Sample records for tomography quantitative analysis

  1. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    PubMed

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  2. Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amirifar, Nooshin; Lardé, Rodrigue, E-mail: rodrigue.larde@univ-rouen.fr; Talbot, Etienne

    2015-12-07

    In the last decade, atom probe tomography has become a powerful tool to investigate semiconductor and insulator nanomaterials in microelectronics, spintronics, and optoelectronics. In this paper, we report an investigation of zinc oxide nanostructures using atom probe tomography. We observed that the chemical composition of zinc oxide is strongly dependent on the analysis parameters used for atom probe experiments. It was observed that at high laser pulse energies, the electric field at the specimen surface is strongly dependent on the crystallographic directions. This dependence leads to an inhomogeneous field evaporation of the surface atoms, resulting in unreliable measurements. We showmore » that the laser pulse energy has to be well tuned to obtain reliable quantitative chemical composition measurements of undoped and doped ZnO nanomaterials.« less

  3. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    PubMed

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (<20 nm), tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by both techniques, it is mandatory to explore the limits and advantages imposed by the particular geometry of atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis.

    PubMed

    Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G

    2016-12-01

    Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.

  5. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies.

    PubMed

    Cruz-Herranz, Andrés; Balk, Lisanne J; Oberwahrenbrock, Timm; Saidha, Shiv; Martinez-Lapiscina, Elena H; Lagreze, Wolf A; Schuman, Joel S; Villoslada, Pablo; Calabresi, Peter; Balcer, Laura; Petzold, Axel; Green, Ari J; Paul, Friedemann; Brandt, Alexander U; Albrecht, Philipp

    2016-06-14

    To develop consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results. A panel of experienced OCT researchers (including 11 neurologists, 2 ophthalmologists, and 2 neuroscientists) discussed requirements for performing and reporting quantitative analyses of retinal morphology and developed a list of initial recommendations based on experience and previous studies. The list of recommendations was subsequently revised during several meetings of the coordinating group. We provide a 9-point checklist encompassing aspects deemed relevant when reporting quantitative OCT studies. The areas covered are study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition data analysis, recommended nomenclature, and statistical analysis. The Advised Protocol for OCT Study Terminology and Elements recommendations include core items to standardize and improve quality of reporting in quantitative OCT studies. The recommendations will make reporting of quantitative OCT studies more consistent and in line with existing standards for reporting research in other biomedical areas. The recommendations originated from expert consensus and thus represent Class IV evidence. They will need to be regularly adjusted according to new insights and practices. © 2016 American Academy of Neurology.

  6. Geographic and demographic variabilities of quantitative parameters in stress myocardial computed tomography perfusion.

    PubMed

    Park, Jinoh; Kim, Hyun-Sook; Hwang, Hye Jeon; Yang, Dong Hyun; Koo, Hyun Jung; Kang, Joon-Won; Kim, Young-Hak

    2017-09-01

    To evaluate the geographic and demographic variabilities of the quantitative parameters of computed tomography perfusion (CTP) of the left ventricular (LV) myocardium in patients with normal coronary artery on computed tomography angiography (CTA). From a multicenter CTP registry of stress and static computed tomography, we retrospectively recruited 113 patients (mean age, 60 years; 57 men) without perfusion defect on visual assessment and minimal (< 20% of diameter stenosis) or no coronary artery disease on CTA. Using semiautomatic analysis software, quantitative parameters of the LV myocardium, including the myocardial attenuation in stress and rest phases, transmural perfusion ratio (TPR), and myocardial perfusion reserve index (MPRI), were evaluated in 16 myocardial segments. In the lateral wall of the LV myocardium, all quantitative parameters except for MPRI were significantly higher compared with those in the other walls. The MPRI showed consistent values in all myocardial walls (anterior to lateral wall: range, 25% to 27%; p = 0.401). At the basal level of the myocardium, all quantitative parameters were significantly lower than those at the mid- and apical levels. Compared with men, women had significantly higher values of myocardial attenuation and TPR. Age, body mass index, and Framingham risk score were significantly associated with the difference in myocardial attenuation. Geographic and demographic variabilities of quantitative parameters in stress myocardial CTP exist in healthy subjects without significant coronary artery disease. This information may be helpful when assessing myocardial perfusion defects in CTP.

  7. Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy.

    PubMed

    Guo, Wei; Sneed, Brian T; Zhou, Lin; Tang, Wei; Kramer, Matthew J; Cullen, David A; Poplawsky, Jonathan D

    2016-12-01

    Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe-Co-rich and Νi-Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2-4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.

  8. Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy

    DOE PAGES

    Guo, Wei; Sneed, Brian T.; Zhou, Lin; ...

    2016-12-21

    Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology andmore » volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. Lastly, we discuss the complementary benefits and challenges associated with correlative STEM-EDS and APT.« less

  9. Looking at the Brains behind Figurative Language--A Quantitative Meta-Analysis of Neuroimaging Studies on Metaphor, Idiom, and Irony Processing

    ERIC Educational Resources Information Center

    Bohrn, Isabel C.; Altmann, Ulrike; Jacobs, Arthur M.

    2012-01-01

    A quantitative, coordinate-based meta-analysis combined data from 354 participants across 22 fMRI studies and one positron emission tomography (PET) study to identify the differences in neural correlates of figurative and literal language processing, and to investigate the role of the right hemisphere (RH) in figurative language processing.…

  10. Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves' Disease

    PubMed Central

    Kim, Hyun Joo; Bang, Ji-In; Kim, Ji-Young; Moon, Jae Hoon; So, Young

    2017-01-01

    Objective Since Graves' disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. Materials and Methods A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of 99mTc-pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and %uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean × thyroid volume) from the SPECT/CT, and clinical/biochemical variables, were investigated. Results GD patients had a significantly greater %uptake (6.9 ± 6.4%) than historical control euthyroid patients (n = 20, 0.8 ± 0.5%, p < 0.001) from the same quantitative SPECT/CT protocol. Euthyroidism was achieved in 14 patients at 156 ± 62 days post-MMI treatment, but 22 patients had still not achieved euthyroidism by the last follow-up time-point (208 ± 80 days). In the univariate Cox regression analysis, the initial MMI dose (p = 0.014), %uptake (p = 0.015), and functional thyroid mass (p = 0.016) were significant predictors of euthyroidism in response to MMI treatment. However, only %uptake remained significant in a multivariate Cox regression analysis (p = 0.034). A %uptake cutoff of 5.0% dichotomized the faster responding versus the slower responding GD patients (p = 0.006). Conclusion A novel parameter of thyroid %uptake from quantitative SPECT/CT is a predictive indicator of an early response to MMI in GD patients. PMID:28458607

  11. Quantitative coronary plaque analysis predicts high-risk plaque morphology on coronary computed tomography angiography: results from the ROMICAT II trial.

    PubMed

    Liu, Ting; Maurovich-Horvat, Pál; Mayrhofer, Thomas; Puchner, Stefan B; Lu, Michael T; Ghemigian, Khristine; Kitslaar, Pieter H; Broersen, Alexander; Pursnani, Amit; Hoffmann, Udo; Ferencik, Maros

    2018-02-01

    Semi-automated software can provide quantitative assessment of atherosclerotic plaques on coronary CT angiography (CTA). The relationship between established qualitative high-risk plaque features and quantitative plaque measurements has not been studied. We analyzed the association between quantitative plaque measurements and qualitative high-risk plaque features on coronary CTA. We included 260 patients with plaque who underwent coronary CTA in the Rule Out Myocardial Infarction/Ischemia Using Computer Assisted Tomography (ROMICAT) II trial. Quantitative plaque assessment and qualitative plaque characterization were performed on a per coronary segment basis. Quantitative coronary plaque measurements included plaque volume, plaque burden, remodeling index, and diameter stenosis. In qualitative analysis, high-risk plaque was present if positive remodeling, low CT attenuation plaque, napkin-ring sign or spotty calcium were detected. Univariable and multivariable logistic regression analyses were performed to assess the association between quantitative and qualitative high-risk plaque assessment. Among 888 segments with coronary plaque, high-risk plaque was present in 391 (44.0%) segments by qualitative analysis. In quantitative analysis, segments with high-risk plaque had higher total plaque volume, low CT attenuation plaque volume, plaque burden and remodeling index. Quantitatively assessed low CT attenuation plaque volume (odds ratio 1.12 per 1 mm 3 , 95% CI 1.04-1.21), positive remodeling (odds ratio 1.25 per 0.1, 95% CI 1.10-1.41) and plaque burden (odds ratio 1.53 per 0.1, 95% CI 1.08-2.16) were associated with high-risk plaque. Quantitative coronary plaque characteristics (low CT attenuation plaque volume, positive remodeling and plaque burden) measured by semi-automated software correlated with qualitative assessment of high-risk plaque features.

  12. Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: protected lift-out specimen preparation for atom probe tomography.

    PubMed

    Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S

    2010-08-01

    Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.

  13. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    PubMed

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust quantitative image reconstruction and biomarker analysis, there may be an expanded role for SPECT/CT imaging in renal masses and other pathologic conditions.

  14. Multicenter study of quantitative computed tomography analysis using a computer-aided three-dimensional system in patients with idiopathic pulmonary fibrosis.

    PubMed

    Iwasawa, Tae; Kanauchi, Tetsu; Hoshi, Toshiko; Ogura, Takashi; Baba, Tomohisa; Gotoh, Toshiyuki; Oba, Mari S

    2016-01-01

    To evaluate the feasibility of automated quantitative analysis with a three-dimensional (3D) computer-aided system (i.e., Gaussian histogram normalized correlation, GHNC) of computed tomography (CT) images from different scanners. Each institution's review board approved the research protocol. Informed patient consent was not required. The participants in this multicenter prospective study were 80 patients (65 men, 15 women) with idiopathic pulmonary fibrosis. Their mean age was 70.6 years. Computed tomography (CT) images were obtained by four different scanners set at different exposures. We measured the extent of fibrosis using GHNC, and used Pearson's correlation analysis, Bland-Altman plots, and kappa analysis to directly compare the GHNC results with manual scoring by radiologists. Multiple linear regression analysis was performed to determine the association between the CT data and forced vital capacity (FVC). For each scanner, the extent of fibrosis as determined by GHNC was significantly correlated with the radiologists' score. In multivariate analysis, the extent of fibrosis as determined by GHNC was significantly correlated with FVC (p < 0.001). There was no significant difference between the results obtained using different CT scanners. Gaussian histogram normalized correlation was feasible, irrespective of the type of CT scanner used.

  15. Extinction measurement of dense media by an optical coherence tomography technique

    NASA Astrophysics Data System (ADS)

    Ago, Tomoki; Iwai, Toshiaki; Yokota, Ryoko

    2016-10-01

    The optical coherence tomography will make progress as the next stage toward a spectroscopic analysis technique. The spectroscopic analysis is based on the Beer-Lambert law. The absorption and scattering coefficients even for the dense medium can be measured by the Beer-Lambert law because the OCT can detect only the light keeping the coherency which propagated rectilinearly and retro-reflected from scatters. This study is concerned with the quantitative verification of Beer-Lambert law in the OCT imaging.

  16. A method for evaluating the murine pulmonary vasculature using micro-computed tomography.

    PubMed

    Phillips, Michael R; Moore, Scott M; Shah, Mansi; Lee, Clara; Lee, Yueh Z; Faber, James E; McLean, Sean E

    2017-01-01

    Significant mortality and morbidity are associated with alterations in the pulmonary vasculature. While techniques have been described for quantitative morphometry of whole-lung arterial trees in larger animals, no methods have been described in mice. We report a method for the quantitative assessment of murine pulmonary arterial vasculature using high-resolution computed tomography scanning. Mice were harvested at 2 weeks, 4 weeks, and 3 months of age. The pulmonary artery vascular tree was pressure perfused to maximal dilation with a radio-opaque casting material with viscosity and pressure set to prevent capillary transit and venous filling. The lungs were fixed and scanned on a specimen computed tomography scanner at 8-μm resolution, and the vessels were segmented. Vessels were grouped into categories based on lumen diameter and branch generation. Robust high-resolution segmentation was achieved, permitting detailed quantitation of pulmonary vascular morphometrics. As expected, postnatal lung development was associated with progressive increase in small-vessel number and arterial branching complexity. These methods for quantitative analysis of the pulmonary vasculature in postnatal and adult mice provide a useful tool for the evaluation of mouse models of disease that affect the pulmonary vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The use of optical coherence tomography to analyze the efficacy of skin care products

    NASA Astrophysics Data System (ADS)

    Irani, Sarosh; Turani, Zahra; Fotouhi, Audrey; Daveluy, Steven; Mehregan, Darius; Chen, Wei; Gelovani, Juri; Nasiriavanaki, Mohammadreza

    2018-02-01

    In this study, we assess the applicability of optical coherence tomography (OCT) for non-invasive imaging of skin morphology for the assessment of efficacy of cosmetic skin wrinkle-reduction products in humans. Evaluation of skin care products for reduction of facial wrinkles is largely limited to photographic (non-quantitative) comparison of skin surface texture before and after either single or prolonged application of skin care product. OCT could be a technique for monitoring changes in cross-sectional skin morphology. An optical attenuation coefficient analysis is also carried out to quantitatively study the changes in different layers of the skin.

  18. Diagnostic accuracy of semi-automatic quantitative metrics as an alternative to expert reading of CT myocardial perfusion in the CORE320 study.

    PubMed

    Ostovaneh, Mohammad R; Vavere, Andrea L; Mehra, Vishal C; Kofoed, Klaus F; Matheson, Matthew B; Arbab-Zadeh, Armin; Fujisawa, Yasuko; Schuijf, Joanne D; Rochitte, Carlos E; Scholte, Arthur J; Kitagawa, Kakuya; Dewey, Marc; Cox, Christopher; DiCarli, Marcelo F; George, Richard T; Lima, Joao A C

    To determine the diagnostic accuracy of semi-automatic quantitative metrics compared to expert reading for interpretation of computed tomography perfusion (CTP) imaging. The CORE320 multicenter diagnostic accuracy clinical study enrolled patients between 45 and 85 years of age who were clinically referred for invasive coronary angiography (ICA). Computed tomography angiography (CTA), CTP, single photon emission computed tomography (SPECT), and ICA images were interpreted manually in blinded core laboratories by two experienced readers. Additionally, eight quantitative CTP metrics as continuous values were computed semi-automatically from myocardial and blood attenuation and were combined using logistic regression to derive a final quantitative CTP metric score. For the reference standard, hemodynamically significant coronary artery disease (CAD) was defined as a quantitative ICA stenosis of 50% or greater and a corresponding perfusion defect by SPECT. Diagnostic accuracy was determined by area under the receiver operating characteristic curve (AUC). Of the total 377 included patients, 66% were male, median age was 62 (IQR: 56, 68) years, and 27% had prior myocardial infarction. In patient based analysis, the AUC (95% CI) for combined CTA-CTP expert reading and combined CTA-CTP semi-automatic quantitative metrics was 0.87(0.84-0.91) and 0.86 (0.83-0.9), respectively. In vessel based analyses the AUC's were 0.85 (0.82-0.88) and 0.84 (0.81-0.87), respectively. No significant difference in AUC was found between combined CTA-CTP expert reading and CTA-CTP semi-automatic quantitative metrics in patient based or vessel based analyses(p > 0.05 for all). Combined CTA-CTP semi-automatic quantitative metrics is as accurate as CTA-CTP expert reading to detect hemodynamically significant CAD. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  19. Potential use of combining the diffusion equation with the free Shrödinger equation to improve the Optical Coherence Tomography image analysis

    NASA Astrophysics Data System (ADS)

    Cabrera Fernandez, Delia; Salinas, Harry M.; Somfai, Gabor; Puliafito, Carmen A.

    2006-03-01

    Optical coherence tomography (OCT) is a rapidly emerging medical imaging technology. In ophthalmology, OCT is a powerful tool because it enables visualization of the cross sectional structure of the retina and anterior eye with higher resolutions than any other non-invasive imaging modality. Furthermore, OCT image information can be quantitatively analyzed, enabling objective assessment of features such as macular edema and diabetes retinopathy. We present specific improvements in the quantitative analysis of the OCT system, by combining the diffusion equation with the free Shrödinger equation. In such formulation, important features of the image can be extracted by extending the analysis from the real axis to the complex domain. Experimental results indicate that our proposed novel approach has good performance in speckle noise removal, enhancement and segmentation of the various cellular layers of the retina using the OCT system.

  20. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  1. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    PubMed

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei; Sneed, Brian T.; Zhou, Lin

    Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology andmore » volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. Lastly, we discuss the complementary benefits and challenges associated with correlative STEM-EDS and APT.« less

  3. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs.

    PubMed

    Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis; Van Vlierberghe, Sandra; Boterberg, Veerle; Dubruel, Peter; Luyten, Frank P; Schrooten, Jan; Geris, Liesbet

    2015-01-01

    To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.

  4. Data analysis in emission tomography using emission-count posteriors

    NASA Astrophysics Data System (ADS)

    Sitek, Arkadiusz

    2012-11-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.

  5. Reduced ventilation-perfusion (V/Q) mismatch following endobronchial valve insertion demonstrated by Gallium-68 V/Q photon emission tomography/computed tomography.

    PubMed

    Leong, Paul; Le Roux, Pierre-Yves; Callahan, Jason; Siva, Shankar; Hofman, Michael S; Steinfort, Daniel P

    2017-09-01

    Endobronchial valves (EBVs) are increasingly deployed in the management of severe emphysema. Initial studies focussed on volume reduction as the mechanism, with subsequent improvement in forced expiratory volume in 1 s (FEV 1 ). More recent studies have emphasized importance of perfusion on predicting outcomes, though findings have been inconsistent. Gallium-68 ventilation-perfusion (V/Q) photon emission tomography (PET)/computed tomography (CT) is a novel imaging modality with advantages in spatial resolution, quantitation, and speed over conventional V/Q scintigraphy. We report a pilot case in which V/Q-PET/CT demonstrated discordant findings compared with quantitative CT analysis, and directed left lower lobe EBV placement. The patient experienced a significant improvement in 6-min walk distance (6MWD) without change in spirometry. Post-EBV V/Q-PET/CT demonstrated a marked decrease in unmatched (detrimental) V/Q areas and improvement in overall V/Q matching on post-EBV V/Q-PET/CT. These preliminary novel findings suggest that EBVs improve V/Q matching and may explain the observed functional improvements.

  6. Low-dose CT for quantitative analysis in acute respiratory distress syndrome

    DTIC Science & Technology

    2013-08-31

    noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield Units , respectively. Conclusions: A reduction of...slice of a series, total lung volume, total lung tissue mass and frequency distribution of lung CT numbers expressed in Hounsfield Units (HU) were...tomography; HU: Hounsfield units ; CTDIvol: volumetric computed tomography dose index; DLP: dose length product; E: effective dose; SD: standard deviation

  7. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.

    PubMed

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.

  8. Quantitative Analysis Of Three-dimensional Branching Systems From X-ray Computed Microtomography Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, Adriana L.; Varga, Tamas

    Branching structures such as lungs, blood vessels and plant roots play a critical role in life. Growth, structure, and function of these branching structures have an immense effect on our lives. Therefore, quantitative size information on such structures in their native environment is invaluable for studying their growth and the effect of the environment on them. X-ray computed tomography (XCT) has been an effective tool for in situ imaging and analysis of branching structures. We developed a costless tool that approximates the surface and volume of branching structures. Our methodology of noninvasive imaging, segmentation and extraction of quantitative information ismore » demonstrated through the analysis of a plant root in its soil medium from 3D tomography data. XCT data collected on a grass specimen was used to visualize its root structure. A suite of open-source software was employed to segment the root from the soil and determine its isosurface, which was used to calculate its volume and surface. This methodology of processing 3D data is applicable to other branching structures even when the structure of interest is of similar x-ray attenuation to its environment and difficulties arise with sample segmentation.« less

  9. Longitudinal studies of the 18F-FDG kinetics after ipilimumab treatment in metastatic melanoma patients based on dynamic FDG PET/CT.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia K; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-06-05

    Immunotherapy has raised the issue of appropriate treatment response evaluation, due to the unique mechanism of action of the immunotherapeutic agents. Aim of this analysis is to evaluate the potential role of quantitative analysis of 2-deoxy-2-( 18 F)fluoro-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) data in monitoring of patients with metastatic melanoma undergoing ipilimumab therapy. 25 patients with unresectable metastatic melanoma underwent dynamic PET/CT (dPET/CT) of the thorax and upper abdomen as well as static, whole body PET/CT with 18 F-FDG before the start of ipilimumab treatment (baseline PET/CT), after two cycles of treatment (interim PET/CT) and at the end of treatment after four cycles (late PET/CT). The evaluation of dPET/CT studies was based on semi-quantitative (standardized uptake value, SUV) calculation as well as quantitative analysis, based on two-tissue compartment modeling and a fractal approach. Patients' best clinical response, assessed at a mean of 59 weeks, was used as reference. According to their best clinical response, patients were dichotomized in those demonstrating clinical benefit (CB, n = 16 patients) and those demonstrating no clinical benefit (no-CB, n = 9 patients). No statistically significant differences were observed between CB and no-CB regarding either semi-quantitative or quantitative parameters in all scans. On contrary, the application of the recently introduced PET response evaluation criteria for immunotherapy (PERCIMT) led to a correct classification rate of 84% (21/25 patients). Quantitative analysis of 18 F-FDG PET data does not provide additional information in treatment response evaluation of metastatic melanoma patients receiving ipilimumab. PERCIMT criteria correlated better with clinical response.

  10. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  11. Quantitative validation of an air-coupled ultrasonic probe model by Interferometric laser tomography

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Pandarese, G.; Cavuto, A.

    2012-06-01

    The present paper describes the quantitative validation of a finite element (FE) model of the ultrasound beam generated by an air coupled non-contact ultrasound transducer. The model boundary conditions are given by vibration velocities measured by laser vibrometry on the probe membrane. The proposed validation method is based on the comparison between the simulated 3D pressure field and the pressure data measured with interferometric laser tomography technique. The model details and the experimental techniques are described in paper. The analysis of results shows the effectiveness of the proposed approach and the possibility to quantitatively assess and predict the generated acoustic pressure field, with maximum discrepancies in the order of 20% due to uncertainty effects. This step is important for determining in complex problems the real applicability of air-coupled probes and for the simulation of the whole inspection procedure, also when the component is designed, so as to virtually verify its inspectability.

  12. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT

    PubMed Central

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-01-01

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772

  13. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    PubMed

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  14. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography

    PubMed Central

    Henry, Francis P.; Wang, Yan; Rodriguez, Carissa L. R.; Randolph, Mark A.; Rust, Esther A. Z.; Winograd, Jonathan M.; de Boer, Johannes F.; Park, B. Hyle

    2015-01-01

    Abstract. Assessing nerve integrity and myelination after injury is necessary to provide insight for treatment strategies aimed at restoring neuromuscular function. Currently, this is largely done with electrical analysis, which lacks direct quantitative information. In vivo optical imaging with sufficient imaging depth and resolution could be used to assess the nerve microarchitecture. In this study, we examine the use of polarization sensitive-optical coherence tomography (PS-OCT) to quantitatively assess the sciatic nerve microenvironment through measurements of birefringence after applying a nerve crush injury in a rat model. Initial loss of function and subsequent recovery were demonstrated by calculating the sciatic function index (SFI). We found that the PS-OCT phase retardation slope, which is proportional to birefringence, increased monotonically with the SFI. Additionally, histomorphometric analysis of the myelin thickness and g-ratio shows that the PS-OCT slope is a good indicator of myelin health and recovery after injury. These results demonstrate that PS-OCT is capable of providing nondestructive and quantitative assessment of nerve health after injury and shows promise for continued use both clinically and experimentally in neuroscience. PMID:25858593

  15. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography.

    PubMed

    Henry, Francis P; Wang, Yan; Rodriguez, Carissa L R; Randolph, Mark A; Rust, Esther A Z; Winograd, Jonathan M; de Boer, Johannes F; Park, B Hyle

    2015-04-01

    Assessing nerve integrity and myelination after injury is necessary to provide insight for treatment strategies aimed at restoring neuromuscular function. Currently, this is largely done with electrical analysis, which lacks direct quantitative information. In vivo optical imaging with sufficient imaging depth and resolution could be used to assess the nerve microarchitecture. In this study, we examine the use of polarization sensitive-optical coherence tomography (PS-OCT) to quantitatively assess the sciatic nerve microenvironment through measurements of birefringence after applying a nerve crush injury in a rat model. Initial loss of function and subsequent recovery were demonstrated by calculating the sciatic function index (SFI). We found that the PS-OCT phase retardation slope, which is proportional to birefringence, increased monotonically with the SFI. Additionally, histomorphometric analysis of the myelin thickness and g-ratio shows that the PS-OCT slope is a good indicator of myelin health and recovery after injury. These results demonstrate that PS-OCT is capable of providing nondestructive and quantitative assessment of nerve health after injury and shows promise for continued use both clinically and experimentally in neuroscience.

  16. Digital 3D Microstructure Analysis of Concrete using X-Ray Micro Computed Tomography SkyScan 1173: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.

    2017-11-01

    Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.

  17. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.

    PubMed

    Attiyeh, Marc A; Chakraborty, Jayasree; Doussot, Alexandre; Langdon-Embry, Liana; Mainarich, Shiana; Gönen, Mithat; Balachandran, Vinod P; D'Angelica, Michael I; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter; Allen, Peter J; Simpson, Amber L; Do, Richard K

    2018-04-01

    Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients. A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation. A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data. We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.

  18. Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data.

    PubMed

    Suresh, Niraj; Stephens, Sean A; Adams, Lexor; Beck, Anthon N; McKinney, Adriana L; Varga, Tamas

    2016-04-26

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and crop management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving plants. X-ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. We aimed to develop a costless and efficient tool that approximates the surface and volume of the root regardless of its shape from three-dimensional (3D) tomography data. The root structure of a Prairie dropseed (Sporobolus heterolepis) specimen was imaged using XCT. The root was reconstructed, and the primary root structure was extracted from the data using a combination of licensed and open-source software. An isosurface polygonal mesh was then created for ease of analysis. We have developed the standalone application imeshJ, generated in MATLAB(1), to calculate root volume and surface area from the mesh. The outputs of imeshJ are surface area (in mm(2)) and the volume (in mm(3)). The process, utilizing a unique combination of tools from imaging to quantitative root analysis, is described. A combination of XCT and open-source software proved to be a powerful combination to noninvasively image plant root samples, segment root data, and extract quantitative information from the 3D data. This methodology of processing 3D data should be applicable to other material/sample systems where there is connectivity between components of similar X-ray attenuation and difficulties arise with segmentation.

  19. Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)

  20. [Analysis of single-photon emission computed tomography in patients with hypertensive encephalopathy complicated with previous hypertensive crisis].

    PubMed

    Kustkova, H S

    2012-01-01

    In cerebrovascular diseases pefuzionnaya single photon emission computed tomography with lipophilic amines used for the diagnosis of functional disorders of cerebral blood flow. Quantitative calculations helps clarify the nature of vascular disease and clarify the adequacy and effectiveness of the treatment. In this modern program for SPECT ensure conduct not only as to the calculation of blood flow, but also make it possible to compute also the absolute values of cerebral blood flow.

  1. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6). Conclusion: Quantitative analysis identified novel {sup 18}F-fluorodeoxyglucose positron emission tomography image features that showed improved prognostic value over conventional imaging metrics. If validated in large, prospective cohorts, the new prognostic signature might be used to identify patients for individualized risk-adaptive therapy.« less

  2. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    PubMed

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Stabilization of X–Au–X complexes on the Au(111) surface: A theoretical investigation and comparison of X = S, Cl, CH 3S, and SiH 3S

    DOE PAGES

    Lee, Jiyoung; Boschen, Jeffery S.; Windus, Theresa L.; ...

    2017-01-27

    Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology andmore » volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α 1 phases that are nucleated in the Ni-rich α 2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.« less

  4. Inverse transport problems in quantitative PAT for molecular imaging

    NASA Astrophysics Data System (ADS)

    Ren, Kui; Zhang, Rongting; Zhong, Yimin

    2015-12-01

    Fluorescence photoacoustic tomography (fPAT) is a molecular imaging modality that combines photoacoustic tomography with fluorescence imaging to obtain high-resolution imaging of fluorescence distributions inside heterogeneous media. The objective of this work is to study inverse problems in the quantitative step of fPAT where we intend to reconstruct physical coefficients in a coupled system of radiative transport equations using internal data recovered from ultrasound measurements. We derive uniqueness and stability results on the inverse problems and develop some efficient algorithms for image reconstructions. Numerical simulations based on synthetic data are presented to validate the theoretical analysis. The results we present here complement these in Ren K and Zhao H (2013 SIAM J. Imaging Sci. 6 2024-49) on the same problem but in the diffusive regime.

