narrower limits of agreement and lesser bias than manual measurements for most of AA parameters. On average, 3D-TOE semi-automated major diameter, area, and perimeter underestimated the respective MSCT measurements by 7.4%, 3.5%, and 4.4%, respectively, whereas minor diameter was overestimated by 0.3%. Moderate agreement for valve sizing for both 3D-TOE techniques was found: Kappa agreement 0.5 for both semi-automated and manual analysis. Interobserver and intraobserver agreements for the AA measurements were excellent for both techniques (intraclass correlation coefficients for all parameters >0.80). The 3D-TOE semi-automated analysis of AA is feasible and reliable and can be used in clinical practice as an alternative to MSCT for AA assessment. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.
Gripari, Paola; Mapelli, Massimo; Bellacosa, Ilaria; Piazzese, Concetta; Milo, Maria; Fusini, Laura; Muratori, Manuela; Ali, Sarah Ghulam; Tamborini, Gloria; Pepi, Mauro
2018-02-26
Successful mitral valve (MV) repair for degenerative mitral regurgitation (DMR) is mainly related to surgical expertise and MV anatomy. Although 2D echocardiography, specifically transoesophageal (TOE), provides precise information regarding MV anatomy, recent advancements in matrix technology meant a decisive step forward to the point where segmental MV analysis can be accurately performed from a noninvasive 3D transthoracic (TTE) approach. The aims of this study were: (a) to evaluate the feasibility and time required for real-time 3D TTE in a large consecutive cohort of patients with severe DMR in the assessment of MV anatomy; (b) to compare the accuracy of 3D TTE and 2D TOE versus surgical inspection in the recognition and localization of all components of the MV leaflets; (c) to establish the added diagnostic value of 3D colourDoppler examination to pure 3D morphologic evaluation. 149 consecutive patients with severe DMR underwent complete 3D TTE before surgery and 2D TOE in the operating room. Echocardiographic data obtained by the different techniques were compared with surgical inspection. 3D TTE was feasible in a relatively short time (8 ± 4 min), with good (49%) and optimal (33%) imaging quality in the majority of cases. 3D TTE had significant better overall accuracy compared to 2D TOE (93 and 91%, p < 0.05, respectively). 2D TOE was significantly more specific than 3D TTE in the identification of A3 prolapse (99 vs. 96%). The colourDoppler mode did not improve significantly the accuracy of 3D TTE, albeit it determined a better sensitivity in the detection of A2 prolapse if compared to 2D TOE (95 vs. 85%). 3D TTE with or without colourDoppler is a feasible and useful method in the analysis of MV prolapse; it allows a preoperative and noninvasive description of the pathology as accurate as the 2D TOE.
Comparative Study of Intramedullary Hammertoe Fixation.
Obrador, Caterina; Losa-Iglesias, Marta; Becerro-de-Bengoa-Vallejo, Ricardo; Kabbash, Christina A
2018-04-01
Temporary Kirschner wire fixation (K-wire) is a widely used, low-cost fixation method for the correction of hammertoe deformity. Reported complications associated with K-wires prompted the development of new implants over the past decade. However, there is a lack of literature on comparative studies analyzing functional outcomes using validated questionnaires. The purpose of this study was to analyze functional outcomes in patients who had undergone proximal interphalangeal joint fusion using 2 types of intramedullary implant, the Smart Toe and the TenFuse, and to compare them with the outcomes in patients treated with standard K-wire fixation. A retrospective review of operative hammertoe correction by a single surgeon was performed in 96 patients followed for more than 12 months. Functional outcome was assessed using the Foot Function Index (FFI), the Short Form 36 (SF-36), and the 10-point visual analog scale (VAS) validated questionnaires. Complications and fusion rates were also evaluated. Several patients in the study underwent corrections in different toes; thus, a total of 186 toes were included in the study. From these, 65 toes (34.9%) were treated with K-wire fixation, 94 (50.5%) with Smart Toe titanium implant, and 27 (14.5%) with TenFuse allograft implant. No statistically significant differences in functional outcome and incidence of complications were observed among the 3 fixation groups, although the 2 intramedullary implants were associated with greater fusion rates and patient satisfaction. Breakage of the Smart Toe implant was significantly higher than that of the other fixations, with 10.6% of implants breaking within the first year postoperatively. SF-36 and VAS scores decreased 12 months after surgery for the 3 types of fixation, with no statistically significant differences observed. The use of Smart Toe and TenFuse implants provided operative outcomes comparable to those obtained using a K-wire fixation and slightly better patient satisfaction. Our results suggest that utilization of these implants for hammertoe correction was a reasonable choice that provided good alignment, pain reduction, and improved function at final follow-up. However, they are more expensive than K-wires. For this reason, in-depth cost-benefit studies would be required to justify their use as a standard treatment. Level III, comparative series.
Dynamics of Debris Supply and Removal from Coastal Cliffs
NASA Astrophysics Data System (ADS)
Dickson, M. E.; Vann Jones, E. C.; Payo, A.; Matsumoto, H.
