Liao, Qing; Deng, Yaping; Shi, Xiaoqing; Sun, Yuanyuan; Duan, Weidong; Wu, Jichun
2018-03-03
Precise delineation of contaminant plume distribution is essential for effective remediation of contaminated sites. Traditional in situ investigation methods like direct-push (DP) sampling are accurate, but are usually intrusive and costly. Electrical resistivity tomography (ERT) method, as a non-invasive geophysical technique to map spatiotemporal changes in resistivity of the subsurface, is becoming increasingly popular in environmental science. However, the resolution of ERT for delineation of contaminant plumes still remains controversial. In this study, ERT and DP technique were both conducted at a real inorganic contaminated site. The reliability of the ERT method was validated by the direct comparisons of their investigation results that the resistivity acquired by ERT method is in accordance with the total dissolved solid concentration in groundwater and the overall variation of the total iron content in soil obtained by DP technique. After testifying the applicability of ERT method for contaminant identification, the extension of contaminant plume at the study site was revealed by supplementary ERT surveys conducted subsequently in the surrounding area of the contaminant source zone.
Imaging of Ground Ice with Surface-Based Geophysics
2015-10-01
terrains. Electrical Resistivity Tomography (ERT), in particular, has been effective for imaging ground ice. ERT measures the ability of materials to...13 2.2.1 Electrical resistivity tomography (ERT...Engineer Research and Development Center ERT Electrical Resistivity Tomography GPS Global Positioning System LiDAR Light Detection and Ranging SIPRE
NASA Astrophysics Data System (ADS)
Guerriero, Merilisa; Capozzoli, Luigi; De Martino, Gregory; Perciante, Felice; Gueguen, Erwan; Rizzo, Enzo
2017-04-01
Geophysical methods are commonly applied to characterize karst cave. Several geophysical method are used such as electrical resistivity tomography (ERT), gravimetric prospecting (G), ground penetrating radar (GPR) and seismic methods (S), in order to provide information on cave geometry and subsurface geological structure. In detail, in some complex karst systems, each geophysical method can only give partial information if used in normal way due to a low resolution for deep target. In order to reduce uncertainty and avoid misinterpretations based on a normal use of the electrical resistivity tomography method, a new ERT approach has been applied in karst cave Castello di Lepre (Marsico Nuovo, Basilicata region, Italy) located in the Mezo-Cenozoic carbonate substratum of the Monti della Maddalena ridge (Southern Appenines). In detail, a cross-ERT acquisition system was applied in order to improve the resolution on the electrical resistivity distribution on the surrounding geological structure of a karst cave. The cross-ERT system provides a more uniform model resolution vertically, increasing the resolution of the surface resistivity imaging. The usual cross-ERT is made by electrode setting in two or more borehole in order to acquire the resistivity data distribution. In this work the cross-ERT was made between the electrodes located on surface and along a karst cave, in order to obtain an high resolution of the electrical resistivity distributed between the cave and the surface topography. Finally, the acquired cross-ERT is potentially well-suited for imaging fracture zones since electrical current flow in fractured rock is primarily electrolytic via the secondary porosity associated with the fractures.
Forward problem studies of electrical resistance tomography system on concrete materials
NASA Astrophysics Data System (ADS)
Ang, Vernoon; Rahiman, M. H. F.; Rahim, R. A.; Aw, S. R.; Wahab, Y. A.; Thomas W. K., T.; Siow, L. T.
2017-03-01
Electrical resistance tomography (ERT) is well known as non-invasive imaging technique, inexpensive, radiation free, visualization measurements of the multiphase flows and frequently applied in geophysical, medical and Industrial Process Tomography (IPT) applications. Application of ERT in concrete is a new exploration field, which can be used in monitoring and detecting the health and condition of concrete without destroying it. In this paper, ERT model under the condition of concrete is studied in which the sensitivity field model is produced and simulated by using COMSOL software. The affects brought by different current injection values with different concrete conductivity are studied in detail. This study able to provide the important direction for the further study of inverse problem in ERT system. Besides, the results of this technique hopefully can open a new exploration in inspection method of concrete structures in order to maintain the health of the concrete structure for civilian safety.
NASA Astrophysics Data System (ADS)
Lu, C.; Zhang, C.; Huang, H.; Johnson, T.
2012-12-01
Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.
A Coupled model for ERT monitoring of contaminated sites
NASA Astrophysics Data System (ADS)
Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya
2018-02-01
The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.
André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T
2016-02-01
The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guyot, Adrien; Ostergaard, Kasper T; Lenkopane, Mothei; Fan, Junliang; Lockington, David A
2013-02-01
Estimating sapwood area is one of the main sources of error when upscaling point scale sap flow measurements to whole-tree water use. In this study, the potential use of electrical resistivity tomography (ERT) to determine the sapwood-heartwood (SW-HW) boundary is investigated for Pinus elliottii Engelm var. elliottii × Pinus caribaea Morelet var. hondurensis growing in a subtropical climate. Specifically, this study investigates: (i) how electrical resistivity is correlated to either wood moisture content, or electrolyte concentration, or both, and (ii) how the SW-HW boundary is defined in terms of electrical resistivity. Tree cross-sections at breast height are analysed using ERT before being felled and the cross-section surface sampled for analysis of major electrolyte concentrations, wood moisture content and density. Electrical resistivity tomography results show patterns with high resistivities occurring in the inner part of the cross-section, with much lower values towards the outside. The high-resistivity areas were generally smaller than the low-resistivity areas. A comparison between ERT and actual SW area measured after felling shows a slope of the linear regression close to unity (=0.96) with a large spread of values (R(2) = 0.56) mostly due to uncertainties in ERT. Electrolyte concentrations along sampled radial transects (cardinal directions) generally showed no trend from the centre of the tree to the bark. Wood moisture content and density show comparable trends that could explain the resistivity patterns. While this study indicates the potential for application of ERT for estimating SW area, it shows that there remains a need for refinement in locating the SW-HW boundary (e.g., by improvement of the inversion method, or perhaps electrode density) in order to increase the robustness of the method.
Small-scale electrical resistivity tomography of wet fractured rocks.
LaBrecque, Douglas J; Sharpe, Roger; Wood, Thomas; Heath, Gail
2004-01-01
This paper describes a series of experiments that tested the ability of the electrical resistivity tomography (ERT) method to locate correctly wet and dry fractures in a meso-scale model. The goal was to develop a method of monitoring the flow of water through a fractured rock matrix. The model was a four by six array of limestone blocks equipped with 28 stainless steel electrodes. Dry fractures were created by placing pieces of vinyl between one or more blocks. Wet fractures were created by injecting tap water into a joint between blocks. In electrical terms, the dry fractures are resistive and the wet fractures are conductive. The quantities measured by the ERT system are current and voltage around the outside edge of the model. The raw ERT data were translated to resistivity values inside the model using a three-dimensional Occam's inversion routine. This routine was one of the key components of ERT being tested. The model presented several challenges. First, the resistivity of both the blocks and the joints was highly variable. Second, the resistive targets introduced extreme changes the software could not precisely quantify. Third, the abrupt changes inherent in a fracture system were contrary to the smoothly varying changes expected by the Occam's inversion routine. Fourth, the response of the conductive fractures was small compared to the background variability. In general, ERT was able to locate correctly resistive fractures. Problems occurred, however, when the resistive fracture was near the edges of the model or when multiple fractures were close together. In particular, ERT tended to position the fracture closer to the model center than its true location. Conductive fractures yielded much smaller responses than the resistive case. A difference-inversion method was able to correctly locate these targets.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.
1994-09-13
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.
1994-01-01
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.
NASA Astrophysics Data System (ADS)
Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.
2014-12-01
Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.
NASA Astrophysics Data System (ADS)
Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin
2018-04-01
This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.
Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallaji, Milad; Seppänen, Aku; Pour-Ghaz, Mohammad, E-mail: mpourghaz@ncsu.edu
2015-03-15
Traditionally the electrically-based assessment of the moisture flow in cement-based materials relies on two- or four-point measurements. In this paper, imaging of moisture distribution with electrical resistance tomography (ERT) is considered. Especially, the aim is to study whether ERT could give information on unsaturated moisture flows in cases where the flow is non-uniform. In the experiment, the specimens are monitored with ERT during the water ingress. The ERT reconstructions are compared with neutron radiographs, which provide high resolution information on the 2D distribution of the moisture. The results indicate that ERT is able to detect the moisture movement and tomore » show approximately the shape and position of the water front even if the flow is nonuniform.« less
DOT National Transportation Integrated Search
1997-07-01
Electronic resistance tomography (ERT) was used to follow the infiltration of water into a pavement section at the UC Berkeley Richmond Field Station. A volume of pavement 1 m square and 1.29 m in depth was sampled by an ERT array consisting of elect...
Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography
Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.
2016-01-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.
NASA Astrophysics Data System (ADS)
Wang, Shunguo; Kalscheuer, Thomas; Bastani, Mehrdad; Malehmir, Alireza; Pedersen, Laust B.; Dahlin, Torleif; Meqbel, Naser
2018-04-01
The electrical resistivity tomography (ERT) method provides moderately good constraints for both conductive and resistive structures, while the radio-magnetotelluric (RMT) method is well suited to constrain conductive structures. Additionally, RMT and ERT data may have different target coverage and are differently affected by various types of noise. Hence, joint inversion of RMT and ERT data sets may provide a better constrained model as compared to individual inversions. In this study, joint inversion of boat-towed RMT and lake-floor ERT data has for the first time been formulated and implemented. The implementation was tested on both synthetic and field data sets incorporating RMT transverse electrical mode and ERT data. Results from synthetic data demonstrate that the joint inversion yields models with better resolution compared with individual inversions. A case study from an area adjacent to the Äspö Hard Rock Laboratory (HRL) in southeastern Sweden was used to demonstrate the implementation of the method. A 790-m-long profile comprising lake-floor ERT and boat-towed RMT data combined with partial land data was used for this purpose. Joint inversions with and without weighting (applied to different data sets, vertical and horizontal model smoothness) as well as constrained joint inversions incorporating bathymetry data and water resistivity measurements were performed. The resulting models delineate subsurface structures such as a major northeasterly directed fracture system, which is observed in the HRL facility underground and confirmed by boreholes. A previously uncertain weakness zone, likely a fracture system in the northern part of the profile, is inferred in this study. The fractures are highly saturated with saline water, which make them good targets of resistivity-based geophysical methods. Nevertheless, conductive sediments overlain by the lake water add further difficulty to resolve these deep fracture zones. Therefore, the joint inversion of RMT and ERT data particularly helps to improve the resolution of the resistivity models in areas where the profile traverses shallow water and land sections. Our modification of the joint inversion of RMT and ERT data improves the study of geological units underneath shallow water bodies where underground infrastructures are planned. Thus, it allows better planning and mitigating the risks and costs associated with conductive weakness zones.
Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques
NASA Astrophysics Data System (ADS)
Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis
2014-08-01
Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.
Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.
Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John
2016-03-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.
Detection of Old Mine Tunnels in Mexico City Highlands by Electric Resistivity Image Methods
NASA Astrophysics Data System (ADS)
Chavez, R. E.; Tejero, A.; Cifuentes-Nava, G.; HernaNdez-Quintero, J.
2013-12-01
Electrical Resistivity Tomography (ERT) methods have been applied to study cavities or subsurface subsidence threatening urbanized areas. Unfortunately, ERT-3D techniques carried out on heavily urbanized areas become a difficult task, since parallel ERT arrays cannot be deployed. Then, a conventional regular grid cannot be carried out. We present a subsidence problem located in a densely populated portion of Mexico City highlands. Since the damaged houses are in the middle of a highly populated low-class neighborhood, an unconventional ERT array had to be applied. At first, a ';T'-array formed by two perpendicular transects was applied, deployed within a small alley, that stretched from the house entrance. This study determined a tubular structure beneath the houses following an irregular path at depth. Finally, houses were demolished due to the extensive damaged in their foundations. This made possible to carry out a second ERT-3D study, which included a dipolar array called ';L' and ';Corner' arrays. Such a new work defined a similar tubular structure. The cavity entrance was discovered, when excavations were made, although its precise shape could not be defined. The ERT-3D interpretation contributed to locate and accurately determine the geometrical characteristics of the geological feature that caused the collapse of dwellings.
NASA Astrophysics Data System (ADS)
Szalai, Sandor; Kovacs, Attila; Kuslits, Lukács; Facsko, Gabor; Gribovszki, Katalin; Kalmar, Janos; Szarka, Laszlo
2018-04-01
Position, width and fragmentation level of fracture zones and position, significance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.
NASA Astrophysics Data System (ADS)
Zhou, Q.
2015-12-01
Although three-dimensional (3-D) electrical resistivity tomography (ERT) survey has become a popular practice in the site characterization and process monitoring, the two-dimensional (2-D) ERT survey is still often used in the field. This is because that the 2-D ERT survey is relatively easy to do and the focus of site characterization is on the information of 2-D cross section, not necessarily of the 3-D subsurface structure. Examples of such practice include tunnel line and crossing fault survey. In these cases, depending on the property of surface soil to be surveyed, the 2-D ERT survey with pole-pole array may occasionally make us obtain quality good data, however it often gives us a suit of data set both with real and erroneous ones that incorporated the effects of electrode contact and not far enough far electrodes. Without preprocessing, the apparent resistivity pseudo-section constructed from this kind of data set may quite deviate from the real one and the information obtained from it may be misleading and even completely incorrect. In this study, we developed a method of far electrode dynamic correction that is appropriate for raw data preprocessing from 2-D pole-pole array ERT survey. Based on this method, we not only can find and delete the abnormal data points easily, but also can position the coordinates of far electrodes actually working in the field, thus delete the far electrode effects and make best use of the looked strange data points. The method also makes us to be able to judge the effects of electrode contact and avoid using such data points in the following apparent resistivity pseudo-section construction. With this preprocessing to the data set, the constructed apparent resistivity pseudo-section is demonstrated to be more approximate to the real one. This makes the following reversion calculation more robust. We'll introduce this far electrode dynamic correction method and show application examples in the meeting.
Waste disposal mapping with electrical resistivity tomography case: Leuwigajah landfill
NASA Astrophysics Data System (ADS)
Aryanti, Erisha; Ardi, Ahmad Puji; Almunziri, Muaz; Xanggam, Zael Yahd; Eleazar, Adino; Widodo
2017-07-01
Leuwigajah landfill as administrative is located between district of Bandung and Cimahi citythat has an environmental and social problem that caused aquifer contamination due to the big amount of waste from Bandung city, Cimahi and Bandung regency. It is occupied in abandoned andesite mine site with an area of about 25 hectare. The aim of this research is to map the geology structure and to study the leachate towards aquifer layer below Leuwigajah landfill. Here, we present the study of Leuwigajah landfill subsurface using Electrical Resistivity Tomography (ERT). ERT is one of the most promising prospecting techniques mainly concerning its effective contribution to resolve several environmental problems, was applied for the geophysical modeling. ERT is a robust imaging method the theory and implementation of which are well documented in geophysical research literature. The geological setting comprises clayed weathered layer, fractured andesitic dike. Due to the above-mentioned geological singularity and in the light of the requirement for an environmentally safe construction of the landfill, an ERT survey was carried out with dipole-dipole array, 78 m of acquisition line and 6 m of electrode spacing. The model consists of 4 layers below the Leuwigajah landfill and andesitic fracture until depth of 18.7 m below the surface.
Improved characterisation of measurement errors in electrical resistivity tomography (ERT) surveys
NASA Astrophysics Data System (ADS)
Tso, C. H. M.; Binley, A. M.; Kuras, O.; Graham, J.
2016-12-01
Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe a statistical model of data errors before inversion. Wrongly prescribed error levels can lead to over- or under-fitting of data, yet commonly used models of measurement error are relatively simplistic. With the heightening interests in uncertainty estimation across hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide more reliable estimates of uncertainty. We have analysed two time-lapse electrical resistivity tomography (ERT) datasets; one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24h timeframe, while the other is a year-long cross-borehole survey at a UK nuclear site with over 50,000 daily measurements. Our study included the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and covariance analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used. This agrees with reported speculation in previous literature that ERT errors could be somewhat correlated. Based on these findings, we develop a new error model that allows grouping based on electrode number in additional to fitting a linear model to transfer resistance. The new model fits the observed measurement errors better and shows superior inversion and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the number of the four electrodes used to make each measurement. The new model can be readily applied to the diagonal data weighting matrix commonly used in classical inversion methods, as well as to the data covariance matrix in the Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.
Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe
2014-01-01
Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.
NASA Astrophysics Data System (ADS)
Herring, T.; Pidlisecky, A.
2015-12-01
The saline flowback water produced during hydraulic fracturing is often stored in lined surface ponds. Leakage from these ponds poses a significant environmental threat and there is a need for a reliable and economical long term monitoring strategy. Electrical resistivity tomography (ERT), being sensitive to changes in groundwater salinity, is therefore well suited to such a problem. The goal of this work is to compare the leak detection capabilities of a surface ERT array and a downhole ERT array. In this study several plausible 3D electrical conductivity models were created that simulated a contaminant plume evolving over time, using realistic contaminant concentrations, plume geometries, water saturation profiles, and seasonal temperature profiles. The forward modeled data were used to identify the advantages and drawbacks of using each ERT array orientation.
NASA Astrophysics Data System (ADS)
Goebel, M.; Knight, R. J.; Pidlisecky, A.
2016-12-01
Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.
Electrical resistance tomography from measurements inside a steel cased borehole
Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.
2000-01-01
Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.
NASA Astrophysics Data System (ADS)
Nimnate, P.; Thitimakorn, T.; Choowong, M.; Hisada, K.
2017-12-01
The Khorat Plateau from northeast Thailand, the upstream part of the Mun River flows through clastic sedimentary rocks. A massive amount of sand was transported. We aimed to understand the evolution of fluvial system and to discuss the advantages of two shallow geophysical methods for describing subsurface morphology of modern and paleo-channels. We applied Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) to characterize the lateral, vertical morphological and sedimentary structures of paleo-channels, floodplain and recent point bars. Both methods were interpreted together with on-sites boreholes to describe the physical properties of subsurface sediments. As a result, we concluded that four radar reflection patterns including reflection free, shingled, inclined and hummocky reflections were appropriated to apply as criteria to characterize lateral accretion, the meandering rivers with channel-filled sequence and floodplain were detected from ERT profiles. The changes in resistivity correspond well with differences in particle size and show relationship with ERT lithological classes. Clay, silt, sand, loam and bedrock were classified by the resistivity data. Geometry of paleo-channel embayment and lithological differences can be detected by ERT, whereas GPR provides detail subsurface facies for describing point bar sand deposit better than ERT.
NASA Astrophysics Data System (ADS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2017-04-01
Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.
Tan, Chao; Zhao, Jia; Dong, Feng
2015-03-01
Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew
2017-11-01
Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.
Improvement of electrical resistivity tomography for leachate injection monitoring.
Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P
2010-03-01
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights reserved.
Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...
2014-06-03
A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less
Improvement of electrical resistivity tomography for leachate injection monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, R., E-mail: remi.clement@hmg.inpg.f; Descloitres, M.; Guenther, T., E-mail: Thomas.Guenther@liag-hannover.d
2010-03-15
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significantmore » increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.« less
Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.
1996-01-01
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.
Ramirez, A.L.; Cooper, J.F.; Daily, W.D.
1996-02-27
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.
NASA Astrophysics Data System (ADS)
Dathe, A.; Nemes, A.; Bloem, E.; Patterson, M.; Gimenez, D.; Angyal, A.; Koestel, J. K.; Jarvis, N.
2017-12-01
Soil spatial heterogeneity plays a critical role for describing water and solute transport processes in the unsaturated zone. Although we have a sound understanding of the physical properties underlying this heterogeneity (like macropores causing preferential water flow), their quantification in a spatial context is still a challenge. To improve existing knowledge and modelling approaches we established a field experiment on an agriculturally used silty clay loam (Stagnosol) in SE Norway. Centimeter to decimeter scale heterogeneities were investigated in the field using electrical resistivity tomography (ERT) in a quasi-3D and a real 3D approach. More than 100 undisturbed soil samples were taken in the 2x1x1 m3plot investigated with 3D ERT to determine soil water retention, saturated and unsaturated hydraulic conductivities and bulk density in the laboratory. A subset of these samples was scanned at the computer tomography (CT) facility at the Swedish University of Agricultural Sciences in Uppsala, Sweden, with special emphasis on characterizing macroporosity. Results show that the ERT measurements captured the spatial distribution of bulk densities and reflected soil water contents. However, ERT could not resolve the large variation observed in saturated hydraulic conductivities from the soil samples. Saturated hydraulic conductivity was clearly related to the macroporosity visible in the CT scans obtained from the respective soil cores. Hydraulic conductivities close to saturation mainly changed with depths in the soil profile and therefore with bulk density. In conclusion, to quantify the spatial heterogeneity of saturated hydraulic conductivities scanning methods with a resolution smaller than the size of macropores have to be used. This is feasible only when the information obtained from for example CT scans of soil cores would be upscaled in a meaningful way.
Kazakis, N; Pavlou, A; Vargemezis, G; Voudouris, K S; Soulios, G; Pliakas, F; Tsokas, G
2016-02-01
The aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season. The Cl(-) concentrations recorded reached 2240 mg/L indicating seawater intrusion which was also verified by ionic ratios. The ionic ratios were overlapped and a seawater intrusion map (SWIM) was produced. A significant part of the coastal aquifer (up to 150 km(2)) is influenced by seawater intrusion. The areas with the most intensive salinization are located between Nea Kallikratia-Epanomi and Aggelochori-Peraia. According to the ERTs, in the influenced areas the salinization of the aquifer exceeds 1 km toward the mainland and its depth reaches 200 m. In the area surrounding Thessaloniki airport, the ERTs revealed salinization of the upper aquifer to depths of up to 40 m, whereas the lower aquifer is uninfluenced. This abnormal distribution of seawater intrusion demonstrates the value of geoelectrical methods in the study of seawater intrusion especially in areas with limited available hydrochemical data. Copyright © 2015 Elsevier B.V. All rights reserved.
Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring
NASA Astrophysics Data System (ADS)
Boyle, Alistair; Wilkinson, Paul B.; Chambers, Jonathan E.; Meldrum, Philip I.; Uhlemann, Sebastian; Adler, Andy
2018-02-01
Electrical resistivity tomography (ERT) is increasingly being used to investigate unstable slopes and monitor the hydrogeological processes within. But movement of electrodes or incorrect placement of electrodes with respect to an assumed model can introduce significant resistivity artefacts into the reconstruction. In this work, we demonstrate a joint resistivity and electrode movement reconstruction algorithm within an iterative Gauss-Newton framework. We apply this to ERT monitoring data from an active slow-moving landslide in the UK. Results show fewer resistivity artefacts and suggest that electrode movement and resistivity can be reconstructed at the same time under certain conditions. A new 2.5-D formulation for the electrode position Jacobian is developed and is shown to give accurate numerical solutions when compared to the adjoint method on 3-D models. On large finite element meshes, the calculation time of the newly developed approach was also proven to be orders of magnitude faster than the 3-D adjoint method and addressed modelling errors in the 2-D perturbation and adjoint electrode position Jacobian.
NASA Astrophysics Data System (ADS)
Zeddouri, Aziez; Elkheir, Abderrahmane Ben; Hadj-Said, Samia; Taupin, Jean-Denis; Leduc, Christian; Patris, Nicholas
2018-05-01
A groundwater exploration work in the Tamanrasset region in southern Algeria was started in August 2016 to assess the water reserves in the hydrogeological system related to the Oued Tamanrasset underflow water table which overcomes a volcanic basement. Five (05) electrical resistivity tomography (ERT) surveys were conducted in Tamanrasset area by using ABEM Terrameter LS system. the low electrical contrast between wet alluvium and water saturated alterites makes difficult the electrical response interpretation. to overcome the difficulties of interpretation of ERT profiles, field investigations, laboratory tests and software simulations, were carried out in order to clearly identify the structure of the hydrogeological system. The experimental investigation of the electrical characteristics of the alluvium as a function of water saturation was carried by the use of two devices (Wenner α and Schlumberger). Samples true resistivity values varies between 50 Ω.m for a 100% saturated sample and 1250 Ω.m for a 25% saturation sample. The interpretation of the measurements by the RES2DINV software made it possible to give 2D images of the subsoil up to a depth of 50 m. the electrical contrast between the bedrock and the overlying formations made it possible to identify it, however, it was difficult to distinguish alterites from alluvium. A methodology combining piezometric survey, geo-electrical measurements and field observations improves the interpretation of electrical tomography profiles and the application of the ERT method for accurate characterization of water resources in the Tamanrasset region.
NASA Astrophysics Data System (ADS)
Hu, Rui; Hu, Linwei; Brauchler, Ralf
2017-04-01
Hydraulic tomography (HT) has been developed for more than twenty years, which is mainly used for providing the spatial information of hydraulic parameters in the subsurface. Similar to geophysical tomography, HT utilizes hydraulic tests as the sources, and head measurements in different locations (receivers) are recorded for inverting hydraulic parameters. Among various inversion algrithoms, hydraulic traveltime based method is comparably efficient, as the inversion does not require complete head readings. However, in the practical aspect, to find out traveltime diagnostics can be readily hampered by data noise during the in-situ hydraulic tests, such as pumping tests. In this study, we use the data from recovery tests to complement and improve the original method. In order to examine hydraulic traveltimes derived from both pumping and recovery tests, we first simulate multilevel pumping and recovery tests in several three-dimensional synthetic models with different heterogeneity degree. Simulation results show that hydraulic traveltimes obtained from pumping tests are equal to which from recovery tests, in the case that pumping reaches to quasi-steady/steady state. Sebquentially, we derive hydraulic traveltimes from the crosswell pumping and recovery tests in a real field site, Stegemühle, in Göttingen, Germany, and then invert these traveltimes to deplict the distribution of hydraulic conductivity and specific storage in the aquifer. Results with and without traveltimes from recovery tests imply that adding more traveltimes from recovery tests into the inversion procedure could improve the resolution and reduce result uncertainty. Finally, we compare the HT results with several previous electrical resistance tomography (ERT) results. Comparison indicates that, in general, the aquifer structures from HT and ERT are similar. Nevertheless, HT has higher resolution due to the denser tomographic arrays. Moreover, values of hydraulic conductivity and specific storage derived from HT are more accurate than ERT, as HT directly relates to these hydraulic parameters.
Evaluating time-lapse ERT for monitoring DNAPL remediation via numerical simulation
NASA Astrophysics Data System (ADS)
Power, C.; Karaoulis, M.; Gerhard, J.; Tsourlos, P.; Giannopoulos, A.
2012-12-01
Dense non-aqueous phase liquids (DNAPLs) remain a challenging geoenvironmental problem in the near subsurface. Numerous thermal, chemical, and biological treatment methods are being applied at sites but without a non-destructive, rapid technique to map the evolution of DNAPL mass in space and time, the degree of remedial success is difficult to quantify. Electrical resistivity tomography (ERT) has long been presented as highly promising in this context but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites where the initial condition (DNAPL mass, DNAPL distribution, subsurface heterogeneity) is typically unknown. Recently, a new numerical model was presented that couples DNAPL and ERT simulation at the field scale, providing a tool for optimizing ERT application and interpretation at DNAPL sites (Power et al., 2011, Fall AGU, H31D-1191). The objective of this study is to employ this tool to evaluate the effectiveness of time-lapse ERT to monitor DNAPL source zone remediation, taking advantage of new inversion methodologies that exploit the differences in the target over time. Several three-dimensional releases of chlorinated solvent DNAPLs into heterogeneous clayey sand at the field scale were generated, varying in the depth and complexity of the source zone (target). Over time, dissolution of the DNAPL in groundwater was simulated with simultaneous mapping via periodic ERT surveys. Both surface and borehole ERT surveys were conducted for comparison purposes. The latest four-dimensional ERT inversion algorithms were employed to generate time-lapse isosurfaces of the DNAPL source zone for all cases. This methodology provided a qualitative assessment of the ability of ERT to track DNAPL mass removal for complex source zones in realistically heterogeneous environments. In addition, it provided a quantitative comparison between the actual DNAPL mass removed and that interpreted by ERT as a function of depth below the water table, as well as an estimate of the minimum DNAPL saturation changes necessary for an observable response from ERT.
Electrical Resistivity Tomography Monitoring of Soil Remediation for a Garbage Dump
NASA Astrophysics Data System (ADS)
shi, X.; Luo, Z.; Zhang, Y.; Fu, Q.; Xu, Z.
2011-12-01
Electrical resistivity tomography (ERT) survey was firstly used to investigate the distribution of contaminated soil in a garbage dump area, Wuhan city, China. The result shows that sulfated soil resistivity is about 4 to 7 ohm-m, which is relatively lower than normal soil resistivity of about 15 to 25 ohm-m. The distribution of contaminated soil was delineated using ERT images. Then, ERT survey was carried out in this area for monitoring of remediation of contaminated soil and groundwater. Werner measurements with 60 electrodes of 1 m spacing were taken during the 9-well oxygen injection and nutrition liquid injection period. The difference of apparent resistivity between before gas injection and after gas injection was used to delineate the channel of gas and the trace of gas migration in the porous garbage dump. The electrical resitivity changes between before and after nutrition liquid injection were used to analyze the liquid migration and distribution. The dynamic procedures of gas and water migration are outlined. The results suggest that ERT is a powerful technique for monitoring of soil remediation.
NASA Astrophysics Data System (ADS)
Appiah, Isaac; Wemegah, David Dotse; Asare, Van-Dycke Sarpong; Danuor, Sylvester K.; Forson, Eric Dominic
2018-06-01
Non-invasive geophysical investigation using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography (ERT) was carried out on the Sunyani Municipal Assembly (SMA) solid waste disposal (SWD) site. The study was aimed at delineating the physical boundaries and the area extent of the waste deposit, mapping the distribution of the waste at the site, detecting and delineating zones of leachate contamination and its preferential migration pathways beneath the waste deposit and its surroundings. The results of both magnetic susceptibility and gradiometric methods displayed in anomaly maps clearly delineated the physical boundaries of the waste deposit with an approximate area extent of 82,650 m2 that are characterised by high magnetic susceptibilities between 426 × 10-5 SI and 9890 × 10-5 SI. They also revealed high magnetic anomalies erratically distributed within the waste deposit attributable to its heterogeneous and uncontrolled nature. The high magnetic anomalies outside the designated waste boundaries were also attributed to indiscriminate deposition of the waste. Similarly, the ERT sections delineated and characterised zones of leachate contamination beneath the waste body and its close surroundings as well as pathways for leachate migration with low resistivity signatures up to 43.9 Ωm. In spite of the successes reported herein using the ERT, this research also revealed that the ERT is less effective in estimating the thickness of the waste deposit in unlined SWD sites due to leachate infiltration into the ground beneath it that masks the resistivities of the top level ground and makes it indistinguishable from the waste body.
Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)
NASA Astrophysics Data System (ADS)
Siami-Irdemoosa, Elnaz
In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.
Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario
2013-04-01
In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.
NASA Astrophysics Data System (ADS)
Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu
2017-04-01
Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.
4D ERT-based calibration and prediction of biostimulant induced changes in fluid conductivity
NASA Astrophysics Data System (ADS)
Johnson, T. C.; Versteeg, R. J.; Day-Lewis, F. D.; Major, W. R.; Wright, K. E.
2008-12-01
In-situ bioremediation is an emerging and cost-effective method of removing organic contaminants from groundwater. The performance of bioremedial systems depends on the adequate delivery and distribution of biostimulants to contaminated zones. Monitoring the distribution of biostimulants using monitoring wells is expensive, time consuming, and provides inadequate information between sampling wells. We discuss a Hydrogeophysical Performance Monitoring System (HPMS) deployed to monitor bioremediation efforts at a TCE-contaminated Superfund site in Brandywine MD. The HPMS enables autonomous electrical geophysical data acquisition, processing, quality-assurance/quality-control, and inversion. Our objective is to demonstrate the feasibility and cost effectiveness of the HPMS to provide near real-time information on the spatiotemporal behavior of injected biostimulants. As a first step, we use time-lapse electrical resistivity tomography (ERT) to estimate changes in bulk conductivity caused by the injectate. We demonstrate how ERT-based bulk conductivity estimates can be calibrated with a small number of fluid conductivity measurements to produce ERT-based estimates of fluid conductivity. The calibration procedure addresses the spatially variable resolution of the ERT tomograms. To test the validity of these estimates, we used the ERT results to predict the fluid conductivity at tens of points prior to field sampling of fluid conductivity at the same points. The comparison of ERT-predicted vs. observed fluid conductivity displays a high degree of correlation (correlation coefficient over 0.8), and demonstrates the ability of the HPMS to estimate the four-dimensional (4D) distribution of fluid conductivity caused by the biostimulant injection.
NASA Astrophysics Data System (ADS)
Hübner, R.; Heller, K.; Günther, T.; Kleber, A.
2015-01-01
Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoli, Gabriele, E-mail: manoli@dmsa.unipd.it; Nicholas School of the Environment, Duke University, Durham, NC 27708; Rossi, Matteo
The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequentialmore » inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan Lu; CHI Zhang; Hai Hanag
2014-04-01
Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less
Influence of bedrock topography on the runoff generation under use of ERT data
NASA Astrophysics Data System (ADS)
Kiese, Nina; Loritz, Ralf; Allroggen, Niklas; Zehe, Erwin
2017-04-01
Subsurface topography has been identified to play a major role for the runoff generation in different hydrological landscapes. Sinks and ridges in the bedrock can control how water is stored and transported to the stream. Detecting the subsurface structure is difficult and laborious and frequently done by auger measurements. Recently, the geophysical imaging of the subsurface by Electrical Resistivity Tomography (ERT) gained much interest in the field of hydrology, as it is a non-invasive method to collect information on the subsurface characteristics and particularly bedrock topography. As it is impossible to characterize the subsurface of an entire hydrological landscape using ERT, it is of key interest to identify the bedrock characteristics which dominate runoff generation to adapt and optimize the sampling design to the question of interest. For this study, we used 2D ERT images and auger measurements, collected on different sites in the Attert basin in Luxembourg, to characterize bedrock topography using geostatistics and shed light on those aspects which dominate runoff generation. Based on ERT images, we generated stochastic bedrock topographies and implemented them in a physically-based 2D hillslope model. With this approach, we were able to test the influence of different subsurface structures on the runoff generation. Our results highlight that ERT images can be useful for hydrological modelling. Especially the connection from the hillslope to the stream could be identified as important feature in the subsurface for the runoff generation whereas the microtopography of the bedrock seemed to be less relevant.
NASA Astrophysics Data System (ADS)
Pezeshkpour, Parsa
The requirements of environmental assessments and of understanding and monitoring in-situ mass and heat processes in porous media have led to the development of geophysical methods for remote mapping and monitoring of contaminant plumes and fluid migration. With the possible exception of seismic approaches, electrical methods known as Electrical Resistivity Tomography (ERT) have become the most widely studied and used for these purposes. Wherever a sufficient contrast in ground resistivity is generated by human or natural processes, monitoring the resistivity structure over time may give insight into these processes. ERT has monitoring applications in processes such as Enhanced Oil Recovery (EOR), Slurry Fracture Injection (SFI), and monitoring transport processes in hydrogeology. A permanent electrode arrangement for long term monitoring removes the effects of Earth's heterogeneity and anisotropy when a process is analyzed as a function of time. As a starting point on the work described in this thesis, ERT data were collected from a Cambridge, Ontario, sand pit before, immediately after and one week following a 11000 liters slurry injection. These measurements verified that ERT could detect changes caused by the injection and later movement of this conductive mixture in the ground. The commercial equipment used for these measurements was not well suited to the tasks, mainly because it was extremely slow. Further, there was a lack of robust and user-friendly three-dimensional modeling software to use as a means of predicting response and---eventually---as the engine of an inversion routine. Finally, it was difficult to analyze the injection situation in terms of how best to place a limited number of surface and borehole electrodes to most effectively monitor the injection fluids. The remainder of the thesis addresses these problems. The first objective was to design and construct a more suitable ERT measurement system. The second objective was to adapt SALTFLOW as a platform for both the resistivity and hydrogeological modeling of the saline groundwater flow resulting from waste injection. The third objective was to develop methods of sensitivity analysis that will allow a more efficient examination of the electrode arrays that could be effectively used in a given situation. The fourth objective was to demonstrate the ERT method and the improvements undertaken by the author on the data collected at the Cambridge injection site. The thesis has not, in fact, met all these objectives, but has made substantial progress towards them. The complete design of the measurement system and the construction of its potential measurement components were achieved. A lack of capacity in the science shops, however, resulted in the power (current) supply not being constructed in time for field evaluation of the injection or its aftermath. (Abstract shortened by UMI.)
Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios
2014-07-01
Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.
2014-04-01
This work shows the result of an electrical resistivity tomography (ERT) survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (northern Italy) earthquake that occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno River in the urban areas of San Carlo and Mirabello (southwestern portion of Ferrara Province). In total, six electrical resistivity tomographies were performed and calibrated with surface geological surveys, exploratory boreholes and aerial photo interpretations. This was one of first applications of the electrical resistivity tomography method in investigating coseismic liquefaction.
2-D Electrical Resistivity Tomography (ERT) Assessment of Ground Failure in Urban Area
NASA Astrophysics Data System (ADS)
Nordiana, M. M.; Bery, A. A.; Taqiuddin, Z. M.; Jinmin, M.; Abir, I. A.
2018-04-01
This study was carried out to assess the foundation defects around an urban area in Selangor, Malaysia using 2-D electrical resistivity tomography (ERT). The affected structure is a three storey houses and having severe foundation-based cracks. Six 2-D ERT survey lines with 5 m minimum electrode spacing using Pole-dipole array were executed parallel to building’s wall. Four boreholes were conducted to identify the depth to competent layer to verify the 2-D ERT results. Inversion model of 2-D resistivity show that the study area consists of two main zones. The first zone is a low resistivity value (<100 Ωm), which appears to be a zone that is fully saturated with sandy silt and this could be an influence factor the increasing water level because sandy silt is highly permeable in nature and alluvium (silt, sand and clay), boulder (1200-3500 Ωm) or highly weathered with the resistivity values of 100-1000 Ωm at 20-70 m depth. The second zone is the granite bedrock of more than 3500 Ωm with depth greater than 70 m. These results were complimented and confirmed by borehole records. The ERT and borehole record suggest that the clay, sand, saturated zone, highly weathered zone and boulders at foundation depths may lead to ground movements which affected the stability of the building.
Imaging voids beneath bridge bent using electrical resistivity tomography.
DOT National Transportation Integrated Search
2014-02-01
Five electrical resistivity tomography (ERT) profiles and borehole control were acquired beneath two bridges on the bank of the : Gasconade River in order to determine extension of the underground water-filled openings in rock encountered during a dr...
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.
2010-12-01
Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT inversions to improve the inversion results without making them computationally prohibitive.
Quantifying potential recharge in mantled sinkholes using ERT.
Schwartz, Benjamin F; Schreiber, Madeline E
2009-01-01
Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system.
Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi
2017-01-01
Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection. PMID:28772485
Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi
2017-02-04
Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection.
Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, R., E-mail: remi.clement@hmg.inpg.fr; Grenoble Universite, B.P. 53, 38041 Grenoble Cedex 9; Oxarango, L.
2011-03-15
Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequentlymore » applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processesmore » receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. Furthermore, the results also demonstrate the sensitivity of surface based ERT measurements to those changes over time.« less
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
2016-09-22
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processesmore » receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. Furthermore, the results also demonstrate the sensitivity of surface based ERT measurements to those changes over time.« less
Singha, Kamini; Gorelick, Steven M.
2005-01-01
Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.
Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd
2015-04-01
The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.
Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara
2012-01-01
In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices.
Commer, Michael; Doetsch, Joseph; Dafflon, Baptiste; ...
2016-06-01
In this study, we advance the understanding of three-dimensional (3-D) electrical resistivity tomography (ERT) for monitoring long-term CO 2 storage by analyzing two previously published field time-lapse data sets. We address two important aspects of ERT inversion-the issue of resolution decay, a general impediment to the ERT method, and the issue of potentially misleading imaging artifacts due to 2-D model assumptions. The first study analyzes data from a shallow dissolved-CO 2 injection experiment near Escatawpa (Mississippi), where ERT data were collected in a 3-D crosswell configuration. Here, we apply a focusing approach designed for crosswell configurations to counteract resolution lossmore » in the inter-wellbore area, with synthetic studies demonstrating its effectiveness. The 3-D field data analysis reveals an initially southwards-trending flow path development and a dispersing plume development in the downgradient inter-well region. The second data set was collected during a deep (over 3 km) injection of supercritical CO 2 near Cranfield (Mississippi). Comparative 2-D and 3-D inversions reveal the projection of off-planar anomalies onto the cross-section, a typical artifact introduced by 2-D model assumptions. Conforming 3-D images from two different algorithms support earlier hydrological investigations, indicating a conduit system where flow velocity variations lead to a circumvention of a close observation well and an onset of increased CO 2 saturation downgradient from this well. We relate lateral permeability variations indicated by an independently obtained hydrological analysis to this consistently observed pattern in the CO 2 spatial plume evolution.« less
Electrical Resistivity Tomography monitoring reveals groundwater storage in a karst vadose zone
NASA Astrophysics Data System (ADS)
Watlet, A.; Kaufmann, O.; Van Camp, M. J.; Triantafyllou, A.; Cisse, M. F.; Quinif, Y.; Meldrum, P.; Wilkinson, P. B.; Chambers, J. E.
2016-12-01
Karst systems are among the most difficult aquifers to characterize, due to their high heterogeneity. In particular, temporary groundwater storage that occurs in the unsaturated zone and the discharge to deeper layers are difficult processes to identify and estimate with in-situ measurements. Electrical Resistivity Tomography (ERT) monitoring is meant to track changes in the electrical properties of the subsurface and has proved to be applicable to evidence and quantify hydrological processes in several types of environments. Applied to karst systems, it has particularly highlighted the challenges in linking electrical resistivity changes to groundwater content with usual approaches of petrophysical relationships, given the high heterogeneity of the subsurface. However, taking up the challenge, we undertook an ERT monitoring at the Rochefort Cave Laboratory (Belgium) lasting from Spring 2014 to Winter 2016. This includes 3 main periods of several months with daily measurements, from which seasonal groundwater content changes in the first meters of the vadose zone were successfully imaged. The monitoring concentrates on a 48 electrodes profile that goes from a limestone plateau to the bottom of a sinkhole. 3D UAV photoscans of the surveyed sinkhole and of the main chamber of the nearby cave were performed. Combined with lithological observations from a borehole drilled next to the ERT profile, the 3D information made it possible to project karstified layers visible in the cave to the surface and assess their potential locations along the ERT profile. Overall, this helped determining more realistic local petrophysical properties in the surveyed area, and improving the ERT data inversion by adding structural constraints. Given a strong air temperature gradient in the sinkhole, we also developed a new approach of temperature correction of the raw ERT data. This goes through the solving (using pyGIMLI package) of the 2D ground temperature field and its temporal evolution, calibrated with data from in-situ temperature probes installed along the ERT profile. Results from a 3D ERT monitoring of a sprinkling experiment, those of a gravimetric monitoring and an in-cave flow discharges monitoring were also of interest to verify interpretations of the permanent ERT monitoring in terms of groundwater content changes.
NASA Astrophysics Data System (ADS)
Pawlik, Łukasz; Kasprzak, Marek
2018-01-01
Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire microsite and at depths not normally reached by standard soil excavations. The non-invasive nature of ERT studies is especially important for protected areas as it was shown in the present study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states frommore » PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of changes subsurface electrical conductivity, in both the saturated and unsaturated zones, arising from water table changes and from river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev .« less
NASA Astrophysics Data System (ADS)
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
2017-02-01
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev.
Electrical resisitivity of mechancially stablized earth wall backfill
NASA Astrophysics Data System (ADS)
Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston
2017-06-01
Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized as construction quality assurance for thoroughness of compaction in MSE construction; however more data are needed at this time.
NASA Astrophysics Data System (ADS)
Power, C.; Gerhard, J. I.; Tsourlos, P.; Giannopoulos, A.
2011-12-01
Remediation programs for sites contaminated with dense non-aqueous phase liquids (DNAPLs) would benefit from an ability to non-intrusively map the evolving volume and extent of the DNAPL source zone. Electrical resistivity tomography (ERT) is a well-established geophysical tool, widely used outside the remediation industry, that has significant potential for mapping DNAPL source zones. However, that potential has not been realized due to challenges in data interpretation from contaminated sites - in either a qualitative or quantitative way. The objective of this study is to evaluate the potential of ERT to map realistic, evolving DNAPL source zones within complex subsurface environments during remedial efforts. For this purpose, a novel coupled model was developed that integrates a multiphase flow model (DNAPL3D-MT), which generates realistic DNAPL release scenarios, with 3DINV, an ERT model which calculates the corresponding resistivity response. This presentation will describe the developed model coupling methodology, which integrates published petrophysical relationships to generate an electrical resistivity field that accounts for both the spatial heterogeneity of subsurface soils and the evolving spatial distribution of fluids (including permeability, porosity, clay content and air/water/DNAPL saturation). It will also present an example in which the coupled model was employed to explore the ability of ERT to track the remediation of a DNAPL source zone. A field-scale, three-dimensional release of chlorinated solvent DNAPL into heterogeneous clayey sand was simulated, including the subsurface migration and subsequent removal of the DNAPL source zone via dissolution in groundwater. Periodic surveys of this site via ERT applied at the surface were then simulated and inversion programs were used to calculate the subsurface distribution of electrical properties. This presentation will summarize this approach and its potential as a research tool exploring the range of site conditions under which ERT may prove useful in aiding DNAPL site remediation. Moreover, it is expected to provide a cost-effective avenue to test optimum ERT data acquisition, inversion and interpretative tools at contaminated sites.
NASA Astrophysics Data System (ADS)
Soupios, P. M.; Loupasakis, C.; Vallianatos, F.
2008-06-01
Nowadays, geophysical prospecting is implemented in order to resolve a diversity of geological, hydrogeological, environmental and geotechnical problems. Although plenty of applications and a lot of research have been conducted in the countryside, only a few cases have been reported in the literature concerning urban areas, mainly due to high levels of noise present that aggravate most of the geophysical methods or due to spatial limitations that hinder normal method implementation. Among all geophysical methods, electrical resistivity tomography has proven to be a rapid technique and the most robust with regard to urban noise. This work presents a case study in the urban area of Chania (Crete Island, Greece), where electrical resistivity tomography (ERT) has been applied for the detection and identification of possible buried ancient ruins or other man-made structures, prior to the construction of a building. The results of the detailed geophysical survey indicated eight areas of interest providing resistivity anomalies. Those anomalies were analysed and interpreted combining the resistivity readings with the geotechnical borehole data and the historical bibliographic reports—referring to the 1940s (Xalkiadakis 1997 Industrial Archaeology in Chania Territory pp 51-62). The collected ERT-data were processed by applying advanced algorithms in order to obtain a 3D-model of the study area that depicts the interesting subsurface structures more clearly and accurately.
NASA Astrophysics Data System (ADS)
Bin, Liu; Zhengyu, Liu; Shucai, Li; Lichao, Nie; Maoxin, Su; Huaifeng, Sun; Kerui, Fan; Xinxin, Zhang; Yonghao, Pang
2017-09-01
This paper describes the application of a comprehensive surface geophysical investigation of underground karst systems ahead of the tunnel face in the Xiaoheyan section in the main line of the water supply project from Songhua River, located in Jilin, China. To make an accurate investigation, Surface Electrical Resistivity Tomography (S-ERT), Transient Electromagnetic Method (TEM), Geological Drilling (Geo-D) and Three-dimensional Cross-hole Electrical Resistivity Tomography (3D cross-hole ERT) were applied to gain a comprehensive interpretation. To begin with, S-ERT and TEM are adopted to detect and delineate the underground karst zone. Based on the detection results, surface and in-tunnel Geo-D are placed in major areas with more specific and accurate information gained. After that, survey lines of 3D cross-hole ERT are used to conduct detailed exploration towards underground karst system. In the comprehensive investigation, it is the major question to make the best of prior information so as to promote the quality of detection. The paper has put forward strategies to make the full use of effective information in data processing and the main ideas of those strategies include: (1) Take the resistivity distribution of the subsurface stratum gained by S-ERT inversion as the initial model of TEM inversion; (2) Arrange borehole positions with the results of S-ERT and TEM. After that, gain more accurate information about resistivity of subsurface stratum using those boreholes located; (3) Through the comprehensive analysis of the information about S-ERT, TEM and Geo-D, set the initial model of 3D cross-hole resistivity inversion and meanwhile, gain the variation range of stratum resistivity. At last, a 3D cross-hole resistivity inversion based on the incorporated initial model and inequality constraint is conducted. Constrained inversion and joint interpretation are realized by the effective use of prior information in comprehensive investigation, helping to suppress the non-uniqueness problem of inversion so as to raise its reliability. In this way, a 3D detailed model of underground karst system which is 30 m ahead of tunnel face is finally formed. At the end of the paper, there is a geological sketch of the revealed karst caves, which illustrates the effectiveness of the presented strategy. To sum up, in the comprehensive investigation of underground karst caves, the integrated use of prior information can help to yield more accurate and detailed results.
NASA Astrophysics Data System (ADS)
Herring, T.; Cey, E. E.; Pidlisecky, A.
2017-12-01
Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.
Geoelectrical mapping of the Soil and Groundwater Contaminated Site: Case Study from Taiwan
NASA Astrophysics Data System (ADS)
Liu, H. C.; Lin, C. P.; Wang, T. P.
2016-12-01
In recent years, geophysical technology has been widely used in soil and groundwater investigation and remediation of contaminated sites assessments in Taiwan, such technology can securely work in either small or large sampler areas, and collect data from the traditional one-dimensional data to two-dimensional and three-dimensional data. In other words, geophysical technology helps provide more information to assist the data interpretation, and improves the overall effectiveness of soil and groundwater contamination surveys. Electrical Resistivity Tomography (ERT) is one of useful geophysical technology to the soil and groundwater contaminated sites. By estimating the groundwater flow direction and distribution of contaminations, we could establish monitoring or sampling wells in potential pollution areas. ERT survey could delineate the contaminated areas with high concentrations in relatively simple sites. Even in the seriously DNAPL leakage cases, it is possible to directly detect the DNAPL pool. In this study, we presented the investigation outcomes of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) at the DNAPLs-impacted site. Evaluation of ERT/GPR technique deployment in detecting buried DNAPLs and assessment of remediation efforts are also discussed. Results indicated zones with anomalously high resistivity to be associated with contaminated DNAPLs presence. Resistivity maps clearly outlined the subsurface distribution and the possible migration path of DNAPLs.
NASA Astrophysics Data System (ADS)
Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P.
2011-12-01
In recent years geophysical methods have become increasingly popular for hydrological applications. Time-lapse electrical resistivity tomography (ERT) represents a potentially powerful tool for subsurface solute transport characterization since a full picture of the spatiotemporal evolution of the process can be obtained. However, the quantitative interpretation of tracer tests is difficult because of the uncertainty related to the geoelectrical inversion, the constitutive models linking geophysical and hydrological quantities, and the a priori unknown heterogeneous properties of natural formations. Here an approach based on the Lagrangian formulation of transport and the ensemble Kalman filter (EnKF) data assimilation technique is applied to assess the spatial distribution of hydraulic conductivity K by incorporating time-lapse cross-hole ERT data. Electrical data consist of three-dimensional cross-hole ERT images generated for a synthetic tracer test in a heterogeneous aquifer. Under the assumption that the solute spreads as a passive tracer, for high Peclet numbers the spatial moments of the evolving plume are dominated by the spatial distribution of the hydraulic conductivity. The assimilation of the electrical conductivity 4D images allows updating of the hydrological state as well as the spatial distribution of K. Thus, delineation of the tracer plume and estimation of the local aquifer heterogeneity can be achieved at the same time by means of this interpretation of time-lapse electrical images from tracer tests. We assess the impact on the performance of the hydrological inversion of (i) the uncertainty inherently affecting ERT inversions in terms of tracer concentration and (ii) the choice of the prior statistics of K. Our findings show that realistic ERT images can be integrated into a hydrological model even within an uncoupled inverse modeling framework. The reconstruction of the hydraulic conductivity spatial distribution is satisfactory in the portion of the domain directly covered by the passage of the tracer. Aside from the issues commonly affecting inverse models, the proposed approach is subject to the problem of the filter inbreeding and the retrieval performance is sensitive to the choice of K prior geostatistical parameters.
NASA Astrophysics Data System (ADS)
Vanella, D.; Cassiani, G.; Busato, L.; Boaga, J.; Barbagallo, S.; Binley, A.; Consoli, S.
2018-01-01
Plant roots activity affect the exchanges of mass and energy between the soil and atmosphere. However, it is challenging to monitor the activity of the root-zone because roots are not visible from the soil surface, and root systems undergo spatial and temporal variations in response to internal and external conditions. Therefore, measurements of the activity of root systems are interesting to ecohydrologists in general, and are especially important for specific applications, such as irrigation water management. This study demonstrates the use of small scale three-dimensional (3-D) electrical resistivity tomography (ERT) to monitor the root-zone of orange trees irrigated by two different regimes: (i) full rate, in which 100% of the crop evapotranspiration (ETc) is provided; and (ii) partial root-zone drying (PRD), in which 50% of ETc is supplied to alternate sides of the tree. We performed time-lapse 3-D ERT measurements on these trees from 5 June to 24 September 2015, and compared the long-term and short-term changes before, during, and after irrigation events. Given the small changes in soil temperature and pore water electrical conductivity, we interpreted changes of soil electrical resistivity from 3-D ERT data as proxies for changes in soil water content. The ERT results are consistent with measurements of transpiration flux and soil temperature. The changes in electrical resistivity obtained from ERT measurements in this case study indicate that root water uptake (RWU) processes occur at the 0.1 m scale, and highlight the impact of different irrigation schemes.
NASA Astrophysics Data System (ADS)
Angelis, Dimitrios; Tsourlos, Panagiotis; Tsokas, Gregory; Vargemezis, George; Zacharopoulou, Georgia; Power, Christopher
2018-05-01
Non-destructive investigation of monuments can be an extremely valuable tool to evaluate potential structural defects and assist in developing any restoration plans. In this work, both Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) techniques were applied to a tower wall of the Heptapyrgion fortress located in Thessaloniki, Greece, which was facing significant moisture problems. GPR cross sections, mainly obtained with a 500 MHz centre frequency antenna, and ERT profiles were collected along the same survey grid on the tower wall. The gprMax numerical solver was used for the GPR forward modelling. In addition, an auxiliary program was used to design and import into gprMax complicated structures and this allowed to simulate more realistically the wall defects and moisture. The GPR simulator was used to assess and optimize the field data acquisition and processing parameters, and to assist in interpreting the GPR cross sections. The ERT sections were inverted as individual 2D lines and also, as a full 3D dataset. The final GPR and ERT data were jointly interpreted in view of the studied problem as results of both methods are highly correlated. A high moisture content area at the eastern part of the wall was identified in both GPR and ERT data, along with the interface between different phases of construction. Through the GPR data we were also able to delineate possible structural defects (cracks, small voids) which was not possible with just using the ERT data. Furthermore, a very good matching was evident between the simulated GPR modelling results incorporating field-interpreted features, and the actual field GPR results, thereby validating the proposed data interpretation. The overall survey and modelling approach produces results that are in a very good agreement between them and proved very useful in accessing the wall structure.
Johnson, Carole D.; Lane, John W.; Brandon, William C.; Williams, Christine A.P.; White, Eric A.
2010-01-01
A suite of complementary, non‐invasive surface geophysical methods was used to assess their utility for site characterization in a pilot investigation at a former defense site in North Kingstown, Rhode Island. The methods included frequency‐domain electromagnetics (FDEM), ground‐penetrating radar (GPR), electrical resistivity tomography (ERT), and multi‐channel analysis of surface‐wave (MASW) seismic. The results of each method were compared to each other and to drive‐point data from the site. FDEM was used as a reconnaissance method to assess buried utilities and anthropogenic structures; to identify near‐surface changes in water chemistry related to conductive leachate from road‐salt storage; and to investigate a resistive signature possibly caused by groundwater discharge. Shallow anomalies observed in the GPR and ERT data were caused by near‐surface infrastructure and were consistent with anomalies observed in the FDEM data. Several parabolic reflectors were observed in the upper part of the GPR profiles, and a fairly continuous reflector that was interpreted as bedrock could be traced across the lower part of the profiles. MASW seismic data showed a sharp break in shear wave velocity at depth, which was interpreted as the overburden/bedrock interface. The MASW profile indicates the presence of a trough in the bedrock surface in the same location where the ERT data indicate lateral variations in resistivity. Depths to bedrock interpreted from the ERT, MASW, and GPR profiles were similar and consistent with the depths of refusal identified in the direct‐push wells. The interpretations of data collected using the individual methods yielded non‐unique solutions with considerable uncertainty. Integrated interpretation of the electrical, electromagnetic, and seismic geophysical profiles produced a more consistent and unique estimation of depth to bedrock that is consistent with ground‐truth data at the site. This test case shows that using complementary techniques that measure different properties can be more effective for site characterization than a single‐method investigation.
NASA Astrophysics Data System (ADS)
Al-Saadi, Osamah; Schmidt, Volkmar; Becken, Michael; Fritsch, Thomas
2017-04-01
Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non-invasive techniques are very useful in saving time, costs, and efforts. Both 2D and 3D ERT techniques are used to obtain detailed images of subsurface anomalies. In two surveyed areas near Nonnweiler (Germany), we present the results of the full 3D setup with a roll-along technique and of the quasi-3D setup (parallel and orthogonal profiles in dipole-dipole configuration). In area A, a dipole-dipole array with 96 electrodes in a uniform rectangular survey grid has been used in full 3D to investigate a presumed Roman building. A roll-along technique has been utilized to cover a large part of the archaeological site with an electrode spacing of 1 meter and with 0.5 meter for a more detailed image. Additional dense parallel 2D profiles have been carried out in dipole-dipole array with 0.25 meter electrode spacing and 0.25 meter between adjacent profiles in both direction for higher- resolution subsurface images. We have designed a new field procedure, which used an electrode array fixed in a frame. This facilitates efficient field operation, which comprised 2376 electrode positions. With the quasi 3D imaging, we confirmed the full 3D inversion model but at a much better resolution. In area B, dense parallel 2D profiles were directly used to survey the second target with also 0.25 meter electrode spacing and profiles separation respectively. The same field measurement design has been utilized and comprised 9648 electrode positions in total. The quasi-3D inversion results clearly revealed the main structures of the Roman construction. These ERT inversion results coincided well with the archaeological excavation, which has been done in some parts of this area. The ERT result successfully images parts from the walls and also smaller internal structures of the Roman building.