  5. Birefringence measurement of retinal nerve fiber layer using polarization-sensitive spectral domain optical coherence tomography with Jones matrix based analysis

    NASA Astrophysics Data System (ADS)

    Yamanari, Masahiro; Miura, Masahiro; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2007-02-01

    Birefringence of retinal nerve fiber layer is measured by polarization-sensitive spectral domain optical coherence tomography using the B-scan-oriented polarization modulation method. Birefringence of the optical fiber and the cornea is compensated by Jones matrix based analysis. Three-dimensional phase retardation map around the optic nerve head and en-face phase retardation map of the retinal nerve fiber layer are shown. Unlike scanning laser polarimetry, our system can measure the phase retardation quantitatively without using bow-tie pattern of the birefringence in the macular region, which enables diagnosis of glaucoma even if the patients have macular disease.

  6. Quantitative methods in fractography; Proceedings of the Symposium on Evaluation and Techniques in Fractography, Atlanta, GA, Nov. 10, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, B.M.; Putatunda, S.K.

    1990-01-01

    Papers are presented on the application of quantitative fractography and computed tomography to fracture processes in materials, the relationships between fractographic features and material toughness, the quantitative analysis of fracture surfaces using fractals, and the analysis and interpretation of aircraft component defects by means of quantitative fractography. Also discussed are the characteristics of hydrogen-assisted cracking measured by the holding-load and fractographic method, a fractographic study of isolated cleavage regions in nuclear pressure vessel steels and their weld metals, a fractographic and metallographic study of the initiation of brittle fracture in weldments, cracking mechanisms for mean stress/strain low-cycle multiaxial fatigue loadings,more » and corrosion fatigue crack arrest in Al alloys.« less

  7. Variable pixel size ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei

    2017-06-01

    A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the proposed method offers an improvement of 8% compared with conventional constant pixel size tomography models in the forward modeling.

  8. The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data.

    PubMed

    Schmidt, Mark E; Chiao, Ping; Klein, Gregory; Matthews, Dawn; Thurfjell, Lennart; Cole, Patricia E; Margolin, Richard; Landau, Susan; Foster, Norman L; Mason, N Scott; De Santi, Susan; Suhy, Joyce; Koeppe, Robert A; Jagust, William

    2015-09-01

    In vivo imaging of amyloid burden with positron emission tomography (PET) provides a means for studying the pathophysiology of Alzheimer's and related diseases. Measurement of subtle changes in amyloid burden requires quantitative analysis of image data. Reliable quantitative analysis of amyloid PET scans acquired at multiple sites and over time requires rigorous standardization of acquisition protocols, subject management, tracer administration, image quality control, and image processing and analysis methods. We review critical points in the acquisition and analysis of amyloid PET, identify ways in which technical factors can contribute to measurement variability, and suggest methods for mitigating these sources of noise. Improved quantitative accuracy could reduce the sample size necessary to detect intervention effects when amyloid PET is used as a treatment end point and allow more reliable interpretation of change in amyloid burden and its relationship to clinical course. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Contrast medium usage reduction in abdominal computed tomography by using high-iodinated concentration contrast medium

    NASA Astrophysics Data System (ADS)

    Suwannasri, A.; Kaewlai, R.; Asavaphatiboon, S.

    2016-03-01

    This study was to determine if administration of a low volume high-concentration iodinated contrast medium can preserve image quality in comparison with regular-concentration intravenous contrast medium in patient undergoing contrast-enhancement abdominal computed tomography (CT). Eighty-four patients were randomly divided into 3 groups of similar iodine delivery rate; A: 1.2 cc/kg of iomeprol-400, B: 1.0 cc/kg of iomeprol-400 and C: 1.5 cc/kg of ioversol-350. Contrast enhancement of the liver parenchyma, pancreas and aorta was quantitatively measured in Hounsfield units and qualitative assessed by a radiologist. T-test was used to evaluate contrast enhancement, and Chi-square test was used to evaluate qualitative image assessment, at significance level of 0.05 with 95% confidence intervals. There were no statistically significant differences in contrast enhancement of liver parenchyma and pancreas between group A and group C in both quantitative and qualitative analyses. Group C showed superior vascular enhancement to group A and B on quantitative analysis.

  10. A method for volume determination of the orbit and its contents by high resolution axial tomography and quantitative digital image analysis.

    PubMed Central

    Cooper, W C

    1985-01-01

    The various congenital and acquired conditions which alter orbital volume are reviewed. Previous investigative work to determine orbital capacity is summarized. Since these studies were confined to postmortem evaluations, the need for a technique to measure orbital volume in the living state is presented. A method for volume determination of the orbit and its contents by high-resolution axial tomography and quantitative digital image analysis is reported. This procedure has proven to be accurate (the discrepancy between direct and computed measurements ranged from 0.2% to 4%) and reproducible (greater than 98%). The application of this method to representative clinical problems is presented and discussed. The establishment of a diagnostic system versatile enough to expand the usefulness of computerized axial tomography and polytomography should add a new dimension to ophthalmic investigation and treatment. Images FIGURE 8 FIGURE 9 FIGURE 10 A FIGURE 10 B FIGURE 11 A FIGURE 11 B FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 A FIGURE 26 B FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 PMID:3938582

  11. Bone Mass in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Calarge, Chadi A.; Schlechte, Janet A.

    2017-01-01

    To examine bone mass in children and adolescents with autism spectrum disorders (ASD). Risperidone-treated 5 to 17 year-old males underwent anthropometric and bone measurements, using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multivariable linear regression analysis models examined whether skeletal outcomes…

  12. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  13. Toward standardized quantitative image quality (IQ) assessment in computed tomography (CT): A comprehensive framework for automated and comparative IQ analysis based on ICRU Report 87.

    PubMed

    Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2016-01-01

    Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Automated Quantitative Analysis of Retinal Microvasculature in Normal Eyes on Optical Coherence Tomography Angiography.

    PubMed

    Lupidi, Marco; Coscas, Florence; Cagini, Carlo; Fiore, Tito; Spaccini, Elisa; Fruttini, Daniela; Coscas, Gabriel

    2016-09-01

    To describe a new automated quantitative technique for displaying and analyzing macular vascular perfusion using optical coherence tomography angiography (OCT-A) and to determine a normative data set, which might be used as reference in identifying progressive changes due to different retinal vascular diseases. Reliability study. A retrospective review of 47 eyes of 47 consecutive healthy subjects imaged with a spectral-domain OCT-A device was performed in a single institution. Full-spectrum amplitude-decorrelation angiography generated OCT angiograms of the retinal superficial and deep capillary plexuses. A fully automated custom-built software was used to provide quantitative data on the foveal avascular zone (FAZ) features and the total vascular and avascular surfaces. A comparative analysis between central macular thickness (and volume) and FAZ metrics was performed. Repeatability and reproducibility were also assessed in order to establish the feasibility and reliability of the method. The comparative analysis between the superficial capillary plexus and the deep capillary plexus revealed a statistically significant difference (P < .05) in terms of FAZ perimeter, surface, and major axis and a not statistically significant difference (P > .05) when considering total vascular and avascular surfaces. A linear correlation was demonstrated between central macular thickness (and volume) and the FAZ surface. Coefficients of repeatability and reproducibility were less than 0.4, thus demonstrating high intraobserver repeatability and interobserver reproducibility for all the examined data. A quantitative approach on retinal vascular perfusion, which is visible on Spectralis OCT angiography, may offer an objective and reliable method for monitoring disease progression in several retinal vascular diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  16. Application of X-ray phase contrast micro-tomography to the identification of traditional Chinese medicines

    NASA Astrophysics Data System (ADS)

    Ye, L. L.; Xue, Y. L.; Ni, L. H.; Tan, H.; Wang, Y. D.; Xiao, T. Q.

    2013-07-01

    Nondestructive and in situ investigation to the characteristic microstructures are important to the identification of traditional Chinese medicines (TCMs), especially for precious specimens and samples with oil contains. X-ray phase contrast micro-tomography (XPCMT) could be a practical solution for this kind of investigation. Fructus Foeniculi, a fruit kind of TCMs, is selected as the test sample. Experimental results show that the characteristic microstructures of Fructus Foeniculi, including vittae, vascular bundles, embryo, endosperm and the mesocarp reticulate cells around the vittae can be clearly distinguished and the integrated dissepiments microstructure in the vittae was observed successfully. Especially, for the first time, with virtual slice technique, it can investigate the liquid contains inside the TCMs. The results show that the vittae filled with volatile oil in the oil chamber were observed with this nondestructive and in situ 3-dimensional imaging technique. Furthermore, taking the advantage of micro-computed tomography, we can obtain the characteristic microstructures' quantitative information of the volume in liquid state. The volume of the oil chambers and the volatile oil, which are contained inside the vittae, was quantitatively analyzed. Accordingly, it can calculate the volume ratio of the volatile oil easily and accurately. As a result, we could conclude that XPCMT could be a useful tool for the nondestructive identification and quantitative analysis to TCMs.

  17. Assessment of metabolic bone diseases by quantitative computed tomography

    NASA Technical Reports Server (NTRS)

    Richardson, M. L.; Genant, H. K.; Cann, C. E.; Ettinger, B.; Gordan, G. S.; Kolb, F. O.; Reiser, U. J.

    1985-01-01

    Advances in the radiologic sciences have permitted the development of numerous noninvasive techniques for measuring the mineral content of bone, with varying degrees of precision, accuracy, and sensitivity. The techniques of standard radiography, radiogrammetry, photodensitometry, Compton scattering, neutron activation analysis, single and dual photon absorptiometry, and quantitative computed tomography (QCT) are described and reviewed in depth. Results from previous cross-sectional and longitudinal QCT investigations are given. They then describe a current investigation in which they studied 269 subjects, including 173 normal women, 34 patients with hyperparathyroidism, 24 patients with steroid-induced osteoporosis, and 38 men with idiopathic osteoporosis. Spinal quantitative computed tomography, radiogrammetry, and single photon absorptiometry were performed, and a spinal fracture index was calculated on all patients. The authors found a disproportionate loss of spinal trabecular mineral compared to appendicular mineral in the men with idiopathic osteoporosis and the patients with steroid-induced osteoporosis. They observed roughly equivalent mineral loss in both the appendicular and axial regions in the hyperparathyroid patients. The appendicular cortical measurements correlated moderately well with each other but less well with spinal trabecular QCT. The spinal fracture index correlated well with QCT and less well with the appendicular measurements. Knowledge of appendicular cortical mineral status is important in its own right but is not a valid predictor of axial trabecular mineral status, which may be disproportionately decreased in certain diseases. Quantitative CT provides a reliable means of assessing the latter region of the skeleton, correlates well with the spinal fracture index (a semiquantitative measurement of end-organ failure), and offers the clinician a sensitive means of following the effects of therapy.

  18. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less

  19. Modeling Dynamic Functional Neuroimaging Data Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Price, Larry R.; Laird, Angela R.; Fox, Peter T.; Ingham, Roger J.

    2009-01-01

    The aims of this study were to present a method for developing a path analytic network model using data acquired from positron emission tomography. Regions of interest within the human brain were identified through quantitative activation likelihood estimation meta-analysis. Using this information, a "true" or population path model was then…

  20. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Samuel L., E-mail: samuel.brady@stjude.org; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET imagesmore » were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.« less

  1. Simultaneous Neutron and X-ray Tomography for Quantitative analysis of Geological Samples

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2016-12-01

    Multiphase flow is a critical area of research for shale gas, oil recovery, underground CO2 sequestration, geothermal power, and aquifer management. It is critical to understand the porous structure of the geological formations in addition to the fluid/pore and fluid/fluid interactions. Difficulties for analyzing flow characteristics of rock cores are in obtaining 3D distribution information on the fluid flow and maintaining the cores in a state for other analysis methods. Two powerful non-destructive methods for obtaining 3D structural and compositional information are X-ray and neutron tomography. X-ray tomography produces information on density and structure while neutrons excel at acquiring the liquid phase and produces compositional information. These two methods can offer strong complementary information but are typically conducted at separate times and often at different facilities. This poses issues for obtaining dynamic and stochastic information as the sample will change between analysis modes. To address this, NIST has developed a system that allows for multimodal, simultaneous tomography using thermal neutrons and X-rays by placing a 90 keVp micro-focus X-ray tube 90° to the neutron beam. High pressure core holders that simulate underground conditions have been developed to facilitate simultaneous tomography. These cells allow for the control of confining pressure, axial load, temperature, and fluid flow through the core. This talk will give an overview the simultaneous neutron and x-ray tomography capabilities at NIST, the benefits of multimodal imaging, environmental equipment for geology studies, and several case studies that have been conducted at NIST.

  2. Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couturier, Laurent, E-mail: laurent.couturier55@ho

    The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniquesmore » is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.« less

  3. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review.

    PubMed

    Ohkubo, Hirotsugu; Nakagawa, Hiroaki; Niimi, Akio

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of progressive idiopathic interstitial pneumonia in adults. Many computer-based image analysis methods of chest computed tomography (CT) used in patients with IPF include the mean CT value of the whole lungs, density histogram analysis, density mask technique, and texture classification methods. Most of these methods offer good assessment of pulmonary functions, disease progression, and mortality. Each method has merits that can be used in clinical practice. One of the texture classification methods is reported to be superior to visual CT scoring by radiologist for correlation with pulmonary function and prediction of mortality. In this mini review, we summarize the current literature on computer-based CT image analysis of IPF and discuss its limitations and several future directions. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  4. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    NASA Astrophysics Data System (ADS)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  5. In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin

    2010-07-01

    The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.

  6. Metabolic and clinical assessment of efficacy of cryoablation therapy on skeletal masses by 18F-FDG positron emission tomography/computed tomography (PET/CT) and visual analogue scale (VAS): initial experience.

    PubMed

    Masala, Salvatore; Schillaci, Orazio; Bartolucci, Alberto D; Calabria, Ferdinando; Mammucari, Matteo; Simonetti, Giovanni

    2011-02-01

    Various therapy modalities have been proposed as standard treatments in management of bone metastases. Radiation therapy remains the standard of care for patients with localized bone pain, but up to 30% of them do not experience notable pain relief. Percutaneous cryoablation is a minimally invasive technique that induces necrosis by alternately freezing and thawing a target tissue. This technique is successfully used to treat a variety of malignant and benign diseases in different sites. (18)F-FDG positron emission tomography/computed tomography ((18)F-FDG PET/CT) is a single technique of imaging that provides in a "single step" both morphological and metabolic features of neoplastic lesions of the bone. The aim of this study was to evaluate the efficacy of the cryosurgical technique on secondary musculoskeletal masses according to semi-quantitative PET analysis and clinical-test evaluation with the visual analogue scale (VAS). We enrolled 20 patients with painful bone lesions (score pain that exceeded 4 on the VAS) that were non-responsive to treatment; one lesion per patient was treated. All patients underwent a PET-CT evaluation before and 8 weeks after cryotherapy; maximum standardized uptake value (SUV(max)) was measured before and after treatment for metabolic assessment of response to therapy. After treatment, 18 patients (90%) showed considerable reduction in SUV(max) value (>50%) suggestive of response to treatment; only 2 patients did not show meaningful reduction in metabolic activity. Our preliminary study demonstrates that quantitative analysis provided by PET correlates with response to cryoablation therapy as assessed by CT data and clinical VAS evaluation.

  7. Grading of Emphysema Is Indispensable for Predicting Prolonged Air Leak After Lung Lobectomy.

    PubMed

    Murakami, Junichi; Ueda, Kazuhiro; Tanaka, Toshiki; Kobayashi, Taiga; Hamano, Kimikazu

    2018-04-01

    The aim of this study was to assess the utility of quantitative computed tomography-based grading of emphysema for predicting prolonged air leak after thoracoscopic lobectomy. A consecutive series of 284 patients undergoing thoracoscopic lobectomy for lung cancer was retrospectively reviewed. Prolonged air leak was defined as air leaks lasting 7 days or longer. The grade of emphysema (emphysema index) was defined by the proportion of the emphysematous lung volume (less than -910 HU) to the total lung volume (-600 to -1,024 HU) by a computer-assisted histogram analysis of whole-lung computed tomography scans. The mean length of chest tube drainage was 1.5 days. Fifteen patients (5.3%) presented with prolonged air leak. According to a receiver-operating characteristics curve analysis, the emphysema index was the best predictor of prolonged air leak, with an area under the curve of 0.85 (95% confidence interval: 0.73 to 0.98). An emphysema index of 35% or greater was the best cutoff value for predicting prolonged air leak, with a negative predictive value of 0.99. The emphysema index was the only significant predictor for the length of postoperative chest tube drainage among conventional variables, including the pulmonary function and resected lobe, in both univariate and multivariate analyses. Prolonged air leak resulted in an increased duration of hospitalization (p < 0.001) and was frequently accompanied by pneumonia or empyema (p < 0.001). The grade of emphysema on computed tomography scan is the best predictor of prolonged air leak that adversely influences early postoperative outcomes. We must take new measures against prolonged air leak in quantitative computed tomography-based high-risk patients. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of patients with painful total hip arthroplasty using combined single photon emission tomography and conventional computerized tomography (SPECT/CT) - a comparison of semi-quantitative versus 3D volumetric quantitative measurements.

    PubMed

    Barthassat, Emilienne; Afifi, Faik; Konala, Praveen; Rasch, Helmut; Hirschmann, Michael T

    2017-05-08

    It was the primary purpose of our study to evaluate the inter- and intra-observer reliability of a standardized SPECT/CT algorithm for evaluating patients with painful primary total hip arthroplasty (THA). The secondary purpose was a comparison of semi-quantitative and 3D volumetric quantification method for assessment of bone tracer uptake (BTU) in those patients. A novel SPECT/CT localization scheme consisting of 14 femoral and 4 acetabular regions on standardized axial and coronal slices was introduced and evaluated in terms of inter- and intra-observer reliability in 37 consecutive patients with hip pain after THA. BTU for each anatomical region was assessed semi-quantitatively using a color-coded Likert type scale (0-10) and volumetrically quantified using a validated software. Two observers interpreted the SPECT/CT findings in all patients two times with six weeks interval between interpretations in random order. Semi-quantitative and quantitative measurements were compared in terms of reliability. In addition, the values were correlated using Pearson`s correlation. A factorial cluster analysis of BTU was performed to identify clinically relevant regions, which should be grouped and analysed together. The localization scheme showed high inter- and intra-observer reliabilities for all femoral and acetabular regions independent of the measurement method used (semiquantitative versus 3D volumetric quantitative measurements). A high to moderate correlation between both measurement methods was shown for the distal femur, the proximal femur and the acetabular cup. The factorial cluster analysis showed that the anatomical regions might be summarized into three distinct anatomical regions. These were the proximal femur, the distal femur and the acetabular cup region. The SPECT/CT algorithm for assessment of patients with pain after THA is highly reliable independent from the measurement method used. Three clinically relevant anatomical regions (proximal femoral, distal femoral, acetabular) were identified.

  9. Influence of cardiac and respiratory motion on tomographic reconstructions of the heart: implications for quantitative nuclear cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ter-Pogossian, M.M.; Bergmann, S.R.; Sobel, B.E.

    1982-12-01

    The potential influence of physiological, periodic motions of the heart due to the cardiac cycle, the respiratory cycle, or both on quantitative image reconstruction by positron emission tomography (PET) has been largely neglected. To define their quantitative impact, cardiac PET was performed in 6 dogs after injection of /sup 11/C-palmitate under disparate conditions including: normal cardiac and respiration cycles and cardiac arrest with and without respiration. Although in vitro assay of myocardial samples demonstrated that palmitate uptake was homogeneous (coefficient of variation . 10.1%), analysis of the reconstructed images demonstrated significant heterogeneity of apparent cardiac distribution of radioactivity due tomore » both intrinsic cardiac and respiratory motion. Image degradation due to respiratory motion was demonstrated in a healthy human volunteer as well, in whom cardiac tomography was performed with Super PETT I during breath-holding and during normal breathing. The results indicate that quantitatively significant degradation of reconstructions of true tracer distribution occurs in cardiac PET due to both intrinsic cardiac and respiratory induced motion of the heart. They suggest that avoidance of or minimization of these influences can be accomplished by gating with respect to both the cardiac cycle and respiration or by employing brief scan times during breath-holding.« less

  10. SedCT: MATLAB™ tools for standardized and quantitative processing of sediment core computed tomography (CT) data collected using a medical CT scanner

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.

    2017-08-01

    Computed tomography (CT) of sediment cores allows for high-resolution images, three-dimensional volumes, and down core profiles. These quantitative data are generated through the attenuation of X-rays, which are sensitive to sediment density and atomic number, and are stored in pixels as relative gray scale values or Hounsfield units (HU). We present a suite of MATLAB™ tools specifically designed for routine sediment core analysis as a means to standardize and better quantify the products of CT data collected on medical CT scanners. SedCT uses a graphical interface to process Digital Imaging and Communications in Medicine (DICOM) files, stitch overlapping scanned intervals, and create down core HU profiles in a manner robust to normal coring imperfections. Utilizing a random sampling technique, SedCT reduces data size and allows for quick processing on typical laptop computers. SedCTimage uses a graphical interface to create quality tiff files of CT slices that are scaled to a user-defined HU range, preserving the quantitative nature of CT images and easily allowing for comparison between sediment cores with different HU means and variance. These tools are presented along with examples from lacustrine and marine sediment cores to highlight the robustness and quantitative nature of this method.

  11. Emission Computed Tomography: A New Technique for the Quantitative Physiologic Study of Brain and Heart in Vivo

    DOE R&D Accomplishments Database

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Schelbert, H. R.; Kuhl, D. E.

    1978-01-01

    Emission computed tomography can provide a quantitative in vivo measurement of regional tissue radionuclide tracer concentrations. This facility when combined with physiologic models and radioactively labeled physiologic tracers that behave in a predictable manner allow measurement of a wide variety of physiologic variables. This integrated technique has been referred to as Physiologic Tomography (PT). PT requires labeled compounds which trace physiologic processes in a known and predictable manner, and physiologic models which are appropriately formulated and validated to derive physiologic variables from ECT data. In order to effectively achieve this goal, PT requires an ECT system that is capable of performing truly quantitative or analytical measurements of tissue tracer concentrations and which has been well characterized in terms of spatial resolution, sensitivity and signal to noise ratios in the tomographic image. This paper illustrates the capabilities of emission computed tomography and provides examples of physiologic tomography for the regional measurement of cerebral and myocardial metabolic rate for glucose, regional measurement of cerebral blood volume, gated cardiac blood pools and capillary perfusion in brain and heart. Studies on patients with stroke and myocardial ischemia are also presented.

  12. Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability.

    PubMed

    Yasaka, Koichiro; Akai, Hiroyuki; Mackin, Dennis; Court, Laurence; Moros, Eduardo; Ohtomo, Kuni; Kiryu, Shigeru

    2017-05-01

    Quantitative computed tomography (CT) texture analyses for images with and without filtration are gaining attention to capture the heterogeneity of tumors. The aim of this study was to investigate how quantitative texture parameters using image filtering vary among different computed tomography (CT) scanners using a phantom developed for radiomics studies.A phantom, consisting of 10 different cartridges with various textures, was scanned under 6 different scanning protocols using four CT scanners from four different vendors. CT texture analyses were performed for both unfiltered images and filtered images (using a Laplacian of Gaussian spatial band-pass filter) featuring fine, medium, and coarse textures. Forty-five regions of interest were placed for each cartridge (x) in a specific scan image set (y), and the average of the texture values (T(x,y)) was calculated. The interquartile range (IQR) of T(x,y) among the 6 scans was calculated for a specific cartridge (IQR(x)), while the IQR of T(x,y) among the 10 cartridges was calculated for a specific scan (IQR(y)), and the median IQR(y) was then calculated for the 6 scans (as the control IQR, IQRc). The median of their quotient (IQR(x)/IQRc) among the 10 cartridges was defined as the variability index (VI).The VI was relatively small for the mean in unfiltered images (0.011) and for standard deviation (0.020-0.044) and entropy (0.040-0.044) in filtered images. Skewness and kurtosis in filtered images featuring medium and coarse textures were relatively variable across different CT scanners, with VIs of 0.638-0.692 and 0.430-0.437, respectively.Various quantitative CT texture parameters are robust and variable among different scanners, and the behavior of these parameters should be taken into consideration.

  13. Radiomic analysis in prediction of Human Papilloma Virus status.

    PubMed

    Yu, Kaixian; Zhang, Youyi; Yu, Yang; Huang, Chao; Liu, Rongjie; Li, Tengfei; Yang, Liuqing; Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Zhu, Hongtu

    2017-12-01

    Human Papilloma Virus (HPV) has been associated with oropharyngeal cancer prognosis. Traditionally the HPV status is tested through invasive lab test. Recently, the rapid development of statistical image analysis techniques has enabled precise quantitative analysis of medical images. The quantitative analysis of Computed Tomography (CT) provides a non-invasive way to assess HPV status for oropharynx cancer patients. We designed a statistical radiomics approach analyzing CT images to predict HPV status. Various radiomics features were extracted from CT scans, and analyzed using statistical feature selection and prediction methods. Our approach ranked the highest in the 2016 Medical Image Computing and Computer Assisted Intervention (MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics Challenge, Human Papilloma Virus (HPV) Status Prediction. Further analysis on the most relevant radiomic features distinguishing HPV positive and negative subjects suggested that HPV positive patients usually have smaller and simpler tumors.

  14. Optical Coherence Tomography Minimum Intensity as an Objective Measure for the Detection of Hydroxychloroquine Toxicity.

    PubMed

    Allahdina, Ali M; Stetson, Paul F; Vitale, Susan; Wong, Wai T; Chew, Emily Y; Ferris, Fredrick L; Sieving, Paul A; Cukras, Catherine

    2018-04-01

    As optical coherence tomography (OCT) minimum intensity (MI) analysis provides a quantitative assessment of changes in the outer nuclear layer (ONL), we evaluated the ability of OCT-MI analysis to detect hydroxychloroquine toxicity. Fifty-seven predominantly female participants (91.2% female; mean age, 55.7 ± 10.4 years; mean time on hydroxychloroquine, 15.0 ± 7.5 years) were enrolled in a case-control study and categorized into affected (i.e., with toxicity, n = 19) and unaffected (n = 38) groups using objective multifocal electroretinographic (mfERG) criteria. Spectral-domain OCT scans of the macula were analyzed and OCT-MI values quantitated for each subfield of the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. A two-sample U-test and a cross-validation approach were used to assess the sensitivity and specificity of toxicity detection according to OCT-MI criteria. The medians of the OCT-MI values in all nine of the ETDRS subfields were significantly elevated in the affected group relative to the unaffected group (P < 0.005 for all comparisons), with the largest difference found for the inner inferior subfield (P < 0.0001). The receiver operating characteristic analysis of median MI values of the inner inferior subfields showed high sensitivity and high specificity in the detection of toxicity with area under the curve = 0.99. Retinal changes secondary to hydroxychloroquine toxicity result in increased OCT reflectivity in the ONL that can be detected and quantitated using OCT-MI analysis. Analysis of OCT-MI values demonstrates high sensitivity and specificity for detecting the presence of hydroxychloroquine toxicity in this cohort and may contribute additionally to current screening practices.

  15. Optical Coherence Tomography Minimum Intensity as an Objective Measure for the Detection of Hydroxychloroquine Toxicity

    PubMed Central

    Allahdina, Ali M.; Stetson, Paul F.; Vitale, Susan; Wong, Wai T.; Chew, Emily Y.; Ferris, Fredrick L.; Sieving, Paul A.