2016-12-01
Progress in obtaining a morphodynamic understanding of rocky shores has been limited by slow rates of change and lack of preserved evidence of erosion processes. As a result we do not have a detailed understanding of the relative contributions of failure events across the magnitude-frequency spectrum. This talk describes field experiments, supported by simple stock-flow modelling, on a coastal cliff-face in eastern New Zealand. Key features of this site are that it is composed of near-homogenous rapidly eroding mudstone, and it is fronted by a wide intertidal rock platform that results in the cliff toe being exposed to waves every high tide. Several techniques were used to measure the cliff debris supply-removal system. Sediment traps at the cliff toe directly recorded rates of debris supply from the cliff-face at five discrete locations. Repeated high-resolution terrestrial laser scans over several consecutive low-tide stages documented changes in cliff-toe talus volumes along 50m of shoreline. Optical back-scatter sensors located on the rock shore platform in front of the cliff toe constrained the timing of talus-debris resuspension during tidal inundation of the cliff toe. Wave pressure gauges were used to characterise the wave field acting on the cliff. Results demonstrate that high-resolution (<5mm) laser scanning can meaningfully characterise rates of coastal cliff erosion at the very high-frequency low-magnitude end of the erosion spectrum. We find that rates of debris supply from the cliff face are dependent on the subaerial weathering system, in particular wetting and drying and associated expansion and contraction of clay minerals within the cliff rock. Rates of debris removal from the cliff toe depend on tide and wave conditions: even under low wave-energy conditions, waves at infragravity frequencies can access the cliff toe at high tide leading to sediment suspension. We explore the basic feedback structure of cliff, talus and debris removal using a simple stock-flow model, and discuss implications for progressive (ongoing) cliff erosion in the presence of an ever-widening shore platform.
Savage, J M
2000-12-01
A new rainfrog of the Eleutherodactylus milesi group is described from the Sierra de Xucaneb, Guatemala. It is compared to the other 11 upland species from southern Mexico, Guatemala and Honduras referred to the group. Within the milesi group the new species differs from the other five forms which also have toe fringes in size of the finger disks, the snout shape in profile and the amount of toe webbing and dorsal tuberculation. Difficulties in distinguishing among the character states for the tympanum (distinct, indistinct and hidden) and between toe ridges and fringes indicate that very subtle differences separate recognized species.
Leca, J-B; Auquit Auckbur, I; Bachy, B; Milliez, P-Y
2008-12-01
Symbrachydactyly is a rare congenital malformation of the hand and its treatment is controversial. Non vascularized toe phalangeal transfers have been used for management of short digits for three children. Six phalanges have been harvested complete with their periosteum. No joint reconstruction has been performed and all children have undergone surgery at a young age. Four of six digits involved have an active range of motion (range 30 to 105 degrees ). All authors who have reported active range of motion of toe phalangeal transfers have performed joint reconstruction. Here, we report obtaining active range of motion of phalangeal transfers without necessity of joint reconstruction.
Portnoy, Sigal; Kristal, Anat; Gefen, Amit; Siev-Ner, Itzhak
2012-01-01
The prosthetic foot plays an important role in propelling, breaking, balancing and supporting body loads while the amputee ambulates on different grounds. It is therefore important to quantify the effect of the prosthetic foot mechanism on biomechanical parameters, in order to prevent pressure ulcers and deep tissue injury. Our aim was to monitor the internal stresses in the residuum of transtibial amputation (TTA) prosthetic-users ambulating on different terrains, which the amputees encounter during their daily activities, i.e. paved floor, grass, ascending and descending stairs and slope. We specifically aimed to compare between the internal stresses in the TTA residuum of amputees ambulating with a novel hydraulic prosthetic foot compared to conventional energy storage and return (ESR) prosthetic feet. Monitoring of internal stresses was accomplished using a portable subject-specific real-time internal stress monitor. We found significant decrease (p<0.01) in peak internal stresses and in the loading rate of the amputated limb, while walking with the hydraulic foot, compared to walking with ESR feet. The loading rate calculated while ambulating with the hydraulic foot was at least three times lower than the loading rate calculated while ambulating with the ESR foot. Although the average decrease in internal stresses was ≈ 2-fold larger when replacing single-toe ESR feet with the hydraulic foot than when replacing split-toed ESR feet with the hydraulic foot, the differences were statistically insignificant. Our findings suggest that using a hydraulic prosthetic foot may protect the distal tibial end of the TTA residuum from high stresses, therefore preventing pressure-related injury and pain. Copyright © 2011 Elsevier B.V. All rights reserved.
Fey, Andreas; Schachner, Melitta; Irintchev, Andrey
2010-05-01
Assessment of motor abilities after sciatic nerve injury in rodents, in particular mice, relies exclusively on walking track (footprint) analysis despite known limitations of this method. Using principles employed recently for video-based motion analyses after femoral nerve and spinal cord injuries, we have designed and report here a novel approach for functional assessments after sciatic nerve lesions in mice. Functional deficits are estimated by angle and distance measurements on single video frames recorded during beam-walking and inclined ladder climbing. Analyses of adult C57BL/6J mice after crush of the sciatic, tibial, or peroneal nerve allowed the identification of six numerical parameters, detecting impairments of the plantar flexion of the foot and the toe spread. Some of these parameters, as well as footprint functional indices, revealed severe impairment after crush injury of the sciatic or tibial, but not the peroneal nerve, and complete recovery within 3 weeks after lesion. Other novel estimates, however, showed that complete recovery is reached as late as 2-3 months after sciatic nerve crush. These measures detected both tibial and peroneal dysfunction. In contrast to the complete restoration of function in wild-type mice (100%), our new parameters, in contrast to the sciatic functional index, showed incomplete recovery (85%) 90 days after sciatic nerve crush in mice deficient in the neural cell adhesion molecule (NCAM). We conclude that the novel video-based approach is more precise, sensitive, and versatile than established tests, allowing objective numerical assessment of different motor functions in a sciatic nerve injury paradigm in mice.
Repair of webbed fingers or toes
... Updated by: C. Benjamin Ma, MD, Professor, Chief, Sports Medicine and Shoulder Service, UCSF Department of Orthopaedic Surgery, San Francisco, CA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Finger Injuries and Disorders Read more Toe Injuries ...
Effect of Toe Clips During Bicycle Ergometry on VO2 max.