NASA Astrophysics Data System (ADS)
Ardali, Ayça Sultan; Tezkan, Bülent; Gürer, Aysan
2018-02-01
Durusu Lake is the biggest and most important freshwater source supplying drinking water to the European side of Istanbul. In this study, electrical resistivity tomography (ERT) and transient electromagnetic (TEM) measurements were applied to detect a possible salt water intrusion into the lake and to delineate the subsurface structure in the north of Durusu Lake. The ERT and TEM measurements were carried out along six parallel profiles extending from the sea coast to the lake shore on the dune barrier. TEM data were interpreted using different 1-D inversion methods such as Occam, Marquardt, and laterally constrained inversion (LCI). ERT data were interpreted using 2-D inversion techniques. The inversion results of ERT and TEM data were shown as resistivity depth sections including topography. The sand layer spreading over the basin has a resistivity of 150-400 Ωm with a thickness of 5-10 m. The sandy layer with clay, silt, and gravel has a resistivity of 15-100 Ωm and a thickness of 10-40 m followed by a clay layer of a resistivity below 10 Ωm. When the inversion of these data is interpreted along with the hydrogeology of the area, it is concluded that the salt water intrusion along the dune barrier is not common and occurs at a particular area where the distance between lake and sea is very close. Using information from boreholes around the lake, it was verified that the common conductive region at depths of 30 m or more consists of clay layers and clay lenses.
NASA Astrophysics Data System (ADS)
Hermans, Thomas; Nguyen, Frédéric; Caers, Jef
2015-07-01
In inverse problems, investigating uncertainty in the posterior distribution of model parameters is as important as matching data. In recent years, most efforts have focused on techniques to sample the posterior distribution with reasonable computational costs. Within a Bayesian context, this posterior depends on the prior distribution. However, most of the studies ignore modeling the prior with realistic geological uncertainty. In this paper, we propose a workflow inspired by a Popper-Bayes philosophy that data should first be used to falsify models, then only be considered for matching. We propose a workflow consisting of three steps: (1) in defining the prior, we interpret multiple alternative geological scenarios from literature (architecture of facies) and site-specific data (proportions of facies). Prior spatial uncertainty is modeled using multiple-point geostatistics, where each scenario is defined using a training image. (2) We validate these prior geological scenarios by simulating electrical resistivity tomography (ERT) data on realizations of each scenario and comparing them to field ERT in a lower dimensional space. In this second step, the idea is to probabilistically falsify scenarios with ERT, meaning that scenarios which are incompatible receive an updated probability of zero while compatible scenarios receive a nonzero updated belief. (3) We constrain the hydrogeological model with hydraulic head and ERT using a stochastic search method. The workflow is applied to a synthetic and a field case studies in an alluvial aquifer. This study highlights the importance of considering and estimating prior uncertainty (without data) through a process of probabilistic falsification.
Groundwater temperature estimation and modeling using hydrogeophysics.
NASA Astrophysics Data System (ADS)
Nguyen, F.; Lesparre, N.; Hermans, T.; Dassargues, A.; Klepikova, M.; Kemna, A.; Caers, J.
2017-12-01
Groundwater temperature may be of use as a state variable proxy for aquifer heat storage, highlighting preferential flow paths, or contaminant remediation monitoring. However, its estimation often relies on scarce temperature data collected in boreholes. Hydrogeophysical methods such as electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) may provide more exhaustive spatial information of the bulk properties of interest than samples from boreholes. If a properly calibrated DTS reading provides direct measurements of the groundwater temperature in the well, ERT requires one to determine the fractional change per degree Celsius. One advantage of this petrophysical relationship is its relative simplicity: the fractional change is often found to be around 0.02 per degree Celcius, and represents mainly the variation of electrical resistivity due to the viscosity effect. However, in presence of chemical and kinetics effects, the variation may also depend on the duration of the test and may neglect reactions occurring between the pore water and the solid matrix. Such effects are not expected to be important for low temperature systems (<30 °C), at least for short experiments. In this contribution, we use different field experiments under natural and forced flow conditions to review developments for the joint use of DTS and ERT to map and monitor the temperature distribution within aquifers, to characterize aquifers in terms of heterogeneity and to better understand processes. We show how temperature time-series measurements might be used to constraint the ERT inverse problem in space and time and how combined ERT-derived and DTS estimation of temperature may be used together with hydrogeological modeling to provide predictions of the groundwater temperature field.
Time-lapse electrical geophysical monitoring of amendment-based biostimulation
Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.
NASA Astrophysics Data System (ADS)
Audebert, M.; Clément, R.; Touze-Foltz, N.; Günther, T.; Moreau, S.; Duquennoi, C.
2014-12-01
Leachate recirculation is a key process in municipal waste landfills functioning as bioreactors. To quantify the water content and to assess the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). This geophysical method is based on the inversion process, which presents two major problems in terms of delimiting the infiltration area. First, it is difficult for ERT users to choose an appropriate inversion parameter set. Indeed, it might not be sufficient to interpret only the optimum model (i.e. the model with the chosen regularisation strength) because it is not necessarily the model which best represents the physical process studied. Second, it is difficult to delineate the infiltration front based on resistivity models because of the smoothness of the inversion results. This paper proposes a new methodology called MICS (multiple inversions and clustering strategy), which allows ERT users to improve the delimitation of the infiltration area in leachate injection monitoring. The MICS methodology is based on (i) a multiple inversion step by varying the inversion parameter values to take a wide range of resistivity models into account and (ii) a clustering strategy to improve the delineation of the infiltration front. In this paper, MICS was assessed on two types of data. First, a numerical assessment allows us to optimise and test MICS for different infiltration area sizes, contrasts and shapes. Second, MICS was applied to a field data set gathered during leachate recirculation on a bioreactor.
NASA Astrophysics Data System (ADS)
Alle, Iboukoun Christian; Descloitres, Marc; Vouillamoz, Jean-Michel; Yalo, Nicaise; Lawson, Fabrice Messan Amen; Adihou, Akonfa Consolas
2018-03-01
Hard rock aquifers are of particular importance for supplying people with drinking water in Africa and in the world. Although the common use of one-dimensional (1D) electrical resistivity techniques to locate drilling site, the failure rate of boreholes is usually high. For instance, about 40% of boreholes drilled in hard rock aquifers in Benin are unsuccessful. This study investigates why the current use of 1D techniques (e.g. electrical profiling and electrical sounding) can result in inaccurate siting of boreholes, and checks the interest and the limitations of the use of two-dimensional (2D) Electrical Resistivity Tomography (ERT). Geophysical numerical modeling and comprehensive 1D and 2D resistivity surveys were carried out in hard rock aquifers in Benin. The experiments carried out at 7 sites located in different hard rock groups confirmed the results of the numerical modeling: the current use of 1D techniques can frequently leads to inaccurate siting, and ERT better reveals hydrogeological targets such as thick weathered zone (e.g. stratiform fractured layer and preferential weathering associated with subvertical fractured zone). Moreover, a cost analysis demonstrates that the use of ERT can save money at the scale of a drilling programme if ERT improves the success rate by only 5% as compared to the success rate obtained with 1D techniques. Finally, this study demonstrates, using the example of Benin, that the use of electrical resistivity profiling and sounding for siting boreholes in weathered hard rocks of western Africa should be discarded and replaced by the use of ERT technique, more efficient.
NASA Astrophysics Data System (ADS)
Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi
2017-09-01
Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.
NASA Astrophysics Data System (ADS)
Šumanovac, Franjo; Orešković, Jasna
2018-06-01
On the selected cases, Gotalovec in the area of Pannonian basin and Baška in the Dinaridic karst area, that are representing a common hydrogeological model in both regions of Croatia, CSAMT data together with data of other geophysical methods (electrical resistivity tomography, electrical sounding and seismic reflection) enabled the definition of a reliable prognostic geological model. The model consists of carbonate aquifer which underlies an impermeable thick package of clastic deposits. There are great variations of the dolomitic aquifer depths in the Gotalovec area due to strong tectonic activity, while in the Baška area depth changes are caused by the layer folding. The CSAMT method provides the most complete data on lithological and structural relationships in cases of hydrogeological targets deeper than 100 m. Based on the presented models we can conclude that the CSAMT method can provide greater exploration depth than electrical resistivity tomography (ERT) and can be considered as a fundamental geophysical method for exploration of buried carbonate aquifers, deeper than 100 m. But, the CSAMT research may demonstrate its advantages only in the case of very dense layout of CSAMT stations (25-50 m), due to the greater sensitivity to noise in relation to resistivity methods. Interpretation of CSAMT data is more complex in relation to resistivity methods, and a forward modelling method sometimes gives better results than an inversion due to possibility of the use of additional data acquired by other geophysical methods (ERT, electrical sounding and seismic reflection). At greater depths, the resolution of all electrical methods including the CSAMT method is significantly reduced, and seismic reflection can be very useful to resolve deeper lithological interfaces.
Thompson, Sarah S; Kulessa, Bernd; Benn, Douglas I; Mertes, Jordan R
2017-04-20
Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.
NASA Astrophysics Data System (ADS)
Thompson, Sarah S.; Kulessa, Bernd; Benn, Douglas I.; Mertes, Jordan R.
2017-04-01
Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.
Thompson, Sarah S.; Kulessa, Bernd; Benn, Douglas I.; Mertes, Jordan R.
2017-01-01
Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100–15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk. PMID:28425458
Parallel Infrastructure Modeling and Inversion Module for E4D
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-10-09
Electrical resistivity tomography ERT is a method of imaging the electrical conductivity of the subsurface. Electrical conductivity is a useful metric for understanding the subsurface because it is governed by geomechanical and geochemical properties that drive subsurface systems. ERT works by injecting current into the subsurface across a pair of electrodes, and measuring the corresponding electrical potential response across another pair of electrodes. Many such measurements are strategically taken across an array of electrodes to produce an ERT data set. These data are then processed through a computationally demanding process known as inversion to produce an image of the subsurfacemore » conductivity structure that gave rise to the measurements. Data can be inverted to provide 2D images, 3D images, or in the case of time-lapse 3D imaging, 4D images. ERT is generally not well suited for environments with buried electrically conductive infrastructure such as pipes, tanks, or well casings, because these features tend to dominate and degrade ERT images. This reduces or eliminates the utility of ERT imaging where it would otherwise be highly useful for, for example, imaging fluid migration from leaking pipes, imaging soil contamination beneath leaking subusurface tanks, and monitoring contaminant migration in locations with dense network of metal cased monitoring wells. The location and dimension of buried metallic infrastructure is often known. If so, then the effects of the infrastructure can be explicitly modeled within the ERT imaging algorithm, and thereby removed from the corresponding ERT image. However,there are a number of obstacles limiting this application. 1) Metallic infrastructure cannot be accurately modeled with standard codes because of the large contrast in conductivity between the metal and host material. 2) Modeling infrastructure in true dimension requires the computational mesh to be highly refined near the metal inclusions, which increases computational demands. 3) The ERT imaging algorithm requires specialized modifications to accomodate high conductivty inclusions within the computational mesh. The solution to each of these challenges was implemented within E4D (formerly FERM3D), which is a parallel ERT imaging code developed at PNNL (IPID #30249). The infrastructure modeling module implement in E4D uses a method of decoupling the model at the metallic interface(s) boundaries, into several well posed sub-problems (one for each distinct metallicinclusion) that are subsequently solved and recombined to form the global solution. The approach is based on the immersed interface method, with has been applied for similar problems in other fields (e.g. semiconductor industry). Comparisons to analytic solutions have shown the results to be very accurate, addressing item 1 above. The solution is implemented about an unstructured mesh, which enables arbitrary shapes to be efficiently modelled, thereby addressing item 2 above. In addition, the algorithm is written in parallel and shows excellent scalability, which also addresses equation 2 above. Finally, because only the boundaries of metallic inclusions are modeled, there are no high conductivity cells within the modeling mesh, and the problem described by item 3 above is no longer applicable.« less
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.
Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Zhang, Gang; Lü, Qing-Tian; Zhang, Gui-Bin; Lin, Ping-Rong; Jia, Zheng-Yuan; Suo, Kui
2018-03-01
The integrated interpretation of data from various technologies has the potential to obtain a more accurate estimate of subterranean earth properties. In this paper, we implement the joint interpretation of geological and geophysical data for mineral exploration in the northeastern region of Inner Mongolia, China. The joint application of several methodologies reduces the exploration risk. We first determined an approximate and large potential area for mineral exploration with geological data and magnetic data interpretation in Gaoerqi. Results from the two types of data analysis show that the ore deposit strikes roughly east in the northern part of the Gaoerqi mining area. Next, we employed the audio-magnetotelluric (AMT) method to study the subterranean electrical resistivity distribution and divide the earth into four layers. Inverted resistivity sections from the AMT data illustrate that the ore deposits are likely developed in the low-resistivity zone of the survey area from the land surface to 300-m depth. Finally, the high-resolution borehole-to-surface electrical resistivity tomography (ERT) method was employed for further investigation of the location and attitude of the potential ore deposits. Inverted resistivity sections from the ERT data show that two prospective areas for mineral exploration were observed in the west of the survey area and that the eastern portion of the survey area warrants further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Wellman, Dawn M.
2015-06-26
Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method ismore » implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.« less
NASA Astrophysics Data System (ADS)
Brook, Martin; Bevan, David; Prebble, Warwick; Tunnicliffe, Jon; Richards, Nick
2017-04-01
Globally, slope failures cause many thousands of deaths per year and damage infrastructure, costing billions of dollars to repair. There is a clear need for efficient and affordable techniques that can assess and evaluate ongoing slope instability. Of particular importance when assessing and evaluating ongoing landslide deformation is the availability of high-resolution Digital Surface Models (DSMs). Here, we applied the Structure-from-Motion (SfM) approach to low-altitude aerial images collected by an unmanned aerial vehicle (UAV) at the Ohuka coastal landslide on the North Island of New Zealand. The SfM image-based approach was selected as a mapping tool in order to provide a rapid, cost-effective, and highly automated method, generating high-resolution topography and coregistered texture (colour) from an unstructured set of overlapping photographs taken from varying viewpoints. This overcomes many of the cost, time, and logistical limitations of LiDAR and other topographic surveying methods. The SfM photogrammetry was undertaken in conjunction with Electrical Resistivity Tomography (ERT) to image the subsurface and provide an interpretation of the hydrogeology, due to the technique's high sensitivity to lateral and vertical changes in moisture content. Landslide features include a large arcuate scarp, flanked by gullies, which indicate the lateral boundaries of initial slope failure. Other topographic features include a 200 m wide bench with uphill-facing scarps, pull-apart zones, and surface flows from ongoing reactivation. ERT has proved useful in imaging the near-surface moisture movement driving the landsliding processes. Failure mechanisms include block-sliding along a clay seam in the early-Miocene Koheroa siltstone, and weathered deposits of the c. 1 Ma Kidnappers tephra. Cyclic variation in moisture content and formation of perched water tables above clay and tephra seam aquitards plays a key role in reactivation.
NASA Astrophysics Data System (ADS)
Vargemezis, George; Diamanti, Nectaria; Tsourlos, Panagiotis; Fikos, Ilias
2014-05-01
A geophysical survey was carried out in the Petrified Forest of Evros, the northernmost regional unit of Greece. This collection of petrified wood has an age of approximately 35 million years and it is the oldest in Greece (i.e., older than the well-known Petrified Forest of Lesvos island located in the North Aegean Sea and which is possibly the largest of the petrified forests worldwide). Protection, development and maintenance projects still need to be carried out at the area despite all fears regarding the forest's fate since many petrified logs remain exposed both in weather conditions - leading to erosion - and to the public. This survey was conducted as part of a more extensive framework regarding the development and protection of this natural monument. Geophysical surveying has been chosen as a non-destructive investigation method since the area of application is both a natural ecosystem and part of cultural heritage. Along with electrical resistivity tomography (ERT), ground penetrating radar (GPR) surveys have been carried out for investigating possible locations of buried fossilized tree trunks. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the subsurface. Two and three dimensional subsurface geophysical images of the surveyed area have been constructed, pointing out probable locations of petrified logs. Regarding ERT, petrified trunks have been detected as high resistive bodies, while lower resistivity values were more related to the surrounding geological materials. GPR surveying has also indicated buried petrified log locations. As these two geophysical methods are affected in different ways by the subsurface conditions, the combined use of both techniques enhanced our ability to produce more reliable interpretations of the subsurface. After the completion of the geophysical investigations of this first stage, petrified trunks were revealed after a subsequent excavation at indicated locations. Moreover, we identified possible buried petrified targets at locations yet to be excavated.
Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R
2016-09-01
Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.
Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N
2016-09-01
Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.; Buscheck, T. A.; Mansoor, K.
The US DOE National Risk Assessment Partnership (NRAP), funded through the Office of Fossil Energy and NETL, is developing methods to evaluate the effectiveness of monitoring techniques to detect brine and CO 2 leakage from legacy wells into underground sources of drinking water (USDW) overlying a CO 2 storage reservoir. As part of the NRAP Strategic Monitoring group, we have generated 140 simulations of aquifer impact data based on the Kimberlina site in California’s southern San Joaquin Basin, Kimberlina Rev. 1.1. CO 2 buoyancy allows some of the stored CO 2 to reach shallower permeable zones and is detectable withmore » surface geophysical sensors. We are using this simulated data set to evaluate effectiveness of electrical resistivity tomography (ERT) and magnetotellurics (MT) for leak detection. The evaluation of additional monitoring methods such as pressure, seismic and gravity is underway through a multi-lab collaboration.« less
NASA Astrophysics Data System (ADS)
Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
Conventional ground survey of soil root zone salinity by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity, σb, in the field. This approach is faster and cheaper, and allows a more intensive surveying. Measurements of σb can be made either in situ or with remote devices. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on the Electrical Resistivity Tomography (ERT) techniques represent an alternative in respect to those traditional for soil salinity characterization. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from ERT sensors. The latter, in turn, depends on the specific depth distribution of the σb, as well as on the electrical configuration of the sensor used. With these premises, the main aim of this study is to estimate the vertical σb distribution starting from resistivity data series measured using the ERT method under different salinity conditions and using TDR data as ground-truth data for calibration and validation of the ERT sensor. This way, limited measured TDR data may be used for translating extensive ERT apparent electrical conductivity, σa, measurements to estimate depth-distributions of σb. These, in turn, may be translated to many σw values by applying the σw-σb-θ calibration relationship obtained in the laboratory by using the TDR probes. A field experiment was conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari - Italy). The experiment consisted of three transects 30 m long and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3 dS/m, and 6 dS/m). Each transect consisted of seven rows equipped by a dripper irrigation system, which supplied a water flux of 2 l/h. As for the salt application, CaCl2 were dissolved in tap water, and subsequently siphoned into the irrigation system. For each transect, 24 regularly spaced monitoring sites (1 m apart) were selected for soil measurements, using different equipments: i) a TDR100, ii) an ERT apparatus in the Wenner configuration array. Overall, 17 measurement campaigns were carried out. Monitoring along transects also allowed to evaluate the role of different smaller and larger scale heterogeneities on the electrical conductivity measured by the two different sensors. Because of the different variability patterns and structure of the ERT and TDR data due to the different observation windows, a site-by-site comparison of the corresponding readings may not reveal the actual correlation between the σb values deduced by ERT measurements on one side and the TDR data on the other. In order to make TDR and ERT data actually comparable, we analyzed the effect of the different observation windows of the two sensors on the different spatial and temporal variability observed in the two data series. Specifically, the study assessed the potential of applying a Fourier's analysis to filter the original data series to extract the predominant, high-variance signal after removing the small- scale (high frequency) variance observed in the TDR data series.
Chiaro, Joseph A; O’Donnell, Patricia; Shore, Eileen M; Malhotra, Neil R; Ponder, Katherine P; Haskins, Mark E; Smith, Lachlan J
2014-01-01
Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease characterized by deficient α-L-iduronidase activity, leading to the accumulation of poorly degraded glycosaminoglycans (GAGs). Children with MPS I exhibit high incidence of spine disease, including accelerated disc degeneration and vertebral dysplasia, which in turn lead to spinal cord compression and kypho-scoliosis. In this study we investigated the efficacy of neonatal enzyme replacement therapy (ERT), alone or in combination with oral simvastatin (ERT+SIM) for attenuating cervical spine disease progression in MPS I, using a canine model. Four groups were studied: normal controls; MPS I untreated; MPS I ERT treated; and MPS I ERT+SIM treated. Animals were euthanized at one year-of-age. Intervertebral disc condition and spinal cord compression were evaluated from MRIs and plain radiographs, vertebral bone condition and odontoid hypoplasia were evaluated using microcomputed tomography, and epiphyseal cartilage to bone conversion was evaluated histologically. Untreated MPS I animals exhibited more advanced disc degeneration and more severe spinal cord compression than normal animals. Both treatment groups resulted in partial preservation of disc condition and cord compression, with ERT+SIM not significantly better than ERT alone. Untreated MPS I animals had significantly lower vertebral trabecular bone volume and mineral density, while ERT treatment resulted in partial preservation of these properties. ERT+SIM treatment demonstrated similar, but not greater, efficacy. Both treatment groups partially normalized endochondral ossification in the vertebral epiphyses (as indicated by absence of persistent growth plate cartilage), and odontoid process size and morphology. These results indicate that ERT begun from a very early age attenuates the severity of cervical spine disease in MPS I, particularly for the vertebral bone and odontoid process, and that additional treatment with simvastatin does not provide a significant additional benefit over ERT alone. PMID:24898323
Singha, Kamini; Gorelick, Steven M.
2006-01-01
Two important mechanisms affect our ability to estimate solute concentrations quantitatively from the inversion of field-scale electrical resistivity tomography (ERT) data: (1) the spatially variable physical processes that govern the flow of current as well as the variation of physical properties in space and (2) the overparameterization of inverse models, which requires the imposition of a smoothing constraint (regularization) to facilitate convergence of the inverse solution. Based on analyses of field and synthetic data, we find that the ability of ERT to recover the 3D shape and magnitudes of a migrating conductive target is spatially variable. Additionally, the application of Archie's law to tomograms from field ERT data produced solute concentrations that are consistently less than 10% of point measurements collected in the field and estimated from transport modeling. Estimates of concentration from ERT using Archie's law only fit measured solute concentrations if the apparent formation factor is varied with space and time and allowed to take on unreasonably high values. Our analysis suggests that the inability to find a single petrophysical relation in space and time between concentration and electrical resistivity is largely an effect of two properties of ERT surveys: (1) decreased sensitivity of ERT to detect the target plume with increasing distance from the electrodes and (2) the smoothing imprint of regularization used in inversion.
NASA Astrophysics Data System (ADS)
Fernández-Álvarez, José-Paulino; Rubio-Melendi, David; Quirós Castillo, Juan Antonio; González-Quirós, Andrés; Cimadevilla-Fuente, David
2017-09-01
Ground-penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) have been fruitfully employed for archaeological purposes. An area at the Pancorbo medieval site in Burgos (Spain) has been jointly explored by GPR and ERT in the search for the buried remains of the Pancorbo medieval village. After data collection, quality control and merging, a shallow depth of interest was identified and studied in detail. 3D resistivity simulation, considering sensible geometrical structures of the targets helped discover anomalies present in the area. On the other hand, visual GPR inspection was considerably enhanced by trace energy attribute analysis which provided a plan view of the existing anomalies. Two posterior archaeological excavations have a very good correlation between the identified anomalies and the excavated remains. The survey also provides hints for the continuation of the excavation.
NASA Astrophysics Data System (ADS)
Fernández-López, Sheila; Carrera, Jesús; Ledo, Juanjo; Queralt, Pilar; Luquot, Linda; Martínez, Laura; Bellmunt, Fabián
2016-04-01
Seawater intrusion in aquifers is a complex phenomenon that can be characterized with the help of electric resistivity tomography (ERT) because of the low resistivity of seawater, which underlies the freshwater floating on top. The problem is complex because of the need for joint inversion of electrical and hydraulic (density dependent flow) data. Here we present an adjoint-state algorithm to treat electrical data. This method is a common technique to obtain derivatives of an objective function, depending on potentials with respect to model parameters. The main advantages of it are its simplicity in stationary problems and the reduction of computational cost respect others methodologies. The relationship between the concentration of chlorides and the resistivity values of the field is well known. Also, these resistivities are related to the values of potentials measured using ERT. Taking this into account, it will be possible to define the different resistivities zones from the field data of potential distribution using the basis of inverse problem. In this case, the studied zone is situated in Argentona (Baix Maresme, Catalonia), where the values of chlorides obtained in some wells of the zone are too high. The adjoint-state method will be used to invert the measured data using a new finite element code in C ++ language developed in an open-source framework called Kratos. Finally, the information obtained numerically with our code will be checked with the information obtained with other codes.
Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric
2016-01-01
Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600ppm) in 3months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric
2016-01-01
Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.
NASA Astrophysics Data System (ADS)
Fadili, Ahmed; Najib, Saliha; Mehdi, Khalid; Riss, Joëlle; Malaurent, Philippe; Makan, Abdelhadi
2017-11-01
This study aims to assess the evolution of seawater intrusion between 1992 and 2011 periods in the coastal aquifers of Oualidia. To achieve this objective, the combination of geoelectrical and hydrochemical methods was adopted. Apparent resistivity maps, using 74 Vertical Electrical Sounding (VES) performed on 1992, allowed to distinguish two different zones. The conductive one, with apparent resistivity ranging between 4 and 86 Ω·m, is limited to 1 km with respect to the ocean. Meanwhile, the resistant one is much farther from the coastline. Besides, results of Electrical Resistivity Tomography (ERT) profiles performed during 2011 are in good agreement with those obtained by apparent resistivity maps. The ERT profiles show a conductive level characterized by low resistivity below 30 Ω·m assigned to seawater intrusion effect. Moreover, hydrochemical analysis, performed on 19 wells during three different periods, on June, December 2010 and May 2011, indicates that the most affected part with marine waters was at that time localized in the first kilometer from the ocean, with high amounts of Na+ and Cl- ions. Beyond this fringe, mineralization becomes very weak. Overall, the comparison of old VES with recent ERT coupled with hydrochemical results suggest no important evolution of the salt wedge since 1992.
Investigation of subsidence along segment of Missouri Route 65, Springfield, Missouri.
DOT National Transportation Integrated Search
2010-02-01
Electrical Resistivity Tomography (ERT) data were acquired on the ground surface across an underground limestone mine access tunnel in an effort to characterize the roof rock. This investigation was conducted because simultaneous localized failure oc...
NASA Astrophysics Data System (ADS)
Bièvre, Grégory; Oxarango, Laurent; Günther, Thomas; Goutaland, David; Massardi, Michael
2018-06-01
In the framework of earth-filled dykes characterization and monitoring, Electrical Resistivity Tomography (ERT) turns out to be a commonly used method. 2D sections are generally acquired along the dyke crest thus putting forward the question of 3D artefacts in the inversion process. This paper proposes a methodology based on 3D direct numerical simulations of the ERT acquisition using a realistic topography of the study site. It allows computing ad hoc geometrical factors which can be used for the inversion of experimental ERT data. The method is first evaluated on a set of synthetic dyke configurations. Then, it is applied to experimental static and time-lapse ERT data set acquired before and after repair works carried out on a leaking zone of an earth-filled canal dyke in the centre of France. The computed geometric factors are lower than the analytic geometric factors in a range between -8% and - 18% for measurements conducted on the crest of the dyke. They exhibit a maximum under-estimation for intermediate electrode spacings in the Wenner and Schlumberger configurations. In the same way, for measurements conducted on the mid-slope of the dyke, the computed geometric factors are higher for short electrode spacings (+18%) and lower for lower for large electrode spacings (-8%). The 2D inversion of the synthetic data with these computed geometric factors provides a significant improvement of the agreement with the original resistivity. Two experimental profiles conducted on the same portion of the dyke but at different elevations also reveal a better agreement using this methodology. The comparison with apparent resistivity from EM31 profiling along the stretch of the dyke also supports this evidence. In the same way, some spurious effects which affected the time-lapse data were removed and improved the global readability of the time-lapse resistivity sections. The benefit on the structural interpretation of ERT images remains moderate but allows a better delineation of the repair work location. Therefore, and even if the 2D assumption cannot be considered valid in such a context, the proposed methodology could be applied easily to any dyke or strongly 3D-shaped structure using a realistic topographic model. It appears suitable for practical application.
Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems
NASA Astrophysics Data System (ADS)
Bernatek-Jakiel, Anita; Kondracka, Marta
2016-12-01
This paper aims to provide a more comprehensive characterization of piping systems in mountainous areas under a temperate climate using geomorphological mapping and geophysical methods (electrical resistivity tomography - ERT and ground penetrating radar - GPR). The significance of piping in gully formation and hillslope hydrology has been discussed for many years, and most of the studies are based on surface investigations. However, it seems that most surface investigations underestimate this subsurface process. Therefore, our purpose was to estimate the scale of piping activity based on both surface and subsurface investigations. We used geophysical methods to detect the boundary of lateral water movement fostering pipe development and recognize the internal structure of the underlying materials. The survey was carried out in the Bereźnica Wyżna catchment, in the Bieszczady Mountains. (Eastern Carpathians, Poland), where pipes develop in Cambisols at a mean depth of about 0.7-0.8 m. The geophysical techniques that were used are shown to be successful in identifying pipes. GPR data suggest that the density of piping systems is much larger than that detectible from surface observations alone. Pipe length can be > 6.5-9.2% (maximum = 49%) higher than what surface mapping suggests. Thus, the significance of piping in hillslope hydrology and gully formation can be greater than previously assumed. These results also draw attention to the scale of piping activity in the Carpathians, where this process has been neglected for many years. The ERT profiles reveal areas affected by piping as places of higher resistivity values, which are an effect of a higher content of air-filled pores (due to higher soil porosity, intense biological activity, and well-developed soil structure). In addition, the ERT profiles show that the pipes in the study area develop at the soil-bedrock interface, probably above the layers of shales or mudstones which create a water restrictive layer. Our results illustrate the suitability and limitations of GPR and ERT to study soil piping. In general, geophysical surveying is useful for gathering more information on pipe density, potential pipe detection, and recognition of the internal structure of materials underlying the pipes. However, the interpretation of radargrams and ERT profiles should be always accompanied by detailed terrain mapping due to potential disturbances affecting geophysical profiles.
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERTmore » to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.« less
NASA Astrophysics Data System (ADS)
Trento, L. M.; Tsourlos, P.; McMaster, M.; Liefl, D.; Sims, A.; Dominguez, J. L. G.; Vidumsky, J.; Gerhard, J.
2016-12-01
Self-sustaining Treatment for Active Remediation (STAR) technology destroys non-aqueous phase liquid (NAPL) in situ using principles of smouldering combustion. It involves propagating an exothermic (400-1000C) oxidation reaction outwards from an ignition well. A full-scale STAR system is currently being applied at an industrial site contaminated with coal tar below the water table in New Jersey, USA. STAR is typically tracked using multi-level thermocouples, which are discrete and sparse in space and time. This study evaluates two surface-based geophysical methods - Electrical Resistivity Tomography (ERT) and Self-Potential (SP) - for the ability to map the STAR reaction in real time at the New Jersey site. Both techniques involve placing electrode arrays on the surface and monitoring electrical signals over time (i.e., time-lapse). It is hypothesized that ERT should be able to monitor the resistive dry zone that precedes the reaction front and/or the growing NAPL-depleted zone. SP is expected to be able to detect the potential difference associated with thermal gradients generated by the reaction. Approximately 72 ERT electrodes in a "swiss cross" pattern plus 10 SP electrodes will be emplaced over single STAR treatment cell (six ignition wells). This setup will be employed to monitor both a deep (25 feet) and shallow (8 feet) STAR treatments. The geophysics will be complemented by in situ temperature measurements, continuous gas measurements, and pre- and post-treatment coring. The primary goal of this research is to evaluate the effectiveness of using ERT and SP for STAR under field conditions. The tests will be conducted in August 2016.
Influence of the geomembrane on time-lapse ERT measurements for leachate injection monitoring.
Audebert, M; Clément, R; Grossin-Debattista, J; Günther, T; Touze-Foltz, N; Moreau, S
2014-04-01
Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. To quantify the water content and to evaluate the leachate injection system, in situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). However, this method can present false variations in the observations due to several parameters. This study investigates the impact of the geomembrane on ERT measurements. Indeed, the geomembrane tends to be ignored in the inversion process in most previously conducted studies. The presence of the geomembrane can change the boundary conditions of the inversion models, which have classically infinite boundary conditions. Using a numerical modelling approach, the authors demonstrate that a minimum distance is required between the electrode line and the geomembrane to satisfy the good conditions of use of the classical inversion tools. This distance is a function of the electrode line length (i.e. of the unit electrode spacing) used, the array type and the orientation of the electrode line. Moreover, this study shows that if this criterion on the minimum distance is not satisfied, it is possible to significantly improve the inversion process by introducing the complex geometry and the geomembrane location into the inversion tools. These results are finally validated on a field data set gathered on a small municipal solid waste landfill cell where this minimum distance criterion cannot be satisfied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.
Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott
2012-11-01
Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.
Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas
2016-09-01
The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Roshan K.; Bage, Ashish K.
2017-06-01
Electrical resistivity tomography (ERT) is a useful tool to map near-surface conducting anomalies. The detailed ERT survey was taken over an already defined conducting zone on a regional scale through a magnetotelluric (MT) survey, in order to provide better resolution of the subsurface structure within the study area. The survey lines were carried out crossing the delineated conducting zone through MT giving a dense coverage over the area. The ERT survey were carried out along 15 lines covering an area of ~1 km2 with a line spacing of ~50 m in the northern fringe of the Dalma volcanics (DVs). The study utilised the 61-channel cum 64-electrode resistivity equipment, FlashRES-Universal ERT multi-electrode data acquisition system, developed by ZZ Resistivity Imaging, Australia. Data has been acquired both through conventional arrays i.e. Wenner, Schlumberger and ZZ unconventional arrays. Inversion of the data set have been performed using 2.5D finite element conjugate gradient algorithm after performing the quality check. Resistivity models along all the lines were obtained using Wenner, Schlumberger and combination of Wenner, Schlumberger and ZZ arrays. Resistivity models resolved four major zones: (1) resistivity less than 1 Ωm (2) resistivity 1-10 Ωm (3) resistivity 10-100 Ωm and (4) resistivity more than 100 Ωm . The resistivity results corroborate well with the geological succession from the drilling data. The conducting zones with resistivity values ranging from 1-10 Ωm correlates with the Lower Dalma volcanics while the Upper Dalma volcanics corresponds to the regions with resistivity values of less than 1 Ωm. The Upper Dalma volcanics corresponds to the metallogeny while the depth to the top of the ore body is ~25 m.
Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India
NASA Astrophysics Data System (ADS)
Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.
2016-12-01
Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.
Henderson, Rory; Unthank, Michael D.; Zettwoch, Douglas D.; Lane, John W.
2010-01-01
The potable water system at Fort Knox is threatened by brine contamination from improperly abandoned natural gas exploration wells. The Fort Knox well field is located near the town of West Point, Kentucky, in the flood plain of the Ohio River. At the site, unconsolidated sediments approximately 30 – 40 m thick, overlie shale and porous limestone. Brine is believed to flow vertically from the underlying formations to the unconsolidated aquifer through damaged or leaky well casings under a high hydraulic gradient from the artificially pressurized porous limestone, which is utilized for natural gas storage by a regional energy company. Upon reaching the unconsolidated aquifer, brinecontaminated groundwater enters water supply production wells under the pumping‐induced gradient. As part of the Fort Knox remediation strategy to reduce the impact of brine contamination, electrical resistivity tomography (ERT) and borehole electromagnetic (EM) logs are being collected annually to detect gross changes in subsurface conductivity. The 2009 ERT data show areas of high conductivity on the western (contaminated) side of the site with conductivities more than an order of magnitude higher than on the eastern (uncontaminated) side of the site. The areas of high conductivity are interpreted as brine contamination, consistent with known regions of brine contamination. Conductivities from the EM logs are consistent with the results from the ERT inversions. The EM logs show little change between 2008 and 2009, except for some small changes in the brine distribution in well PZ1. Yearly ERT surveys will be continued to detect new areas of brine contamination and monitor the remediation effort.
Sandbox experiments on Uraninite Ore: ERT and SP measurments.
NASA Astrophysics Data System (ADS)
Singh, R. K.
2015-12-01
Nuclear energy, considering its own intrinsic merits, would be a leading source for meeting the energy requirement in present and future scenario. Concealed Uranium deposits under sedimentary cover, with poor surface indications calls for reorientation of survey with large inputs involving integrated geophysical approach. Sand Box experiments have been carried out over Uraninite ore. The tank is a glass fish tank (height 39 cm, length 75 cm, width 30 cm). It was filled with sand up to 35 cm high. The sand was saturated from below to minimize the entrapment of the gas bubbles. The average size for sand grains is ~ 0.295mm. The formation factor of the sand is 3.5, with a negligible surface conductivity because of the coarse nature of the sand grains. The dimension of considered Uraninite ore sample is 4cm x 4cm x 4cm. The depth of top of the ore sample is kept at 3cm. In this paper both resistivity and self-potential measurements were carried out for possible detection of Uraninite. The resistivity measurements were made with 64 non-polarizable electrodes using Electrical Resistivity Tomography (ERT) equipment of FlashRes Universal developed by ZZ Resistivity Imaging Pty. Ltd. We have used screws of length 3cm as electrodes. The separation between these electrodes are ~ 1cm. The resistivity tomography results clearly outlines the target Uraninite body. The resistivity tomography results also detects small heterogeneities associated with air bubbles possibly due to unsaturated pore spaces. SP measurements were made using two non-polarizing Pb/PbCl2 electrodes and a Fluke 289 voltmeter (sensitivity 0.001 mV, internal impedance 100 MOhm). The reference electrode was located on the corner of the sandbox. The other electrode was used to scan the electrical potential at the surface of the sand. SP measurements were made with a spacing of 3 cm over the same ERT profile. The SP results also shows a dip (or a low SP anomaly) over the target ore body sample. Thus, both SP and ERT results show the presence of Uraninite and could be used on the routine basis for possible detection of Uraninite.
NASA Astrophysics Data System (ADS)
Markewitz, D.; Sutter, L.; Richter, D. D., Jr.
2017-12-01
Soil Electrical Resistivity Tomography (ERT) was measured across the Calhoun Critical Zone Observatory in relation to land use cover. ERT can help identify patterns in soil and saprolite physical attributes and moisture content through multiple meters. ERT data were generated with an AGI Supersting R8 with a 28 probe dipole-dipole array on a 1.5 meter spacing providing information through the upper 9 m. In Nov/Dec 2016 ten soil pits were dug to 3m depth in agricultural fields, pine forests, and hardwood forests across the CCZO and ERT measures were taken centered on these pits. ERT values ranged from 200 to 2500 Ohm-m. ERT patterns in the agricultural field demonstrated a limited resistivity gradient (200-700 Ohm-m) appearing moist throughout. In contrast, research areas under pine and hardwood forest had stronger resistivity gradients reflecting both moisture and physical attributes (i.e., texture or rock content). For example, research area 2 under pine had an area of higher resistivity that correlated with a band of saprolite that was readily visible in the exposed profile. In research area 7 and 8 that included both pine and hardwood forest resistivity gradients had contradictory patterns of high to low resistivity from top to bottom. In research area 7 resistivity was highest at the surface and decreased with depth, a common pattern when water table is at depth. In research area 8 the inverse was observed with low resistivity above and resistivity increasing with depth, a pattern observed in upper landscape positions on ridges with moist clay above dry saprolite. ERT patterns did reflect a large difference in the measured agricultural fields compared to forest while other difference appeared to reflect landscape position.
NASA Technical Reports Server (NTRS)
Clapp, J. L. (Principal Investigator); Green, T., III; Hanson, G. F.; Kiefer, R. W.; Niemann, B. J., Jr.
1974-01-01
The author has identified the following significant results. Employing simple and economical extraction methods, ERTS can provide valuable data to the planners at the state or regional level with a frequency never before possible. Interactive computer methods of working directly with ERTS digital information show much promise for providing land use information at a more specific level, since the data format production rate of ERTS justifies improved methods of analysis.
NASA Astrophysics Data System (ADS)
Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.
2016-12-01
As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.
NASA Astrophysics Data System (ADS)
Kamiński, Mirosław
2017-11-01
The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS) for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES), and Electrical Resistivity Tomography (ERT). The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.
Methods for calculating the electrode position Jacobian for impedance imaging.
Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A
2017-03-01
Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.
Non-invasive imaging and assessment of active karst features in proximity to paved roadways.
DOT National Transportation Integrated Search
2014-02-01
In an effort to better understand and define the lateral and vertical extent of active karst features in immediate proximity to paved : MoDOT roadways in Springfield Missouri, MS&T will acquire electrical resistivity tomography (ERT) data. The intent...
NASA Astrophysics Data System (ADS)
Drahor, Mahmut G.; Berge, Meriç A.
2017-01-01
Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.
NASA Astrophysics Data System (ADS)
Heinze, T.; Budler, J.; Weigand, M.; Kemna, A.
2017-12-01
Water content distribution in the ground is essential for hazard analysis during monitoring of landslide prone hills. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. While this applies in many scenarios, sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. The smoothness constraint is reduced along layer boundaries identified using seismic data. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. We find a similar behavior over a broad range of models and depths. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.
Degueurce, Axelle; Clément, Rémi; Moreau, Sylvain; Peu, Pascal
2016-10-01
Agricultural waste is a valuable resource for solid state anaerobic digestion (SSAD) thanks to its high solid content (>15%). Batch mode SSAD with leachate recirculation is particularly appropriate for such substrates. However, for successful degradation, the leachate must be evenly distributed through the substrate to improve its moisture content. To study the distribution of leachate in agricultural waste, electrical resistivity tomography (ERT) was performed. First, laboratory-scale experiments were conducted to check the reliability of this method to monitor infiltration of the leachate throughout the solid. Two representative mixtures of agricultural wastes were prepared: a "winter" mixture, with cattle manure, and a "summer" mixture, with cattle manure, wheat straw and hay. The influence of density and water content on electrical resistivity variations was assessed in the two mixtures. An increase in density was found to lead to a decrease in electrical resistivity: at the initial water content, resistivity decreased from 109.7 to 19.5Ω·m in the summer mixture and from 9.8 to 2.7Ω·m in the "winter" mixture with a respective increased in density of 0.134-0.269, and 0.311-0.577. Similarly, resistivity decreased with an increase in water content: for low densities, resistivity dropped from 109.7 to 7.1Ω·m and 9.8 to 4.0Ω·m with an increase in water content from 64 to 90w% and 74 to 93w% for "summer" and "winter" mixtures respectively. Second, a time-lapse ERT was performed in a farm-scale SSAD plant to monitor leachate infiltration. Results revealed very heterogeneous distribution of the leachate in the waste, with two particularly moist areas around the leachate injection holes. However, ERT was successfully applied in the SSAD plant, and produced a reliable 3D map of leachate infiltration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D
2010-10-21
Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents. Copyright © 2010 S. Yamamoto. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Antoine, R.; Fauchard, C.
2012-04-01
In the last decades, public institutions have shown an increased interest in heritage conservation and monuments protection. Geophysical methods have been used for 20 years as powerful tools to assist in the curation of buildings. Ancient masonry bridges usually exhibit a complex structure/geometry. This complexity makes the use of combined geophysical methods highly necessary to obtain a meaningful model of the internal structure of such constructions and their environment. A high resolution geophysical survey was carried out at a stone arch bridge called Pont de Coq and located near Menerval, Normandy (France) in 2011. This decameter-sized bridge was built 400 years ago and crosses the Epte river, which is a tributary of the Seine river. The main objective of this work was to evaluate the structural state of the bridge and its vicinities. Two complementary methods were used : Electrical Resistivity tomography (ERT) and Ground Penetrating radar (GPR). Several profiles were realized along the road crossing the bridge and transversally to the construction, as well as on the two banks of the Epte river. High resolution electrical resistivity data were obtained both in the horizontal and vertical direction up to 8 meter-depth by two ERT methods (Wenner/Schlumberger and dipole-dipole). The GPR was used with shielded antennas at three different frequencies (200 MHz, 400 MHz and 1.5 GHz). This approach lead to the investigation of the subsurface up to approximately 6 meters-depth, with a resolution in the range of 0.04 m-0.40m. An excellent correlation is obtained between the ERT and the GPR methods, allowing us to propose a precise structural model of the Pont de Coq and to characterize the soil under the building. Several anomalies are observed within the roadway of the bridge at 50 cm-depth, as well as within the vaulting, corresponding to the presence of voids and a root network which lead to the slow destruction of the structure.
NASA Astrophysics Data System (ADS)
Nguyen, F.; Benoit, S.; Gommers, K.; Ghysels, G.; Hermans, T.; Huysmans, M.
2017-12-01
Hydraulic conductivity of river sediments ranges from values smaller than 10-9 m/s to values higher than 10-2 m/s, with a dominance in values between 10-7 m/s and 10-3 m/s. Both horizontal hydraulic conductivity and vertical hydraulic conductivity show spatial variation in a riverbed. The spatial variation in hydraulic conductivity is due to the influence of the sedimentary and geomorphological environment as well as the method of determination, including scale, size and imprecision of the applied method. The characterization of the spatial variability of hydraulic conductivity in riverbeds is important because of its effect on the interaction between river and groundwater. These river - groundwater interactions influence water resource management, water quality and functioning of the riparian ecosystem. It is necessary in the simulation of 3D flow between river and aquifer near the interface and thus, it also determines contaminant transport and biogeochemical modelling in this riparian or hyporheic zone. Different processes occur in this specific zone such as transport, degradation, transformation, precipitation and sorption of substances, all dependent on hydraulic conductivity. Several methods exist to determine the hydraulic conductivity in river beds, both direct and indirect methods, from field to laboratory experiments or numerical modelling, but the uncertainty on obtained K values is often large because of the large variability of K. In the recent years, research has been performed on the usefulness of geophysical methods on rivers, in particular Electrical Resistivity Tomography (ERT) and Induced Polarization (IP). The implementation of ERT and IP in rivers provides a continuous image of the resistivity and chargeability of the subsurface, respectively, and can be used in several applications as proxies for hydraulic conductivity. This work reports and investigate a correlation between hydraulic conductivity measured by slug tests at an experimental site, and electrical resistivity, chargeability and normalized chargeability for riverbeds sediments.
The trophic classification of lakes using ERTS multispectral scanner data
NASA Technical Reports Server (NTRS)
Blackwell, R. J.; Boland, D. H.
1975-01-01
Lake classification methods based on the use of ERTS data are described. Preliminary classification results obtained by multispectral and digital image processing techniques indicate satisfactory correlation between ERTS data and EPA-supplied water analysis. Techniques for determining lake trophic levels using ERTS data are examined, and data obtained for 20 lakes are discussed.
NASA Astrophysics Data System (ADS)
Ghimire, H.; Bhusal, U. C.; Khatiwada, B.; Pandey, D.
2017-12-01
Geophysical investigation using two dimensional electrical resistivity tomography (2D-ERT) method plays a significant role in determining the subsurface resistivity distribution by making measurement on the ground surface. This method was carried out at Dudhkoshi-II (230 MW) Hydroelectric Project, lies on Lesser Himalayan region of the Eastern Nepal to delineate the nature of the subsurface geology to assess its suitability for the construction of dam, desanding basin and powerhouse. The main objective of the proposed study consists of mapping vertical as well as horizontal variations of electrical resistivity to enable detection of the boundaries between unconsolidated materials and rocks of the different resistivity, possible geologic structures, such as possible presence of faults, fractures, and voids in intake and powerhouse area. For this purpose, the (WDJD-4 Multi-function Digital DC Resistivity/IP) equipment was used with Wenner array (60 electrodes). To fulfill these objectives of the study, the site area was mapped by Nine ERT profiles with different profile length and space between electrodes was 5 m. The depth of the investigation was 50 m. The acquired data were inverted to tomogram sections using tomographic inversion with RES2DINV commercial software. The Tomography sections show that the subsurface is classified into distinct geo-electric layers of dry unconsolidated overburden, saturated overburden, fractured rock and fresh bedrock of phyllites with quartzite and gneiss with different resistivity values. There were no voids and faults in the study area. Thickness of overburden at different region found to be different. Most of the survey area has bedrock of phyllites with quartzite; gneiss is also present in some location at intake area. Bedrock is found at the varies depth of 5-8 m at dam axis, 20-32 m at desanding basin and 3-10 m at powerhouse area. These results are confirmed and verified by using several boreholes data were drilled on the survey area. The results obtained from the study showed that the site is suitable for the construction of the proposed dam, desanding basin and powerhouse.
A study to explore the use of orbital remote sensing to determine native arid plant distribution
NASA Technical Reports Server (NTRS)
Mcginnies, W. G. (Principal Investigator); Haase, E. F.; Musick, H. B. (Compiler)
1973-01-01
The author has identified the following significant results. A theory has been developed of a method for determining the reflectivities of natural areas from ERTS-1 data. This method requires the following measurements: (1) ground truth reflectivity data from two different calibration areas; (2) radiance data from ERTS-1 MSS imagery for the same two calibration areas; and (3) radiance data from ERTS-1 MSS imagery for the area(s) in which reflectivity is to be determined. The method takes into account sun angle effects and atmospheric effects on the radiance seen by the space sensor. If certain assumptions are made, the ground truth data collection need not be simultaneous with the ERTS-1 overflight. The method allows the calculation of a conversion factor for converting ERTS-1 MSS radiance measurements of a given overflight to reflectivity values. This conversion factor can be used to determine the reflectivity of any area in the general vicinity of the calibration areas which has a relatively similar overlying atmosphere. This method, or some modification of it, may be useful in ERTS investigations which require the determination of spectral signatures of areas from spacecraft data.
Evaluation of ERTS-1 data for acquiring land use data of northern Megalopolis. [New England
NASA Technical Reports Server (NTRS)
Simpson, R. B.; Lindgren, D. T.; Goldstein, W. D.
1974-01-01
State planners are increasingly becoming interested in ERTS as a possible method for acquiring land use data. An important consideration to them is whether ERTS can provide such data at a savings in both time and money over alternative systems. A preliminary evaluation of ERTS as a planning tool is given.
NASA Astrophysics Data System (ADS)
Manning, J. E.; Schulz, M. S.; Lambrecht, D. S.
2016-12-01
Species imbalance within many California plant assemblages may arise due to more intense wildfires as well as climate warming. Given this, coyote brush (Baccharis pilularis DC), a native evergreen shrub known as a ready colonizer of disturbed soil, may become more dominant. While prolonged spring soil moisture is required for seedling establishment, 1+ year-old coyote brush can withstand low soil water potentials (-1.2 MPa). Beyond this, little is known about its soil-water dynamics. Hydraulic redistribution of water within the soil profile by plant roots has been established in numerous species in the past 20 years. Recent quantification of the water quantity re-distributed by root systems are beginning to provide detail that could inform ET, weathering, and carbon cycling models. Electrical resistivity tomography (ERT) has been used to study soil hydraulics in natural as well as cropland settings. This study is the first known to use ERT to investigate hydraulic redistribution in coyote brush. One mid-size shrub surrounded by open grassland was selected at the study site, located on a coastal marine terrace west of Santa Cruz, CA. The soil profile, previously characterized with ERT and auger-based soil-water sampling, includes a clay-rich B horizon and is texturally non-uniform due to bioturbation to 0.6 meter. The 12-m ERT survey transect had 48 semi-permanent electrodes, with the 4-m wide shrub canopy at probes 16 to 32. Five repeats of evening and morning surveys were conducted. Heterogeneous texture and severe soil drying necessitated qualitative comparison across time. Overnight resistivity changes using differences plots of the modelled data revealed increased moisture beneath the shrub canopy during the night. Areas beyond the canopy—presumably outside the root zone—experienced variable overnight changes, with moisture increasing in the clay-rich horizon. Preliminary analysis suggests that coyote brush roots redistribute water upward within the soil profile.
NASA Astrophysics Data System (ADS)
Boaga, J.; Mary, B.; Peruzzo, L.; Schmutz, M.; Wu, Y.; Hubbard, S. S.; Cassiani, G.
2017-12-01
The interest on non-invasive geophysical monitoring of soil properties and root architecture is rapidly growing. Despite this, few case studies exist concerning vineyards, which are economically one of the leading sectors of agriculture. In this study, we integrate different geophysical methods in order to gain a better imaging of the vine root system, with the aim of quantifying root development, a key factor to understand roots-soil interaction and water balance. Our test site is a vineyard located in Bordeaux (France), where we adopted the Mise-a-la-Masse method (MALM) and micro-scale electrical resistivity tomography (ERT) on the same 3D electrode configuration. While ERT is a well-established technique to image changes in soil moisture content by root activity, MALM is a relatively new approach in this field of research. The idea is to inject current directly in the plant trunk and verify the resulting voltage distribution in the soil, as an effect of current distribution through the root system. In order to distinguish the root effect from other phenomena linked to the soil heterogeneities, we conducted and compared MALM measurements acquired through injecting current into the stem and into the soil near the stem. Moreover, the MALM data measured in the field were compared with numerical simulations to improve the confidence in the interpretation. Differences obtained between the stem and soil injection clearly validated the assumption that the whole root system is acting as a current pathway, thus highlighting the locations at depth where current is entering the soil from the fine roots. The simulation results indicated that the best fit is obtained through considering distributed sources with depth, reflecting a probable root zone area. The root location and volume estimated using this procedure are in agreement with vineyard experimental evidence. This work suggests the promising application of electrical methods to locate and monitor root systems. Further work is necessary to effectively integrate the geophysical and plant physiology information.
Kazemzadeh, Argang; Elias, Cynthia; Tamer, Melih; Ein-Mozaffari, Farhad
2018-05-01
The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined. The experimental data indicated that the total gas holdup values increased with increasing both the rotational speed of impeller and volumetric gas flow rate. Moreover, the analysis of the flow field generated inside the aerated stirred bioreactor was conducted using CFD results. Overall, a more uniform distribution of the gas holdup was obtained at impeller speeds ≥ 100 rpm for volumetric gas flow rates ≥ 1.6 × 10 -5 m 3 /s.
Exploitation of ERTS-1 imagery utilizing snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J.; Martin, K. R.
1973-01-01
Photogeological analysis of ERTS-simulation and ERTS-1 imagery of snowcovered terrain within the ERAP Feather River site and within the New England (ERTS) test area provided new fracture detail which does not appear on available geological maps. Comparative analysis of snowfree ERTS-1 images has demonstrated that MSS Bands 5 and 7 supply the greatest amount of geological fracture detail. Interpretation of the first snow-covered ERTS-1 images in correlation with ground snow depth data indicates that a heavy blanket of snow (more than 9 inches) accentuates major structural features while a light "dusting", (less than 1 inch) accentuates more subtle topographic expressions. An effective mail-based method for acquiring timely ground-truth (snowdepth) information was established and provides a ready correlation of fracture detail with snow depth so as to establish the working limits of the technique. The method is both efficient and inexpensive compared with the cost of similarly scaled direct field observations.
NASA Astrophysics Data System (ADS)
Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua
2018-01-01
Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.
NASA Astrophysics Data System (ADS)
Johnson, T. C.
2016-12-01
Hydraulic fracture stimulation is used extensively in the subsurface energy sector to improve access between energy bearing formations and production boreholes. However, large uncertainties exist concerning the location and extent of stimulated fractures, and concerning the behavior of flow within those fractures. This uncertainty often results in significant risks, including induced seismicity and contamination of potable groundwater aquifers. Time-lapse electrical resistivity tomography (ERT) is a proven method of imaging fluid flow within fracture networks, by imaging the change in bulk conductivity induced by the presence of an electrically anomalous tracer within the fracture. In this work we demonstrate characterization and flow monitoring of a stimulated fracture using real-time four-dimensional ERT imaging within an unsaturated rhyolite formation. After stimulation, a conductive tracer was injected into the fracture zone. ERT survey data were continuously and autonomously collected, pre-processed on site, submitted to an off-site high performance computing system for inversion, and returned to the field for inspection. Surveys were collected at approximately 12 minute intervals. Data transmission and inversion required approximately 2 minutes per survey. The time-lapse imaging results show the dominant flow-paths within the stimulated fracture zone, thereby revealing the location and extent of the fracture, and the behavior of tracer flow within the fracture. Ultimately real-time imaging will enable site operators to better understand stimulation operations, and control post-stimulation reservoir operations for optimal performance and environmental protection.
A clustering approach applied to time-lapse ERT interpretation - Case study of Lascaux cave
NASA Astrophysics Data System (ADS)
Xu, Shan; Sirieix, Colette; Riss, Joëlle; Malaurent, Philippe
2017-09-01
The Lascaux cave, located in southwest France, is one of the most important prehistoric cave in the world that shows Paleolithic paintings. This study aims to characterize the structure of the weathered epikarst setting located above the cave using Time-Lapse Electrical Resistivity Tomography (ERT) combined with local hydrogeological and climatic environmental data. Twenty ERT profiles were carried out for two years and helped us to record the seasonal and spatial variations of the electrical resistivity of the hydraulic upstream area of the Lascaux cave. The 20 interpreted resistivity models were merged into a single synthetic model using a multidimensional statistical method (Hierarchical Agglomerative Clustering). The individual blocks from the synthetic model associated with a similar resistivity variability were gathered into 7 clusters. We combined the resistivity temporal variations with climatic and hydrogeological data to propose a geo-electrical model that relates to a conceptual geological model. We provide a geological interpretation for each cluster regarding epikarst features. The superficial clusters (no 1 & 2) are linked to effective rainfall and trees, probably a fractured limestone. Another two clusters (no 6 & 7) are linked to detrital formations (sand and clay respectively). The cluster 3 may correspond to a marly limestone that forms a non-permeable horizon. Finally, the electrical behavior of the last two clusters (no 4 & 5) is correlated with the variation of flow rate; they may be a privileged feed zone of the flow in the cave.
NASA Astrophysics Data System (ADS)
Portal, A.; Labazuy, P.; Lénat, J.-F.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Laktineh, I.; Miallier, D.; Mirabito, L.; Niess, V.; Vulpescu, B.
2013-01-01
Muon imaging of volcanoes and of geological structures in general is actively being developed by several groups in the world. It has the potential to provide 3-D density distributions with an accuracy of a few percent. At this stage of development, comparisons with established geophysical methods are useful to validate the method. An experiment has been carried out in 2011 and 2012 on a large trachytic dome, the Puy de Dôme volcano, to perform such a comparison of muon imaging with gravimetric tomography and 2-D electrical resistivity tomography. Here, we present the preliminary results for the last two methods. North-south and east-west resistivity profiles allow us to model the resistivity distribution down to the base of the dome. The modelling of the Bouguer anomaly provides models for the density distribution within the dome that are directly comparable with the results from the muon imaging. Our ultimate goal is to derive a model of the dome using the joint interpretation of all sets of data.
NASA Astrophysics Data System (ADS)
Leger, E.; Dafflon, B.; Thorpe, M.; Kreitinger, A.; Laura, D.; Haivala, J.; Peterson, J.; Spangler, L.; Hubbard, S. S.