    2018-01-01

    Purpose As optical coherence tomography (OCT) minimum intensity (MI) analysis provides a quantitative assessment of changes in the outer nuclear layer (ONL), we evaluated the ability of OCT-MI analysis to detect hydroxychloroquine toxicity. Methods Fifty-seven predominantly female participants (91.2% female; mean age, 55.7 ± 10.4 years; mean time on hydroxychloroquine, 15.0 ± 7.5 years) were enrolled in a case-control study and categorized into affected (i.e., with toxicity, n = 19) and unaffected (n = 38) groups using objective multifocal electroretinographic (mfERG) criteria. Spectral-domain OCT scans of the macula were analyzed and OCT-MI values quantitated for each subfield of the Early Treatment Diabetic Retinopathy Study (ETDRS) grid. A two-sample U-test and a cross-validation approach were used to assess the sensitivity and specificity of toxicity detection according to OCT-MI criteria. Results The medians of the OCT-MI values in all nine of the ETDRS subfields were significantly elevated in the affected group relative to the unaffected group (P < 0.005 for all comparisons), with the largest difference found for the inner inferior subfield (P < 0.0001). The receiver operating characteristic analysis of median MI values of the inner inferior subfields showed high sensitivity and high specificity in the detection of toxicity with area under the curve = 0.99. Conclusions Retinal changes secondary to hydroxychloroquine toxicity result in increased OCT reflectivity in the ONL that can be detected and quantitated using OCT-MI analysis. Analysis of OCT-MI values demonstrates high sensitivity and specificity for detecting the presence of hydroxychloroquine toxicity in this cohort and may contribute additionally to current screening practices. PMID:29677357

  16. Quantitative analysis on PUVA-induced skin photodamages using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhai, Juan; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Zeng, Changchun; Jin, Ying

    2009-08-01

    Psoralen plus ultraviolet A radiation (PUVA) therapy is a very important clinical treatment of skin diseases such as vitiligo and psoriasis, but associated with an increased risk of skin photodamages especially photoaging. Since skin biopsy alters the original skin morphology and always requires an iatrogenic trauma, optical coherence tomography (OCT) appears to be a promising technique to study skin damage in vivo. In this study, the Balb/c mice had 8-methoxypsralen (8-MOP) treatment prior to UVA radiation was used as PUVA-induced photo-damaged modal. The OCT imaging of photo-damaged group (modal) and normal group (control) in vivo was obtained of mice dorsal skin at 0, 24, 48, 72 hours after irradiation respectively. And then the results were quantitatively analyzed combined with histological information. The experimental results showed that, PUVA-induced photo-damaged skin had an increase in epidermal thickness (ET), a reduction of attenuation coefficient in OCT images signal, and an increase in brightness of the epidermis layer compared with the control group. In conclusion, noninvasive high-resolution imaging techniques such as OCT may be a promising tool for photobiological studies aimed at assessing photo-damage and repair processes in vivo. It can be used to quantitative analysis of changes in photo-damaged skin, such as the ET and collagen in dermis, provides a theoretical basis for treatment and prevention of skin photodamages.

  17. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  18. Risk Factors for Chronic Subdural Hematoma Recurrence Identified Using Quantitative Computed Tomography Analysis of Hematoma Volume and Density.

    PubMed

    Stavrinou, Pantelis; Katsigiannis, Sotirios; Lee, Jong Hun; Hamisch, Christina; Krischek, Boris; Mpotsaris, Anastasios; Timmer, Marco; Goldbrunner, Roland

    2017-03-01

    Chronic subdural hematoma (CSDH), a common condition in elderly patients, presents a therapeutic challenge with recurrence rates of 33%. We aimed to identify specific prognostic factors for recurrence using quantitative analysis of hematoma volume and density. We retrospectively reviewed radiographic and clinical data of 227 CSDHs in 195 consecutive patients who underwent evacuation of the hematoma through a single burr hole, 2 burr holes, or a mini-craniotomy. To examine the relationship between hematoma recurrence and various clinical, radiologic, and surgical factors, we used quantitative image-based analysis to measure the hematoma and trapped air volumes and the hematoma densities. Recurrence of CSDH occurred in 35 patients (17.9%). Multivariate logistic regression analysis revealed that the percentage of hematoma drained and postoperative CSDH density were independent risk factors for recurrence. All 3 evacuation methods were equally effective in draining the hematoma (71.7% vs. 73.7% vs. 71.9%) without observable differences in postoperative air volume captured in the subdural space. Quantitative image analysis provided evidence that percentage of hematoma drained and postoperative CSDH density are independent prognostic factors for subdural hematoma recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Spectroscopy by joint spectral and time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2015-03-01

    We present the methodology for spectroscopic examination of absorbing media being the combination of Spectral Optical Coherence Tomography and Fourier Transform Spectroscopy. The method bases on the joint Spectral and Time OCT computational scheme and simplifies data analysis procedure as compared to the mostly used windowing-based Spectroscopic OCT methods. The proposed experimental setup is self-calibrating in terms of wavelength-pixel assignment. The performance of the method in measuring absorption spectrum was checked with the use of the reflecting phantom filled with the absorbing agent (indocyanine green). The results show quantitative accordance with the controlled exact results provided by the reference method.

  20. In vivo automated quantification of quality of apples during storage using optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Dalal, Devjyoti; Kumar, Anuj; Prakash, Surya; Dalal, Krishna

    2018-06-01

    Moisture content is an important feature of fruits and vegetables. As 80% of apple content is water, so decreasing the moisture content will degrade the quality of apples (Golden Delicious). The computational and texture features of the apples were extracted from optical coherence tomography (OCT) images. A support vector machine with a Gaussian kernel model was used to perform automated classification. To evaluate the quality of wax coated apples during storage in vivo, our proposed method opens up the possibility of fully automated quantitative analysis based on the morphological features of apples. Our results demonstrate that the analysis of the computational and texture features of OCT images may be a good non-destructive method for the assessment of the quality of apples.

  1. A quantitative reconstruction software suite for SPECT imaging

    NASA Astrophysics Data System (ADS)

    Namías, Mauro; Jeraj, Robert

    2017-11-01

    Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.

  2. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R (2) had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  3. Three dimensional characterization of laser ablation craters using high resolution X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.

    2018-01-01

    Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.

  4. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu

    2016-03-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.

  5. Direct Test for Neuroinflammation with [11C]DAP-713-PET Scanning

    DTIC Science & Technology

    2015-10-01

    individuals suffering from the Gulf War Illness (GWI). We are using quantitative positron emission tomography (PET) using [11C]DPA-713 (DPA). DPA...suffering from the Gulf War Illness (GWI). We are using quantitative positron emission tomography (PET) using [11C]DPA-713 (DPA). DPA binds to the... Resistant Prostate Cancer Time commitments: 0.12 calendar months Supporting Agency: CDMRP Grants Contact: TBD PI: Denmeade Co-Investigator

  6. Low-dose CT for quantitative analysis in acute respiratory distress syndrome

    PubMed Central

    2013-01-01

    Introduction The clinical use of serial quantitative computed tomography (CT) to characterize lung disease and guide the optimization of mechanical ventilation in patients with acute respiratory distress syndrome (ARDS) is limited by the risk of cumulative radiation exposure and by the difficulties and risks related to transferring patients to the CT room. We evaluated the effects of tube current-time product (mAs) variations on quantitative results in healthy lungs and in experimental ARDS in order to support the use of low-dose CT for quantitative analysis. Methods In 14 sheep chest CT was performed at baseline and after the induction of ARDS via intravenous oleic acid injection. For each CT session, two consecutive scans were obtained applying two different mAs: 60 mAs was paired with 140, 15 or 7.5 mAs. All other CT parameters were kept unaltered (tube voltage 120 kVp, collimation 32 × 0.5 mm, pitch 0.85, matrix 512 × 512, pixel size 0.625 × 0.625 mm). Quantitative results obtained at different mAs were compared via Bland-Altman analysis. Results Good agreement was observed between 60 mAs and 140 mAs and between 60 mAs and 15 mAs (all biases less than 1%). A further reduction of mAs to 7.5 mAs caused an increase in the bias of poorly aerated and nonaerated tissue (-2.9% and 2.4%, respectively) and determined a significant widening of the limits of agreement for the same compartments (-10.5% to 4.8% for poorly aerated tissue and -5.9% to 10.8% for nonaerated tissue). Estimated mean effective dose at 140, 60, 15 and 7.5 mAs corresponded to 17.8, 7.4, 2.0 and 0.9 mSv, respectively. Image noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield units, respectively. Conclusions A reduction of effective dose up to 70% has been achieved with minimal effects on lung quantitative results. Low-dose computed tomography provides accurate quantitative results and could be used to characterize lung compartment distribution and possibly monitor time-course of ARDS with a lower risk of exposure to ionizing radiation. A further radiation dose reduction is associated with lower accuracy in quantitative results. PMID:24004842

  7. Computed tomography in hypersensitivity pneumonitis: main findings, differential diagnosis and pitfalls.

    PubMed

    Dias, Olívia Meira; Baldi, Bruno Guedes; Pennati, Francesca; Aliverti, Andrea; Chate, Rodrigo Caruso; Sawamura, Márcio Valente Yamada; Carvalho, Carlos Roberto Ribeiro de; Albuquerque, André Luis Pereira de

    2018-01-01

    Hypersensitivity pneumonitis (HP) is a disease with variable clinical presentation in which inflammation in the lung parenchyma is caused by the inhalation of specific organic antigens or low molecular weight substances in genetically susceptible individuals. Alterations of the acute, subacute and chronic forms may eventually overlap, and the diagnosis based on temporality and presence of fibrosis (acute/inflammatory HP vs. chronic HP) seems to be more feasible and useful in clinical practice. Differential diagnosis of chronic HP with other interstitial fibrotic diseases is challenging due to the overlap of the clinical history, and the functional and imaging findings of these pathologies in the terminal stages. Areas covered: This article reviews the essential features of HP with emphasis on imaging features. Moreover, the main methodological limitations of high-resolution computed tomography (HRCT) interpretation are discussed, as well as new perspectives with volumetric quantitative CT analysis as a useful tool for retrieving detailed and accurate information from the lung parenchyma. Expert commentary: Mosaic attenuation is a prominent feature of this disease, but air trapping in chronic HP seems overestimated. Quantitative analysis has the potential to estimate the involvement of the pulmonary parenchyma more accurately and could correlate better with pulmonary function results.

  8. Ultrasound tomography imaging with waveform sound speed: parenchymal changes in women undergoing tamoxifen therapy

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark; Gierach, Gretchen

    2017-03-01

    Ultrasound tomography (UST) is an emerging modality that can offer quantitative measurements of breast density. Recent breakthroughs in UST image reconstruction involve the use of a waveform reconstruction as opposed to a raybased reconstruction. The sound speed (SS) images that are created using the waveform reconstruction have a much higher image quality. These waveform images offer improved resolution and contrasts between regions of dense and fatty tissues. As part of a study that was designed to assess breast density changes using UST sound speed imaging among women undergoing tamoxifen therapy, UST waveform sound speed images were then reconstructed for a subset of participants. These initial results show that changes to the parenchymal tissue can more clearly be visualized when using the waveform sound speed images. Additional quantitative testing of the waveform images was also started to test the hypothesis that waveform sound speed images are a more robust measure of breast density than ray-based reconstructions. Further analysis is still needed to better understand how tamoxifen affects breast tissue.

  9. Dynamic contrast optical coherence tomography images transit time and quantifies microvascular plasma volume and flow in the retina and choriocapillaris

    PubMed Central

    Merkle, Conrad W.; Leahy, Conor; Srinivasan, Vivek J.

    2016-01-01

    Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo. DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution. PMID:27867732

  10. Dynamic contrast optical coherence tomography images transit time and quantifies microvascular plasma volume and flow in the retina and choriocapillaris.

    PubMed

    Merkle, Conrad W; Leahy, Conor; Srinivasan, Vivek J

    2016-10-01

    Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo . DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution.

  11. Use of cone beam computed tomography in identifying postmenopausal women with osteoporosis.

    PubMed

    Brasileiro, C B; Chalub, L L F H; Abreu, M H N G; Barreiros, I D; Amaral, T M P; Kakehasi, A M; Mesquita, R A

    2017-12-01

    The aim of this study is to correlate radiometric indices from cone beam computed tomography (CBCT) images and bone mineral density (BMD) in postmenopausal women. Quantitative CBCT indices can be used to screen for women with low BMD. Osteoporosis is a disease characterized by the deterioration of bone tissue and the consequent decrease in BMD and increase in bone fragility. Several studies have been performed to assess radiometric indices in panoramic images as low-BMD predictors. The aim of this study is to correlate radiometric indices from CBCT images and BMD in postmenopausal women. Sixty postmenopausal women with indications for dental implants and CBCT evaluation were selected. Dual-energy X-ray absorptiometry (DXA) was performed, and the patients were divided into normal, osteopenia, and osteoporosis groups, according to the World Health Organization (WHO) criteria. Cross-sectional images were used to evaluate the computed tomography mandibular index (CTMI), the computed tomography index (inferior) (CTI (I)) and computed tomography index (superior) (CTI (S)). Student's t test was used to compare the differences between the indices of the groups' intraclass correlation coefficient (ICC). Statistical analysis showed a high degree of interobserver and intraobserver agreement for all measurements (ICC > 0.80). The mean values of CTMI, CTI (S), and CTI (I) were lower in the osteoporosis group than in osteopenia and normal patients (p < 0.05). In comparing normal patients and women with osteopenia, there was no statistically significant difference in the mean value of CTI (I) (p = 0.075). Quantitative CBCT indices may help dentists to screen for women with low spinal and femoral bone mineral density so that they can refer postmenopausal women for bone densitometry.

  12. Optical Coherence Tomography Angiography to Distinguish Changes of Choroidal Neovascularization after Anti-VEGF Therapy: Monthly Loading Dose versus Pro Re Nata Regimen.

    PubMed

    Miere, Alexandra; Oubraham, Hassiba; Amoroso, Francesca; Butori, Pauline; Astroz, Polina; Semoun, Oudy; Bruyere, Elsa; Pedinielli, Alexandre; Addou-Regnard, Manar; Jung, Camille; Cohen, Salomon Y; Souied, Eric H

    2018-01-01

    To compare the qualitative and quantitative choroidal neovascularization (CNV) changes after antivascular endothelial growth factor (anti-VEGF) therapy in treatment-naïve and treated eyes with age-related macular degeneration (AMD) using optical coherence tomography angiography (OCTA). Consecutive patients with neovascular AMD underwent multimodal imaging, including OCTA (AngioPlex, CIRRUS HD-OCT model 5000; Carl Zeiss Meditec, Inc., Dublin, OH) at baseline and at three monthly follow-up visits. Treatment-naive AMD patients undergoing anti-VEGF loading phase were included in group A, while treated patients were included in group B. Qualitative and quantitative OCTA analyses were performed on outer retina to choriocapillaris (ORCC) slab. CNV size was measured using a free image analysis software (ImageJ, open-source imaging processing software, 2.0.0). Twenty-five eyes of 25 patients were enrolled in our study (mean age 78.32 ± 6.8 years): 13 treatment-naïve eyes in group A and 12 treated eyes in group B. While qualitative analysis revealed no significant differences from baseline to follow-up in the two groups, quantitative analysis showed in group A a significant decrease in lesion area ( P = 0.023); in group B, no significant change in the lesion area was observed during anti-VEGF therapy ( P = 0.93). Treatment-naïve and treated eyes with CNV secondary to neovascular AMD respond differently to anti-VEGF therapy. This should be taken into account when using OCTA for CNV follow-up or planning therapeutic strategies.

  13. Quantitative analysis of skeletal muscle mass in patients with rheumatic diseases under glucocorticoid therapy--comparison among bioelectrical impedance analysis, computed tomography, and magnetic resonance imaging.

    PubMed

    Hosono, Osamu; Yoshikawa, Noritada; Shimizu, Noriaki; Kiryu, Shigeru; Uehara, Masaaki; Kobayashi, Hiroshi; Matsumiya, Ryo; Kuribara, Akiko; Maruyama, Takako; Tanaka, Hirotoshi

    2015-03-01

    To determine the availability of bioelectrical impedance analysis (BIA), computed tomography (CT), and magnetic resonance imaging (MRI) for measurement of skeletal muscle mass in patients with rheumatic diseases and quantitatively assess skeletal muscle loss after glucocorticoid (GC) treatment. The data from 22 patients with rheumatic diseases were retrospectively obtained. The muscle mass of body segments was measured with a BIA device in terms of skeletal muscle mass index (SMI). Cross-sectional area (CSA) was obtained from CT and MRI scans at the mid-thigh level using the image analysis program. We further assessed the data of three different measurements before and after GC treatment in 7 patients with rheumatic diseases. SMI of whole body was significantly correlated with estimated muscle volume and mid-thigh muscle CSA with CT and MRI (p < 0.01). Significant correlations between SMI and mid-thigh muscle CSA of each leg were also found (p < 0.01). All the three measurements were negatively correlated with GC dosage (p < 0.01). Significant decline in mid-thigh muscle CSA with CT and MRI was found after GC treatment in 7 patients (p < 0.02). Those patients showed significant decline in SMI of whole body after GC treatment, but not in SMI of each leg. On the other hand, significant correlations between mid-thigh muscle CSA with CT and MRI were found before and after GC treatment (p < 0.01). GC-related skeletal muscle loss could be quantitatively assessed with BIA, CT, or MRI in patients with rheumatic diseases, and CT and MRI appeared to be more accurate than BIA.

  14. 3D analysis of bone formation around titanium implants using micro-computed tomography (μCT)

    NASA Astrophysics Data System (ADS)

    Bernhardt, Ricardo; Scharnweber, Dieter; Müller, Bert; Beckmann, Felix; Goebbels, Jürgen; Jansen, John; Schliephake, Henning; Worch, Hartmut

    2006-08-01

    The quantitative analysis of bone formation around biofunctionalised metallic implants is an important tool for the further development of implants with higher success rates. This is, nowadays, especially important in cases of additional diseases like diabetes or osteoporosis. Micro computed tomography (μCT), as non-destructive technique, offers the possibility for quantitative three-dimensional recording of bone close to the implant's surface with micrometer resolution, which is the range of the relevant bony structures. Within different animal models using cylindrical and screw-shaped Ti6Al4V implants we have compared visualization and quantitative analysis of newly formed bone by the use of synchrotron-radiation-based CT-systems in comparison with histological findings. The SRμCT experiments were performed at the beamline BW 5 (HASYLAB at DESY, Hamburg, Germany; at the BAMline (BESSY, Berlin, Germany). For the experiments, PMMA-embedded samples were prepared with diameters of about 8 mm, which contain in the center the implant surrounded by the bony tissue. To (locally) quantify the bone formation, models were developed and optimized. The comparison of the results obtained by SRμCT and histology demonstrates the advantages and disadvantages of both approaches, although the bone formation values for the different biofunctionalized implants are identical within the error bars. SRμCT allows the clear identification of fully mineralized bone around the different titanium implants. As hundreds of virtual slices were easily generated for the individual samples, the quantification and interactive bone detection led to conclusions of high precision and statistical relevance. In this way, SRμCT in combination with interactive data analysis is proven to be more significant with respect to classical histology.

  15. Analysis of Fundus Shape in Highly Myopic Eyes by Using Curvature Maps Constructed from Optical Coherence Tomography

    PubMed Central

    Miyake, Masahiro; Yamashiro, Kenji; Akagi-Kurashige, Yumiko; Oishi, Akio; Tsujikawa, Akitaka; Hangai, Masanori; Yoshimura, Nagahisa

    2014-01-01

    Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001). Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10−5 [1/µm] and variance of curvature ≥0.26×10−8 [1/µm]. Conclusions We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications. PMID:25259853

  16. Quantitative X-ray computed tomography peritoneography in malignant peritoneal mesothelioma patients receiving intraperitoneal chemotherapy.

    PubMed

    Leinwand, Joshua C; Zhao, Binsheng; Guo, Xiaotao; Krishnamoorthy, Saravanan; Qi, Jing; Graziano, Joseph H; Slavkovic, Vesna N; Bates, Gleneara E; Lewin, Sharyn N; Allendorf, John D; Chabot, John A; Schwartz, Lawrence H; Taub, Robert N

    2013-12-01

    Intraperitoneal chemotherapy is used to treat peritoneal surface-spreading malignancies. We sought to determine whether volume and surface area of the intraperitoneal chemotherapy compartments are associated with overall survival and posttreatment glomerular filtration rate (GFR) in malignant peritoneal mesothelioma (MPM) patients. Thirty-eight MPM patients underwent X-ray computed tomography peritoneograms during outpatient intraperitoneal chemotherapy. We calculated volume and surface area of contrast-filled compartments by semiautomated computer algorithm. We tested whether these were associated with overall survival and posttreatment GFR. Decreased likelihood of mortality was associated with larger surface areas (p = 0.0201) and smaller contrast-filled compartment volumes (p = 0.0341), controlling for age, sex, histologic subtype, and presence of residual disease >0.5 cm postoperatively. Larger volumes were associated with higher posttreatment GFR, controlling for pretreatment GFR, body surface area, surface area, and the interaction between body surface area and volume (p = 0.0167). Computed tomography peritoneography is an appropriate modality to assess for maldistribution of intraperitoneal chemotherapy. In addition to identifying catheter failure and frank loculation, quantitative analysis of the contrast-filled compartment's surface area and volume may predict overall survival and cisplatin-induced nephrotoxicity. Prospective studies should be undertaken to confirm and extend these findings to other diseases, including advanced ovarian carcinoma.

  17. Regional Distribution of Pulmonary Blood Volume with Dual-Energy Computed Tomography: Results in 42 Subjects.

    PubMed

    Felloni, Paul; Duhamel, Alain; Faivre, Jean-Baptiste; Giordano, Jessica; Khung, Suonita; Deken, Valérie; Remy, Jacques; Remy-Jardin, Martine

    2017-11-01

    The noninvasive approach of lung perfusion generated from dual-energy computed tomography acquisitions has entered clinical practice. The purpose of this study was to analyze the regional distribution of iodine within distal portions of the pulmonary arterial bed on dual-source, dual-energy computed tomography examinations in a cohort of subjects without cardiopulmonary pathologies. The study population included 42 patients without cardiorespiratory disease, enabling quantitative and qualitative analysis of pulmonary blood volume after administration of a 40% contrast agent. Qualitative analysis was based on visual assessment. Quantitative analysis was obtained after semiautomatic division of each lung into 18 areas. The iodine concentration did not significantly differ between the right (R) and left (L) lungs (P = .49), with a mean attenuation of 41.35 Hounsfield units (HU) and 41.14 HU, respectively. Three regional gradients of attenuation were observed between: (a) lung bases and apices (P < .001), linked to the conditions of examination (mean Δ: 6.23 in the R lung; 5.96 in the L lung); (b) posterior and anterior parts of the lung (P < .001) due to gravity (mean Δ: 11.92 in the R lung ; 15.93 in the L lung); and (c) medullary and cortical lung zones (P < .001) (mean Δ: 9.35 in the R lung ; 8.37 in the L lung). The intensity of dependent-nondependent (r = 0.42; P < .001) and corticomedullary (r = 0.58; P < .0001) gradients was correlated to the overall iodine concentration. Distribution of pulmonary blood volume is influenced by physiological gradients and scanning conditions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area.

    PubMed

    Ustarroz, Jon; Geboes, Bart; Vanrompay, Hans; Sentosun, Kadir; Bals, Sara; Breugelmans, Tom; Hubin, Annick

    2017-05-17

    Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (R f ) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller R f , the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.

  19. Optical coherence tomography for the quantitative study of cerebrovascular physiology

    PubMed Central

    Srinivasan, Vivek J; Atochin, Dmitriy N; Radhakrishnan, Harsha; Jiang, James Y; Ruvinskaya, Svetlana; Wu, Weicheng; Barry, Scott; Cable, Alex E; Ayata, Cenk; Huang, Paul L; Boas, David A

    2011-01-01

    Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range. PMID:21364599

  20. Quantitative X-ray fluorescence computed tomography for low-Z samples using an iterative absorption correction algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Limburg, Karin; Rohtla, Mehis

    2017-05-01

    X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.

  1. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance

    Science.gov Websites

    Radiopharmaceuticals, DOE Technical Report, 1977 Emission Computed Tomography: A New Technique for the Quantitative Extending the Power of Nuclear Magnetic Resonance Techniques Magnetic Resonance Imaging Research Top Some

  2. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  3. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  4. Characterization and analysis of Porous, Brittle solid structures by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, C. L.; Videla, A. R.; Yu, Q.; Miller, J. D.

    2010-12-01

    The internal structure of porous, brittle solid structures, such as porous rock, foam metal and wallboard, is extremely complex. For example, in the case of wallboard, the air bubble size and the thickness/composition of the wall structure are spatial parameters that vary significantly and influence mechanical, thermal, and acoustical properties. In this regard, the complex geometry and the internal texture of material, such as wallboard, is characterized and analyzed in 3-D using cone beam x-ray micro computed tomography. Geometrical features of the porous brittle structure are quantitatively analyzed based on calibration of the x-ray linear attenuation coefficient, use of a 3-D watershed algorithm, and use of a 3-D skeletonization procedure. Several examples of the 3-D analysis for porous, wallboard structures are presented and the results discussed.

  5. Quantitative single-photon emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement

    PubMed Central

    Lee, Hyunjong; Kim, Ji Hyun; Kang, Yeon-koo; Moon, Jae Hoon; So, Young; Lee, Won Woo

    2016-01-01

    Abstract Objectives: Technetium pertechnetate (99mTcO4) is a radioactive tracer used to assess thyroid function by thyroid uptake system (TUS). However, the TUS often fails to deliver accurate measurements of the percent of thyroid uptake (%thyroid uptake) of 99mTcO4. Here, we investigated the usefulness of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) after injection of 99mTcO4 in detecting thyroid function abnormalities. Materials and methods: We retrospectively reviewed data from 50 patients (male:female = 15:35; age, 46.2 ± 16.3 years; 17 Graves disease, 13 thyroiditis, and 20 euthyroid). All patients underwent 99mTcO4 quantitative SPECT/CT (185 MBq = 5 mCi), which yielded %thyroid uptake and standardized uptake value (SUV). Twenty-one (10 Graves disease and 11 thyroiditis) of the 50 patients also underwent conventional %thyroid uptake measurements using a TUS. Results: Quantitative SPECT/CT parameters (%thyroid uptake, SUVmean, and SUVmax) were the highest in Graves disease, second highest in euthyroid, and lowest in thyroiditis (P < 0.0001, Kruskal–Wallis test). TUS significantly overestimated the %thyroid uptake compared with SPECT/CT (P < 0.0001, paired t test) because other 99mTcO4 sources in addition to thyroid, such as salivary glands and saliva, contributed to the %thyroid uptake result by TUS, whereas %thyroid uptake, SUVmean and SUVmax from the SPECT/CT were associated with the functional status of thyroid. Conclusions: Quantitative SPECT/CT is more accurate than conventional TUS for measuring 99mTcO4 %thyroid uptake. Quantitative measurements using SPECT/CT may facilitate more accurate assessment of thyroid tracer uptake. PMID:27399139

  6. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  7. Quantitative computed tomography for the prediction of pulmonary function after lung cancer surgery: a simple method using simulation software.

    PubMed

    Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu

    2009-03-01

    The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.

  8. Intraprocedural yttrium-90 positron emission tomography/CT for treatment optimization of yttrium-90 radioembolization.

    PubMed

    Bourgeois, Austin C; Chang, Ted T; Bradley, Yong C; Acuff, Shelley N; Pasciak, Alexander S

    2014-02-01

    Radioembolization with yttrium-90 ((90)Y) microspheres relies on delivery of appropriate treatment activity to ensure patient safety and optimize treatment efficacy. We report a case in which (90)Y positron emission tomography (PET)/computed tomography (CT) was performed to optimize treatment planning during a same-day, three-part treatment session. This treatment consisted of (i) an initial (90)Y infusion with a dosage determined using an empiric treatment planning model, (ii) quantitative (90)Y PET/CT imaging, and (iii) a secondary infusion with treatment planning based on quantitative imaging data with the goal of delivering a specific total tumor absorbed dose. © 2014 SIR Published by SIR All rights reserved.

  9. Quantitative computed tomography versus spirometry in predicting air leak duration after major lung resection for cancer.