ERIC Educational Resources Information Center
Moffat, Roger S.; Sparling, Phillip B.
1985-01-01
Eight men participated in three randomized maximal oxygen uptake tests to investigate the hypothesis that the use of toe clips on bicycle ergometers produced a higher VO2 max. No significant difference in mean VO2 max or performance time was observed. (Author/MT)
Miyake, Tamon; Kobayashi, Yo; Fujie, Masakatsu G; Sugano, Shigeki
2017-07-01
Gait training robots are useful for changing gait patterns and decreasing risk of trip. Previous research has reported that decreasing duration of the assistance or guidance of the robot is beneficial for efficient gait training. Although robotic intermittent control method for assisting joint motion has been established, the effect of the robot intervention timing on change of toe clearance is unclear. In this paper, we tested different timings of applying torque to the knee, employing the intermittent control of a gait training robot to increase toe clearance throughout the swing phase. We focused on knee flexion motion and designed a gait training robot that can apply flexion torque to the knee with a wire-driven system. We used a method of timing detecting for the robot conducting torque control based on information from the hip, knee, and ankle angles to establish a non-time dependent parameter that can be used to adapt to gait change, such as gait speed. We carried out an experiment in which the conditions were four time points: starting the swing phase, lifting the foot, maintaining knee flexion, and finishing knee flexion. The results show that applying flexion torque to the knee at the time point when people start lifting their toe is effective for increasing toe clearance in the whole swing phase.
Foot shape in arboreal birds: two morphological patterns for the same pincer-like tool.
Abourachid, Anick; Fabre, Anne-Claire; Cornette, Raphaël; Höfling, Elizabeth
2017-07-01
The feet are the only contact between the body and the substrate in limbed animals and as such they provide a crucial interface between the animal and its environment. This is especially true for bipedal and arboreal species living in a complex three-dimensional environment that likely induces strong selection on foot morphology. In birds, foot morphology is highly variable, with different orientations of the toes, making it a good model for the study of the role of functional, developmental, and phylogenetic constraints in the evolution of phenotypic diversity. Our data on the proportions of the phalanges analyzed in a phylogenetic context show that two different morphological patterns exist that depend mainly on habitat and toe orientation. In the anisodactyl foot, the hallux is the only backward-oriented toe and is enlarged in climbing species and reduced in terrestrial ones. Moreover, a proximo-distal gradient in phalanx size is observed depending on the degree of terrestriality. In the two other cases (heterodactyl and zygodactyl) that have two toes that point backward, the hallux is rather small in contrast to the other backward-pointing toe, which is enlarged. The first pattern is convergent and common among tetrapods and follows rules of skeletal development. The second pattern is unique for the clade and under muscle-morphogenetic control. In all cases, the functional result is the same tool, a pincer-like foot. © 2017 Anatomical Society.
Foot pressures during gait: a comparison of techniques for reducing pressure points.
Lawless, M W; Reveal, G T; Laughlin, R T
2001-07-01
Various methods have been used to redistribute plantar surface foot pressure in patients with foot ulcers. This study was conducted to determine the effectiveness of four modalities (fracture walker, fracture walker with insert, and open and closed toe total contact casts) in reducing plantar foot pressure. Ten healthy, normal volunteer subjects had an F-scan sensor (ultra thin shoe insert pressure monitor) placed under the right foot. They then ambulated on a flat surface, maintaining their normal gait. Dynamic plantar pressures were averaged over 10 steps at four different sites (plantar surface of great toe, first metatarsal head, base of fifth metatarsal, and plantar heel). All subjects repeated this sequence under five different testing conditions (barefoot, with a fracture walker, fracture walker with arch support insert, open and closed toe total contact cast). Each subject's barefoot pressures were then compared with the pressures during the different modalities. All four treatment modalities significantly reduced (p < 0.05) plantar pressure at the first metatarsal head (no method was superior). The fracture walker, fracture walker with insert, and open toe total contact cast significantly reduced pressure at the heel. Pressures at the base of the fifth metatarsal and great toe were not significantly reduced with any treatment form. The fracture walker, with and without arch support, and total contact cast can effectively reduce plantar pressure at the heel and first metatarsal head.
Topical oxygen emulsion: a novel wound therapy.
Davis, Stephen C; Cazzaniga, Alejandro L; Ricotti, Carlos; Zalesky, Paul; Hsu, Li-Chien; Creech, Jeffrey; Eaglstein, William H; Mertz, Patricia M
2007-10-01
To investigate the use of a topical oxygen emulsion (TOE), consisting of a supersaturated oxygen suspension using perfluorocarbon components, on second-degree burns and partial-thickness wounds. Oxygen is a required substance for various aspects of wound repair, and increased oxygen tension in a wound has been shown to stimulate phagocytosis and to reduce the incidence of wound infection. Second-degree burns and partial-thickness wounds were created on the backs of specific pathogen-free pigs. Wounds were then randomly assigned to 1 of the following treatment groups: TOE, TOE vehicle, or air-exposed control. Wounds were assessed for complete epithelialization using a salt-split technique. The TOE was able to significantly (P = .001) enhance the rate of epithelialization compared with both vehicle and untreated control. These data suggest that topical oxygen may be beneficial for acute and burn wounds. The results obtained from this double-blind, control, in vivo study demonstrate that TOE can significantly enhance the rate of epithelialization of partial-thickness excisional wounds and second-degree burns. These findings could have considerable clinical implications for patients with surgical and burn wounds by providing functional skin at an earlier date to act as a barrier against environmental factors, such as bacteria invasion. Other types of wounds may also benefit from this therapy (eg, chronic wounds and surgical incisions). Additional studies, including clinical studies, are warranted.