2016-12-01
While subsurface storage of CO2 in geological formations offers significant potential to mitigate atmospheric greenhouse gasses, approaches are needed to monitor the efficacy of the strategy as well as possible negative consequences, such as leakage of CO2 or brine into groundwater or release of fugitive gaseous CO2. Groundwater leakages can cause subsequent reactions that may also be deleterious. For example, a release of dissolved CO2 into shallow groundwatersystems can decrease groundwater pH which can potentiallymobilize naturally occurring trace metals and ions. In this perspective, detecting and assessing potential leak requires development of novel monitoring techniques.We present the results of using surface electrical resistivity tomography (ERT) and a novel CO2 sensitive Lidar-based sensor to monitor a controlled CO2 release at the ZeroEmission Research and Technology Center (Bozeman, Montana). Soil temperature and moisture sensors, wellbore water quality measurements as well as chamber-based CO2 flux measurements were used in addition to the ERT and a novel Lidar-based sensor to detect and assess potential leakage into groundwater, vadose zone and atmosphere. The three-week release wascarried out in the vadose and the saturated zones. Well sampling of pH and conductivity and surface CO2 fluxes and concentrations measurements were acquired during the release and are compared with complex electricalresistivity time-lapse measurements. The novel Lidar-based image of the CO2 plume were compared to chamber-based CO2 flux and concentration measurements. While a continuous increase in subsurface ERT and above ground CO2 was documented, joint analysis of the above and below ground data revealed distinct transport behavior in the vadose and saturated zones. Two type of transport were observed, one in the vadoze zone, monitored by CO2 flux chamber and ERT, and the other one in the saturated zone, were ERT and wellsampling were carried. The experiment suggests how a range of geophysical, remote sensing, hydrological and geochemical measurement approaches can be optimally configured to detect the distribution and explore behavior of possible CO2 leakages in distinct compartments, including groundwater, vadose zone, and atmosphere.
NASA Astrophysics Data System (ADS)
Casas, Albert; Cosentino, Pietro L.; Fiandaca, Gianluca; Himi, Mahjoub; Macias, Josep M.; Martorana, Raffaele; Muñoz, Andreu; Rivero, Lluís; Sala, Roger; Teixell, Imma
2018-04-01
An integrated geophysical survey has been conducted at the Tarragona's Cathedral (Catalonia, NE Spain) with the aim to confirm the potential occurrence of archaeological remains of the Roman Temple dedicated to the Emperor Augustus. Many hypotheses have been proposed about its possible location, the last ones regarding the inner part of the Cathedral, which is one of the most renowned temples of Spain (twelfth century) evolving from Romanesque to Gothic styles. A geophysical project including electrical resistivity tomography (ERT) and ground probing radar (GPR) was planned over 1 year considering the administrative and logistic difficulties of such a project inside a cathedral of religious veneration. Finally, both ERT and GPR have been conducted during a week of intensive overnight surveys that provided detailed information on subsurface existing structures. The ERT method has been applied using different techniques and arrays, ranging from standard Wenner-Schlumberger 2D sections to full 3D electrical imaging with the advanced Maximum Yield Grid array. Electrical resistivity data were recorded extensively, making available many thousands of apparent resistivity data to obtain a complete 3D image after a full inversion. In conclusion, some significant buried structures have been revealed providing conclusive information for archaeologists. GPR results provided additional information about shallowest structures. The geophysical results were clear enough to persuade religious authorities and archaeologists to conduct selected excavations in the most promising areas that confirmed the interpretation of geophysical data. In conclusion, the significant buried structures revealed by geophysical methods under the cathedral were confirmed by archaeological digging as the basement of the impressive Roman Temple that headed the Provincial Forum of Tarraco, seat of the Concilium of Hispania Citerior Province.
Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2015-04-01
The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models interpretation. Geometry and location of ERT profiles on the Puy de Dôme volcano allow to compute 3D inversion models of the electrical resistivity distribution with a new inversion code. This code uses tetrahedrons to discretize the 3D model and uses also a conventional Gauss-Newton inversion scheme combined to an Occam regularisation to process the data. It allows to take into account all the data information and prevents the construction of 3D artefacts present in conventional 2D inversion results. Inversion results show a strong electrical resistivity heterogeneity of the entire dome. Underlying volcanic edifices are clearly identified below the lava dome. Generally speaking, the flanks of the volcano show high resistivity values, and the summit part is more conductive but also very heterogeneous.
ERTS-B imagery interpretation techniques in the Tennessee Valley
NASA Technical Reports Server (NTRS)
Gonzalez, R. C. (Principal Investigator)
1973-01-01
There are no author-identified significant results in this report. The proposed investigation is a continuation of an ERTS-1 project. The principal missions are to serve as the principal supporter on computer and image processing problems for the multidisciplinary ERTS effort of the University of Tennessee, and to carry out research in improved methods for the computer processing, enhancement, and recognition of ERTS imagery.
NASA Astrophysics Data System (ADS)
Kniess, Rudolf; Martin, Tina
2015-04-01
Two abandoned small waste dumps in the west of the Harz mountains (Germany) were analysed using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Aim of the project (ROBEHA, funded by the German Federal Ministry of Education and Research (033R105)) is the assessment of the recycling potential of the mining residues taking into account environmental risks of reworking the dump site. One task of the geophysical prospection is the investigation of the inner structure of the mining dump. This is important for the estimation of the approximate volume of potentially reusable mining deposits within the waste dump. The two investigated dump sites are different in age and therefore differ in their structure. The older residues (< 1930) consist of ore processing waste from density separation (stamp mill sand). The younger dump site descends from comprises slag dump waste. The layer of fine grained residues at the first dump site is less than 6 m thick and the slag layer is less than 2 m thick. Both sites are partially overlain by forest or grassland vegetation and characterized by topographical irregularities. Due to the inhomogeneity of the sites we applied electrical resistivity tomography (ERT) and ground penetrating radar (GPR) for detailed investigation. Using ERT we could distinguish various layers within the mining dumps. The resistivities of the dumped material differ from the bedrock resistivities at both sites. The GPR measurements show near surface layer boundaries down to 3 - 4 m. In consecutive campaigns 100 MHz and 200 MHz antennas were used. The GPR results (layer boundaries) were included into the ERT inversion algorithm to enable more precise and stable resistivity models. This needs some special preprocessing steps. The 3D-Position of every electrode from ERT measurement and the GPR antenna position on the surface require an accuracy of less than 1cm. At some points, the layer boundaries and radar wave velocities can be calibrated with borehole stratigraphic data from a mineralogical drilling campaign. This is important for a precise time-depth conversion of reflectors from GPR measurement. This reflectors were taken from radargram and have been adopted as resistivity boundary in the start model of the geoelectric inversion algorithm.
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Möhring, Simon; Budler, Jasmin; Weigand, Maximilian; Kemna, Andreas
2017-04-01
Rainfall-triggered landslides are a latent danger in almost any place of the world. Due to climate change heavy rainfalls might occur more often, increasing the risk of landslides. With pore pressure as mechanical trigger, knowledge of water content distribution in the ground is essential for hazard analysis during monitoring of potentially dangerous rainfall events. Geophysical methods like electrical resistivity tomography (ERT) can be utilized to determine the spatial distribution of water content using established soil physical relationships between bulk electrical resistivity and water content. However, often more dominant electrical contrasts due to lithological structures outplay these hydraulic signatures and blur the results in the inversion process. Additionally, the inversion of ERT data requires further constraints. In the standard Occam inversion method, a smoothness constraint is used, assuming that soil properties change softly in space. This applies in many scenarios, as for example during infiltration of water without a clear saturation front. Sharp lithological layers with strongly divergent hydrological parameters, as often found in landslide prone hillslopes, on the other hand, are typically badly resolved by standard ERT. We use a structurally constrained ERT inversion approach for improving water content estimation in landslide prone hills by including a-priori information about lithological layers. Here the standard smoothness constraint is reduced along layer boundaries identified using seismic data or other additional sources. This approach significantly improves water content estimations, because in landslide prone hills often a layer of rather high hydraulic conductivity is followed by a hydraulic barrier like clay-rich soil, causing higher pore pressures. One saturated layer and one almost drained layer typically result also in a sharp contrast in electrical resistivity, assuming that surface conductivity of the soil does not change in similar order. Using synthetic data, we study the influence of uncertainties in the a-priori information on the inverted resistivity and estimated water content distribution. Based on our simulation results, we provide best-practice recommendations for field applications and suggest important tests to obtain reliable, reproducible and trustworthy results. We finally apply our findings to field data, compare conventional and improved analysis results, and discuss limitations of the structurally-constrained inversion approach.
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out on the Puy de Dôme volcano resulting in 12 ERT profiles with approximatively 800 electrodes. We performed two processing stages by inverting independently each profiles in 2D (RES2DINV software) and the complete data set in 3D (EResI). The comparison of the 3D inversion results with those obtained through a conventional 2D inversion process underlined that EResI allows to accurately take into account the random electrodes positioning and reduce out-line artefacts into the inversion models due to positioning errors out of the profile axis. This comparison also highlighted the advantages to integrate several ERT lines to compute the 3D models of complex volcanic structures. Finally, the resulting 3D model allows a better interpretation of the Puy de Dome Volcano.
NASA Astrophysics Data System (ADS)
Rodríguez-Robles, Ulises; Arredondo, Tulio; Huber-Sannwald, Elisabeth; Alfredo Ramos-Leal, José; Yépez, Enrico A.
2017-11-01
While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil-bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.
Day-Lewis, F. D.; Singha, K.; Binley, A.M.
2005-01-01
Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.
Baptiste Dafflon; Rusen Oktem; John Peterson; Craig Ulrich; Anh Phuong Tran; Vladimir Romanovsky; Susan Hubbard
2017-05-10
The dataset contains measurements obtained through electrical resistivity tomography (ERT) to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness and soil dielectric permittivity.
Use of areal snow cover measurements from ERTS-1 imagery in snowmelt-runoff relationships in Arizona
NASA Technical Reports Server (NTRS)
Aul, J. S.; Ffolliott, P. F.
1975-01-01
Methods of interpreting ERTS-1 imagery to measure areal snow cover were analyzed. Relationship of areal snow cover and runoff were among the objectives in this study of ERTS-1 imagery use for forecasting snowmelt-runoff relationships.
NASA Astrophysics Data System (ADS)
Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio
2015-04-01
The comprehension of the hydrological processes involving plant root dynamics is crucial for implementing water saving measures in agriculture. This is particular urgent in areas, like those Mediterranean, characterized by scarce water availability. The study of root water dynamics should not be separated from a more general analysis of the mass and energy fluxes transferred in the soil-plant-atmosphere continuum. In our study, in order to carry this inclusive approach, minimal invasive 3D time-lapse electrical resistivity tomography (ERT) for soil moisture estimation was combined with plant transpiration fluxes directly measured with Sap Flow (SF) techniques and Eddy Covariance methods, and volumetric soil moisture measurements by TDR probes. The main objective of this inclusive approach was to accurately define root-zone water dynamics and individuate the root-area effectively active for water and nutrient uptake process. The monitoring was carried out in Eastern Sicily (south Italy) in summers 2013 and 2014, within an experimental orange orchard farm. During the first year of experiment (October 2013), ERT measurements were carried out around the pertinent volume of one fully irrigated tree, characterized by a vegetation ground cover of 70%; in the second year (June 2014), ERT monitoring was conducted considering a cutting plant, thus to evaluate soil water dynamics without the significant plant transpiration contribution. In order to explore the hydrological dynamics of the root zone volume surrounded by the monitored tree, the resistivity data acquired during the ERT monitoring were converted into soil moisture content distribution by a laboratory calibration based on the soil electrical properties as a function of moisture content and pore water electrical conductivity. By using ERT data in conjunction with the agro-meteorological information (i.e. irrigation rates, rainfall, evapotranspiration by Eddy Covariance, transpiration by Sap Flow and soil moisture content by TRD) of the test area, a spatially distributed one-dimensional (1D) model that solves the Richards' equation was applied; in the model the van Genuchten parameters were obtained by laboratory analysis of soil water retention and soil permeability at saturation. Results of the 1D model were successfully compared with both ERT-based soil moisture dynamics and TDR measurements of soil moisture. The modelling allows to defining the soil volume interested by root water uptake process and its extent. In particular, this volume results significantly smaller (i.e. surface area of 1.75 m2, with 0.4 m cm thickness) than expected, considering the design of the drip irrigation scheme adopted in the farm. The obtained results confirm that ERT is a technique that (i) can provide a lot of information on small scale and vegetation related processes; (ii) the integration with physical modelling is essential to capture the meaning of space-time signal changes; (iii) in the case of the orange orchard, this approach shows that about half of the irrigated water is wasted.
NASA Astrophysics Data System (ADS)
Rosado-Fuentes, A.; Arango-Galvan, C.; Arciniega-Ceballos, A.; Hernández-Quintero, J. E.; Mendo-Perez, G.
2017-12-01
A controlled shallow test site (CSTS) has been constructed at the UNAM Geomagnetic Observatory in Teoloyucan, central Mexico. The objective of the CSTS is to have a controlled place to test new developments and arrays that can be used for archaeological and engineering exploration, as well as to calibrate instruments, train students and for future research. The CSTS was built far enough not to influence the geomagnetic sensors and not be affected by noise sources. Special attention was given to the distribution and geometry of buried materials as well as the instruments used. Before the CSTS was built, a combination of near-surface, non-invasive geophysical techniques was performed to characterize the area of 20 by 32 meters. The methods include magnetometry, electromagnetic induction, ground penetrating radar (GPR), electrical resistivity tomography (ERT) and seismic refraction tomography (SRT). The GPR, SRT and ERT results show relatively flat interfaces. In general, the vertical gradient of the total magnetic field and the electric conductivity have very small variations, showing only one strong magnetic dipole associated to a shallow anomaly. These results indicate that the area is ideal for the construction of the test site. The CSTS consists on buried structures made with different materials and geometries (cubes, cylinders and tubes) commonly used as construction materials in Mexico since Pre-Hispanic times. These materials include concrete, reinforced concrete, wood, brick, adobe, basalt, tezontle and also empty space for controlling responses. The CSTS is versatile enough to be reshaped considering new geometries or materials and to conduct further investigations.
Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli
NASA Astrophysics Data System (ADS)
Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory
2014-02-01
Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.
NASA Astrophysics Data System (ADS)
Al-Khersan, Emad H.; Al-Ani, Jassim M. T.; Abrahem, Salah N.
2016-03-01
Uruk archaeological site, which located in Al-Muthanna Governorate southern Iraq, was investigated by integrated geophysical methods, ground penetration radar (GPR) and electric resistivity tomography (ERT) to image the historical buried structures. The GPR images show large radar attributes characterized by its continuous reflections having different widths. GPR attributes at shallower depth are mainly representing the upper part of Babylonian Houses that can often be found throughout the study area. In addition, radargrams characterized objects such as buried items, buried trenches and pits which were mainly concentrated near the surface. The ERT results show the presence of several anomalies at different depths generally having low resistivities. It is clear that the first upper zone can be found throughout the whole area and it may represent the top zone of the Babylonian houses. This zone is characterized by its dry clay and sandy soil containing surface broken bricks and slag mixed with core boulders. The second one underneath the top shows a prominent lower resistivity zone. It is probably caused by the moisture content that reduces the resistivity. The thickness of this zone is not equal at all parts of the site. The third deeper zone typically represents the archaeological walls. Most of the main anomalies perhaps referred to the buried clay brick walls. The map of the archaeological anomalies distribution and 3D view of the foundations at the study area using GPR and ERT techniques clearly show the characteristics of the Babylonian remains. A contour map and 3D view of Uruk show that the archaeological anomalies are concentrated mainly at the NE part of the district with higher values of wall height that range between 6 and 8 m and reach to more than 10 m. At the other directions, there are fewer walls with lower heights of 4-6 m and reach in some places the wall foot.
Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.
Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric
2017-06-01
Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures. Copyright © 2017 Elsevier B.V. All rights reserved.
Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination
NASA Astrophysics Data System (ADS)
Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric
2017-06-01
Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures.
Application of time-lapse ERT to characterize soil-water-disease interactions of young citrus trees
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; R M, P. G.
2016-12-01
Vidarbha region in Maharashtra, India is witnessing a continuous decrease in orange crop due to the propagation of `Phytopthora root rot', a water mold disease. Under favorable conditions, the disease causing bacteria can attack the plant root system and propagates to the surface (where first visual impression is made), making difficult to regain the plant health. This research aims at co-relating eco-hydrological fluxes with disease sensing parameters of orange trees. Two experimental plots around a healthy-young and declined-young orange trees were selected for our analysis. A 3-dimentional electrical resistivity tomography (ERT) (Figure) was carried at each plot to quantify the soil moisture distribution at a vadose zone. Pedo-electric relations were obtained considering modified Archie's law parameters. ERT derived moisture data was validated with time domain reflectometry (TDR) point observations. Soil moisture profiles derived from ERT were observed to be differ marginally between the two plots. Disease quantification was done by estimating the density of Phytopthora spp. inoculum in soils sampled along the root zone. Identification of Phytopthora spp. was done in the laboratory using taxonomic and morphologic criteria of the colonies. Spatio-temporal profiles of soil moisture and inoculum density were then co-related to comment on the eco-hydrological fluxes contributing to the health propagation of root rot in orange tree for implementing effective water management practices.
NASA Astrophysics Data System (ADS)
Mohamed, N. E.; Yaramanci, U.; Kheiralla, K. M.; Abdelgalil, M. Y.
2011-07-01
Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest-southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model.
Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling
NASA Astrophysics Data System (ADS)
Haaken, Klaus; Piero Deidda, Gian; Cassiani, Giorgio; Deiana, Rita; Putti, Mario; Paniconi, Claudio; Scudeler, Carlotta; Kemna, Andreas
2017-03-01
Saline-freshwater interaction in porous media is a phenomenon of practical interest particularly for the management of water resources in arid and semi-arid environments, where precious freshwater resources are threatened by seawater intrusion and where storage of freshwater in saline aquifers can be a viable option. Saline-freshwater interactions are controlled by physico-chemical processes that need to be accurately modeled. This in turn requires monitoring of these systems, a non-trivial task for which spatially extensive, high-resolution non-invasive techniques can provide key information. In this paper we present the field monitoring and numerical modeling components of an approach aimed at understanding complex saline-freshwater systems. The approach is applied to a freshwater injection experiment carried out in a hyper-saline aquifer near Cagliari (Sardinia, Italy). The experiment was monitored using time-lapse cross-hole electrical resistivity tomography (ERT). To investigate the flow dynamics, coupled numerical flow and transport modeling of the experiment was carried out using an advanced three-dimensional (3-D) density-driven flow-transport simulator. The simulation results were used to produce synthetic ERT inversion results to be compared against real field ERT results. This exercise demonstrates that the evolution of the freshwater bulb is strongly influenced by the system's (even mild) hydraulic heterogeneities. The example also highlights how the joint use of ERT imaging and gravity-dependent flow and transport modeling give fundamental information for this type of study.
A study on the erosion of Niigata Beach from ERTS-A imagery
NASA Technical Reports Server (NTRS)
Maruyasu, T.
1973-01-01
Coastal erosion of Niigata Beach, Japan as a result of construction works is discussed. The application of ERTS-1 imagery for defining and monitoring the extent of the erosion is described. The contribution of ERTS-1 data to studies leading to effective erosion control methods are reported.
NASA Astrophysics Data System (ADS)
Beaujean, J.; Kemna, A.; Engesgaard, P. K.; Hermans, T.; Vandenbohede, A.; Nguyen, F.
2013-12-01
While coastal aquifers are being stressed due to climate changes and excessive groundwater withdrawals require characterizing efficiently seawater intrusion (SWI) dynamics, production of geothermal energy is increasingly being used to hinder global warming. To study these issues, we need both robust measuring technologies and reliable predictions based on numerical models. SWI models are currently calibrated using borehole observations. Similarly, geothermal models depend mainly on the temperature field at few locations. Electrical resistivity tomography (ERT) can be used to improve these models given its high sensitivity to TDS and temperature and its relatively high lateral resolution. Inherent geophysical limitations, such as the resolution loss, can affect the overall quality of the ERT images and also prevent the correct recovery of the desired hydrochemical property. We present an uncoupled and coupled hydrogeophysical inversion to calibrate SWI and thermohydrogeologic models using ERT. In the SWI models, we demonstrate with two synthetic benchmarks (homogeneous and heterogeneous coastal aquifers) the ability of cumulative sensitivity-filtered ERT images using surface-only data to recover the hydraulic conductivity. Filtering of ERT-derived data at depth, where resolution is poorer, and the model errors make the dispersivity more difficult to estimate. In the coupled approach, we showed that parameter estimation is significantly improved because regularization bias is replaced by forward modeling only. Our efforts are currently focusing on applying the uncoupled/coupled approaches on a real life case study using field data from the site of Almeria, SE Spain. In the thermohydrogeologic models, the most sensitive hydrologic parameters responsible for heat transport are estimated from surface ERT-derived temperatures and ERT resistance data. A real life geothermal experiment that took place on the Campus De Sterre of Ghent University, Belgium and a synthetic case are tested. They consist in a thermal injection and storage of water in a shallow sandy aquifer. The use of a physically-based constraint accounting for the difference in conductivity between the formation and the tap injected water and based on the hydrogeological model calibrated first on temperatures is necessary to improve the parameter estimation. Results suggest that time-lapse ERT data may be limited but useful information for estimating groundwater flow and transport parameters for both the convection and conduction phases.
An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pitao; Wang, Huaxiang; Sun, Benyuan
2014-04-11
This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative datamore » and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.« less
Sreeparvathy, Vijay; Kambhammettu, B V N P; Peddinti, Srinivasa Rao; Sarada, P S L
2018-03-22
Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations. © 2018, National Ground Water Association.
4D ERT Monitoring of Subsurface Water Pipe Leakage During a Controlled Field Experiment
NASA Astrophysics Data System (ADS)
Inauen, C.; Chambers, J. E.; Wilkinson, P. B.; Meldrum, P.; Swift, R. T.; Uhlemann, S.; Gunn, D.; Dashwood, B.; Taxil, J.; Curioni, G.
2016-12-01
Locating and delineating leakage from subsurface pipelines is an important task for civil engineers. 4D Electrical Resistivity Tomography (ERT) allows changes in subsurface resistivity to be imaged at a high spatial and temporal resolution in a minimally invasive manner. It is therefore a promising tool to supplement conventional point-sensing techniques to monitor subsurface flow processes. To assess the efficacy of ERT for pipe leakage monitoring several controlled leak experiments were carried out at a test site in Blagdon, Bristol, UK. To simulate the leak, a plastic pipe with a hole was buried below a flat, grassed area at a depth of 0.7 m, representing a standard UK mains water pipe installation. The water table at the site lies well below the surface meaning that the experiment took entirely place in the vadose zone, where changes in resistivity are primarily sensitive to water content variations. The ERT array covered an area of 6.5m x 6.5m around the leak location. Data acquisition was carried out with the BGS PRIME (Proactive Infrastructure Monitoring and Evaluation) system, which facilitates remote scheduling and autonomous ERT data collection and transmission. To obtain the resistivity changes of the subsurface a 4D inversion was carried out using a Gauss-Newton approach with spatial and temporal smoothness constraints. We were able to reliably observe the onset, spread and cessation of the leakage. Measurements from in-situ soil sensors at several depths above and below the leak complemented the ERT data and allowed us to assess their reliability and directly relate them to hydrogeological processes. Moreover, through experimental tests with soil samples from the test area, a Waxman-Smits relation was obtained to directly convert the changes in electrical resistivity to gravimetric soil moisture content. With future experiments on the test site more work is planned towards survey optimization, automated processing and tracking of leakage plumes.
Subspace-based analysis of the ERT inverse problem
NASA Astrophysics Data System (ADS)
Ben Hadj Miled, Mohamed Khames; Miller, Eric L.
2004-05-01
In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.
NASA Astrophysics Data System (ADS)
Cultrera, Matteo; Boaga, Jacopo; Di Sipio, Eloisa; Dalla Santa, Giorgia; De Seta, Massimiliano; Galgaro, Antonio
2018-05-01
Groundwater tracer tests are often used to improve aquifer characterization, but they present several disadvantages, such as the need to pour solutions or dyes into the aquifer system and alteration of the water's chemical properties. Thus, tracers can affect the groundwater flow mechanics and data interpretation becomes more complex, hindering effective study of ground heat pumps for low enthalpy geothermal systems. This paper presents a preliminary methodology based on a multidisciplinary application of heat as a tracer for defining the main parameters of shallow aquifers. The field monitoring techniques electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) are noninvasive and were applied to a shallow-aquifer test site in northeast Italy. The combination of these measurement techniques supports the definition of the main aquifer parameters and therefore the construction of a reliable conceptual model, which is then described through the numerical code FEFLOW. This model is calibrated with DTS and validated by ERT outcomes. The reliability of the numerical model in terms of fate and transport is thereby enhanced, leading to the potential for better environmental management and protection of groundwater resources through more cost-effective solutions.
Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography
NASA Astrophysics Data System (ADS)
Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.
2010-12-01
Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.
NASA Astrophysics Data System (ADS)
De Carlo, Lorenzo; Perri, Maria Teresa; Caputo, Maria Clementina; Deiana, Rita; Vurro, Michele; Cassiani, Giorgio
2013-11-01
Electrical resistivity methods are widely used for environmental applications, and they are particularly useful for the characterization and monitoring of sites where the presence of contamination requires a thorough understanding of the location and movement of water, that can act as a carrier of solutes. One such application is landfill studies, where the strong electrical contrasts between waste, leachate and surrounding formations make electrical methods a nearly ideal tool for investigation. In spite of the advantages, however, electrical investigation of landfills poses also challenges, both logistical and interpretational. This paper presents the results of a study conducted on a dismissed landfill, close to the city of Corigliano d'Otranto, in the Apulia region (Southern Italy). The landfill is located in an abandoned quarry, that was subsequently re-utilized about thirty years ago as a site for urban waste disposal. The waste was thought to be more than 20 m thick, and the landfill bottom was expected to be confined with an HDPE (high-density poli-ethylene) liner. During the digging operations performed to build a nearby new landfill, leachate was found, triggering an in-depth investigation including also non-invasive methods. The principal goal was to verify whether the leachate is indeed confined, and to what extent, by the HDPE liner. We performed both surface electrical resistivity tomography (ERT) and mise-à-la-masse (MALM) surveys, facing the severe challenges posed by the rugged terrain of the abandoned quarry complex. A conductive body, probably associated with leachate, was found as deep as 40 m below the current landfill surface i.e. at a depth much larger than the expected 20 m thickness of waste. Given the logistical difficulties that limit the geometry of acquisition, we utilized synthetic forward modeling in order to confirm/dismiss interpretational hypotheses emerging from the ERT and MALM results. This integration between measurements and modeling helped narrow the alternative interpretations and strengthened the confidence in results, confirming the effectiveness of non-invasive methods in landfill investigation and the importance of modeling in the interpretation of geophysical results.
Interpretation of ERTS-MSS images of a Savanna area in eastern Colombia
NASA Technical Reports Server (NTRS)
Elberson, G. W. W.
1973-01-01
The application of ERTS-1 imagery for extrapolating existing soil maps into unmapped areas of the Llanos Orientales of Colombia, South America is discussed. Interpretations of ERTS-1 data were made according to conventional photointerpretation techniques. Most units delineated in the existing reconnaissance soil map at a scale of 1:250,000 could be recognized and delineated in the ERTS image. The methods of interpretation are described and the results obtained for specific areas are analyzed.
Optimal joule heating of the subsurface
Berryman, James G.; Daily, William D.
1994-01-01
A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
NASA Astrophysics Data System (ADS)
Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine
2017-10-01
Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Schwede, R. L.; Li, W.
2012-12-01
Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography and flowmeter measurements to identify mainly the hydraulic-conductivity distribution. By stating the inversion as geostatistical conditioning problem, we obtain parameter sets together with their correlated uncertainty. While we have applied the quasi-linear geostatistical approach as inverse kernel, other methods - such as ensemble Kalman methods - may suit the same purpose, particularly when many data points are to be included. In order to identify 3-D fields, discretized by about 50 million grid points, we use the high-performance-computing framework DUNE to solve the involved partial differential equations on midrange computer cluster. We have quantified the worth of different data types in these inference problems. In practical applications, the constitutive relationships between geophysical, thermal, and hydraulic properties can pose a problem, requiring additional inversion. However, not well constrained transient boundary conditions may put inversion efforts on larger (e.g. regional) scales even more into question. We envision that future hydrogeophysical inversion efforts will target boundary conditions, such as groundwater recharge rates, in conjunction with - or instead of - aquifer parameters. By this, the distinction between data assimilation and parameter estimation will gradually vanish.
NASA Astrophysics Data System (ADS)
Byrdina, Svetlana; Vandemeulebrouck, Jean; Rath, Volker; Silva, Catarina; Hogg, Colin; Kiyan, Duygu; Viveiros, Fatima; Eleuterio, Joana; Gresse, Marceau
2016-04-01
The Furnas volcanic complex is located in the eastern part of the São Miguel Island and comprises a 5 km × 8 km summit depression filled by two nested calderas with several craters and a lake. Present-day volcanic activity of Furnas volcano is mostly located in the northern part of the caldera, within the Furnas village and north to Furnas Lake, where hydrothermal manifestations are mainly fumarolic fields, steam vents, thermal springs, and intense soil diffuse degassing. Considering the Furnas volcano as a whole, the total integrated CO2 efflux is extremely high, with a total amount of CO2 close to 1000 ton per day (Viveiros et al., 2009). We present the first results of an electrical resistivity tomography (ERT), combined with audio-magneto-telluric (AMT) measurements aligned along two profiles inside the caldera. The purpose of this survey is to delimit the extent, the geometry, and the depth of the hydrothermal system and to correlate the deep resistivity structure with high resolution cartography of diffuse CO2 flux (Viveiros et al, 2015). The ERT and AMT methods are complementary in terms of resolution and penetration depth: ERT can image the structural details of shallow hydrothermal system (down to 100 m in our study) while AMT can image at lower resolution deeper structures at the roots of a volcano (down to 4 km in our study). Our first independent 2D inversions of the ERT-AMT data show a good agreement between the surficial and deeper features. Below the main fumarole area we observe a low resistivity body (less than 1 Ohmm) which corresponds well to the high CO2 flux at the surface and is associated with an extended conductive body at larger depth. These results strongly suggest the presence of hydrothermal waters at depth or/and the presence of altered clay-rich material. On a larger scale however, the geometry of the conducting zones differs slightly from what was expected from earlier surface studies, and may not be directly related to fault zones mapped at the surface. These slight, but measurable discrepancies might have different origins but they stress the necessity of 3D modelling and the importance of the joint inversion of the data which we consider as a next step in our work.
NASA Astrophysics Data System (ADS)
Nguyen, F. H.; Kemna, A.; Antonsson, A.; Engesgaard, P. K.; Beaujean, J.
2009-12-01
The urban development of coastal regions create seawater intrusion (SWI) problems which threatens groundwater quality and coastal ecosystems. To study SWI, one needs both robust measuring technologies, and reliable predictions. A key aspect in the calibration of SWI models involves reproducing measured groundwater chloride concentrations. Drilling such multi-screen wells to obtain a whole concentration profile is a risky task if reliable information about the position of the salt wedge is not available. Electrical resistivity tomography (ERT) is increasingly being used to characterize seawater intrusion and constrain corresponding models, given its high sensitivity to ion concentration in groundwater and its relatively high spatial resolution. We have investigated the potential of ERT using field data from a site in Almeria, SE Spain and synthetic data. Simulations have been run for several scenarios, with a simple hydrogeological model reflecting the local site conditions. The simulations showed that only the lower salt concentrations of the seawater-freshwater transition zone could be recovered, due to the loss of resolution with depth. We quantified this capability in terms of image appraisal indicators (cumulative sensitivity) associated with the measurement setup and showed that the mismatch between the targeted and imaged parameter values occurs from a certain threshold. Similarly, heterogeneity may only be determined accurately if located in an adequately sensitive area. Inversion of the synthetic data was performed by coupling an inversion code (PEST) with a finite-difference density-dependent flow and transport modeling code (HTS). The numerical results demonstrate the capacity of sensitivity-filtered ERT images to constrain transverse hydraulic dispersivity and longitudinal hydraulic conductivity of homogeneous seawater intrusion models. At the field site, we identified SWI at the scale of a few kilometers down to a hundred meters. Borehole logs show a remarkable correlation with the image obtained from surface data but indicate that the electrically derived mass fraction of pure seawater could not be recovered due to the discrepancy between the in-situ and laboratory-derived petrophysical relationships. Inversion of hydrologic model parameters using the field ERT image was not possible due to the inadequacy of a 2D representation of the geology at the site. Using ERT-derived data to estimate hydrological parameters requires to address resolution loss issues and the non-stationarity of the petrophysical relationship. The first issue may be approached using objective criteria. The most crucial limitation, however, is probably the non-stationarity of the petrophysical relationship. This is currently being investigated using more realistic models based on geostatistical modeling (SGeMS) of the petrophysical properties of a coastal aquifer and for transient simulations.
ERTS-1 imagery and native plant distributions
NASA Technical Reports Server (NTRS)
Musick, H. B.; Mcginnies, W.; Haase, E.; Lepley, L. K.
1974-01-01
A method is developed for using ERTS spectral signature data to determine plant community distribution and phenology without resolving individual plants. An Exotech ERTS radiometer was used near ground level to obtain spectral signatures for a desert plant community, including two shrub species, ground covered with live annuals in April and dead ones in June, and bare ground. It is shown that comparisons of scene types can be made when spectral signatures are expressed as a ratio of red reflectivity to IR reflectivity or when they are plotted as red reflectivity vs. IR reflectivity, in which case the signature clusters of each component are more distinct. A method for correcting and converting the ERTS radiance values to reflectivity values for comparison with ground truth data is appended.
Terrain type recognition using ERTS-1 MSS images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1973-01-01
For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.
NASA Technical Reports Server (NTRS)
Mahlstede, J. P.; Carlson, R. E.; Thomson, G. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Results of the continuing analysis of ERTS-1 imagery covering Iowa during 1972 and periods during 1973 are covered. Emphasis is placed on the identification and classification of major crop types at two test sites in Iowa. Standard photointerpretive methods were used in this analysis including the direct enlargement of black and white single-band products and additive color multi-band procedures using a miniadcol system. The use of sequential coverage during the crop growing season is emphasized as a means to improve the effectiveness of ERTS-1 photointerpretations of crop land acreage estimates in Iowa. Illustrative black and white and color prints of both ERTS-1 and underflight imagery are included. In addition, forest land inventories at one test site are reported. A new method for the inventory of forest lands using ERTS-1 imagery is reported and compared with estimates obtained using earlier underflight imagery.
NASA Technical Reports Server (NTRS)
Sweet, D. C.; Pincura, P. G.; Wukelic, G. E. (Principal Investigator)
1974-01-01
The author has identified the following significant results. During the first year of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in south eastern Ohio, the potential of using ERTS-1 imagery in water quality and coastal zone management in the Lake Erie region, and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs were experimentally demonstrated and reported as significant project results. Significant research accomplishments were achieved in the technological development of manual and computerized methods to extract multi-feature information as well as singular feature information from ERTS-1 data as is exemplified by the forestry transparency overlay. Fabrication of an image transfer device to superimpose ERTS-1 data onto existing maps and other data sources was also a significant analytical accomplishment.
Time-lapse electrical surveys to locate infiltration zones in weathered hard rock tropical areas
NASA Astrophysics Data System (ADS)
Wubda, M.; Descloitres, M.; Yalo, N.; Ribolzi, O.; Vouillamoz, J. M.; Boukari, M.; Hector, B.; Séguis, L.
2017-07-01
In West Africa, infiltration and groundwater recharge processes in hard rock areas are depending on climatic, surface and subsurface conditions, and are poorly documented. Part of the reason is that identification, location and monitoring of these processes is still a challenge. Here, we explore the potential for time-lapse electrical surveys to bring additional information on these processes for two different climate situations: a semi-arid Sahelian site (north of Burkina and a humid Sudanian site (north of Benin), respectively focusing on indirect (localized) and direct (diffuse) recharge processes. The methodology is based on surveys in dry season and rainy season on typical pond or gully using Electrical Resistivity Tomography (ERT) and frequency electromagnetic (FEM) apparent conductivity mapping. The results show that in the Sahelian zone an indirect recharge occurs as expected, but infiltration doesn't takes place at the center of the pond to the aquifer, but occurs laterally in the banks. In Sudanian zone, the ERT survey shows a direct recharge process as expected, but also a complicated behavior of groundwater dilution, as well as the role of hardpans for fast infiltration. These processes are ascertained by groundwater monitoring in adjacent observing wells. At last, FEM time lapse mapping is found to be difficult to quantitatively interpreted due to the non-uniqueness of the model, clearly evidenced comparing FEM result to auger holes monitoring. Finally, we found that time-lapse ERT can be an efficient way to track infiltration processes across ponds and gullies in both climatic conditions, the Sahelian setting providing results easier to interpret, due to significant resistivity contrasts between dry and rain seasons. Both methods can be used for efficient implementation of punctual sensors for complementary studies. However, FEM time-lapse mapping remains difficult to practice without external information that renders this method less attractive for quantitative interpretation purposes.
Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.
Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang
2014-01-01
Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of groundwater table.
NASA Astrophysics Data System (ADS)
Aksoy, A.; Lee, J. H.; Kitanidis, P. K.
2016-12-01
Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.
NASA Astrophysics Data System (ADS)
Breen, S. J.; Lochbuehler, T.; Detwiler, R. L.; Linde, N.
2013-12-01
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic ERT inversion approaches, probabilistic inversion provides not only a single saturation model but a full posterior probability density function for each model parameter. Furthermore, the uncertainty inherent in the underlying petrophysics (e.g., Archie's Law) can be incorporated in a straightforward manner. In this study, the data are from bench-scale ERT experiments conducted during gas injection into a quasi-2D (1 cm thick), translucent, brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. We estimate saturation fields by Markov chain Monte Carlo sampling with the MT-DREAM(ZS) algorithm and compare them quantitatively to independent saturation measurements from a light transmission technique, as well as results from deterministic inversions. Different model parameterizations are evaluated in terms of the recovered saturation fields and petrophysical parameters. The saturation field is parameterized (1) in cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values and gradients in structural elements defined by a gaussian bell of arbitrary shape and location. Synthetic tests reveal that a priori knowledge about the expected geologic structures (as in parameterization (3)) markedly improves the parameter estimates. The number of degrees of freedom thus strongly affects the inversion results. In an additional step, we explore the effects of assuming that the total volume of injected gas is known a priori and that no gas has migrated away from the monitored region.
NASA Astrophysics Data System (ADS)
Kiflu, H.; Kruse, S.; Loke, M. H.; Wilkinson, P. B.; Harro, D.
2016-12-01
Electrical resistivity tomography (ERT) surveys are widely used in geological, environmental and engineering studies. However, the effectiveness of surface ERT surveys is limited by decreasing resolution with depth and near the ends of the survey line. Increasing the array length will increase depth of investigation, but may not be possible at urban sites where access is limited. One novel method of addressing these limitations while maintaining lateral coverage is to install an array of deep electrodes. Referred to here as the Multi-Electrode Resistivity Implant Technique (MERIT), self-driving pointed electrodes are implanted at depth below each surface electrode in an array, using direct-push technology. Optimal sequences of readings have been identified with the "Compare R" method of Wilkinson. Numerical, laboratory, and field case studies are applied to examine the effectiveness of the MERIT method, particularly for use in covered karst terrain. In the field case studies, resistivity images are compared against subsurface structure defined from borings, GPR surveys, and knowledge of prior land use. In karst terrain where limestone has a clay overburden, traditional surface resistivity methods suffer from lack of current penetration through the shallow clay layer. In these settings, the MERIT method is found to improve resolution of features between the surface and buried array, as well as increasing depth of penetration and enhancing imaging capabilities at the array ends. The method functions similar to a cross-borehole array between horizontal boreholes, and suffers from limitations common to borehole arrays. Inversion artifacts are common at depths close to the buried array, and because some readings involve high geometric factors, inversions are more susceptible to noise than traditional surface arrays. Results are improved by using errors from reciprocal measurements to weight the data during the inversion.
Correlation of coastal water turbidity and current circulation with ERTS-1 and Skylab imagery
NASA Technical Reports Server (NTRS)
Klemas, V.; Otley, M.; Philpot, W.; Wethe, C.; Rogers, R.; Shah, N.
1974-01-01
The article reviews investigations of current circulation patterns, suspended sediment concentration, coastal frontal systems, and waste disposal plumes based on visual interpretation and digital analysis of ERTS-1 and Skylab/EREP imagery. Data on conditions in the Delaware Bay area were obtained from 10 ERTS-1 passes and one Skylab pass, with simultaneous surface and airborne sensing. The current patterns and sediments observed by ERTS-1 correlated well with ground-based observations. Methods are suggested which would make it possible to identify certain pollutants and sediment types from multispectral scanner data.
Optimal joule heating of the subsurface
Berryman, J.G.; Daily, W.D.
1994-07-05
A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Correlation of ERTS MSS data and earth coordinate systems
NASA Technical Reports Server (NTRS)
Malila, W. A. (Principal Investigator); Hieber, R. H.; Mccleer, A. P.
1973-01-01
The author has identified the following significant results. Experience has revealed a problem in the analysis and interpretation of ERTS-1 multispectral scanner (MSS) data. The problem is one of accurately correlating ERTS-1 MSS pixels with analysis areas specified on aerial photographs or topographic maps for training recognition computers and/or evaluating recognition results. It is difficult for an analyst to accurately identify which ERTS-1 pixels on a digital image display belong to specific areas and test plots, especially when they are small. A computer-aided procedure to correlate coordinates from topographic maps and/or aerial photographs with ERTS-1 data coordinates has been developed. In the procedure, a map transformation from earth coordinates to ERTS-1 scan line and point numbers is calculated using selected ground control points nad the method of least squares. The map transformation is then applied to the earth coordinates of selected areas to obtain the corresponding ERTS-1 point and line numbers. An optional provision allows moving the boundaries of the plots inward by variable distances so the selected pixels will not overlap adjacent features.
NASA Astrophysics Data System (ADS)
Tso, C. H. M.; Johnson, T. C.; Song, X.; Chen, X.; Binley, A. M.
2017-12-01
Time-lapse electrical resistivity tomography (ERT) measurements provides indirect observation of hydrological processes in the Earth's shallow subsurface at high spatial and temporal resolutions. ERT has been used for a number of decades to detect leaks and monitor the evolution of associated contaminant plumes. However, this has been limited to a few hazardous environmental sites. Furthermore, an assessment of uncertainty in such applications has thus far been neglected, despite the clear need to provide site managers with appropriate information for decision making purposes. There is a need to establish a framework that allows leak detection with uncertainty assessment from geophysical observations. Ideally such a framework should allow the incorporation of additional data sources in order to reduce uncertainty in predictions. To tackle these issues, we propose an ensemble-based data assimilation framework that evaluates proposed hydrological models (i.e. different hydrogeological units, different leak locations and loads) against observed time-lapse ERT measurements. Each proposed hydrological model is run through the parallel coupled hydrogeophysical code PFLOTRAN-E4D (Johnson et al 2016) to obtain simulated ERT measurements. The ensemble of model proposals is then updated based on data misfit. Our approach does not focus on obtaining detailed images of hydraulic properties or plume movement. Rather, it seeks to estimate the contaminant mass discharge (CMD) across a user-defined plane in space probabilistically. The proposed approach avoids the ambiguity in interpreting detailed hydrological processes from geophysical images. The resultant distributions of CMD give a straightforward metric, with realistic uncertainty bounds, for decision making. The proposed framework is also computationally efficient so that it can exploit large, long-term ERT datasets, making it possible to track time-varying loadings of plume sources. In this presentation, we illustrate our framework on synthetic data and field data collected from an ERT trial simulating a leak at the Sellafield nuclear facility in the UK (Kuras et al 2016). We compare our results to interpretation from geophysical inversion and discuss the additional information that hydrological model proposals provide.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas
2018-03-01
Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.
Management of natural resources through automatic cartographic inventory
NASA Technical Reports Server (NTRS)
Rey, P. A.; Gourinard, Y.; Cambou, F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Significant correspondence codes relating ERTS imagery to ground truth from vegetation and geology maps have been established. The use of color equidensity and color composite methods for selecting zones of equal densitometric value on ERTS imagery was perfected. Primary interest of temporal color composite is stressed. A chain of transfer operations from ERTS imagery to the automatic mapping of natural resources was developed.
NASA Astrophysics Data System (ADS)
Oppermann, Frank; Günther, Thomas
2018-02-01
We present a new versatile datalogger that can be used for a wide range of possible applications in geosciences. It is adjustable in signal strength and sampling frequency, battery saving and can remotely be controlled over a Global System for Mobile Communication (GSM) connection so that it saves running costs, particularly in monitoring experiments. The internet connection allows for checking functionality, controlling schedules and optimizing pre-amplification. We mainly use it for large-scale electrical resistivity tomography (ERT), where it independently registers voltage time series on three channels, while a square-wave current is injected. For the analysis of this time series we present a new approach that is based on the lock-in (LI) method, mainly known from electronic circuits. The method searches the working point (phase) using three different functions based on a mask signal, and determines the amplitude using a direct current (DC) correlation function. We use synthetic data with different types of noise to compare the new method with existing approaches, i.e. selective stacking and a modified fast Fourier transformation (FFT)-based approach that assumes a 1/f noise characteristics. All methods give comparable results, but the LI is better than the well-established stacking method. The FFT approach can be even better but only if the noise strictly follows the assumed characteristics. If overshoots are present in the data, which is typical in the field, FFT performs worse even with good data, which is why we conclude that the new LI approach is the most robust solution. This is also proved by a field data set from a long 2-D ERT profile.
pyGIMLi: An open-source library for modelling and inversion in geophysics
NASA Astrophysics Data System (ADS)
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.
NASA Astrophysics Data System (ADS)
Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.
2017-12-01
Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to higher permeability zones located along normal and strike-slip faults. In conclusion, a strong structural control of the surface manifestation of these hydrothermal systems is deduced from our new data. Then, our results emphasize the importance of old structural boundaries that are controlled by intra-caldera tectonic structures.
The point-spread function measure of resolution for the 3-D electrical resistivity experiment
NASA Astrophysics Data System (ADS)
Oldenborger, Greg A.; Routh, Partha S.
2009-02-01
The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.
Using electrical impedance tomography to map subsurface hydraulic conductivity
Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.
2000-01-01
The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.
Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani
2016-04-01
The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins) project.
Time-lapse electrical resistivity tomography: a powerful tool for landslide monitoring?
NASA Astrophysics Data System (ADS)
Perrone, A.
2011-12-01
The extreme rainfall events and the quick snowmelt occurrences play an important role in the triggering of the landslides. The occurrence of one of these factors can determine the variation of water content in the first layers of the subsoil and as a consequence a quick soil saturation inducing both an increase in pore-water pressures and the overloaded of the slopes progressively collapsing. The electrical resistivity, self-potential, electromagnetic induction and GPR methods can be considered as the most appropriate for assessing the presence of water in the underground. Such methods allow us to study the behavior of water content over much wider and deeper areas than those offered by traditional methods (thermo-gravimetric, tensiometric, TDR, etc) based on spot measures and concerning small volumes. In particular, the Electrical Resistivity Tomography (ERT), which has already proved to be a powerful tool both for the geometrical reconstruction of a landslide body (location of sliding surface, estimation of the thickness of the slide material) and the individuation of high water content areas, can be considered as an alternative tool to be employed for a qualitative and quantitative water content monitoring in the first layers of the subsoil. Indeed, time-lapse 2D ERT can be tested in order to gather information on the temporal and spatial patterns of water infiltration processes and water content variation. This work reports the preliminary results from a new prototype system planned to obtain time-lapse 2D ERTs, TDR and precipitation measurements in two landslide areas located in the Southern Apennine chain (Italy). The system was planned with the aim to estimate the variation of the resistivity parameter on a long period considering the water content variation, the rain water infiltration and the seasonal changes. The prototype system, linked to a pc used for storing data and managing the time interval acquisition, consists of: a resistivimeter connected to a multichannel cable, 48 steel electrodes buried in the soil at a depth of about 0.5 m at a distance of 1 or 5 m; a TDR system linked to 4 probes 20 cm length, buried at different depths along the same profile of the geoelectrical one; while a weather station consists of a rain gauge to quantify the amount of rain falling on that area, one sensor to measure the temperature and another to determine the speed and direction of the wind. At the beginning the time-lapse ERT were analysed to verify the functionality and stability of the system and to decide the measurement time intervals. After that, the statistical analysis of the results obtained was performed with the aim to define the water content variation in the first layers of the subsoil, in particular in the vadose zone. The results were compared with the TDR ones and the piezometric measurements were performed in the area thanks to the presence of equipped boreholes. The correlation between the variation of the parameters measured (electrical resistivity, water content and piezometric level) and the rain-gauge measurements was also considered. The preliminary results seem to be encouraged also if the analysis of the data acquired on a longer period could better highlight the capability of the system.
An ERTS multispectral scanner experiment for mapping iron compounds
NASA Technical Reports Server (NTRS)
Vincent, R. K. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.
1973-01-01
The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites.
NASA Astrophysics Data System (ADS)
Czaja, Klaudia; Matula, Rafal
2014-05-01
The paper presents analysis of the possibilities of application geophysical methods to investigation groundwater conditions. In this paper groundwater is defined as liquid water flowing through shallow aquifers. Groundwater conditions are described through the distribution of permeable layers (like sand, gravel, fractured rock) and impermeable or low-permeable layers (like clay, till, solid rock) in the subsurface. GPR (Ground Penetrating Radar), ERT(Electrical Resistivity Tomography), VES (Vertical Electric Soundings) and seismic reflection, refraction and MASW (Multichannel Analysis of Surface Waves) belong to non - invasive, surface, geophysical methods. Due to differences in physical parameters like dielectric constant, resistivity, density and elastic properties for saturated and saturated zones it is possible to use geophysical techniques for groundwater investigations. Few programmes for GPR, ERT, VES and seismic modelling were applied in order to verify and compare results. Models differ in values of physical parameters such as dielectric constant, electrical conductivity, P and S-wave velocity and the density, layers thickness and the depth of occurrence of the groundwater level. Obtained results for computer modelling for GPR and seismic methods and interpretation of test field measurements are presented. In all of this methods vertical resolution is the most important issue in groundwater investigations. This require proper measurement methodology e.g. antennas with frequencies high enough, Wenner array in electrical surveys, proper geometry for seismic studies. Seismic velocities of unconsolidated rocks like sand and gravel are strongly influenced by porosity and water saturation. No influence of water saturation degree on seismic velocities is observed below a value of about 90% water saturation. A further saturation increase leads to a strong increase of P-wave velocity and a slight decrease of S-wave velocity. But in case of few models only the relationship between differences in density and P-wave and S-wave velocity were observed. This is probably due to the way the modelling program calculates the wave field. Trace by trace should be analyzed during GPR interpretation, especially changes in signal amplitude. High permittivity of water results in higher permittivity of material and high reflection coefficient of electromagnetic wave. In case of electrical studies groundwater mineralization has the highest influence. When the layer thickness is small VES gives much better results than ERT.
NASA Astrophysics Data System (ADS)
Noell, Ursula; Ganz, Christina; Lamparter, Axel; Duijnisveld, Wilhelmus; Bachmann, Jörg
2013-04-01
Electrical resistivity tomography (ERT) observes the flow processes in the vadose zone indirectly. ERT has been used to estimate water flow in different soil types and under different flow conditions using active experiments or monitoring the natural process in many cases. Our experiments in sand and loess soil connected ERT with local soil probing using TDR devices and tensiometers in order to proof the reliability of the ERT inversion results in terms of infiltration velocity. Additionally, a colour tracer was used and sections through the infiltration zones were excavated in order to compare the shape of the dye -stained infiltration zone with the results of the ERT inversion. The data revealed the complicated infiltration pattern with a higher transport velocity in sand and a different shape than expected by classical soil hydraulic models. These results indicate the need for independent observations in order to correctly assess the water storage in the vadose zone with its hydrological consequences, the groundwater recharge and the contamination risk caused by rapid movement of water. ERT can be used for this purpose on different spatial- and time scales but for reliable results various obstacles need to be dealt with. Firstly, the ambiguity of the resistivity because soil resistivity depends on both, soil water content and electrical soil/water conductivity. This obstacle is less severe when the infiltration velocity is investigated, because then only the first onset of resistivity change is interpreted as the water arrival time. Our results show that the arrival of the water front as well as the final infiltration depth can be reliably detected. In contrast, this obstacle is very severe when the amount of water stored is observed using conductive tracer. The problem is not critical during a passive experiment when the natural rain fall and the waters fate through the vadose zone is monitored. The second obstacle is the limited resolution of ERT which deteriorates with depth. The resolution depends on the electrode distances and the depth resolution can be increased by using borehole electrodes. However, if one ha of land is to be observed with a reasonable number of electrodes (some 100) the resolution will be some 10 m. The structures, however, that influence the infiltration process, might be much smaller. Therefore, it is suggested to use ERT as the tool to observe and quantify the infiltration process with regard to time and space on a scale of some meters. For independent proof local TDR devices should be inserted within the investigated area for calibration. These results should then be used to establish a physical soil model that grasps the observed process correctly in time and space. The next step would then be to repeat these local measurements at different locations where the similarity of the processes is at doubt. Only when this is confirmed or discarded, further upscaling steps can be done reliably.
NASA Astrophysics Data System (ADS)
Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven
2014-05-01
The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase. Hence, it is possible to detect areas in the sediment sample where free gas is released due to hydrate dissociation and displaces the liquid phase. Combined with measurements and numerical simulation of the total two-phase fluxes from the sediment sample (see abstract Abendroth et al., this volume), the LARS experiments allow for detailed information on the dissociation process during hydrate production. Here we present the workflow and first results estimating local hydrate saturations and permeabilities during hydrate formation and the movement of liquid and gas phases during hydrate dissociation, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.
2013-03-29
The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stagemore » conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.« less
NASA Astrophysics Data System (ADS)
Tran, Anh Phuong; Dafflon, Baptiste; Bisht, Gautam; Hubbard, Susan S.
2018-06-01
Quantitative understanding of controls on thaw layer thickness (TLT) dynamics in the Arctic peninsula is essential for predictive understanding of permafrost degradation feedbacks to global warming and hydrobiochemical processes. This study jointly interprets electrical resistivity tomography (ERT) measurements and hydro-thermal numerical simulation results to assess spatiotemporal variations of TLT and to determine its controlling factors in Barrow, Alaska. Time-lapse ERT measurements along a 35-m transect were autonomously collected from 2013 to 2015 and inverted to obtain soil electrical resistivity. Based on several probe-based TLT measurements and co-located soil electrical resistivity, we estimated the electrical resistivity thresholds associated with the boundary between the thaw layer and permafrost using a grid search optimization algorithm. Then, we used the obtained thresholds to derive the TLT from all soil electrical resistivity images. The spatiotemporal analysis of the ERT-derived TLT shows that the TLT at high-centered polygons (HCPs) is smaller than that at low-centered polygons (LCPs), and that both thawing and freezing occur earlier at the HCPs compared to the LCPs. In order to provide a physical explanation for dynamics in the thaw layer, we performed 1-D hydro-thermal simulations using the community land model (CLM). Simulation results showed that air temperature and precipitation jointly govern the temporal variations of TLT, while the topsoil organic content (SOC) and polygon morphology are responsible for its spatial variations. When the topsoil SOC and its thickness increase, TLT decreases. Meanwhile, at LCPs, a thicker snow layer and saturated soil contribute to a thicker TLT and extend the time needed for TLT to freeze and thaw. This research highlights the importance of combination of measurements and numerical modeling to improve our understanding spatiotemporal variations and key controls of TLT in cold regions.
Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice
Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A.; Stumpf, Sina K.; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine
2016-01-01
Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions. PMID:28149504
Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.
Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine
2016-01-01
Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.
NASA Astrophysics Data System (ADS)
Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif
2017-06-01
Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion approach is able to image the northern fracture zone successfully. In addition, previously unknown sedimentary deposits with a significantly large thickness are detected in the otherwise unusually well-documented geological environment. The results significantly improve the imaging of some geologic features, which would have been undetected or misinterpreted otherwise, and combines the images by means of cluster analysis into a conceptual subsurface model.
NASA Technical Reports Server (NTRS)
Brockmann, C. E. (Principal Investigator); Ayllon, R. B.
1973-01-01
The author has identified the following significant results. Using ERTS-1 imagery, it is possible to delimit great lithological units, folds, lineaments, faults, and in lesser degree unconformities. In the morphological aspect, the images show clearly the relief necessary for geological interpretation. The ERTS-1 images are important for the preparation of the geological and tectonic map of Bolivia, on a 1:1 million scale, if conventional methods of work are used as a base.
An evaluation of the utility of ERTS-1 data for mapping and developing natural resources of Iran
NASA Technical Reports Server (NTRS)
Ebtehadj, K. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Significant results are reported in the creation of an Iranian photomosaic from ERTS-1 imagery; in tectonic and structural mapping and interpretation, including discovery of significant new fault patterns in Iran; in river and lake mapping; in wetlands and fisheries nursery delineation and mapping; in range and agricultural surveys and inventories using multi-stage sample methods; and in the computer analysis of ERTS-1 digital tapes for urban land use.
NASA Astrophysics Data System (ADS)
Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas; Vanneste, Kris
2018-01-01
The Grote Brogel Fault (GBF) is a major WNW-ESE striking normal fault in Belgium that diverges westward from the NW-SE striking western border fault system of the Roer Valley Graben. The GBF delimits the topographically higher Campine Block from the subsiding Roer Valley Graben, and is expressed in the Digital Terrain Model (DTM) by relief gradients or scarps. By integrating DTM, Electrical Resistivity Tomography (ERT), Cone Penetration Test (CPT) and borehole data, we studied the Quaternary activity of the GBF and its effects on local hydrogeology. In the shallow subsurface (< 50 m) underneath these scarps, fault splays of the GBF were interpreted on newly acquired ERT profiles at two investigation sites: one on the eastern section and the other on the western section, near the limit of the visible surface trace of the fault. Borehole and CPT data enabled stratigraphic interpretations of the ERT profiles and thereby allowed measuring vertical fault offsets at the base of Pleistocene fluvial deposits of up to 12 m. Groundwater measurements in the boreholes and CPTs indicate that the GBF acts as a hydrologic boundary that prevents groundwater flow from the elevated footwall towards the hangingwall, resulting in hydraulic head differences of up to 12.7 m. For the two investigation sites, the hydraulic head changes correlate with the relief gradient, which in turn correlates with the Quaternary vertical offset of the GBF. ERT profiles at the eastern site also revealed a local soft-linked stepover in the shallow subsurface, which affects groundwater levels in the different fault blocks, and illustrates the complex small-scale geometry of the GBF.
Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians)
NASA Astrophysics Data System (ADS)
Tábořík, P.; Lenart, J.; Blecha, V.; Vilhelm, J.; Turský, O.
2017-01-01
A multidisciplinary geophysical survey, consisting of electrical resistivity tomography (ERT), ground penetrating radar (GPR), shallow seismic refraction (SSR) and gravity survey (GS), was used to investigate the counter-slope scarps, one of the typical manifestations of the relaxed zones of rock massifs, and the possible initial stages of deep-seated landslides (DSLs). Two upper parts of the extensive DSLs within the Moravskoslezské Beskydy Mountains (Outer Western Carpathians - OWC) built by the sedimentary flysch rock were chosen as the testing sites. A combined geophysical survey on the flysch rocks was performed on both localities to enhance our present findings. The survey revealed that the ERT is able to reliably detect underground discontinuities, which are manifested at the ground surface by one of the typical landforms (tension cracks, trenches, pseudokarst sinkholes, double-crested ridges and counter-slope scarps). Previous studies suggested that bedrock discontinuities should be depicted by high-resistivity features within ERT surveying. According to SSR and GS, expected zones of weakened rock massif were not confirmed directly underneath the superficial landforms, but they were shifted. Based on the SSR and GS measurements, the depicted high-contrast transitions between high- and low-resistivity domains within the ERT profiles were newly identified as possible manifestation of bedrock discontinuities. The results of GPR measurements give only limited information on the sedimentary flysch rocks, due to shallow penetrating depth and locally strong signal attenuation. The combined results of multidisciplinary geophysical surveying confirmed an importance of employing more than one geophysical technique for integrated interpretations of measured data. Integrated interpretations of the measured geophysical data provided a new insight into massif disintegration and the geomorphic origin of the landforms related to the DSL.
NASA Astrophysics Data System (ADS)
Iepure, Sanda; Gómez Ortiz, David; Lillo Ramos, Javier; Rasines Ladero, Ruben; Persoiu, Aurel
2014-05-01
Delineation of the extent of hyporheic zone (HZ) in river ecosystems is problematic due to the scarcity of spatial information about the structure of riverbed sediments and the magnitude and extent of stream interactions with the parafluvial and riparian zones. The several existing methods vary in both quality and quantity of information and imply the use of hydrogeological and biological methods. In the last decades, various non-invasive geophysical techniques were developed to characterise the streambed architecture and also to provide detailed spatial information on its vertical and horizontal continuity. All classes of techniques have their strengths and limitations; therefore, in order to assess their potential in delineating the lateral and vertical spatial extents of alluvial sediments, we have combined the near-surface images obtained by electrical resistivity tomography (ERT) with biological assessment of invertebrates in two Mediterranean lowland rivers from central Spain. We performed in situ imaging of the thickness and continuity of alluvial sediments under the riverbed and parafluvial zone during base-flow conditions (summer 2013 and winter 2014) at two different sites with distinct lithology along the Tajuña and Henares Rivers. ERT was performed by installing the electrodes (1 m spacing) on a 47 m long transect normal to the river channel using a Wener-Schlumberger array, across both the riparian zones and the river bed. Invertebrates were collected in the streambed from a depth of 20-40 cm, using the Bou-Rouch method, and from boreholes drilled to a depth of 1.5 m in the riparian zone. The ERT images obtained at site 1 (medium and coarse sand dominated lithology) shows resistivity values ranging from ~20 to 80 ohm•m for the in-stream sediments, indicating a permeable zone up to ~ 0.5 m thick and extending laterally for ca. 5 m from the channel. These sediments contribute to active surface/hyporheic water exchanges and to low water retention in stream sediments, as also indicated by the similar physico-chemical parameters in thw two zones, and the composition of hyporheic biota, dominated exclusively by surface-dwellers (e.g. Cladocera, Chironomidae, Cyclopoida (Microcyclops rubellus), Ostracoda (Pryonocypris zenkeri). A low resistivity (< 70 ohm•m) permeable zone located at 2.3 m depth bellow the streambed and unconnected with the river channel was also detected and associated with a shallow floodplain aquifer. In contrast, the resistivity image at site 2 (fine and very fine sand dominated lithology) shows a low permeability zone in the upper ~ 0.5 m of the profile, with resistivity values ranging from ~45 to 80 ohm•m, indicating a reduced HZ extension in both vertical and lateral dimensions. Here, both water retention and interaction between water and sediments are higher than at site 1 and consequently the water chemistry is distinct from that of the river channel (lower conductivity, temperature and dissolved oxygen in hyporheic waters). These features of the sedimentary layers create suitable habitats conditions in HZ for the development of a mixture of both epigean (e.g., Ostracoda (Darwinula stevensoni)) and hypogean stygobites dwellers (e.g., Cyclopoida (Acanthocyclops n. sp)). Furthermore, a low resistivity (< 30 ohm•m) high permeability zone was detected 2 m from the riverbed, at a depth of ca. 3 meters, being associated either to a suspended aquifer supplied with water from the terraces, or to water accumulation within tree roots, that might be temporary connected with the stream-hyporheic system. The two examples show that non-invasive ERT images and biological assessment provides complementary and valuable information about the characterisation of the sub-channel architecture and its potential connection with the parafluvial and riparian zones. Our results provide initial templates for high-resolution in situ studies with broad and integrated methods to identify the boundaries between hyporheic and parafluvial zones and the time-scale fluctuations in response to water exchanges with the surface stream.
Experimental study of ERT monitoring ability to measure solute dispersion.
Lekmine, Grégory; Pessel, Marc; Auradou, Harold
2012-01-01
This paper reports experimental measurements performed to test the ability of electrical resistivity tomography (ERT) imaging to provide quantitative information about transport parameters in porous media such as the dispersivity α, the mixing front velocity u, and the retardation factor R(f) associated with the sorption or trapping of the tracers in the pore structure. The flow experiments are performed in a homogeneous porous column placed between two vertical set of electrodes. Ionic and dyed tracers are injected from the bottom of the porous media over its full width. Under such condition, the mixing front is homogeneous in the transverse direction and shows an S-shape variation in the flow direction. The transport parameters are inferred from the variation of the concentration curves and are compared with data obtained from video analysis of the dyed tracer front. The variations of the transport parameters obtained from an inversion performed by the Gauss-Newton method applied on smoothness-constrained least-squares are studied in detail. While u and R(f) show a relatively small dependence on the inversion procedure, α is strongly dependent on the choice of the inversion parameters. Comparison with the video observations allows for the optimization of the parameters; these parameters are found to be robust with respect to changes in the flow condition and conductivity contrast. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Mapping southern Atlantic coastal marshland, South Carolina-Georgia, using ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.
1973-01-01
The author has identified the following significant results. Southeastern coastal marshes are among the most extensive and productive in the United States. A relatively low cost, moderately accurate method is needed to map these areas for management and protection. Ground based and low altitude aircraft methods for mapping are time consuming and quite expensive. The launch of NASA's ERTS-1 has provided an opportunity to test the feasibility of mapping wetlands using small scale imagery. The test site selected was an area from the South Carolina border to Saint Catherine's Island, Georgia. Results of the investigation indicate that the following may be ascertained from ERTS-1 imagery: (1) upper wetland boundary; (2) drainage pattern in the wetland; (3) plant communities such as Spartina alterniflora, Spartina patens, Juncus roemerianus; (4) ditching activities associated with agriculture; (5) lagooning for water-side home development. Conclusions are that ERTS-1 will be an excellent tool for many types of coastal wetland mapping.
NASA Astrophysics Data System (ADS)
Pazzi, Veronica; Tapete, Deodato; Cappuccini, Luca; Fanti, Riccardo
2016-11-01
Scientific interest in mounds as geomorphological features that currently represent topographic anomalies in flat urban landscapes mainly lies on the understanding of their origin, either purely natural or anthropogenic. In this second circumstance, another question is whether traces of lost buildings are preserved within the mound subsurface and can be mapped as remnants testifying past settlement. When these landforms have been modified in centuries for civilian use, structural stability is a further element of concern. To address these issues we applied a geophysical approach based on a very low frequency electromagnetic (VLF-EM) technique and two-dimensional electrical resistivity tomography (2D-ERT) and integrated it with well-established surface survey methods within a diagnostic workflow of structural assessment. We demonstrate the practical benefits of this method in the English Cemetery of Florence, Italy, whose mixed nature and history of morphological changes are suggested by archival records. The combination of the two selected geophysical techniques allowed us to overcome the physical obstacles caused by tomb density and to prevent interference from the urban vehicular traffic on the geophysical signals. Eighty-two VLF-EM profiles and five 2D-ERTs were collected to maximise the spatial coverage of the subsurface prospection, while surface indicators of instability (e.g., tomb tilt, location, and direction of ground fractures and wall cracks) were mapped by standard metric survey. High resistive anomalies (> 300 and 400 Ωm) observed in VLF-EM tomographies are attributed to remnants of the ancient perimeter wall that are still buried along the southern side of the mound. While no apparent correlation is found between the causes of tomb and ground movements, the crack pattern map supplements the overall structural assessment. The main outcome is that the northern portion of the retaining wall is classed with the highest hazard rate. The impact of this cost-effective approach is to inform the design of maintenance and restoration measures based on improved geognostic knowledge. The geophysical and surface evidence informs decisions on where interventions are to be prioritised and whether costly invasive investigations are needed.
NASA Astrophysics Data System (ADS)
Zovi, Francesco; Camporese, Matteo; Hendricks Franssen, Harrie-Jan; Huisman, Johan Alexander; Salandin, Paolo
2017-05-01
Alluvial aquifers are often characterized by the presence of braided high-permeable paleo-riverbeds, which constitute an interconnected preferential flow network whose localization is of fundamental importance to predict flow and transport dynamics. Classic geostatistical approaches based on two-point correlation (i.e., the variogram) cannot describe such particular shapes. In contrast, multiple point geostatistics can describe almost any kind of shape using the empirical probability distribution derived from a training image. However, even with a correct training image the exact positions of the channels are uncertain. State information like groundwater levels can constrain the channel positions using inverse modeling or data assimilation, but the method should be able to handle non-Gaussianity of the parameter distribution. Here the normal score ensemble Kalman filter (NS-EnKF) was chosen as the inverse conditioning algorithm to tackle this issue. Multiple point geostatistics and NS-EnKF have already been tested in synthetic examples, but in this study they are used for the first time in a real-world case study. The test site is an alluvial unconfined aquifer in northeastern Italy with an extension of approximately 3 km2. A satellite training image showing the braid shapes of the nearby river and electrical resistivity tomography (ERT) images were used as conditioning data to provide information on channel shape, size, and position. Measured groundwater levels were assimilated with the NS-EnKF to update the spatially distributed groundwater parameters (hydraulic conductivity and storage coefficients). Results from the study show that the inversion based on multiple point geostatistics does not outperform the one with a multiGaussian model and that the information from the ERT images did not improve site characterization. These results were further evaluated with a synthetic study that mimics the experimental site. The synthetic results showed that only for a much larger number of conditioning piezometric heads, multiple point geostatistics and ERT could improve aquifer characterization. This shows that state of the art stochastic methods need to be supported by abundant and high-quality subsurface data.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
NASA Astrophysics Data System (ADS)
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Analysis of Self-Potential Response beyond the Fixed Geometry Technique
NASA Astrophysics Data System (ADS)
Mahardika, Harry
2018-03-01
The self-potential (SP) method is one of the oldest geophysical methods that are still available for today’s application. Since its early days SP data interpretation has been done qualitatively until the emerging of the fixed geometry analysis that was used to characterize the orientation and the electric-dipole properties of a mineral ore structure. Through the expansion of fundamental theories, computational methods, field-and-lab experiments in the last fifteen years, SP method has emerge from its low-class reputation to become more respectable. It became a complementary package alongside electric-resistivity tomography (ERT) for detecting groundwater flow in the subsurface, and extends to the hydrothermal flow in geothermal areas. As the analysis of SP data becomes more quantitative, its potential applications become more diverse. In this paper, we will show examples of our current SP studies such as the groundwater flow characterization inside a fault area. Lastly we will introduce the application of the "active" SP method - that is the seismoelectric method - which can be used for 4D real-time monitoring systems.
Micro 3D ERT tomography for data assimilation modelling of active root zone
NASA Astrophysics Data System (ADS)
Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona
2016-04-01
Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show the potential of the method and its exciting outlook.
NASA Astrophysics Data System (ADS)
Schwindt, Daniel; Sandmeier, Christine; Büdel, Christian; Jäger, Daniel; Wilde, Martina; Terhorst, Birgit
2016-04-01
Investigations on landslide activity in the cuesta landscape of Germany, usually characterized by an interbedding of morphologically hard (e.g. sand-/limestones) and soft (clay) sedimentary rocks are relatively sparse. However, spring 2013 has once again revealed a high susceptibility of the slopes in the Franconian and Swabian Alb to mass movements, when enduring rainfalls initiated numerous landslides causing considerable damage to settlements and infrastructure. Many aspects like the spatial distribution of landslides, triggering factors, and process dynamics - especially with view on the reactivation of landslides - require intensive investigations to allow for assessment of the landslide vulnerability and the development of reliable early-warning systems. Aim of the study is to achieve a deeper insight into the triggering factors and the process dynamics of landslides in the cuesta landscape with special regard on landslide proneness of slopes and the potential reactivation of old landslides. A multi-methodological approach was conducted based on geophysical investigations (seismic refraction tomography - SRT, electrical resistivity tomography - ERT), geomorphological mapping, morphometric GIS-based analysis, core soundings and substrate mapping. Study sites are located in the Swabian Alb (southwestern Germany) in the Jurassic escarpment where where Oxfordian marls and limestones superimpose Callovian clays, as well as in the northeastern Franconian Alb, within the escarpment of the so called Rhätolias with with red claystones of the late Norian (Feuerletten formation) below interbedding layers of sand- and claystones of the Rhaetian (Upper Triassic) and Hettangian ( Lower Jurassic). The investigated landslides strongly differ with respect to their age, from young landslides originated in spring 2013 to ancient landslides. Investigations reveal a distinct diversity of landslide types composed of a complex combination of processes. The applied methods allow for a sophisticated characterization of the landslides and the deduction of process complexes with phases of reactivations. The combination of ERT and SRT enables the delineation of the inner structure of the slide masses including rupture surfaces, landslide blocks and material inhomogeneities.
NASA Technical Reports Server (NTRS)
Coulbourn, W. C.; Egan, W. G.; Olsen, D. A. (Principal Investigator); Heaslip, G. B.
1973-01-01
The author has identified the following significant results. The boundaries of application of ERTS-1 and aircraft data are established for St. Thomas harbor within which useful water quality information can be obtained. In situ physical, chemical, and biological water quality and benthic data were collected. Moored current meters were employed. Optical measurements of solar irradiance, color test panel radiance and water absorption were taken. Procedures for correlating in situ optical, biological, and chemical data with underflight aircraft I2S data and ERTS-1 MSS scanner data are presented. Comparison of bulk and precision CCT computer printout data for this application is made, and a simple method for geometrically locating bulk data individual pixels based on land-water interface is described. ERTS spacecraft data and I2S aircraft imagery are correlated with optical in situ measurements of the harbor water, with the aircraft green photographic and ERTS-1 MSS-4 bands being the most useful. The biological pigments correlate inversely with the optical data for inshore areas and directly further seaward. Automated computer data processing facilitated analysis.
Land use mapping and modelling for the Phoenix Quadrangle
NASA Technical Reports Server (NTRS)
Place, J. L. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS experiment, changes in land use were detected, first with the ERTS-simulation photographs, then with the ERTS-1 images when they became available. In each case, the I2S color additive viewer was used as the primary image enhancement tool, operated in a multispectral mode. A search was made for a method of creating hard copy color composite images of the best combinations of multiband composites from ERTS-1, mostly by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. Improved interpretation of land use change resulted, and a map of changes in the Phoenix Quadrangle was compiled using magnified ERTS-1 images alone. The first level of a standard land use classification system was successfully used. Between the ERTS-1 images for August and November, some differences were detected that could be caused by seasonal characteristics of vegetation or by change in use.
Interpretation and mapping of gypsy moth defoilation from ERTS (LANDSAT)-1 temporal composites
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Kowalik, W. S.
1975-01-01
The author has identified the following significant results. Photointerpretation of temporally composited color Diazo transparencies of ERTS(LANDSAT) images is a practical method for detecting and locating levels of widespread defoliation. ERTS 9 x 9 inch images are essentially orthographic and are produced at a nearly constant 1:1,000,000 scale. This allows direct superposition of scenes for temporal composites. ERTS coverage provides a sweeping 180 km (110 mile) wide view, permitting one interpreter to rapidly delineate defoliation in an area requiring days and weeks of work by aerial surveys or computerized processing. Defoliation boundaries can be located on the images within maximum errors on the order of hundreds of meters. The enhancement process is much less expensive than aerial surveys or computerized processing. Maps produced directly from interpretation are manageable working products. The 18 day periodic coverage of ERTS is not frequent enough to replace aerial survey mapping because defoliation and refoliation move as waves.
Geological evaluation and applications of ERTS-1 imagery over Georgia
NASA Technical Reports Server (NTRS)
Pickering, S. M.; Jones, R. C.
1974-01-01
ERTS-1 70mm and 9 x 9 film negatives are being used by conventional and color enhancement methods as a tool for geologic investigation. Geologic mapping and mineral exploration by conventional methods is very difficult in Georgia. Thick soil cover and heavy vegetation cause outcrops of bed rock to be small, rare and obscure. ERTS imagery, and remote sensing in general have helped delineate: (1) major tectonic boundaries; (2) lithologic contacts; (3) foliation trends; (4) topographic lineaments; and (5) faults. The ERTS-1 MSS imagery yields the greatest amount of geologic information on the Piedomont, Blue Ridge, and Valley and Ridge Provinces of Georgia where topography is strongly controlled by the bedrock geology. ERTS imagery, and general remote sensing techniques, have provided us with a powerful tool to assist geologic research; have significantly increased the mapping efficiency of our field geologists; have shown new lineaments associated with known shear and fault zones; have delineated new structural features; have provided a tool to re-evaluate our tectonic history; have helped to locate potential ground water sources and areas of aquifer recharge; have defined areas of geologic hazards; have shown areas of heavy siltation in major reservoirs; and by its close interval repetition, have aided in monitoring surface mine reclamation activities and the environmental protection of our intricate marshland system.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, Marina; Linde, Niklas; Kalscheuer, Thomas; Vrugt, Jasper A.
2014-03-01
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project
2010-12-01
The hydrologic effects of deforestation and aforestation in the tropics remain an area of active research. Hydrologic predictions of land-use change effects remain elusive. One of the unique features of catchment hydrology in the tropics is the effect of intense, continuous biological activity by insects, shrubs, trees, and small mammals. Sapprolitic soils derived from weathered bedrock cover widespread areas. These soils have low matrix permeabilities on the order of 1 mm/h, are 10 to 20 m in thickness and have relatively low activity because they have been depleted of light cations by annual rainfall over 2000 mm. As part of the Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, we have observed shallow subsurface flow in tropical soils in central Panama using an introduced salinity contrast and surface electrical resistivity tomography (ERT). In 2009 and 2010, experiments were conducted in a 30 year-old secondary succession forest, and in two former pasture sites that were planted with native timber species and teak, respectively, in 2008. At each site, saline water (NaCl tagged with LiBr) was introduced to the soil using two different methods: soil pits and ponded surface applications. Results showed the strongest response in the case of ponded surface applications with observed changes in resistivity between -50% and 50%. In soil pit applications, the change in electrical resistivity varied from -10% to 10%. Results suggest that in the case of surface application, a transient perched water table is created near the bottom of the bioturbation layer that activates the downslope macropore network and results in bulk flow velocities that are significantly higher than observed soil matrix permeabilities. When heavy rainfall occurred during tests, increased mobility of the salinity contrast more clearly showed the active layer where most flow occurred. Time-series ERT observations enabled measurements of downslope bulk flow velocities over 1 m/h, presumably due to the existing downslope macroporosity network. These observations are being used to estimate macroporosity network properties and constrain hydrologic model parameters in different land uses. These results show that these non-invasive tests are a useful tool to determine the distribution of downslope lateral flow generated from pit and surface-applied saline solutions. ERT experimental results from a hillslope-scale experiment in central Panama, showing change in electrical conductivity from 30-minutes to 330-minutes after continuous injection of salinity contrast at x=0.
Towards a Global Permafrost Electrical Resistivity Survey (GPERS) database
NASA Astrophysics Data System (ADS)
Lewkowicz, Antoni G.; Douglas, Thomas; Hauck, Christian
2017-04-01
Hundreds, and perhaps thousands, of Electrical Resistivity Tomography (ERT) surveys have been undertaken over the past two decades in permafrost areas in North America, Europe, and Asia. Two main types of ERT configurations have been conducted: galvanic surveys using metallic rods as conductors and capacitive-coupled surveys using towed cable arrays. ERT surveys have been carried out in regions with mountain permafrost, lowland permafrost, and coastal saline permafrost, and in undisturbed, naturally-disturbed (e.g. fire-affected), and anthropogenically-affected sites (e.g. around buildings and infrastructure). Some surveys are associated with local validation of frozen ground conditions, through borehole temperatures, frost probing or creep phenomena. Others are in locations without boreholes or with clast-rich or bedrock active layers which preclude this direct confirmation. Most surveys have been carried out individually on particular dates but there are increasing numbers of repeated ERT measurements being made to detect change, either at intervals using a fixed array of electrodes, or at high frequency with a fixed and automated measurement apparatus. Taken as a group, ERT profiles represent an untapped knowledge base relating to permafrost presence, absence, or partial presence (i.e. discontinuous permafrost), and in some cases to the thickness of permafrost and ice content. When combined with borehole information, ERT measurements can identify massive ice features and provides information on soil stratigraphy. The Global Permafrost Electrical Resistivity Survey (GPERS) database is planned as a freely available on-line repository of data from two-dimensional electrical resistivity surveys undertaken in permafrost regions. Its development is supported by the Permafrost Carbon Network and an application for an International Permafrost Association (IPA) Action Group is also underway. When the future GPERS records are compared with the GTN-P database it will be possible to see which boreholes or CALM sites are associated with ERT surveys and which are not. This can be used to target particular sites for ERT surveys to provide a more holistic view of what GTN-P measurements represent. GPERS data will permit empirical analyses of relationships between measured resistivities and permafrost conditions, including ground temperature, ice and liquid water content, and sediment type. These analyses will assist researchers in interpreting their local surveys. The spatial coordinates of the surveys in the database will also permit reacquisition of data in the future to examine changes over years or decades. The purpose of this presentation is to communicate the initiation of GPERS, to explore the level of interest in its development, and to help guide its maturation. In particular, we wish to discuss whether the database should initially focus on meta-data, including site location, vegetation type, and frozen ground conditions, or whether researchers would be willing to supply measurement data immediately which would lead to a more rapid development of GPERS but would also require more resources.
NASA Astrophysics Data System (ADS)
Dal Bo, I.; Klotzsche, A.; Schaller, M.; Ehlers, T. A.; Vereecken, H.; Van Der Kruk, J.
2017-12-01
Understanding how weathering processes act is non-trivial. Direct methods are spatially restricted, time consuming, and expensive. Here, we show how to upscale and extend the point-scale layering information from dug pits deploying a multi-scale geophysical approach. Many studies have recently shown the potential of geophysics in bridging the gap between scales, although limited to specific environments. We applied Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT) in four study areas separated by 1600 km in the Chilean Coastal Cordillera, and ranging from the arid Atacama Desert in the north and temperate forests in the south. The main goals were to understand how the soil profile and the weathering front vary: 1) from north to south along these gradients, 2) in north- and south-facing hillslopes, and 3) within a single hillslope. We measured at the large-scale (EMI), at the profile scale (EMI, ERT, and GPR), and at the point-scale (GPR). The total length of the EMI, GPR and ERT measurements was 28.95 km, 3.67 km, and 0.27 km. GPR wide angle reflection and refraction measurements were the link between ground-truth data and geophysics. The low electrical conductivity (EC) regime limited the applicability of the EMI and ERT. However, still relative patterns of apparent electrical conductivity (ECa) from EMI could be used. Generally, ECa increased moving uphill and from north to south. Due to the low EC values in the study areas, GPR could image several reflections up to 8 m depth partially confirmed by the pit layering. Thicker layers on GPR profiles were present going from north to south and in the bottom-mid part of the hillslopes, as confirmed by ground-truth data. The main recognizable feature in the GPR profiles was the transition between B and C horizon. Here, hyperbolic-shape signatures were observed that probably were related to the presence of heterogeneities. The soil pits showed deeper layers in more vegetated south-facing hillslopes, which could be correlated with increased signal penetration and reflection depths in the GPR profiles. Soil depths and their interaction with biota in soil-mantled landscapes will be better characterized by combining geophysics with more environmental parameters within the interdisciplinary EarthShape project.
NASA Astrophysics Data System (ADS)
Dick, J.; Tetzlaff, D.; Bradford, J.; Soulsby, C.
2015-12-01
It is increasingly recognised that groundwater (GW) in montane watersheds has a major influence on the distribution of vegetation communities and ecosystem function, as well as sustaining downstream river flows. In glaciated landscapes, complex and heterogenous drift deposits can have a dominant influence on GW stores and fluxes, and form a poorly understood component of the critical zone. Given the logistical problems and limitations of drilling observation wells in such terrain, hydrogeophysics has outstanding potential to help characterise aquifer structure and understand shallow GW in the critical zone of montane environments. We present the results of electrical resistivity tomography (ERT) surveys in an intensively monitored 3.2km2 watershed in the Scottish Highlands with a strong glacial past. We sought to characterise the structure and spatial organisation of GW stores in diverse quaternary drift deposits. This utilized distributed ERT transects that provided a basis for spatial interpolation using geostatistical methods and high resolution LiDAR surveys. Some transects coincided with shallow observation wells that were used to "ground-truth" the inversion of resistivity data. The surveys showed that the drifts covered around 70% of the catchment and varied from 5m deep on the hillslopes to 40m in the valleys. The water table was within 0.2m of the soil surface in the valley bottom areas and about 1.5m deep on steeper hillslopes. The water content of drifts inferred by the ERT surveys and characterisation of the aquifer properties showed highest water content in the peat (~80%) and basal till (20-30%), and low storage in moraine deposits (10%). Upscaling these estimates of inferred storage to the catchment scale indicated around ~2-3 m of GW storage, equivalent to around 4-6 years of effective precipitation. This generally compared well with independent storage estimates inferred from long-term stable isotope time series collected from the aquifers. Elucidating the importance of the critical zone for water storage in montane environments using ERT provides a basis for predicting their likely resistance and resilience to environmental change. This is of practical importance in the Scottish uplands where both climate and land use change are likely to have implications for water availability.
NASA Technical Reports Server (NTRS)
Shaffer, R. M.
1973-01-01
A detailed description is given of the methods of choose the duplication film and chemistry currently used in the NASA-ERTS Ground Data Handling System. The major ERTS photographic duplication goals are given as background information to justify the specifications for the desirable film/chemistry combination. Once these specifications were defined, a quantitative evaluation program was designed and implemented to determine if any recommended combinations could meet the ERTS laboratory specifications. The specifications include tone reproduction, granularity, MTF and cosmetic effects. A complete description of the techniques used to measure the test response variables is given. It is anticipated that similar quantitative techniques could be used on other programs to determine the optimum film/chemistry consistent with the engineering goals of the program.
ERT and Well Data Tie for Nickel Laterite Characterization
NASA Astrophysics Data System (ADS)
Aswad, Sabrianto; Mamela Mais, Difar; Syamsuddin; Wanni
2018-03-01
The need of ERT method in nickel latentes exploration can’t be deny. This method have capability to make exploration more effective and efficient. In reality this method still remain ambiguity in its application, especially for geologist and mining expert. These ambiguity related with layer zone determination (limonite, saprolite and bedrock), the same resistivity values in the different zones and determination of bedrock. This paper try to expose interesting fact to overcome this ambiguity by using ERT data and drill data tie. This tie will show characteristic of nickel lateric based on resisitivity value and the contribution of chemistry element for resistivity value. Data ERT was collected by using gradient configuration and well data consist of mayor element and minor element. Tie result showed difference resistivity value in limonite layer influence by Fe, H2O and Ni, where resistivity value from saprolite layer influenced by Fe, H2O, Si02, MgO, Al, Cr, and Ni in certain accumulation. In bedrock layer, almost all drill data did not reach bedrock but only reached the boulder alone, it is supported by the value of the resistivity of rock unserpentinized peridotite which should show a relatively large resistivity value
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, S A; Daily, W D; Ramirez, A L
2002-01-31
Subsurface imaging technology, such as electric resistance tomography (ERT), is rapidly improving as a means for characterizing some soil properties of the near-surface hydrologic regime. While this information can be potentially useful in developing hydrologic models of the subsurface that are required for contaminant transport investigations, an image alone of the subsurface soil regime gives little or no information about how the site will respond to groundwater flow or contaminant transport. In fact, there is some question that tomographic imaging of soils alone can even provide meaningful values of hydraulic properties, such as the permeability structure, which is critical tomore » estimates of contaminant transport at a site. The main objective of this feasibility study was to initiate research on electrical imaging not just as a way to characterize the soil structure by mapping different soil types at a site but as a means of obtaining quantitative information about how a site will respond hydrologically to an infiltration event. To this end, a scaled system of electrode arrays was constructed that simulates the subsurface electrode distribution used at the LLNL Vadose Zone Observatory (VZO) where subsurface imaging of infiltration events has been investigated for several years. The electrode system was immersed in a 10,000-gallon tank to evaluate the fundamental relationship between ERT images and targets of a given volume that approximate infiltration-induced conductivity anomalies. With LDRD funds we have explored what can be initially learned about porous flow and transport using two important electrical imaging methods--electric resistance tomography (ERT) and electric impedance tomography (EIT). These tomographic methods involve passing currents (DC or AC) between two electrodes within or between electrode arrays while measuring the electric potential at the remaining electrodes. With the aid of a computer-based numerical inversion scheme, the potentials are used to solve for the electrical conductivity distribution in the region bounded by the electrode arrays. Groundwater movement resulting from a leak or surface spill will produce measurable conductivity changes that have been imaged using ERT or EIT. The kind of laboratory scale experiments supported by this work will help us to better understand the connection between imaged conductivity anomalies and the groundwater or contaminant flow that causes them. This work will also help to demonstrate the feasibility or value of doing lab experiments in imaging that can be applied to interpreting field-scale experiments. A secondary objective of this study was to initiate a collaboration with researchers at the Rensselaer Polytechnic Institute (RPI; Troyl NY) who are also participants in the newly created NSF Center for Subsurface Imaging and Sensing Systems (CenSSIS) which is managed in part by RPI. During the course of this study C.R. Carrigan and W. Daily visited the electromagnetic imaging lab at RPI to initiate discussions on subsurface imaging technology with Professors David Isaacson, Jon Newell, Gary Salunier and their research graduate students. A major goal of CenSSIS is to promote collaborations among researchers with imaging backgrounds in different disciplines (geosciences, biomedical, civil engineering and biomedical) that will lead to new solutions of common subsurface imaging problems. The geophysical test section constructed for this study included electrode arrays that resemble biomedical array distributions. Comparing images of the same target produced with the 4-array geophysical approach and with the biomedical imaging approach will help us to better understand differences and advantages that are characteristic of the two imaging methods. Our initial interactions with the researchers at RPI concluded that this was a viable problem to consider. The support for this subsequent research will come from a 3-year Office of Basic Energy Sciences (BES) proposal that has just received funding. This feasibility study contributed positively to the successful review and ultimately to the award of this BES funding. A letter (Appendix) from Professor Michael Silevitch, Director of CenSSIS, to Dr. Rokaya Al-Ayat, Director of the LLNL Science & Technology Office, acknowledges the contribution of this LDRD study to obtaining the Basic Energy Science grant that will fund further work in this area.« less
NASA Astrophysics Data System (ADS)
Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Bernardo, I.; Farzamian, M.; Nascimento, C.; Fernandes, J.; Casal, B.; Ribeiro, J. A.
2017-09-01
Seawater intrusion is an increasingly widespread problem in coastal aquifers caused by climate changes -sea-level rise, extreme phenomena like flooding and droughts- and groundwater depletion near to the coastline. To evaluate and mitigate the environmental risks of this phenomenon it is necessary to characterize the coastal aquifer and the salt intrusion. Geophysical methods are the most appropriate tool to address these researches. Among all geophysical techniques, electrical methods are able to detect seawater intrusions due to the high resistivity contrast between saltwater, freshwater and geological layers. The combination of two or more geophysical methods is recommended and they are more efficient when both data are inverted jointly because the final model encompasses the physical properties measured for each methods. In this investigation, joint inversion of vertical electric and time domain soundings has been performed to examine seawater intrusion in an area within the Ferragudo-Albufeira aquifer system (Algarve, South of Portugal). For this purpose two profiles combining electrical resistivity tomography (ERT) and time domain electromagnetic (TDEM) methods were measured and the results were compared with the information obtained from exploration drilling. Three different inversions have been carried out: single inversion of the ERT and TDEM data, 1D joint inversion and quasi-2D joint inversion. Single inversion results identify seawater intrusion, although the sedimentary layers detected in exploration drilling were not well differentiated. The models obtained with 1D joint inversion improve the previous inversion due to better detection of sedimentary layer and the seawater intrusion appear to be better defined. Finally, the quasi-2D joint inversion reveals a more realistic shape of the seawater intrusion and it is able to distinguish more sedimentary layers recognised in the exploration drilling. This study demonstrates that the quasi-2D joint inversion improves the previous inversions methods making it a powerful tool applicable to different research areas.
Postglacial sedimentary infill of the Bricial peatland (Cantabrian Mountains, Spain)
NASA Astrophysics Data System (ADS)
Correia, Antonio; Ruiz-Fernández, Jesús; Oliva, Marc; Fernández, Antonio; García-Hernández, Cristina; Gallinar, David
2016-04-01
Bricial is a peatland located in a glaciokarst depression of the Western Massif of the Picos de Europa (NW Spain). The depression is 425 m long and 245 m wide, and it is surrounded by moraines built during the stage of glacial expansion after the maximum advance within the Last Glaciation. In contrast to what happens in other karstic depressions existing in this massif (e.g. Comeya), the thickness and sedimentary infill of this depression is still unknown. With the purpose of better knowing the depression's structure, two electrical resistivity tomographies (ERT)s with different lengths across the Bricial depression were conducted along perpendicular directions; the shortest ERT was done in a NNE-SSW direction with an electrode spacing of 2 m and a total length of 78 m; the longest ERT was done in a WNW-ESE direction with a 5 m electrode spacing and a total length of 195 m. Both ERTs used 40 electrodes in a Wenner configuration. The two ERTs were done in such way that they intersected near an 8 m deep borehole drilled in the area in 2006. A two-dimensional electrical inversion software was used for inverting the apparent electrical resistivity data obtained during the field work into two-dimensional models of electrical resistivity of the ground. The models are a representation of the distribution of the electrical resistivity of the ground to depths of about 14 m along the shortest ERT and 35 m along the longest. In both geoelectrical models the electrical structure is approximately horizontal at the surface (i.e., between 3 to 5 m depth) and is more complex as depth increases. Low resistivity values prevail in most part of the profiles, which is consistent with the sedimentary sequence collected in the area. The 8 m long sedimentary sequence collected from Bricial consists of homogeneous organic-rich sediments. The base of the sequence was dated at 11,150 ± 900 cal yr BP. Taking into account the sedimentation rates and the data inferred from the electrical resistivity tomographies, it is expected that the Bricial contains environment information of the last 19-23 ka, which coincides with the established chronology for the second stage of glacial advance within the Last Glacial Cycle in the Cantabrian Mountains (Jimenez et al., 2013; Serrano et al., 2013, Rodríguez-Rodríguez et al., 2014; Nieuwendan et al., 2015). References Jiménez, M., Rodríguez-Rodríguez, L., García-Ruiz, J.M., Domínguez-Cuesta, M.J., Farias, P., Valero-Garcés, B., Moreno, A., Rico, M., Valcárcel, M., 2013. A review of glacial geomorphology and chronology in northern Spain: timing and regional variability during the last glacial cycle. Geomorphology. 196, 50-64. DOI: 10.1016/j.geomorph.2012.06.009. Nieuwendam, A., Ruiz-Fernández, J., Oliva, M., Lopes, V., Cruces, A., Freitas, M.C., 2015. Postglacial landscape changes and cryogenic processes in the Picos de Europa (Northern Spain) reconstructed from geomorphological mapping and microstructures on quartz grains. Permafrost and Periglacial Porcesses. DOI: 10.1002/ppp.1853. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Aranburu, A., 2014a. Research history on glacial geomorphology and geochronology of the Cantabrian Mountains, north Iberia (43-42°N/7-2°W). Quaternary International. DOI: 10.1016/j.quaint.2014.06.007. Serrano, E., González-Trueba, J.J., Pellitero, R., González-García, M., Gómez, M., 2013. Quaternary glacial evolution in the Cantabrian Mountains (Northern Spain). Geomorphology. 196, 65-82. DOI: 10.1016/j.geomorph.2012.05.001.
Active and passive seismic investigations in Alpine Permafrost at Hoher Sonnblick (Austria)
NASA Astrophysics Data System (ADS)
Steiner, Matthias; Maierhofer, Theresa; Pfeiler, Stefan; Chwatal, Werner; Behm, Michael; Reisenhofer, Stefan; Schöner, Wolfgang; Straka, Wolfgang; Flores Orozco, Adrian
2017-04-01
Different geophysical measurements have been applied at the Hoher Sonnblick study area to gain information about permafrost distribution as well as heterogeneities controlling heat circulation, in the frame of the ÖAW-AtmoPerm project, which aims at the understanding the impacts of atmospheric extreme events on the thermal state of the active layer. Electrical Resistivity Tomography (ERT) has been widely accepted as a suitable method to characterize permafrost processes; however, limitations are imposed due to the challenges to inject high current densities in the frozen periods and the loss of resolution of electrical images at depth require the application of further geophysical methods. To overcome such problems, we investigate here the application of active and seismic methods. Seismic campaigns were performed using permanent borehole and temporarily installed surface geophones. A total of 15 borehole geophones are installed at depths of 1 m, 2 m, 5 m, 10 m and 20 m in three boreholes which are separated by a horizontal distance of 30 m between each other. Active measurements utilized 41 surface and 15 borehole geophones and a total of 199 excitation points. Surface geophones were laid out along two crossing lines with lengths of 92 m and 64 m, respectively. The longer line was placed directly along the borehole transect and the shorter one was oriented perpendicular to it. Hammer blows were performed with a spacing of 1 m inline the geophones and 4 m in crosslines rotated by 45 degrees, permitting 3D acquisition geometry. In addition to the active sources, data loggers connected to the borehole geophones permitted the collection of continuous 36-hours datasets for two different thermal conditions. Seismic ambient noise interferometry is applied to this data and aims at the identification of velocity changes in the subsurface related to seasonal changes of the active layer. A potential source of ambient seismic energy is the noise excited by hikers and the activity from the nearby cable cars station. Results obtained from the 3D-hammer seismics and interferometry are compared and benchmarked against each other. Changes in the seismic velocities in the subsurface permitted the delineation of the active layer and improved permafrost investigation when combined with ERT monitoring. Seismic results were then interpreted together with those obtained with ERT monitoring, electromagnetic induction (EMI) and ground-penetrating radar (GPR).
NASA Astrophysics Data System (ADS)
Mary, Benjamin; Peruzzo, Luca; Boaga, Jacopo; Schmutz, Myriam; Wu, Yuxin; Hubbard, Susan S.; Cassiani, Giorgio
2017-04-01
Nowadays, best viticulture practices require the joint interpretation of climate and soils data. However, information about the soil structure and subsoil processes is often lacking, as point measurements, albeit precise, cannot ensure sufficient spatial coverage and resolution. Non-invasive methods can provide spatially extensive, high resolution information that, supported by traditional point-like data, help complete the complex picture of subsoil static and dynamic reality. So far very little emphasis has been given to investigating the role of soil properties and even less of roots activity on winegrapes. Vine plant's root systems play an important role in providing the minerals to the plants, but also control the water uptake and thus the water state of the vines, which is a key factor determining the grape quality potential. In this contribution we report about the measurements conducted since June 2016 in a vineyard near Bordeaux (France, Pessac Leognan Chateau). Two neighbor plants of different sizes have been selected. In order to spot small scale soil variations and root zone physical structure at the vicinity of the vine plants, we applied a methodology using longitudinal 2D tomography, 3D borehole-based electrical resistivity tomography and a variation of the mise-à-la-masse method (MALM) to assess the effect of plant roots on the current injection in the ground. Time-lapse measurements are particularly informative about the plant dynamics, and the focus is particularly applied on this approach. The time-lapse 3D ERT and MALM results are presented, and the potential to assimilate these data into a hydrological model that can account for the root water uptake as a function of atmospheric conditions is discussed.
García-Menéndez, Olga; Ballesteros, Bruno J; Renau-Pruñonosa, Arianna; Morell, Ignacio; Mochales, Tania; Ibarra, Pedro I; Rubio, Félix M
2018-01-27
Over 40 years, the detrital aquifer of the Plana de Castellón (Spanish Mediterranean coast) has been subjected to seawater intrusion because of long dry periods combined with intensive groundwater exploitation. Against this backdrop, a managed artificial recharge (MAR) scheme was implemented to improve the groundwater quality. The large difference between the electrical conductivity (EC) of the ambient groundwater (brackish water due to marine intrusion) and the recharge water (freshwater) meant that there was a strong contrast between the resistivities of the brackish water saturated zone and the freshwater saturated zone. Electrical resistivity tomography (ERT) can be used for surveying similar settings to evaluate the effectiveness of artificial recharge schemes. By integrating geophysical data with lithological information, EC logs from boreholes, and hydrochemical data, we can interpret electrical resistivity (ER) with groundwater EC values and so identify freshwater saturated zones. Using this approach, ERT images provided a high-resolution spatial characterization and an accurate picture of the shape and extent of the recharge plume of the MAR site. After 5 months of injection, a freshwater plume with an EC of 400-600 μS/cm had formed that extended 400 m in the W-E direction, 250 m in the N-S direction, and to a depth of 40 m below piezometric level. This study also provides correlations between ER values with different lithologies and groundwater EC values that can be used to support other studies.
Measuring watershed runoff capability with ERTS data. [Washita River Basin, Oklahoma
NASA Technical Reports Server (NTRS)
Blanchard, B. J.
1974-01-01
Parameters of most equations used to predict runoff from an ungaged area are based on characteristics of the watershed and subject to the biases of a hydrologist. Digital multispectral scanner, MSS, data from ERTS was reduced with the aid of computer programs and a Dicomed display. Multivariate analyses of the MSS data indicate that discrimination between watersheds with different runoff capabilities is possible using ERTS data. Differences between two visible bands of MSS data can be used to more accurately evaluate the parameters than present subjective methods, thus reducing construction cost due to overdesign of flood detention structures.
NASA Astrophysics Data System (ADS)
Commer, M.; Kowalsky, M. B.; Dafflon, B.; Wu, Y.; Hubbard, S. S.
2013-12-01
Geologic carbon sequestration is being evaluated as a means to mitigate the effects of greenhouse gas emissions. Efforts are underway to identify adequate reservoirs and to evaluate the behavior of injected CO2 over time; time-lapse geophysical methods are considered effective tools for these purposes. Pilot studies have shown that the invasion of CO2 into a background pore fluid can alter the electrical resistivity, with increases from CO2 in the super-critical or gaseous phase, and decreases from CO2 dissolved in groundwater (especially when calcite dissolution is occurring). Because of their sensitivity to resistivity changes, electrical and electromagnetic (EM) methods have been used in such studies for indirectly assessing CO2 saturation changes. While the electrical resistance tomography (ERT) method is a well-established technique for both crosswell and surface applications, its usefulness is limited by the relatively low-resolution information it provides. Controlled-source EM methods, including both frequency-domain and time-domain (transient EM) methods, can offer improved resolution. We report on three studies that aim to maximize the information content of electrical and electromagnetic measurements in inverse modeling applications that target the monitoring of resistivity changes due to CO2 migration and/or leakage. The first study considers a three-dimensional crosswell data set collected at an analogue site used for investigating CO2 distribution and geochemical reactivity within a shallow formation. We invert both resistance and phase data using a gradient-weighting method for descent-based inversion algorithms. This method essentially steers the search direction in the model space using low-cost non-linear conjugate gradient methods towards the more computationally expensive Gauss-Newton direction. The second study involves ERT data that were collected at the SECARB Cranfield site near Natchez, Mississippi, at depths exceeding 3000 m. We employ a ratio data inversion scheme, where the time-lapse input data are given by the measured ERT data normalized by their baseline values. We investigate whether three-dimensional time-lapse inversions yield improved results compared to two-dimensional results that were previously reported. Finally, we present a synthetic study that investigates a novel time-domain controlled-source EM method that has the potential for exploiting the resolution properties of vertically oriented source antennas while avoiding their logistical difficulties. A vertical source is replaced by an array of multiple horizontal dipoles arranged in a circle such that all dipoles have a common endpoint in the center. Overall, this study presents significant advances in developing adequate geophysical techniques to monitor CO2 migration and/or potential leaks in geological reservoirs.
Single and Concurrent Effects of Endurance and Resistance Training on Pulmonary Function
Khosravi, Maryam; Tayebi, Seyed Morteza; Safari, Hamed
2013-01-01
Objective(s): As not only few evidences but also contradictory results exist with regard to the effects of resistance training (RT) and resistance plus endurance training (ERT) on respiratory system, so the purpose of this research was therefore to study single and concurrent effects of endurance and resistance training on pulmonary function. Materials and Methods: Thirty seven volunteer healthy inactive women were randomly divided into 4 groups: without training as control (C), Endurance Training (ET), RT, and ERT. A spirometry test was taken 24 hrs before and after the training course. The training period (8 weeks, 3 sessions/week) for ET was 20-26 min/session running with 60-80% maximum heart rate (HR max); for RT two circuits/session, 40-60s for each exercise with 60-80% one repetition maximum (1RM), and 1 and 3 minutes active rest between exercises and circuits respectively; and for ERT was in agreement with either ET or RT protocols, but the times of running and circuits were half of ET and RT. Results: ANCOVA showed that ET and ERT increased significantly (P< 0.05) vital capacity (VC), forced vital capacity (FVC), and forced expiratory flows to 25%-75%; ET, RT and ERT increased significantly (P< 0.05) maximum voluntary ventilation (MVV); and only ET increased significantly (P<0.05) peak expiratory flows (PEF); but ET, RT and ERT had no significant effect (P>0.05) on forced expiratory volume in one second (FEV1) and FEV1/FVC ratio. Conclusion: In conclusion, ET combined with RT (ERT) has greater effect on VC, FVC, FEF rating at25%-75%, and also on PEF except MVV, rather than RT, and just ET has greater effect rather than ERT. PMID:24250940
NASA Technical Reports Server (NTRS)
Raje, S.; Economy, R.; Mcknight, J. S.
1973-01-01
Significant results have been obtained from the analyses of ERTS-1 imagery from five cycles over Test Site SR 124 by classical photointerpretation and by an interactive hybrid multispectral information extraction system (GEMS). The synopticity, periodicity and multispectrality of ERTS coverage, available for the first time to LA County planners, have opened up both a new dimensionality in data and offer new capability in preparation of planning inputs. Photointerpretation of ERTS images has produced over 25 overlays at 1:1,000,000 scale depicting regional relations and urban structure in terms of several hundred linear and areal features. To mention only one such result, a possible new fault lineament has been discovered on the northern slope of the Santa Monica mountains in the scene 1144-18015, composited of MSS bands 4, 5, 6,. GEMS analysis of the ERTS products has provided new or improved information in the following planning data categories: urban vegetation; land cover segregation; man-made and natural impact monitoring; urban design; and suitability. ERTS data analysis has allowed planners to establish trends that directly impact planning policies. This new source of information will not only assist current methods to be more efficient, but permits entirely new planning methodologies to be employed.
NASA Astrophysics Data System (ADS)
Thao, S. J.; Plattner, A.
2015-12-01
Farming in the San Joaquin Valley in central California is often impeded by a shallow rock-hard layer of consolidated soil commonly referred to as hardpan. To be able to successfully farm, this layer, if too shallow, needs to be removed either with explosives or heavy equipment. It is therefore of great value to obtain information about depth and presence of such a layer prior to agricultural operations. We tested the applicability of electrical resistivity tomography and ground penetrating radar in hardpan detection. On our test site of known hardpan depth (from trenching) and local absence (prior dynamiting to plant trees), we successfully recovered the known edge of a hardpan layer with both methods, ERT and GPR. The clay-rich soil significantly reduced the GPR penetration depth but we still managed to map the edges at a known gap where prior dynamiting had removed the hardpan. Electrical resistivity tomography with a dipole-dipole electrode configuration showed a clear conductive layer at expected depths with a clearly visible gap at the correct location. In our data analysis and representation we only used either freely available or in-house written software.
A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets
NASA Astrophysics Data System (ADS)
JafarGandomi, Arash; Binley, Andrew
2013-09-01
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.
Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System
NASA Astrophysics Data System (ADS)
Ulrich, C.; Hubbard, S. S.; Peterson, J.; Blom, K.; Black, W.; Delaney, C.; Mendoza, J.
2014-12-01
An evaluation is underway at the Goat Rock State Park, located at the mouth of the Russian River near Jenner, CA, to quantify the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. We are monitoring seepage through the jetty and beach berm with multiple surface and borehole geophysical methods, including: electrical resistivity (ERT), seismic refraction (SR), ground penetrating radar (GPR), and electromagnetic methods (EM). We use SR data to characterize deeper bedrock controls on beach barrier functioning; ERT and EM methods to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure; time-lapse ERT and EM data to monitor moisture changes and mixing of saline and fresh water within the beach berm, and borehole ERT and GPR data to delineate the geometry of the (often buried) jetty. Preliminary ERT and EM results indicate two preferential flow paths through zones of missing jetty structure, while time-lapse borehole ERT data is expected to image saltwater flow impedance in zones of intact jetty structure. All data are being integrated with topography, tidal, borehole, and hydrological information and the results of the assessment will enable the Sonoma County Water Agency to develop the feasibility of alternatives to the existing jetty that may help achieve target estuarine water surface elevations.
2013-01-01
Aim Dysphagia is a known complication in Pompe Disease (PD), a severe metabolic myopathy due to alpha-glucosidase deficiency. Enzyme replacement therapy (ERT) with alglucosidase alfa is the only approved therapy for PD. Presently no data are available on the effects of ERT on dysphagia in PD patients. The aim of this work is to evaluate the course of this complication in a 6 years old boy affected by PD after treatment with ERT. Methods Dysphagia was assessed by Videofluoroscopic Swallowing Study (VFSS) at baseline, before the start of ERT and after 36 months of therapy. We used the Dysphagia Severity Rating Scale (DSS) to define the severity grade of dysphagia. Results VFSS performed at baseline revealed complete incoordination of oral stage swallowing which was classified as a grade 1 dysphagia according to DSS. After 36 months of treatment VFSS revealed normal swallowing, classified as grade 0 by DSS. Conclusion Our results suggest that ERT is effective in improving dysphagia. VFSS may be a useful tool to investigate and monitor swallowing disorders in patients affected by PD. PMID:23668440
Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods
NASA Astrophysics Data System (ADS)
De Giorgi, Lara; Leucci, Giovanni
2015-02-01
The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.
NASA Astrophysics Data System (ADS)
Cárdenas-Soto, M.; Tejero, A.; Nava-Flores, M.; Zenil, D. E.; Vidal-Garcia, M.; Garcia-Serrano, A.
2016-12-01
In this work we build 3D Vs models using seismic tomography of ambient noise. The goal is to characterize the subsurface structure in order to explore the causes of a sudden mine collapse in the 2nd section of Chapultepec park, Mexico City, near to a recreation lake whose subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. In this site we record ambient noise continuously at a 250 Hz sampling rate by intervals of 30 min in three arrays of quadrangular shape with 64 - 4.5 Hz vertical geophones separated 2m. In order to confront the seismic interferometry results, we also obtain 3D models derivated from Electrical Resistivity Tomography (ERT), and inverted surface micro-gravity data. The correlograms show a well defined pulse for those pairs of receivers whose backazimut is perpendicular to the beltway, which is the main source that generates ambient noise. We show that pulses had a dispersive character due to that define a dispersion curve (fundamental mode of Rayleigh wave) whose velocity values are close to 700 m/s at a frequency of 5 Hz, and tend to average values of 380 m/s in frequencies close to 16 Hz. Then, we build tomography images from the maximum time of the envelope pulse filtering in 18 center frequencies between 4 to 16 Hz. Through the relationship f=Vs/4z we create a 3D model in function of the seudo-depth (z). This model allows to distinguish the irregularity of the subsoil around the mine colapse (5m depth), which underlies a competent structure (Vs>450 m/s) surrounded by vulcano sedimentary material with low Vs values (200 m/s). ERT model show that the low velocity zones are associated with saturation areas, result that is corroborated by low-density values derived from micro-gravity model. The results indicate that the collapse was produced by the hydrostatic imbalance of the competent materials, which are the artificial filling that covers the different mined areas.
Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers
NASA Technical Reports Server (NTRS)
Meier, M. F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A possibly more accurate method to determine snowcover area change has been tried; snowcover area change over periods of an ERTS-1 cycle are very useful in determining energy balances over regional areas and to determine snow depth as a function of altitude. Also since shadow and cloud cover areas are highlighted this method may be a step toward more complete machine processing.
ERIC Educational Resources Information Center
Schuppert, H. Marieke; Timmerman, Marieke E.; Bloo, Josephine; van Gemert, Tonny G.; Wiersema, Herman M.; Minderaa, Ruud B.; Emmelkamp, Paul M. G.; Nauta, Maaike H.
2012-01-01
Objective: To evaluate the effectiveness of Emotion Regulation Training (ERT), a 17-session weekly group training for adolescents with borderline personality disorder (BPD) symptoms. Method: One hundred nine adolescents with borderline traits (73% meeting the full criteria for BPD) were randomized to treatment as usual only (TAU) or ERT + TAU.…
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
NASA Astrophysics Data System (ADS)
Johnson, T.; Rucker, D. F.; Wellman, D.
2013-12-01
The Hanford Site, located in south-central Washington, USA, originated in the early 1940's as part of the Manhattan Project and produced plutonium used to build the United States nuclear weapons stockpile. In accordance with accepted industrial practice of that time, a substantial portion of relatively low-activity liquid radioactive waste was disposed of by direct discharge to either surface soil or into near-surface infiltration galleries such as cribs and trenches. This practice was supported by early investigations beginning in the 1940s, including studies by Geological Survey (USGS) experts, whose investigations found vadose zone soils at the site suitable for retaining radionuclides to the extent necessary to protect workers and members of the general public based on the standards of that time. That general disposal practice has long since been discontinued, and the US Department of Energy (USDOE) is now investigating residual contamination at former infiltration galleries as part of its overall environmental management and remediation program. Most of the liquid wastes released into the subsurface were highly ionic and electrically conductive, and therefore present an excellent target for imaging by Electrical Resistivity Tomography (ERT) within the low-conductivity sands and gravels comprising Hanford's vadose zone. In 2006, USDOE commissioned a large scale surface ERT survey to characterize vadose zone contamination beneath the Hanford Site B-Complex, which contained 8 infiltration trenches, 12 cribs, and one tile field. The ERT data were collected in a pole-pole configuration with 18 north-south trending lines, and 18 east-west trending lines ranging from 417m to 816m in length. The final data set consisted of 208,411 measurements collected on 4859 electrodes, covering an area of 600m x 600m. Given the computational demands of inverting this massive data set as a whole, the data were initially inverted in parts with a shared memory inversion code, which revealed the general footprint of vadose zone contamination beneath infiltration galleries. In 2011, the USDOE commissioned an effort to re-invert the B-Complex ERT data as a whole using a recently developed massively parallel 3D ERT inversion code. The computational mesh included approximately 1.085 million elements and closely honored the 37m of topographic relief as determined by LiDAR imaging. The water table and tank boundaries were also incorporated into the mesh to facilitate regularization disconnects, enabling sharp conductivity contrasts where they occur naturally without penalty. The data were inverted using 1024 processors, requiring 910 Gb of memory and 11.5 hours of computation time. The imaging results revealed previously unrealized detail concerning the distribution and behavior of contaminants migrating through the vadose zone, and are currently being used by site cleanup operators and regulators to understand the origin of a groundwater nitrate plume emerging from one of the infiltration galleries. The results overall demonstrate the utility of high performance computing, unstructured meshing, and custom regularization constraints for optimal processing of massive ERT data sets enabled by modern ERT survey hardware.
Borehole temperature variability at Hoher Sonnblick, Austria
NASA Astrophysics Data System (ADS)
Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia
2016-04-01
The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in the time series by cross checking all available information of the three boreholes. Furthermore, the already available ERT profiles will serve as additional information source improving the quality of the measured borehole temperatures.
NASA Astrophysics Data System (ADS)
Ortiz, E.; Tominaga, M.; Cardace, D.; Schrenk, M. O.; Hoehler, T. M.; Kubo, M. D.
2016-12-01
Electrical and magnetic remote sensing both on land and at sea have emerged as a powerful approach to characterize in situ serpentinization and carbonation processes in time and space. We conducted 2D Electrical Resistivity Tomography (ERT) surveys to investigate in situ geological and hydrogeological architecture within the rock formation of the Jurassic age tectonic mélange portion of the Coast Range Ophiolite Microbiological Observatory (CROMO) where serpentinization processes are thought to facilitate an active deep biosphere. We acquired ERT imagery during both wet and dry seasons, along 9 survey tracks traversing two previously drilled wells, CSW1.1 and QV1.1, at different lateral and horizontal resolutions, yielding imagery with depth of 6.9 - 41m. Integrating ERT inversion models with wire-line and core data, we successfully documented temporal changes in the in situ hydrological properties at CROMO, i.e. the lateral and vertical water table boundaries (unconfined aquifer), non-permeable zones (confining bed), and possible confined aquifers that are juxtaposed within three dominant lithological units of serpentinite top soil, serpentinite gravel with clay, and serpentinite basement formation. We conducted rock magnetic experiments on core samples from drilled sites, including Magnetic Property Measurement System (MPMS) measurements, to better understand the connection between these hydrogeological properties and in situ serpentinization processes. Based on the observed downhole distribution of magnetite in correlation with ERT results and lithostratigraphy, we proposed that, at CROMO: (i) zones enriched in ferromagnetic minerals, correspond to in situ serpentinite formation with both high and low resistivity, suggesting that resistivity zones represent in situ architecture of consolidated serpentinite confining beds and possible fractured serpentinite aquifers, respectively; and (ii) zones (e.g. 14 - 31m at CSW site) enriched in superparamagnetic size magnetites (i.e. "pepper flake" magnetites that are observed in serpentine veins) are present in permeable serpentinite gravel aquifer formations (i.e. low resistivity, possible fractured serpentinite aquifers) suggesting groundwater available around the drilled sites is driving present-day serpentinization.