    PubMed

    Ueda, Kazuhiro; Kaneda, Yoshikazu; Sudo, Manabu; Mitsutaka, Jinbo; Li, Tao-Sheng; Suga, Kazuyoshi; Tanaka, Nobuyuki; Hamano, Kimikazu

    2005-11-01

    Emphysema is a well-known risk factor for developing air leak or persistent air leak after pulmonary resection. Although quantitative computed tomography (CT) and spirometry are used to diagnose emphysema, it remains controversial whether these tests are predictive of the duration of postoperative air leak. Sixty-two consecutive patients who were scheduled to undergo major lung resection for cancer were enrolled in this prospective study to define the best predictor of postoperative air leak duration. Preoperative factors analyzed included spirometric variables and area of emphysema (proportion of the low-attenuation area) that was quantified in a three-dimensional CT lung model. Chest tubes were removed the day after disappearance of the air leak, regardless of pleural drainage. Univariate and multivariate proportional hazards analyses were used to determine the influence of preoperative factors on chest tube time (air leak duration). By univariate analysis, site of resection (upper, lower), forced expiratory volume in 1 second, predicted postoperative forced expiratory volume in 1 second, and area of emphysema (< 1%, 1% to 10%, > 10%) were significant predictors of air leak duration. By multivariate analysis, site of resection and area of emphysema were the best independent determinants of air leak duration. The results were similar for patients with a smoking history (n = 40), but neither forced expiratory volume in 1 second nor predicted postoperative forced expiratory volume in 1 second were predictive of air leak duration. Quantitative CT is superior to spirometry in predicting air leak duration after major lung resection for cancer. Quantitative CT may aid in the identification of patients, particularly among those with a smoking history, requiring additional preventive procedures against air leak.

  10. Looking for the Signal: A guide to iterative noise and artefact removal in X-ray tomographic reconstructions of porous geomaterials

    NASA Astrophysics Data System (ADS)

    Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2017-07-01

    X-ray micro- and nanotomography has evolved into a quantitative analysis tool rather than a mere qualitative visualization technique for the study of porous natural materials. Tomographic reconstructions are subject to noise that has to be handled by image filters prior to quantitative analysis. Typically, denoising filters are designed to handle random noise, such as Gaussian or Poisson noise. In tomographic reconstructions, noise has been projected from Radon space to Euclidean space, i.e. post reconstruction noise cannot be expected to be random but to be correlated. Reconstruction artefacts, such as streak or ring artefacts, aggravate the filtering process so algorithms performing well with random noise are not guaranteed to provide satisfactory results for X-ray tomography reconstructions. With sufficient image resolution, the crystalline origin of most geomaterials results in tomography images of objects that are untextured. We developed a denoising framework for these kinds of samples that combines a noise level estimate with iterative nonlocal means denoising. This allows splitting the denoising task into several weak denoising subtasks where the later filtering steps provide a controlled level of texture removal. We describe a hands-on explanation for the use of this iterative denoising approach and the validity and quality of the image enhancement filter was evaluated in a benchmarking experiment with noise footprints of a varying level of correlation and residual artefacts. They were extracted from real tomography reconstructions. We found that our denoising solutions were superior to other denoising algorithms, over a broad range of contrast-to-noise ratios on artificial piecewise constant signals.

  11. FIB–SEM tomography of 4th generation PWA 1497 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziętara, Maciej, E-mail: zietara@agh.edu.pl; Kruk, Adam, E-mail: kruczek@agh.edu.pl; Gruszczyński, Adam, E-mail: gruszcz@agh.edu.pl

    2014-01-15

    The effect of creep deformation on the microstructure of the PWA 1497 single crystal Ni-base superalloy developed for turbine blade applications was investigated. The aim of the present study was to characterize quantitatively a superalloy microstructure and subsequent development of rafted γ′ precipitates in the PWA 1497 during creep deformation at 982 °C and 248 MPa up to rupture. The PWA1497 microstructure was characterized by scanning electron microscopy and FIB–SEM electron tomography. The 3D reconstruction of the PWA1497 microstructure is presented and discussed. - Highlights: • The microstructure of PWA1497 superalloy was examined using FIB–SEM tomography. • In case ofmore » modern single crystal superalloys, measurements of A{sub A} are adequate for V{sub V}. • During creep the γ channel width increases from 65 to 193 nm for ruptured specimen. • Tomography is a useful technique for quantitative studies of material microstructure.« less

  12. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis.

    PubMed

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young; Lee, Won Woo

    2018-01-01

    Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol ( p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake ( p = 0.004), SUVmean ( p < 0.001), SUVmax ( p = 0.002), and functional thyroid mass ( p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism ( p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 - 1.035). Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism.

  13. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis

    PubMed Central

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young

    2018-01-01

    Objective Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Materials and Methods Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. Results All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol (p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake (p = 0.004), SUVmean (p < 0.001), SUVmax (p = 0.002), and functional thyroid mass (p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism (p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 – 1.035). Conclusion Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism. PMID:29713225

  14. Mitigation of enamel erosion using commercial toothpastes evaluated with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cassimiro-Silva, Patricia Fernandes; Maia, Ana Marly Araújo; Monteiro, Gabriela Queiroz de Melo; Gomes, Anderson S. L.

    2016-03-01

    The aim of this study was to evaluate the efficacy of commercial toothpastes containing sodium fluoride (NaF), stannous fluoride (SnF2), or casein phosphopeptides (CPP)-amorphous calcium phosphate (ACP)/NaF regarding their potential to inhibit enamel erosion. Twenty-eight 4×4 mm enamel specimens were randomly allocated into 4 groups (n=7): negative control; Pronamel (NaF); Pro Health (SnF2/NaF); Mi Paste Plus (CPP-ACP/NaF). Erosive cycles with 0.5% citric acid, 5 times, 3 minutes/day for 7 days were performed. After the first and last cycle of each day, toothpaste slurries were applied for 2 min. The quantitative analysis was accomplished using Contact Profilometry and Optical Coherence Tomography (OCT), complemented by roughness and qualitative scanning electron microscopy (SEM) analysis. OCT and Profilometry analysis showed similar effectiveness in measuring the reduction of mineral loss. A significant increase in the mean roughness values was observed on eroded surface and also on treated surface as revealed by scanning electron microscopy. The use of SnF2/NaF toothpaste was the most effective method for reducing mineral loss. As quantitative methods, OCT and Contact Profilometry showed no statistical differences. OCT, which was used for this purpose for the first time, has the advantage of being noninvasive, and therefore have the potential for clinical application.

  15. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    PubMed Central

    Byun, Bo-Ram; Kim, Yong-Il; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6–18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R 2 had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status. PMID:25878721

  16. Skeletal adaptations associated with pre-pubertal gymnastics participation as determined by DXA and pQCT: a systematic review and meta-analysis.

    PubMed

    Burt, Lauren A; Greene, David A; Ducher, Gaele; Naughton, Geraldine A

    2013-05-01

    Participation in gymnastics prior to puberty offers an intriguing and unique model, particularly in girls. The individuality comes from both upper and lower limbs being exposed to high mechanical loading through year long intensive training programs, initiated at a young age. Studying this unique model and the associated changes in musculoskeletal health during growth is an area of specific interest. Previous reviews on gymnastics participation and bone health have been broad; and not limited to a particular maturation period, such as pre-puberty. To determine the difference in skeletal health between pre-pubertal girls participating in gymnastics compared with non-gymnasts. Meta-analysis. Following a systematic search, 17 studies were included in this meta-analysis. All studies used dual-energy X-ray absorptiometry to assess bone mineral density and bone mineral content. In addition, two studies included peripheral quantitative computed tomography. Following the implementation of a random effects model, gymnasts were found to have greater bone properties than non-gymnasts. The largest difference in bone health between gymnasts and non-gymnasts was observed in peripheral quantitative computed tomography-derived volumetric bone mineral density at the distal radius (d=1.06). Participation in gymnastics during pre-pubertal growth was associated with skeletal health benefits, particularly to the upper body. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Spectral Domain Optical Coherence Tomography in Glaucoma: Qualitative and Quantitative Analysis of the Optic Nerve Head and Retinal Nerve Fiber Layer (An AOS Thesis)

    PubMed Central

    Chen, Teresa C.

    2009-01-01

    Purpose: To demonstrate that video-rate spectral domain optical coherence tomography (SDOCT) can qualitatively and quantitatively evaluate optic nerve head (ONH) and retinal nerve fiber layer (RNFL) glaucomatous structural changes. To correlate quantitative SDOCT parameters with disc photography and visual fields. Methods: SDOCT images from 4 glaucoma eyes (4 patients) with varying stages of open-angle glaucoma (ie, early, moderate, late) were qualitatively contrasted with 2 age-matched normal eyes (2 patients). Of 61 other consecutive patients recruited in an institutional setting, 53 eyes (33 patients) met inclusion/exclusion criteria for quantitative studies. Images were obtained using two experimental SDOCT systems, one utilizing a superluminescent diode and the other a titanium:sapphire laser source, with axial resolutions of about 6 μm and 3 μm, respectively. Results: Classic glaucomatous ONH and RNFL structural changes were seen in SDOCT images. An SDOCT reference plane 139 μm above the retinal pigment epithelium yielded cup-disc ratios that best correlated with masked physician disc photography cup-disc ratio assessments. The minimum distance band, a novel SDOCT neuroretinal rim parameter, showed good correlation with physician cup-disc ratio assessments, visual field mean deviation, and pattern standard deviation (P values range, .0003–.024). RNFL and retinal thickness maps correlated well with disc photography and visual field testing. Conclusions: To our knowledge, this thesis presents the first comprehensive qualitative and quantitative evaluation of SDOCT images of the ONH and RNFL in glaucoma. This pilot study provides basis for developing more automated quantitative SDOCT-specific glaucoma algorithms needed for future prospective multicenter national trials. PMID:20126502

  18. Hyper-spectrum scanning laser optical tomography

    NASA Astrophysics Data System (ADS)

    Chen, Lingling; Li, Guiye; Li, Yingchao; Liu, Lina; Liu, Ang; Hu, Xuejuan; Ruan, Shuangchen

    2018-02-01

    We describe a quantitative fluorescence projection tomography technique which measures the three-dimensional fluorescence spectrum in biomedical samples with size up to several millimeters. This is achieved by acquiring a series of hyperspectral images, by using laser scanning scheme, at different projection angles. We demonstrate that this technique provide a quantitative measure of the fluorescence signal by comparing the spectrum and intensity profile of a fluorescent bead phantom and also demonstrate its application to differentiating the extrinsic label and the autofluorescence in a mouse embryo.

  19. Quantitative computed tomography and aerosol morphometry in COPD and alpha1-antitrypsin deficiency.

    PubMed

    Shaker, S B; Maltbaek, N; Brand, P; Haeussermann, S; Dirksen, A

    2005-01-01

    Relative area of emphysema below -910 Hounsfield units (RA-910) and 15th percentile density (PD15) are quantitative computed tomography (CT) parameters used in the diagnosis of emphysema. New concepts for noninvasive diagnosis of emphysema are aerosol-derived airway morphometry, which measures effective airspace dimensions (EAD) and aerosol bolus dispersion (ABD). Quantitative CT, ABD and EAD were compared in 20 smokers with chronic obstructive pulmonary disease (COPD) and 22 patients with alpha1-antitrypsin deficiency (AAD) with a similar degree of airway obstruction and reduced diffusion capacity. In both groups, there was a significant correlation between RA-910 and PD15 and pulmonary function tests (PFTs). A significant correlation was also found between EAD, RA-910 and PD15 in the study population as a whole. Upon separation into two groups, the significance disappeared for the smokers with COPD and strengthened for those with AAD, where EAD correlated significantly with RA-910 and PD15. ABD was similar in the two groups and did not correlate with PFT and quantitative CT in either group. In conclusion, based on quantitative computed tomography and aerosol-derived airway morphometry, emphysema was significantly more severe in patients with alpha1-antitrypsin deficiency compared with patients with usual emphysema, despite similar measures of pulmonary function tests.

  20. Quantification of root caries using optical coherence tomography and microradiography: a correlational study.

    PubMed

    Amaechi, Bennett T; Podoleanu, Adrian Gh; Komarov, Gleb; Higham, Susan M; Jackson, David A

    2004-01-01

    The use of transverse microradiography (TMR) to quantify the amount of mineral lost during demineralization of tooth tissue has long been established. In the present study, the use of an en-face Optical Coherence Tomography (OCT) technology to detect and quantitatively monitor the mineral changes in root caries was investigated and correlated with TMR. We used an OCT system, developed initially for retina imaging, and which can collect A-scans, B-scans (longitudinal images) and C-scans (en-face images) to quantitatively assess the development of root caries. The power to the sample was 250 microW, wavelength lambda = 850 nm and the optical source linewidth was 16 microm. Both the transversal and longitudinal images showed the caries lesion as volumes of reduced reflectivity. Quantitative analysis using the A-scan (reflectivity versus depth curve) showed that the tissue reflectivity decreased with increasing demineralization time. A linear correlation (r = 0.957) was observed between the mineral loss measured by TMR and the percentage reflectivity loss in demineralized tissue measured by OCT. We concluded that OCT could be used to detect incipient root caries, and that the reflectivity loss in root tissue during demineralization, measured by OCT, could be related to the amount of mineral lost during the demineralization.

  1. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography.

    PubMed

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-09-01

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.

  2. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    PubMed

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography

    PubMed Central

    Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris

    2011-01-01

    Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037

  4. Automated fiber tracking and tissue characterization of the anterior cruciate ligament with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Priya S.; Guo, Jiaqi; Yao, Xinwen; Qu, Dovina; Lu, Helen H.; Hendon, Christine P.

    2017-02-01

    The directionality of collagen fibers across the anterior cruciate ligament (ACL) as well as the insertion of this key ligament into bone are important for understanding the mechanical integrity and functionality of this complex tissue. Quantitative analysis of three-dimensional fiber directionality is of particular interest due to the physiological, mechanical, and biological heterogeneity inherent across the ACL-to-bone junction, the behavior of the ligament under mechanical stress, and the usefulness of this information in designing tissue engineered grafts. We have developed an algorithm to characterize Optical Coherence Tomography (OCT) image volumes of the ACL. We present an automated algorithm for measuring ligamentous fiber angles, and extracting attenuation and backscattering coefficients of ligament, interface, and bone regions within mature and immature bovine ACL insertion samples. Future directions include translating this algorithm for real time processing to allow three-dimensional volumetric analysis within dynamically moving samples.

  5. Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data

    PubMed Central

    Ekberg, Peter; Su, Rong; Chang, Ernest W.; Yun, Seok Hyun; Mattsson, Lars

    2014-01-01

    Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 µm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness. PMID:24562018

  6. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  7. The Role of High-resolution Peripheral Quantitative Computed Tomography as a Biomarker for Joint Damage in Inflammatory Arthritis.

    PubMed

    Tam, Lai-Shan

    2016-10-01

    Since 2011, members of the SPECTRA Collaboration (Study grouP for xtrEme-Computed Tomography in Rheumatoid Arthritis) have investigated the validity, reliability, and responsiveness of high-resolution peripheral quantitative computed tomography (HR-pQCT) as a biomarker for joint damage in inflammatory arthritis. Presented in this series of articles are a systematic review of HR-pQCT-related findings to date, a review of selected images of cortical and subchondral trabecular bone of metacarpophalangeal (MCP) joints, results of a consensus process to standardize the definition of erosions and their quantification, as well as an examination of the effect of joint flexion on width and volume assessment of the joint space.

  8. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    DTIC Science & Technology

    2016-12-01

    best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is

  9. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging.

    PubMed

    Li, Weiyi; Liu, Xin; Wang, Yi-Ning; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G

    2016-07-05

    The development of novel tools for studying the fouling behavior during membrane processes is critical. This work explored optical coherence tomography (OCT) to quantitatively interpret the formation of a cake layer during a membrane process; the quantitative analysis was based on a novel image processing method that was able to precisely resolve the 3D structure of the cake layer on a micrometer scale. Fouling experiments were carried out with foulants having different physicochemical characteristics (silica nanoparticles and bentonite particles). The cake layers formed at a series of times were digitalized using the OCT-based characterization. The specific deposit (cake volume/membrane surface area) and surface coverage were evaluated as a function of time, which for the first time provided direct experimental evidence for the transition of various fouling mechanisms. Axial stripes were observed in the grayscale plots showing the deposit distribution in the scanned area; this interesting observation was in agreement with the instability analysis that correlated the polarized particle groups with the small disturbances in the boundary layer. This work confirms that the OCT-based characterization is able to provide deep insights into membrane fouling processes and offers a powerful tool for exploring membrane processes with enhanced performance.

  10. Quantitative analysis of iris parameters in keratoconus patients using optical coherence tomography.

    PubMed

    Bonfadini, Gustavo; Arora, Karun; Vianna, Lucas M; Campos, Mauro; Friedman, David; Muñoz, Beatriz; Jun, Albert S

    2015-01-01

    To investigate the relationship between quantitative iris parameters and the presence of keratoconus. Cross-sectional observational study that included 15 affected eyes of 15 patients with keratoconus and 26 eyes of 26 normal age- and sex-matched controls. Iris parameters (area, thickness, and pupil diameter) of affected and unaffected eyes were measured under standardized light and dark conditions using anterior segment optical coherence tomography (AS-OCT). To identify optimal iris thickness cutoff points to maximize the sensitivity and specificity when discriminating keratoconus eyes from normal eyes, the analysis included the use of receiver operating characteristic (ROC) curves. Iris thickness and area were lower in keratoconus eyes than in normal eyes. The mean thickness at the pupillary margin under both light and dark conditions was found to be the best parameter for discriminating normal patients from keratoconus patients. Diagnostic performance was assessed by the area under the ROC curve (AROC), which had a value of 0.8256 with 80.0% sensitivity and 84.6% specificity, using a cutoff of 0.4125 mm. The sensitivity increased to 86.7% when a cutoff of 0.4700 mm was used. In our sample, iris thickness was lower in keratoconus eyes than in normal eyes. These results suggest that tomographic parameters may provide novel adjunct approaches for keratoconus screening.

  11. Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish

    PubMed Central

    Kumar, Sunil; Lockwood, Nicola; Ramel, Marie-Christine; Correia, Teresa; Ellis, Matthew; Alexandrov, Yuriy; Andrews, Natalie; Patel, Rachel; Bugeon, Laurence; Dallman, Margaret J.; Brandner, Sebastian; Arridge, Simon; Katan, Matilda; McGinty, James; Frankel, Paul; French, Paul M.W.

    2016-01-01

    We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This “mesoscopic” imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models. PMID:27259259

  12. Application of Neutron Tomography in Culture Heritage research.

    PubMed

    Mongy, T

    2014-02-01

    Neutron Tomography (NT) investigation of Culture Heritages (CH) is an efficient tool for understanding the culture of ancient civilizations. Neutron imaging (NI) is a-state-of-the-art non-destructive tool in the area of CH and plays an important role in the modern archeology. The NI technology can be widely utilized in the field of elemental analysis. At Egypt Second Research Reactor (ETRR-2), a collimated Neutron Radiography (NR) beam is employed for neutron imaging purposes. A digital CCD camera is utilized for recording the beam attenuation in the sample. This helps for the detection of hidden objects and characterization of material properties. Research activity can be extended to use computer software for quantitative neutron measurement. Development of image processing algorithms can be used to obtain high quality images. In this work, full description of ETRR-2 was introduced with up to date neutron imaging system as well. Tomographic investigation of a clay forged artifact represents CH object was studied by neutron imaging methods in order to obtain some hidden information and highlight some attractive quantitative measurements. Computer software was used for imaging processing and enhancement. Also the Astra Image 3.0 Pro software was employed for high precise measurements and imaging enhancement using advanced algorithms. This work increased the effective utilization of the ETRR-2 Neutron Radiography/Tomography (NR/T) technique in Culture Heritages activities. © 2013 Elsevier Ltd. All rights reserved.

  13. Quantitative Comparison of Virtual Monochromatic Images of Dual Energy Computed Tomography Systems: Beam Hardening Artifact Correction and Variance in Computed Tomography Numbers: A Phantom Study.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Satoh, Kazuhiko; Liao, Yen-Peng; Takahashi, Hiroto; Tanaka, Hisashi; Tomiyama, Noriyuki

    2018-05-21

    The aim of this study was to quantitatively compare the reduction in beam hardening artifact (BHA) and variance in computed tomography (CT) numbers of virtual monochromatic energy (VME) images obtained with 3 dual-energy computed tomography (DECT) systems at a given radiation dose. Five different iodine concentrations were scanned using dual-energy and single-energy (120 kVp) modes. The BHA and CT number variance were evaluated. For higher iodine concentrations, 40 and 80 mgI/mL, BHA on VME imaging was significantly decreased when the energy was higher than 50 keV (P = 0.003) and 60 keV (P < 0.001) for GE, higher than 80 keV (P < 0.001) and 70 keV (P = 0.002) for Siemens, and higher than 40 keV (P < 0.001) and 60 keV (P < 0.001) for Toshiba, compared with single-energy CT imaging. Virtual monochromatic energy imaging can decrease BHA and improve CT number accuracy in different dual-energy computed tomography systems, depending on energy levels and iodine concentrations.

  14. Image analysis of pubic bone for age estimation in a computed tomography sample.

    PubMed

    López-Alcaraz, Manuel; González, Pedro Manuel Garamendi; Aguilera, Inmaculada Alemán; López, Miguel Botella

    2015-03-01

    Radiology has demonstrated great utility for age estimation, but most of the studies are based on metrical and morphological methods in order to perform an identification profile. A simple image analysis-based method is presented, aimed to correlate the bony tissue ultrastructure with several variables obtained from the grey-level histogram (GLH) of computed tomography (CT) sagittal sections of the pubic symphysis surface and the pubic body, and relating them with age. The CT sample consisted of 169 hospital Digital Imaging and Communications in Medicine (DICOM) archives of known sex and age. The calculated multiple regression models showed a maximum R (2) of 0.533 for females and 0.726 for males, with a high intra- and inter-observer agreement. The method suggested is considered not only useful for performing an identification profile during virtopsy, but also for application in further studies in order to attach a quantitative correlation for tissue ultrastructure characteristics, without complex and expensive methods beyond image analysis.

  15. Comparative study evaluating the role of color Doppler sonography and computed tomography in predicting chest wall invasion by lung tumors.

    PubMed

    Sripathi, Smiti; Mahajan, Abhishek

    2013-09-01

    To analyze qualitative and quantitative parameters of lung tumors by color Doppler sonography, determine the role of color Doppler sonography in predicting chest wall invasion by lung tumors using spectral waveform analysis, and compare color Doppler sonography and computed tomography (CT) for predicting chest wall invasion by lung tumors. Between March and September 2007, 55 patients with pleuropulmonary lesions on chest radiography were assessed by grayscale and color Doppler sonography for chest wall invasion. Four patients were excluded from the study because of poor acoustic windows. Quantitative and qualitative sonographic examinations of the lesions were performed using grayscale and color Doppler imaging. The correlation between the color Doppler and CT findings was determined, and the final outcomes were correlated with the histopathologic findings. Of a total of 51 lesions, 32 were malignant. Vascularity was present on color Doppler sonography in 28 lesions, and chest wall invasion was documented in 22 cases. Computed tomography was performed in 24 of 28 evaluable malignant lesions, and the findings were correlated with the color Doppler findings for chest wall invasion. Of the 24 patients who underwent CT, 19 showed chest wall invasion. The correlation between the color Doppler and CT findings revealed that color Doppler sonography had sensitivity of 95.6% and specificity of 100% for assessing chest wall invasion, whereas CT had sensitivity of 85.7% and specificity of 66.7%. Combined qualitative and quantitative color Doppler sonography can predict chest wall invasion by lung tumors with better sensitivity and specificity than CT. Although surgery is the reference standard, color Doppler sonography is a readily available, affordable, and noninvasive in vivo diagnostic imaging modality that is complementary to CT and magnetic resonance imaging for lung cancer staging.

  16. [18]Fluorodeoxyglucose Positron Emission Tomography for the Textural Features of Cervical Cancer Associated with Lymph Node Metastasis and Histological Type.

    PubMed

    Shen, Wei-Chih; Chen, Shang-Wen; Liang, Ji-An; Hsieh, Te-Chun; Yen, Kuo-Yang; Kao, Chia-Hung

    2017-09-01

    In this study, we investigated the correlation between the lymph node (LN) status or histological types and textural features of cervical cancers on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. We retrospectively reviewed the imaging records of 170 patients with International Federation of Gynecology and Obstetrics stage IB-IVA cervical cancer. Four groups of textural features were studied in addition to the maximum standardized uptake value (SUV max ), metabolic tumor volume, and total lesion glycolysis (TLG). Moreover, we studied the associations between the indices and clinical parameters, including the LN status, clinical stage, and histology. Receiver operating characteristic curves were constructed to evaluate the optimal predictive performance among the various textural indices. Quantitative differences were determined using the Mann-Whitney U test. Multivariate logistic regression analysis was performed to determine the independent factors, among all the variables, for predicting LN metastasis. Among all the significant indices related to pelvic LN metastasis, homogeneity derived from the gray-level co-occurrence matrix (GLCM) was the sole independent predictor. By combining SUV max , the risk of pelvic LN metastasis can be scored accordingly. The TLG mean was the independent feature of positive para-aortic LNs. Quantitative differences between squamous and nonsquamous histology can be determined using short-zone emphasis (SZE) from the gray-level size zone matrix (GLSZM). This study revealed that in patients with cervical cancer, pelvic or para-aortic LN metastases can be predicted by using textural feature of homogeneity from the GLCM and TLG mean, respectively. SZE from the GLSZM is the sole feature associated with quantitative differences between squamous and nonsquamous histology.

  17. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography.

    PubMed

    Venhuizen, Freerk G; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I

    2018-04-01

    We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies.

  18. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography

    PubMed Central

    Venhuizen, Freerk G.; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.

    2018-01-01

    We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies. PMID:29675301

  19. [Pay attention on optical coherence tomography evaluation for optic nerve diseases].

    PubMed

    Wang, M

    2016-12-11

    Optical coherence tomography(OCT) had become the most important imaging technique in ophthalmology. OCT is able to segment the retinal nerve fiber layer and retinal ganglion cell layer accurately. Quantitative analysis can be performed for both layers. OCT is very important to evaluate the neuron and axon loss in optic nerve diseases diagnosis. Meanwhile, OCT has great value for differentiating glaucoma and macular diseases from optic nerve diseases. This review presented OCT application in optic nerve diseases diagnosis, differentiation diagnosis, the key points in use and the features of en face OCT and OCT angiography. It gave us suggestions that it should be pay more attention to OCT examination in diagnosis and treatment of optic nerve diseases. (Chin J Ophthalmol, 2016, 52: 885 - 888) .

  20. [Quantitative analysis method based on fractal theory for medical imaging of normal brain development in infants].

    PubMed

    Li, Heheng; Luo, Liangping; Huang, Li

    2011-02-01

    The present paper is aimed to study the fractal spectrum of the cerebral computerized tomography in 158 normal infants of different age groups, based on the calculation of chaotic theory. The distribution range of neonatal period was 1.88-1.90 (mean = 1.8913 +/- 0.0064); It reached a stable condition at the level of 1.89-1.90 during 1-12 months old (mean = 1.8927 +/- 0.0045); The normal range of 1-2 years old infants was 1.86-1.90 (mean = 1.8863 +/- 4 0.0085); It kept the invariance of the quantitative value among 1.88-1.91(mean = 1.8958 +/- 0.0083) during 2-3 years of age. ANOVA indicated there's no significant difference between boys and girls (F = 0.243, P > 0.05), but the difference of age groups was significant (F = 8.947, P < 0.001). The fractal dimension of cerebral computerized tomography in normal infants computed by box methods was maintained at an efficient stability from 1.86 to 1.91. It indicated that there exit some attractor modes in pediatric brain development.

  1. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography.

    PubMed

    Koddenberg, Tim; Militz, Holger

    2018-05-05

    The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.

  2. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    DOE PAGES

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; ...

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less

  3. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT.

    PubMed

    Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  4. X-ray vision of fuel sprays.

    PubMed

    Wang, Jin

    2005-03-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.

  5. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests.