Naran, Sanjay; Imbriglia, Joseph E
2016-12-01
Background: A case is discussed in which a young girl was born with symbrachydactyly of multiple digits in whom nonvascularized proximal toe phalanges were transferred to the aphalangic digits at the age of four. At 39 years of age, she presented incidentally to our clinic and was observed to have a very functional hand with mobile metacarpophalangeal joints in all reconstructed digits. Methods: We present a case report which is discussed in the context of long-term follow-up, and phalangeal growth in the absence of distraction, and a review of the current literature in regards to outcomes for this modality of treatment. Results: We document growth of the transplanted phalanges, despite surgery occurring after the reported optimum age of before 18 months, and the patient not undergoing distraction. The patient reported no donor site morbidity in regards to function or psychosocial impact. Furthermore, we observed active function at the metacarpophalangeal joints of all operated digits. Conclusions: We report the longest follow-up (35 years) following nonvascularized proximal toe phalangeal transfer for short finger type symbrachydactyly. We highlight the long-term functional outcome of nonvascularized toe phalangeal transfers, and present an overview of the current outcome literature for this type of procedure, advocating that nonvascularized toe phalangeal transfers remain a viable treatment option for select cases of symbrachydactyly.
Tibirica, Eduardo; Rodrigues, Elba; Cobas, Roberta; Gomes, Marilia B.
2007-01-01
Microvascular function in patients with type 1 diabetes without chronic complications was assessed using skin capillary recruitment during post-occlusive reactive hyperemia (PORH). Structural (maximal) capillary density was evaluated during venous occlusion. The study included 48 consecutive outpatients aged 26.3 ± 10.8 years with type 1 diabetes (duration of 9.5 years) without chronic complications and 34 control subjects. Intravital capillary video-microscopy was used in the dynamic study of skin capillaries in the dorsum of the fingers and toes. Capillary recruitment during PORH (% increase in mean capillary density, MCD) was significantly higher in the controls than the patients in both the fingers (p < 0.001) and toes (p < 0.001). During venous occlusion, MCD increase was also higher in the controls than the patients in both the fingers (p < 0.05) and toes (p < 0.0001). In patients, no difference was found between MCD at baseline and after venous occlusion in the fingers but a decrease was observed in the toes (p < 0.001). It is concluded that skin capillary function is significantly impaired in both fingers and toes of patients with type 1 diabetes without chronic complications. Moreover, capillary density during venous occlusion did not increase in either extremity in the patients, suggesting that their capillaries at rest are already maximally recruited. PMID:17823692
Predictors of Early Growth in Academic Achievement: The Head-Toes-Knees-Shoulders Task
ERIC Educational Resources Information Center
McClelland, Megan M.; Cameron, Claire E.; Duncan, Robert; Bowles, Ryan P.; Acock, Alan C.; Miao, Alicia; Pratt, Megan E.
2014-01-01
Children's behavioral self-regulation and executive function (EF; including attentional or cognitive flexibility, working memory, and inhibitory control) are strong predictors of academic achievement. The present study examined the psychometric properties of a measure of behavioral self-regulation called the Head-Toes-Knees-Shoulders (HTKS) by…
30 CFR 57.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fixed ladder anchorage and toe clearance. 57.11005 Section 57.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... MINES Travelways and Escapeways Travelways-Surface and Underground § 57.11005 Fixed ladder anchorage and...
30 CFR 57.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fixed ladder anchorage and toe clearance. 57.11005 Section 57.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... MINES Travelways and Escapeways Travelways-Surface and Underground § 57.11005 Fixed ladder anchorage and...
30 CFR 57.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fixed ladder anchorage and toe clearance. 57.11005 Section 57.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... MINES Travelways and Escapeways Travelways-Surface and Underground § 57.11005 Fixed ladder anchorage and...
30 CFR 57.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fixed ladder anchorage and toe clearance. 57.11005 Section 57.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... MINES Travelways and Escapeways Travelways-Surface and Underground § 57.11005 Fixed ladder anchorage and...
30 CFR 57.11005 - Fixed ladder anchorage and toe clearance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fixed ladder anchorage and toe clearance. 57.11005 Section 57.11005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... MINES Travelways and Escapeways Travelways-Surface and Underground § 57.11005 Fixed ladder anchorage and...
Medical Aspects of Cold Weather Operations: A Handbook for Medical Officers
1993-04-01
forefoot tissues, hammer toe deformities, flexion contracture of the great toe, hyperhidrosis predisposing to skin maceration and dermato- phytosis...Even more striking are the reports of mass deaths among shipwreck survivors, who had been able to climb aboard rescuing ships, only to be found dead
Hemimelic extra toes (Hx) arose spontaneously as a dominant mutation in B10.D2/nSnJ mice in 1967. It specifically affects the appendicular skeleton, causing variable foreshortening of the tibia (radius) and preaxial polydactylism. Early anatomical studies revealed anterior overgr...
Tic Tac Toe Math. Train the Trainer.
ERIC Educational Resources Information Center
Center for Alternative Learning, Bryn Mawr, PA.
This report describes a project that developed a "Train the Trainer" program that would enable individuals to learn and teach the alternative instructional technique, Tic Tac Toe Math, developed by Richard Cooper for adult basic education students. The pilot workshop conducted as part of the project identified problems that traditional…
An Exploration of the Factors Influencing the Adoption of an IS Governance Framework
ERIC Educational Resources Information Center
Parker, Sharon L.