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; Suradhaniwar, S.; J, P. A.; R M, G.
2015-12-01
Vidarbha region in Maharashtra, India (home for mandarin Orange) experience severe climatic uncertainties resulting in crop failure. Phytopthora are the soil-borne fungal species that accumulate in the presence of moisture, and attack the root / trunk system of Orange trees at any stage. A scientific understanding of soil-moisture-disease relations within the active root zone under different climatic, irrigation, and crop cycle conditions can help in practicing management activities for improved crop yield. In this study, we developed a protocol for performing 3-D time-lapse electrical resistivity tomography (ERT) at micro scale resolution to monitor the changes in resistivity distribution within the root zone of Orange trees. A total of 40 electrodes, forming a grid of 3.5 m x 2 m around each Orange tree were used in ERT survey with gradient and Wenner configurations. A laboratory test on un-disturbed soil samples of the region was performed to plot the variation of electrical conductivity with saturation. Curve fitting techniques were applied to get the modified Archie's model parameters. The calibrated model was further applied to generate the 3-D soil moisture profiles of the study area. The point estimates of soil moisture were validated using TDR probe measurements at 3 different depths (10, 20, and 40 cm) near to the root zone. In order to understand the effect of soil-water relations on plant-disease relations, we performed ERT analysis at two locations, one at healthy and other at Phytopthora affected Orange tree during the crop cycle, under dry and irrigated conditions. The degree to which an Orange tree is affected by Phytopthora under each condition is evaluated using 'grading scale' approach following visual inspection of the canopy features. Spatial-temporal distribution of moisture profiles is co-related with grading scales to comment on the effect of climatic and irrigation scenarios on the degree and intensity of crop disease caused by Phytopthora.
Facilitating the exploitation of ERTS imagery using snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Sheffield, C.; Russell, O.; Amato, R. V.
1973-01-01
The author has identified the following significant results. EarthSat has established an effective mail-based method for obtaining timely ground truth (snow depth) information over an extensive area. The method is both efficient and inexpensive compared with the cost of a similarly scaled direct field checking effort. Additional geological information has been acquired which is not shown in geological maps in the area. Excellent quality snow-free ERTS-1 transparencies of the test areas have been received and are being analyzed.
Sinkhole risk assessment by ERT: The case study of Sirino Lake (Basilicata, Italy)
NASA Astrophysics Data System (ADS)
Giampaolo, V.; Capozzoli, L.; Grimaldi, S.; Rizzo, E.
2016-01-01
The presence of natural or artificial lakes and reservoirs that can drain because of natural phenomena can generate catastrophic events affecting urban and agricultural areas next to the source area. Therefore, geophysical prospecting techniques have been applied in the study of Sirino Lake, which, during the last century, was affected by the sudden opening of small sinkholes, resulting in the almost total draining of the lake and in the sudden increase of water flow rates of distal springs. Two electrical resistivity tomographies (ERTs) were carried out across the lake, using electrode arrays located on land and across the water body. Self-potential (SP) data were acquired around the lake shore and the surrounding area. The geophysical prospecting contributed significant data toward explaining the unique hydrogeological characteristics of the lake. Integration of geophysical, geological, hydrogeological, and geomorphological data allowed us to estimate the thickness of the lacustrine deposits beneath the lake, to describe the main patterns of the subsurface fluid flows in the area, and to identify possible water escape routes causing the piping phenomena.
The comparative evaluation of ERTS-1 imagery for resource inventory in land use planning. [Oregon
NASA Technical Reports Server (NTRS)
Simonson, G. H. (Principal Investigator); Paine, D. P.; Lawrence, R. D.; Pyott, W. T.; Herzog, J. H.; Murray, R. J.; Norgren, J. A.; Cornwell, J. A.; Rogers, R. A.
1973-01-01
The author has identified the following significant results. Multidiscipline team interpretation and mapping of resources for Crook County is nearly complete on 1:250,000 scale enlargements of ERTS-1 imagery. Maps of geology, landforms, soils and vegetation-land use are being interpreted to show limitations, suitabilities and geologic hazards for land use planning. Mapping of lineaments and structures from ERTS-1 imagery has shown a number of features not previously mapped in Oregon. A timber inventory of Ochoco National Forest has been made. Inventory of forest clear-cutting practices has been successfully demonstrated with ERTS-1 color composites. Soil tonal differences in fallow fields shown on ERTS-1 correspond with major soil boundaries in loess-mantled terrain. A digital classification system used for discriminating natural vegetation and geologic materials classes has been successful in separation of most major classes around Newberry Cauldera, Mt. Washington and Big Summit Prairie. Computer routines are available for correction of scanner data variations; and for matching scales and coordinates between digital and photographic imagery. Methods of Diazo film color printing of computer classifications and elevation-slope perspective plots with computer are being developed.
NASA Technical Reports Server (NTRS)
Meier, M. F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A new procedure to determine snowcovered areas has been devised. Aside from problems in heavily forested areas this method shows promise in predicting snowmelt runoff from mountain areas and will also assist in energy balance modeling of large snowfields. Snowcover results compare favorably with measurements made by high altitude aircraft photography. Changes in snowcover in areas as small as 3 x 5 km can be determined from ERTS-1 images by both optical and electronic methods. Snowcover changes determined by these two methods in the experimental South Cascade Glacier Basin were verified by field mapping. Image enahancement techniques on ERTS-1 images of large Alaskan glaciers (the Hubbard, Yentna, and Kahiltna) have given new insights into the large-scale structures and flow dynamics of these potentially hazardous glaciers. The Hubbard Glacier, in particular, is one which poses a threat to man and should be monitored for future changes.
NASA Astrophysics Data System (ADS)
Brunet, P.; Gloaguen, E.
2014-12-01
Designing and monitoring of geothermal systems is a complex task which requires a multidisciplinary approach. Deep geothermal reservoir models are prone to greater uncertainty, with a lack of direct data and lower resolution of surface geophysical methods. However, recent technical advances have enabled the potential use of permanent downhole vertical resistivity arrays for monitoring fluid injection. As electrical resistivity is sensitive to temperature changes, such data could provide valuable information for deep geothermal reservoir characterization. The objective of this study is to assess the potential of time-lapse cross-borehole ERT to constrain 3D realizations of geothermal reservoir properties. The synthetic case of a permeable geothermal reservoir in a sedimentary basin was set up, as a confined deep and saline sandstone aquifer with intermediate reservoir temperatures (150ºC), depth (1 km) and 30m thickness. The reservoir permeability distribution is heterogeneous, as the result of a fluvial depositional environment. The ERT monitoring system design is a triangular arrangement of 3 wells at 150 m spacing, including 1 injection and 1 extraction well. The optimal number and spacing of electrodes of the ERT array design is site-specific and has been assessed through a sensibility study. Dipole-dipole and pole-pole electrode configurations were used. The study workflow was the following: 1) Generation of a reference reservoir model and 100 stochastic realizations of permeability; 2) Simulation of saturated single-phase flow and heat transport of reinjection of cooled formation fluid (50ºC) with TOUGH2 software; 3) Time-lapse forward ERT modeling on the reference model and all realizations (observed and simulated apparent resistivity change); 4) heuristic optimization on ERT computed and calculated data. Preliminary results show significant reduction of parameter uncertainty, hence realization space, with assimilation of cross-borehole ERT data. Loss in sensitivity of ERT between boreholes is compensated here by the stochastic modeling approach, rather than using a deterministic inversion scheme. Our results suggest stochastic reservoir simulations, together with assimilation of cross-borehole ERT data, could be useful tools for design and monitoring of deep geothermal systems.
Nguyen, Khanh Ngoc; Do, Mai Thi Thanh; Can, Ngoc Thi Bich; Hwu, Wuh-Liang; Vu, Dung Chi
2017-01-01
Background Pompe disease (PD) or glycogen storage disease type II is a lysosomal storage disorder, caused by mutations of GAA gene which results in deficiency of acid alpha-glucosidase (GAA) enzyme that involves in metabolism of glycogen in the lysosomes. Its incidence is 1/14,000–1/100,000. PD is divided into three types: classic infantile onset, non-classic infantile onset, and late onset. Early enzyme replacement therapy (ERT) before developing respiratory distress may lead to good outcome. Since 2013, we have identified 16 cases with classic infantile-onset and 5 cases were treated with ERT. Herein, we describe phenotypes and outcomes of five infantile-onset PD patients who received ERT. Methods GAA enzyme assay was done at National Taiwan University Hospital. Results Ages of diagnosis were 12, 38 and 70 days, 5 and 9 months of age. Clinical presentations included macroglossia (5/5), hypertrophic cardiomyopathy (5/5), failure to thrive (5/5), facial weakness and hypotonia (3 patients diagnosed after 70 days of age), respiratory failure (1 patient diagnosed at 9 months of age). All patients had mildly elevated plasma CK (270–380 UI/L) and transaminase (60–260 UI/l). Ages at starting ERT were 28 and 58 days, 3, 6 and 10 months. The time intervals from diagnosis to starting ERT were between 14 days and 1 month. The durations of ERT were 4–22 months. The outcomes were good. All patients had improvement of cardiac functions shown on echocardiography, respiratory status, and motor development. The patient who first received ERT at 10 months of age was reportedly dead at home due to food obstruction at 18 months of age. Current ages of the survivors were 5–24 months. Conclusions Patients with classic infantile-onset PD will have good outcomes if ERT is started early. Newborn screening for this disease is necessary to yield an early diagnosis.
A spatially adaptive total variation regularization method for electrical resistance tomography
NASA Astrophysics Data System (ADS)
Song, Xizi; Xu, Yanbin; Dong, Feng
2015-12-01
The total variation (TV) regularization method has been used to solve the ill-posed inverse problem of electrical resistance tomography (ERT), owing to its good ability to preserve edges. However, the quality of the reconstructed images, especially in the flat region, is often degraded by noise. To optimize the regularization term and the regularization factor according to the spatial feature and to improve the resolution of reconstructed images, a spatially adaptive total variation (SATV) regularization method is proposed. A kind of effective spatial feature indicator named difference curvature is used to identify which region is a flat or edge region. According to different spatial features, the SATV regularization method can automatically adjust both the regularization term and regularization factor. At edge regions, the regularization term is approximate to the TV functional to preserve the edges; in flat regions, it is approximate to the first-order Tikhonov (FOT) functional to make the solution stable. Meanwhile, the adaptive regularization factor determined by the spatial feature is used to constrain the regularization strength of the SATV regularization method for different regions. Besides, a numerical scheme is adopted for the implementation of the second derivatives of difference curvature to improve the numerical stability. Several reconstruction image metrics are used to quantitatively evaluate the performance of the reconstructed results. Both simulation and experimental results indicate that, compared with the TV (mean relative error 0.288, mean correlation coefficient 0.627) and FOT (mean relative error 0.295, mean correlation coefficient 0.638) regularization methods, the proposed SATV (mean relative error 0.259, mean correlation coefficient 0.738) regularization method can endure a relatively high level of noise and improve the resolution of reconstructed images.
Mapping Atlantic coastal marshlands, Maryland, Georgia, using ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Anderson, R. R.; Carter, V. L.; Mcginness, J. W., Jr.
1973-01-01
Eastern coastal marshes are the most extensive and productive in the United States. A relatively low cost, moderately accurate method is needed to map these areas for management and protection. Groundbased and low-altitude aircraft methods for mapping are time-consuming and quite expensive. The launch of NASA's Earth Resources Technology Satellite has provided an opportunity to test the feasibility of mapping wetlands using small scale imagery. The test sites selected were in Chesapeake Bay, Maryland, and Ossabaw Island, Georgia. Results of the investigation indicate that the following may be ascertained from ERTS imagery, enlarged to 1:250,000: (1) upper wetland boundary; (2) drainage pattern in the wetland; (3) plant communities; (4) ditching activities associated with agriculture; and (5) lagooning for water-side home development. Conclusions are that ERTS will be an excellent tool for many types of coastal wetland mapping.
Remote sensing in Iowa agriculture. [cropland inventory, soils, forestland, and crop diseases
NASA Technical Reports Server (NTRS)
Mahlstede, J. P. (Principal Investigator); Carlson, R. E.
1973-01-01
The author has identified the following significant results. Results include the estimation of forested and crop vegetation acreages using the ERTS-1 imagery. The methods used to achieve these estimates still require refinement, but the results appear promising. Practical applications would be directed toward achieving current land use inventories of these natural resources. This data is presently collected by sampling type surveys. If ERTS-1 can observe this and area estimates can be determined accurately, then a step forward has been achieved. Cost benefit relationship will have to be favorable. Problems still exist in these estimation techniques due to the diversity of the scene observed in the ERTS-1 imagery covering other part of Iowa. This is due to influence of topography and soils upon the adaptability of the vegetation to specific areas of the state. The state mosaic produced from ERTS-1 imagery shows these patterns very well. Research directed to acreage estimates is continuing.
Improving the groundwater-well siting approach in consolidated rock in Nampula Province, Mozambique
NASA Astrophysics Data System (ADS)
Chirindja, F. J.; Dahlin, T.; Juizo, D.
2017-08-01
Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (<600 L/h). Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a well-developed altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.
NASA Astrophysics Data System (ADS)
Bavusi, Massimo; Giocoli, Alessandro; de Martino, Gregory; Loperte, Antonio; Lapenna, Vincenzo
2010-05-01
Montemurro is a little centre town located in the Agri Valley (Basilicata Region, Italy) which was affected by two catastrophic events: in the 1842 a very large landslide has damaged great part of the centre and in the 1857 the town was destroyed completely by the "Great Neapolitan Earthquake" (Mallet, 1862), a seismic event having epicenter in the Agri Valley (Cello et al., 2003; Bavusi et al., 2004). Signs of those tragic events can be still found in the fabric of the city. One of these is certainly S. Maria square, a place suspected to house a church before the disastrous events of 1842. This suspicion is supported by a series of evidences: a historical drawing, dating back to before 1842, shows a church in position compatible with the location of the square; in aerial view S. Maria square appears as tear in the fabric of the city; the tales of the erderlies of Montemurro speak about an ancient missing church in the town. Then, in the attempt to resolve the doubt about the presence of the church, a geophysical survey was planned in S. Maria Square with the aim to detect some buried masonry structures related to the church. In this work we selected two active techniques such as the Ground Penetrating Radar (GPR) and the Electrical Resistivity Tomography (ERT). Sixty parallel GPR profiles 0.5 m spaced were gathered in S. Maria Square and in a contiguous street by using a GSSI SIR3000 system with a central frequency antenna of 200 MHz. Processed radargrams showed numerous reflectors and heterogeneities in the subsoil related to manmade objects. Then, a laborious data processing (Nuzzo et al., 2002) allowed to obtain several time-slices showing noticeable reflections compatible with masonry structures. Moreover, two ERT profiles were carried out by using an IRIS Syscal R2 system equipped with a multielectrode cable. The first ERT profile 86 m long and having 44 electrodes 2 m spaced allowed to investigate up to 9 m of depth. The second, overlapped on the previous one in the central part and constituted by 48 electrodes 1 m spaced for a length of 47 m, allowed to investigate up to about 4.5 m. Both Wenner and dipole-dipole sequences gathered along two arrays were inverted by using Res2DInv software (Loke and Barker, 1996). They showed several shallow high resistive nuclei. Their positions are in good agreement with those of the reflectors showed in the radargrams and time slices. Joint interpretation of GPR and ERT results suggests the presence of cavities and manmade structures under the square. Acknowledgements This work was supported by the traffic policeman, the technicians, the workers and the mayor Mario Di Sanzio of the Commune of Montemurro. References Bavusi M., Chianese D., Giano S.I., Mucciarelli M. (2004). Multidisciplinary investigations on the Roman aqueduct of Grumentum (Basilicata, Southern Itlay). Annals of geophysics, 47 (6), 1791-1801. Cello G., , Tondi E., Micarelli L. and Mattioni L. (2003). Active tectonics and earthquake sources in the epicentral area of the 1857 Basilicata earthquake (southern Italy). Journal of Geodynamics, 36 (1,2), 37-50. Loke M.H., Barker R.D., (1996). Rapid least-square inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131 -152. Mallet R. (1862) - Great Neapolitan Earthquake of 1857. London 1862, 2, Chapmann and Hall.
NASA Astrophysics Data System (ADS)
Fankhauser, Kerstin; Guzman, Daisy R. Lucas; Oggier, Nicole; Maurer, Hansruedi; Springman, Sarah M.
2015-04-01
Various types of mass movements cause extensive natural hazards in populated mountain regions. They need to be quantified, and possibly predicted, for implementing effective mitigation and protection measures. The Meretschibach catchment in the Valais area, Switzerland, is a source region for such events. Various forms of instabilities occur on the steep slopes. They manifest themselves in form of smaller rock falls and rock slides on the open scree slopes. Moreover, large sediment volumes of channelized stream deposits can evolve into debris flows, with a substantial run-out along the Meretschibach. Geophysical methods, such as electrical resistivity tomography (ERT) and ground-penetrating-radar (GPR) have been proven to be powerful tools for characterizing mass movements and slope instabilities. They complement other remote sensing techniques and in-situ geotechnical experiments. Ground-based and helicopter-borne GPR measurements were carried out at the Meretschibach test site, to determine the depth to the bedrock. The results indicate that the bedrock is generally shallow, ranging from a few centimetres to about 5 metres vertically below the surface. A particularly interesting aspect of the GPR investigations was the observation that bedrock depth could be resolved by both, ground-based and helicopter-borne GPR data. Ground-based GPR surveying proved to be extremely challenging on the steep slopes, and some areas were even inaccessible due to safety concerns. It is therefore encouraging for future projects that helicopter-borne GPR acquisition offers a promising alternative. The spatial distribution of the soil moisture content and the temporal variations were determined with repeated ERT measurements. The resulting tomograms allowed a conductive soil layer and more resistive bedrock to be distinguished clearly. The ERT results were in good agreement with in-situ geotechnical measurements in a nearby test pit, and the depth of the soil-bedrock interface was broadly consistent with the GPR results. A comparison of tomograms obtained during the relatively dry month of June 2014, with those acquired after heavy rainfall in July 2014, showed significant changes of the shallow subsurface resistivities. These changes could be attributed in a quantitative fashion to variations of the soil water Saturation.
NASA Technical Reports Server (NTRS)
Colvocoresses, A. P.
1974-01-01
After nearly 18 months of successful operation of the first Earth Resources Technology Satellite (ERTS-1), a careful look at the future in order. Judging from the results of ERTS-1 experiments, public sales of ERTS-1 products and overall worldwide response it is believed that ERTS-1 has demonstrated an earth sensing mode that should become operational. It is recognized that several studies leading to the definition of an operational ERTS have been made. However cartographic requirements are generally more basic and demanding than those of the earth science disciplines and are therefore treated separately in this report. One assumption made is that the configuration of ERTS, particularly with respect to the multispectral scanner and data transmission rates cannot be materially altered.
NASA Technical Reports Server (NTRS)
Barnes, J. C. (Principal Investigator); Bowley, C. J.; Simmes, D. A.
1974-01-01
The author has identified the following significant results. In much of the western United States a large part of the utilized water comes from accumulated mountain snowpacks; thus, accurate measurements of snow distributions are required for input to streamflow prediction models. The application of ERTS-1 imagery for mapping snow has been evaluated for two geographic areas, the Salt-Verde watershed in central Arizona and the southern Sierra Nevada in California. Techniques have been developed to identify snow and to differentiate between snow and cloud. The snow extent for these two drainage areas has been mapped from the MSS-5 (0.6 - 0.7 microns) imagery and compared with aerial survey snow charts, aircraft photography, and ground-based snow measurements. The results indicate that ERTS imagery has substantial practical applications for snow mapping. Snow extent can be mapped from ERTS-1 imagery in more detail than is depicted on aerial survey snow charts. Moreover, in Arizona and southern California cloud obscuration does not appear to be a serious deterrent to the use of satellite data for snow survey. The costs involved in deriving snow maps from ERTS-1 imagery appear to be very reasonable in comparison with existing data collection methods.
2D Time-lapse Resistivity Monitoring of an Organic Produced Gas Plume in a Landfill using ERT.
NASA Astrophysics Data System (ADS)
Amaral, N. D.; Mendonça, C. A.; Doherty, R.
2014-12-01
This project has the objective to study a landfill located on the margins of Tietê River, in São Paulo, Brazil, using the electroresistivity tomography method (ERT). Due to huge organic matter concentrations in the São Paulo Basin quaternary sediments, there is subsurface depth related biogas accumulation (CH4 and CO2), induced by anaerobic degradation of the organic matter. 2D resistivity sections were obtained from a test area since March 2012, a total of 7 databases, being the last one dated from October 2013. The studied line has the length of 56m, the electrode interval is of 2m. In addition, there are two boreholes along the line (one with 3 electrodes and the other one with 2) in order to improve data quality and precision. The boreholes also have a multi-level sampling system that indicates the fluid (gas or water) presence in relation to depth. With our results it was possible to map the gas plume position and its area of extension in the sections as it is a positive resistivity anomaly, with the gas level having approximately 5m depth. With the time-lapse analysis (Matlab script) between the obtained 2D resistivity sections from the site, it was possible to map how the biogas volume and position change in the landfill in relation to time. Our preliminary results show a preferential gas pathway through the subsurface studied area. A consistent relation between the gas depth and obtained microbiological data from archea and bacteria population was also observed.
Electrical Resistance Tomography Field Trials to Image CO2 Sequestration
NASA Astrophysics Data System (ADS)
Newmark, R.
2003-12-01
If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition, telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
The Penn State ORSER system for processing and analyzing ERTS and other MSS data
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Borden, F. Y.; Weeden, H. A.
1974-01-01
The author has identified the following significant results. The office for Remote Sensing of Earth Resources (ORSER) of the Space Science and Engineering Laboratory at the Pennsylvania State University has developed an extensive operational system for processing and analyzing ERTS-1 and similar multispectral data. The ORSER system was developed for use by a wide variety of researchers working in remote sensing. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach. A remote Job Entry system permits use of an IBM 370/168 computer from any compatible remote terminal, including equipment tied in by long distance telephone connections. An elementary cost analysis has been prepared for the processing of ERTS data.
Nanoparticulation improves bioavailability of Erlotinib.
Yang, Kyung Mi; Shin, In Chul; Park, Joo Won; Kim, Kab-Sig; Kim, Dae Kyong; Park, Kyungmoon; Kim, Kunhong
2017-09-01
Nanoparticulation using fat and supercritical fluid (NUFS TM ) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva ® . In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva ® . The relative bioavailability of NUFS-Ert compared with that of Tarceva ® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva ® . NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva ® .
Yang, Sung M; Alvarez, Diego D; Schinder, Alejandro F
2015-11-18
Newly generated dentate granule cells (GCs) are relevant for input discrimination in the adult hippocampus. Yet, their precise contribution to information processing remains unclear. To address this question, it is essential to develop approaches to precisely label entire cohorts of adult-born GCs. In this work, we used genetically modified mice to allow conditional expression of tdTomato (Tom) in adult-born GCs and characterized their development and functional integration. Ascl1(CreERT2);CAG(floxStopTom) and Glast(CreERT2);CAG(floxStopTom) mice resulted in indelible expression of Tom in adult neural stem cells and their lineage upon tamoxifen induction. Whole-cell recordings were performed to measure intrinsic excitability, firing behavior, and afferent excitatory connectivity. Developing GCs were also staged by the expression of early and late neuronal markers. The slow development of adult-born GCs characterized here is consistent with previous reports using retroviral approaches that have revealed that a mature phenotype is typically achieved after 6-8 weeks. Our findings demonstrate that Ascl1(CreERT2) and Glast(CreERT2) mouse lines enable simple and reliable labeling of adult-born GC lineages within restricted time windows. Therefore, these mice greatly facilitate tagging new neurons and manipulating their activity, required for understanding adult neurogenesis in the context of network remodeling, learning, and behavior. Our study shows that Ascl1(CreERT2) and Glast(CreERT2) mice lines can be used to label large cohorts of adult-born dentate granule cells with excellent time resolution. Neurons labeled in this manner display developmental and functional profiles that are in full agreement with previous findings using thymidine analogs and retroviral labeling, thus providing an alternative approach to tackle fundamental questions on circuit remodeling. Because of the massive neuronal targeting and the simplicity of this method, genetic labeling will contribute to expand research on adult neurogenesis. Copyright © 2015 the authors 0270-6474/15/3515379-12$15.00/0.
Estimation of tree root distribution using electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Schmaltz, Elmar; Uhlemann, Sebastian
2016-04-01
Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape-shifting effects of secondary roots of the two Juglans regia in differently inclined ambiences can be imaged using 3D ERT. The results of this study can yield a grasp about the dimension of root architecture of single trees by using non-invasive geophysical techniques and give evidence about how roots influence the soil mantle mechanically and hydrologically according to the spatial distribution of their coarse roots.
NASA Astrophysics Data System (ADS)
Zumr, David; Vláčilová, Markéta; Dostál, Tomáš; Jeřábek, Jakub; Sobotková, Martina; Sněhota, Michal
2015-04-01
Soil compaction is a well recognized phenomena in the agricultural land. Various effects can alter the degree of the compaction in the field. The topsoil is regularly loosened due to agrotechnical operations, but the subsoil remains usually compacted. Various studies show increasing bulk density and decreasing saturated hydraulic conductivity in the plough pan, even though some authors argue that it does not have to be always the case due to presence of bio-macropores. Hence the structural properties of the subsoil and the spatial distribution of the compacted layer depth within the cultivated fields are important factors influencing soil water regime, nutrients regime and runoff generation. The aim of the contribution is to present the results of the monitoring of the plough pan depth spatial distribution at the experimental catchment Nucice (Central Bohemia, Czech Republic). The soils are classified as Luvisols and Cambisols with a loamy Ap horizon (0.1 - 0.2 m deep) underlined by a silty and silty-clay B horizon. The content of clay particles in the topsoil is around 8%. The soil has low inner aggregate (soil matrix) hydraulic conductivity, with measured values of approximately 0.1 - 2 cm d-1. The bulk topsoil saturated hydraulic conductivity (Ks) is significantly higher and varies depending on the season. To observe the divide between topsoil and subsoil layers in detail and to be able to compare the soil structure and pore networks of both layers we inspected undisturbed soil samples with X-ray computed tomography. The divide between the conservatively tilled topsoil and the subsoil is clearly observable also on terrain. To identify its exact position we implemented a combination of penetrometry, soil sampling and electrical resistance tomography (ERT). The penetration tests accompanied by soil probing were done in an irregular network across the whole catchment based on the slopes and distance to the stream. Several 2D ERT measurements were done locally on a plot of approximately 10 x 50 m. Dipole-dipole scheme with electrode span of 10 cm was used. The results obtained by different techniques are in a good agreement with observed plough pan position. The contribution was prepared within the project of Czech Science Foundation No. 13-20388P. We thank Johannes Koestel from SLU Uppsala for his great help during CT imaging of the soil samples.
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H., Jr. (Compiler)
1973-01-01
The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.
A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems
Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok
2018-01-01
Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621
Seismics-electrics Joint Interpretation in a gypsiferous context.
NASA Astrophysics Data System (ADS)
Marzan, Ignacio; Marti, David; Lobo, Agustin; Alvarez-Marron, Joaquina; Carbonell, Ramon
2016-04-01
The main objective of this study is to improve the geophysical characterization resulting from a shallow 3D high resolution travel-time tomography survey (500x500m). This survey was acquired in Villar de Cañas (Cuenca, Spain) in late 2013 and early 2014. Lithology down to 150 m depth in this site is characterized by endorheic sediments, mainly siltstone and gypsum. After processing the tomography data, the velocity model showed a good correlation with geology models and borehole data except for the siltstone-gypsum transition. The model involves two lithological limits: the "transition layer - massive gypsum layer" (well resolved by a relatively high velocity contrast) and the "siltstone layer - transition layer" (constrained only in the central part of the model by a relatively low velocity contrast). As electrical resistivity is able to characterize shale-gypsum transitions, we complemented the seismic data with results from a collection of 2D ERT surveys, for which we build a new 3D grid with 2 parameters by node: velocity and resistivity. In order to derive a geological interpretation, we apply a statistical classification method (Linear Discriminant Analysis) to the new bi-parametric grid, using reference classes from well logs. This process results on a final 3D lithological model with less ambiguity and thus with a better definition of the two limits under discussion. Our study shows that the integration of seismic and electric methods significantly improves geological characterization in a gypsiferous context.
Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick
2016-10-01
A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, R. Q.; Meng, X. M.; Zhang, F. Y.; Wang, S. Y.; Cui, Z. J.; Zhang, M. S.; Zhang, Y.; Chen, G.
2016-10-01
From the perspective of engineering geology, loess has long been considered as a homogeneous and porous material. It is commonly believed that water penetrates loess via pores and in some cases causing mass movements. However, several researchers have expressed doubts about this mechanism as a cause of slope failures in loess, and moreover the actual hydrological processes operating in loess deposits and their effect on slope failures have not been fully investigated. Here we present the results of an electrical resistivity survey of the Heifangtai loess terrace in northwestern China, designed to characterize the hydrological processes in loess slopes and their relationship with slope failures. The Heifangtai loess terrace is located on the fourth terrace of the Yellow River and consists of 57-m-thickness of aeolian loess. 2D and 3D electrical resistivity tomography (ERT) was used to monitor the movement of ground water before and after irrigation and rainfall events and the evolution of a sink hole in the toe of the landslide deposits. Our main findings are as follows: (1) Based on the 2D ERT results, the depth of infiltration into the thick unsaturated loess is not more than 5 m in the profile at the top of the landslide. (2) Electrical resistivity decreased as a result of water infiltration through sinkholes, and this process can increase the soil water content and induce soil liquefaction which can eventually result in land sliding. (3) Landslide deposits block the groundwater drainage channels through the loess, which results in the concentration of water in the toe of the landslide. Consequently, groundwater together with rainfall, triggers the failure of sinkholes or cracks, which may induce a continuing process of new slope failures at the sites of past landslide.
NASA Technical Reports Server (NTRS)
Bechtold, I. C. (Principal Investigator); Liggett, M. L.; Childs, J. F.
1973-01-01
There are no author-identified significant results in this report. Research progress in applications of ERTS-1 MSS imagery in study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. NIMBUS, Apollo 9, X-15, U-2, and SLAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Areas studied and methods employed in geologic field work are outlined.
NASA Technical Reports Server (NTRS)
Liggett, M. A.; Childs, J. F.
1973-01-01
The author has identified the following significant results. Research progress in applications of ERTS-1 MSS imagery to study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. Nimbus, Apollo 9, X-15, U-2, and SIAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Field areas studied and methods employed in geologic field work are outlined.
2012-01-01
Background Enzyme replacement therapy (ERT) in adults with Pompe disease, a progressive neuromuscular disorder, is of promising but variable efficacy. We investigated whether it alters the course of disease, and also identified potential prognostic factors. Methods Patients in this open-label single-center study were treated biweekly with 20 mg/kg alglucosidase alfa. Muscle strength, muscle function, and pulmonary function were assessed every 3–6 months and analyzed using repeated-measures ANOVA. Results Sixty-nine patients (median age 52.1 years) were followed for a median of 23 months. Muscle strength increased after start of ERT (manual muscle testing 1.4 percentage points per year (pp/y); hand-held dynamometry 4.0 pp/y; both p < 0.001). Forced vital capacity (FVC) remained stable when measured in upright, but declined in supine position (−1.1 pp/y; p = 0.03). Muscle function did not improve in all patients (quick motor function test 0.7 pp/y; p = 0.14), but increased significantly in wheelchair-independent patients and those with mild and moderate muscle weakness. Relative to the pre-treatment period (49 patients with 14 months pre-ERT and 22 months ERT median follow-up), ERT affected muscle strength positively (manual muscle testing +3.3 pp/y, p < 0.001 and hand-held dynamometry +7.9 pp/y, p < 0.001). Its effect on upright FVC was +1.8 pp/y (p = 0.08) and on supine FVC +0.8 (p = 0.38). Favorable prognostic factors were female gender for muscle strength, and younger age and better clinical status for supine FVC. Conclusions We conclude that ERT positively alters the natural course of Pompe disease in adult patients; muscle strength increased and upright FVC stabilized. Functional outcome is probably best when ERT intervention is timely. PMID:23013746
Tanjuakio, Julian; Suzuki, Yasuyuki; Patel, Pravin; Yasuda, Eriko; Kubaski, Francyne; Tanaka, Akemi; Yabe, Hiromasa; Mason, Robert W.; Montaño, Adriana M.; Orii, Kenji E.; Orii, Koji O.; Fukao, Toshiyuki; Orii, Tadao; Tomatsu, Shunji
2014-01-01
The aim of this study was to assess the Activities of Daily Living (ADL) in patients with Hunter syndrome (mucopolysaccharidosis II; MPS II) using a newly designed ADL questionnaire. We applied the questionnaire to evaluate clinical phenotypes and therapeutic efficacies of enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). We also explored early signs and symptoms to make early diagnosis feasible. We devised a new ADL questionnaire with three domains: “Movement,” “Movement with Cognition,” and “Cognition.” Each domain has four subcategories rated on a 5-point scale based on level of assistance. We also scored signs and symptoms unique to MPS by 12 subcategories (five points per category), providing 60 points in total. The questionnaire was first administered to 138 healthy Japanese controls (0.33 – 50 years), and successively, to 74 Japanese patients with Hunter syndrome (4 – 49 years). The patient cohort consisted of 51 severe and 23 attenuated phenotypes; 20 patients treated with HSCT, 23 patients treated early with ERT (≤ 8 years), and 25 patients treated late with ERT (> 8 years), and 4 untreated patients. Among 18 severe phenotypic patients treated by HSCT, 10 were designated as early HSCT (≤ 5 years), while 8 were designated as late HSCT (> 5 years). Scores from patients with severe phenotypes were lower than controls and attenuated phenotypes in all categories. Among patients with severe phenotypes, there was a trend that HSCT provides a higher ADL score than early ERT, and there was a significant difference in ADL scores between late ERT and HSCT groups. Early ERT and early HSCT provided a higher score than late ERT and late HSCT, respectively. In conclusion, we have evaluated the feasibility of a new questionnaire in control population and patients with Hunter syndrome, leading to a novel evaluation method for clinical phenotypes and therapeutic efficacy. Early treatment with HSCT provides a better consequence in ADL of patients. PMID:25468646
A new vegetation map of the western Seward Peninsula, Alaska, based on ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Anderson, J. H.; Belon, A. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A reconstituted, simulated color-infrared ERTS-1 image covering the western Seward Peninsula was prepared and it is used for identifying and mapping vegetation types by direct visual examination. The image, NASA ERTS E-1009-22095, was obtained approximately at 1110 hours, 165 degrees WMT on August 1, 1972. Seven major colors are identified. Four of these are matched with units on existing vegetation maps: bright red - shrub thicket; light gray-red - upland tundra; medium gray-red - coastal coastal wet tundra; gray - alpine barrens. The three colors having no map equivalents are tentatively interpreted as follows: pink - grassland tundra; dark gray-red - burn scars; light orange-red - senescent vegetation. A vegetation map, drawn by tracing on an acetate overlay of the image is presented. Significantly more information is depicted than on existing maps with regards to vegetation types and their areal distribution. Furthermore the preparation of the new map from ERTS-1 imagery required little time relative to conventional methods and extent of areal coverage.
Quality and use of ERTS radiometric information in geologic applications
NASA Technical Reports Server (NTRS)
Goetz, A. F. H.; Billingsley, F. C.
1974-01-01
Some techniques are described for making full use of the data contained in an ERTS MSS image. Only about one-fourth of the data in a single band can be displayed at one time on a black and white image; therefore, when all four bands are considered, only about 7% of the available data can be used by the interpreter. Selecting the proper subset of information for the photointerpreter is therefore a necessity. Ratio methods exclude the brightness information from the display. A field study in one area using a portable spectrometer has shown only fair correlation with ERTS radiometry after one normalization procedure. Plots of brightness of test areas with sun angle show discrepancies. Plots of ratios show discrepancies of lesser magnitude, although the error limits are large.
Monitoring coastal water properties and current circulation with ERTS-1. [Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V.; Otley, M.; Wethe, C.; Rogers, R.
1974-01-01
Imagery and digital tapes from nine successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle have been analyzed with special emphasis on turbidity, current circulation, waste disposal plumes and convergent boundaries between different water masses. ERTS-1 image radiance correlated well with Secchi depth and suspended sediment concentration. Circulation patterns observed by ERTS-1 during different parts of the tidal cycle, agreed well with predicted and measured currents throughout Delaware Bay. Convergent shear boundaries between different water masses were observed from ERTS-1. In several ERTS-1 frames, waste disposal plumes have been detected 36 miles off Delaware's Atlantic coast. The ERTS-1 results are being used to extend and verify hydrodynamic models of the bay, developed for predicting oil slick movement and estimating sediment transport.
Hopkin, Robert J; Cabrera, Gustavo; Charrow, Joel; Lemay, Roberta; Martins, Ana Maria; Mauer, Michael; Ortiz, Alberto; Patel, Manesh R; Sims, Katherine; Waldek, Stephen; Warnock, David G; Wilcox, William R
2016-09-01
Fabry disease, an X-linked lysosomal storage disorder, causes intracellular accumulation of glycosphingolipids leading to progressive renal, cardiovascular, and cerebrovascular disease, and premature death. This longitudinal Fabry Registry study analyzed data from patients with Fabry disease to determine the incidence and type of severe clinical events following initiation of enzyme replacement therapy (ERT) with agalsidase beta, as well as risk factors associated with occurrence of these events. Severe events assessed included chronic dialysis, renal transplantation, cardiac events, stroke, and death. The analyses included 969 male and 442 female Fabry patients. The mean age at first agalsidase beta infusion was 35 and 44, and median treatment follow-up 4.3years and 3.2years, respectively. Among males, cardiac events were the most common on-ERT events, followed by renal, stroke, and non-cardiac death. Among females, cardiac events were also most common followed by stroke and renal events. Patients with on-ERT events had significantly more advanced cardiac and renal disease at baseline as compared with patients without on-ERT events. Severe events were also associated with older age at ERT initiation (males and females), a history of pre-ERT events (females; approaching statistical significance in males), and a higher urinary protein/creatinine ratio (females). Approximately 65% of patients with pre-ERT events did not experience subsequent on-ERT events. Of patients without pre-ERT events, most (84% of males, 92% of females) remained event-free. Patients with on-ERT severe events had more advanced Fabry organ involvement at baseline than those without such events and patients who initiated ERT at a younger age had less residual risk of on-ERT events. The observed patterns of residual risk may aid clinicians in multidisciplinary monitoring of male and female patients with Fabry disease receiving ERT, and in determining the need for administration of adjunctive therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Application of NASA ERTS-1 satellite imagery in coastal studies
NASA Technical Reports Server (NTRS)
Magoon, O. T.; Berg, D. W. (Principal Investigator); Hallermeier, R. J.
1973-01-01
There are no author-identified significant results in this report. Review of ERTS-1 imagery indicates that it contains information of great value in coastal engineering studies. A brief introduction is given to the methods by which imagery is generated, and examples of its application to coastal engineering. Specific applications discussed include study of the movement of coastal and nearshore sediment-laden water masses and information for planning and construction in remote areas of the world.
An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana
NASA Technical Reports Server (NTRS)
Varney, J. R.; Craighead, J. J.; Sumner, J. S.
1974-01-01
Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.
Vassilopoulou-Sellin, Rena; Cohen, Deborah S; Hortobagyi, Gabriel N; Klein, Mary Jean; McNeese, Marsha; Singletary, S Eva; Smith, Terry L; Theriault, Richard L
2002-11-01
Women with a history of breast carcinoma generally have been advised to avoid estrogen replacement therapy (ERT). The validity of this approach has been scrutinized and debated in recent years, and reassessment through appropriate clinical trials has been suggested. The authors conducted a prospective clinical trial to assess the safety and efficacy of prolonged ERT in a group of menopausal women with localized (Stage I or Stage II) breast carcinoma and a minimum disease free interval of 2 years if estrogen receptor (ER) was negative or 10 years if ER status was unknown. For 5 years, the authors followed 77 trial participants and 222 other women with clinical and prognostic characteristics comparable to those of the trial participants. Overall, 56 women were on ERT, and 243 women were not on ERT. The association of ERT with skeletal and lipid changes was assessed in the randomized trial participants. The effect of ERT on the development of recurrent or new breast carcinoma and other carcinomas was analyzed both in the trial participants and in the overall group. Patient and disease characteristics, such as tumor size, number of lymph nodes involved, ER status, menopausal status, and disease free interval were comparable for women who were on ERT and women who were not on ERT. These same parameters also were comparable for women who joined the trial and women who did not. ERT use was associated with modest lipid and skeletal benefits. The introduction of ERT did not compromise disease free survival. Two of 56 women on ERT (3.6%) developed a contralateral, new breast carcinoma. In the group that was not on ERT, 33 of 243 women (13.5%) developed new or recurrent breast carcinoma. There were no differences in the development of other carcinomas with respect to ERT. ERT did not compromise disease free survival in select patients who were treated previously for localized breast carcinoma. Larger scale randomized trials are needed to confirm these findings. Copyright 2002 American Cancer Society.
Sotgia, Salvatore; Pisanu, Elisabetta; Cambedda, Debora; Pintus, Gianfranco; Carru, Ciriaco; Zinellu, Angelo
2014-09-01
A new efficient and sensitive precolumn hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) method was established for the quantitative determination of L-ergothioneine (ERT) in milk. After derivatization of ERT with 7-diethylamino-3-[4-(iodoacetamido)phenyl]-4-methylcoumarin, chromatographic separation was achieved in a fairly short time, less than 5 min, on a 100 × 2.1 mm Waters Cortecs UPLC HILIC 1.6-μm column, by using a mixture of 30 mmol/L ammonium acetate/acetonitrile (10:90, v/v) as a mobile phase flowing isocratically at 0.9 mL/min. Limit of detection and the limit of quantification were 0.03 and 0.10 μmol/L, respectively. The method exhibited linearity in a concentration range of 0.16 and 5.08 μmol/L. Mean recovery was 106.66%, whereas intra- and interassay precisions were determined to be within 6 RSD%. On average, ERT concentration in different commercially available classes of cow milk was found to be 0.442 ± 0.191 μmol/L, with the highest levels in the ultra-high temperature milks and low values in the unprocessed and HTST whole milks. In this light, our experiments suggest that ERT could be used as a marker for the heat treatment of milk. © 2014 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav
2016-04-01
Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408
NASA Astrophysics Data System (ADS)
Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen
2017-10-01
In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.
Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach
Jungke, Peggy; Hammer, Juliane; Hans, Stefan; Brand, Michael
2015-01-01
Gene manipulation using the Cre/loxP-recombinase system has been successfully employed in zebrafish to study gene functions and lineage relationships. Recently, gene trapping approaches have been applied to produce large collections of transgenic fish expressing conditional alleles in various tissues. However, the limited number of available cell- and tissue-specific Cre/CreERT2-driver lines still constrains widespread application in this model organism. To enlarge the pool of existing CreERT2-driver lines, we performed a genome-wide gene trap screen using a Tol2-based mCherry-T2a-CreERT2 (mCT2aC) gene trap vector. This cassette consists of a splice acceptor and a mCherry-tagged variant of CreERT2 which enables simultaneous labeling of the trapping event, as well as CreERT2 expression from the endogenous promoter. Using this strategy, we generated 27 novel functional CreERT2-driver lines expressing in a cell- and tissue-specific manner during development and adulthood. This study summarizes the analysis of the generated CreERT2-driver lines with respect to functionality, expression, integration, as well as associated phenotypes. Our results significantly enlarge the existing pool of CreERT2-driver lines in zebrafish and combined with Cre–dependent effector lines, the new CreERT2-driver lines will be important tools to manipulate the zebrafish genome. PMID:26083735
Fuentes, Blanca; Alonso de Leciñana, María; Ximénez-Carrillo, Alvaro; Martínez-Sánchez, Patricia; Cruz-Culebras, Antonio; Zapata-Wainberg, Gustavo; Ruiz-Ares, Gerardo; Frutos, Remedios; Fandiño, Eduardo; Caniego, Jose L; Fernández-Prieto, Andrés; Méndez, Jose C; Bárcena, Eduardo; Marín, Begoña; García-Pastor, Andrés; Díaz-Otero, Fernando; Gil-Núñez, Antonio; Masjuán, Jaime; Vivancos, Jose; Díez-Tejedor, Exuperio
2015-08-01
The complexity of endovascular revascularization treatment (ERT) in acute ischemic stroke and the small number of patients eligible for treatment justify the development of stroke center networks with interhospital patient transfers. However, this approach might result in futile transfers (ie, the transfer of patients who ultimately do not undergo ERT). Our aim was to analyze the frequency of these futile transfers and the reasons for discarding ERT and to identify the possible associated factors. We analyzed an observational prospective ERT registry from a stroke collaboration ERT network consisting of 3 hospitals. There were interhospital transfers from the first attending hospital to the on-call ERT center for the patients for whom this therapy was indicated, either primarily or after intravenous thrombolysis (drip and shift). The ERT protocol was activated for 199 patients, 129 of whom underwent ERT (64.8%). A total of 120 (60.3%) patients required a hospital transfer, 50 of whom (41%) ultimately did not undergo ERT. There were no differences in their baseline characteristics, the times from stroke onset, or in the delays in interhospital transfers between the transferred patients who were treated and those who were not treated. The main reasons for rejecting ERT after the interhospital transfer were clinical improvement/arterial recanalization (48%) and neuroimaging criteria (32%). Forty-one percent of the ERT transfers were futile, but none of the baseline patient characteristics predicted this result. Futility could be reduced if repetition of unnecessary diagnostic tests was avoided. © 2015 American Heart Association, Inc.
Vadose Zone Transport Field Study: Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gee, Glendon W.; Ward, Anderson L.
2001-11-30
Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of themore » past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.« less
Geoelectrical inference of mass transfer parameters using temporal moments
Day-Lewis, Frederick D.; Singha, Kamini
2008-01-01
We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT‐estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments.
Mapping northern Atlantic coastal marshlands, Maryland-Virginia, using ERTS imagery
NASA Technical Reports Server (NTRS)
Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.
1973-01-01
The author has identified the following significant results. ERTS-1 data provides repetitive synoptic coverage for DC 00000 of wetland ecology, detection of change, and mapping or inventory of wetland boundaries and plant communities. ERTS-1 positive transparencies of Atlantic Coastal wetlands were enlarged to different scales and mapped using a variety of methods. Results of analysis indicate: (1) mapping of wetland boundaries and vegetative communities from imagery at a scale of 1:1,000,000 is impractical because small details are difficult to illustrate; (2) mapping to a scale of 1:250,000 is practical for defining land-water interface, upper wetland boundary, gross vegetative communities, and spoil disposal/dredge and fill operations; (3) 1:125,000 enlargements provide additional information on transition zones, smaller plant communities, and drainage or mosquito ditching. Overlays may be made directly from prints.
NASA Astrophysics Data System (ADS)
Nzumotcha Tchoumkam, Linda Armelle
The infiltration through the core of foundation of embankment dams is a problem which is worrying for safety and economical dams. The mechanism of infiltration can be progressive and can disturb the stability or the durability of the structures. Consequently, its evolution can undermine public security. Statistics made for 11192 embankment dams through the world showed that until 1986, 48% of damages have been caused by internal erosion. This internal erosion was generated by infiltration through the core or the foundation of embankment dam. Electrical, electromagnetic and thermometric methods are usually considered as investigation methods. The goal of this work is to study the sensibility of the self-potential method (S.P.) to detect seepage for the case of embankment dams. We used S.P jointly with electrical resistance tomography (ERT). To attain this objective, we acquired self-potential and resistivity data with periodic changes of the water level in the reservoir. These changes were made every spring (in November) and every summer (in April) at the emptying and impounding of the reservoir. For this project, measures have been conducted over a period of two years (2008-2010). Before that, thermometry, self-potential and magnetic methods were applied on the site to acquire information about seepage and its approximate position. Flow rate was also measured. In April 2010, injection of grout was used to clog seepage. The measurements allowed to represent the variation of potential with time and space. That permitted to make a distinction between different sources of self-potential signal. The mapping of the electric potential during the emptying and the impounding of the reservoir showed a negative anomaly which correlate to an outflow located in the upstream of the dam. The monitoring of the S.P. signal permitted to dissociate an anomaly zone which can be related to the site of injection of grout. The gradient of self-potential decreased with the increase of pressure gradient. We have computed the effective electro kinetic (EK) coupling coefficient of the dam from the variation of the potential with water level. Time-lapse ERT is used to control the variation of electrical conductivity of the material together with changes in water level. The anomaly in the time-lapse represented agrees with the outflow. We also propose a 3D numerical model to interpret the measurements in a semi-quantitative manner. Comparing between results of modeling and the survey data, differences are noted that can be explained in different ways. More work would be needed to elucidate those differences, in particular with the measurement strategy and the estimation of coupling coefficients. Nevertheless, the proposed approach allowed to underline different variations under the ground. These results have also been used to discuss the limitations of the self-potential method applied to detect seepage in the dam.
Ma, Xiongchao; Sun, Baozhen; Zhu, Fei
2018-02-01
This study investigated the function of endonuclease-reverse transcriptase (mjERT) in Marsupenaeus japonicus. The 1129 bp cDNA sequence of mjERT was cloned from M. japonicus using rapid amplification of cDNA ends (RACE) PCR, and RT-qPCR analysis indicated that mjERT was highly expressed in the gills and hepatopancreas of M. japonicus. We also found that white spot syndrome virus (WSSV) or Vibrio alginolyticus challenge could enhance the expression of mjERT. When mjERT was inhibited, immune genes such as toll, p53, hemocyanin and tumor necrosis factor-α (TNF-α) were significantly down-regulated (P < .01) in the hemocytes of shrimp, while myosin was significantly up-regulated (P < .01). We demonstrated that mjERT is very important for the progression of WSSV infection and that the cumulative mortality of WSSV-infected and V. alginolyticus-infected shrimps was significantly increased following mjERT RNA interfere (RNAi). Apoptosis data provided information to suggest that mjERT-dsRNA challenge caused less apoptosis in hemocytes in both the disease-free and viral group. We also revealed that mjERT-dsRNA treatment resulted in a lower phagocytosis rate in the hemocytes of V. alginolyticus-challenged shrimp. Finally, we found that the absence of mjERT had an significantly negative impact upon shrimp phenoloxidase (PO) activity, superoxide dismutase (SOD) activity and total hemocyte count (THC) following WSSV or V. alginolyticus infection, indicating a regulative role for mjERT in the innate immunity of shrimp in response to pathogenic infection. In summary, we concluded that mjERT might promote the anti-WSSV immune response of shrimp by regulating apoptosis, PO activity, THC and SOD activity, and also exert a positive role in the immune response against V. alginolyticus by regulating phagocytosis, SOD activity, PO activity and THC. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pasquet, S.; Ludovic, B.; Dhemaied, A.; Flipo, N.; Guérin, R.; Mouhri, A.; Faycal, R.; Vitale, Q.
2013-12-01
Among geophysical methods applied to hydrogeology, seismic prospecting is frequently confined to the characterization of aquifers geometry. The combined study of pressure- (P) and shear- (SH) wave velocities (respectively Vp and Vs) can however provide information about the aquifer parameters, as it is commonly done for most fluids in hydrocarbon exploration. This approach has recently been proposed in sandy aquifers with the estimation of Vp/Vs ratio. In order to address such issues in more complex aquifer systems (e.g. unconsolidated, heterogeneous or low-permeability media) we carried out P- and SH-wave seismic surveys on the Orgeval experimental basin (70 km east from Paris, France). This basin drains a multi-layer aquifer system monitored by a network of piezometers. The upper part of the aquifer system is characterized by tabular layers well delineated all over the basin thanks to Electrical Resistivity Tomography (ERT), Time Domain ElectroMagnetic (TDEM) soundings and wells. But the lateral variability of the intrinsic properties in each layer raises questions regarding the hydrodynamics of the upper aquifer and the validity of interpolations between piezometers. A simple interpretation of P- and SH-wave first arrivals for tabular models provides 1D velocity structures in very good agreement with the stratification anticipated from ERT and nearby geological logs. Vp/Vs ratios show a strong contrast at a depth consistent with the observed water table level, reinforcing the assumption of a free upper aquifer in the area. Similar experiments have to be conducted under different hydrological conditions to validate these observations. Anticipating the need to propose lateral applications of the method, we additionally performed tomographic inversions of the recorded data to retrieve 2D Vp and Vs models. If interpreted independently, both models fail to depict the stratification of the medium and the water table level cannot be straightforwardly identified. However, the computation of Vp/Vs ratios and derived parameters helps enhancing lithological contrasts.
NASA Astrophysics Data System (ADS)
Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.
2017-12-01
Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly sensitive to the definition of the rock-physics transform; it is therefore important to model this transfer function accurately.
Geophysical Images of the Shallow Hydrothermal Degassing at Solfatara (Phlegrean Fields, Italy)
NASA Astrophysics Data System (ADS)
Byrdina, S.; Vandemeulebrouck, J.; Cardellini, C.; Chiodini, G.; Legaz, A.; Camerlynck, C.; Lebourg, T.
2014-12-01
We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1-200 Ohmm. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards's equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches, we obtain the permeability of the shallow layer below Fangaia which ranges between (2 - 4) 10-14 m 2.
Land use classification and change analysis using ERTS-1 imagery in CARETS
NASA Technical Reports Server (NTRS)
Alexander, R. H.
1973-01-01
Land use detail in the CARETS area obtainable from ERTS exceeds the expectations of the Interagency Steering Committee and the USGS proposed standardized classification, which presents Level 1 categories for ERTS and Level 2 for high altitude aircraft data. Some Levels 2 and 3, in addition to Level 1, categories were identified on ERTS data. Significant land use changes totaling 39.2 sq km in the Norfolk-Portsmouth SMSA were identified and mapped at Level 2 detail using a combination of procedures employing ERTS and high altitude aircraft data.
A study of the utilization of ERTS-1 data from the Wabash River Basin
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The identification and area estimation of crops experiment tested the usefulness of ERTS data for crop survey and produced results indicating that crop statistics could be obtained from ERTS imagery. Soil association mapping results showed that strong relationships exist between ERTS data derived maps and conventional soil maps. Urban land use analysis experiment results indicate potential for accurate gross land use mapping. Water resources mapping demonstrated the feasibility of mapping water bodies using ERTS imagery.
NASA Astrophysics Data System (ADS)
Gerardo, C.; Lapenna, V.; Loperte, A.; Perrone, A.
2009-12-01
A new approach has been applied for investigating some landslides of recent genesis in Basilicata region (southern Italy), in particular a geophysical technique has been used to study a landslide bodies. Electrical resistivity tomography method has been applied to obtain information about the deep characteristics of the landslide bodies. The high resolution of the 2D ERTs allowed to locate the possible sliding surfaces of the landslide body. They also highlighted areas characterized by high water content, the increase of the saturation degree and pore pressures in these areas could have caused a weakening of the slopes. The information obtained by the application of indirect surveys appeared to be particularly useful for the end users involved in the risks management. In particular, taking into account the cycle of landslides emergency, the obtained data could give a valid contribution during the post-event phase which mainly regards the damage valuation. Indeed, only a corrected assessment of the damage and a precise geometric reconstruction of the landslide body, can direct the intervention actions of the end users. The results represent a valid cognitive support to choose the most appropriate technical solution for strengthening of the slopes and an example of best practice for the cooperation between the research activity (IMAA-CNR) and field emergency (Basilicata Civil Protection).
NASA Astrophysics Data System (ADS)
Hošek, Michal; Matys Grygar, Tomáš; Popelka, Jan; Kiss, Timea; Elznicová, Jitka; Faměra, Martin
2017-04-01
In the recent years researchers have enjoyed noticeable improvements of portable analytical and geophysical methods, which allow studying floodplain architecture and deciphering pollutant distribution more easily than ever before. Our area of interest was floodplain of the Ploučnice River, particularly a pollution hotspot in Boreček, severely impacted by U mining between the 1970s and late 1980s, in particular a "radioactive flood" in 1981. In the area, we used hand drill coring and in situ (field) analysis of so acquired sediments by handheld X-ray fluorescence spectrometer (XRF), which gave us information about depth profiles of pollutants (Ba, U, Zn) and the Al/Si and Zr/Rb ratios, i.e., proxies for sediment lithology. We found that spatial distribution of pollutants (control by depth and position in the floodplain) is apparently complex and discontinuous. In some places, contamination is buried by a couple decimetres of less polluted sediments, while in other places the peak pollution is near surface, apparently without a straightforward connection with the surface topography and the distance to the river channel. We thus examined the floodplain architecture, the internal structure of the floodplain using two geophysical methods. First of them, dipole electromagnetic profiling (DEMP, also denoted EMP, MP, or Slingram) quickly acquires average electric resistivity in top strata in selected areas, which was actually top 3 m with our particular instrument. Second, electric resistivity tomography (ERT) produces much more detailed information on resistivity with depth resolution of ca 0.5 m to the depth of ca 5 m in selected lines. ERT thus allows identifying boundaries of electric resistivity domains (sediment bodies) and DEMP their spatial distribution. Based on the obtained data, we divided the floodplain to five segments with specific topography, pollution characteristics, and electric resistivity. We suppose that those segments are lithogenetic floodplain units. Those findings must, however, be checked by sediment examination and analysis in selected points. We processed the crucial characteristics obtained by geochemical mapping, namely depth of maximum pollution, amount of contamination, and lithology (Al/Si and Zr/Rb ratios), using geostatistics. Moreover, some parts of floodplain were dated by optically stimulated luminescence (OSL) which revealed, that recycling of top decimetres of floodplain fine fill (silts) in Boreček site has proceeded relatively recently (in decades and centuries) as compared to deeper lying coarser (sandy) strata (millennia). The results of geochemical mapping show complexity of pollution hotspots and need of their integrated interpretation. Key words: Dipole electromagneting profilling, electric resistivity tomography, floodplain contamination, geochemical mapping
NASA Astrophysics Data System (ADS)
Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi
2017-04-01
Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization framework to predict the soil water content distribution and the results were compared to initial simulations (Hydrus results). We obtained more reliable water content specialization models when using the BME method. The presented approach integrates ERT and TDR measurements, and results demonstrate that its use significantly improves the spatial distribution of water content estimations. The approach will be applied to the experimental dataset collected at the Boissy le Châtel site where ERT data were collected daily during one hydrological year, using Syscal pro 48 electrodes (with a financial support of Equipex-Critex) and 10 TDR probes were used to monitor water content variation. Hourly hydrological survey (tile drainage discharge, precipitation, evapotranspiration variables and water table depth) were conducted at the same site. Data analysis and the application of geostatistical framework on the experimental dataset of 2015-2016 show satisfactory results and are reliable with the hydrological behavior of the study site.