    PubMed

    Nakagawa, Hiroaki; Nagatani, Yukihiro; Takahashi, Masashi; Ogawa, Emiko; Tho, Nguyen Van; Ryujin, Yasushi; Nagao, Taishi; Nakano, Yasutaka

    2016-01-01

    The 2011 official statement of idiopathic pulmonary fibrosis (IPF) mentions that the extent of honeycombing and the worsening of fibrosis on high-resolution computed tomography (HRCT) in IPF are associated with the increased risk of mortality. However, there are few reports about the quantitative computed tomography (CT) analysis of honeycombing area. In this study, we first proposed a computer-aided method for quantitative CT analysis of honeycombing area in patients with IPF. We then evaluated the correlations between honeycombing area measured by the proposed method with that estimated by radiologists or with parameters of PFTs. Chest HRCTs and pulmonary function tests (PFTs) of 36 IPF patients, who were diagnosed using HRCT alone, were retrospectively evaluated. Two thoracic radiologists independently estimated the honeycombing area as Identified Area (IA) and the percentage of honeycombing area to total lung area as Percent Area (PA) on 3 axial CT slices for each patient. We also developed a computer-aided method to measure the honeycombing area on CT images of those patients. The total honeycombing area as CT honeycombing area (HA) and the percentage of honeycombing area to total lung area as CT %honeycombing area (%HA) were derived from the computer-aided method for each patient. HA derived from three CT slices was significantly correlated with IA (ρ=0.65 for Radiologist 1 and ρ=0.68 for Radiologist 2). %HA derived from three CT slices was also significantly correlated with PA (ρ=0.68 for Radiologist 1 and ρ=0.70 for Radiologist 2). HA and %HA derived from all CT slices were significantly correlated with FVC (%pred.), DLCO (%pred.), and the composite physiologic index (CPI) (HA: ρ=-0.43, ρ=-0.56, ρ=0.63 and %HA: ρ=-0.60, ρ=-0.49, ρ=0.69, respectively). The honeycombing area measured by the proposed computer-aided method was correlated with that estimated by expert radiologists and with parameters of PFTs. This quantitative CT analysis of honeycombing area may be useful and reliable in patients with IPF. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    PubMed Central

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558

  7. Computer-aided classification of lung nodules on computed tomography images via deep learning technique.

    PubMed

    Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen

    2015-01-01

    Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.

  8. Depth-Dependent Glycosaminoglycan Concentration in Articular Cartilage by Quantitative Contrast-Enhanced Micro–Computed Tomography

    PubMed Central

    Mittelstaedt, Daniel

    2015-01-01

    Objective A quantitative contrast-enhanced micro–computed tomography (qCECT) method was developed to investigate the depth dependency and heterogeneity of the glycosaminoglycan (GAG) concentration of ex vivo cartilage equilibrated with an anionic radiographic contrast agent, Hexabrix. Design Full-thickness fresh native (n = 19 in 3 subgroups) and trypsin-degraded (n = 6) articular cartilage blocks were imaged using micro–computed tomography (μCT) at high resolution (13.4 μm3) before and after equilibration with various Hexabrix bathing concentrations. The GAG concentration was calculated depth-dependently based on Gibbs-Donnan equilibrium theory. Analysis of variance with Tukey’s post hoc was used to test for statistical significance (P < 0.05) for effect of Hexabrix bathing concentration, and for differences in bulk and zonal GAG concentrations individually and compared between native and trypsin-degraded cartilage. Results The bulk GAG concentration was calculated to be 74.44 ± 6.09 and 11.99 ± 4.24 mg/mL for native and degraded cartilage, respectively. A statistical difference was demonstrated for bulk and zonal GAG between native and degraded cartilage (P < 0.032). A statistical difference was not demonstrated for bulk GAG when comparing Hexabrix bathing concentrations (P > 0.3214) for neither native nor degraded cartilage. Depth-dependent GAG analysis of native cartilage revealed a statistical difference only in the radial zone between 30% and 50% Hexabrix bathing concentrations. Conclusions This nondestructive qCECT methodology calculated the depth-dependent GAG concentration for both native and trypsin-degraded cartilage at high spatial resolution. qCECT allows for more detailed understanding of the topography and depth dependency, which could help diagnose health, degradation, and repair of native and contrived cartilage. PMID:26425259

  9. Influence of Adaptive Statistical Iterative Reconstruction on coronary plaque analysis in coronary computed tomography angiography.

    PubMed

    Precht, Helle; Kitslaar, Pieter H; Broersen, Alexander; Dijkstra, Jouke; Gerke, Oke; Thygesen, Jesper; Egstrup, Kenneth; Lambrechtsen, Jess

    The purpose of this study was to study the effect of iterative reconstruction (IR) software on quantitative plaque measurements in coronary computed tomography angiography (CCTA). Thirty patients with a three clinical risk factors for coronary artery disease (CAD) had one CCTA performed. Images were reconstructed using FBP, 30% and 60% adaptive statistical IR (ASIR). Coronary plaque analysis was performed as per patient and per vessel (LM, LAD, CX and RCA) measurements. Lumen and vessel volumes and plaque burden measurements were based on automatic detected contours in each reconstruction. Lumen and plaque intensity measurements and HU based plaque characterization were based on corrected contours copied to each reconstruction. No significant changes between FBP and 30% ASIR were found except for lumen- (-2.53 HU) and plaque intensities (-1.28 HU). Between FBP and 60% ASIR the change in total volume showed an increase of 0.94%, 4.36% and 2.01% for lumen, plaque and vessel, respectively. The change in total plaque burden between FBP and 60% ASIR was 0.76%. Lumen and plaque intensities decreased between FBP and 60% ASIR with -9.90 HU and -1.97 HU, respectively. The total plaque component volume changes were all small with a maximum change of -1.13% of necrotic core between FBP and 60% ASIR. Quantitative plaque measurements only showed modest differences between FBP and the 60% ASIR level. Differences were increased lumen-, vessel- and plaque volumes, decreased lumen- and plaque intensities and a small percentage change in the individual plaque component volumes. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  10. Diagnostic value of (99m)Tc-3PRGD2 scintimammography for differentiation of malignant from benign breast lesions: Comparison of visual and semi-quantitative analysis.

    PubMed

    Chen, Qianqian; Xie, Qian; Zhao, Min; Chen, Bin; Gao, Shi; Zhang, Haishan; Xing, Hua; Ma, Qingjie

    2015-01-01

    To compare the diagnostic value of visual and semi-quantitative analysis of technetium-99m-poly-ethylene glycol, 4-arginine-glycine-aspartic acid ((99m)Tc-3PRGD2) scintimammography (SMG) for better differentiation of benign from malignant breast masses, and also investigate the incremental role of semi-quantitative index of SMG. A total of 72 patients with breast lesions were included in the study. Technetium-99m-3PRGD2 SMG was performed with single photon emission computed tomography (SPET) at 60 min after intravenous injection of 749 ± 86MBq of the radiotracer. Images were evaluated by visual interpretation and semi-quantitative indices of tumor to non-tumor (T/N) ratios, which were compared with pathology results. Receiver operating characteristics (ROC) curve analyses were performed to determine the optimal visual grade, to calculate cut-off values of semi-quantitative indices, and to compare visual and semi-quantitative diagnostic values. Among the 72 patients, 89 lesions were confirmed by histopathology after fine needle aspiration biopsy or surgery, 48 malignant and 41 benign lesions. The mean T/N ratio of (99m)Tc-3PRGD2 SMG in malignant lesions was significantly higher than that in benign lesions (P<0.05). When grade 2 of the disease was used as cut-off value for the detection of primary breast cancer, the sensitivity, specificity and accuracy were 81.3%, 70.7%, and 76.4%, respectively. When a T/N ratio of 2.01 was used as cut-off value, the sensitivity, specificity and accuracy were 79.2%, 75.6%, and 77.5%, respectively. According to ROC analysis, the area under the curve for semi-quantitative analysis was higher than that for visual analysis, but the statistical difference was not significant (P=0.372). Compared with visual analysis or semi-quantitative analysis alone, the sensitivity, specificity and accuracy of visual analysis combined with semi-quantitative analysis in diagnosing primary breast cancer were higher, being: 87.5%, 82.9%, and 85.4%, respectively. The area under the curve was 0.891. Results of the present study suggest that the semi-quantitative and visual analysis statistically showed similar results. The semi-quantitative analysis provided incremental value additive to visual analysis of (99m)Tc-3PRGD2 SMG for the detection of breast cancer. It seems from our results that, when the tumor was located in the medial part of the breast, the semi-quantitative analysis gave better diagnostic results.

  11. Stereo-tomography in triangulated models

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Shao, Wei-Dong; Xing, Feng-yuan; Xiong, Kai

    2018-04-01

    Stereo-tomography is a distinctive tomographic method. It is capable of estimating the scatterer position, the local dip of scatterer and the background velocity simultaneously. Building a geologically consistent velocity model is always appealing for applied and earthquake seismologists. Differing from the previous work to incorporate various regularization techniques into the cost function of stereo-tomography, we think extending stereo-tomography to the triangulated model will be the most straightforward way to achieve this goal. In this paper, we provided all the Fréchet derivatives of stereo-tomographic data components with respect to model components for slowness-squared triangulated model (or sloth model) in 2D Cartesian coordinate based on the ray perturbation theory for interfaces. A sloth model representation means a sparser model representation when compared with conventional B-spline model representation. A sparser model representation leads to a smaller scale of stereo-tomographic (Fréchet) matrix, a higher-accuracy solution when solving linear equations, a faster convergence rate and a lower requirement for quantity of data space. Moreover, a quantitative representation of interface strengthens the relationships among different model components, which makes the cross regularizations among these model components, such as node coordinates, scatterer coordinates and scattering angles, etc., more straightforward and easier to be implemented. The sensitivity analysis, the model resolution matrix analysis and a series of synthetic data examples demonstrate the correctness of the Fréchet derivatives, the applicability of the regularization terms and the robustness of the stereo-tomography in triangulated model. It provides a solid theoretical foundation for the real applications in the future.

  12. Atom Probe Tomography Analysis of Gallium-Nitride-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Prosa, Ty J.; Olson, David; Giddings, A. Devin; Clifton, Peter H.; Larson, David J.; Lefebvre, Williams

    2014-03-01

    Thin-film light-emitting diodes (LEDs) composed of GaN/InxGa1-xN/GaN quantum well (QW) structures are integrated into modern optoelectronic devices because of the tunable InGaN band-gap enabling emission of the full visible spectrum. Atom probe tomography (APT) offers unique capabilities for 3D device characterization including compositional mapping of nano-volumes (>106 nm3) , high detection efficiency (>50%), and good sensitivity. In this study, APT is used to understand the distribution of dopants as well as Al and In alloying agents in a GaN device. Measurements using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have also been made to improve the accuracy of the APT analysis by correlating the information content of these complimentary techniques. APT analysis reveals various QW and other optoelectronic structures including a Mg p-GaN layer, an Al-rich electron blocking layer, an In-rich multi-QW region, and an In-based super-lattice structure. The multi-QW composition shows good quantitative agreement with layer thickness and spacing extracted from a high resolution TEM image intensity analysis.

  13. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study.

    PubMed

    Silveira-Neto, Nicolau; Flores, Mateus Ericson; De Carli, João Paulo; Costa, Max Dória; Matos, Felipe de Souza; Paranhos, Luiz Renato; Linden, Maria Salete Sandini

    2017-11-01

    This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone - A, B and E (control group) - to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3). In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey's test (α=0.05). The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  14. Quantitative computed tomography features and clinical manifestations associated with the extent of bronchiectasis in patients with moderate-to-severe COPD

    PubMed Central

    Bak, So Hyeon; Kim, Soohyun; Hong, Yoonki; Heo, Jeongwon; Lim, Myoung-Nam; Kim, Woo Jin

    2018-01-01

    Background Few studies have investigated the quantitative computed tomography (CT) features associated with the severity of bronchiectasis in COPD patients. The purpose of this study was to identify the quantitative CT features and clinical values to determine the extent of bronchiectasis in moderate-to-severe COPD patients. Methods A total of 127 moderate-to-severe COPD patients were selected from the cohort of COPD in Dusty Areas (CODA). The study subjects were classified into three groups according to the extent of bronchiectasis on CT: no bronchiectasis, mild bronchiectasis, and moderate-to-severe bronchiectasis. The three groups were compared with respect to demographic data, symptoms, medical history, serum inflammatory markers, pulmonary function, and quantitative CT values. Results Among 127 moderate-to-severe COPD subjects, 73 patients (57.5%) were detected to have bronchiectasis, 51 patients (40.2%) to have mild bronchiectasis, and 22 patients (17.3%) to have moderate-to-severe bronchiectasis. Compared with COPD patients without bronchiectasis, those with bronchiectasis were older and had higher frequency of prior tuberculosis, lower prevalence of bronchodilator reversibility (BDR), and more severe air trapping (P < 0.05). Moderate-to-severe bronchiectasis patients had lower body mass index (BMI), higher frequency of prior tuberculosis, lower prevalence of BDR, worse pulmonary function, and more severe air trapping (P < 0.05) than those in the mild bronchiectasis group. Conclusion Moderate-to-severe bronchiectasis was associated with a history of pulmonary tuberculosis, lower BMI, severe airflow obstruction, and lower BDR in moderate-to-severe COPD patients. Quantitative analysis of CT showed that severe air trapping was associated with the extent of bronchiectasis in these patients. PMID:29750028

  15. Quantifying the vascular response to ischemia with speckle variance optical coherence tomography

    PubMed Central

    Poole, Kristin M.; McCormack, Devin R.; Patil, Chetan A.; Duvall, Craig L.; Skala, Melissa C.

    2014-01-01

    Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies. PMID:25574425

  16. Corneal topography with high-speed swept source OCT in clinical examination

    PubMed Central

    Karnowski, Karol; Kaluzny, Bartlomiej J.; Szkulmowski, Maciej; Gora, Michalina; Wojtkowski, Maciej

    2011-01-01

    We present the applicability of high-speed swept source (SS) optical coherence tomography (OCT) for quantitative evaluation of the corneal topography. A high-speed OCT device of 108,000 lines/s permits dense 3D imaging of the anterior segment within a time period of less than one fourth of second, minimizing the influence of motion artifacts on final images and topographic analysis. The swept laser performance was specially adapted to meet imaging depth requirements. For the first time to our knowledge the results of a quantitative corneal analysis based on SS OCT for clinical pathologies such as keratoconus, a cornea with superficial postinfectious scar, and a cornea 5 months after penetrating keratoplasty are presented. Additionally, a comparison with widely used commercial systems, a Placido-based topographer and a Scheimpflug imaging-based topographer, is demonstrated. PMID:21991558

  17. Quantitative optical coherence tomography analysis for late in-stent restenotic lesions.

    PubMed

    Fu, Qiang; Suzuki, Nobuaki; Kozuma, Ken; Miyagawa, Mutsuki; Nomura, Takahiro; Kawashima, Hideyuki; Shiratori, Yoshitaka; Ishikawa, Shuichi; Kyono, Hiroyuki; Isshiki, Takaaki

    2015-01-01

    Coronary optical coherence tomography (OCT) has the potential to identify in-stent neoatherosclerosis, which is a possible risk factor for late acute coronary events after drug-eluting stent implantation. The purpose of this study was to investigate differences between mid-term and late in-stent restenosis after stent implantation by quantitative and semiautomated tissue property analysis using OCT. In total, 1063 OCT image frames of 16 lesions in 15 patients were analyzed. This included 346 frames of 6 lesions in late in-stent restenosis, which was defined as restenosis that was not detected at 6 to 12 months but ≥ 12 months after follow-up coronary angiography. Signal attenuation was circumferentially analyzed using a dedicated semiautomated software. Attenuation was assessed along 200 lines delineated radially for analysis of the in-stent restenotic lesions (between the lumen and stent contours). All lines were anchored by the image wire to avoid artifacts resulting from wire location. Stronger signal attenuation at the frame level (2.46 ± 0.78 versus 1.47 ± 0.32, P < 0.001) and higher maximum signal intensity at the lesion level (9.19 ± 0.19 versus 8.84 ± 0.32, P = 0.018) were observed in late in-stent restenotic lesions than in mid-term in-stent restenotic lesions. OCT demonstrated stronger signal attenuation and higher maximum signal intensity in late in-stent restenotic lesions than in mid-term in-stent restenotic lesions, indicating the possibility of neoatherosclerosis.

  18. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    PubMed

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  19. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis.

    PubMed

    Debuc, Delia Cabrera; Salinas, Harry M; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M; Puliafito, Carmen A

    2010-01-01

    We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 microm and 26.71 microm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 microm and 0.6 and 1.76 microm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R(2)>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.

  20. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis

    NASA Astrophysics Data System (ADS)

    Cabrera Debuc, Delia; Salinas, Harry M.; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M.; Puliafito, Carmen A.

    2010-07-01

    We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 μm and 26.71 μm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 μm and 0.6 and 1.76 μm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R2>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.

  1. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian, E-mail: Grosse@tum.de

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT)more » system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.« less

  2. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications.

    PubMed

    Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

  3. A synchrotron-based local computed tomography combined with data-constrained modelling approach for quantitative analysis of anthracite coal microstructure

    PubMed Central

    Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng

    2014-01-01

    Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649

  4. Practical no-gold-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography

    PubMed Central

    Jha, Abhinav K.; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M.

    2017-01-01

    Abstract. Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis. PMID:28331883

  5. Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Huaiguang; Fu, Shujun; Wang, Hong; Lv, Hongli; Zhang, Caiming

    2018-03-01

    As a high-resolution imaging mode of biological tissues and materials, optical coherence tomography (OCT) is widely used in medical diagnosis and analysis. However, OCT images are often degraded by annoying speckle noise inherent in its imaging process. Employing the bilateral sparse representation an adaptive singular value shrinking method is proposed for its highly sparse approximation of image data. Adopting the generalized likelihood ratio as similarity criterion for block matching and an adaptive feature-oriented backward projection strategy, the proposed algorithm can restore better underlying layered structures and details of the OCT image with effective speckle attenuation. The experimental results demonstrate that the proposed algorithm achieves a state-of-the-art despeckling performance in terms of both quantitative measurement and visual interpretation.

  6. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.

    PubMed

    Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja

    2016-11-01

    Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.

  7. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  8. Retroperitoneal tumour radiotherapy: clinical improvements using kilovoltage cone beam computed tomography.

    PubMed

    Juan-Senabre, Xavier J; Ferrer-Albiach, Carlos; Rodríguez-Cordón, Marta; Santos-Serra, Agustín; López-Tarjuelo, Juan; Calzada-Feliu, Salvador

    2009-04-01

    We present a clinical case of a patient diagnosed with a retroperitoneal sarcoma, which received preoperative treatment with daily verification via computed tomography obtained with kilovoltage cone beam. We compare the benefit of this treatment compared to other conventional treatment without image guiding, reporting quantitative results.

  9. APPLICATION OF 3D COMPUTER-AIDED TOMOGRAPHY TO THE QUANTIFICATION OF MARINE SEDIMENT COMMUNITIES IN POLLUTION GRADIENTS

    EPA Science Inventory

    Computer-Aided Tomography (CT) has been demonstrated to be a cost efficient tool for the qualitative and quantitative study of estuarine benthic communities along pollution gradients.
    Now we have advanced this technology to successfully visualize and discriminate three dimen...

  10. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    NASA Astrophysics Data System (ADS)

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Chihpin; Singh, Dileep; Kenesei, Peter

    The size and morphology of the graphite particles play a crucial role in determining various mechanical and thermal properties of cast iron. In the present study, we utilized high-energy synchrotron X-ray tomography to perform quantitative 3D-characterization of the distribution of graphite particles in high-strength compacted graphite iron (CGI). The size, shape, and spatial connectivity of graphite were examined. The analysis reveals that the compacted graphite can grow with a coral-tree-like morphology and span several hundred microns in the iron matrix.

  12. Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection

    NASA Astrophysics Data System (ADS)

    Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok

    2011-11-01

    Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.

  13. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

    PubMed Central

    Jørgensen, J. S.; Sidky, E. Y.

    2015-01-01

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization. PMID:25939620

  14. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.

    PubMed

    Jørgensen, J S; Sidky, E Y

    2015-06-13

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.

  15. Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Elbau, P.; Mindrinos, L.; Scherzer, O.

    2018-01-01

    In this paper we perform quantitative reconstruction of the electric susceptibility and the Grüneisen parameter of a non-magnetic linear dielectric medium using measurement of a multi-modal photoacoustic and optical coherence tomography system. We consider the mathematical model presented in Elbau et al (2015 Handbook of Mathematical Methods in Imaging ed O Scherzer (New York: Springer) pp 1169-204), where a Fredholm integral equation of the first kind for the Grüneisen parameter was derived. For the numerical solution of the integral equation we consider a Galerkin type method.

  16. Quantitative polarization and flow evaluation of choroid and sclera by multifunctional Jones matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugiyama, S.; Hong, Y.-J.; Kasaragod, D.; Makita, S.; Miura, M.; Ikuno, Y.; Yasuno, Y.

    2016-03-01

    Quantitative evaluation of optical properties of choroid and sclera are performed by multifunctional optical coherence tomography. Five normal eyes, five glaucoma eyes and one choroidal atrophy eye are examined. The refractive error was found to be correlated with choroidal birefringence, polarization uniformity, and flow in addition to scleral birefringence among normal eyes. The significant differences were observed between the normal and the glaucoma eyes, as for choroidal polarization uniformity, flow and scleral birefringence. An automatic segmentation algorithm of retinal pigment epithelium and chorioscleral interface based on multifunctional signals is also presented.

  17. Three dimensional microstructural characterization of nanoscale precipitates in AA7075-T651 by focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sudhanshu S.; Loza, Jose J.

    2016-08-15

    The size and distribution of precipitates in Al 7075 alloys affects both the mechanical and corrosion behavior (including stress corrosion cracking and fatigue corrosion) of the alloy. Three dimensional (3D) quantitative microstructural analysis of Al 7075 in the peak aged condition (T651) allows for a better understanding of these behaviors. In this study, Focused ion beam (FIB) tomography was used to characterize the microstructure in three dimensions. Analysis of grains and precipitates was performed in terms of volume, size, and morphology. It was found that the precipitates at the grain boundaries are larger in size, higher in aspect ratios andmore » maximum Feret diameter compared to the precipitates inside the grains, due to earlier nucleation of the precipitates at the grain boundaries. Our data on the precipitates at the interface between grains and Mg{sub 2}Si inclusion show that the surfaces of inclusion (impurity) particles can serve as a location for heterogeneous nucleation of precipitates. - Highlights: •Focused ion beam (FIB) tomography was used to characterize the microstructure of Al 7075 in three dimensions. •Analysis of grains and precipitates was performed in terms of volume, size, and morphology. •Precipitates at the grain boundaries have larger size and aspect ratio compared to the precipitates inside the grains.« less

  18. Quantitative analysis of the right auricle with 256-slice computed tomography.

    PubMed

    Li, Cai-Ying; Gao, Bu-Lang; Pan, Tong; Xiang, Cheng; Zhang, Xue-Jing; Liu, Xiao-Wei; Fan, Qiong-Ying

    2017-04-01

    To quantitatively measure the morphology parameters of the right auricle with 256-slice multidetector computed tomography angiography (MDCTA) in healthy people. A retrospective analysis of 200 patients who had undergone coronary MDCTA with negative findings was performed. The raw imaging data were reconstructed and the right auricular volume, right atrial volume, right auricle height, base long and short axes, base perimeter and area, normal angle, and distance were quantitatively measured. Men had significantly (P < 0.05) greater values than women in the right auricular volume (13.3 ± 4.0 vs. 11.7 ± 3.7 mL) and height (33.0 ± 5.0 vs. 30.5 ± 5.2 mm), the base long axis (34.4 ± 4.1 vs. 33.2 ± 3.9 mm), area (787.6 ± 177.6 vs. 771.0 ± 143.2 mm 2 ) and perimeter (119.2 ± 17.5 vs. 115.0 ± 13.0), and the normal distance (22.4 ± 6.6 vs. 20.2 ± 6.7 mm). The normal 95 % reference range for the right auricular parameters was put forward. The right auricular parameters had a good correlation with the right atrium volume, aortic diameter, the body weight, height, and body surface area but a bad correlation with the vertebral body height. Significantly (P < 0.05) greater values were found in the normal angle and distance in subjects below than over 40 years of age. No other significant (P > 0.05) difference existed in the other right auricular parameters. Quantitative measurements of the right auricle can help us get a good understanding of the right auricular morphology and its relationship with surrounding structures and are helpful for cardiac interventions of electrophysiology and radiofrequency ablation.

  19. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

  20. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2009-11-01

    We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.

  1. Quantitative analysis of pulmonary pathophysiology using postmortem computed tomography with regard to the cause of death.

    PubMed

    Michiue, Tomomi; Sakurai, Terumi; Ishikawa, Takaki; Oritani, Shigeki; Maeda, Hitoshi

    2012-07-10

    Radiological lung transparency depends on the air contents involved in respiratory function. The present study quantitatively investigated postmortem lung air distribution in forensic autopsy cases (n=135) using computed tomography (CT) to analyze cardiopulmonary pathophysiology in the death process, involving emphysema, congestion and edema. Combined analyses of the CT morphology and attenuation value (Hounsfield unit, HU) of the bilateral lungs, with reference to histopathology, could categorize CT findings (10-90 percentile mode/mean HU values) with regard to the causes of death as follows: (I) hyperaeration (mode/mean HU below -760/-560: emphysema) for obstructive pulmonary disease, starvation and hypothermia (cold exposure); (II) mostly normal aeration with partial ground glass opacification (mode/mean HU, -850 to -360/-700 to -380: partial congestion and edema), consisting of subtype II-a with peri-bronchial/-vascular opacity for mechanical asphyxia, drowning and fire fatality, and subtype II-b with decreased vascularity for gunshot head injury, cerebrovascular disease and hemopericardium; (III) hypoaeration to airless with predominant hypostatic ground glass opacification (mode/mean HU, -870 to 0/-720 to -200: mottled hypostatic congestion and edema) for blunt head/neck injury, intoxication, hyperthermia (heat stroke) and congestive heart failure; (IV) hypoaeration to airless with predominant hypostatic consolidation (mode/mean HU, -790 to 0/-520 to -70: intense hypostatic congestion with edema) for acute ischemic heart disease; and (V) airless to consolidated (mode/mean HU over -420/-370: segmental or multiple patchy consolidations with edema) for pneumonia. Mode HU represents the major alveolar status, while the mean HU reflects the whole lung air contents. CT data analysis is useful for quantitative evaluation of pulmonary pathology as a supplementary procedure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Exploring the utility of high resolution "nano-" computed tomography imaging to place quantitative constraints on shell biometric changes in marine pteropods in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Eagle, R.; Howes, E.; Lischka, S.; Rudolph, R.; Büdenbender, J.; Bijma, J.; Gattuso, J. P.; Riebesell, U.

    2014-12-01

    Understanding and quantifying the response of marine organisms to present and future ocean acidification remains a major challenge encompassing observations on single species in culture and scaling up to the ecosystem and global scale. Understanding calcification changes in culture experiments designed to simulate present and future ocean conditions under potential CO2 emissions scenarios, and especially detecting the likely more subtle changes that may occur prior to the onset of more extreme ocean acidification, depends on the tools available. Here we explore the utility of high-resolution computed tomography (nano-CT) to provide quantitative biometric data on field collected and cultured marine pteropods, using the General Electric Company Phoenix Nanotom S Instrument. The technique is capable of quantitating the whole shell of the organism, allowing shell dimensions to be determined as well as parameters such as average shell thickness, the variation in thickness across the whole shell and in localized areas, total shell volume and surface area and when combined with weight measurements shell density can be calculated. The potential power of the technique is the ability to derive these parameters even on very small organisms less than 1 millimeter in size. Tuning the X-ray strength of the instrument allows organic material to be excluded from the analysis. Through replicate analysis of standards, we assess the reproducibility of data, and by comparison with dimension measurements derived from light microscopy we assess the accuracy of dimension determinations. We present results from historical and modern pteropod populations from the Mediterranean and cultured polar pteropods, resolving statistically significant differences in shell biometrics in both cases that may represent responses to ocean acidification.

  3. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    DOE PAGES

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; ...

    2015-07-02

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statisticalmore » analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.« less

  4. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statisticalmore » analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.« less

  5. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    PubMed

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  6. Rapid Phenotyping of Root Systems of Brachypodium Plants Using X-ray Computed Tomography: a Comparative Study of Soil Types and Segmentation Tools

    NASA Astrophysics Data System (ADS)

    Varga, T.; McKinney, A. L.; Bingham, E.; Handakumbura, P. P.; Jansson, C.

    2017-12-01

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as in processes with important implications to farming and thus human food supply. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. Selected Brachypodium distachyon phenotypes were grown in both natural and artificial soil mixes. The specimens were imaged by XCT, and the root architectures were extracted from the data using three different software-based methods; RooTrak, ImageJ-based WEKA segmentation, and the segmentation feature in VG Studio MAX. The 3D root image was successfully segmented at 30 µm resolution by all three methods. In this presentation, ease of segmentation and the accuracy of the extracted quantitative information (root volume and surface area) will be compared between soil types and segmentation methods. The best route to easy and accurate segmentation and root analysis will be highlighted.