2013-01-01
This research explored IT governance framework adoption, leveraging established IS theories. It applied both the technology acceptance model (TAM) and the technology, organization, environment (TOE) models. The study consisted of developing a model utilizing TOE and TAM, deriving relevant hypotheses. Interviews with a group of practitioners…
Paradise, David
2012-11-01
A short cut review was carried out to establish whether intervention and follow up of patients with toe phalanx fractures is better than no treatment at reducing time to return to normal activity and need for surgical intervention. 40 papers were found using the reported searches, of which 1 presented the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of this best paper is tabulated. It is concluded that there is no evidence to determine whether intervention of any type improves outcome in toe phalanx fractures.
Tic Tac Toe Math. Instructional Guide.
ERIC Educational Resources Information Center
Cooper, Richard
This instructional guide and set of three companion workbooks are intended for use in an arithmetic course based on the Tic Tac Toe method of addition and multiplication, which is an alternative means of learning to add and multiply that was developed for students whose learning disabilities (including difficulty in distinguishing left from right…
Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra
ERIC Educational Resources Information Center
Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly
2014-01-01
The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…
A Two-Step Integrated Theory of Everything (TOE)
NASA Astrophysics Data System (ADS)
Colella, Antonio
2017-01-01
Two opposing TOE visions are my Two-Step (physics/math) and Hawking's single math step. My Two-Step should replace the single step because of the latter's near zero results after a century of attempts. My physics step had 3 goals. First ``Everything'' was defined as 20 interrelated amplified theories (e.g. string, Higgs forces, spontaneous symmetry breaking, particle decays, dark matter, dark energy, stellar black holes) and their intimate physical interrelationships. Amplifications of Higgs forces theory (e.g. matter particles and their associated Higgs forces were one and inseparable, spontaneous symmetry breaking was bidirectional and caused by high temperatures not Higgs forces, and sum of 8 Higgs forces of 8 permanent matter particles was dark energy) were key to my Two-Step TOE. The second goal answered all outstanding physics questions: what were Higgs forces, dark energy, dark matter, stellar black holes, our universe's creation, etc.? The third goal provided correct inputs for the two part second math step, an E8 Lie algebra for particles and an N-body cosmology simulation (work in progress). Scientific advancement occurs only if the two opposing TOEs are openly discussed/debated.
Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes
NASA Astrophysics Data System (ADS)
Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert
2018-05-01
Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.
Rare case of tibial hemimelia, preaxial polydactyly, and club foot
Granite, Guinevere; Herzenberg, John E; Wade, Ronald
2016-01-01
A seven-month old female presented with left tibial hemimelia (or congenital tibial aplasia; Weber type VIIb, Jones et al type 1a), seven-toed preaxial polydactyly, and severe club foot (congenital talipes equinovarus). Definitive amputation surgery disarticulated the lower limb at the knee. This case report describes the anatomical findings of a systematic post-amputation examination of the lower limb’s superficial dissection, X-rays, and computed tomography (CT) scans. From the X-rays and CT scans, we found curved and overlapping preaxial supernumerary toes, hypoplastic first metatarsal, lack of middle and distal phalanges in one supernumerary toe, three tarsal bones, hypoplastic middle phalanx and no distal phalanx for fourth toe, and no middle or distal phalanges for fifth toe. The fibula articulated with the anteromedial calcaneus and the tibia was completely absent. We identified numerous muscles and nerves in the superficial dissection that are described in the results section of the case report. Due to the rarity of this combination of anatomical findings, descriptions of such cases are very infrequent in the literature. PMID:28035313
Rare case of tibial hemimelia, preaxial polydactyly, and club foot.
Granite, Guinevere; Herzenberg, John E; Wade, Ronald
2016-12-16
A seven-month old female presented with left tibial hemimelia (or congenital tibial aplasia; Weber type VIIb, Jones et al type 1a), seven-toed preaxial polydactyly, and severe club foot (congenital talipes equinovarus). Definitive amputation surgery disarticulated the lower limb at the knee. This case report describes the anatomical findings of a systematic post-amputation examination of the lower limb's superficial dissection, X-rays, and computed tomography (CT) scans. From the X-rays and CT scans, we found curved and overlapping preaxial supernumerary toes, hypoplastic first metatarsal, lack of middle and distal phalanges in one supernumerary toe, three tarsal bones, hypoplastic middle phalanx and no distal phalanx for fourth toe, and no middle or distal phalanges for fifth toe. The fibula articulated with the anteromedial calcaneus and the tibia was completely absent. We identified numerous muscles and nerves in the superficial dissection that are described in the results section of the case report. Due to the rarity of this combination of anatomical findings, descriptions of such cases are very infrequent in the literature.
Brunt, Denis; Santos, Valeria; Kim, Hyeong Dong; Light, Kathye; Levy, Charles
2005-04-01
This study describes how elderly subjects initiate gait, and step from a position of quiet stance. Based on scores from selected standardized tests subjects were placed in either a high (HFL) or low functional level (LFL) group and were asked to initiate gait, step onto a 10 cm high, 1.22 m wide curb and step over a 10 cm high, 9 cm wide obstacle at a self paced speed. Stepping conditions affected the velocity of movement. It was clear that all subjects decreased initiation velocity for both curb and obstacle compared to gait initiation. Swing and stance limb acceleration ground reaction forces and EMG amplitude were modulated according to initiation velocity. Toe clearance was greater for obstacle than curb and gait initiation. Swing toe-off was significantly earlier and there was a trend for obstacle clearance to be greater for the HFL group. Those in the LFL group appear to be at a greater risk for falling due to the possible effect of slower rate of toe-off that could influence toe clearance over the obstacle.
LEFT-RIGHT DIFFERENCES ON TIMED MOTOR EXAMINATION IN CHILDREN
Roeder, Megan B.; Mahone, E. Mark; Larson, J. Gidley; Mostofsky, S. H.; Cutting, Laurie E.; Goldberg, Melissa C.; Denckla, Martha B.