Enzyme replacement therapy and fatigue in adults with Pompe disease.
Güngör, Deniz; de Vries, Juna M; Brusse, Esther; Kruijshaar, Michelle E; Hop, Wim C J; Murawska, Magda; van den Berg, Linda E M; Reuser, Arnold J J; van Doorn, Pieter A; Hagemans, Marloes L C; Plug, Iris; van der Ploeg, Ans T
2013-06-01
Pompe disease is a hereditary metabolic myopathy, for which enzyme replacement therapy (ERT) has been available since 2006. We investigated whether ERT reduces fatigue in adult patients with Pompe disease. In this prospective international observational survey, we used the Fatigue Severity Scale (FSS) to measure fatigue. Repeated measures ANOVA was used to analyze the data over time. In a subgroup of patients, we also evaluated muscle strength using the Medical Research Council Scale, measured pulmonary function as Forced Vital Capacity, and assessed depression using the Hospital Anxiety and Depression Scale. We followed 163 patients for a median period of 4 years before ERT and for 3 years during ERT. Before ERT, the mean FSS score remained stable at around 5.3 score points; during ERT, scores improved significantly by 0.13 score points per year (p < 0.001). Fatigue decreased mainly in women, in older patients and in those with shorter disease duration. Patients' improvements in fatigue were moderately correlated with the effect of ERT on depression (r 0.55; CI 95% 0.07 to 0.70) but not with the effect of ERT on muscle strength or pulmonary function. Fatigue is a common and disabling problem in patients with early and advanced stages of Pompe disease. Our finding that ERT helps to reduce fatigue is therefore important for this patient population, irrespective of the mechanisms underlying this effect. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1975-01-01
Mission plans and objectives of the ERTS 2 Satellite are presented. ERTS 2 follow-on investigations in various scientific disciplines including agriculture, meteorology, land-use, geology, water resources, oceanography, and environment are discussed. Spacecraft design and its sensors are described along with the Delta launch vehicle and launch operations. Applications identified from ERTS 1 investigations are summarized.
NASA Technical Reports Server (NTRS)
Rehder, J. B. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The analysis of strip mining from ERTS-1 data has resulted in the mapping of landscape changes for the Cumberland Plateau Test Site. Several mapping experiments utilizing ERTS-1 data have been established for the mapping of state-wide land use regions. The first incorporates 12 frames of ERTS-1 imagery for the generalized thematic mapping of forest cover for the state of Tennessee. In another mapping effort, 14 ERTS-1 images have been analyzed for plowed ground signatures to produce a map of agricultural regions for Tennessee, Kentucky, and the northern portions of Mississippi and Alabama. Generalized urban land use categories and transportation networks have been determined from ERTS-1 imagery for the Knoxville Test Site. Finally, through the analysis of ERTS-1 imagery, short-lived phenomena such as the 1973 spring floods on the Mississippi River in western Tennessee, have been detected, monitored, and mapped.
Machine processing of ERTS and ground truth data
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator); Peacock, K.
1973-01-01
The author has identified the following significant results. Results achieved by ERTS-Atmospheric Experiment PR303, whose objective is to establish a radiometric calibration technique, are reported. This technique, which determines and removes solar and atmospheric parameters that degrade the radiometric fidelity of ERTS-1 data, transforms the ERTS-1 sensor radiance measurements to absolute target reflectance signatures. A radiant power measuring instrument and its use in determining atmospheric parameters needed for ground truth are discussed. The procedures used and results achieved in machine processing ERTS-1 computer -compatible tapes and atmospheric parameters to obtain target reflectance are reviewed.
On-Farm, Almond Orchard Flooding as a Viable Aquifer Recharge Alternative
NASA Astrophysics Data System (ADS)
Ulrich, C.; Nico, P. S.; Wu, Y.; Newman, G. A.; Conrad, M. E.; Dahlke, H. E.
2017-12-01
In 2014, California legislators passed the Sustainable Groundwater Management Act (SGMA), which requires groundwater sustainability agencies (areas) to identify/prioritize water basins, develop current and projected water use/needs, develop a groundwater management plan, develop fees, etc. One of the challenges for implementing SGMA is the lack of data that can support alternative groundwater recharge methods such as on-farm flooding. Prior to anthropogenic river control, river floodplains captured excess water during overbank flow in the rainy season in the CA central valley. Today levees and canals strategically route rainy season high flows to the delta/ocean when irrigation water is not needed. Utilizing farmland once again as infiltration basins for groundwater banking and aquifer recharge could be a viable answer to California's depleted central valley aquifers. Prior to 2017, U.C. Davis had partnered with the Almond Board of California (ABC) and local growers to study the efficacy of agricultural flooding and the effects on annual almond crops (. LBNL joined this team to help understand the conveyance of recharge water, using electrical resistivity tomography (ERT), into the subsurface (i.e. localized fast paths, depth of infiltration, etc.) during flooding events. The fate of the recharge water is what is significant to understanding the viability of on-farm flooding as an aquifer recharge option. In this study two orchards (in Delhi and Modesto, CA), each approximately 2 acres, were flooded during the almond tree dormant period (January), to recharge 2 acre/ft of water into the local aquifers. ERT was used to characterize (soil structure) and monitor water infiltration over a single flooding event to investigate the fate of applied water. Data were collected every hour prior to flooding (baseline), during, and after all flood water had infiltrated (about 5 days total). Our time-lapse ERT results show a heterogeneous soil structure that leads to non-uniform infiltration (fast paths) and water recharge well below the root zone to a depth below 15m (45ft) at both study sites. These results advocate the use of on-farm flooding as a viable option for groundwater recharge of local aquifers and its usefulness given existing infrastructure and potential to divert water as it heads to the delta/ocean.
Hydrogeophysical monitoring of water infiltration processes
NASA Astrophysics Data System (ADS)
Bevilacqua, Ivan; Cassiani, Giorgio; Deiana, Rita; Canone, Davide; Previati, Maurizio
2010-05-01
Non-invasive subsurface monitoring is growing in the last years. Techniques like ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) can be useful in soil water content monitoring (e.g., Vereecken et al., 2006). Some problems remain (e.g. spatial resolution), but the scale is consistent with many applications and hydrological models. The research has to to provide even more quantitative tools, without remaining in the qualitative realm. This is a very crucial step in the way to provide data useful for hydrological modeling. In this work a controlled field infiltration experiment has been done in August 2009 in the experimental site of Grugliasco, close to the Agricultural Faculty of the University of Torino, Italy. The infiltration has been monitored in time lapse by ERT, GPR, and TDR (Time Domain Reflectometry). The sandy soil characteristics of the site has been already described in another experiment [Cassiani et al. 2009a].The ERT was èperformed in dipole-dipole configuration, while the GPR had 100 MHz and 500 MHz antennas in WARR configuration. The TDR gages had different lengths. The amount of water which was sprinkled was also monitored in time.Irrigation intensity has been always smaller than infiltration capacity, in order not toh ave any surface ponding. Spectral induced polarization has been used to infer constitutive parameters from soil samples [Cassiani et al. 2009b]. 2D Richards equation model (Manzini and Ferraris, 2004) has been then calibrated with the measurements. References. Cassiani, G., S. Ferraris, M. Giustiniani, R. Deiana and C.Strobbia, 2009a, Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment, in press, Bollettino di Geofisica Teorica ed Applicata, Vol. 50, 2 Marzo 2009, pp. 209-226. Cassiani, G., A. Kemna, A.Villa, and E. Zimmermann, 2009b, Spectral induced polarization for the characterization of free-phase hydrocarbon contamination in sediments with low clay content, Near Surface Geophysics, special issue on Hydrogeophysics, p. 547-562. Manzini G., and Ferraris S. 2004. Mass-conservative finite-volume methods on 2-D unstructured grids for the Richards equation, 'Advances in Water Resources' 27(12):1199-1215, 2004. content with ground penetrating radar: A review. Vadose Zone Journal 2, 476-491. Vereecken H., Binley A., Cassiani G., Kharkhordin I., Revil A. and Titov K. 2006. Applied Hydrogeophysics. Springer-Verlag.
NASA Technical Reports Server (NTRS)
Mcginnies, W. G. (Principal Investigator); Conn, J. S.; Haase, E. F.; Lepley, L. K.; Musick, H. B.; Foster, K. E.
1975-01-01
The author has identified the following significant results. Research results include a method for determining the reflectivities of natural areas from ERTS data taking into account sun angle and atmospheric effects on the radiance seen by the satellite sensor. Ground truth spectral signature data for various types of scenes, including ground with and without annuals, and various shrubs were collected. Large areas of varnished desert pavement are visible and mappable on ERTS and high altitude aircraft imagery. A large scale and a small scale vegetation pattern were found to be correlated with presence of desert pavement. A comparison of radiometric data with video recordings shows quantitatively that for most areas of desert vegetation, soils are the most influential factor in determining the signature of a scene. Additive and subtractive image processing techniques were applied in the dark room to enhance vegetational aspects of ERTS.
NASA Technical Reports Server (NTRS)
Seidel, A. D.
1974-01-01
The economic value of information produced by an assumed operational version of an earth resources survey satellite of the ERTS class is assessed. The theoretical capability of an ERTS system to provide improved agricultural forecasts is analyzed and this analysis is used as a reasonable input to the econometric methods derived by ECON. An econometric investigation into the markets for agricultural commodities is summarized. An overview of the effort including the objectives, scopes, and architecture of the analysis, and the estimation strategy employed is presented. The results and conclusions focus on the economic importance of improved crop forecasts, U.S. exports, and government policy operations. Several promising avenues of further investigation are suggested.
Regional agriculture surveys using ERTS-1 data
NASA Technical Reports Server (NTRS)
Draeger, W. C.; Nichols, J. D.; Benson, A. S.; Larrabee, D. G.; Jenkus, W. M.; Hay, C. M.
1974-01-01
The Center for Remote Sensing Research has conducted studies designed to evaluate the potential application of ERTS data in performing agricultural inventories, and to develop efficient methods of data handling and analysis useful in the operational context for performing large area surveys. This work has resulted in the development of an integrated system utilizing both human and computer analysis of ground, aerial, and space imagery, which has been shown to be very efficient for regional crop acreage inventories. The technique involves: (1) the delineation of ERTS images into relatively homogeneous strata by human interpreters, (2) the point-by-point classification of the area within each strata on the basis of crop type using a human/machine interactive digital image processing system; and (3) a multistage sampling procedure for the collection of supporting aerial and ground data used in the adjustment and verification of the classification results.
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. An interdisciplinary group at Penn State University is analyzing ERTS-1 data. The geographical area of interest is that of the Susquehanna River Basin in Pennsylvania. The objectives of the work have been to ascertain the usefulness of ERTS-1 data in the areas of natural resources and land use inventory, geology and hydrology, and environmental quality. Specific results include a study of land use in the Harrisburg area, discrimination between types of forest resources and vegetation, detection of previously unknown geologic faults and correlation of these with known mineral deposits and ground water, mapping of mine spoils in the anthracite region of eastern Pennsylvania, and mapping of strip mines and acid mine drainage in central Pennsylvania. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach.
Matsuoka, Takashi; Miwa, Yoshiyuki; Tajika, Makiko; Sawada, Madoka; Fujimaki, Koichiro; Soga, Takashi; Tomita, Hideshi; Uemura, Shigeru; Nishino, Ichizo; Fukuda, Tokiko; Sugie, Hideo; Kosuga, Motomichi; Okuyama, Torayuki; Umeda, Yoh
2016-12-01
Pompe disease is an autosomal recessive, lysosomal glycogen storage disease caused by acid α-glucosidase deficiency. Infantile-onset Pompe disease (IOPD) is the most severe form and is characterized by cardiomyopathy, respiratory distress, hepatomegaly, and skeletal muscle weakness. Untreated, IOPD generally results in death within the first year of life. Enzyme replacement therapy (ERT) with recombinant human acid alpha glucosidase (rhGAA) has been shown to markedly improve the life expectancy of patients with IOPD. However, the efficacy of ERT in patients with IOPD is affected by the presence of symptoms and cross-reactive immunologic material (CRIM) status. We have treated two siblings with IOPD with ERT at different ages: the first was symptomatic and the second was asymptomatic. The female proband (Patient 1) was diagnosed with IOPD and initiated ERT at 4 months of age. Her younger sister (Patient 2) was diagnosed with IOPD at 10 days of age and initiated ERT at Day 12. Patient 1, now 6 years old, is alive but bedridden, and requires 24-hour invasive ventilation due to gradually progressive muscle weakness. In Patient 2, typical symptoms of IOPD, including cardiac failure, respiratory distress, progressive muscle weakness, hepatomegaly and myopathic facial features were largely absent during the first 12 months of ERT. Her cardiac function and mobility were well-maintained for the first 3 years, and she had normal motor development. However, she developed progressive hearing impairment and muscle weakness after 3 years of ERT. Both siblings have had low anti-rhGAA immunoglobulin G (IgG) antibody titers during ERT and have tolerated the treatment well. These results suggest that initiation of ERT during the pre-symptomatic period can prevent and/or attenuate the progression of IOPD, including cardiomyopathy, respiratory distress, and muscle weakness for first several years of ERT. However, to improve the long-term efficacy of ERT for IOPD, new strategies for ERT for IOPD, e.g. modifying the enzyme to enhance uptake into skeletal muscle and/or to cross the blood brain barrier (BBB), will be required.
NASA Astrophysics Data System (ADS)
Yıldırım, Şahin; Ahmet Yüksel, Fethi; Avcı, Kerim; Ziya Görücü, Mahmut
2017-04-01
Paphlagonia is located on the Boztepe Foreland (Sinop Foreland) and its peninsula, which extends northwards along the coastal lane of the Black Sea. Sinop is at the northernmost tip of Turkey, in the middle of the Black Sea region. Archaeological excavations of the entire Sinop province have uncovered artifacts from the Bronze Age dating back to 3000 BC. Most ancient sources indicate that Mithridates is buried in Sinop. It is alleged that the Tumuli on the crest of the historical peninsula, called Boztepe in Sinop, could be the resting spot of Mithridates. There are three tumuli in this area known as Şahin Tepesi Mevkii (Şahin Hill Site). In order to determine the location of the burial chamber of the tomb, Electrical Resistivity Tomography (ERT) measurement methods were used, which is a geophysical method capable of three dimensional (3D) measurement and evaluation. In the area of the tumulus, measurements were made in a 57 electrode array using a 42 x 36 m (total 1512 m2) spread electrode pattern with 6m spacing. In the study, an AGI brand SuperString R1 Resistivity device and equipment were used. Resistivity data were interpreted using AGI Earthimag 3D software. From the geoelectric resistivity data, 2D and 3D images were obtained as a result of data processing. In the tumulus area smooth geometrical forms and individual high-amplitude anomalies were visualized, that could be attributed to structural remains and the presence of archaeological materials. These anomalies were plotted on the gridded location plan of the excavation area. Within the artificial hill forming the tumulus, with regards to the natural geological units, anomalies such as very high resistivity, linear elongations, angular rotations, curves, etc. (stone wall, hollow room) that are caused by architectural elements were observed. These geometrically shaped, very highly resistive, anomalies should be checked. Keywords: Sinope, Tumulus, Electrical Resistivity Tomography, Archaeo-geophysics
NASA Astrophysics Data System (ADS)
Metwaly, Mohamed; El-Qady, Gad; Massoud, Usama; El-Kenawy, Abeer; Matsushima, Jun; Al-Arifi, Nasser
2010-09-01
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.
Urban and regional planning proposal no. Y-10-066-001
NASA Technical Reports Server (NTRS)
Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. An investigation is underway to determine the applicability of ERTS-1 data to urban and regional planning problems, using data for East Central Florida. Small scale land use mapping is feasible. Urban and commercial areas are sufficiently distinguishable that ERTS-1 appears to be a useful tool for monitoring urban and commercial growth. Development patterns of cities, growth patterns of cities, and distribution and changes in certain sectors within cities can be analyzed effectively. Digital analysis methods are proving useful.
NASA Technical Reports Server (NTRS)
Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.
1972-01-01
The author has identified the following significant results. The ERTS imagery analyzed provides approximately 2/3 coverage of the test site. Analysis was made using visual methods, density slicing, and multispectral analysis. Preliminary conclusions reached are that most, if not all, of the investigation objectives can be met. Saline and near-saline wetlands can be delineated from ERTS-1 images as the wetland-upland boundaries and land-water interface are clearly defined. Major plant species or communities such as Spartina alterniflora (high and low vigor forms), Spartina patens/Distichlis spicata, and Juncus roemarianus can be discriminated and spoil disposal areas identified.
Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama
NASA Technical Reports Server (NTRS)
Wilms, R. P.
1973-01-01
The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change.
Relevance of ERTS-1 to the state of Ohio
NASA Technical Reports Server (NTRS)
Sweet, D. C. (Principal Investigator); Wells, T. L.; Wukelic, G. E.
1973-01-01
The author has identified the following significant results. To date, only one significant result has been reported for the Ohio ERTS program. This result relates to the proven usefulness of ERTS-1 imagery for mapping and inventorying strip-mined areas in southeastern Ohio. ERTS provides a tool for rapidly and economically acquiring an up-to-date inventory of strip-mined lands for state planning purposes which was not previously possible.
Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources
NASA Technical Reports Server (NTRS)
Marrs, R. W.
1973-01-01
The author has identified the following significant results. A summary of the significant results of the studies completed during the July-August, 1973 period includes: (1) ERTS-1 image brightness contrasts can be related to important contrasts in rangeland and forest vegetation communities of the Laramie Basin. (2) Stereoscopic viewing is essential for correct structural interpretation in outcrop patterns in some areas. (3) Complex fracture patterns which may have exerted a controlling influence on intrusive activity in the Absaroka Mountains can be mapped from ERTS. (4) Volcanic lithologies of the Yellowstone region are often differentiated on the basis of their textures, and cannot be successfully mapped by photogeologic interpretation of ERTS-1 imagery. Ground spectral readings confirm a general lack of contrast between these lithologies in the four ERTS-1 MSS bands. (5) Major dune fields can be recognized and defined from ERTS-1 image interpretations and recognition of differences in stabilizing plant communities (some of which may be mappable from ERTS-1) yields information about migration history of the dune fields.
Facilitating the exploitation of ERTS imagery using snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Sheffield, C.; Russell, O.; Amato, R. V.
1972-01-01
The author has identified the following significant results. Analysis of all available (Gemini, Apollo, Nimbus, NASA aircraft) small scale snow covered imagery has been conducted to develop and refine snow enhancement techniques. A detailed photographic interpretation of ERTS-simulation imagery covering the Feather River/Lake Tahoe area was completed and the 580-680nm. band was determined to be the optimum band for fracture detection. ERTS-1 MSS bands 5 and 7 are best suited for detailed fracture mapping. The two bands should provide more complete fracture detail when utilized in combination. Analysis of early ERTS-1 data along with U-2 ERTS simulation imagery indicates that snow enhancement is a viable technique for geological fracture mapping. A wealth of fracture detail on snow-free terrain was noted during preliminary analysis of ERTS-1 images 1077-15005-6 and 7, 1077-15011-5 and 7, and 1079-15124-5 and 7. A direct comparison of data yield on snow-free versus snow-covered terrain will be conducted within these areas following receipt of snow-covered ERTS-1 imagery.
2014-01-01
Background Infantile Pompe disease is a rare metabolic disease. Patients generally do not survive the first year of life. Enzyme replacement therapy (ERT) has proven to have substantial effects on survival in infantile Pompe disease. However, the costs of therapy are very high. In this paper, we assess the cost-effectiveness of enzyme replacement therapy in infantile Pompe disease. Methods A patient simulation model was used to compare costs and effects of ERT with costs of effects of supportive therapy (ST). The model was filled with data on survival, quality of life and costs. For both arms of the model, data on survival were obtained from international literature. In addition, survival as observed among 20 classic-infantile Dutch patients, who all received ERT, was used. Quality of life was measured using the EQ-5D and assumed to be the same in both treatment groups. Costs included the costs of ERT (which depend on a child’s weight), infusions, costs of other health care utilization, and informal care. A lifetime time horizon was used, with 6-month time cycles. Results Life expectancy was significantly longer in the ERT group than in the ST group. On average, ST receiving patients were modelled not to survive the first half year of life; whereas the life expectancy in the ERT patients was modelled to be almost 14 years. Lifetime incremental QALYs were 6.8. Incremental costs were estimated to be € 7.0 million, which primarily consisted of treatment costs (95%). The incremental costs per QALY were estimated to be € 1.0 million (range sensitivity analyses: € 0.3 million - € 1.3 million). The incremental cost per life year gained was estimated to be € 0.5 million. Conclusions The incremental costs per QALY ratio is far above the conventional threshold values. Results from univariate and probabilistic sensitivity analyses showed the robustness of the results. PMID:24884717
Geologic hypotheses of Lake Tanganyika region, Zaire, drawn from ERTS imagery
NASA Technical Reports Server (NTRS)
Wolyce, U.; Ilunga, S.
1974-01-01
Based on initial work in the Lake Tanganyika area of eastern Zaire, it has been concluded that ERTS imagery is extremely useful for reconnaissance level geologic mapping and analysis in this region of the humid tropics. In particular, ERTS imagery has proven useful for recognizing and mapping regional structural units, for recognizing major structural features, and for arriving at some preliminary hypotheses about the mineral potential of the area. Results so far indicate that ERTS imagery can make a major contribution to the development of the mineral resources of the country. Research has concentrated on applications of ERTS imagery in the field of cartography, geology, forestry, hydrology and agriculture. For the work in geology, a test site was chosen in eastern Zaire on the shore of Lake Tanganyika in the vicinity of the Lukuga River. This area was selected because of its varied geology and the existence of two frames of cloud-free ERTS imagery.
NASA Technical Reports Server (NTRS)
Baumgardner, M. F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Multispectral scanner data obtained by ERTS-1 over six test sites in the Central United States were analyzed and interpreted. ERTS-1 data for some of the test sites were geometrically corrected and temporally overlayed. Computer-implemented pattern recognition techniques were used in the analysis of all multispectral data. These techniques were used to evaluate ERTS-1 data as a tool for soil survey. Geology maps and land use inventories were prepared by digital analysis of multispectral data. Identification and mapping of crop species and rangelands were achieved throught the analysis of 1972 and 1973 ERTS-1 data. Multiple dates of ERTS-1 data were examined to determine the variation with time of the areal extent of surface water resources on the Southern Great Plain.
Mapping coastal vegetation, land use and environmental impact from ERTS-1. [Delaware Bay area
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Vegetation map overlays at a scale of 1:24,000 compiled by multispectral analysis from NASA aircraft imagery for all of Delaware's wetlands are being used as ground truth for ERTS-1 mapping and by state agencies for wetlands management. Six major vegetation species were discriminated and mapped, including percentages of minor species. Analogue enhancements of wetlands vegetation and dredge-fill operations have been produced using General Electric's GEMS data processing and ERTS-1 false color composites. Digital, thematic land use, and vegetation mapping of entire Delaware Bay area is in progress using Bendix Corporation's Earth Resources Data System and ERTS-1 digital tapes. Statistical evaluation of target-group selection reliability has been completed. Three papers have been published on ERTS-1 coastal vegetation and land use. Local and state officials are participating in the ERTS-1 program as co-investigators.
Effective use of ERTS multisensor data in the Great Plains
NASA Technical Reports Server (NTRS)
Myers, V. I. (Principal Investigator)
1972-01-01
The author has identified the following significant results. One unique advantage of ERTS imagery for delineating soil associations is the large area that can be scanned with one photo. Although soil associations usually are published at scales of 1:500,000 or 1:1,000,000, the delineations are drawn on much larger scale maps covering small pieces of the scene and then pieced together. Alluvial areas are usually swollen out of proportion to other soil areas. ERTS imagery puts alluvial areas into their proper size. A second feature of ERTS imagery is that a soil association map constructed with its aid assures that the cartographic level of the associations is more nearly the same. Another advantage of ERTS imagery is that the actual shape and configuration of soil associations are apparent. Also with ERTS imagery significant new delineations may become apparent which were missed when constructing soil association maps from conventional large scale photos.
Ratio maps of iron ore deposits Atlantic City district, Wyoming
NASA Technical Reports Server (NTRS)
Vincent, R. K.
1973-01-01
Preliminary results of a spectral rationing technique are shown for a region at the southern end of the Wind River Range, Wyoming. Digital ratio graymaps and analog ratio images have been produced for the test site, but ground truth is not yet available for thorough interpretation of these products. ERTS analog ratio images were found generally better than either ERTS single-channel images or high altitude aerial photos for the discrimination of vegetation from non-vegetation in the test site region. Some linear geological features smaller than the ERTS spatial resolution are seen as well in ERTS ratio and single-channel images as in high altitude aerial photography. Geochemical information appears to be extractable from ERTS data. Good preliminary quantitative agreement between ERTS-derived ratios and laboratory-derived reflectance ratios of rocks and minerals encourage plans to use lab data as training sets for a simple ratio gating logic approach to automatic recognition maps.
Spada, Marco; Baron, Ralf; Elliott, Perry M; Falissard, Bruno; Hilz, Max J; Monserrat, Lorenzo; Tøndel, Camilla; Tylki-Szymańska, Anna; Wanner, Christoph; Germain, Dominique P
2018-04-26
Fabry disease is caused by a deficiency of the lysosomal enzyme α-galactosidase, resulting in progressive accumulation of globotriaosylceramide (GL-3). The disease can manifest early during childhood and adolescence. Enzyme replacement therapy (ERT) with recombinant human α-galactosidase is the first specific treatment for Fabry disease and has been available in Europe since 2001. This paper presents the findings of a systematic literature review of clinical outcomes with ERT in paediatric patients with Fabry disease. A comprehensive systematic review of published literature on ERT in Fabry disease was conducted in January 2017. The literature analysis included all original articles reporting outcomes of ERT in paediatric patients. Treatment-related outcomes in the paediatric population were reported in six publications derived from open-label clinical trials and in 10 publications derived from observational or registry-based studies. ERT was shown to significantly reduce plasma and urine GL-3 levels in paediatric patients with Fabry disease. The effect of ERT on GL-3 clearance from renal podocytes appeared to be agalsidase dose-dependent. ERT relieved pain and improved gastrointestinal symptoms and quality of life. Based on the published literature, the use of ERT in paediatric patients can significantly clear GL-3 accumulation, ameliorate the early symptoms of Fabry disease, and improve quality of life. Treatment with ERT in paediatric patients with Fabry disease may be important to prevent further disease progression and overt organ damage. Copyright © 2018. Published by Elsevier Inc.
Remote sensing applied to land-use studies in Wyoming
NASA Technical Reports Server (NTRS)
Breckenridge, R. M.; Marrs, R. W.; Murphy, D. J.
1973-01-01
Impending development of Wyoming's vast fuel resources requires a quick and efficient method of land use inventory and evaluation. Preliminary evaluations of ERTS-1 imagery have shown that physiographic and land use inventory maps can be compiled by using a combination of visual and automated interpretation techniques. Test studies in the Powder River Basin showed that ERTS image interpretations can provide much of the needed physiographic and land use information. Water impoundments as small as one acre were detected and water bodies larger than five acres could be mapped and their acreage estimated. Flood plains and irrigated lands were successfully mapped, and some individual crops were identified and mapped. Coniferous and deciduous trees were mapped separately using color additive analysis on the ERTS multispectral imagery. Gross soil distinctions were made with the ERTS imagery, and were found to be closely related to the bedrock geology. Several broad unstable areas were identified. These were related to specific geologic and slope conditions and generally extended through large regions. Some new oil fields and all large open-cut coal mines were mapped. The most difficult task accomplished was that of mapping urban areas. Work in the urban areas provides a striking example of snow enhancement and the detail available from a snow enhanced image.
40 CFR 60.2795 - In what form can I submit my reports?
Code of Federal Regulations, 2011 CFR
2011-07-01
... using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert_tool.html). ... or Before November 30, 1999 Model Rule-Recordkeeping and Reporting § 60.2795 In what form can I...
Application of ERTS imagery to environmental studies of Lake Champlain
NASA Technical Reports Server (NTRS)
Lind, A. O.
1974-01-01
ERTS Imagery has provided data relating to a number of environmental and limnological concerns such as water quality, lake flooding and lake ice formation. Pollution plume data provided by ERTS was recently used in the Supreme Court case involving the States of Vermont and New York and a paper company. Flooding of lowland tracts has been a major concern due to a repetitive pattern of high lake levels over the past three years, and ERTS imagery is being used to construct the first series of flood maps of the affected areas. Lake ice development and turbidity patterns have also been studied from ERTS, since these have significance for shore erosion studies.
Cost-effectiveness of enzyme replacement therapy for type 1 Gaucher disease
2014-01-01
Objective To evaluate the cost-effectiveness of enzyme replacement therapy (ERT) compared to standard medical care without ERT in the Dutch cohort of patients with type 1 Gaucher disease (GD I). Design Cost-effectiveness analysis was performed using a life-time state-transition model of the disease’s natural course. Transition probabilities, effectiveness data and costs were derived from retrospective data and prospective follow-up of the Dutch study cohort. Setting The tertiary referral center for Gaucher disease in the Netherlands. Participants The Dutch cohort of patients with GD I. Intervention ERT versus standard medical care without ERT in symptomatic patients. Main outcome measures Years free of end organ damage (YFEOD) (splenectomy, bone complication, malignancy, multiple complications), quality adjusted life years (QALY), and costs. Results Over an 85 year lifetime, an untreated GD I patient will generate 48.9 YFEOD and 55.86 QALYs. Starting ERT in a symptomatic patient increases the YFEOD by 12.8 years, while the number of QALYs gained increases by 6.27. The average yearly ERT medication costs range between €124,000 and €258,000 per patient. The lifetime costs of ERT starting in the symptomatic stage are €5,716,473 against €171,780 without ERT, a difference of €5,544,693. Consequently, the extra costs per additional YFEOD or per additional QALY are €434,416 and €884,994 respectively. After discounting effects by 1.5% and costs by 4% and under a reasonable scenario of ERT unit cost reduction by 25%, these incremental cost-effectiveness ratios could decrease to €149,857 and €324,812 respectively. Discussion ERT is a highly potential drug for GD I with substantial health gains. The conservatively estimated incremental cost-effectiveness ratios are substantially lower than for Pompe and Fabry disease. We suggest that the high effectiveness has contributed importantly to acceptance of reimbursement of ERT for GD I. The present study may further support discussions on acceptable price limits for ultra-orphan products. PMID:24731506
NASA Technical Reports Server (NTRS)
Viljoen, R. P.
1974-01-01
A number of base metal finds have recently focussed attention on the North Western Cape Province of South Africa as an area of great potential mineral wealth. From the point of view of competitive mineral exploration it was essential that an insight into the regional geological controls of the base metal mineralization of the area be obtained as rapidly as possible. Conventional methods of producing a suitable regional geological map were considered to be too time-consuming and ERTS-1 imagery was consequently examined. This imagery has made a significant contribution in the compilation of a suitable map on which to base further mineral exploration programmes. The time involved in the compilation of maps of this nature was found to be only a fraction of the time necessary for the production of similar maps using other methods. ERTS imagery is therefore considered to be valuable in producing accurate regional maps in areas where little or no geological data are available, or in areas of poor access. Furthermore, these images have great potential for rapidly defining the regional extent of metallogenic provinces.
40 CFR 60.2795 - In what form can I submit my reports?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert_tool.html). ... Reporting § 60.2795 In what form can I submit my reports? Submit initial, annual, and deviation reports...
NASA Astrophysics Data System (ADS)
Costabel, S.; Noell, U.; Ganz, C.
2012-04-01
Magnetic resonance sounding (MRS) is a non-invasive geophysical method for groundwater prospection that uses the principle of nuclear magnetic resonance (NMR) in the Earth's magnetic field. Its unique property distinct from other hydrogeophysical methods is the direct sensitivity to the amount of water, i.e. to the amount of 1H nuclei in the subsurface. Because MRS is normally used to investigate the water content of the saturated zone and to characterize aquifer structures, the standard application is optimized for 1D-measurements in depths from several to several tens of meters. However, our investigations show that MRS has also the potential to contribute substantially to the study of groundwater recharge if the sensitivity of the method for the unsaturated zone and for the transition to the saturated zone is increased by using a modified measurement setup and adjusted interpretation schemes. We conducted MRS test measurements with the focus on the very shallow subsurface in the range of some few decimeters down to the groundwater table in a depth of 3 m. The test site is located in the area Fuhrberger Feld about 30 km north-east of Hannover, Germany, which comprises an unconfined sandy aquifer of 20 to 30-m thickness. Previous studies have discovered the soil physical characteristics of the site with tension infiltrometer measurements and tracer irrigation experiments in the field, as well as with water retention measurements in the laboratory. In addition, several infiltration experiments with dye tracer were conducted and monitored with electrical resistivity tomography (ERT), tensiometers and TDR devices. For the MRS measurements at the testsite, a serious challenge was the intense electromagnetic noise consisting of large spiky radio signals and harmonic components, respectively. A special combination of new processing techniques was developed to isolate and interpret the NMR signals with amplitudes of approximately 5 to 14 nV. The standard inversion of the MRS data shows the ground water table at the correct depth and furthermore, increased residual water in the topsoil, which is verified by the water retention measurements in the lab. However, the amount of water at shallow depth down to 30 cm is difficult to quantify and to allocate exactly in depth due to the limited resolution properties of the method in this depth range. A new inversion scheme that parameterizes the capillary fringe using the van-Genuchten model was applied to the data. These results are in good agreement with the laboratory measurements. In order to develop MRS as a method for monitoring groundwater recharge processes, we combine hydraulic simulations and MRS forward modeling. Our numerical experiments suggest that the common MRS measurement scheme must be modified to enable faster repetitions, i.e., to resolve fast infiltration processes accordingly in time. For such modifications one must accept losses in the spatial resolution of the method. Compared to non-invasive ERT measurements with a 2D or 3D resolution in the decimeter range, the resolution properties of MRS are much worse. However, the direct sensitivity of the MRS method to the water content is an important benefit, whereas the quantification of water with ERT methods remains a serious problem. Therefore, we anticipate therefore that combining both methods could be the key for non-invasive monitoring of groundwater recharge in the future.
NASA Technical Reports Server (NTRS)
Rehder, J. B. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 has proven to be an effective earth-orbiting monitor of landscape change. Its regional coverage for large areal monitoring has been effective for the detection and mapping of agricultural plowing regions, for general forest cover mapping, for flood mapping, for strip mine mapping, and for short-lived precipitation mapping patterns. Paramount to the entire study has been the temporal coverage provided by ERTS. Without the cyclic coverage on an 18 day basis, temporal coverage would have been inadequate for the detection and mapping of strip mining landscape change, the analysis of agricultural landscape change based on plowing patterns, the analysis of urban-suburban growth changes, and the mapping of the Mississippi River floods. Cost benefits from ERTS are unquestionably superior to aircraft systems in regard to large regional coverage and cyclic temporal parameters. For the analysis of landscape change in large regions such as statewide areas or even areas of 10,000 square miles, ERTS is of cost benefit consideration. Not only does the cost of imagery favor ERTS but the reduction of man-hours using ERTS has been in the magnitude of 1:10.
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Communities containing five different coastal vegetation species, developed marshlands, and fresh water impoundments have been identified in ERTS-1 images. Suspended sediment and circulation patterns in imagery from five ERTS-1 passes over Delaware Bay have been enhanced and correlated with predicted current patterns. Conclusions reached are: (1) ERTS-1 is suitable platform for observing suspended sediment patterns and water masses synoptically over large areas. (2) Suspended sediment acts as a natural tracer allowing photointerpreters to deduce gross current circulation patterns from ERTS-1 imagery. (3) Under atmospheric conditions encountered along the East Coast of the United States MSS band 5 seems to give the best representation of sediment load in upper one meter of water column. (4) In the ERTS-1 imagery the sediment patterns are delineated by three to four neighboring shades of grey. (5) Negative transparencies of the ERTS-1 images give better contrast whenever the suspended sediment tones fall within the first few steps of the grey scale. (6) Color density slicing helps delineate the suspended sediment patterns more clearly and differentiate turbidity levels.
NASA Technical Reports Server (NTRS)
Meier, M. J.; Evans, W. E.
1975-01-01
Snow-covered areas on LANDSAT (ERTS) images of the Santiam River basin, Oregon, and other basins in Washington were measured using several operators and methods. Seven methods were used: (1) Snowline tracing followed by measurement with planimeter, (2) mean snowline altitudes determined from many locations, (3) estimates in 2.5 x 2.5 km boxes of snow-covered area with reference to snow-free images, (4) single radiance-threshold level for entire basin, (5) radiance-threshold setting locally edited by reference to altitude contours and other images, (6) two-band color-sensitive extraction locally edited as in (5), and (7) digital (spectral) pattern recognition techniques. The seven methods are compared in regard to speed of measurement, precision, the ability to recognize snow in deep shadow or in trees, relative cost, and whether useful supplemental data are produced.
NASA Technical Reports Server (NTRS)
Schroeder, W. W.
1977-01-01
The paper reports on the scientific results obtained during a feasibility study that evaluated the potential of using ERTS data collection platforms (DCPs) in the coastal environment of Mobile Bay, Alabama. The utility of instrumented buoys operated in a coastal marine environment as ERTS DCPs is demonstrated. It is shown that these platforms are capable of providing both sea-truth data for ERTS imagery studies and time-series data for event monitoring and/or environmental characterization studies.
NASA Technical Reports Server (NTRS)
Short, N. M.
1974-01-01
Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.
2014-01-01
Background In Taiwan, DNA-based newborn screening showed a surprisingly high incidence (1/875 in males and 1/399 in females) of a cardiac Fabry mutation (IVS4 + 919G > A). However, the natural course, long-term treatment outcomes and suitable biomarkers for monitoring the therapeutic outcomes of these patients are largely unknown. Methods Fabry disease (FD) patients who had received enzyme replacement therapy (ERT) for more than 1 year were enrolled in this study from December 2008 to April 2013. Periodic echocardiography and serum globotriaosylsphingosine (lyso-Gb3) analysis were carried out. Before and after ERT, left ventricular mass index (LVMI) and serum lyso-Gb3 level were compared and the correlation between the change of LVMI and the change of serum lyso-Gb3 were also analyzed. Results Thirty-six patients, in four patient groups, were enrolled: (1) 16 males with IVS4 + 919G > A mutation; (2) 7 females with IVS4 + 919G > A mutation; (3) 2 males with classical mutations; and (4) 11 females with classical mutations. The follow-up period was 13–46 months. There were significant LVMI reductions after ERT in all four groups after excluding confounding factors. However, interestingly, serum lyso-Gb3 decreased significantly in the early period after ERT in all groups, but increased gradually after an average of 11.1 months after ERT in late-onset male and female Fabry groups, even when their LVMI still decreased or remained stable. Furthermore, there was no correlation between the change of serum lyso-Gb3 and the change of LVMI in both classical and IVS4 + 919G > A FD patients. Conclusion Although lyso-Gb3 has a high diagnostic sensitivity in late-onset Fabry patients and has a good response to ERT during the early stages, it might not be a reliable marker for monitoring the long-term therapeutic outcomes of ERT for late-onset Fabry patients with the Chinese hotspot mutation (IVS4 + 919G > A). PMID:25047006
An ERTS-1 investigation for Lake Ontario and its basin
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Falconer, A. (Principal Investigator); Wagner, T. W.; Rebel, D. L.
1975-01-01
The author has identified the following significant results. Methods of manual, semi-automatic, and automatic (computer) data processing were evaluated, as were the requirements for spatial physiographic and limnological information. The coupling of specially processed ERTS data with simulation models of the watershed precipitation/runoff process provides potential for water resources management. Optimal and full use of the data requires a mix of data processing and analysis techniques, including single band editing, two band ratios, and multiband combinations. A combination of maximum likelihood ratio and near-IR/red band ratio processing was found to be particularly useful.
Impact of ERTS-1 images on management of New Jersey's coastal zone
NASA Technical Reports Server (NTRS)
Feinberg, E. B.; Yunghans, R. S.; Stitt, J. A.; Mairs, R. L.
1974-01-01
The thrust of New Jersey's ERTS investigation is development of procedures for operational use of ERTS-1 data by the Department of Environmental Protection in the management of the State's coastal zone. Four major areas of concern were investigated: detection of land use changes in the coastal zone; monitoring of offshore waste disposal; siting of ocean outfalls; and allocation of funds for shore protection. ERTS imagery was not useful for shore protection purposes; it was of limited practical value in the evaluation of offshore waste disposal and ocean outfall siting. However, ERTS imagery shows great promise for operational detection of land use changes in the coastal zone. Some constraints for practical change detection have been identified.
Application of ERTS-1 data to the protection and management of New Jersey's coastal environment
NASA Technical Reports Server (NTRS)
Yunghans, R. S. (Principal Investigator); Feinberg, E. B.; Stitt, J. A.; Mairs, R. L.; Wobber, F. J.; Macomber, R. T.; Stanczuk, D. T.; Thibult, D.
1974-01-01
The author has identified the following significant results. Quasi-operational information products for coastal zone management have been prepared using ERTS-1 imagery and collateral aerial photography. These products were applied to the practical regulation, protection, and management of New Jersey's coastal environment. Procedures were developed for the operational use of ERTS-1 data products within New Jersey's Department of Environmental Protection. Successful analysis and product preparation for operational needs centered on four major coastal resource problem areas: (1) detection of environmental changes in coastal areas, (2) siting of ocean outfalls, (3) monitoring of offshore waste disposal, and (4) calculation of recession rates along the Atlantic Shore. The utility and monetary benefits derived from ERTS and aircraft imagery for each problem area have been determined. The NJDEP estimates the possibility of $620,000 yearly savings through the use of an operational ERTS system and a one-time savings of $2.8 million on current or planned projects if a truly operational ERTS type satellite were available.
Johnson, Tim; Versteeg, Roelof; Thomle, Jon; ...
2015-08-01
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Tim; Versteeg, Roelof; Thomle, Jon
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
Interactions between Shrubs and Permafrost in the Torngat Mountains, Northern Labrador, Canada
NASA Astrophysics Data System (ADS)
Lewkowicz, A.; Way, R. G.; Hermanutz, L.; Trant, A.; Siegwart Collier, L.; Whitaker, D.
2017-12-01
Discontinuous permafrost is acutely sensitive to climate warming and vegetation dynamics. Shrub height is positively correlated with accumulation of snow in the tundra resulting in warming of the ground in winter, and greater shading and lower surface temperatures in summer. Rapid greening due to climate warming has been observed throughout northeastern Canada and particularly in the coastal mountainous terrain of the Torngat Mountains National Park. Our research examines how this shrubification in the Torngat Mountains is modifying permafrost characteristics using observations which extend over a 100 km south-north transect from the sporadic zone (Saglek, Torr Bay) to where permafrost is widespread (Nakvak Brook, Kangalaksiorvik Lake) and potentially continuous (Komaktorvik River). We use air and ground temperature monitoring, vegetation surveys, dendrochronology, frost probing and electrical resistivity tomography (ERT) to describe the complex interactions between shrub growth, geomorphology, climate and permafrost in a region where climate warming is rapidly altering the landscape. Preliminary analysis of field data shows low resistivity anomalies in the ERT profiles at some sites with thin permafrost, interpreted as unfrozen zones correlated with areas of tall shrubs (Alnus spp., Salix spp. and Betula glandulosa; ranging from prostrate to 2 m). Elsewhere, high resistivities extend to the base of the ERT profiles, indicating thicker permafrost, and no obvious impact of medium to low-prostrate shrubs (Salix spp., Betula glandulosa, Rhododendron spp., and Vaccinium spp.; up to 50 cm). Permafrost is interpreted to be present at most sites with low or prostrate shrubs, except where hydrological conditions favour warmer ground temperatures. We infer that the net impact of increasing shrub heights on the active layer and permafrost depends on antecedent ground temperatures and surficial geology. Increasing shrub heights may cause permafrost degradation at sites where mean ground temperatures are close to 0°C and rising due to climate warming. A deeper active layer or loss of permafrost in turn could affect hydrological conditions, potentially influencing shrub size and species composition.
Fertilization effects on the electrical conductivity measured by EMI, ERT, and GPR
NASA Astrophysics Data System (ADS)
Weihermueller, L.; Kaufmann, M.; Steinberger, P.; Pätzold, S.; Vereecken, H.; Van Der Kruk, J.
2017-12-01
Near surface geophysics such as electromagnetic induction (EMI), electrical resistivity tomography (ERT), and ground penetrating radar (GPR) are widely used for field characterization, to delineate soil units, and to estimate soil texture, bulk densities and/or soil water contents. Hereby, the measured soil apparent conductivity (ECa) is often used. Soil ECa is governed by horizontal and vertical changes in soil texture, mineralogy, soil water content, and temperature, and the single contributions are not easy to disentangle. Within single fields and between fields fertilization management may vary spatially, which holds especially for field trials. As a result, ECa might vary due to differences in electrolyte concentration and subsequent pore fluid conductivity, but secondary fertilization effects might also play a major role in ECa differences such as differences in soil water uptake by growing plants. To study the direct effect of mineral fertilization on ECa, a field experiment was performed on 21 bare soil plots each of a size of 9 m2, where 7 different fertilization treatments were established in triplicates. As mineral fertilizers, commercial calcium ammonium nitrate and potassium chloride were chosen and applied in dosages of 200, 400, and 2000 kg ha-1 N equivalent. Additionally, soil water, soil temperature, and EC were recorded in a pit at different depths using commercial sensors. Changes in ECa were measured every 10 days using EMI and monthly using GPR and ERT. Additionally, soil samples were monthly taken at all plots and nitrate, chloride, and potassium contents were measured in the lab. The poster will show the effect of ECa changes due to fertilization and corresponding leaching of the fertilized elements over time. The experimental results provide information of how fertilization is influencing ECa readings and how long the fertilizers are influencing ECa measurements with geophysical instruments. This study helps to overcome restricted interpretation of ECa measurements on managed agricultural soils.
Interactions between Shrubs and Permafrost in the Torngat Mountains, Northern Labrador, Canada
NASA Astrophysics Data System (ADS)
Lewkowicz, A.; Way, R. G.; Hermanutz, L.; Trant, A.; Siegwart Collier, L.; Whitaker, D.
2016-12-01
Discontinuous permafrost is acutely sensitive to climate warming and vegetation dynamics. Shrub height is positively correlated with accumulation of snow in the tundra resulting in warming of the ground in winter, and greater shading and lower surface temperatures in summer. Rapid greening due to climate warming has been observed throughout northeastern Canada and particularly in the coastal mountainous terrain of the Torngat Mountains National Park. Our research examines how this shrubification in the Torngat Mountains is modifying permafrost characteristics using observations which extend over a 100 km south-north transect from the sporadic zone (Saglek, Torr Bay) to where permafrost is widespread (Nakvak Brook, Kangalaksiorvik Lake) and potentially continuous (Komaktorvik River). We use air and ground temperature monitoring, vegetation surveys, dendrochronology, frost probing and electrical resistivity tomography (ERT) to describe the complex interactions between shrub growth, geomorphology, climate and permafrost in a region where climate warming is rapidly altering the landscape. Preliminary analysis of field data shows low resistivity anomalies in the ERT profiles at some sites with thin permafrost, interpreted as unfrozen zones correlated with areas of tall shrubs (Alnus spp., Salix spp. and Betula glandulosa; ranging from prostrate to 2 m). Elsewhere, high resistivities extend to the base of the ERT profiles, indicating thicker permafrost, and no obvious impact of medium to low-prostrate shrubs (Salix spp., Betula glandulosa, Rhododendron spp., and Vaccinium spp.; up to 50 cm). Permafrost is interpreted to be present at most sites with low or prostrate shrubs, except where hydrological conditions favour warmer ground temperatures. We infer that the net impact of increasing shrub heights on the active layer and permafrost depends on antecedent ground temperatures and surficial geology. Increasing shrub heights may cause permafrost degradation at sites where mean ground temperatures are close to 0°C and rising due to climate warming. A deeper active layer or loss of permafrost in turn could affect hydrological conditions, potentially influencing shrub size and species composition.
Comparison of Compressed Sensing Algorithms for Inversion of 3-D Electrical Resistivity Tomography.
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Ranjan, S.; Kbvn, D. P.
2016-12-01
Image reconstruction algorithms derived from electrical resistivity tomography (ERT) are highly non-linear, sparse, and ill-posed. The inverse problem is much severe, when dealing with 3-D datasets that result in large sized matrices. Conventional gradient based techniques using L2 norm minimization with some sort of regularization can impose smoothness constraint on the solution. Compressed sensing (CS) is relatively new technique that takes the advantage of inherent sparsity in parameter space in one or the other form. If favorable conditions are met, CS was proven to be an efficient image reconstruction technique that uses limited observations without losing edge sharpness. This paper deals with the development of an open source 3-D resistivity inversion tool using CS framework. The forward model was adopted from RESINVM3D (Pidlisecky et al., 2007) with CS as the inverse code. Discrete cosine transformation (DCT) function was used to induce model sparsity in orthogonal form. Two CS based algorithms viz., interior point method and two-step IST were evaluated on a synthetic layered model with surface electrode observations. The algorithms were tested (in terms of quality and convergence) under varying degrees of parameter heterogeneity, model refinement, and reduced observation data space. In comparison to conventional gradient algorithms, CS was proven to effectively reconstruct the sub-surface image with less computational cost. This was observed by a general increase in NRMSE from 0.5 in 10 iterations using gradient algorithm to 0.8 in 5 iterations using CS algorithms.
NASA Technical Reports Server (NTRS)
Chang, C. Y.
1974-01-01
The author has identified the following significant results. The Skylab S192 data was evaluated by: (1) comparing the classification results using S192 and ERTS-1 data over the Holt County, Nebraska agricultural study area, and (2) investigating the impact of signal-to-noise ratio on classification accuracies using registered S192 and ERTS-1 data. Results indicate: (1) The classification accuracy obtained on S192 data using its best subset of four bands can be expected to be as high as that on ERTS-1 data. (2) When a subset of four S192 bands that are spectrally similar to the ERTS-1 bands was used for classification, an obvious deterioration in the classification accuracy was observed with respect to the ERTS-1 results. (3) The thermal bands 13 and 14 as well as the near IR bands were found to be relatively important in the classification of agricultural data. Although bands 11 and 12 were highly correlated, both were invariably included in the best subsets of the band sizes, four and beyond, according to the divergence criterion. (4) The differentiation of corn from popcorn was difficult on both S192 and ERTS-1 data acquired at an early summer date. (5) The results on both sets of data indicate that it was relatively easy to differentiate grass from any other class.
NASA Technical Reports Server (NTRS)
Meier, M. F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The standard error of measurement of snow covered areas in major drainage basins in the Cascade Range, Washington, using single measurements of ERTS-1 images, was found to range from 11% to 7% during a typical melt season, but was as high as 32% in midwinter. Many dangerous glacier situations in Alaska, Yukon, and British Columbia were observed on ERTS-1 imagery. Glacier dammed lakes in Alaska are being monitored by ERTS-1. Embayments in tidal glaciers show changes detectable by ERTS-1. Surges of Russell and Tweedsmuir Glaciers, now in progress, are clearly visible. The Tweedsmuir surge is likely to dam the large Alsek River by mid-November, producing major floods down-river next summer. An ERTS-1 image of the Pamir Mountains, Tadjik S.S.R., shows the surging Medvezhii (Bear) Glacier just after its surge of early summer which dammed the Abdukagor Valley creating a huge lake and later a flood in the populous Vanch River Valley. A map was compiled from an ERTS-1 image of the Lowell Glacier after its recent surge, compared with an earlier map compiled from pain-stakingly compiled from a mosaic of many aerial photographs, in a total elapsed time of 1.5 hours. This demonstrates the value of ERTS-1 for rapid mapping of large features.
Maxwell, G. Larry; Tian, Chunqiao; Risinger, John I; Hamilton, Chad A.; Barakat, Richard R.
2008-01-01
Objective Population-based studies suggest that Black women with localized endometrial cancer have shorter survival compared to White patients because of inequalities in treatment. The purpose of this investigation was to determine if there is a racial disparity in outcome between Black and White patients with early stage endometrial cancer treated similarly in a clinical trial setting. Methods A retrospective review of 110 Black and 1049 White patients with stage I and II endometrial cancer was performed using data from a randomized, placebo controlled trial performed by the Gynecologic Oncology Group (GOG) that evaluated postoperative estrogen replacement therapy (ERT) and the risk of cancer recurrence. Demographic, pathologic, treatment and outcome related data were collected and analyzed using regression and survival analysis. Results Estimates of recurrence-free survival (RFS) suggested that Black patients may be more likely to have disease recurrence, particularly those on ERT. Within a median follow-up of three years, 5 of 56 Black endometrial cancer patients in the ERT group were identified with recurrent disease compared to only 8 of 521 White patients. Adjusted for age, BMI and tumor grade, the relative risk of recurrence among Blacks in the ERT group was 11.2 (95% CI: 2.86-43.59, p=0.0005). Conclusions Our findings suggest that RFS may be shorter among Black women with stage I endometrial cancer, even in a clinical trials setting in which patients receive similar treatment and followup. This increased risk of recurrence appears to be most evident in Black women with endometrial cancer who maintain ERT following primary treatment. PMID:18698590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buiret, Guillaume, E-mail: guillaume.buiret@laposte.ne; Service de biostatistique, Hospices Civils de Lyon, Lyon; Combe, Claire
2010-06-01
Purpose: To investigate, in a multicenter study, the tolerance of induction chemotherapy (ICT) and external radiotherapy (ERT) with concomitant cetuximab in the treatment of patients with squamous cell carcinoma of the head and neck (SCCHN). Patients and Methods: Clinical data from 46 patients with Stage III or IV nonmetastatic SCCHN who received docetaxel, cisplatin, and 5-fluorouracil as ICT, followed by ERT with concomitant cetuximab, were retrospectively analyzed. Clinical safety (weight, allergy, mucositis, and dermatitis) and paraclinical safety (levels of hemoglobin, polynuclear neutrophils, and creatinine clearance) were studied. The primary objective was the proportion of patients who completed the protocol. Results:more » The percentage of patients completing ICT was 73.9%, ERT 93.5%, and cetuximab 69.6%. Induction chemotherapy was better tolerated than that previously reported. The rates of temporary suspensions of radiation (39.1%, mean duration of 13 days) and hospitalization (26.1%) during ERT with concomitant cetuximab were high. Weight loss during treatment (21.4% of patients lost >10% of their body weight), radiodermatitis, and radiomucositis were the main causes of temporary suspension of treatment, although Grade 4 dermatitis was not experienced. There were no allergic reactions to cetuximab. Conclusion: The completed protocol rate for SCCHN patients receiving ICT and ERT with concomitant cetuximab is high and the toxicity acceptable. Future improvements to protocol will be possible through early action and systematic implementation of nutritional support coupled with antibiotic treatment upon the first signs of radiodermatitis. These data could be useful for prospective studies on the safety and efficacy of this protocol.« less
An electrical resistivity-based method for investigation of subsurface structure
NASA Astrophysics Data System (ADS)
Alves Meira Neto, A.; Litwin, D.; Troch, P. A. A.; Ferre, T. P. A.
2017-12-01
Resolving the spatial distribution of soil porosity within the subsurface is of great importance for understanding flow and transport within heterogeneous media. Additionally, porosity patterns can be associated with the availability of water and carbon dioxide that will drive geochemical reactions and constrain microbiological growth. The use of controlled experimentation has the potential to circumvent problems related to the external and internal variability of natural systems, while also allowing a higher degree of observability. In this study, we suggest an ERT-based method of retrieving porosity fields based on the application of Archie's law associated with an experimental procedure that can be used in laboratory-scale studies. We used a 2 cubic meter soil lysimeter, equipped with 238 electrodes distributed along its walls for testing the method. The lysimeter serves as a scaled-down version of the highly monitored artificial hillslopes at the Landscape Evolution Observatory (LEO) located at Biosphere 2 - University of Arizona. The capability of the ERT system in deriving spatially distributed patterns of porosity with respect to its several sources of uncertainty was numerically evaluated. The results will be used to produce an optimal experimental design and for assessing the reliability of experimental results. This novel approach has the potential to further resolve subsurface heterogeneity within the LEO project, and highlight the use of ERT-derived results for hydro-bio-geochemical studies.
NASA Astrophysics Data System (ADS)
Waltl, Peter; Schwindt, Daniel; Völkel, Jörg
2016-04-01
Since the Neolithic Revolution the intensification of agriculture has been causing increased erosion in Bavarian landscapes. The correlated sediments often induce the formation of new colluvial and alluvial soils (WRB: Regic Anthrosol and Fluvisol i.a.). The soils themselves are able to absorb, bind, and store considerable amounts of C- and N-compounds. Therefore, they are important reactors regarding climate-relevant greenhouse-gas balances in the atmosphere. Learning about the exact spatial extent and thickness of these soils in representative landscapes, but also about their geneses and processes is essential. It allows for a detailed quantification and understanding of the current and potential properties and characteristics of these soils in their role of greenhouse-gas reactors. Two research locations were elected as representative Bavarian landscapes composed of different lithology and pedo-chemical environments (limestone versus crystalline setting): Rottenbuch is situated at the Ammer River in the Upper Bavarian pre-alpine forelands (Lkr. Weilheim-Schongau). The Otterbach Creek lies at the southwestern foothills of the Bavarian Forest at the Donaurandbruch tectonic line next to Donaustauf (Lkr. Regensburg). Detailed information on the soil horizons and layers within these research areas are accumulated by sounding or burrowing soil profiles and subsequently analyzing the soil samples in the lab. Geophysical methods, such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT), and ground penetrating radar (GPR), allow for the extension of this point-source information into three dimensions. By repeatedly and regularly applying these methods, also temporal changes such as soil hydrology or freeze and thaw cycles can be monitored and their influence on fluxes and exchanges can be taken into account.
40 CFR 60.5235 - What reports must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert_tool.html/) or other compatible... Existing Sewage Sludge Incineration Units Model Rule-Recordkeeping and Reporting § 60.5235 What reports... reporting period specified in paragraph (c)(3) of this section. You must submit your first annual compliance...
Fracture mapping and strip mine inventory in the Midwest by using ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Wier, C. W.; Wobber, F. J.; Russell, O. R.; Amato, R. V.
1973-01-01
Analysis of the ERTS-1 imagery and high-altitude infrared photography indicates that useful fracture data can be obtained in Indiana and Illinois despite a glacial till cover. ERTS MSS bands 5 and 7 have proven most useful for fracture mapping in coal-bearing rocks in this region. Preliminary results suggest a reasonable correlation between image-detected fractures and mine roof-fall accidents. Information related to surface mined land, such as disturbed area, water bodies, and kind of reclamation, has been derived from the analysis of ERTS imagery.