  7. Quantitative analysis of hydrogen in SiO{sub 2}/SiN/SiO{sub 2} stacks using atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimune, Yorinobu, E-mail: yorinobu.kunimune.vz@renesas.com; Shimada, Yasuhiro; Sakurai, Yusuke

    2016-04-15

    We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO{sub 2}/SiN/SiO{sub 2} (ONO) stack structure using ultraviolet laser-assisted atom probe tomography (APT). The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %). Thus, by subtracting the concentration of adsorbed hydrogen, the actualmore » hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA), which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.« less

  8. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Jijo; Yang, Cungeng; Wu, Hui

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from themore » daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.« less

  9. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography.

    PubMed

    Paul, Jijo; Yang, Cungeng; Wu, Hui; Tai, An; Dalah, Entesar; Zheng, Cheng; Johnstone, Candice; Kong, Feng-Ming; Gore, Elizabeth; Li, X Allen

    2017-06-01

    To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from the daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R 2  > 0.99) and correlates weakly with the change in GTV (R 2  = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Quantitative EEG and low resolution electromagnetic tomography (LORETA) imaging of patients with persistent auditory hallucinations.

    PubMed

    Lee, Seung-Hwan; Wynn, Jonathan K; Green, Michael F; Kim, Hyun; Lee, Kang-Joon; Nam, Min; Park, Joong-Kyu; Chung, Young-Cho

    2006-04-01

    Electrophysiological studies have demonstrated gamma and beta frequency oscillations in response to auditory stimuli. The purpose of this study was to test whether auditory hallucinations (AH) in schizophrenia patients reflect abnormalities in gamma and beta frequency oscillations and to investigate source generators of these abnormalities. This theory was tested using quantitative electroencephalography (qEEG) and low-resolution electromagnetic tomography (LORETA) source imaging. Twenty-five schizophrenia patients with treatment refractory AH, lasting for at least 2 years, and 23 schizophrenia patients with non-AH (N-AH) in the past 2 years were recruited for the study. Spectral analysis of the qEEG and source imaging of frequency bands of artifact-free 30 s epochs were examined during rest. AH patients showed significantly increased beta 1 and beta 2 frequency amplitude compared with N-AH patients. Gamma and beta (2 and 3) frequencies were significantly correlated in AH but not in N-AH patients. Source imaging revealed significantly increased beta (1 and 2) activity in the left inferior parietal lobule and the left medial frontal gyrus in AH versus N-AH patients. These results imply that AH is reflecting increased beta frequency oscillations with neural generators localized in speech-related areas.

  11. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  12. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    NASA Astrophysics Data System (ADS)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  13. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    PubMed

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  14. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  15. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications. © IMechE 2014.

  16. Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a meta-analysis.

    PubMed

    Treglia, Giorgio; Sadeghi, Ramin; Annunziata, Salvatore; Zakavi, Seyed Rasoul; Caldarella, Carmelo; Muoio, Barbara; Bertagna, Francesco; Ceriani, Luca; Giovanella, Luca

    2013-12-01

    To systematically review and meta-analyse published data about the diagnostic performance of Fluorine-18-Fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (PET/CT) in osteomyelitis related to diabetic foot. A comprehensive literature search of studies on (18)F-FDG-PET and PET/CT in patients with diabetic foot was performed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) and area under the summary ROC curve of (18)F-FDG-PET and PET/CT in patients with osteomyelitis related to diabetic foot were calculated. Nine studies comprising 299 patients with diabetic foot were included in the qualitative analysis (systematic review) and discussed. The quantitative analysis (meta-analysis) of four selected studies provided the following results on a per patient-based analysis: sensitivity was 74% [95% confidence interval (95%CI): 60-85%], specificity 91% (95%CI: 85-96%), LR+ 5.56 (95%CI: 2.02-15.27), LR- 0.37 (95%CI: 0.10-1.35), and DOR 16.96 (95%CI: 2.06-139.66). The area under the summary ROC curve was 0.874. In patients with suspected osteomyelitis related to diabetic foot (18)F-FDG-PET and PET/CT demonstrated a high specificity, being potentially useful tools if combined with other imaging methods such as MRI. Nevertheless, the literature focusing on the use of (18)F-FDG-PET and PET/CT in this setting remains still limited. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Quantitative analysis of the polarization characteristics of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Michail Y.; Dudenkova, Varvara V.; Kiseleva, Elena B.; Moiseev, Alexander A.; Gelikonov, Grigory V.; Timofeeva, Lidia B.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-04-01

    In this study we demonstrate the capability of cross-polarization optical coherence tomography (CP OCT) to assess collagen and elastin fibers condition in atherosclerotic plaques basing on ratio of the OCT signal levels in cross- and co- polarizations. We consider the depolarization factor (DF) and the effective birefringence (Δn) as quantitative characteristics of CP OCT images. We revealed that calculation of both DF and Δn in the region of interest (fibrous cap) yields a statistically significant difference between stable and unstable plaques (0.46+/-0.21 vs 0.09+/-0.04 for IDF; (4.7+/-1.0)•10-4 vs (2.5+/-0.7)•10-4 for Δn p<0.05). In parallel with CP OCT we used the nonlinear microscopy for analysis of thin cross-section of atherosclerotic plaque, revealing the different average isotropy index of collagen and elastin fibers for stable and unstable plaques (0.30 +/- 0.10 vs 0.70 +/- 0.08; p<0.001). The proposed approach for quantitative assessment of CP OCT images allows cross-scattering and birefringence characterization of stable and unstable atherosclerotic plaques.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Niraj; Stephens, Sean A.; Adams, Lexor

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and forest management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving the plant. X ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. Our group at the Environmental Molecular Sciences Laboratory (EMSL) has developed an XCT-based tool to image and quantitatively analyze plant root structures in their native soil environment. XCT data collected on amore » Prairie dropseed (Sporobolus heterolepis) specimen was used to visualize its root structure. A combination of open-source software RooTrak and DDV were employed to segment the root from the soil, and calculate its isosurface, respectively. Our own computer script named 3DRoot-SV was developed and used to calculate root volume and surface area from a triangular mesh. The process utilizing a unique combination of tools, from imaging to quantitative root analysis, including the 3DRoot-SV computer script, is described.« less

  19. Quantitative cerebral perfusion assessment using microscope-integrated analysis of intraoperative indocyanine green fluorescence angiography versus positron emission tomography in superficial temporal artery to middle cerebral artery anastomosis.

    PubMed

    Kobayashi, Shinya; Ishikawa, Tatsuya; Tanabe, Jun; Moroi, Junta; Suzuki, Akifumi

    2014-01-01

    Intraoperative qualitative indocyanine green (ICG) angiography has been used in cerebrovascular surgery. Hyperperfusion may lead to neurological complications after superficial temporal artery to middle cerebral artery (STA-MCA) anastomosis. The purpose of this study is to quantitatively evaluate intraoperative cerebral perfusion using microscope-integrated dynamic ICG fluorescence analysis, and to assess whether this value predicts hyperperfusion syndrome (HPS) after STA-MCA anastomosis. Ten patients undergoing STA-MCA anastomosis due to unilateral major cerebral artery occlusive disease were included. Ten patients with normal cerebral perfusion served as controls. The ICG transit curve from six regions of interest (ROIs) on the cortex, corresponding to ROIs on positron emission tomography (PET) study, was recorded. Maximum intensity (IMAX), cerebral blood flow index (CBFi), rise time (RT), and time to peak (TTP) were evaluated. RT/TTP, but not IMAX or CBFi, could differentiate between control and study subjects. RT/TTP correlated (|r| = 0.534-0.807; P < 0.01) with mean transit time (MTT)/MTT ratio in the ipsilateral to contralateral hemisphere by PET study. Bland-Altman analysis showed a wide limit of agreement between RT and MTT and between TTP and MTT. The ratio of RT before and after bypass procedures was significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.60 ± 0.032 and 0.80 ± 0.056, respectively; P = 0.017). The ratio of TTP was also significantly lower in patients with postoperative HPS than in patients without postoperative HPS (0.64 ± 0.081 and 0.85 ± 0.095, respectively; P = 0.017). Time-dependent intraoperative parameters from the ICG transit curve provide quantitative information regarding cerebral circulation time with quality and utility comparable to information obtained by PET. These parameters may help predict the occurrence of postoperative HPS.

  20. [Quantitative assessment on artifacts of dental restorative materials in cone beam computed tomography].

    PubMed

    Yuan, Fu-song; Sun, Yu-chun; Xie, Xiao-yan; Wang, Yong; Lv, Pei-jun

    2013-12-18

    To quantitatively evaluate the artifacts appearance of eight kinds of common dental restorative materials, such as zirconia. For the full-crown tooth preparation of mandibular first molar, eight kinds of full-crowns, such as zirconia all-ceramic crown, glass ceramic crown, ceramage crown, Au-Pt based porcelain-fused-metal (PFM) crown, Pure Titanium PFM crown, Co-Cr PFM crown, Ni-Cr PFM crown, and Au-Pd metal crown were fabricated. And natural teeth in vitro were used as controls. These full-crown and natural teeth in vitro were mounted an ultraviolet-curable resin fixed plate. High resolution cone beam computed tomography (CBCT) was used to scan all of the crowns and natural teeth in vitro, and their DICOM data were imported into software MIMICS 10.0. Then, the number of stripes and the maximum diameters of artifacts around the full-crowns were evaluated quantitatively in two-dimensional tomography images. In the two-dimensional tomography images,the artifacts did not appear around the natural teeth in vitro, glass ceramic crown, and ceramage crown. But thr artifacts appeared around the zirconia all-ceramic and metal crown. The number of stripes of artifacts was five to nine per one crown. The maximum diameters of the artifacts were 2.4 to 2.6 cm and 2.2 to 2.7 cm. In the two-dimensional tomography images of CBCT, stripe-like and radical artifacts were caused around the zirconia all-ceramic crown and metal based porcelain-fused-metal crowns. These artifacts could lower the imaging quality of the full crown shape greatly. The artifact was not caused around the natural teeth in vitro, glass ceramic crown, and ceramage crown.

  1. Quantitative damage imaging using Lamb wave diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong

    2016-12-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).

  2. Computed Tomography Studies of Lung Mechanics

    PubMed Central

    Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.

    2005-01-01

    The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757

  3. Characterization of Cracking Mechanisms of Carbon Anodes Used in Aluminum Industry by Optical Microscopy and Tomography

    NASA Astrophysics Data System (ADS)

    Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte

    2016-10-01

    The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.

  4. Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer

    PubMed Central

    Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N

    2016-01-01

    Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909

  5. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.

  6. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages.

    PubMed

    Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5-18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.

  7. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages

    PubMed Central

    Choi, Youn-Kyung; Kim, Jinmi; Maki, Koutaro; Ko, Ching-Chang

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5–18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level. PMID:27340668

  8. Retinal status analysis method based on feature extraction and quantitative grading in OCT images.

    PubMed

    Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri

    2016-07-22

    Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.

  9. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography

    PubMed Central

    Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.

    2010-01-01

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566

  10. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography.

    PubMed

    Töpperwien, Mareike; van der Meer, Franziska; Stadelmann, Christine; Salditt, Tim

    2018-06-18

    To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal "packing," we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites. Copyright © 2018 the Author(s). Published by PNAS.

  11. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Larina, Irina V.

    2018-02-01

    Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.

  12. Robust membrane detection based on tensor voting for electron tomography.

    PubMed

    Martinez-Sanchez, Antonio; Garcia, Inmaculada; Asano, Shoh; Lucic, Vladan; Fernandez, Jose-Jesus

    2014-04-01

    Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Coagulation monitoring based on blood elastic measurement using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2017-02-01

    Blood coagulation monitoring is important to diagnose hematological diseases and cardiovascular diseases and to predict the risk of bleeding and excessive clotting. In this study, we developed a system to dynamically monitor blood coagulation and quantitatively determine the coagulation function by blood elastic measurement. When blood forms a clot from a liquid, ultrasonic force induces a shear wave, which is detected by optical coherence tomography (OCT). The coagulation of porcine whole blood recalcified by calcium chloride is assessed using the metrics of reaction time, clot formation kinetics and maximum shear modulus. The OCE system can noninvasively monitor the blood coagulation and quantitatively determine the coagulation function.

  14. Combining Ultrasound Pulse-Echo and Transmission Computed Tomography for Quantitative Imaging the Cortical Shell of Long Bone Replicas

    NASA Astrophysics Data System (ADS)

    Shortell, Matthew P.; Althomali, Marwan A. M.; Wille, Marie-Luise; Langton, Christian M.

    2017-11-01

    We demonstrate a simple technique for quantitative ultrasound imaging of the cortical shell of long bone replicas. Traditional ultrasound computed tomography instruments use the transmitted or reflected waves for separate reconstructions but suffer from strong refraction artefacts in highly heterogenous samples such as bones in soft tissue. The technique described here simplifies the long bone to a two-component composite and uses both the transmitted and reflected waves for reconstructions, allowing the speed of sound and thickness of the cortical shell to be calculated accurately. The technique is simple to implement, computationally inexpensive and sample positioning errors are minimal.

  15. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    NASA Astrophysics Data System (ADS)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  16. Quantitative evaluation of retinal degeneration in royal college of surgeons rats by contrast enhanced ultrahigh resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syu, Jia-Pu; Su, Min-Jyun; Chen, Po-Wei; Ke, Chang-Chih; Chiou, Shih-Hwa; Kuo, Wen-Chuan

    2018-02-01

    This study presents a spectral domain optical coherence tomography (SD-OCT) using supercontinuum laser combined with a fundus photography for in vivo high-resolution imaging of retinal degeneration in Royal College of Surgeons (RCS-/- rat). These findings were compared with the Sprague-Dawley (SD) rats and the corresponding histology. Quantitative measurements show that changes in thickness were not significantly different between SD control and young RCS retinas (4 weeks). However, in old RCS rats (55 weeks), the thickness of photoreceptor layer decreased significantly as compared to young RCS rats (both 4 weeks and 5 weeks). After contrast enhancement method, this platform will be useful for the quantitative evaluation of the degree of retinal degeneration, treatment outcome after therapy, and drug screening development in the future.

  17. Fourier phase in Fourier-domain optical coherence tomography.

    PubMed

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  18. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    PubMed Central

    Sciagrà, Roberto

    2012-01-01

    In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760

  19. A CZT-based blood counter for quantitative molecular imaging.

    PubMed

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Lechippey, Laëtitia; Beauregard, Jean-Mathieu; Després, Philippe

    2017-12-01

    Robust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented. The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm 3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions. This paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18 F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV. The patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.

  20. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research.

    PubMed

    Fedorov, Andriy; Clunie, David; Ulrich, Ethan; Bauer, Christian; Wahle, Andreas; Brown, Bartley; Onken, Michael; Riesmeier, Jörg; Pieper, Steve; Kikinis, Ron; Buatti, John; Beichel, Reinhard R

    2016-01-01

    Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM(®)) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions. Conversion and visualization tools utilizing this toolkit were developed. The encoded objects were validated for consistency and interoperability. The resulting dataset was deposited in the QIN-HEADNECK collection of The Cancer Imaging Archive (TCIA). Supporting tools for data analysis and DICOM conversion were made available as free open-source software. Discussion. We presented a detailed investigation of the development and application of the DICOM model, as well as the supporting open-source tools and toolkits, to accommodate representation of the research data in QI biomarker development. We demonstrated that the DICOM standard can be used to represent the types of data relevant in HNC QI biomarker development, and encode their complex relationships. The resulting annotated objects are amenable to data mining applications, and are interoperable with a variety of systems that support the DICOM standard.

  1. Meta-analysis of the technical performance of an imaging procedure: guidelines and statistical methodology.

    PubMed

    Huang, Erich P; Wang, Xiao-Feng; Choudhury, Kingshuk Roy; McShane, Lisa M; Gönen, Mithat; Ye, Jingjing; Buckler, Andrew J; Kinahan, Paul E; Reeves, Anthony P; Jackson, Edward F; Guimaraes, Alexander R; Zahlmann, Gudrun

    2015-02-01

    Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test-retest repeatability data for illustrative purposes. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Meta-analysis of the technical performance of an imaging procedure: Guidelines and statistical methodology

    PubMed Central

    Huang, Erich P; Wang, Xiao-Feng; Choudhury, Kingshuk Roy; McShane, Lisa M; Gönen, Mithat; Ye, Jingjing; Buckler, Andrew J; Kinahan, Paul E; Reeves, Anthony P; Jackson, Edward F; Guimaraes, Alexander R; Zahlmann, Gudrun

    2017-01-01

    Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test–retest repeatability data for illustrative purposes. PMID:24872353

  3. Quantitative analysis applied to contrast medium extravasation by using the computed-tomography number within the region of interest

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kim, Moon-Jib; Goo, Eun-Hoe; Kim, Sun-Ju; Kim, Kwang; Kwak, Byung-Joon

    2014-02-01

    The present study was carried out to present a method to analyze extravasation quantitatively by measuring the computed tomography (CT) number after determining the region of interest (ROI) in the CT images obtained from patients suspected of extravasation induced by contrast medium auto-injection. To achieve this, we divided the study subjects into a group of patients who incurred extravasation and a group of patients who underwent routine scans without incurring extravasation. The CT numbers at IV sites were obtained as reference values, and CT numbers at extravasation sites and hepatic portal veins, respectively, were obtained as relative values. Thereupon, the predicted time for extravasation ( T EP ) and the predicted ratio for extravasation ( R EP ) of an extravasation site were obtained and analyzed quantitatively. In the case of extravasation induced by a dual auto-injector, the values of the CT numbers were confirmed to be lower and the extravasation site to be enlarged when compared to the extravasation induced by a single autoinjector. This is because the physiological saline introduced after the injection of the contrast agent diluted the concentration of the extravasated contrast agent. Additionally, the T EP caused by the auto-injector was about 40 seconds, and we could perform a precise quantitative assessment of the site suspected of extravasation. In conclusion, the dual auto-injection method, despite its advantage of reducing the volume of contrast agent and improving the quality of images for patients with good vascular integrity, was judged to be likely to increase the risk of extravasation and aggravate outcomes for patients with poor vascular integrity by enlarging extravasation sites.

  4. Quantifying Morphological Parameters of the Terminal Branching Units in a Mouse Lung by Phase Contrast Synchrotron Radiation Computed Tomography

    PubMed Central

    Hwang, Jeongeun; Kim, Miju; Kim, Seunghwan; Lee, Jinwon

    2013-01-01

    An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman’s method was adopted for the whole-lung sample preparation, and Canny’s edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method’s feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies. PMID:23704918

  5. Joint explorative analysis of neuroreceptor subsystems in the human brain: application to receptor-transporter correlation using PET data.

    PubMed

    Cselényi, Zsolt; Lundberg, Johan; Halldin, Christer; Farde, Lars; Gulyás, Balázs

    2004-10-01

    Positron emission tomography (PET) has proved to be a highly successful technique in the qualitative and quantitative exploration of the human brain's neurotransmitter-receptor systems. In recent years, the number of PET radioligands, targeted to different neuroreceptor systems of the human brain, has increased considerably. This development paves the way for a simultaneous analysis of different receptor systems and subsystems in the same individual. The detailed exploration of the versatility of neuroreceptor systems requires novel technical approaches, capable of operating on huge parametric image datasets. An initial step of such explorative data processing and analysis should be the development of novel exploratory data-mining tools to gain insight into the "structure" of complex multi-individual, multi-receptor data sets. For practical reasons, a possible and feasible starting point of multi-receptor research can be the analysis of the pre- and post-synaptic binding sites of the same neurotransmitter. In the present study, we propose an unsupervised, unbiased data-mining tool for this task and demonstrate its usefulness by using quantitative receptor maps, obtained with positron emission tomography, from five healthy subjects on (pre-synaptic) serotonin transporters (5-HTT or SERT) and (post-synaptic) 5-HT(1A) receptors. Major components of the proposed technique include the projection of the input receptor maps to a feature space, the quasi-clustering and classification of projected data (neighbourhood formation), trans-individual analysis of neighbourhood properties (trajectory analysis), and the back-projection of the results of trajectory analysis to normal space (creation of multi-receptor maps). The resulting multi-receptor maps suggest that complex relationships and tendencies in the relationship between pre- and post-synaptic transporter-receptor systems can be revealed and classified by using this method. As an example, we demonstrate the regional correlation of the serotonin transporter-receptor systems. These parameter-specific multi-receptor maps can usefully guide the researchers in their endeavour to formulate models of multi-receptor interactions and changes in the human brain.

  6. On the importance of FIB-SEM specific segmentation algorithms for porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzer, Martin, E-mail: martin.salzer@uni-ulm.de; Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de; Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de

    2014-09-15

    A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin,more » is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.« less

  7. Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis

    PubMed Central

    Zhang, Meng; Gao, Jiazi; Huang, Xu; Zhang, Min; Liu, Bei

    2017-01-01

    Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA. PMID:29065624

  8. Quantitative analysis of computed tomography images and early detection of cerebral edema for pediatric traumatic brain injury patients: retrospective study.

    PubMed

    Kim, Hakseung; Kim, Gwang-dong; Yoon, Byung C; Kim, Keewon; Kim, Byung-Jo; Choi, Young Hun; Czosnyka, Marek; Oh, Byung-Mo; Kim, Dong-Joo

    2014-10-22

    The purpose of this study was to identify whether the distribution of Hounsfield Unit (HU) values across the intracranial area in computed tomography (CT) images can be used as an effective diagnostic tool for determining the severity of cerebral edema in pediatric traumatic brain injury (TBI) patients. CT images, medical records and radiology reports on 70 pediatric patients were collected. Based on radiology reports and the Marshall classification, the patients were grouped as mild edema patients (n=37) or severe edema patients (n=33). Automated quantitative analysis using unenhanced CT images was applied to eliminate artifacts and identify the difference in HU value distribution across the intracranial area between these groups. The proportion of pixels with HU=17 to 24 was highly correlated with the existence of severe cerebral edema (P<0.01). This proportion was also able to differentiate patients who developed delayed cerebral edema from mild TBI patients. A significant difference between deceased patients and surviving patients in terms of the HU distribution came from the proportion of pixels with HU=19 to HU=23 (P<0.01). The proportion of pixels with an HU value of 17 to 24 in the entire cerebral area of a non-enhanced CT image can be an effective basis for evaluating the severity of cerebral edema. Based on this result, we propose a novel approach for the early detection of severe cerebral edema.

  9. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

    PubMed

    Ye, Feng; Liu, Jun; Ouyang, Han

    2015-08-01

    The purpose of this meta-analysis was to compare the diagnostic accuracy of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) for hepatocellular carcinoma (HCC).Medline, Cochrane, EMBASE, and Google Scholar databases were searched until July 4, 2014, using combinations of the following terms: gadoxetic acid disodium, Gd-EOB-DTPA, multidetector CT, contrast-enhanced computed tomography, and magnetic resonance imaging. Inclusion criteria were as follows: confirmed diagnosis of primary HCC by histopathological examination of a biopsy specimen; comparative study of MRI using Gd-EOB-DTPA and MDCT for diagnosis of HCC; and studies that provided quantitative outcome data. The pooled sensitivity and specificity of the 2 methods were compared, and diagnostic accuracy was assessed with alternative-free response receiver-operating characteristic analysis.Nine studies were included in the meta-analysis, and a total of 1439 lesions were examined. The pooled sensitivity and specificity for 1.5T MRI were 0.95 and 0.96, respectively, for 3.0T MRI were 0.91 and 0.96, respectively, and for MDCT were 0.74 and 0.93, respectively. The pooled diagnostic odds ratio for 1.5T and 3.0T MRI was 242.96, respectively, and that of MDCT was 33.47. To summarize, Gd-EOB-DTPA-enhanced MRI (1.5T and 3.0T) has better diagnostic accuracy for HCC than MDCT.

  10. Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system.

    PubMed

    Troy, Karen L; Edwards, W Brent

    2018-05-01

    Quantitative CT (QCT) analysis involves the calculation of specific parameters such as bone volume and density from CT image data, and can be a powerful tool for understanding bone quality and quantity. However, without careful attention to detail during all steps of the acquisition and analysis process, data can be of poor- to unusable-quality. Good quality QCT for research requires meticulous attention to detail and standardization of all aspects of data collection and analysis to a degree that is uncommon in a clinical setting. Here, we review the literature to summarize practical and technical considerations for obtaining high quality QCT data, and provide examples of how each recommendation affects calculated variables. We also provide an overview of the QCT analysis technique to illustrate additional opportunities to improve data reproducibility and reliability. Key recommendations include: standardizing the scanner and data acquisition settings, minimizing image artifacts, selecting an appropriate reconstruction algorithm, and maximizing repeatability and objectivity during QCT analysis. The goal of the recommendations is to reduce potential sources of error throughout the analysis, from scan acquisition to the interpretation of results. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. How Well Does Dual-Energy Computed Tomography With Metal Artifact Reduction Software Improve Image Quality and Quantify Computed Tomography Number and Iodine Concentration?

    PubMed

    Ohira, Shingo; Kanayama, Naoyuki; Wada, Kentaro; Karino, Tsukasa; Nitta, Yuya; Ueda, Yoshihiro; Miyazaki, Masayoshi; Koizumi, Masahiko; Teshima, Teruki

    2018-04-02

    The objective of this study was to assess the accuracy of the quantitative measurements obtained using dual-energy computed tomography with metal artifact reduction software (MARS). Dual-energy computed tomography scans (fast kV-switching) are performed on a phantom, by varying the number of metal rods (Ti and Pb) and reference iodine materials. Objective and subjective image analyses are performed on retroreconstructed virtual monochromatic images (VMIs) (VMI at 70 keV). The maximum artifact indices for VMI-Ti and VMI-Pb (5 metal rods) with MARS (without MARS) were 17.4 (166.7) and 34.6 (810.6), respectively; MARS significantly improved the mean subjective 5-point score (P < 0.05). The maximum differences between the measured Hounsfield unit and theoretical values for 5 mg/mL iodine and 2-mm core rods were -42.2% and -68.5%, for VMI-Ti and VMI-Pb (5 metal rods), respectively, and the corresponding differences in the iodine concentration were -64.7% and -73.0%, respectively. Metal artifact reduction software improved the objective and subjective image quality; however, the quantitative values were underestimated.

  12. Quantitative fluorescence tomography using a trimodality system: in vivo validation

    PubMed Central

    Lin, Yuting; Barber, William C.; Iwanczyk, Jan S.; Roeck, Werner W.; Nalcioglu, Orhan; Gulsen, Gultekin

    2010-01-01

    A fully integrated trimodality fluorescence, diffuse optical, and x-ray computed tomography (FT∕DOT∕XCT) system for small animal imaging is reported in this work. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration images using a multimodality approach. XCT offers anatomical information, while DOT provides the necessary background optical property map to improve FT image accuracy. The quantitative accuracy of this trimodality system is demonstrated in vivo. In particular, we show that a 2-mm-diam fluorescence inclusion located 8 mm deep in a nude mouse can only be localized when functional a priori information from DOT is available. However, the error in the recovered fluorophore concentration is nearly 87%. On the other hand, the fluorophore concentration can be accurately recovered within 2% error when both DOT functional and XCT structural a priori information are utilized together to guide and constrain the FT reconstruction algorithm. PMID:20799770

  13. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  14. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    PubMed

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  15. Textural analysis of optical coherence tomography skin images: quantitative differentiation between healthy and cancerous tissues

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-02-01

    Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.

  16. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  17. Prospective of 68Ga-Radiopharmaceutical Development

    PubMed Central

    Velikyan, Irina

    2014-01-01

    Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the 68Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of 68Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the 68Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents. PMID:24396515

  18. A methodology for finding the optimal iteration number of the SIRT algorithm for quantitative Electron Tomography.

    PubMed

    Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen

    2017-02-01

    The SIRT (Simultaneous Iterative Reconstruction Technique) algorithm is commonly used in Electron Tomography to calculate the original volume of the sample from noisy images, but the results provided by this iterative procedure are strongly dependent on the specific implementation of the algorithm, as well as on the number of iterations employed for the reconstruction. In this work, a methodology for selecting the iteration number of the SIRT reconstruction that provides the most accurate segmentation is proposed. The methodology is based on the statistical analysis of the intensity profiles at the edge of the objects in the reconstructed volume. A phantom which resembles a a carbon black aggregate has been created to validate the methodology and the SIRT implementations of two free software packages (TOMOJ and TOMO3D) have been used. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    NASA Astrophysics Data System (ADS)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  20. Variability of manual ciliary muscle segmentation in optical coherence tomography images.