2008-01-01
Age-related change in the difference between left- and right-side speed on motor examination may be an important indicator of maturation. Cortical maturation and myelination of the corpus callosum are considered to be related to increased bilateral skill and speed on timed motor tasks. We compared left minus right foot, hand, and finger speed differences using the Revised Physical and Neurological Assessment for Subtle Signs (PANESS; Denckla, 1985); examining 130 typically developing right-handed children (65 boys, 65 girls) ages 7−14. Timed tasks included right and left sets of 20 toe taps, 10 toe-heel alternation sequences, 20 hand pats, 10 hand pronate-supinate sets, 20 finger taps, and 5 sequences of each finger-to-thumb apposition. For each individual, six difference scores between left- and right-sided speeded performances of timed motor tasks were analyzed. Left-right differences decreased significantly with age on toe tapping, heel-toe alternations, hand pronation-supination, finger repetition, and finger sequencing. There were significant gender effects for heel-toe sequences (boys showing a greater left-right difference than girls), and a significant interaction between age and gender for hand pronation-supination, such that the magnitude of the left-right difference was similar for younger, compared with older girls, while the difference was significantly larger for younger, compared to older boys. Speed of performing right and left timed motor tasks equalizes with development; for some tasks, the equalization occurs earlier in girls than in boys. PMID:17852124
van Neerven, Sabien Ga; Bozkurt, Ahmet; O'Dey, Dan Mon; Scheffel, Juliane; Boecker, Arne H; Stromps, Jan-Philipp; Dunda, Sebastian; Brook, Gary A; Pallua, Norbert
2012-04-30
Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship. As such, animals received either a 2 cm sciatic nerve defect (neurotmesis) followed by autologous nerve transplantation (ANT animals) or a crush injury with spontaneous recovery (axonotmesis; CI animals). Functional recovery of toe spreading was observed over an observation period of 84 days. In contrast to CI animals, ANT animals did not reach pre-surgical levels of toe spreading. After the observation period, the lipophilic dye DiI was applied to label sensory and motor neurons in dorsal root ganglia (DRG; sensory neurons) and spinal cord (motor neurons), respectively. No statistical difference in motor or sensory neuron counts could be detected between ANT and CI animals.In the present study we could indicate that there was no direct relationship between functional recovery (toe spreading) measured by SSI and the number of labelled (motor and sensory) neurons evaluated by retrograde tracing. The present findings demonstrate that a multimodal approach with a variety of independent evaluation tools is essential to understand and estimate the therapeutic benefit of a nerve repair strategy.
An automated approach for extracting Barrier Island morphology from digital elevation models
NASA Astrophysics Data System (ADS)
Wernette, Phillipe; Houser, Chris; Bishop, Michael P.
2016-06-01
The response and recovery of a barrier island to extreme storms depends on the elevation of the dune base and crest, both of which can vary considerably alongshore and through time. Quantifying the response to and recovery from storms requires that we can first identify and differentiate the dune(s) from the beach and back-barrier, which in turn depends on accurate identification and delineation of the dune toe, crest and heel. The purpose of this paper is to introduce a multi-scale automated approach for extracting beach, dune (dune toe, dune crest and dune heel), and barrier island morphology. The automated approach introduced here extracts the shoreline and back-barrier shoreline based on elevation thresholds, and extracts the dune toe, dune crest and dune heel based on the average relative relief (RR) across multiple spatial scales of analysis. The multi-scale automated RR approach to extracting dune toe, dune crest, and dune heel based upon relative relief is more objective than traditional approaches because every pixel is analyzed across multiple computational scales and the identification of features is based on the calculated RR values. The RR approach out-performed contemporary approaches and represents a fast objective means to define important beach and dune features for predicting barrier island response to storms. The RR method also does not require that the dune toe, crest, or heel are spatially continuous, which is important because dune morphology is likely naturally variable alongshore.
Improvement of isometric dorsiflexion protocol for assessment of tibialis anterior muscle strength.
Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh
2015-01-01
It is important to accurately estimate the electromyogram (EMG)/force relationship of triceps surae (TS) muscle for detecting strength deficit of tibalis anterior (TA) muscle. In literature, the protocol for recording EMG and force of dorsiflexion have been described, and the necessity for immobilizing the ankle has been explained. However, there is a significant variability of the results among researchers even though they report the fixation of the ankle. We have determined that toe extension can cause significant variation in the dorsiflexion force and EMG of TS and this can occur despite following the current guidelines which require immobilizing the ankle. The results also show that there was a large increase in the variability of the force and the RMS of EMG of TS when the toes were not strapped compared with when they were strapped. Thus, with the current guidelines, where there are no instructions regarding the necessity of strapping the toes, the EMG/force relationship of TS could be incorrect and give an inaccurate assessment of the dorsiflexor TA strength. In summary, •Current methodology to estimate the dorsiflexor TA strength with respect to the TS activity, emphasizing on ankle immobilization is insufficient to prevent large variability in the measurements.•Toe extension during dorsiflexion was found to be one source of variability in estimating the TA strength.•It is recommended that guidelines for recording force and EMG from TA and TS muscles should require the strapping of the toes along with the need for immobilizing the ankle.