NASA Technical Reports Server (NTRS)
Moreno, N. V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. In the Oriente area, well-drained forests containing commercially valuable hardwoods can be recognized confidently and delineated quickly on the ERTS imagery. In the tropical rainforest, ERTS can provide an abundance of inferential information about large scale geologic structures. ERTS imagery is better than normal aerial photography for recognizing linears. The imagery is particularly useful for updating maps of the distributary system of the Guagas River Basin and of any other river with a similarly rapid changing channel pattern.
Relevance of ERTS-1 to the State of Ohio. [environmental monitoring and resources management
NASA Technical Reports Server (NTRS)
Sweet, D. C.; Pincura, P. G.; Wukelic, G. E. (Principal Investigator)
1974-01-01
The author has identified the following significant results. During the first year of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in southeastern Ohio, the potential of using ERTS-1 imagery in water quality and coastal zone management in the Lake Erie region, and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs were experimentally demonstrated and reported as significant project results.
Relevance of ERTS-1 to the state of Ohio
NASA Technical Reports Server (NTRS)
Sweet, D. C.; Wells, T. L.; Wukelic, G. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. During the first six months of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in southeastern Ohio was reported as a significant project result. During this reporting period, the potential of using ERTS-1 imagery in water quality and coastal zone management of Lake Erie became apparent and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs was experimentally demonstrated.
Application of ERTS-1 imagery in the Vermont-New York dispute over pollution of Lake Champlain
NASA Technical Reports Server (NTRS)
Lind, A. O. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 imagery and a composite map derived from ERTS-1 imagery were presented as evidence in a U.S. Supreme Court case involving the pollution of an interstate water body (Lake Champlain). A pollution problem generated by a large paper mill forms the basis of the suit (Vermont vs. International Paper Co. and State of New York) and ERTS-1 imagery shows the effluent pattern on the lake surface as extending into Vermont during three different times.
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.
NASA Technical Reports Server (NTRS)
Belon, A. E. (Principal Investigator); Miller, J. M.
1973-01-01
The author has identified the following significant results. The objective of this project is to provide a focus for the entire University of Alaska ERTS-1 effort (12 projects covering 10 disciplines and involving 8 research institutes and science departments). Activities have been concentrated on the implementation of the project's three primary functions: (1) coordination and management of the U of A ERTS-1 program, including management of the flow of data and data products; (2) acquisition, installation, test, operation, and maintanence of centralized facilities for processing ERTS-1, aircraft, and ground truth data; and (3) development of photographic and digital techniques for processing and interpreting ERTS-1 and aircraft data. With minor exceptions these three functions are now well-established and working smoothly.
NASA Technical Reports Server (NTRS)
Muehlfeld, R.
1974-01-01
Results are presented of West German investigations into multidisciplinary geoscientific experiments in central Germany and the Alps, and hydrogeological investigations in the Pampa of Argentina based on ERTS-1 data. The main goals of the investigation were achieved. The studies have given a good idea of the possibilities and limitations of ERTS imagery depending on the objectives in question and on the geographical conditions of the areas under investigation. Even in the well known region of central Europe, ERTS has proven its ability of improving present knowledge. In fields such as pollution monitoring and regional planning the satellite techniques should have distinct practical value. For any regional study of less known areas, the value of ERTS imagery can hardly be overestimated.
Analysis of ERTS imagery of Wyoming and its application to evaluation of Wyoming's natural resources
NASA Technical Reports Server (NTRS)
Houston, R. S. (Principal Investigator); Marrs, R. W.
1972-01-01
The author has identified the following significant results. The Wyoming ERTS investigation has been hindered only slightly by incomplete ERTS data sets and lack of coverage. Efforts to map cultural development, vegetation distributions, and various geomorphologic features are underway. Tectonic analysis of the Rock Springs area has isolated two linear features that may be very significant with regard to the regional structure of central Wyoming. Studies of the fracture systems of the Wind River Mountains are being completed. The fracture map, constructed from ERTS-1 interpretations, contains a great deal of structural information which was previously unavailable. Mapping of the Precambrian metasedimentary and metavolcanic terrain of the Granite Mountains is nearing completion, and interpretation of ERTS supporting aircraft data has revealed deposits of iron formation.
Electrical imaging at the large block test—Yucca Mountain, Nevada
NASA Astrophysics Data System (ADS)
Ramirez, A.; Daily, W.
2001-02-01
A monolithic block of densely welded tuff was excavated from a site on Fran Ridge near Yucca Mountain, Nevada so that coupled thermohydrological processes could be studied in a controlled, in situ experiment. A series of heaters were placed in a horizontal plane about 3 m from the top of the 3 m×3 m×4.5-m high block. Temperatures were measured at many points within and on the block surface and a suite of other measurements were taken to define the thermal and hydrologic response. Electrical resistance tomography (ERT) was used to map two-dimensional images of moisture content changes along four planes in the block. The ERT images clearly delineate the drying and wetting of the rockmass during the 13 months of heating and subsequent 6 months of cool down. The main feature is a prominent dry zone that forms around the heaters then gradually disappears as the rock cools down. Other features include linear anomalies of decreasing moisture content, which are fractures dehydrating as the block heats up. There are also examples of compact anomalies of wetting. Some of these appear to be water accumulation in fractures, which are draining condensate from the block. Others may be rainwater entering a fracture at the top of the block. During cool-down, a general rewetting is observed although this is less certain because of poor data quality during this stage of the experiment.
Turnover Time in the Hyporheic Zone as Assessed by 3D Geophysical Imaging
NASA Astrophysics Data System (ADS)
Kohler, B.; Hall, R. O., Jr.; Carr, B.
2017-12-01
The hyporheic zone (HZ) is a region of interest in stream hydrology and ecology, however, its heterogeneity across small spatial scales and difficulty to directly measure has hampered researchers' efforts to understand its specific contribution to processes such as solute transport and nutrient retention and removal. In recent years researchers have combined geophysical imaging, such as electrical resistivity tomography (ERT), with tracer additions to directly measure exchange between surface waters and the HZ without physically disrupting natural subsurface flow paths. We conducted constant-rate tracer additions in two small headwater mountain streams while collecting 3D ERT images downstream before, during, after each tracer addition to yield spatially comprehensive models of solute exchange with the HZ through time. From our 3D HZ models, we calculated the active volume of the HZ, normalized to the maximum measured size, for each time step giving a breakthrough curve of tracer abundance in the HZ through time. We then described the tracer's turnover time in the HZ by applying exponential and power decay models to the breakthrough curve of HZ volume in a similar manner that one would for a tracer breakthrough curve in surface waters. Our models suggest that the flushing of solutes from the HZ exhibit multi-domain behavior, where advective and diffusive exchange between HZ and surface waters occur simultaneously and operate at distinctly different rates.
Application of geotechnical and geophysical field measurements in an active alpine environment
NASA Astrophysics Data System (ADS)
Lucas, D. R.; Fankhauser, K.; Springman, S. M.
2015-09-01
Rainfall can trigger landslides, rockfalls and debris flow events. When rainfall infiltrates into the soil, the suction (if there is any) is reduced, until positive water pressure can be developed, decreasing the effective stresses and leading to a potential failure. A challenging site for the study of mass movement is the Meretschibach catchment, a location in the Swiss Alps in the vicinity of Agarn, Canton of Valais. To study the effect of rainfall on slope stabilities, the soil characterization provides valuable insight on soil properties, necessary to establish a realistic ground model. This model, together with an effective long term-field monitoring, deliver the essential information and boundary conditions for predicting and validating rainfall- induced slope instabilities using numerical and physical modelling. Geotechnical monitoring, including soil temperature and volumetric water content measurements, has been performed on the study site together with geophysical measurements (ERT) to study the effect of rainfall on the (potential) triggering of landslides on a scree slope composed of a surficial layer of gravelly soil. These techniques were combined to provide information on the soil characteristics and depth to the bedrock. Seasonal changes of precipitation and temperature were reflected in corresponding trends in all measurements. A comparison of volumetric water content records was obtained from decagons, time domain reflectometry (TDR) and electrical resistivity tomography (ERT) conducted throughout the spring and summer months of 2014, yielding a reasonable agreement.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
Coastal Permafrost Bluff Response to Summer Warming, Barter Island, NE Alaska
NASA Astrophysics Data System (ADS)
Richmond, B. M.; Gibbs, A.; Johnson, C. D.; Swarzenski, P. W.; Oberle, F. J.; Tulaczyk, S. M.; Lorenson, T. D.
2016-12-01
Observations of warming air and sea temperatures in the Arctic are leading to longer periods of permafrost thaw and ice-free conditions during summer, which lead to increased exposure to coastal storm surge, wave impacts, and heightened erosion. Recently collected air and soil (bluff) temperatures, atmospheric pressure, water levels, time-lapse photography, aerial photography and satellite imagery, and electrical resistivity tomography (ERT) surveys were used to document coastal bluff morphological response to seasonal warming. Data collection instruments and time-lapse cameras installed overlooking a bluff face on the exposed open ocean coast and within an erosional gully were used to create an archive of hourly air temperature, pressure, bluff morphology, and sea-state conditions allowing for documentation of individual bluff failure events and coincident meteorology. Permafrost boreholes as deep as 6 m from the upper bluff tundra surface were fitted with thermistor arrays to record a high resolution temperature record that spanned an initial frozen state, a summer thaw cycle, and subsequent re-freezing. Late summer ERT surveys were used to link temperature observations to subsurface electrical resistivities and active-layer dynamics. Preliminary observations suggest surface warming and active layer growth are responsible for a significant amount of bluff face failures that are exacerbated in the shore perpendicular gullies and along the exposed ocean coast. Electrical resistivity surveys and geochemical data reveal concentrated brines at depth, which likely contribute to enhanced, localized erosion in weakened strata.
NASA Astrophysics Data System (ADS)
Abbas, Abbas M.; Ghazala, Hosni H.; Mesbah, Hany S.; Atya, Magdy A.; Radwan, Ali; Hamed, Diaa E.
2016-06-01
Bahariya Oasis is one of the lately inspected spots in Egypt and has a long historical record extending from the old kingdom till the emergence of Islam. Since June 1999, the Valley of the Golden Mummies near Bawiti (at kilometer 6 on the road leads to Farafra Oasis) became significant due to the discoveries of amazing mummies of gelded faces. The archeologists believe that the Valley has more valuable tombs that still unrevealed. Also, the possibility that the Greco-Roman Necropolis extends to areas other than Kilo-6 is sustainable. The ground penetrating radar and electrical resistivity tomography are two geophysical tools that have successful applications in archeological assessment. The two techniques were used in integration plan to assert the archeological potentiality of the studied site and to map the feasible tombs. Sum of 798 GPR profiles and 19 ERT cross sections was carried out over the study area. The results of them were analyzed to envisage these results in archeological terms.
Ocular lesions in canine mucopolysaccharidosis I and response to enzyme replacement therapy.
Newkirk, Kim M; Atkins, Rosalie M; Dickson, Patti I; Rohrbach, Barton W; McEntee, Michael F
2011-07-11
Mucopolysaccharidosis I (MPS I) is an inherited metabolic disorder resulting from deficiency of α-L-iduronidase and lysosomal accumulation of glycosaminoglycans (GAG) in multiple tissues. Accumulation of GAG in corneal stromal cells causes corneal opacity and reduced vision. The purpose of this study was to determine the extent of ocular GAG accumulation and investigate the effectiveness of intravenous enzyme replacement therapy (ERT) on corneal GAG accumulation in dogs. Ocular tissues were obtained from 58 dogs with mucopolysaccharidosis I and four unaffected controls. Affected dogs received either low-dose ERT, high-dose ERT, or no treatment; some low-dose dogs also received intrathecal treatments. Histologic severity of corneal stromal GAG accumulation was scored. Accumulation of GAG was found in corneal stromal cells and scleral fibroblasts but not in corneal epithelium, endothelium, ciliary epithelium, choroid, retina, retinal pigment epithelium, or optic nerve. Corneal GAG accumulation increased in severity with increasing age. Although low-dose ERT did not significantly reduce corneal stromal GAG accumulation in comparison with untreated animals, high-dose ERT did result in significantly less GAG accumulation compared with the untreated dogs (adjusted P = 0.0143) or the low-dose ERT group (adjusted P = 0.0031). Intrathecal treatments did not significantly affect GAG accumulation. Dogs that began ERT shortly after birth also had significantly less (P < 0.0001) GAG accumulation in the corneal stroma than dogs with a later onset of treatment. These data suggest that high-dose, intravenous ERT is effective at preventing and/or clearing corneal stromal GAG accumulation, particularly if initiated early after birth.
Mistry, Pramod K; Deegan, Patrick; Vellodi, Ashok; Cole, J Alexander; Yeh, Michael; Weinreb, Neal J
2009-01-01
Data from the International Collaborative Gaucher Group Gaucher Registry were analysed to assess the relationship between enzyme replacement therapy with imiglucerase (ERT) and incidence of avascular necrosis (AVN) in type 1 Gaucher disease (GD1), and to determine whether the time interval between diagnosis and initiation of ERT influences the incidence rate of AVN. All patients with GD1 enrolled in the Gaucher Registry who received ERT and did not report AVN prior to starting therapy (n = 2700) were included. The incidence rate of AVN following initiation of ERT was determined. An incidence rate of AVN of 13·8 per 1000 person-years was observed in patients receiving ERT. Patients who initiated ERT within 2 years of diagnosis had an incidence rate of 8·1 per 1000 person-years; patients who started ERT ≥2 years after diagnosis had an incidence rate of 16·6 per 1000 person-years. The adjusted incidence rate ratio was 0·59 [95% confidence interval (CI) 0·36–0·96, P = 0·0343]. Splenectomy was an independent risk factor for AVN (adjusted incidence rate ratio 2·23, 95% CI 1·61–3·08, P < 0·0001). In conclusion, the risk of AVN was reduced among patients who initiated ERT within 2 years of diagnosis, compared to initiating treatment ≥2 years after diagnosis. A higher risk of AVN was observed among patients who had previously undergone splenectomy. PMID:19732054
40 CFR 60.4915 - What reports must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert_tool.html/) or other compatible... Sludge Incineration Units Recordkeeping and Reporting § 60.4915 What reports must I submit? You must... reporting period specified in paragraph (d)(3) of this section. You must submit your first annual compliance...
40 CFR 60.2235 - In what form can I submit my reports?
Code of Federal Regulations, 2012 CFR
2012-07-01
... opacity data, electronically to EPA's Central Data Exchange (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert tool.html/) or other compatible electronic spreadsheet... Recordkeeping and Reporting § 60.2235 In what form can I submit my reports? Submit initial, annual, and...
40 CFR 63.11225 - What are my notification, reporting, and recordkeeping requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Exchange (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert tool... 40 Protection of Environment 15 2012-07-01 2012-07-01 false What are my notification, reporting... What are my notification, reporting, and recordkeeping requirements? (a) You must submit the...
40 CFR 60.2235 - In what form can I submit my reports?
Code of Federal Regulations, 2011 CFR
2011-07-01
... opacity data, electronically to EPA's Central Data Exchange (CDX) by using the Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert tool.html/) or other compatible electronic spreadsheet... Recordkeeping and Reporting § 60.2235 In what form can I submit my reports? Submit initial, annual, and...
40 CFR 60.4915 - What reports must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Electronic Reporting Tool (ERT) (see http://www.epa.gov/ttn/chief/ert/ert_tool.html/) or other compatible... Sludge Incineration Units Recordkeeping and Reporting § 60.4915 What reports must I submit? You must... reporting period specified in paragraph (d)(3) of this section. You must submit your first annual compliance...
ERTS imagery for ground-water investigations
Moore, Gerald K.; Deutsch, Morris
1975-01-01
ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.
Fracture trends identified by ERTS-1 imagery in Utah and Nevada
NASA Technical Reports Server (NTRS)
Jensen, M. L. (Principal Investigator); Erickson, M. P.; Smith, M. R.
1973-01-01
The author has identified the following significant results. In the Utah-Nevada area, linear structural trends recorded on ERTS-1 imagery conform in part to previously recognized structures. In addition, the ERTS-1 imagery reveals cryptic structures not previously identified and not readily apparent in other imagery. These structures are illustrated by prominent east-west trending structures which appear to be concentrated in pre-volcanic rocks. This suggests that the structures are older than many of those with other trends which are equally prominent in volcanic and non-volcanic terrain. Since the older east-west structures may have controlled early Tertiary emplacement of magma or the ascent of mineralizing fluids, their recognition is important in minerial exploration. Soil-gas sampling and analysis for mercury content is being continued over structures, and projected trends of buried structures which appear, from studies of ERTS-1 imagery, to be favorable to mineralization. Comparison of ERTS-1 and Skylab imagery indicated that ERTS-1 imagery records more previously unrecognized linear structures than the Skylab imagery. In differentiating and identifying different rock types, the Skylab imagery appears to be more effective.
NASA Astrophysics Data System (ADS)
Inauen, C.; Green, A.; Rabenstein, L.; Greenhalgh, S.; Kinzelbach, W.; Doetsch, J.; Hertrich, M.; Smoorenburg, M.; Volze, N.
2012-04-01
Understanding the relationships between precipitation volumes, surface runoff and subsurface storage, drainage and flow processes on mountain slopes is critical for flood management in alpine regions. In the Schächen catchment (central Switzerland) an unexpectedly delayed and heavy flood reaction to a long duration rainfall event was observed in 2005. It is believed that the steep creeping landmass slopes with thick soils were responsible for the delay. To better comprehend and visualise water infiltration and runoff formation we conducted a 3D time-lapse ERT experiment during a water sprinkling and injection experiment on the side of a hill in the Schächental region presumed representative of soil and other conditions associated with the delayed flood. Constant sprinkling at a rate of about 10mm/h was applied to a plot of area 30m x 5m. The electrical conductivity of the sprinkled water was approximately that of the pore water (25mS/m). A total of 33 consecutive ERT data sets, each comprising 3521 measured electrode configurations, were recorded with a 96-electrode array over an area of 27.5m x 14m, which included two thirds of the sprinkled area. Each electrode configuration was measured at a repeat interval of 2 to 2.8 hours. The entire 3D ERT monitoring experiment was divided into two separate time intervals: (1) the initial 25 hour period involving only freshwater sprinkling, until steady state was reached, (2) the following 35 hour period during which, in addition to the sprinkling, salt water was injected in two boreholes at a depth of 1m (unsaturated zone). The salt water injections were separated by 17 hours, and monitored until 14 hours after sprinkling stopped. During the first interval all changes in the subsurface resistivity are caused by changes in the water saturation and the temperature of the fluid, whereas in the second interval they are mainly due to changes in salt concentration of the pore fluid. Supplementary measurements of water table elevation and fluid electric conductivity were made in several boreholes. To image the subsurface resistivity changes, we inverted the ratios of time-lapse resistances to their background (pre-sprinkling) values. The sprinkling during time interval 1 allowed us to examine near-surface infiltration. Even from the first time window, the emergence of a shallow wetting front could be observed in the inverted depth sections as a decrease in bulk resistivity. Both salt water plumes during interval 2 were found to move laterally as well as vertically through the soil into a zone of fissured Flysch. Below the water table, the plume could be tracked further as a weaker ERT signal, which shows a flow component parallel to the water table in the downslope direction where it eventually breaks the surface. 3D ERT monitoring has proven to be a powerful tool to monitor water sprinkling and injection experiments. Due to its advantageous ability to resolve changes, both in time and in space, it captured most of the soil moisture and flow dynamics. Processes, such as infiltration and drainage, which are important for the understanding of runoff formation, could be readily visualized.
The use of ERTS-1 MSS data for mapping strip mines and acid mine drainage in Pennsyvania
NASA Technical Reports Server (NTRS)
Alexander, S. S.; Dein, J. L.; Gold, D. P.
1973-01-01
Digital processing of ERTS-I MSS data for areas around the west branch of the Susquehanna River permits identification of stripped areas including ones that are not discernible from visual analysis of ERTS imagery. Underflight data and ground-based observations are used for ground-truth and as a basis for designing more refined operators to make sub-classifications of stripped areas, particularly with regard to manifestations of acid mine drainage; because of associated diagnostic effects on vegetation, seasonal changes in classifiction criteria are being documented as repeated, cloud-free ERTS-I coverage of the same area becomes available. Preliminary results indicate that ERTS data can be used to moniter not only the total extent of stripping in given areas but also the effectiveness of reclamation and pollution abatement procedures.
Evaluate ERTS imagery for mapping and detection of changes of snowcover on land and on glaciers
NASA Technical Reports Server (NTRS)
Meier, M. F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The percentage of snow cover area on specific drainage basins was measured from ERTS-1 imagery by video density slicing with a repeatability of 4 percent of the snow covered area. Data from ERTS-1 images of the melt season snow cover in the Thunder Creek drainage basin in the North Cascades were combined with existing hydrologic and meteorologic observations to enable calculations of the time distribution of the water stored in this mountain snowpack. Similar data could be used for frequent updating of expected inflow to reservoirs. Equivalent snowline altitudes were determined from area measurements. Snowline altitudes were also determined by combining enlarged ERTS-1 images with maps. ERTS-1 imagery was also successfully used to measure glacier accumulation area ratios for a small test basin.
A study of the utilization of ERTS-1 data from the Wabash River Basin
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Nine projects are defined, five ERTS data applications experiments and four supporting technology tasks. The most significant applications results were achieved in the soil association mapping, earth surface feature identification, and urban land use mapping efforts. Four soil association boundaries were accurately delineated from ERTS-1 imagery. A data bank has been developed to test surface feature classifications obtained from ERTS-1 data. Preliminary forest cover classifications indicated that the number of acres estimated tended to be greater than actually existed by 25%. Urban land use analysis of ERTS-1 data indicated highly accurate classification could be obtained for many urban catagories. The wooded residential category tended to be misclassified as woods or agricultural land. Further statistical analysis revealed that these classes could be separated using sample variance.
NASA Technical Reports Server (NTRS)
Colwell, R. N.; Thorley, G. A.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, V. R.; Wildman, W. E.; Huntington, G. L. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. Results of an integrated study of earth resources in the state of California using ERTS-1 and supporting aircraft data are presented. Areas of investigation cover (1) regional agricultural surveys; (2) solving water resource management problems; (3) resource management in Northern California using ERTS-1 data; (4) analysis of river meanders; (5) assessment and monitoring change in west side of the San Joaquin Valley and central coastal zone of state; (6) assessment and monitoring of changes in Southern California environment; (7) digital handling and processing of ERTS-1 data; (8) use of ERTS-1 data in educational and applied research programs of the Agricultural Extension Service; and (9) identification, classification, and mapping of salt affected soils.
Hughes, Derralynn A; Nicholls, Kathleen; Shankar, Suma P; Sunder-Plassmann, Gere; Koeller, David; Nedd, Khan; Vockley, Gerard; Hamazaki, Takashi; Lachmann, Robin; Ohashi, Toya; Olivotto, Iacopo; Sakai, Norio; Deegan, Patrick; Dimmock, David; Eyskens, François; Germain, Dominique P; Goker-Alpan, Ozlem; Hachulla, Eric; Jovanovic, Ana; Lourenco, Charles M; Narita, Ichiei; Thomas, Mark; Wilcox, William R; Bichet, Daniel G; Schiffmann, Raphael; Ludington, Elizabeth; Viereck, Christopher; Kirk, John; Yu, Julie; Johnson, Franklin; Boudes, Pol; Benjamin, Elfrida R; Lockhart, David J; Barlow, Carrolee; Skuban, Nina; Castelli, Jeffrey P; Barth, Jay; Feldt-Rasmussen, Ulla
2017-04-01
Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant ( amenable ) forms of α-Gal to facilitate normal lysosomal trafficking. The main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed. Fifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (-6.6 g/m 2 (-11.0 to -2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated. Migalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations. NCT00925301; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.
2018-05-01
Seismic events of varying magnitudes have been associated with ruptures along unknown or incompletely mapped buried faults. The 2009 Mw 6.0 Karonga, Malawi earthquake caused a surface rupture length of 14-18 km along a single W-dipping fault [St. Mary Fault (SMF)] on the hanging wall of the North Basin of the Malawi Rift. Prior to this earthquake, there was no known surface expression or knowledge of the presence of this fault. Although the earthquake damage zone is characterized by surface ruptures and coseismic liquefaction-induced sand blows, the origin of the causative fault and the near-surface structure of the rupture zone are not known. We used high-resolution aeromagnetic and electrical resistivity data to elucidate the relationship between surface rupture locations and buried basement structures. We also acquired electrical resistivity tomography (ERT) profiles along and across the surface rupture zone to image the near-surface structure of the damaged zone. We applied mathematical derivative filters to the aeromagnetic data to enhance basement structures underlying the rupture zone and surrounding areas. Although several magnetic lineaments are visible in the basement, mapped surface ruptures align with a single 37 km long, 148°-162°—striking magnetic lineament, and is interpreted as the ruptured normal fault. Inverted ERT profiles reveal three regional geoelectric layers which consist of 15 m thick layer of discontinuous zones of high and low resistivity values, underlain by a 27 m thick zone of high electrical resistivity (up to 100 Ω m) and a basal layer of lower resistivity (1.0-6.0 Ω m) extending from 42 m depth downwards (the maximum achieved depth of investigation). The geoelectric layers are truncated by a zone of electrical disturbance (electrical mélange) coinciding with areas of coseismic surface rupturing and sediment liquefaction along the ruptured. Our study shows that the 2009 Karonga earthquake was associated with the partial rupture of the buried SMF, and illuminates other potential seismogenic buried faults within the Karonga area of the North Basin. Although our electrical surveys were conducted 6 yr after the 2009 Karonga earthquake, we observe that near-surface lenses of electrically conductive sediments imaged by our ERT profiles, coincide with zones of coseismic surface rupture and liquefaction sand blows. We suggest that the presence of these preserved near-surface lenses of potentially water-saturated sand pose potential hazard in the event of a future earthquake in the area. In addition, our ERT profiles reveal structures that could represent relics of previous earthquake events along the SMF. In addition, our study demonstrates that the integration of ERT and aeromagnetic data can be very useful in illuminating seismogenic buried faults, thereby significantly improving seismic hazard analysis in tectonically active areas.
NASA Technical Reports Server (NTRS)
Reining, P. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Repetitively derived multispectral band imagery from ERTS-1 is now available for many parts of the earth's land surface and represents major new data sources for anthropological work in habitat, land use, and settlement patterns. A completed first step test of ERTS-1 data is available in carrying capacity estimates for Mossi, Hausa, and Sonrai sites derived from: (1) field work; (2) aerial photography; and (3) ERTS-1. Data can test more than one carrying capacity formula.
An interdisciplinary analysis of ERTS data for Colorado mountain environments using ADP techniques
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. Research efforts have been placed on: (1) location, acquisition, and preparation of baseline information necessary for the computer analysis, and (2) refinement of techniques for analysis of MSS data obtained from ERTS-1. Analysis of the first frame of data collected by the ERTS-1 multispectral scanner system over the Lake Texoma area has proven very valuable for determining the best procedures to follow in working with and analyzing ERTS data. Progress on the following projects is described: (1) cover type mapping; (2) geomorphology; and hydrologic feature surveys.
NASA Astrophysics Data System (ADS)
Chavez, R. E.; Tejero, A.; Cifuentes, G.; HernaNdez-Quintero, J. E.; Garcia-Serrano, A.
2016-12-01
The well known Pyramid El Castillo, located in the archaeological site of Chichen Itza, in the Yucatan Peninsula is the emblematic structure of this archaeological site and elected as one of the man-made world seven wonders. The archaeological team that restored this structure during the 1920's discovered a smaller pyramid inside this prehispanic body, which corresponded to an older Mayan period. The possibility of finding other constructive periods inside this edifice should be important to reconstruct the Mayan history. Previous geophysical studies carried out by us in 2014, employed novel Electrical Resistivity Tomography (ERT) arrays that surrounded the pyramids surface with flat electrodes to obtain a 3D image of the subsoil. At that time, a low resistivity body was found beneath the pyramid, which was associated to a sinkhole filled with sweet water. Employing the same technique, a series of flat electrodes were deployed on each body conforming the pyramid, a total of 10 bodies were covered, employing a different number of electrodes trying to keep the distance between each electrode constant ( 3 m). Each body was treated as a single observation cube, where the apparent resistivity data measured was later inverted. A precise topographic control for each electrode was realized and introduced in the inversion process. 45,000 observation points within the pyramid were obtained. Initially, each working cube corresponding to a given pyramid's body was inverted. A composition of each inversion was assembled to form the resistivity distribution within the pyramid using a smooth interpolation method. A high resistivity anomaly was found towards the northern portion of the model that could be associated to the main stairway of the inner pyramid. The cavity detected during the 2014 survey was observed as a low resistivity anomaly found at the pyramid's base. At the moment, we are assembling the full observed resistivity data as a single file to compute an integrated geophysical model that could be inverted. We expect to compute such final model soon.
NASA Astrophysics Data System (ADS)
Martel, Richard; Castellazzi, Pascal; Gloaguen, Erwan; Trépanier, Luc; Garfias, Jaime
2018-06-01
Urban infrastructures built over karst settings may be at risk of collapse due to hydro-chemical erosion of underlying rock structures. In such settings, mapping cave networks and monitoring ground stability is important to assure civil safety and guide future infrastructure development decisions. However, no technique can directly and comprehensively map these hydrogeological features and monitor their stability. The most reliable method to map a cave network is through speleological exploration, which is not always possible due to restrictions, narrow corridors/passages, or high water levels. Borehole drilling is expensive and is often only performed where the presence of karsts is suggested by other techniques. Numerous indirect and cost-effective methods exist to map a karst flow system, such as geophysics, geodesy, and tracer tests. This paper presents the outcomes from a challenging application in Quebec City, Canada, where a multidisciplinary approach was designed to better understand the groundwater dynamics and cave paths. Two tracer tests in groundwater flowing through the cave system indicated that water flows along an approximately straight path from the sinking stream to the spring. It also suggests the presence of a parallel flow path close to the one already partially mapped. This observation was confirmed by combining Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) techniques, and ultimately by observing voids in several boreholes drilled close to the main cave path. Lowering the water levels at the suspected infiltration zone and inside the karst, the infiltration cracks were identified and the hydraulic link between them was confirmed. In fact, almost no infiltration occurs into the karst system when the water level at the sinking stream drops below a threshold level. Finally, SAR interferometry (InSAR) using RADARSAT-2 images detected movements on few buildings located over a backfilled sinkhole intercepted by the karst system and confirmed the stability of the rest of the karst area. The knowledge of the flow system described in this paper is used by policy makers to assure civil security of this densely populated area.
NASA Technical Reports Server (NTRS)
Thomson, F. J.; Polcyn, F. C.; Bryan, M. L.; Sattinger, I. J.; Malila, W. A.; Nalepka, R. F.; Wezernak, C. T.; Horvath, R.; Vincent, R. K. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Depth mapping's for a portion of Lake Michigan and at the Little Bahama Bank test site have been verified by use of navigation charts and on-site visits. A thirteen category recognition map of Yellowstone Park has been prepared. Model calculation of atmospheric effects for various altitudes have been prepared. Radar, SLAR, and ERTS-1 data for flooded areas of Monroe County, Michigan are being studied. Water bodies can be reliably recognized and mapped using maximum likelihood processing of ERTS-1 digital data. Wetland mapping has been accomplished by slicing of single band and/or ratio processing of two bands for a single observation date. Both analog and digital processing have been used to map the Lake Ontario basin using ERTS-1 data. Operating characteristic curves were developed for the proportion estimation algorithm to determine its performance in the measurement of surface water area. The signal in band MSS-5 was related to sediment content of waters by modelling approach and by relating surface measurements of water to processed ERTS data. Radiance anomalies in ERTS-1 data could be associated with the presence of oil on water in San Francisco Bay, but the anomalies were of the same order as those caused by variations in sediment concentration and tidal flushing.
NASA Astrophysics Data System (ADS)
Maryanto, Sukir
2017-11-01
Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.
Air quality indices from ERTS-1 MSS information
NASA Technical Reports Server (NTRS)
Riley, E. L.; Stryker, S.; Ward, E. A.
1973-01-01
Comparison between ground based atmospheric turbidity network measurements and the average scene grayness from MSS Channel 4 data is in progress. Correlation between these two sources is promising. If continued correlation occurs for other ERTS-1 overflight dates and ground test sites, a new operational use of ERTS-1 useful to Federal, state, and international organizations will become available.
NASA Astrophysics Data System (ADS)
Cappuccini, Luca; Pazzi, Veronica; Tapete, Deodato
2013-04-01
The archaeological interest in anthropogenic mounds as historical products of human occupation generally concerns the understanding of their stratigraphic sequence and the discovery of buried structures. Nevertheless, a further key element relies on the assessment of their stability. This is particularly crucial when the conservation history induced relevant alteration of the former configuration, and a potential collapse might cause damages to heritage and actual risk for public safety. To respond to such dual diagnostic need, we propose an integration approach based on Very Low Frequency Electromagnetic (VLF-EM) qualitative method and 2D-Electrical Resistivity Tomography (2D-ERT), to make the best out of these two techniques in light of their frequencies/bandwidth and methods of soil investigation (15-30 kHz and DC, respectively). We present here the results from the experiments performed on one of the test sites selected to validate the proposed methodology, i.e. the Protestant Cemetery (the so-called "English Cemetery") in Florence, Italy, which is a demonstrative example of a huge sample of anthropogenic mounds within urban and rural environments. Located on a topographic relief, the cemetery testifies a long history since Roman times, as proved by historical documentation and the ceramic findings still now discovered on the (sub-)surface. Converted into a cemetery in 1827, the mound appeared as an anomalous outcrop adjacent to the town walls, prior to the final arrangement and reshaping due to the urban renewal of Florence in 1877, which definitely transformed it into a raised graveyard surrounded by boulevards. A campaign of VLF-EM and ERT measurements was performed to ascertain the presence of a buried part of the ancient eastern wall and identify the key areas of concern for the stability. High values of resistivity were clearly detected and mapped by means of 2D-ERT along the AA' array intercepting the hypothesized location of the buried wall. This measure was cross-validated with the corresponding VLF-EM anomaly profiles, thereby retrieving reliable geophysical evidences suggesting the presence of buried remains. To correlate the effects of inner structures and soil properties with the stability condition of the mound, crack pattern survey was carried out over the wall containing the mound, jointly to an inspection of the cavities and the interspaces between the exterior masonry surfaces and the rear terrain. The spatial distribution of the opened cracks allowed the actual threat for the stability of the mound to be assessed also in relation to the current positions of the cypresses, periodically replanted for landscape reasons. Interesting insights were obtained by mapping the inclination and tilt direction of the gravestones and funerary monuments, as superficial indicators of ground subsidence and soil compaction/collapse at the top of the mound. The benefits achieved for site management and tombstones maintenance have encouraged the exportation of this approach (highly adaptable to include also GPR and seismic methods) to other case studies, and open to a sustainable implementation for the investigation of funerary mounds, such as the Etruscan burial mounds.
Papadopoulos, Constantinos; Orlikowski, David; Prigent, Hélène; Lacour, Arnaud; Tard, Céline; Furby, Alain; Praline, Julien; Solé, Guilhem; Hogrel, Jean-Yves; De Antonio, Marie; Semplicini, Claudio; Deibener-Kaminsky, Joelle; Kaminsky, Pierre; Eymard, Bruno; Taouagh, Nadjib; Perniconi, Barbara; Hamroun, Dalil; Laforêt, Pascal
2017-09-01
The efficacy of enzyme replacement therapy (ERT) in patients at an advanced stage of Pompe disease has only been addressed in a few studies. Our objective was to assess the long term effects of ERT in a cohort of patients with severe Pompe disease. We identified patients from the French Pompe Registry with severe respiratory failure and permanent wheelchair use (assisted walk for a few meters was allowed) when starting ERT. Patients' medical records were collected and reviewed and respiratory and motor functions, before ERT initiation and upon last evaluation were compared. Twelve patients (7 males) were identified. Median age at symptom onset was 24years [IQR=15.5; 36.0]. At baseline ventilation was invasive in 11 patients and noninvasive in one, with a median ventilation time of 24h [IQR=21.88; 24.00] (min 20; max 24). ERT was initiated at a median age of 52.5years [IQR=35.75; 66.50]. Median treatment duration was 55months [IQR=39.5; 81.0]. During observational period no adverse reaction to ERT was recorded, five patients (41.67%) died, three decreased their ventilation time by 30, 60 and 90min and two increased their assisted walking distance, by 80 and 20m. Some patients at a very advanced stage of Pompe disease may show a mild benefit from ERT, in terms of increased time of autonomous ventilation and of enlarged distance in assisted walk. ERT can be initiated in these patients in order to retain their current level of independence and ability to perform daily life activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Nowak, Albina; Koch, Gilbert; Huynh-Do, Uyen; Siegenthaler, Martin; Marti, Hans-Peter; Pfister, Marc
2017-01-01
Fabry disease (FD) is a rare inherited lysosomal storage disease with common and serious kidney complications. Enzyme replacement therapies (ERT) with agalsidase-α and -β were investigated to characterize their therapeutic effect on kidney function in FD patients with Classic phenotype. The prospective FD cohort consisted of 98 genetically confirmed patients (females, n = 61, males, n = 37). The median [interquartile range] follow-up time (time difference from first to last visit) was 9 [6, 12] years. The median age of ERT start was 36 [21 - 54] years for females and 39 [28 - 49] years for males. A disease progression model was developed to (i) characterize the time course of estimated glomerular filtration rate (eGFR) and (ii) evaluate therapeutic effects of ERT on kidney function. Change in eGFR over time was best described by the linear model. Females had stable kidney function with and without ERT (eGFR slopes of -0.07 ml/min/1.73m^2 per year and 0.52 ml/min/1.73m^2 per year, respectively). Males with ERT showed an eGFR decrease of -3.07 ml/min/1.73m^2 per year. Mathematical disease progression modeling indicates that there is no clear therapeutic effect of ERT on kidney function in adult patients with Classic Phenotype of FD. Interpretation of these findings should take into account that the study is not randomized and lacks a placebo controlled group. Further investigations are warranted to clarify whether earlier ERT initiation before 18 years of age, higher ERT dose or more intensive therapies can preserve kidney function. © 2017 The Author(s)Published by S. Karger AG, Basel.
Castro-Jaramillo, Héctor E
2012-01-01
Determining the cost-effectiveness of enzyme replacement therapy (ERT) for the classical infantile form of Pompe disease (complete acid a-glucosidase deficiency-related) in two different settings: England and Colombia. Pompe disease is very rare (1:40,000 births incidence). A literature review was made and historic databases searched for National Health Service (NHS) reimbursed costs in England and by health insurers in Colombia; expert opinion was elicited. Two Markov models were constructed for comparing both countries; alive with symptoms and dead were the transition states used. Patients aged < 6 months receiving ERT were assumed to have 75 % survival rate and better health-related quality of life (HR-QoL) compared to those without treatment (0.700 HR- QoL using the EQ-5D scale). The incremental cost-effectiveness ratio (ICER) per quality-adjusted life year (QALY) gained was £234,307.7 for England and £109,991 for Colombia. Uncertainty about Anal HR-QoL with ERT, disease progression and cost from palliative care had the biggest impact on the ICER in both models. If ERT costs were reduced to 10,000 times per dose and HR-QoL was 0.750-0.820 ICER, then £165,000 could be attainable for England and £65,000 for Colombia. Transaction costs per case in Colombia were high. ERT was more effective than no ERT in treating infantile Pompe disease, but high levels of uncertainty still remain about survival and progression rates and QoL in the long-run. ICERs were high compared to CE thresholds. Manufacturers' ERT costs and monopoly had a major impact on Anal CEA results.
Lechuga, Thomas J.; Zhang, Hong-hai; Sheibani, Lili; Karim, Muntarin; Jia, Jason; Magness, Ronald R.; Rosenfeld, Charles R.
2015-01-01
Estrogens dramatically dilate numerous vascular beds with the greatest response in the uterus. Endogenous hydrogen sulfide (H2S) is a potent vasodilator and proangiogenic second messenger, which is synthesized from L-cysteine by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). We hypothesized that estrogen replacement therapy (ERT) selectively stimulates H2S biosynthesis in uterine artery (UA) and other systemic arteries. Intact and endothelium-denuded UA, mesenteric artery (MA), and carotid artery (CA) were obtained from ovariectomized nonpregnant ewes (n = 5/group) receiving vehicle or estradiol-17β replacement therapy (ERT). Total RNA and protein were extracted for measuring CBS and CSE, and H2S production was determined by the methylene blue assay. Paraffin-embedded UA rings were used to localize CBS and CSE proteins by immunofluorescence microscopy. ERT significantly stimulated CBS mRNA and protein without altering CSE mRNA or protein in intact and denuded UA. Quantitative immunofluorescence microscopic analyses showed CBS and CSE protein localization in endothelium and smooth muscle and confirmed that ERT stimulated CBS but not CSE protein expression in UA endothelium and smooth muscle. ERT also stimulated CBS, but not CSE, mRNA and protein expression in intact and denuded MA but not CA in ovariectomized ewes. Concomitantly, ERT stimulated UA and MA but not CA H2S production. ERT-stimulated UA H2S production was completely blocked by a specific CBS but not CSE inhibitor. Thus, ERT selectively stimulates UA and MA but not CA H2S biosynthesis by specifically up-regulating CBS expression, implicating a role of H2S in estrogen-induced vasodilation and postmenopausal women's health. PMID:25825818
Lechuga, Thomas J; Zhang, Hong-hai; Sheibani, Lili; Karim, Muntarin; Jia, Jason; Magness, Ronald R; Rosenfeld, Charles R; Chen, Dong-bao
2015-06-01
Estrogens dramatically dilate numerous vascular beds with the greatest response in the uterus. Endogenous hydrogen sulfide (H2S) is a potent vasodilator and proangiogenic second messenger, which is synthesized from L-cysteine by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). We hypothesized that estrogen replacement therapy (ERT) selectively stimulates H2S biosynthesis in uterine artery (UA) and other systemic arteries. Intact and endothelium-denuded UA, mesenteric artery (MA), and carotid artery (CA) were obtained from ovariectomized nonpregnant ewes (n = 5/group) receiving vehicle or estradiol-17β replacement therapy (ERT). Total RNA and protein were extracted for measuring CBS and CSE, and H2S production was determined by the methylene blue assay. Paraffin-embedded UA rings were used to localize CBS and CSE proteins by immunofluorescence microscopy. ERT significantly stimulated CBS mRNA and protein without altering CSE mRNA or protein in intact and denuded UA. Quantitative immunofluorescence microscopic analyses showed CBS and CSE protein localization in endothelium and smooth muscle and confirmed that ERT stimulated CBS but not CSE protein expression in UA endothelium and smooth muscle. ERT also stimulated CBS, but not CSE, mRNA and protein expression in intact and denuded MA but not CA in ovariectomized ewes. Concomitantly, ERT stimulated UA and MA but not CA H2S production. ERT-stimulated UA H2S production was completely blocked by a specific CBS but not CSE inhibitor. Thus, ERT selectively stimulates UA and MA but not CA H2S biosynthesis by specifically up-regulating CBS expression, implicating a role of H2S in estrogen-induced vasodilation and postmenopausal women's health.
Tsuboi, Kazuya; Yamamoto, Hiroshi
2017-06-07
Fabry disease (FD) is an X-linked lysosomal storage disorder resulting from the α-galactosidase A gene mutations. Enzyme-replacement-therapy (ERT) products for FD currently used include agalsidase alfa and agalsidase beta. There are many reports on efficacy and safety of ERT. However, most of the previous studies are done as a retrospective medical records analysis. The Japan Fabry Research - 002 (JFR-002) was a prospective observational clinical study of 36 ERT-naïve FD patients (14 men and 22 women) at baseline (BL) and after initiation of ERT with agalsidase alfa 0.2 mg/kg every two weeks, a median period 62.5 months. The parameters measured included globotriaosylceramide (Gb3), globotriaosylsphingosine (Lyso-Gb3), left ventricular mass index (LVMI), brain natriuretic peptide (BNP), high-sensitivity troponin I (hs-Trop I), estimated glomerular filtration rate (eGFR), and anti-agalsidase alfa IgG antibody formation. All parameters remained steady during ERT treatment period. BNP levels in 14 patients whose BL levels were within the normal range (<19.5 pg/mL) remained within the same range, while 22 patients whose BL levels were abnormally high (≥19.5 pg/mL) gradually showed decreased levels after start of ERT. Gb3 and Lyso-Gb3 levels remarkably decreased after the initiation of ERT and remained low. The JFR-002 suggests that agalsidase alfa is effective in maintaining organ function in FD patients, and that the incidence of infusion reactions related to the treatment with agalsidase alfa is low, indicating the good tolerability to this ERT. The JFR-002 was retrospectively registered at Japan Medical Association Center for Clinical Trials (Registration number: JMA-IIA00291 ) on May 19th, 2017.
Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring
NASA Astrophysics Data System (ADS)
Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel
2018-03-01
Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip discharge spots traditionally monitored in caves and aims to support modelling approaches of karst hydrological processes.
Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G
2016-12-01
There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation of seasonal trends. Copyright © 2016 Elsevier B.V. All rights reserved.
A summary of selected early results from the ERTS-1 menhaden experiment
NASA Technical Reports Server (NTRS)
Stevenson, W. H. (Principal Investigator); Kemmerer, A. J.; Benigno, J. A.; Reese, G. B.; Minkler, F. C.
1973-01-01
The author has identified the following significant results. Imagery from ERTS-1 satellite was used in conjunction with aerial photographically-sensed menhaden distribution information, sea truth oceanographic measurements, and commercial fishing information from a 8685 square kilometer study area in the north-central portion of the Gulf of Mexico to demonstrate relationships between selected oceanographic parameters and menhaden distribution, ERTS-1 imagery and menhaden distribution, and ERTS-1 imagery and oceanographic parameters. ERTS-1, MSS band 5 imagery density levels correlated with photographically detected menhaden distribution patterns and could be explained based on sea truth Secchi disc transparency and water depth measurements. These two parameters, together with surface salinity, Forel-Ule color, and chlorophyll-a also were found to correlate significantly with menhaden distribution. Eight empirical models were developed which provided menhaden distribution predictions for the study area on combinations of Secchi disc transparency, water depth, surface salinity, and Forel-Ule color measurements.
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.
Assessment of Southern California environment from ERTS-1
NASA Technical Reports Server (NTRS)
Bowden, L. W.; Viellenave, J. H.
1973-01-01
ERTS-1 imagery is a useful source of data for evaluation of earth resources in Southern California. The improving quality of ERTS-1 imagery, and our increasing ability to enhance the imagery has resulted in studies of a variety of phenomena in several Southern California environments. These investigations have produced several significant results of varying detail. They include the detection and identification of macro-scale tectonic and vegetational patterns, as well as detailed analysis of urban and agricultural processes. The sequential nature of ERTS-1 imagery has allowed these studies to monitor significant changes in the environment. In addiation, some preliminary work has begun directed toward assessing the impact of expanding recreation, agriculture and urbanization into the fragile desert environment. Refinement of enhancement and mapping techniques and more intensive analysis of ERTS-1 imagery should lead to a greater capability to extract detailed information for more precise evaluations and more accurate monitoring of earth resources in Southern California.
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Identification and mapping of three major kinds of coal refuse targets based on spectral signatures in channels four through seven of the ERTS-1 MSS were conducted. Correlation of the placement of the coal refuse targets with an existing map of their location was accomplished. Digital processing of ERTS-1 data permitted identification of stripped areas including ones that are not discernible by visual analysis of ERTS imagery. Combined visual and digital techniques of analyzing ERTS-1 data for geologic formations have been tried on selected areas of Pennsylvania. Mapping of two major agriculture counties to show land forms, drainage patterns, water, and urban areas were made using positive transparencies of MSS data. Two frames of the same central Pennsylvania area were brought into registration by translation and then merged even though the frames were obtained 71 days apart.
NASA Technical Reports Server (NTRS)
Place, J. L.
1974-01-01
Changes in land use between 1970 and 1973 in the Phoenix (1:250,000 scale) Quadrangle in Arizona have been mapped using only the images from ERTS-1, tending to verify the utility of a standard land use classification system proposed for use with ERTS images. Types of changes detected have been: (1) new residential development of former cropland and rangeland; (2) new cropland from the desert; and (3) new reservoir fill-up. The seasonal changing of vegetation patterns in ERTS has complemented air photos in delimiting the boundaries of some land use types. ERTS images, in combination with other sources of information, can assist in mapping the generalized land use of the fifty states by the standard 1:250,000 quadrangles. Several states are already working cooperatively in this type of mapping.
Applicability of ERTS for surveying Antarctic iceberg resources
NASA Technical Reports Server (NTRS)
Hult, J. L. (Principal Investigator); Ostrander, N. C.
1973-01-01
The author has identified the following significant results. This investigation explores the applicability of ERTS to (1) determine the Antarctic sea ice and environmental behavior that may influence the harvesting of icebergs, and (2) monitor iceberg locations, characteristics, and evolution. From image sampling, it is found that the potential applicability of ERTS to the research, planning, and harvesting operations can contribute importantly to the promise derived from broader scope studies for the use of Antarctic iceberg to relieve fresh Thermal sensor bands will provide coverage in daylight and darkness. Several years of comprehensive monitoring will be necessary to characterize sea ice and environmental behavior and iceberg evolution. Live ERTS services will assist harvesting control and claming operations and offer a means for harmonizing entitlements to iceberg resources. The valuable ERTS services will be more cost effective than other means and will be easily justified and borne by the iceberg harvesting operation.
NASA Technical Reports Server (NTRS)
Strong, A. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. (1) Sunglint effects over water can be expected in ERTS-1 images whenever solar elevations exceed 55 deg. (2) Upwellings were viewed coincidently by ERTS-1 and NOAA-2 in Lake Michigan on two occasions during August 1973. (3) A large oil slick was identified 100 km off the Maryland coast in the Atlantic Ocean. Volume of the oil was estimated to be least 200,000 liters (50,000 gallons). (4) ERTS-1 observations of turbidity patterns in Lake St. Clair provide circulation information that correlates well with physical model studies made 10 years ago. (5) Good correlation has been established between ERTS-1 water color densities and NOAA-2 thermal infrared surface temperature measurements. Initial comparisons have been made in Lake Erie during March 1973.
Applicability of ERTS to Antarctic iceberg resources. [harvesting sea ice for fresh water
NASA Technical Reports Server (NTRS)
Hult, J. L. (Principal Investigator); Ostrander, N. C.
1973-01-01
The author has identified the following significant results. This investigation explorers the applicability of ERTS to (1) determine the Antarctic sea ice and environmental behavior that may influence the harvesting of icebergs, and (2) monitor iceberg locations, characteristics, and evolution. Imagery has shown that the potential applicability of ERTS to the research, planning, and harvesting operations can contribute importantly to the glowing promise derived from broader scope studies for the use of Antarctic icebergs to relieve a growing global thirst for fresh water. Several years of comprehensive monitoring will be necessary to characterize sea ice and environmental behavior and iceberg evolution. Live ERTS services will assist harvesting control and claiming operations and offer a means of harmonizing entitlements of iceberg resources. The valuable ERTS services will be more cost effective than other means will be easily justified and borne by the iceberg harvesting operations.
Automatic mapping of strip mine operations from spacecraft data. [Ohio
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator); Reed, L. E.; Pettyjohn, W. A.
1974-01-01
The author has identified the following significant results. Computer techniques were applied to process ERTS tapes acquired over coal mining operations in southeastern Ohio on 21 August 1972 and 3 September 1973. ERTS products obtained included geometrically-correct map overlays, at scales from 1:24,000 to 1:250,000, showing stripped earth, partially reclaimed earth, water, and natural vegetation. Computer-generated tables listing the area covered by each land-water category in square kilometers were also produced. By comparing these mapping products, the study demonstrates the capability of ERTS to monitor changes in the extent of stripping and reclamation. NASA C-130 photography acquired on 7 September 1973 when compared with the ERTS products generated from the 3 September 1973 tape established the categorization accuracy to be better than 90%. It is estimated that the stripping and reclamation maps and data were produced from the ERTS CCTs at a tenth of the cost of conventional techniques.
Water content estimated from point scale to plot scale
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Binley, A. M.; Demir, G.; Abgarmi, B.
2017-12-01
Soil moisture controls the portioning of rainfall into infiltration and runoff. Here we investigate measurements of soil moisture using a range of techniques spanning different spatial scales. In order to understand soil water content in a test basin, 512 km2 in area, in the south of Turkey, a Cosmic Ray CRS200B soil moisture probe was installed at elevation of 1459 m and an ML3 ThetaProbe (CS 616) soil moisture sensor was established at 5cm depth used to get continuous soil moisture. Neutron count measurements were corrected for the changes in atmospheric pressure, atmospheric water vapour and intensity of incoming neutron flux. The calibration of the volumetric soil moisture was performed, from the laboratory analysis, the bulk density varies between 1.719 (g/cm3) -1.390 (g/cm3), and the dominant soil texture is silty clay loam and silt loamThe water content reflectometer was calibrated for soil-specific conditions and soil moisture estimates were also corrected with respect to soil temperature. In order to characterize the subsurface, soil electrical resistivity tomography was used. Wenner and Schlumberger array geometries were used with electrode spacing varied from 1m- 5 m along 40 m and 200 m profiles. From the inversions of ERT data it is apparent that within 50 m distance from the CRS200B, the soil is moderately resistive to a depth of 2m and more conductive at greater depths. At greater distances from the CRS200B, the ERT results indicate more resistive soils. In addition to the ERT surveys, ground penetrating radar surveys using a common mid-point configuration was used with 200MHz antennas. The volumetric soil moisture obtained from GPR appears to overestimate those based on TDR observations. The values obtained from CS616 (at a point scale) and CRS200B (at a mesoscale) are compared with the values obtained at a plot scale. For the field study dates (20-22.06.2017) the volumetric moisture content obtained from CS616 were 25.14%, 25.22% and 25.96% respectively. The values obtained from CRS200B were 23.23%, 22.81% and 23.26% for the same dates. Whereas the values obtained from GPR were between 32%-44%. Soil moisture observed by CRS200B is promising to monitor the water content in the soil at the mesoscale and ERT surveys help to understand the spatial variability of the soil water content within the footprint of CRS200B.
NASA Technical Reports Server (NTRS)
Parks, W. L. (Principal Investigator); Sewell, J. I.; Hilty, J. W.; Rennie, J. C.
1973-01-01
The author has identified the following significant results. The delineation of soil associations and detection of drainage patterns, erosion and sedimentation through the use of ERTS-1 imagery are shown. Corn blight and corn virus could not be detected from ERTS-1 and detection of forest composition was at a very low probability.
ERTS-1 applications to California resource inventory
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. ERTS-1 information will be utilized by resource management groups working in the fields of forestry, hydrology, range management, and agriculture to develop resource inventories of the state of California. Five examples are given of the use of ERTS-1 imagery and aerial photography in identifying different crops and field conditions.
Radiant Power Measuring Instrument (RPMI)
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator)
1973-01-01
There are no author-identified significant results in this report. The radiant power measuring instrument is a rugged, hand-carried instrument which provides an ERTS investigator with a capability of obtaining radiometric measurements needed to determine solar and atmospheric parameters that affect the ERTS radiance measurements. With these parameters, ERTS data can be transformed into absolute target reflectance signatures, making accurate unambiguous interpretations possible.
Geographic applications of ERTS-1 imagery to rural landscape change in eastern Tennessee
NASA Technical Reports Server (NTRS)
Rehder, J. B. (Principal Investigator); Omalley, J. R.
1973-01-01
There are no author-identified significant results in this report. A multistage sampling experiment was conducted using low (10,000') and high (60,000') altitude aircraft imagery in comparison with orbital (560 miles) ERTS imagery. Although the aircraft data provide detailed landscape observations similar to ground truth data, they cover relatively small areas per image frame for irregular static slices of time. By comparison, ERTS provides repetitive observations in a regional perspective for broad areal coverage. Microdensitometric and computer techniques are being used to analyze the ERTS imagery for gray tone signatures, comparisons, and ultimately for landscape change detection.
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator); Pettyjohn, W. A.
1975-01-01
The author has identified the following significant results. Computer techniques were applied to process ERTS tapes acquired over coal mining operations in southeastern Ohio on 21 August 1972 and 3 September 1973. ERTS products obtained included geometrically correct map overlays showing stripped earth, partially reclaimed earth, water, and natural vegetation. Computer-generated tables listing the area covered by each land-water category in square kilometers and acres were produced. By comparing these mapping products, the study demonstrates the capability of ERTS to monitor changes in the extent of stripping, success of reclamation, and the secondary effects of mining on the environment.
All-digital precision processing of ERTS images
NASA Technical Reports Server (NTRS)
Bernstein, R. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Digital techniques have been developed and used to apply precision-grade radiometric and geometric corrections to ERTS MSS and RBV scenes. Geometric accuracies sufficient for mapping at 1:250,000 scale have been demonstrated. Radiometric quality has been superior to ERTS NDPF precision products. A configuration analysis has shown that feasible, cost-effective all-digital systems for correcting ERTS data are easily obtainable. This report contains a summary of all results obtained during this study and includes: (1) radiometric and geometric correction techniques, (2) reseau detection, (3) GCP location, (4) resampling, (5) alternative configuration evaluations, and (6) error analysis.
Comparative evaluation of ERTS imagery for resource inventory in land use planning
NASA Technical Reports Server (NTRS)
Simonson, G. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Numerous previously unmapped faults in central Oregon have been distinguished on ERTS-1 imagery. Tectonic mapping of fault-controlled linears demonstrates the utility of ERTS-1 imagery as a mean of illustrating and studying the regional tectonics of the state. Soil colors observed on ERTS-1 frame 1075-18150-5 at the eastern end of the Columbia basin correlate very well with those from descriptions of soils from that area. Digital output from frame 1021-18151 has shown the enhanced ability to interpret such features as joint patterns, shadowed landslide blocks, bottomlands, and drainage patterns. Widespread use of wheat-fallow rotation in northern Umatilla County, Oregon, insures that nearly one-half of the cultivated soil is devoid of vegetation much of the time. On ERTS-1 imagery, fallow fields are only slightly darker than fields of wheat stubble at the western end of the transect. Similar climate-related contrasts in soil color are visible on ERTS-1 Imagery from several other portions of the Columbia Basin. Absence of steep topography in the area mentioned, however, minimizes the disturbing effect caused by shadows.