    PubMed

    Chang, Yu-Cherng; Liu, Keke; Cabot, Florence; Yoo, Sonia H; Ruggeri, Marco; Ho, Arthur; Parel, Jean-Marie; Manns, Fabrice

    2018-02-01

    Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct in vivo visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.

  1. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging

    NASA Astrophysics Data System (ADS)

    Watson, C. C.; Newport, D.; Casey, M. E.; deKemp, R. A.; Beanlands, R. S.; Schmand, M.

    1997-02-01

    Quantitative imaging of the human thorax poses one of the most difficult challenges for three-dimensional (3-D) (septaless) positron emission tomography (PET), due to the strong attenuation of the annihilation radiation and the large contribution of scattered photons to the data. In [/sup 18/F] fluorodeoxyglucose (FDG) studies of the heart with the patient's arms in the field of view, the contribution of scattered events can exceed 50% of the total detected coincidences. Accurate correction for this scatter component is necessary for meaningful quantitative image analysis and tracer kinetic modeling. For this reason, the authors have implemented a single-scatter simulation technique for scatter correction in positron volume imaging. Here, they describe this algorithm and present scatter correction results from human and chest phantom studies.

  2. Clinical application of quantitative computed tomography in osteogenesis imperfecta-suspected cat.

    PubMed

    Won, Sungjun; Chung, Woo-Jo; Yoon, Junghee

    2017-09-30

    One-year-old male Persian cat presented with multiple fractures and no known traumatic history. Marked decrease of bone radiopacity and thin cortices of all long bones were identified on radiography. Tentative diagnosis was osteogenesis imperfecta, a congenital disorder characterized by fragile bone. To determine bone mineral density (BMD), quantitative computed tomography (QCT) was performed. The QCT results revealed a mean trabecular BMD of vertebral bodies of 149.9 ± 86.5 mg/cm 3 . After bisphosphonate therapy, BMD of the same site increased significantly (218.5 ± 117.1 mg/cm 3 , p < 0.05). QCT was a useful diagnostic tool to diagnose osteopenia and quantify response to medical treatment.

  3. Design and validation of Segment--freely available software for cardiovascular image analysis.

    PubMed

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-11

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.

  4. Correlations between quantitative fat–water magnetic resonance imaging and computed tomography in human subcutaneous white adipose tissue

    PubMed Central

    Gifford, Aliya; Walker, Ronald C.; Towse, Theodore F.; Brian Welch, E.

    2015-01-01

    Abstract. Beyond estimation of depot volumes, quantitative analysis of adipose tissue properties could improve understanding of how adipose tissue correlates with metabolic risk factors. We investigated whether the fat signal fraction (FSF) derived from quantitative fat–water magnetic resonance imaging (MRI) scans at 3.0 T correlates to CT Hounsfield units (HU) of the same tissue. These measures were acquired in the subcutaneous white adipose tissue (WAT) at the umbilical level of 21 healthy adult subjects. A moderate correlation exists between MRI- and CT-derived WAT values for all subjects, R2=0.54, p<0.0001, with a slope of −2.6, (95% CI [−3.3,−1.8]), indicating that a decrease of 1 HU equals a mean increase of 0.38% FSF. We demonstrate that FSF estimates obtained using quantitative fat–water MRI techniques correlate with CT HU values in subcutaneous WAT, and therefore, MRI-based FSF could be used as an alternative to CT HU for assessing metabolic risk factors. PMID:26702407

  5. Comparison of clinical and physics scoring of PET images when image reconstruction parameters are varied.

    PubMed

    Walsh, C; Johnston, C; Sheehy, N; O' Reilly, G

    2013-02-01

    In this study the quantitative and qualitative image quality (IQ) measurements with clinical judgement of IQ in positron emission tomography (PET) were compared. The limitations of IQ metrics and the proposed criteria of acceptability for PET scanners are discussed. Phantom and patient images were reconstructed using seven different iterative reconstruction protocols. For each reconstructed set of images, IQ was scored based both on the visual analysis and on the quantitative metrics. The quantitative physics metrics did not rank the reconstruction protocols in the same order as the clinicians' scoring of perceived IQ (R(s)=-0.54). Better agreement was achieved when comparing the clinical perception of IQ to the physicist's visual assessment of IQ in the phantom images (R(s)=+0.59). The closest agreement was seen between the quantitative physics metrics and the measurement of the standard uptake values (SUVs) in small tumours (R(s)=+0.92). Given the disparity between the clinical perception of IQ and the physics metrics a cautious approach to use of IQ measurements for determining suspension levels is warranted.

  6. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.

    1989-07-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determinedmore » from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake.« less

  7. Tibial Geometry in Individuals with Neurofibromatosis Type 1 without Anterolateral Bowing of the Lower Leg Using Peripheral Quantitative Computed Tomography

    PubMed Central

    Stevenson, David A.; Viskochil, David H.; Carey, John C.; Slater, Hillarie; Murray, Mary; Sheng, Xiaoming; D’Astous, Jacques; Hanson, Heather; Schorry, Elizabeth; Moyer-Mileur, Laurie J.

    2008-01-01

    Introduction Lower leg bowing with tibial pseudarthrosis is associated with neurofibromatosis type 1 (NF1). The objective of the study is to determine if the geometry of the lower limb in individuals with neurofibromatosis type 1 (NF1) differs from controls, and to characterize the osseous components of the tibia in NF1. Methods Peripheral quantitative computed tomography (pQCT) of the lower limb was performed (90 individuals with NF1 without tibial and/or fibular dysplasia: 474 healthy individuals without NF1). Subjects were 4–18 years of age. Individuals with NF1 were compared to controls using an analysis-of-covariance with a fixed set of covariates (age, weight, height, Tanner stage, and gender). Results Using pQCT, NF1 individuals without bowing of the lower leg have smaller periosteal circumferences (p<0.0001), smaller cortical area (p<0.0001), and decreased tibial cortical and trabecular bone mineral content (BMC) (p<0.0001) compared to controls. Discussion Individuals with NF1 have a different geometry of the lower leg compared to healthy controls suggesting that NF1 haploinsufficiency impacts bone homeostasis although not resulting in overt anterolateral bowing of the lower leg. PMID:19118659

  8. Computer-aided diagnosis of lung cancer: definition and detection of ground-glass opacity type of nodules by high-resolution computed tomography.

    PubMed

    Okada, Tohru; Iwano, Shingo; Ishigaki, Takeo; Kitasaka, Takayuki; Hirano, Yasushi; Mori, Kensaku; Suenaga, Yasuhito; Naganawa, Shinji

    2009-02-01

    The ground-glass opacity (GGO) of lung cancer is identified only subjectively on computed tomography (CT) images as no quantitative characteristic has been defined for GGOs. We sought to define GGOs quantitatively and to differentiate between GGOs and solid-type lung cancers semiautomatically with a computer-aided diagnosis (CAD). High-resolution CT images of 100 pulmonary nodules (all peripheral lung cancers) were collected from our clinical records. Two radiologists traced the contours of nodules and distinguished GGOs from solid areas. The CT attenuation value of each area was measured. Differentiation between cancer types was assessed by a receiver-operating characteristic (ROC) analysis. The mean CT attenuation of the GGO areas was -618.4 +/- 212.2 HU, whereas that of solid areas was -68.1 +/- 230.3 HU. CAD differentiated between solidand GGO-type lung cancers with a sensitivity of 86.0% and specificity of 96.5% when the threshold value was -370 HU. Four nodules of mixed GGOs were incorrectly classified as the solid type. CAD detected 96.3% of GGO areas when the threshold between GGO and solid areas was 194 HU. Objective definition of GGO area by CT attenuation is feasible. This method is useful for semiautomatic differentiation between GGOs and solid types of lung cancer.

  9. Peripheral Quantitative Computed Tomography: Measurement Sensitivity in Persons With and Without Spinal Cord Injury

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Boaldin, Kathryn M.; Corey, Trent A.; Fog, Daniel B.; Ruen, Jacquelyn M.

    2012-01-01

    Objectives To determine (1) the error attributable to external tibia-length measurements by using peripheral quantitative computed tomography (pQCT) and (2) the effect these errors have on scan location and tibia trabecular bone mineral density (BMD) after spinal cord injury (SCI). Design Blinded comparison and criterion standard in matched cohorts. Setting Primary care university hospital. Participants Eight able-bodied subjects underwent tibia length measurement. A separate cohort of 7 men with SCI and 7 able-bodied age-matched male controls underwent pQCT analysis. Interventions Not applicable. Main Outcome Measures The projected worst-case tibia-length–measurement error translated into a pQCT slice placement error of ±3mm. We collected pQCT slices at the distal 4% tibia site, 3mm proximal and 3mm distal to that site, and then quantified BMD error attributable to slice placement. Results Absolute BMD error was greater for able-bodied than for SCI subjects (5.87mg/cm3 vs 4.5mg/cm3). However, the percentage error in BMD was larger for SCI than able-bodied subjects (4.56% vs 2.23%). Conclusions During cross-sectional studies of various populations, BMD differences up to 5% may be attributable to variation in limb-length–measurement error. PMID:17023249

  10. Weak-beam scanning transmission electron microscopy for quantitative dislocation density measurement in steels.

    PubMed

    Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi

    2017-04-01

    To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. The Quantitative Measurements of Vascular Density and Flow Area of Optic Nerve Head Using Optical Coherence Tomography Angiography.

    PubMed

    Bazvand, Fatemeh; Mirshahi, Reza; Fadakar, Kaveh; Faghihi, Houshangh; Sabour, Siamak; Ghassemi, Fariba

    2017-08-01

    The purpose of this study was to evaluate the vascular density (VD) and the flow area on optic nerve head (ONH) and peripapillary area, and the impact of age and sex using optical coherence tomography angiography (OCTA) in healthy human subjects. Both eyes of each volunteer were scanned by an RTVue XR Avanti; Optovue with OCTA using the split-spectrum amplitude-decorrelation angiography algorithm technique. Masked graders evaluated enface angiodisc OCTA data. The flow area of ONH and the VD were automatically calculated. A total of 79 eyes of patients with a mean age of 37.03±11.27 were examined. The total ONH (papillary and peripapillary) area VD was 56.03%±4.55%. The flow area of the ONH was 1.74±0.10 mm/1.34 mm. The temporal and inferotemporal peripapillary VD was different between male and female patients. Increasing age causes some changes in the flow area of the ONH and the papillary VD from the third to the fourth decade (analysis of variance test; P<0.05). A normal quantitative database of the flow area and VD of the papillary and peripapillary area, obtained by RTVue XR with OCT angiography technique, is presented here.

  12. Techniques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Sheppard, Adrian; Latham, Shane; Middleton, Jill; Kingston, Andrew; Myers, Glenn; Varslot, Trond; Fogden, Andrew; Sawkins, Tim; Cruikshank, Ron; Saadatfar, Mohammad; Francois, Nicolas; Arns, Christoph; Senden, Tim

    2014-04-01

    This paper reports on recent advances at the micro-computed tomography facility at the Australian National University. Since 2000 this facility has been a significant centre for developments in imaging hardware and associated software for image reconstruction, image analysis and image-based modelling. In 2010 a new instrument was constructed that utilises theoretically-exact image reconstruction based on helical scanning trajectories, allowing higher cone angles and thus better utilisation of the available X-ray flux. We discuss the technical hurdles that needed to be overcome to allow imaging with cone angles in excess of 60°. We also present dynamic tomography algorithms that enable the changes between one moment and the next to be reconstructed from a sparse set of projections, allowing higher speed imaging of time-varying samples. Researchers at the facility have also created a sizeable distributed-memory image analysis toolkit with capabilities ranging from tomographic image reconstruction to 3D shape characterisation. We show results from image registration and present some of the new imaging and experimental techniques that it enables. Finally, we discuss the crucial question of image segmentation and evaluate some recently proposed techniques for automated segmentation.

  13. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models.

    PubMed

    Liu, Junting; Wang, Yabin; Qu, Xiaochao; Li, Xiangsi; Ma, Xiaopeng; Han, Runqiang; Hu, Zhenhua; Chen, Xueli; Sun, Dongdong; Zhang, Rongqing; Chen, Duofang; Chen, Dan; Chen, Xiaoyuan; Liang, Jimin; Cao, Feng; Tian, Jie

    2010-06-07

    Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.

  14. Applied anatomic site study of palatal anchorage implants using cone beam computed tomography.

    PubMed

    Lai, Ren-fa; Zou, Hui; Kong, Wei-dong; Lin, Wei

    2010-06-01

    The purpose of this study was to conduct quantitative research on bone height and bone mineral density of palatal implant sites for implantation, and to provide reference sites for safe and stable palatal implants. Three-dimensional reformatting images were reconstructed by cone beam computed tomography (CBCT) in 34 patients, aged 18 to 35 years, using EZ Implant software. Bone height was measured at 20 sites of interest on the palate. Bone mineral density was measured at the 10 sites with the highest implantation rate, classified using K-mean cluster analysis based on bone height and bone mineral density. According to the cluster analysis, 10 sites were classified into three clusters. Significant differences in bone height and bone mineral density were detected between these three clusters (P<0.05). The greatest bone height was obtained in cluster 2, followed by cluster 1 and cluster 3. The highest bone mineral density was found in cluster 3, followed by cluster 1 and cluster 2. CBCT plays an important role in pre-surgical treatment planning. CBCT is helpful in identifying safe and stable implantation sites for palatal anchorage.

  15. Comparison of breast density measurements made using ultrasound tomography and mammography

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Krycia, Mark; Sherman, Mark E.; Boyd, Norman; Gierach, Gretchen L.

    2015-03-01

    Women with elevated mammographic percent density, defined as the ratio of fibroglandular tissue area to total breast area on a mammogram are at an increased risk of developing breast cancer. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of a patient's breast, which can then be used to measure breast density. These sound speed images are useful because physical tissue density is directly proportional to sound speed. The work presented here updates previous results that compared mammographic breast density measurements with UST breast density measurements within an ongoing study. The current analysis has been expanded to include 158 women with negative digital mammographic screens who then underwent a breast UST scan. Breast density was measured for both imaging modalities and preliminary analysis demonstrated strong and positive correlations (Spearman correlation coefficient rs = 0.703). Additional mammographic and UST related imaging characteristics were also analyzed and used to compare the behavior of both imaging modalities. Results suggest that UST can be used among women with negative mammographic screens as a quantitative marker of breast density that may avert shortcomings of mammography.

  16. Quantitative Analysis of En Face Spectral-Domain Optical Coherence Tomography Imaging in Polypoidal Choroidal Vasculopathy.

    PubMed

    Simonett, Joseph M; Chan, Errol W; Chou, Jonathan; Skondra, Dimitra; Colon, Daniel; Chee, Caroline K; Lingam, Gopal; Fawzi, Amani A

    2017-02-01

    Spectral-domain optical coherence tomography (SD-OCT) imaging can be used to visualize polypoidal choroidal vasculopathy (PCV) lesions in the en face plane. Here, the authors describe a novel lesion quantification technique and compare PCV lesion area measurements and morphology before and after anti-vascular endothelial growth factor (VEGF) treatment. Volumetric SD-OCT scans in eyes with PCV before and after induction anti-VEGF therapy were retrospectively analyzed. En face SD-OCT images were generated and a pixel intensity thresholding process was used to quantify total lesion area. Thirteen eyes with PCV were analyzed. En face SD-OCT PCV lesion area quantification showed good intergrader reliability (intraclass correlation coefficient = 0.944). Total PCV lesion area was significantly reduced after anti-VEGF therapy (2.22 mm 2 vs. 2.73 mm 2 ; P = .02). The overall geographic pattern of the branching vascular network was typically preserved. PCV lesion area analysis using en face SD-OCT is a reproducible tool that can quantify treatment related changes. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:126-133.]. Copyright 2017, SLACK Incorporated.

  17. Correlation of quantitative dual-energy computed tomography iodine maps and abdominal computed tomography perfusion measurements: are single-acquisition dual-energy computed tomography iodine maps more than a reduced-dose surrogate of conventional computed tomography perfusion?

    PubMed

    Stiller, Wolfram; Skornitzke, Stephan; Fritz, Franziska; Klauss, Miriam; Hansen, Jens; Pahn, Gregor; Grenacher, Lars; Kauczor, Hans-Ulrich

    2015-10-01

    Study objectives were the quantitative evaluation of whether conventional abdominal computed tomography (CT) perfusion measurements mathematically correlate with quantitative single-acquisition dual-energy CT (DECT) iodine concentration maps, the determination of the optimum time of acquisition for achieving maximum correlation, and the estimation of the potential for radiation exposure reduction when replacing conventional CT perfusion by single-acquisition DECT iodine concentration maps. Dual-energy CT perfusion sequences were dynamically acquired over 51 seconds (34 acquisitions every 1.5 seconds) in 24 patients with histologically verified pancreatic carcinoma using dual-source DECT at tube potentials of 80 kVp and 140 kVp. Using software developed in-house, perfusion maps were calculated from 80-kVp image series using the maximum slope model after deformable motion correction. In addition, quantitative iodine maps were calculated for each of the 34 DECT acquisitions per patient. Within a manual segmentation of the pancreas, voxel-by-voxel correlation between the perfusion map and each of the iodine maps was calculated for each patient to determine the optimum time of acquisition topt defined as the acquisition time of the iodine map with the highest correlation coefficient. Subsequently, regions of interest were placed inside the tumor and inside healthy pancreatic tissue, and correlation between mean perfusion values and mean iodine concentrations within these regions of interest at topt was calculated for the patient sample. The mean (SD) topt was 31.7 (5.4) seconds after the start of contrast agent injection. The mean (SD) perfusion values for healthy pancreatic and tumor tissues were 67.8 (26.7) mL per 100 mL/min and 43.7 (32.2) mL per 100 mL/min, respectively. At topt, the mean (SD) iodine concentrations were 2.07 (0.71) mg/mL in healthy pancreatic and 1.69 (0.98) mg/mL in tumor tissue, respectively. Overall, the correlation between perfusion values and iodine concentrations was high (0.77), with correlation of 0.89 in tumor and of 0.56 in healthy pancreatic tissue at topt. Comparing radiation exposure associated with a single DECT acquisition at topt (0.18 mSv) to that of an 80 kVp CT perfusion sequence (2.96 mSv) indicates that an average reduction of Deff by 94% could be achieved by replacing conventional CT perfusion with a single-acquisition DECT iodine concentration map. Quantitative iodine concentration maps obtained with DECT correlate well with conventional abdominal CT perfusion measurements, suggesting that quantitative iodine maps calculated from a single DECT acquisition at an organ-specific and patient-specific optimum time of acquisition might be able to replace conventional abdominal CT perfusion measurements if the time of acquisition is carefully calibrated. This could lead to large reductions of radiation exposure to the patients while offering quantitative perfusion data for diagnosis.

  18. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei

    2018-05-01

    Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.

  19. Fourier phase in Fourier-domain optical coherence tomography

    PubMed Central

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  20. Audio frequency in vivo optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  1. 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT.

    PubMed

    Dewanckele, J; De Kock, T; Boone, M A; Cnudde, V; Brabant, L; Boone, M N; Fronteau, G; Van Hoorebeke, L; Jacobs, P

    2012-02-01

    Weathering processes have been studied in detail for many natural building stones. The most commonly used analytical techniques in these studies are thin-section petrography, SEM, XRD and XRF. Most of these techniques are valuable for chemical and mineralogical analysis of the weathering patterns. However, to obtain crucial quantitative information on structural evolutions like porosity changes and growth of weathering crusts in function of time, non-destructive techniques become necessary. In this study, a Belgian historical calcareous sandstone, the Lede stone, was exposed to gaseous SO(2) under wet surface conditions according to the European Standard NBN EN 13919 (2003). Before, during and after the strong acid test, high resolution X-ray tomography has been performed to visualize gypsum crust formation to yield a better insight into the effects of gaseous SO(2) on the pore modification in 3D. The tomographic scans were taken at the Centre for X-ray Tomography at Ghent University (UGCT). With the aid of image analysis, partial porosity changes were calculated in different stadia of the process. Increasing porosity has been observed visually and quantitatively below the new superficial formed layer of gypsum crystals. In some cases micro-cracks and dissolution zones were detected on the grain boundaries of quartz. By using Morpho+, an in-house developed image analysis program, radial porosity, partial porosity, ratio of open and closed porosity and equivalent diameter of individual pore structures have been calculated. The results obtained in this study are promising for a better understanding of gypsum weathering mechanisms, porosity changes and patterns on natural building stones in four dimensions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Characterization of dynamic physiology of the bladder by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  3. Quantitative Functional Imaging Using Dynamic Positron Computed Tomography and Rapid Parameter Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Koeppe, Robert Allen

    Positron computed tomography (PCT) is a diagnostic imaging technique that provides both three dimensional imaging capability and quantitative measurements of local tissue radioactivity concentrations in vivo. This allows the development of non-invasive methods that employ the principles of tracer kinetics for determining physiological properties such as mass specific blood flow, tissue pH, and rates of substrate transport or utilization. A physiologically based, two-compartment tracer kinetic model was derived to mathematically describe the exchange of a radioindicator between blood and tissue. The model was adapted for use with dynamic sequences of data acquired with a positron tomograph. Rapid estimation techniques were implemented to produce functional images of the model parameters by analyzing each individual pixel sequence of the image data. A detailed analysis of the performance characteristics of three different parameter estimation schemes was performed. The analysis included examination of errors caused by statistical uncertainties in the measured data, errors in the timing of the data, and errors caused by violation of various assumptions of the tracer kinetic model. Two specific radioindicators were investigated. ('18)F -fluoromethane, an inert freely diffusible gas, was used for local quantitative determinations of both cerebral blood flow and tissue:blood partition coefficient. A method was developed that did not require direct sampling of arterial blood for the absolute scaling of flow values. The arterial input concentration time course was obtained by assuming that the alveolar or end-tidal expired breath radioactivity concentration is proportional to the arterial blood concentration. The scale of the input function was obtained from a series of venous blood concentration measurements. The method of absolute scaling using venous samples was validated in four studies, performed on normal volunteers, in which directly measured arterial concentrations were compared to those predicted from the expired air and venous blood samples. The glucose analog ('18)F-3-deoxy-3-fluoro-D -glucose (3-FDG) was used for quantitating the membrane transport rate of glucose. The measured data indicated that the phosphorylation rate of 3-FDG was low enough to allow accurate estimation of the transport rate using a two compartment model.

  4. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.

  5. Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT

    NASA Astrophysics Data System (ADS)

    Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.

    1993-07-01

    Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.

  6. Quantitative EEG Neurometric Analysis-Guided Neurofeedback Treatment in Postconcussion Syndrome (PCS): Forty Cases. How Is Neurometric Analysis Important for the Treatment of PCS and as a Biomarker?

    PubMed

    Surmeli, Tanju; Eralp, Emin; Mustafazade, Ilham; Kos, Ismet Hadi; Özer, Gül Elif; Surmeli, Orkun H

    2017-05-01

    Postconcussion syndrome (PCS) has been used to describe a range of residual symptoms that persist 12 months or more after the injury, often despite a lack of evidence of brain abnormalities on magnetic resonance imaging and computed tomography scans. In this clinical case series, the efficacy of quantitative EEG-guided neurofeedback in 40 subjects diagnosed with PCS was investigated. Overall improvement was seen in all the primary (Symptom Assessment-45 Questionnaire, Clinical Global Impressions Scale, Hamilton Depression Scale) and secondary measures (Minnesota Multiphasic Personality Inventory, Test of Variables for Attention). The Neuroguide Traumatic Brain Index for the group also showed a decrease. Thirty-nine subjects were followed up long term with an average follow-up length of 3.1 years (CI = 2.7-3.3). All but 2 subjects were stable and were off medication. Overall neurofeedback treatment was shown to be effective in this group of subjects studied.

  7. Effective Heart Disease Detection Based on Quantitative Computerized Traditional Chinese Medicine Using Representation Based Classifiers.

    PubMed

    Shu, Ting; Zhang, Bob; Tang, Yuan Yan

    2017-01-01

    At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy compared with other classifiers and is proven to be effective at heart disease detection.

  8. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach

    PubMed Central

    Aerts, Hugo J. W. L.; Velazquez, Emmanuel Rios; Leijenaar, Ralph T. H.; Parmar, Chintan; Grossmann, Patrick; Cavalho, Sara; Bussink, Johan; Monshouwer, René; Haibe-Kains, Benjamin; Rietveld, Derek; Hoebers, Frank; Rietbergen, Michelle M.; Leemans, C. René; Dekker, Andre; Quackenbush, John; Gillies, Robert J.; Lambin, Philippe

    2014-01-01

    Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. PMID:24892406

  9. Quantitative analysis of rectal cancer by spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Q.; Wu, X. J.; Tang, T.; Zhu, S. W.; Yao, Q.; Gao, Bruce Z.; Yuan, X. C.

    2012-08-01

    To quantify OCT images of rectal tissue for clinic diagnosis, the scattering coefficient of the tissue is extracted by curve fitting the OCT signals to a confocal single model. A total of 1000 measurements (half and half of normal and malignant tissues) were obtained from 16 recta. The normal rectal tissue has a larger scattering coefficient ranging from 1.09 to 5.41 mm-1 with a mean value of 2.29 mm-1 (std:±0.32), while the malignant group shows lower scattering property and the values ranging from 0.25 to 2.69 mm-1 with a mean value of 1.41 mm-1 (std:±0.18). The peri-cancer of recta has also been investigated to distinguish the difference between normal and malignant rectal tissue. The results demonstrate that the quantitative analysis of the rectal tissue can be used as a promising diagnostic criterion of early rectal cancer, which has great value for clinical medical applications.

  10. A new software for dimensional measurements in 3D endodontic root canal instrumentation.

    PubMed

    Sinibaldi, Raffaele; Pecci, Raffaella; Somma, Francesco; Della Penna, Stefania; Bedini, Rossella

    2012-01-01

    The main issue to be faced to get size estimates of 3D modification of the dental canal after endodontic treatment is the co-registration of the image stacks obtained through micro computed tomography (micro-CT) scans before and after treatment. Here quantitative analysis of micro-CT images have been performed by means of new dedicated software targeted to the analysis of root canal after endodontic instrumentation. This software analytically calculates the best superposition between the pre and post structures using the inertia tensor of the tooth. This strategy avoid minimization procedures, which can be user dependent, and time consuming. Once the co-registration have been achieved dimensional measurements have then been performed by contemporary evaluation of quantitative parameters over the two superimposed stacks of micro-CT images. The software automatically calculated the changes of volume, surface and symmetry axes in 3D occurring after the instrumentation. The calculation is based on direct comparison of the canal and canal branches selected by the user on the pre treatment image stack.

  11. Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells

    PubMed Central

    Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H.; Meldrum, Deirdre R.

    2017-01-01

    Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field. PMID:29226240

  12. Quantifying the debonding of inclusions through tomography and computational homology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang; Johnson, George C.; Mota, Alejandro

    2010-09-01

    This report describes a Laboratory Directed Research and Development (LDRD) project to use of synchrotron-radiation computed tomography (SRCT) data to determine the conditions and mechanisms that lead to void nucleation in rolled alloys. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) has provided SRCT data of a few specimens of 7075-T7351 aluminum plate (widely used for aerospace applications) stretched to failure, loaded in directions perpendicular and parallel to the rolling direction. The resolution of SRCT data is 900nm, which allows elucidation of the mechanisms governing void growth and coalescence. This resolution is not fine enough, however, formore » nucleation. We propose the use statistics and image processing techniques to obtain sub-resolution scale information from these data, and thus determine where in the specimen and when during the loading program nucleation occurs and the mechanisms that lead to it. Quantitative analysis of the tomography data, however, leads to the conclusion that the reconstruction process compromises the information obtained from the scans. Alternate, more powerful reconstruction algorithms are needed to address this problem, but those fall beyond the scope of this project.« less

  13. CAD system for automatic analysis of CT perfusion maps

    NASA Astrophysics Data System (ADS)

    Hachaj, T.; Ogiela, M. R.

    2011-03-01

    In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.