Galton, Peter M; Shepherd, Jeffrey D
2012-04-01
The avian automatic perching mechanism (APM) involves the automatic digital flexor mechanism (ADFM) and the digital tendon-locking mechanism (DTLM). When birds squat on a perch to sleep, the increased tendon travel distance due to flexion of the knee and ankle supposedly causes the toes to grip the perch (ADFM) and engage the DTLM so perching while sleeping involves no muscular effort. However, the knees and ankles of sleeping European starlings (Sturnus vulgaris) are only slightly flexed and, except for occasional balancing adjustments, the distal two-thirds of the toes are not flexed to grip a 6-mm-diameter perch. The cranial ankle angle (CAA) is ∼120° and the foot forms an inverted "U" that, with the mostly unflexed toes, provides a saddle-like structure so the bird balances its weight over the central pad of the foot (during day weight further back and digits actively grasp perch). In the region of the pad, the tendon sheath of many birds is unribbed, or only very slightly so, and it is always separated from the tendon of the M. flexor digitorum longus by tendons of the other toe flexor muscles. Passive leg flexion produces no toe flexion in anesthetized Starlings and only after 15-20 min, at the onset of rigor mortis, in freshly sacrificed Starlings. Anesthetized Starlings could not remain perched upon becoming unconscious (ADFM, DTLM intact). Birds whose digital flexor tendons were severed or the locking mechanism eliminated surgically (no ADFM or DTLM), so without ability to flex their toes, slept on the perch in a manner similar to unoperated Starlings (except CAA ∼90°-110°). Consequently, there is no APM or ADFM and the DTLM, although involved in lots of other activities, only acts in perching with active contraction of the digital flexor muscles. © 2012 WILEY PERIODICALS, INC.
Gooding, Thomas M; Feger, Mark A; Hart, Joseph M; Hertel, Jay
2016-08-01
The intrinsic foot muscles maintain the medial longitudinal arch and aid in force distribution and postural control during gait. Impaired intrinsic foot-muscle function has been linked to various foot conditions. Several rehabilitative exercises have been proposed to improve it; however, literature that identifies which individual muscles are activated during specific intrinsic foot-muscle exercises is lacking. To describe changes in activation of the intrinsic plantar foot muscles after 4 exercises as measured with T2 magnetic resonance imaging (MRI). Descriptive laboratory study. Research laboratory. Eight healthy National Collegiate Athletic Association Division I collegiate cross-country and track athletes (5 men and 3 women: age = 20 ± 0.93 years, height = 180.98 ± 10.84 cm, mass = 70.91 ± 7.82 kg). Participants underwent T2 MRI before and after each exercise. They completed 1 set of 40 repetitions of each exercise (short-foot exercise, toes spread out, first-toe extension, second- to fifth-toes extension). Percentage increases in muscle activation of the abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quadratus plantae, flexor digiti minimi, adductor hallucis oblique, flexor hallucis brevis, and interossei and lumbricals (analyzed together) after each exercise were assessed using T2 MRI. All muscles showed increased activation after all exercises. The mean percentage increase in activation ranged from 16.7% to 34.9% for the short-foot exercise, 17.3% to 35.2% for toes spread out, 13.1% to 18.1% for first-toe extension, and 8.9% to 22.5% for second- to fifth-toes extension. All increases in activation had associated 95% confidence intervals that did not cross zero. Each of the 4 exercises was associated with increased activation in all of the plantar intrinsic foot muscles evaluated. These results may have clinical implications for the prescription of specific exercises to target individual intrinsic foot muscles.
García-Martín, Ana; Lázaro-Rivera, Carla; Fernández-Golfín, Covadonga; Salido-Tahoces, Luisa; Moya-Mur, Jose-Luis; Jiménez-Nacher, Jose-Julio; Casas-Rojo, Eduardo; Aquila, Iolanda; González-Gómez, Ariana; Hernández-Antolín, Rosana; Zamorano, José Luis
2016-07-01
A specialized three-dimensional transoesophageal echocardiography (3D-TOE) reconstruction tool has recently been introduced; the system automatically configures a geometric model of the aortic root from the images obtained by 3D-TOE and performs quantitative analysis of these structures. The aim of this study was to compare the measurements of the aortic annulus (AA) obtained by the new model to that obtained by 3D-TOE and multidetector computed tomography (MDCT) in candidates to transcatheter aortic valve implantation (TAVI) and to assess the reproducibility of this new method. We included 31 patients who underwent TAVI. The AA diameters and area were evaluated by the manual 3D-TOE method and by the automatic software. We showed an excellent correlation between the measurements obtained by both methods: intra-class correlation coefficient (ICC): 0.731 (0.508-0.862), r: 0.742 for AA diameter and ICC: 0.723 (0.662-0.923), r: 0.723 for the AA area, with no significant differences regardless of the method used. The interobserver variability was superior for the automatic measurements than for the manual ones. In a subgroup of 10 patients, we also found an excellent correlation between the automatic measurements and those obtained by MDCT, ICC: 0.941 (0.761-0.985), r: 0.901 for AA diameter and ICC: 0.853 (0.409-0.964), r: 0.744 for the AA area. The new automatic 3D-TOE software allows modelling and quantifying the aortic root from 3D-TOE data with high reproducibility. There is good correlation between the automated measurements and other 3D validated techniques. Our results support its use in clinical practice as an alternative to MDCT previous to TAVI. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Major, Matthew J; Howard, David; Jones, Rebecca; Twiste, Martin
2012-06-01
Unlike sagittal plane prosthesis alignment, few studies have observed the effects of transverse plane alignment on gait and prosthesis behaviour. Changes in transverse plane rotation angle will rotate the points of loading on the prosthesis during stance and may alter its mechanical behaviour. This study observed the effects of increasing the external transverse plane rotation angle, or toe-out, on foot compression and effective lever arm of three commonly prescribed prosthetic feet. The roll-over shape of a SACH, Flex and single-axis foot was measured at four external rotation angle conditions (0°, 5°, 7° and 12° relative to neutral). Differences in foot compression between conditions were measured as average distance between roll-over shapes. Increasing the transverse plane rotation angle did not affect foot compression. However, it did affect the effective lever arm, which was maximized with the 5° condition, although differences between conditions were small. Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond neutral has minimal effects on their mechanical behaviour in the plane of walking progression during weight-bearing.