Dalmau Serra, Jaime; Vitoria Miñana, Isidro; Calderón Fernández, Rafael; Cortell Aznar, Isidoro
2015-11-06
Since enzyme replacement treatment (ERT) with idursulfase is available for Hunter syndrome (HS; mucopolysaccharidosis type II), for the first time, disease progression can be limited and organ damage reduced or prevented. We described retrospectively the clinical evolution of eight HS males, treated with ERT and followed in routine clinical practice in Hospital Infantil La Fe (Valencia, Spain). We studied three children, three adolescents and two adults. Time from diagnosis to ERT ranged from 13.7 to 0.2 years, and duration of ERT ranged from 24 to 77.1 months. From the start of ERT, weight and height increased in children and adolescents and remained stable in adults. Glycosaminoglycans (GAG) decreased in all patients; in patient 5 (aged 23 years), we observed the highest reduction (86%) with recovery of carpal tunnel syndrome, splenomegaly and a decrease in nocturnal oxygen dependence. Our results show that ERT improve respiratory impairment and organomegalies and decrease GAGs levels in all patients including children, adolescent and adults. While cardiac manifestations and facial features stabilized, responses in other parameters were heterogeneous. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Monitoring coastal water properties and circulation from ERTS-1. [Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Imagery and digital tapes from nine successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle have been analyzed with special emphasis on turbidity, current circulation, waste disposal plumes, and convergent boundaries between different water masses. ERTS-1 image radiance correlated well with Secchi depth and suspended sediment concentration. MSS band 5 seemed to give the best representation of sediment load in the upper one meter of the water column. Circulation patterns observed by ERTS-1 during different parts of the tidal cycle, agreed well with predicted and measured currents throughout Delaware Bay. During flood tide the suspended sediment as visible from ERTS-1 also correlated well with the depth profile. Convergent shear boundaries between different water masses were observed from ERTS-1, with foam lines containing high concentrations of lead, mercury, and other toxic substances. Several fronts have been seen. Those near the mouth of the bay are associated with the tidal intrusion of shelf water. Fronts in the interior of the bay on the Delaware side appear to be associated with velocity shears induced by differences in bottom topography. Waste disposal plumes have benn detected 36 miles offshore.
Land use mapping and modelling for the Phoenix Quadrangle
NASA Technical Reports Server (NTRS)
Place, J. L. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The land use of the Phoenix Quadrangle in Arizona had been mapped previously from aerial photographs and recorded in a computer data bank. During the ERTS-1 experiment, changes in land use were detected using only the ERTS-1 images. The I2S color additive viewer was used as the principal image enhancement tool, operated in a multispectral mode. Hard copy color composite images of the best multiband combinations from ERTS-1 were made by photographic and diazo processes. The I2S viewer was also used to enhance changes between successive images by quick flip techniques or by registering with different color filters. More recently, a Bausch and Lomb zoom transferscope has been used for the same purpose. Improved interpretation of land use change resulted, and a map of changes within the Phoenix Quadrangle was compiled. The first level of a proposed standard land use classification system was sucessfully used. ERTS-1 underflight photography was used to check the accuracy of the ERTS-1 image interpretation. It was found that the total areas of change detected in the photos were comparable with the total areas of change detected in the ERTS-1 images.
Comparison of transfer entropy methods for financial time series
NASA Astrophysics Data System (ADS)
He, Jiayi; Shang, Pengjian
2017-09-01
There is a certain relationship between the global financial markets, which creates an interactive network of global finance. Transfer entropy, a measurement for information transfer, offered a good way to analyse the relationship. In this paper, we analysed the relationship between 9 stock indices from the U.S., Europe and China (from 1995 to 2015) by using transfer entropy (TE), effective transfer entropy (ETE), Rényi transfer entropy (RTE) and effective Rényi transfer entropy (ERTE). We compared the four methods in the sense of the effectiveness for identification of the relationship between stock markets. In this paper, two kinds of information flows are given. One reveals that the U.S. took the leading position when in terms of lagged-current cases, but when it comes to the same date, China is the most influential. And ERTE could provide superior results.
Advanced geophysical underground coal gasification monitoring
Mellors, Robert; Yang, X.; White, J. A.; ...
2014-07-01
Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less
NASA Astrophysics Data System (ADS)
Portal, A.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Labazuy, P.; Laktineh, I.; Lénat, J.-F.; Miallier, D.; Mirabito, L.; Niess, V.; Vulpescu, B.
2012-09-01
Muon imagery of volcanoes and geological structures are presently and actively developed by several groups in the world. It has the potential to provide a 2-D or 3-D density distribution with an accuracy of a few percent. However, at this stage of the development of the method, comparisons with the results from established geophysical methods are necessary to validate its results. An experiment is currently carried out at the Puy de Dôme volcano involving the concurrent acquisition of muon imagery, electrical resistivity (2-D tomography) and gravity survey. Here, we present the preliminary results for the last two methods. North-south and east-west resistivity sections have been obtained in June 2011 and May 2012. These electric data allow to model of the distribution of the resistivity values down to the base of the dome. The dome and its surroundings are now mapped with more than 300 gravity stations measured during a detailed gravity survey carried out in March and May 2012. The computed Bouguer anomaly can be interpreted by models of the density distribution within the dome. This will be directly comparable with the results from the muon imagery. Our ultimate goal is to derive a model of the dome using the joint interpretation of all the sets of data.
Relevance of ERTS to the State of Ohio
NASA Technical Reports Server (NTRS)
Sweet, D. C. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A significant result was the fabrication of an image transfer and comparison device. To avoid problems and high costs encountered in manual drafting methods, Battelle staff members have fabricated an inexpensive, yet effective, technique for transferring ERTS-1 analysis displays from the Spatial Data 32-Color Viewer to maps and/or aircraft imagery. In brief, the image transfer-comparison device consists of a 2-way mirror which functions similar to a zoom transfer scope. However, the device permits multiuser viewing and real time photographic recording (35-mm and Polaroid) of enhanced ERTS-1 imagery superimposed over maps and aircraft photography. Thirty-five mm, 70 mm, and 4 in. x 5 in. photographs are taken of 80% of the TV screen of the Spatial Data Density Slicing Viewer. The resulting black and white and color imagery is then used in transparent overlays, viewgraphs, 35-mm and 70-mm transparencies, and paper prints for reports and publications. Annotations can be added on the TV screen or on the finished product.
Oil-pollution detection and monitoring from space using ERTS-1
NASA Technical Reports Server (NTRS)
Horvath, R.; Goldman, G. C. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Three reported spills were investigated using four digital computer, compatible techniques on ERTS - 1 data. A spill on the Atlantic Ocean (off Virginia) was studied to develop spectral signatures. Another spill, in Oakland Bay, was studied by ratioing spectral channels (to try to eliminate turbidity effects) and by summing different spectral channels to look for anomolus values caused by oil. The final spill, off Southern California, was investigated by looking for anomolus values in each channel separately. Results indicate that any of these methods might be usable if the spill is large enough to be seen by satellite, if the spill occurs more than a few kilometers off shore, and if the sky and water are relatively clear. In the case of the Atlantic spill, identification of material was not possible; and in the other two cases, the spills could not be detected at all. ERTS-1 was not considered feasible for this type of work because of its 18 day overpass frequency, the few spectral channels, the extended bandwidths, and the long, information retrieval time.
Gauchers disease--a reappraisal of hematopoietic stem cell transplantation.
Ito, Sawa; Barrett, A John
2013-03-01
Hematopoietic stem cell transplantation (HSCT), first performed in 1984, was the first treatment approach for Gaucher's disease (GD) which had curative intent. The early successes in HSCT were soon eclipsed by the introduction of a highly effective enzyme replacement therapy (ERT), which has remained the single most widely used treatment. Experience with HSCT is limited to about 50 reported cases, mainly performed in the last century, with an overall survival around 85%. HSCT typically achieves complete correction of visceral and bony changes and can fully stabilize neurological features in otherwise progressive type II and III GD. ERT, in contrast, is completely safe and effective, but is limited by cost, incomplete resolution of visceral, hematological, and bony features in some patients, and lack of neurological correction in type II and III disease. In this review, we summarize and compare HSCT and ERT. With 20 years of experience of ERT, its limitations as well as its advantages are now well delineated. Meanwhile progress in HSCT over the last decade suggests that transplantation would today represent a very safe curative approach for GD offering one time complete correction of the disease, contrasting with the lifelong need for ERT with its associated expense and dependence on sophisticated drug manufacture. Additionally, unlike ERT, HSCT can be beneficial for neurological forms of GD. We conclude that the time has come to re-evaluate HSCT in selected patients with GD where ERT is less likely to fully eradicate symptoms of the disease.
CD77 levels over enzyme replacement treatment in Fabry Disease Family (V269M).
Pereira, Ester Miranda; Silva, Adalberto Socorro da; Silva, Raimundo Nonato da; Monte Neto, José Tiburcio; Nascimento, Fernando F do; Sousa, Jackeline L M; Costa Filho, Henrique César Saraiva de Arêa Leão; Sales Filho, Herton Luiz Alves; Labilloy, Anatalia; Monte, Semiramis Jamil Hadad do
2018-06-04
Fabry disease (FD) is a disorder caused by mutations in the gene encoding for lysosomal enzyme α-galactosidase A (α-GAL). Reduced α-GAL activity leads to progressive accumulation of globotriaosylceramide (Gb3), also known as CD77. The recent report of increased expression of CD77 in blood cells of patients with FD indicated that this molecule can be used as a potential marker for monitoring enzyme replacement therapy (ERT). The purpose of this study was to evaluate the CD77 levels throughout ERT in FD patients (V269M mutation). We evaluated the fluctuations in PBMC (peripheral blood mononuclear cell) membrane CD77 expression in FD patients undergoing ERT and correlated these levels with those observed in different cell types. A greater CD77 expression was found in phagocytes of patients compared to controls at baseline. Interestingly, the variability in CD77 levels is larger in patients at baseline (340 - 1619 MIF) and after 12 months of ERT (240 - 530 MIF) compared with the control group (131 - 331 MFI). Furthermore, by analyzing the levels of CD77 in phagocytes from patients throughout ERT, we found a constant decrease in CD77 levels. The increased CD77 levels in the phagocytes of Fabry carriers together with the decrease in CD77 levels throughout ERT suggest that measuring CD77 levels in phagocytes is a promising tool for monitoring the response to ERT in FD.
Geophysical Signitures From Hydrocarbon Contaminated Aquifers
NASA Astrophysics Data System (ADS)
Abbas, M.; Jardani, A.
2015-12-01
The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole and 3D geophysical measurements coupled to biological and chemical surface phase experiments in order to monitor the bioremediation processes.
NASA Astrophysics Data System (ADS)
Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.
2016-12-01
Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater resources for the region in the absence of glacial meltwater.
NASA Astrophysics Data System (ADS)
Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.
2016-08-01
In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus potentially prone to gravitational landslides. Lastly, while self-potential and temperature data suggest that widespread hydrothermal circulation occurs throughout almost all of the caldera, and possibly beyond, the most active parts of this hydrothermal system are associated with the dome. The presence of this active hydrothermal system is the clearest indicator that these methods can provide of a potential shallow magmatic body underneath the dome.
To assess the value of satellite photographs in the resource evaluation on a national scale
NASA Technical Reports Server (NTRS)
Hepworth, J. V. (Principal Investigator); Akehurst, S. M.
1973-01-01
The author has identified the following significant results. Some observations have been made on ERTS-1 color imagery and comparison of imagery. Results of geophysical work are correlated with ERTS-1 imagery and new lineaments are postuated in the northern Kalahari Desert. ERTS-1 imagery reveals complex structural trends in the Basement Complex in the Selebi-Pikwe area.
NASA Astrophysics Data System (ADS)
Lazzari, M.; Loperte, A.; Perrone, A.
2010-03-01
This work, carried out with an integrated methodological approach, focuses on the use of near surface geophysics techniques, such as ground penetrating radar and electrical resistivity tomography (ERT), and geomorphological analysis, in order to reconstruct the cave distribution and geometry in a urban context and, in particular, in historical centres. The interaction during recent centuries between human activity (caves excavation, birth and growth of an urban area) and the characters of the natural environment were the reasons of a progressive increase in hazard and vulnerability levels of several sites. The reconstruction of a detailed cave map distribution is the first step to define the anthropic and geomorphological hazard in urban areas, fundamental basis for planning and assessing the risk.
Investigation of use of space data in watershed hydrology
NASA Technical Reports Server (NTRS)
Blanchard, B. J. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Digital data from the ERTS multispectral scanner were used to investigate the feasibility of identifying differences in watershed runoff capability with spaceborne sensors. Linear combinations of the two visible light bands and a combination of the four visible and near infrared bands were related to a coefficient used in the Soil Conservation Service storm runoff equation. Good relationships were found in two scenes, both with dry surface conditions, over the same watersheds. The relationships defined by both combinations of digital data were tested on a independent set of 10 watersheds and on an additional 22 subwatersheds. Coefficients predicted with the ERTS data proved better than coefficients developed with conventional methods.
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.; Harlan, J. C.
1974-01-01
The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirakis, C.S.; Condit, C.D.
1975-01-01
LANDSAT-1 (ERTS-1) multispectral reflectance data were used to enhance the detection of alteration around uranium deposits near Cameron, Ariz. The technique involved stretching and ratioing computer-enhanced data from which electronic noise and atmospheric haze had been removed. Using present techniques, the work proves that LANDSAT-1 data are useful in detecting alteration around uranium deposits, but the method may still be improved. Bluish-gray mudstone in the target area could not be differentiated from the altered zones on the ratioed images. Further experiments involving combinations of ratioed and nonratioed data will be required to uniquely define the altered zones.
Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.
2008-01-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone. PMID:18291743
Olson, Erik J; Lindgren, Bruce R; Carlson, Cathy S
2008-05-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone.
Decker, Celeste; Yu, Zi-Fan; Giugliani, Roberto; Schwartz, Ida Vanessa D.; Guffon, Nathalie; Teles, Elisa Leão; Miranda, M. Clara Sá; Wraith, J. Edmond; Beck, Michael; Arash, Laila; Scarpa, Maurizio; Ketteridge, David; Hopwood, John J.; Plecko, Barbara; Steiner, Robert; Whitley, Chester B.; Kaplan, Paige; Swiedler, Stuart J.; Conrad, Susan; Harmatz, Paul
2010-01-01
Background and Methods Growth failure is characteristic of untreated mucopolysaccharidosis type VI (MPS VI: Maroteaux-Lamy syndrome). Growth was studied in fifty-six MPS VI patients (5 to 29 years old) prior to and for up to 240 weeks of weekly infusions of recombinant human arylsulfatase B (rhASB) at 1 mg/kg during Phase 1/2, Phase 2, Phase 3 or Phase 3 Extension clinical trials. Height, weight, and Tanner stage data were collected. Pooled data were analyzed to determine mean height increase by treatment week, growth impacts of pubertal status, baseline urinary GAG, and age at treatment initiation. Growth rate for approximately 2 years prior to and following treatment initiation was analyzed using longitudinal modeling. Results Mean height increased by 2.9 cm after 48 weeks and 4.3 cm after 96 weeks on enzyme replacement therapy (ERT). Growth on ERT was not correlated with baseline urinary GAG. Patients under 16 years of age showed greatest increases in height on treatment. Model results based on pooled data showed significant improvement in growth rate during 96 weeks of ERT when compared to the equivalent pretreatment time period. Delayed pubertal onset or progression was noted in 10 patients entering the clinical trials; all of whom showed progression of at least one Tanner stage during 2 years on ERT, and 6 of whom (60%) completed puberty. Conclusion Analysis of mean height by treatment week and longitudinal modeling demonstrate significant increase in height and growth rate in MPS VI patients receiving long-term ERT. This impact was greatest in patients aged below 16 years. Height increase may result from bone growth and/or reduction in joint contractures. Bone growth and resolution of delayed puberty may be related to improvements in general health, bone cell health, nutrition, endocrine gland function and reduced inflammation. PMID:20634905
Flood hazards studies in the Mississippi River basin using remote sensing
NASA Technical Reports Server (NTRS)
Rango, A.; Anderson, A. T.
1974-01-01
The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicated that ERTS-1 is extremely useful as a regional tool for flood mamagement. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.
Environmental study of ERTS-1 imagery: Lake Champlain and Vermont
NASA Technical Reports Server (NTRS)
Lind, A. O.; Henson, E. B.; Pelton, J. O.
1973-01-01
Environmental concerns of the State of Vermont currently being stressed include water quality in Lake Champlain and a state-wide land use and capability plan. Significant results obtained from ERTS-1 relate directly to the above concerns. Industrial water pollution and turbidity in Lake Champlain have been identified and mapped and the ERTS pollution data will be used in the developing court suit which Vermont has initiated against the polluters. ERTS imagery has also provided a foundation for updating and revising land use inventories. Major classes of land use have been identified and mapped, and substantial progress has been made toward the mapping of such land use divisions as crop and forest type, and wetlands.
Applications of ERTS-1 data to landscape change in eastern Tennessee
NASA Technical Reports Server (NTRS)
Rehder, J. B. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The analysis of landscape change in eastern Tennessee from ERTS-1 data is being derived from three avenues of experimentation and analysis: (1) a multi-stage sampling procedure utilizing ground and aircraft imagery for ground truth and control; (2) a densitometric and computer analytical experiment for the analysis of gray tone signatures and comparisons for landscape change detection and monitoring; and (3) an ERTS image enhancement procedure for the detection and analysis of photomorphic regions. Significant results include: maps of strip mining changes and forest inventory, watershed identification and delimitation, and agricultural regions derived from spring plowing patterns appearing on the ERTS-1 imagery.
NASA Technical Reports Server (NTRS)
Marrs, R. W.; Evans, M. A.
1974-01-01
The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.; Leshendok, T.
1973-01-01
The author has identified the following significant results. The applications of ERTS-1 imagery for geological fracture mapping regardless of season has been repeatedly confirmed. The enhancement provided by a differential cover of snow increases the number and length of fracture-lineaments which can be detected with ERTS-1 data and accelerates the fracture mapping process for a variety of practical applications. The geological mapping benefits of the program will be realized in geographic areas where data are most needed - complex glaciated terrain and areas of deep residual soils. ERTS-1 derived fracture-lineament maps which provide detail well in excess of existing geological maps are not available in the Massachusetts-Connecticut area. The large quantity of new data provided by ERTS-1 may accelerate and improve field mapping now in progress in the area. Numerous other user groups have requested data on the techniques. This represents a major change in operating philosophy for groups who to data judged that snow obscured geological detail.
ERTS-1 data applied to strip mining
NASA Technical Reports Server (NTRS)
Anderson, A. T.; Schubert, J.
1976-01-01
Two coal basins within the western region of the Potomac River Basin contain the largest strip-mining operations in western Maryland and West Virginia. The disturbed strip-mine areas were delineated along with the surrounding geological and vegetation features by using ERTS-1 data in both analog and digital form. The two digital systems employed were (1) the ERTS analysis system, a point-by-point digital analysis of spectral signatures based on known spectral values and (2) the LARS automatic data processing system. These two systems aided in efforts to determine the extent and state of strip mining in this region. Aircraft data, ground-verification information, and geological field studies also aided in the application of ERTS-1 imagery to perform an integrated analysis that assessed the adverse effects of strip mining. The results indicated that ERTS can both monitor and map the extent of strip mining to determine immediately the acreage affected and to indicate where future reclamation and revegetation may be necessary.
Application of ERTS-1 imagery to the harvest model of the US Menhaden fishery
NASA Technical Reports Server (NTRS)
Maughan, P. M.; Marmelstein, A. D.; Temple, O. R.
1973-01-01
Preliminary results of an experiment to demonstrate the utility of ERTS-1 imagery for providing significant information to the harvest model of the menhaden industry are reported. Fisheries and related environmental data were obtained discontinuously throughout the 1973 menhaden (a surface schooling, coastal species) fishing season in Mississippi Sound. The unexpected complexity of the physical environment in Mississippi Sound precluded simplistic analysis of fish/environment relationships. Preliminary indications are that an association does exist between fish availability and differences in water transparency (turbidity) within the Sound. A clearer relationship is developing between major turbid features, imaged by ERTS-1 and location of successful fishing attempts. On all occasions where relatively cloudfree ERTS-1 overflight days coincided with fishery activity, overlays of catch location of ERTS-1 images show an association of school position with interfaces between imaged turbid features. Analysis is currently underway to determine persistence of such associations in an attempt to define minimum satellite return time necessary to maintain continuity of associations.
ERTS-1, a new window on our planet
Williams, Richard S.; Carter, William Douglas
1976-01-01
The launch, on July 23, 1972, of the first Earth Resources Technology Satellite (ERTS-1) by the National Aeronautics and Space Administration was a major step forward in extending man 's ability to inventory the Earth 's resources and to evaluate objectively his impact upon the environment. ERTS spacecraft represent the first step in merging space and remote-sensing technologies into a system for inventorying and managing the Earth 's resources. Examples presented in this book demonstrate ERTS ' vast potential for inventorying resources, monitoring environmental conditions, and measuring changes. Such information is essential for the full evaluation of the Federal lands and determining their future use, as well as for improved planning of overall land use throughout the United States and the world. Ten bureaus of the U.S. Department of Interior have roles in the ERTS project. Nearly all of these participating bureaus are represented in almost 100 papers included in this book. Chapter 3 is entitled ' Applications to Water Resources ' and contains 23 separate sections. (Woodard-USGS)
NASA Technical Reports Server (NTRS)
Strong, A. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Through combined use of imagery from ERTS-1 and NOAA-2 satellites was found that when the sun elevation exceeds 55 degrees, the ERTS-1 imagery is subject to considerable contamination by sunlight even though the actual specular point is nearly 300 nautical miles from nadir. Based on sea surface wave slope information, a wind speed of 10 knots will theoretically provide approximately 0.5 percent incident solar reflectance under observed ERTS multispectral scanner detectors. This reflectance nearly doubles under the influence of a 20 knot wind. The most pronounced effect occurs in areas of calm water where anomalous dark patches are observed. Calm water at distances from the specular point found in ERTS scenes will reflect no solar energy to the multispectral scanner, making these regions stand out as dark areas in all bands in an ocean scene otherwise comprosed by a general diffuse sunlight from rougher ocean surfaces. Anomalous dark patches in the outer parts of the glitter zones may explain the unusual appearance of some scenes.
NASA Technical Reports Server (NTRS)
Marshall, H. G. (Principal Investigator); Bowker, D. E.; Witte, W. G.
1976-01-01
The author has identified the following significant results. Sea truth data were obtained during two ERTS overpasses in waters near the entrance of the Chesapeake Bay. Correlations were made between total phytoplankton and chlorophyll values in these waters to radiance detected by ERTS in an effort to map areas of similar productivity levels. Band 4 radiance had the highest correlation to all parameters with bands 5 and 6 showing decreasing correlations in each case. The radiance values were apparently influenced by one or more factors, most likely including the sediment content of the water. Data have shown that ERTS MSS is not suitable for monitoring chlorophyll in near-shore waters where sediment loads are high. It is suggested that in more seaward or pelagic locations, that ERTS MSS would be more efficient in monitoring surface chlorophyll values and establishing direct relationships to phytoplankton concentrations.
NASA Technical Reports Server (NTRS)
Myers, V. I. (Principal Investigator); Westin, F. C.
1973-01-01
The author has identified the following significant results. Soil association maps show the spatial relationships of land units developed in unique climatic, geologic, and topographic environments, and having characteristic slopes, soil depths, textures, available water capacities, permeabilities, and the like. ERTS-1 imagery was found to be a useful tool in the identification of soil associations since it provides a synoptic view of an 8 million acre scene, which is large enough so that the effect can be seen on soils of climate, topography, and geology. A regional view also allows soil associations to be observed over most, if not all, of their extent. ERTS-1 MSS imagery also provides four spectral bands taken every 18 days which give data on relief, hydrology, and vegetation, all of which bear on the delineation and interpretation of soil associations. Enlarged prints derived from the individual spectral bands and shown in gray tones were useful for identifying soil associations.
NASA Technical Reports Server (NTRS)
Estes, J. E.; Thaman, R. R.; Senger, L. W.
1974-01-01
ERTS-1 satellite imagery has proved a valuable data source for land use as well as natural and cultural resource studies on a regional basis. ERTS-1 data also provide an excellent base for mapping resource related features and phenomena. These investigations are focused on a number of potential applications which are already showing promise of having operational utility.
Utilization of ERTS-1 data in North Carolina. [forested wetlands, water management, and land use
NASA Technical Reports Server (NTRS)
Welby, C. W. (Principal Investigator); Lammi, J. O.; Carson, R. J., III
1973-01-01
The author has identified the following significant results. ERTS-1 imagery has been used to study forested wetlands, dynamic processes off Coastal North Carolina, and land use patterns in the Wilmington, North Carolina area. The thrust of the investigation is still involvement of state and regional agencies in the use of ERTS-1 imagery in solving some of their day-to-day problems.
NASA Technical Reports Server (NTRS)
Saunders, D. F.; Thomas, G. E. (Principal Investigator); Kinsman, F. E.; Beatty, D. F.
1973-01-01
The author has identified the following significant results. This study was performed to investigate applications of ERTS-1 imagery in commercial reconnaissance for mineral and hydrocarbon resources. ERTS-1 imagery collected over five areas in North America (Montana; Colorado; New Mexico-West Texas; Superior Province, Canada; and North Slope, Alaska) has been analyzed for data content including linears, lineaments, and curvilinear anomalies. Locations of these features were mapped and compared with known locations of mineral and hydrocarbon accumulations. Results were analyzed in the context of a simple-shear, block-coupling model. Data analyses have resulted in detection of new lineaments, some of which may be continental in extent, detection of many curvilinear patterns not generally seen on aerial photos, strong evidence of continental regmatic fracture patterns, and realization that geological features can be explained in terms of a simple-shear, block-coupling model. The conculsions are that ERTS-1 imagery is of great value in photogeologic/geomorphic interpretations of regional features, and the simple-shear, block-coupling model provides a means of relating data from ERTS imagery to structures that have controlled emplacement of ore deposits and hydrocarbon accumulations, thus providing a basis for a new approach for reconnaissance for mineral, uranium, gas, and oil deposits and structures.
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Harden, D. R.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery used in conjunction with the surface-drift cards indicated a southerly flow direction of the central California near surface coastal currents during mid-June 1973. The near-surface currents off northern California and southern Oregon were more complex. Some drift cards were recovered north and some south of their release points; however, the prevalent direction of flow was northerly. General agreement in flow direction of coastal currents obtained from ERTS-1 imagery and drift card data reinforces the image interpretation. Complete seasonal coverage of nearshore circulation interpreted from ERTS-1 imagery will provide information necessary for proper coastal zone management. Extent of snow cover can be readily delimited on ERTS-1 band 5. In the central Sierra Nevada Mountains this past winter season, the snow line, as recorded by ERTS-1, reached an elevation of less than 1500 meters in January but had melted back to between 2500 and 3000 meters by the end of May. ERTS-1 imagery seems to provide sufficient resolution to make it a useful tool for monitoring changes in snow cover in the Sierra Nevada Mountains.
ERIM progress report on use of ERTS-1 data: Summary report of work on ten tasks
NASA Technical Reports Server (NTRS)
Thomson, F. J. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Several of the tasks have produced significant results which are summarized: (1) Absolute water depth can be calculated from a ratio of signals from bands MSS 4 and MSS 5. (2) A 13 category terrain feature classification map of Yellowstone National Park has been produced using supervised pattern recognition techniques. (3) ERTS-1 data has been shown to provide a detection and monitoring capability for a number of water quality problems associated with off-shore ocean dumping sites and inland lakes. (4) A corrected ratio of bands MSS-5 and MSS-7 signals has been formed. (5) A concise format has been devised for storing the ratio signatures of geologic rock and mineral materials determined from laboratory reflectance spectra. (6) Results of work in information extraction demonstrate: signal variability exists among ERTS-1 detectors in any one spectral band that will impact users doing quantitative analysis on successive ERTS-1 images; a newly developed computer-aided procedure for correlating ERTS-1 pixels to ground features; the strong influence of atmospheric effects in ERTS-1 data; and area estimation accuracies are better using the ERIM proportion estimation algorithm than for conventional recognition techniques.
NASA Technical Reports Server (NTRS)
Barnes, J. C. (Principal Investigator); Bowley, C. J.
1974-01-01
The author has identified the following significant results. Because of the effect of sea ice on the heat balance of the Arctic and because of the expanding economic interest in arctic oil and minerals, extensive monitoring and further study of sea ice is required. The application of ERTS data for mapping ice is evaluated for several arctic areas, including the Bering Sea, the eastern Beaufort Sea, parts of the Canadian Archipelago, and the Greenland Sea. Interpretive techniques are discussed, and the scales and types of ice features that can be detected are described. For the Bering Sea, a sample of ERTS-1 imagery is compared with visual ice reports and aerial photography from the NASA CV-990 aircraft. The results of the investigation demonstrate that ERTS-1 imagery has substantial practical application for monitoring arctic sea ice. Ice features as small as 80-100 m in width can be detected, and the combined use of the visible and near-IR imagery is a powerful tool for identifying ice types. Sequential ERTS-1 observations at high latitudes enable ice deformations and movements to be mapped. Ice conditions in the Bering Sea during early March depicted in ERTS-1 images are in close agreement with aerial ice observations and photographs.
NASA Technical Reports Server (NTRS)
Heller, R. C. (Principal Investigator); Aldrich, R. C.; Driscoll, R. S.; Francis, R. E.; Weber, F. P.
1974-01-01
The author has identified the following significant results. Results of photointerpretation indicated that ERTS is a good classifier of forest and nonforest lands (90 to 95 percent accurate). Photointerpreters could make this separation as accurately as signature analysis of the computer compatible tapes. Further breakdowns of cover types at each site could not be accurately classified by interpreters (60 percent) or computer analysts (74 percent). Exceptions were water, wet meadow, and coniferous stands. At no time could the large bark beetle infestations (many over 300 meters in size) be detected on ERTS images. The ERTS wavebands are too broad to distinguish the yellow, yellow-red, and red colors of the dying pine foliage from healthy green-yellow foliage. Forest disturbances could be detected on ERTS color composites about 90 percent of the time when compared with six-year-old photo index mosaics. ERTS enlargements (1:125,000 scale, preferably color prints) would be useful to forest managers of large ownerships over 5,000 hectares (12,500 acres) for broad area planning. Black-and-white enlargements can be used effectively as aerial navigation aids for precision aerial photography where maps are old or not available.
NASA Technical Reports Server (NTRS)
Meier, M. F. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Snowlines on a small drainage basin were accurately identified on bulk ERTS-1 images without use of digital processing, and results checked with high altitude and ground-based photography. The area and approximate shape of snow patches as small as 20,000 sq m could be correctly identified with a magnifying scanning densitometer. The resolution of ERTS is more than ample for most snow mapping needs. Mount Baker, Washington, has a large crater south of the summit and an area north of the summit which emit considerable geothermal heat in the form of fumaroles and hot ground. Temperatures are being monitored using an ERTS DCS. Debris flows are occassionally released from the crater due to water saturation at the base of a heavy snowpack lying on hydrothermally altered hot ground. These debris flows present a possible hazard to life and property, as they are discharged down the Boulder Glacier toward Baker Lake, the upper of two major hydroelectric power reservoirs which are situated above the populated Skagit River Valley. ERTS-1 images show that the most recent debris flow (20-21 August 1973) can be clearly discerned and mapped. ERTS images provide another important tool for monitoring this potential hazard.
NASA Technical Reports Server (NTRS)
Coulbourn, W. C.; Egan, W. G. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Attempts to correlate optical aircraft remote sensing of water quality with the optical data from the ERTS-1 satellite using calibrated imagery of Charlotte Amalie harbor, St. Thomas, Virgin Islands are reported. The harbor at Charlotte Amalie has a concentration of a number of factors affecting water quality: untreated sewage, land runoff, and sediment from navigation and dredging operations. Calibration procedures have been originated and applied to ERTS-1 and I2S camera imagery. The results indicate that the ERTS-1 and I2S imagery are correlated with optical in situ measurements of the harbor water. The aircraft green photographic and ERTS-1 MSS-4 bands have been found most suitable for monitoring the scattered light levels under the conditions of the investigation. The chemical parameters of the harbor water were found to be correlated to the optical properties for two stations investigated in detail. The biological properties of the harbor water (chlorophyll and carotenoids), correlate inversely with the optical data near the pollution sources compared to further away. Calibration procedures developed in this investigation were essential to the interpretation of the photographic and ERTS-1 photometric responses.
NASA Astrophysics Data System (ADS)
Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel
2014-11-01
We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.
Tomatsu, Shunji; Montaño, Adriana M.; Oikawa, Hirotaka; Dung, Vu Chi; Hashimoto, Amiko; Oguma, Toshihiro; Takahashi, Tatsuo; Shimada, Tsutomu; Orii, Tadao; Sly, William S.
2014-01-01
We treated mucopolysaccharidosis IVA (MPS IVA) mice to assess the effects of long-term enzyme replacement therapy (ERT) initiated at birth, since adult mice treated by ERT showed little improvement in bone pathology (1). To conduct ERT in newborn mice, we used recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in a CHO cell line. First, to observe the tissue distribution pattern, a dose of 250 units/g body weight was administered intravenously in MPS IVA mice at day 2 or 3. The infused enzyme was primarily recovered in liver and spleen, with detectable activity in bone and brain. Second, newborn ERT was conducted after tissue distribution study. The first injection of newborn ERT was performed intravenously, the second to fourth weekly injections were intraperitoneal, and the remaining injections from 5th to 14th week were intravenous into the tail vein. MPS IVA mice treated with GALNS showed clearance of lysosomal storage in liver, spleen, and sinus lining cells in bone marrow. The column structure of the growth plate was organized better than adult mice treated with ERT; however, hyaline and fibrous cartilage cells in femur, spine, ligaments, discs, synovium, and periosteum still had storage materials to some extent. Heart valves were refractory to the treatment. Levels of serum keratan sulfate were kept normal in newborn ERT mice. In conclusion, the enzyme, which enters the cartilage before the cartilage cell layer becomes mature, prevents disorganization of column structure. Early treatment from birth leads to partial remission of bone pathology in MPS IVA mouse. PMID:24953405
Bradizza, Clara M; Stasiewicz, Paul R; Zhuo, Yue; Ruszczyk, Melanie; Maisto, Stephen A; Lucke, Joseph F; Brandon, Thomas H; Eiden, Rina D; Slosman, Kim S; Giarratano, Paulette
2017-05-01
Negative affect has been identified as a factor influencing continued smoking during pregnancy. In this study, a multi-component emotion regulation intervention was developed to address negative emotional smoking triggers and pilot-tested among low-income pregnant smokers. Treatment feasibility and acceptability, cotinine-verified rates of smoking cessation, and self-report of mean cigarettes smoked were assessed. Pregnant smokers who self-reported smoking in response to negative affect (N = 70) were randomly assigned to receive one of two 8-session interventions: (1) emotion regulation treatment combined with standard cognitive-behavioral smoking cessation (ERT + CBT) or (2) a health and lifestyle plus standard smoking cessation active control (HLS + CBT). Outcomes for the 4-month period following the quit date are reported. Treatment attendance and subjective ratings provide evidence for the feasibility and acceptability of the ERT + CBT intervention. Compared with the HLS + CBT control condition, the ERT + CBT condition demonstrated higher abstinence rates at 2 months (ERT + CBT = 23% vs. HLS + CBT = 0%, OR = 13.51; 95% CI = 0.70-261.59) and 4 months (ERT = 18% vs. HLS = 5%; OR = 2.98; 95% CI = 0.39-22.72) post-quit. Mean number of cigarettes per day was significantly lower in ERT + CBT at 2 months (ERT + CBT = 2.73 (3.35) vs. HLS + CBT = 5.84 (6.24); p = .05) but not at 4 months (ERT + CBT = 2.15 (3.17) vs. HLS + CBT = 5.18 (2.88); p = .06) post-quit. The development and initial test of the ERT + CBT intervention supports its feasibility and acceptability in this difficult-to-treat population. Further development and testing in a Stage II randomized clinical trial are warranted. Negative affect has been identified as a motivator for continued smoking during pregnancy. To date, smoking cessation interventions for pregnant smokers have not specifically addressed the role of negative affect as a smoking trigger. This treatment development pilot study provides support for the feasibility and acceptability of a multi-component ERT + CBT for low-income pregnant smokers who self-report smoking in response to negative affect. Study findings support further testing in a fully-powered Stage II efficacy trial powered to assess mediators and moderators of treatment effects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Marshes and turbid waters in the French Atlantic littoral
NASA Technical Reports Server (NTRS)
Verger, F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The multispectral information provided by ERTS-1 is very rich for the coastal regions but the cloud cover, even when only partial, often cuts up the data, and lessens its practical value. The research by densitometric methods has thus far been the most fruitful. It consists of measuring densities along preferential axes. This method has enabled the investigators to perfect a system of computer cartography for the best image. Comparative study of microdensitometric transects in four MSS bands for carefully dilimited profiles on the ground, makes it possible to isolate and recognize various types of countryside: (1) countryside of coastal plains; (2) countryside of coastal sand dunes and beaches; and (3) forms and processes of offshore domains. This study shows the usefulness of the ERTS program in establishing a rapid cartography of the physiographic units of the coastal plains in the interest of a rational program of exploitation and development.
A preliminary evaluation of ERTS-1 images on the volcanic areas of Southern Italy
NASA Technical Reports Server (NTRS)
Cassinis, R.; Lechi, G. M.
1973-01-01
The test site selected for the investigation covers nearly all the regions of active and quiescent volcanism in southern Italy, i.e. the eastern part of the island of Sicily, the Aeolian Islands and the area of Naples. The three active European volcanoes (Etna, Stromboli and Vesuvius) are included. The investigation is in the frame of a program for the surveillance of active volcanoes by geophysical (including remote sensing thermal methods) and geochemical methods. By the multispectral analysis of ERTS-1 data it is intended to study the spectral behavior of the volcanic materials as well as the major geological lineaments with special reference to those associated with the volcanic region. Secondary objectives are also the determination of the hydrographic network seasonal behavior and the relationship between the vegetation cover and the different type of soils and rocks.
The use of ERTS imagery for lake classification. [turbidity due to phytoplankton
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Wade, R. E.; Fisher, L. T.
1975-01-01
The feasibility of using photographic representations of the ERTS imagery to classify lakes in the State of Wisconsin as to their trophic level was studied. Densitometric readings in band 5 of ERTS 70 mm imagery were taken for all the lakes in Wisconsin greater than 100 acres (approximately 1000 lakes). An algorithm has been developed from ground truth measurements to predict from satellite imagery an indicator of trophic status.
NASA Technical Reports Server (NTRS)
Erb, R. B.
1974-01-01
The results of the ERTS-1 investigations conducted by the Earth Observations Division at the NASA Lyndon B. Johnson Space Center are summarized in this report, which is an overview of documents detailing individual investigations. Conventional image interpretation and computer-aided classification procedures were the two basic techniques used in analyzing the data for detecting, identifying, locating, and measuring surface features related to earth resources. Data from the ERTS-1 multispectral scanner system were useful for all applications studied, which included agriculture, coastal and estuarine analysis, forestry, range, land use and urban land use, and signature extension. Percentage classification accuracies are cited for the conventional and computer-aided techniques.
Photographic techniques for enhancing ERTS MSS data for geologic information
NASA Technical Reports Server (NTRS)
Yost, E.; Geluso, W.; Anderson, R.
1974-01-01
Satellite multispectral black-and-white photographic negatives of Luna County, New Mexico, obtained by ERTS on 15 August and 2 September 1973, were precisely reprocessed into positive images and analyzed in an additive color viewer. In addition, an isoluminous (uniform brightness) color rendition of the image was constructed. The isoluminous technique emphasizes subtle differences between multispectral bands by greatly enhancing the color of the superimposed composite of all bands and eliminating the effects of brightness caused by sloping terrain. Basaltic lava flows were more accurately displayed in the precision processed multispectral additive color ERTS renditions than on existing state geological maps. Malpais lava flows and small basaltic occurrences not appearing on existing geological maps were identified in ERTS multispectral color images.
The results of an agricultural analysis of the ERTS-1 MSS data at the Johnson Space Center
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Wade, L. C.; Prior, H. L.; Spiers, B.
1973-01-01
The initial analysis of the ERTS-1 multispectral scanner (MSS) data at the Johnson Space Center (JSC), Houston, Texas is discussed. The primary data set utilized was the scene over Monterey Bay, California, on July 25, 1972, NASA ERTS ID No. 1002-18134. It was submitted to both computerized and image interpretative processing. An area in the San Joaquin Valley was submitted to an intensive evaluation of the ability of the data to (1) discriminate between crop types and (2) to provide a reasonably accurate area measurement of agricultural features of interest. The results indicate that the ERTS-1 MSS data is capable of providing the identifications and area extent of agricultural lands and field crop types.
Some findings on the applications of ERTS and Skylab imagery for metropolitan land use analysis
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator); Milazzo, V. A.
1974-01-01
The author has identified the following significant results. Work undertaken on a three-sensor land use data evaluation for a portion of the Phoenix area is reported. Analyses between land use data generated from 1970 high altitude photography and that detectable from ERTS and Skylab, especially in terms of changes in land use indicate that ERTS and Skylab imagery can be used effectively to detect and identify areas of post-1970 land use change, especially those documenting urban expansion at the rural-urban fringe. Significant preliminary findings on the utility of ERTS and Skylab data for metropolitan land use analysis, substantiated by evaluation with 1970 and 1972 ground control land use data are reported.
Integration and Improvement of Geophysical Root Biomass Measurements for Determining Carbon Credits
NASA Astrophysics Data System (ADS)
Boitet, J. I.
2013-12-01
Carbon trading schemes fundamentally rely on accurate subsurface carbon quantification in order for governing bodies to grant carbon credits inclusive of root biomass (What is Carbon Credit. 2013). Root biomass makes up a large chunk of the subsurface carbon and is difficult, labor intensive, and costly to measure. This paper stitches together the latest geophysical root measurement techniques into site-dependent recommendations for technique combinations and modifications that maximize large-scale root biomass measurement accuracy and efficiency. "Accuracy" is maximized when actual root biomass is closest to measured root biomass. "Efficiency" is maximized when time, labor, and cost of measurement is minimized. Several combinations have emerged which satisfy both criteria under different site conditions. Use of ground penetrating radar (GPR) and/or electrical resistivity tomography (ERT) allow for large tracts of land to be surveyed under appropriate conditions. Among other characteristics, GPR does best with detecting coarse roots in dry soil. ERT does best in detecting roots in moist soils, but is especially limited by electrode configuration (Mancuso, S. 2012). Integration of these two technologies into a baseline protocol based on site-specific characteristics, especially soil moisture and plants species heterogeneity, will drastically theoretically increase efficiency and accuracy of root biomass measurements. Modifications of current measurement protocols using these existing techniques will also theoretically lead to drastic improvements in both accuracy and efficiency. These modifications, such as efficient 3D imaging by adding an identical electrode array perpendicular to the first array used in the Pulled Array Continuous Electrical Profiling (PACEP) technique for ERT, should allow for more widespread application of these techniques for understanding root biomass. Where whole-site measurement is not feasible either due to financial, equipment, or physical limitations, measurements from randomly selected plots must be assumed representative of the entire system and scaled up. This scaling introduces error roughly inversely proportional to the number and size of plots measured. References Mancuso, S. (2012). Measuring roots: An updated approach Springer. What is carbon credit. (2013). Retrieved 7/20, 2013, from http://carbontradexchange.com/knowledge/what-is-carbon-credit
NASA Astrophysics Data System (ADS)
Draebing, Daniel; Eichel, Jana
2016-04-01
Soil structure and moisture, thermal conditions and vegetation control solifluction movement, however, the spatial distribution of controlling factors and resultant spatial variability of movement are poorly understood. We use a (1) geomorphological and vegetation mapping of solifluction lobe properties, (2) temperature loggers to quantify thermal conditions, (3) 2D Electrical Resistivity Tomography (ERT), Puerkhauer drilling and TDR measurements to evaluate material properties as well as (4) 3D Time-Lapse ERT to quantify spatial variability of material properties. Our results are used to (5) evaluate the influence of potential controlling factors on solifluction movement. Investigations took place on three turf-banked lobes (TBL) located at proximal and distal slopes of Little Ice Age and 1920s lateral moraines in the Turtmann glacier forefield, Swiss Alps. (1) Vegetation is spatially differentiated at TBLs. The treads are mostly covered by the ecosystem engineer Dryas octopetala, while other dwarf shrubs, shrubs and pioneer species were found at the high lobe risers (0.8-1.8 m). In contrast, less vegetated ridge-like features at the upper part of the treads are colonized by frost-tolerant species. Large blocks are located at the lobe fronts, probably impeding the lobe movement. (2) Temperature loggers show a lack of ground cooling due to snow isolation at the vegetated lower tread between 2014 and 2015. Thus, significant ground cooling in winter is reduced to the wind-exposed upper parts (ridges). (3) TBL material consists of sandy silt, thus, lobe material is much finer than subjacent moraine till and indicates former colluviation. As a consequence, 2D ERT demonstrates low-resistant areas until depths equal to riser height, thus, the finer TBL body is higher saturated than the coarser surrounding parent slope and more susceptible to gelifluction. On the contrary, risers show high resistivities indicating dry conditions which are supported by TDR results. Furthermore, ERT demonstrates the absence of permafrost in all measured TBLs. (4) Time-Lapse 3D ERT shows low-resistant areas at the rim of lobes in contrast to the high-resistant treads. In addition, resistivity increases with TBL depth. Thus, resistivity values indicate higher saturated conditions along the lobe axis with decreasing saturated conditions at the rim. (5) High-saturated conditions favour gelifluction movement while low-freezing activity and dense vegetation cover result in a lack of ice lenses and absence of permafrost and, thus, impermeable layers. Therefore, the highly permeable material favours drainage and seepage without development of critical pore water pressures. The D. octopetala mat on the tread increases near-surface shear strength, which decreases near-surface movement. In addition, later successional shrubs species colonizing the risers indicate limited frontal movement. As a consequence, our results suggest that solifluction movement is limited to the low- vegetation cover, highly saturated parts of the lobe affected by winter ground cooling. However, the large riser height reflects high past solifluction activity. Location of the lobes at the foot of slopes and large riser height indicate that TBLs are close to their final cycle of development. Due to the moraine age, the length of the cycle can be assumed to be maximum 100 years.
ERIC Educational Resources Information Center
Geotimes, 1972
1972-01-01
Describes the proposed investigations to be conducted with ERTS (Earth Resources Technology Satellite), the first experimental satellite for systematically surveying earth resources by remote sensing. Launching set for June, 1972. (PR)
Biegstraaten, Marieke; Arngrímsson, Reynir; Barbey, Frederic; Boks, Lut; Cecchi, Franco; Deegan, Patrick B; Feldt-Rasmussen, Ulla; Geberhiwot, Tarekegn; Germain, Dominique P; Hendriksz, Chris; Hughes, Derralynn A; Kantola, Ilkka; Karabul, Nesrin; Lavery, Christine; Linthorst, Gabor E; Mehta, Atul; van de Mheen, Erica; Oliveira, João P; Parini, Rossella; Ramaswami, Uma; Rudnicki, Michael; Serra, Andreas; Sommer, Claudia; Sunder-Plassmann, Gere; Svarstad, Einar; Sweeb, Annelies; Terryn, Wim; Tylki-Szymanska, Anna; Tøndel, Camilla; Vujkovac, Bojan; Weidemann, Frank; Wijburg, Frits A; Woolfson, Peter; Hollak, Carla E M
2015-03-27
Fabry disease (FD) is a lysosomal storage disorder resulting in progressive nervous system, kidney and heart disease. Enzyme replacement therapy (ERT) may halt or attenuate disease progression. Since administration is burdensome and expensive, appropriate use is mandatory. We aimed to define European consensus recommendations for the initiation and cessation of ERT in patients with FD. A Delphi procedure was conducted with an online survey (n = 28) and a meeting (n = 15). Patient organization representatives were present at the meeting to give their views. Recommendations were accepted with ≥75% agreement and no disagreement. For classically affected males, consensus was achieved that ERT is recommended as soon as there are early clinical signs of kidney, heart or brain involvement, but may be considered in patients of ≥16 years in the absence of clinical signs or symptoms of organ involvement. Classically affected females and males with non-classical FD should be treated as soon as there are early clinical signs of kidney, heart or brain involvement, while treatment may be considered in females with non-classical FD with early clinical signs that are considered to be due to FD. Consensus was achieved that treatment should not be withheld from patients with severe renal insufficiency (GFR < 45 ml/min/1.73 m(2)) and from those on dialysis or with cognitive decline, but carefully considered on an individual basis. Stopping ERT may be considered in patients with end stage FD or other co-morbidities, leading to a life expectancy of <1 year. In those with cognitive decline of any cause, or lack of response for 1 year when the sole indication for ERT is neuropathic pain, stopping ERT may be considered. Also, in patients with end stage renal disease, without an option for renal transplantation, in combination with advanced heart failure (NYHA class IV), cessation of ERT should be considered. ERT in patients who are non-compliant or fail to attend regularly at visits should be stopped. The recommendations can be used as a benchmark for initiation and cessation of ERT, although final decisions should be made on an individual basis. Future collaborative efforts are needed for optimization of these recommendations.
Gasmi, Najla; Jacques, Pierre-Etienne; Klimova, Natalia; Guo, Xiao; Ricciardi, Alessandra; Robert, François; Turcotte, Bernard
2014-10-01
In the yeast Saccharomyces cerevisiae, fermentation is the major pathway for energy production, even under aerobic conditions. However, when glucose becomes scarce, ethanol produced during fermentation is used as a carbon source, requiring a shift to respiration. This adaptation results in massive reprogramming of gene expression. Increased expression of genes for gluconeogenesis and the glyoxylate cycle is observed upon a shift to ethanol and, conversely, expression of some fermentation genes is reduced. The zinc cluster proteins Cat8, Sip4, and Rds2, as well as Adr1, have been shown to mediate this reprogramming of gene expression. In this study, we have characterized the gene YBR239C encoding a putative zinc cluster protein and it was named ERT1 (ethanol regulated transcription factor 1). ChIP-chip analysis showed that Ert1 binds to a limited number of targets in the presence of glucose. The strongest enrichment was observed at the promoter of PCK1 encoding an important gluconeogenic enzyme. With ethanol as the carbon source, enrichment was observed with many additional genes involved in gluconeogenesis and mitochondrial function. Use of lacZ reporters and quantitative RT-PCR analyses demonstrated that Ert1 regulates expression of its target genes in a manner that is highly redundant with other regulators of gluconeogenesis. Interestingly, in the presence of ethanol, Ert1 is a repressor of PDC1 encoding an important enzyme for fermentation. We also show that Ert1 binds directly to the PCK1 and PDC1 promoters. In summary, Ert1 is a novel factor involved in the regulation of gluconeogenesis as well as a key fermentation gene. Copyright © 2014 by the Genetics Society of America.
Drelichman, Guillermo; Fernández Escobar, Nicolás; Basack, Nora; Aversa, Luis; Larroude, María Silvia; Aguilar, Gabriela; Szlago, Marina; Schenone, Andrea; Fynn, Alcyra; Cuello, María Fernanda; Aznar, Marcela; Fernández, Ramiro; Ruiz, Alba; Reichel, Paola; Guelbert, Norberto; Robledo, Hugo; Watman, Nora; Bolesina, Moira; Elena, Graciela; Veber, S Ernesto; Pujal, Graciela; Galván, Graciela; Chain, Juan José; Arizo, Adriana; Bietti, Julieta; Bar, Daniel; Dragosky, Marta; Marquez, Marisa; Feldman, Leonardo; Muller, Katja; Zirone, Sandra; Buchovsky, Greogorio; Lanza, Victoria; Sanabria, Alba; Fernández, Ignacio; Jaureguiberry, Rossana; Contte, Marcelo; Barbieri María, Angie; Maro, Alejandra; Zárate, Graciela; Fernández, Gabriel; Rapetti, María Cristina; Donato, Hugo; Degano, Adriana; Kantor, Gustavo; Albina, Roberto; Á Lvarez Bollea, María; Brun, María; Bacciedoni, Viviana; Del Río, Francis; Soberón, Bárbara; Boido, Nazario; Schweri, Maya; Borchichi, Sandra; Welsh, Victoria; Corrales, Marcela; Cedola, Alejandra; Carvani, Analía; Diez, Blanca; Richard, Lucía; Baduel, Ccecilia; Nuñez, Gabriela; Colimodio, Rubén; Barazzutti, Lucía; Medici, Hugo; Meschengieser, Susana; Damiani, Germán; Nucifora, María; Girardi, Beatriz; Gómez, Sergio; Papucci, Maura; Verón, David; Quiroga, Luis; Carro, Gustavo; De Ambrosio, Patricia; Ferro, José; Pujol, Marcelo; Castella, Cristina Cabral; Franco, Liliana; Nisnovich, Gisela; Veloso, María; Pacheco, Isabel; Savarino, Mario; Marino, Andrés; Saavedra, José Luis
2016-10-01
Patients with Gaucher type 1 (GD1) throughout Argentina were enrolled in the Argentine bone project to evaluate bone disease and its determinants. We focused on presence and predictors of bone lesions (BL) and their relationship to therapeutic goals (TG) with timing and dose of enzyme replacement therapy (ERT). A total of 124 patients on ERT were enrolled in a multi-center study. All six TG were achieved by 82% of patients: 70.1% for bone pain and 91.1% for bone crisis. However, despite the fact that bone TGs were achieved, residual bone disease was present in 108 patients on ERT (87%) at time 0. 16% of patients showed new irreversible BL (bone infarcts and avascular osteonecrosis) despite ERT, suggesting that they appeared during ERT or were not detected at the moment of diagnosis. We observed 5 prognostic factors that predicted a higher probability of being free of bone disease: optimal ERT compliance; early diagnosis; timely initiation of therapy; ERT initiation dose ≥45 UI/kg/EOW; and the absence of history of splenectomy. Skeletal involvement was classified into 4 major phenotypic groups according to BL: group 1 (12.9%) without BL; group 2 (28.2%) with reversible BL; group 3 (41.9%) with reversible BL and irreversible chronic BL; and group 4 (16.9%) with acute irreversible BL. Our study identifies prognostic factors for achieving best therapeutic outcomes, introduces new risk stratification for patients and suggests the need for a redefinition of bone TG. Am. J. Hematol. 91:E448-E453, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Batista, Julie L.; Andersson, Hans C.; Balwani, Manisha; Burrow, Thomas Andrew; Charrow, Joel; Kaplan, Paige; Khan, Aneal; Kishnani, Priya S.; Kolodny, Edwin H.; Rosenbloom, Barry; Scott, C. Ronald; Weinreb, Neal
2017-01-01
Abstract This study tests the hypothesis that the prevalence of severe clinical manifestations in Gaucher disease type 1 (GD1) patients at the time of treatment initiation has changed since alglucerase/imiglucerase enzyme replacement therapy (ERT) was approved in the United States (US) in 1991. US alglucerase/imiglucerase‐treated GD1 patients from the International Collaborative Gaucher Group Gaucher Registry clinicaltrials.gov NCT00358943 were stratified by age at ERT initiation (<18, 18 to <50, ≥50 years), era of ERT initiation (1991‐1995, 1996‐2000, 2001‐2005, 2006‐2009), and splenectomy status pre‐ERT. Prevalence of splenectomy decreased dramatically across the eras among all age groups. Bone manifestations were more prevalent in splenectomized patients than non‐splenectomized patients in all age groups. Prevalence of bone manifestations differed across eras in certain age groups: non‐splenectomized patients had a lower prevalence of ischemic bone events (pediatric patients) and bone crisis (pediatric patients and adults 18 to <50 years) in later eras; splenectomized adult (18 to <50 years) patients had a lower prevalence of ischemic bone events and bone crisis in later eras. Over two decades after the introduction of ERT, the prevalence of splenectomy and associated skeletal complications has declined dramatically. Concomitantly, the interval between diagnosis and initiation of ERT has decreased, most strikingly in pediatric patients who have the most severe disease. Together, these findings suggest that since the introduction of alglucerase/imiglucerase ERT, optimal standard of care has become established in the US to prevent destructive complications of GD1. PMID:28569047
ERTS-A data as a teaching and research tool in the Department of Geology
NASA Technical Reports Server (NTRS)
Grybeck, D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The ERTS-1 materials continue to be used in a number of courses including Geology of Alaska, Economic Geology, and Structural Geology. In addition, specific talks about the ERTS-1 material were given at a seminar at the Geophysical Institute, to the Geology Department, to numerous individuals, and were extensively used in a popularized talk on the Geology of Alaska to the local Historical Society.
Kansas environmental and resource study: A Great Plains model, tasks 1-6
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L. (Principal Investigator); Ulaby, F. T.; Shanmugam, K. S.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.
1972-01-01
There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains.
NASA Technical Reports Server (NTRS)
Demathieu, P. G.; Verger, F. H.
1974-01-01
The French Atlantic Littoral (FRALIT) program uses ERTS-1 data to study coastal geomorphology and waters. ERTS-1 gives an overall picture of the phenomena for the first time due mainly to channel 4 data, but the other channels also contribute valuable complementary data on superficial waters. These studies have already resulted in accurate maps of the mud transported south-westwards from the mouth of the River Loire.
ERTS-1 applications to Minnesota land use mapping
NASA Technical Reports Server (NTRS)
Brown, D.; Gamble, J.; Prestin, S.; Trippler, D.; Meyer, M. P.; Ulliman, J. J.; Eller, R. G.
1973-01-01
Land use class definitions that can be operationally employed with ERTS-1 imagery are being developed with the cooperation of personnel from several state, regional, and federal agencies with land management responsibilities within the state and the University of Minnesota. Investigations of urban, extractive, forest, and wetlands areas indicate that it is feasible to subdivide each of these classes into several sub-classes with the use of ERTS-1 images from one or more time periods.
NASA Technical Reports Server (NTRS)
Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T.
1973-01-01
The author has identified the following significant results. The Mined Land Inventory map of Pike, Gibson, and Warrick Counties, Indiana, prepared from ERTS-1 imagery, was included in the 1973 Annual Report of the President's Council on Environmental Quality as an example of ERTS applications to mined lands. Increasing numbers of inquiries have been received from coal producing states and coal companies interested in the Indiana Program.
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A comparison of photomorphic regions from an uncontrolled ERTS-1 mosaic of CARETS to land use areas on a map published in the National Atlas revealed close correlations in non-urban regions. Such regional scale analysis of ERTS-1 data has the potential for providing an economical sampling strategy for selecting sites for more detailed field measurements if other environmental variables can be correlated with patterns on ERTS-1 imagery. ERTS-1 imagery has also revealed for the first time the appearance of CARETS during the winter months. Investigators have identified extensive areas of conifers, which have previously been indistinguishable from deciduous vegetation. Imagery has also shown very clearly the extent of snow cover at a particular time over the region. The evaluation of ERTS-1 imagery used for the land use mapping of the shore zone of CARETS, has shown that the presence or absence of elements of an hierarchal system of shoreline landforms can help identify areas of potential rapid change. Changes in land use class distributions on the Barrier Islands signify the environmental response to natural and man-caused processes. Both environmental vulnerability and sensitivity can be estimated from the repetitive ERTS-1 coverage of long reaches of the CARETS coast. Results indicate potential applications to land use planning, management, and regional environmental quality analysis.