Gill, Simone V; Hung, Ya-Ching
2014-01-01
Little is known about how obesity relates to motor planning and skills during functional tasks. We collected 3-D kinematics and kinetics as normal weight (n=10) and overweight/obese (n=12) children walked on flat ground and as they crossed low, medium, and high obstacles. We investigated if motor planning and motor skill impairments were evident during obstacle crossing. Baseline conditions showed no group differences (all ps>.05). Increased toe clearance was found on low obstacles (p=.01) for the overweight/obese group and on high obstacles (p=.01) for the normal weight group. With the crossing leg, the overweight/obese group had larger hip abduction angles (p=.01) and medial ground reaction forces (p=.006) on high obstacles and high anterior ground reaction forces on low obstacles (p=.001). With the trailing leg, overweight/obese children had higher vertical ground reaction forces on high obstacles (p=.005) and higher knee angles (p=.01) and anterior acceleration in the center of mass (p=.01) on low obstacles. These findings suggest that differences in motor planning and skills in overweight/obese children may be more apparent during functional activities. Copyright © 2013 Elsevier Ltd. All rights reserved.
How does visual manipulation affect obstacle avoidance strategies used by athletes?
Bijman, M P; Fisher, J J; Vallis, L A
2016-01-01
Research examining our ability to avoid obstacles in our path has stressed the importance of visual input. The aim of this study was to determine if athletes playing varsity-level field sports, who rely on visual input to guide motor behaviour, are more able to guide their foot over obstacles compared to recreational individuals. While wearing kinematic markers, eight varsity athletes and eight age-matched controls (aged 18-25) walked along a walkway and stepped over stationary obstacles (180° motion arc). Visual input was manipulated using PLATO visual goggles three or two steps pre-obstacle crossing and compared to trials where vision was given throughout. A main effect between groups for peak trail toe elevation was shown with greater values generated by the controls for all crossing conditions during full vision trials only. This may be interpreted as athletes not perceiving this obstacle as an increased threat to their postural stability. Collectively, findings suggest the athletic group is able to transfer their abilities to non-specific conditions during full vision trials; however, varsity-level athletes were equally reliant on visual cues for these visually guided stepping tasks as their performance was similar to the controls when vision is removed.
KIPP and Teachers' Union Go Toe to Toe in Baltimore
ERIC Educational Resources Information Center
Zehr, Mary Ann
2011-01-01
Leaders of the Knowledge Is Power Program (KIPP) charter schools are optimistic that they can reach a long-term agreement with the Baltimore (Maryland) Teachers Union in a nationally watched dispute over teacher pay for an extended school day, reducing the likelihood that the charter network will carry out its threat to close its two schools in…
2007-06-01
corresponding software developed for the translational response of rock- founded retaining walls buttressed at their toe by a reinforced concrete slab...by a Reinforced Concrete Slab ...........................................................................................................32 2.1...2.5 New translational analysis model of a wall retaining a partially submerged backfill and buttressed by a reinforced concrete slab
Tic Tac TOE: Effects of Predictability and Importance on Acoustic Prominence in Language Production
ERIC Educational Resources Information Center
Watson, Duane G.; Arnold, Jennifer E.; Tanenhaus, Michael K.
2008-01-01
Importance and predictability each have been argued to contribute to acoustic prominence. To investigate whether these factors are independent or two aspects of the same phenomenon, naive participants played a verbal variant of Tic Tac Toe. Both importance and predictability contributed independently to the acoustic prominence of a word, but in…
ERIC Educational Resources Information Center
Fernie, David E.; DeVries, Rheta
This research study tests Selman's (1980) hypothesis that different games pull players toward particular kinds of reasoning through a developmental comparison of children's reasoning in two games, Tic Tac Toe and the Guessing Game. The present study focuses on two basic questions and their educational implications: (1) What differences and…
The Utility of Silos and Bunkers in the Evolution of Kinesiology
ERIC Educational Resources Information Center
Kretchmar, R. Scott
2008-01-01
Silos and bunkers have been allies in the development of kinesiology for nearly 50 years. Silos of specialization allow us to go toe-to-toe with researchers in parent disciplines, compete for grants, and otherwise spread our academic wings. The bunkers of utility and generic movement provide an important degree of legitimacy for a subject matter…
USDA-ARS?s Scientific Manuscript database
Classical, one-dimensional, mobile bed, sediment-transport models simulate vertical channel adjustment, raising or lowering cross-section node elevations to simulate erosion or deposition. This approach does not account for bank erosion processes including toe scour and mass failure. In many systems...
Heel and toe driving on fuel cell vehicle
Choi, Tayoung; Chen, Dongmei
2012-12-11
A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.
Turbulent flow structures and aeolian sediment transport over a barchan sand dune
NASA Astrophysics Data System (ADS)
Wiggs, G. F. S.; Weaver, C. M.
2012-03-01
The turbulent structure of airflow over a barchan sand dune is determined using quadrant analysis of wind velocity data derived from sonic anemometers. Results indicate an increased frequency of ejection and sweep events in the toe region of the dune, characteristic of the turbulent bursting process. In contrast, at the crest there was a significant increase in the occurrence of outward interactions. Combined with high frequency saltation data our analyses show that turbulent structures characterised by a positive streamwise fluctuating velocity (+u‧ sweeps at the toe and outward interactions at the crest) have a dominant influence on sand transport on the dune, together accounting for up to 83% and 95% of transporting events at the toe and crest respectively.