  14. The core contribution of transmission electron microscopy to functional nanomaterials engineering

    NASA Astrophysics Data System (ADS)

    Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu

    2016-01-01

    Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05460e

  15. Optimal Adenosine Stress for Maximum Stress Perfusion, Coronary Flow Reserve, and Pixel Distribution of Coronary Flow Capacity by Kolmogorov-Smirnov Analysis.

    PubMed

    Kitkungvan, Danai; Lai, Dejian; Zhu, Hongjian; Roby, Amanda E; Johnson, Nils P; Steptoe, Derek D; Patel, Monica B; Kirkeeide, Richard; Gould, K Lance

    2017-02-01

    Different adenosine stress imaging protocols have not been systemically validated for absolute myocardial perfusion and coronary flow reserve (CFR) by positron emission tomography, where submaximal stress precludes assessing physiological severity of coronary artery disease. In 127 volunteers, serial rest-stress positron emission tomography scans using rubidium-82 with various adenosine infusion protocols identified (1) the protocol with maximum stress perfusion and CFR, (2) test-retest precision in same subject, (3) stress perfusion and CFR after adenosine compared with dipyridamole, (4) heterogeneity of coronary flow capacity combining stress perfusion and CFR, and (5) potential relevance for patients with risk factors or coronary artery disease. The adenosine 6-minute infusion with rubidium-82 injection at 3 minutes caused CFR that was significantly 15.7% higher than the 4-minute adenosine infusion with rubidium-82 injection at 2 minutes and significantly more homogeneous by Kolmogorov-Smirnov analysis for histograms of 1344 pixel range of perfusion in paired positron emission tomographies. In a coronary artery disease cohort separate from volunteers of this study, compared with the 3/6-minute protocol, the 2/4-minute adenosine protocol would potentially have changed 332 of 1732 (19%) positron emission tomographies at low-risk physiological severity CFR ≥2.3 to CFR <2.0, thereby implying high-risk quantitative severity potentially appropriate for interventions but because of suboptimal stress of the 2/4 protocol in some patients. The 6-minute adenosine infusion with rubidium-82 activation at 3 minutes produced CFR that averaged 15.7% higher than that in the 2/4-minute protocol, thereby potentially providing essential information for personalized management in some patients. © 2017 American Heart Association, Inc.

  16. Automated discrete electron tomography - Towards routine high-fidelity reconstruction of nanomaterials.

    PubMed

    Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost

    2017-04-01

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determining Metacarpophalangeal Flexion Angle Tolerance for Reliable Volumetric Joint Space Measurements by High-resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl

    2016-10-01

    The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.

  18. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba

    NASA Astrophysics Data System (ADS)

    Charrière, Florian; Pavillon, Nicolas; Colomb, Tristan; Depeursinge, Christian; Heger, Thierry J.; Mitchell, Edward A. D.; Marquet, Pierre; Rappaz, Benjamin

    2006-08-01

    This paper presents an optical diffraction tomography technique based on digital holographic microscopy. Quantitative 2-dimensional phase images are acquired for regularly-spaced angular positions of the specimen covering a total angle of π, allowing to built 3-dimensional quantitative refractive index distributions by an inverse Radon transform. A 20x magnification allows a resolution better than 3 μm in all three dimensions, with accuracy better than 0.01 for the refractive index measurements. This technique is for the first time to our knowledge applied to living specimen (testate amoeba, Protista). Morphometric measurements are extracted from the tomographic reconstructions, showing that the commonly used method for testate amoeba biovolume evaluation leads to systematic under evaluations by about 50%.

  19. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery.

    PubMed

    Ray, Robin; Barañano, David E; Fortun, Jorge A; Schwent, Bryan J; Cribbs, Blaine E; Bergstrom, Chris S; Hubbard, G Baker; Srivastava, Sunil K

    2011-11-01

    To evaluate the use of microscope mounted spectral domain optical coherence tomography (SD-OCT) to detect changes in retinal anatomy during macular surgery. Retrospective, observational case series. We included 25 eyes of 24 consecutive patients who underwent SD-OCT during macular surgery. A retrospective review of operative techniques, outcomes, and imaging for all patients who underwent intraoperative microscope mounted SD-OCT during surgery for macular hole or epiretinal membrane (ERM) from April 2009 to April 2010 was performed. Qualitative and quantitative characteristics of intraoperative and postoperative changes in retinal anatomy were studied. Intraoperative change in macular hole dimensions and retinal thickness in patients with ERM owing to surgical manipulation measured using SD-OCT. Intraoperative SD-OCT from 13 eyes of 13 patients undergoing surgery for macular hole was reviewed. Two cases had images of suboptimal quality and were excluded. The remaining 11 eyes were subjected to quantitative analysis, which revealed stability of macular hole height and central hole diameter after internal limiting membrane (ILM) peeling, but an increase in the diameter of subretinal fluid under the macula in ten of 11 eyes (average 87% wider). Intraoperative imaging from 12 eyes of 11 patients undergoing surgery for ERM was analyzed. Quantitative analysis revealed an average increase of retinal thickness after ILM peel of <2%. Ten of 12 eyes developed a new subretinal hyporeflectance, which likely represents shallow detachment of the macula, after uncomplicated membrane peel. Use of intraoperative SD-OCT has provided new insight into the changes to retinal anatomy during macular surgery and may prove to be a useful tool for vitreoretinal surgery. Further study is warranted to determine whether intraoperative changes such as the creation of shallow retinal detachments during uncomplicated macular surgery affects visual recovery. Proprietary or commercial disclosure may be found after the references. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  20. Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5- to 18-year-old Japanese children.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Hwang, Dea-Seok; Park, Soo-Byung; Son, Woo-Sung

    2015-11-01

    The purpose of this study was to establish multivariable regression models for the estimation of skeletal maturation status in Japanese boys and girls using the cone-beam computed tomography (CBCT)-based cervical vertebral maturation (CVM) assessment method and hand-wrist radiography. The analyzed sample consisted of hand-wrist radiographs and CBCT images from 47 boys and 57 girls. To quantitatively evaluate the correlation between the skeletal maturation status and measurement ratios, a CBCT-based CVM assessment method was applied to the second, third, and fourth cervical vertebrae. Pearson's correlation coefficient analysis and multivariable regression analysis were used to determine the ratios for each of the cervical vertebrae (p < 0.05). Four characteristic parameters ((OH2 + PH2)/W2, (OH2 + AH2)/W2, D2, AH3/W3), as independent variables, were used to build the multivariable regression models: for the Japanese boys, the skeletal maturation status according to the CBCT-based quantitative cervical vertebral maturation (QCVM) assessment was 5.90 + 99.11 × AH3/W3 - 14.88 × (OH2 + AH2)/W2 + 13.24 × D2; for the Japanese girls, it was 41.39 + 59.52 × AH3/W3 - 15.88 × (OH2 + PH2)/W2 + 10.93 × D2. The CBCT-generated CVM images proved very useful to the definition of the cervical vertebral body and the odontoid process. The newly developed CBCT-based QCVM assessment method showed a high correlation between the derived ratios from the second cervical vertebral body and odontoid process. There are high correlations between the skeletal maturation status and the ratios of the second cervical vertebra based on the remnant of dentocentral synchondrosis.

  1. The 100 most-cited original articles in cardiac computed tomography: A bibliometric analysis.

    PubMed

    O'Keeffe, Michael E; Hanna, Tarek N; Holmes, Davis; Marais, Olivia; Mohammed, Mohammed F; Clark, Sheldon; McLaughlin, Patrick; Nicolaou, Savvas; Khosa, Faisal

    2016-01-01

    Bibliometric analysis is the application of statistical methods to analyze quantitative data about scientific publications. It can evaluate research performance, author productivity, and manuscript impact. To the best of our knowledge, no bibliometric analysis has focused on cardiac computed tomography (CT). The purpose of this paper was to compile a list of the 100 most-cited articles related to cardiac CT literature using Scopus and Web of Science (WOS). A list of the 100 most-cited articles was compiled by order of citation frequency, as well a list of the top 10 most-cited guideline and review articles and the 20 most-cited articles of the years 2014-2015. The database of 100 most-cited articles was analyzed to identify characteristics of highly cited publications. For each manuscript, the number of authors, study design, size of patient cohort and departmental affiliations were cataloged. The 100 most-cited articles were published from 1990 to 2012, with the majority (53) published between 2005 and 2009. The total number of citations varied from 3354 to 196, and the number of citations per year varied from 9.5 to 129.0 with a median and mean of 30.9 and 38.7, respectively. The majority of publications had a study patients sample size of 200 patients or less. The USA and Germany were the nations with the highest number of frequently cited publications. This bibliometric analysis provides insights on the most-cited articles published on the subject of cardiac CT and calcium volume, thus helping to characterize the field and guide future research. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  2. Electron tomography and 3D molecular simulations of platinum nanocrystals

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Demortière, Arnaud; Petit, Christophe; Bulou, Hervé; Hirlimann, Charles; Ersen, Ovidiu

    2012-07-01

    This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface.This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30990d

  3. Estimation of whole body fat from appendicular soft tissue from peripheral quantitative computed tomography in adolescent girls

    PubMed Central

    Lee, Vinson R.; Blew, Rob M.; Farr, Josh N.; Tomas, Rita; Lohman, Timothy G.; Going, Scott B.

    2013-01-01

    Objective Assess the utility of peripheral quantitative computed tomography (pQCT) for estimating whole body fat in adolescent girls. Research Methods and Procedures Our sample included 458 girls (aged 10.7 ± 1.1y, mean BMI = 18.5 ± 3.3 kg/m2) who had DXA scans for whole body percent fat (DXA %Fat). Soft tissue analysis of pQCT scans provided thigh and calf subcutaneous percent fat and thigh and calf muscle density (muscle fat content surrogates). Anthropometric variables included weight, height and BMI. Indices of maturity included age and maturity offset. The total sample was split into validation (VS; n = 304) and cross-validation (CS; n = 154) samples. Linear regression was used to develop prediction equations for estimating DXA %Fat from anthropometric variables and pQCT-derived soft tissue components in VS and the best prediction equation was applied to CS. Results Thigh and calf SFA %Fat were positively correlated with DXA %Fat (r = 0.84 to 0.85; p <0.001) and thigh and calf muscle densities were inversely related to DXA %Fat (r = −0.30 to −0.44; p < 0.001). The best equation for estimating %Fat included thigh and calf SFA %Fat and thigh and calf muscle density (adj. R2 = 0.90; SEE = 2.7%). Bland-Altman analysis in CS showed accurate estimates of percent fat (adj. R2 = 0.89; SEE = 2.7%) with no bias. Discussion Peripheral QCT derived indices of adiposity can be used to accurately estimate whole body percent fat in adolescent girls. PMID:25147482

  4. DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research

    PubMed Central

    Clunie, David; Ulrich, Ethan; Bauer, Christian; Wahle, Andreas; Brown, Bartley; Onken, Michael; Riesmeier, Jörg; Pieper, Steve; Kikinis, Ron; Buatti, John; Beichel, Reinhard R.

    2016-01-01

    Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM®) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions. Conversion and visualization tools utilizing this toolkit were developed. The encoded objects were validated for consistency and interoperability. The resulting dataset was deposited in the QIN-HEADNECK collection of The Cancer Imaging Archive (TCIA). Supporting tools for data analysis and DICOM conversion were made available as free open-source software. Discussion. We presented a detailed investigation of the development and application of the DICOM model, as well as the supporting open-source tools and toolkits, to accommodate representation of the research data in QI biomarker development. We demonstrated that the DICOM standard can be used to represent the types of data relevant in HNC QI biomarker development, and encode their complex relationships. The resulting annotated objects are amenable to data mining applications, and are interoperable with a variety of systems that support the DICOM standard. PMID:27257542

  5. Anatomic and Quantitative Temporal Bone CT for Preoperative Assessment of Branchio-Oto-Renal Syndrome.

    PubMed

    Ginat, D T; Ferro, L; Gluth, M B

    2016-12-01

    We describe the temporal bone computed tomography (CT) findings of an unusual case of branchio-oto-renal syndrome with ectopic ossicles that are partially located in the middle cranial fossa. We also describe quantitative temporal bone CT assessment pertaining to cochlear implantation in the setting of anomalous cochlear anatomy associated with this syndrome.

  6. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with ¹⁵O H₂O positron emission tomography.

    PubMed

    Heijtel, D F R; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; Petersen, E T; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; Vanbavel, E; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2014-05-15

    Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Morphological image analysis for classification of gastrointestinal tissues using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.

    2012-01-01

    Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.

  8. Quantitative chest computed tomography as a means of predicting exercise performance in severe emphysema.

    PubMed

    Crausman, R S; Ferguson, G; Irvin, C G; Make, B; Newell, J D

    1995-06-01

    We assessed the value of quantitative high-resolution computed tomography (CT) as a diagnostic and prognostic tool in smoking-related emphysema. We performed an inception cohort study of 14 patients referred with emphysema. The diagnosis of emphysema was based on a compatible history, physical examination, chest radiograph, CT scan of the lung, and pulmonary physiologic evaluation. As a group, those who underwent exercise testing were hyperinflated (percentage predicted total lung capacity +/- standard error of the mean = 133 +/- 9%), and there was evidence of air trapping (percentage predicted respiratory volume = 318 +/- 31%) and airflow limitation (forced expiratory volume in 1 sec [FEV1] = 40 +/- 7%). The exercise performance of the group was severely limited (maximum achievable workload = 43 +/- 6%) and was characterized by prominent ventilatory, gas exchange, and pulmonary vascular abnormalities. The quantitative CT index was markedly elevated in all patients (76 +/- 9; n = 14; normal < 4). There were correlations between this quantitative CT index and measures of airflow limitation (FEV1 r2 = .34, p = 09; FEV1/forced vital capacity r2 = .46, p = .04) and between maximum workload achieved (r2 = .93, p = .0001) and maximum oxygen utilization (r2 = .83, p = .0007). Quantitative chest CT assessment of disease severity is correlated with the degree of airflow limitation and exercise impairment in pulmonary emphysema.

  9. Measurement of lung expansion with computed tomography and comparison with quantitative histology.

    PubMed

    Coxson, H O; Mayo, J R; Behzad, H; Moore, B J; Verburgt, L M; Staples, C A; Paré, P D; Hogg, J C

    1995-11-01

    The total and regional lung volumes were estimated from computed tomography (CT), and the pleural pressure gradient was determined by using the milliliters of gas per gram of tissue estimated from the X-ray attenuation values and the pressure-volume curve of the lung. The data show that CT accurately estimated the volume of the resected lobe but overestimated its weight by 24 +/- 19%. The volume of gas per gram of tissue was less in the gravity-dependent regions due to a pleural pressure gradient of 0.24 +/- 0.08 cmH2O/cm of descent in the thorax. The proportion of tissue to air obtained with CT was similar to that obtained by quantitative histology. We conclude that the CT scan can be used to estimate total and regional lung volumes and that measurements of the proportions of tissue and air within the thorax by CT can be used in conjunction with quantitative histology to evaluate lung structure.

  10. A calibrated iterative reconstruction for quantitative photoacoustic tomography using multi-angle light-sheet illuminations

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.

  11. Quantitative features in the computed tomography of healthy lungs.

    PubMed Central

    Fromson, B H; Denison, D M

    1988-01-01

    This study set out to determine whether quantitative features of lung computed tomography scans could be identified that would lead to a tightly defined normal range for use in assessing patients. Fourteen normal subjects with apparently healthy lungs were studied. A technique was developed for rapid and automatic extraction of lung field data from the computed tomography scans. The Hounsfield unit histograms were constructed and, when normalised for predicted lung volumes, shown to be consistent in shape for all the subjects. A three dimensional presentation of the data in the form of a "net plot" was devised, and from this a logarithmic relationship between the area of each lung slice and its mean density was derived (r = 0.9, n = 545, p less than 0.0001). The residual density, calculated as the difference between measured density and density predicted from the relationship with area, was shown to be normally distributed with a mean of 0 and a standard deviation of 25 Hounsfield units (chi 2 test: p less than 0.05). A presentation combining this residual density with the net plot is described. PMID:3353883

  12. Whole-Cell Analysis of Low-Density Lipoprotein Uptake by Macrophages Using STEM Tomography

    PubMed Central

    Baudoin, Jean-Pierre; Jerome, W. Gray; Kübel, Christian; de Jonge, Niels

    2013-01-01

    Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters. PMID:23383042

  13. Atom probe tomography of lithium-doped network glasses.

    PubMed

    Greiwe, Gerd-Hendrik; Balogh, Zoltan; Schmitz, Guido

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian

    2018-03-01

    OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.

  15. Evaluation of osteoarthritis progression using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nassif, Nader A.; Pierce, Mark C.; Park, B. Hyle; Cense, Barry; de Boer, Johannes F.

    2004-07-01

    Osteoarthritis is a prevalent medical condition that presents a diagnostic and therapeutic challenge to physicians today because of the inability to assess the integrity of the articular cartilage early in the disease. Polarization sensitive optical coherence tomography (PS-OCT) is a high resolution, non-contact imaging modality that provides cross-sectional images with additional information regarding the integrity of the collagen matrix. Using PS-OCT to image provides information regarding thickness of the articular cartilage and gives an index of biochemical changes based on alterations in optical properties (i.e. birefringence) of the tissue. We demonstrate initial experiments performed on specimens collected following total knee replacement surgery. Articular cartilage was imaged using a 1310 nm PS-OCT system where both intensity and phase images were acquired. PS-OCT images were compared with histology, and the changes in tissue optical properties were characterized. Analysis of the intensity images demonstrates differences between healthy and diseased cartilage surface and thickness. Phase maps of the tissue demonstrated distinct differences between healthy and diseased tissue. PS-OCT was able to image a gradual loss of birefringence as the tissue became more diseased. In this way, determining the rate of change of the phase provides a quantitative measure of pathology. Thus, imaging and evaluation of osteoarthritis using PS-OCT can be a useful means of quantitative assessment of the disease.

  16. Computer system for definition of the quantitative geometry of musculature from CT images.

    PubMed

    Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava

    2005-02-01

    The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.

  17. Quantitative computed tomography assessment of transfusional iron overload.

    PubMed

    Wood, John C; Mo, Ashley; Gera, Aakansha; Koh, Montre; Coates, Thomas; Gilsanz, Vicente

    2011-06-01

    Quantitative computed tomography (QCT) has been proposed for iron quantification for more than 30 years, however there has been little clinical validation. We compared liver attenuation by QCT with magnetic resonance imaging (MRI)-derived estimates of liver iron concentration (LIC) in 37 patients with transfusional siderosis. MRI and QCT measurements were performed as clinically indicated monitoring of LIC and vertebral bone-density respectively, over a 6-year period. Mean time difference between QCT and MRI studies was 14 d, with 25 studies performed on the same day. For liver attenuation outside the normal range, attenuation values rose linearly with LIC (r(2) = 0·94). However, intersubject variability in intrinsic liver attenuation prevented quantitation of LIC <8 mg/g dry weight of liver, and was the dominant source of measurement uncertainty. Calculated QCT and MRI accuracies were equivalent for LIC values approaching 22 mg/g dry weight, with QCT having superior performance at higher LIC's. Although not suitable for monitoring patients with good iron control, QCT may nonetheless represent a viable technique for liver iron quantitation in patients with moderate to severe iron in regions where MRI resources are limited because of its low cost, availability, and high throughput. © 2011 Blackwell Publishing Ltd.

  18. Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Pin-Chieh; Pande, Paritosh; Shelton, Ryan L.; Joa, Frank; Moore, Dave; Gillman, Elisa; Kidd, Kimberly; Nolan, Ryan M.; Odio, Mauricio; Carr, Andrew; Boppart, Stephen A.

    2017-03-01

    Influenced by both the intrinsic viscoelasticity of the tissue constituents and the time-evolved redistribution of fluid within the tissue, the biomechanical response of skin can reflect not only localized pathology but also systemic physiology of an individual. While clinical diagnosis of skin pathologies typically relies on visual inspection and manual palpation, a more objective and quantitative approach for tissue characterization is highly desirable. Optical coherence tomography (OCT) is an interferometry-based imaging modality that enables in vivo assessment of cross-sectional tissue morphology with micron-scale resolution, which surpasses those of most standard clinical imaging tools, such as ultrasound imaging and magnetic resonance imaging. This pilot study investigates the feasibility of characterizing the biomechanical response of in vivo human skin using OCT. OCT-based quantitative metrics were developed and demonstrated on the human subject data, where a significant difference between deformed and nondeformed skin was revealed. Additionally, the quantified postindentation recovery results revealed differences between aged (adult) and young (infant) skin. These suggest that OCT has the potential to quantitatively assess the mechanically perturbed skin as well as distinguish different physiological conditions of the skin, such as changes with age or disease.

  19. Bone Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Truskowski, P.

    2010-01-01

    This slide presentation reviews the concerns that astronauts in long duration flights might have a greater risk of bone fracture as they age than the general population. A panel of experts was convened to review the information and recommend mechanisms to monitor the health of bones in astronauts. The use of Quantitative Computed Tomography (QCT) scans for risk surveillance to detect the clinical trigger and to inform countermeasure evaluation is reviewed. An added benefit of QCT is that it facilitates an individualized estimation of bone strength by Finite Element Modeling (FEM), that can inform approaches for bone rehabilitation. The use of FEM is reviewed as a process that arrives at a composite number to estimate bone strength, because it integrates multiple factors.

  20. In vivo classification of human skin burns using machine learning and quantitative features captured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip

    2018-02-01

    We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.

  1. Pulmonary nodule characterization, including computer analysis and quantitative features.

    PubMed

    Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E

    2015-03-01

    Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.

  2. Analysis of PETT images in psychiatric disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, J.D.; Gomez-Mont, F.; Volkow, N.D.

    1983-01-01

    A quantitative method is presented for studying the pattern of metabolic activity in a set of Positron Emission Transaxial Tomography (PETT) images. Using complex Fourier coefficients as a feature vector for each image, cluster, principal components, and discriminant function analyses are used to empirically describe metabolic differences between control subjects and patients with DSM III diagnosis for schizophrenia or endogenous depression. We also present data on the effects of neuroleptic treatment on the local cerebral metabolic rate of glucose utilization (LCMRGI) in a group of chronic schizophrenics using the region of interest approach. 15 references, 4 figures, 3 tables.

  3. Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.

    PubMed

    Marceau, R K W; Choi, P; Raabe, D

    2013-09-01

    A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study.

    PubMed

    Boone, M A L M; Suppa, M; Marneffe, A; Miyamoto, M; Jemec, G B E; Del Marmol, V

    2015-10-01

    Several non-invasive two-dimensional techniques with different lateral resolution and measurable depth range have proved to be useful in assessing and quantifying morphological changes in skin ageing. Among these, only in vivo microscopy techniques permit histometric measurements in vivo. Qualitative and quantitative assessment of chronological (intrinsic) age-related (IAR) morphological changes of epidermis, dermo-epidermal junction (DEJ), papillary dermis (PD), papillary-reticular dermis junction and reticular dermis (RD) have been performed by high-definition optical coherence tomography in real time 3-D. HD-OCT images were taken at the internal site of the right upper arm. Qualitative HD-OCT IAR descriptors were reported at skin surface, at epidermal layer, DEJ, PD and upper RD. Quantitative evaluation of age-related compaction and backscattered intensity or brightness of different skin layers was performed by using the plugin plot z-axis profile of ImageJ(®) software permitting intensity assessment of HD-OCT (DICOM) images (3-D images). Analysis was in blind from all clinical information. Sixty, fair-skinned (Fitzpatrick types I-III) healthy females were analysed retrospectively in this study. The subjects belonged to three age groups: twenty in group I aged 20-39, twenty in group II aged 40-59 and twenty in group III aged 60-79. Only intrinsic ageing in women has been studied. Significant age-related qualitative and quantitative differences could be noticed. IAR changes in dermal matrix fibers morphology/organisation and in microvasculature were observed. The brightness and compaction of the different skin layers increased significantly with intrinsic skin ageing. The depth of visibility of fibers in RD increased significantly in the older age group. In conclusion, HD-OCT allows 3-D in vivo and real time qualitative and quantitative assessment of chronological (intrinsic) age-related morphological skin changes at high resolution from skin surface to a depth of the superficial reticular dermis.

  5. 3D analysis of semiconductor devices: A combination of 3D imaging and 3D elemental analysis

    NASA Astrophysics Data System (ADS)

    Fu, Bianzhu; Gribelyuk, Michael A.

    2018-04-01

    3D analysis of semiconductor devices using a combination of scanning transmission electron microscopy (STEM) Z-contrast tomography and energy dispersive spectroscopy (EDS) elemental tomography is presented. 3D STEM Z-contrast tomography is useful in revealing the depth information of the sample. However, it suffers from contrast problems between materials with similar atomic numbers. Examples of EDS elemental tomography are presented using an automated EDS tomography system with batch data processing, which greatly reduces the data collection and processing time. 3D EDS elemental tomography reveals more in-depth information about the defect origin in semiconductor failure analysis. The influence of detector shadowing and X-rays absorption on the EDS tomography's result is also discussed.

  6. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    NASA Astrophysics Data System (ADS)

    Mewes, Benjamin; Hilbich, Christin; Delaloye, Reynald; Hauck, Christian

    2017-12-01

    Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.

  7. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis.

    PubMed

    Evangelista, Laura; Guttilla, Andrea; Zattoni, Fabio; Muzzio, Pier Carlo; Zattoni, Filiberto

    2013-06-01

    Determination of tumour involvement of regional lymph nodes in patients with prostate cancer (PCa) is of key importance for the proper planning of treatment. To provide a critical overview of published reports and to perform a meta-analysis about the diagnostic performance of 18F-choline and 11C-choline positron emission tomography (PET) or PET/computed tomography (CT) in the lymph node staging of PCa. A Medline, Web of Knowledge, and Google Scholar search was carried out to select English-language articles published before January 2012 that discussed the diagnostic performance of choline PET to individualise lymph node disease at initial staging in PCa patients. Articles were included only if absolute numbers of true-positive, true-negative, false-positive, and false-negative test results were available or derivable from the text and focused on lymph node metastases. Reviews, clinical reports, and editorial articles were excluded. All complete studies were reviewed; thus qualitative and quantitative analyses were performed. From the year 2000 to January 2012, we found 18 complete articles that critically evaluated the role of choline PET and PCa at initial staging. The meta-analysis was carried out and consisted of 10 selected studies with a total of 441 patients. The meta-analysis provided the following results: pooled sensitivity 49.2% (95% confidence interval [CI], 39.9-58.4) and pooled specificity 95% (95% CI, 92-97.1). The area under the curve was 0.9446 (p<0.05). The heterogeneity ranged between 22.7% and 78.4%. The diagnostic odds ratio was 18.999 (95% CI, 7.109-50.773). Choline PET and PET/CT provide low sensitivity in the detection of lymph node metastases prior to surgery in PCa patients. A high specificity has been reported from the overall studies. Studies carried out on a larger scale with a homogeneous patient population together with the evaluation of cost effectiveness are warranted. Copyright © 2012 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  9. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  10. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography.

    PubMed

    Kamei, Noriyasu; Morishita, Mariko; Kanayama, Yousuke; Hasegawa, Koki; Nishimura, Mie; Hayashinaka, Emi; Wada, Yasuhiro; Watanabe, Yasuyoshi; Takayama, Kozo

    2010-08-17

    Molecular imaging technique by use of positron emission tomography (PET) is a noninvasive tool that allows one to quantitatively analyze the function of endogenous molecules and the pharmacokinetics of therapeutic agents in vivo. This technique is expected to be useful for evaluating the effectiveness of diverse drug delivery systems. We demonstrated previously that intestinal insulin absorption is increased significantly by coadministration of cell-penetrating peptides (CPPs), which are taken up effectively by several cells. However, the distribution behavior of insulin whose absorption is increased by CPPs is not clear. We used PET imaging and quantitatively analyzed the intestinal absorption and subsequent distribution of insulin and the effect of CPPs on its absorption and distribution. An unlabeled insulin solution containing tracer insulin, (68)Ga-DOTA-insulin, was administered with or without CPPs into a rat ileal closed loop. PET imaging showed that the CPPs, particularly D-R8 and L-penetratin, significantly increased the (68)Ga-DOTA-insulin level in the liver, kidney, and circulation. After absorption from the intestine, the (68)Ga-DOTA-insulin passed rapidly through the liver and accumulated in the kidney. The increase in the hepatic and renal distribution of (68)Ga-DOTA-insulin by each CPP coadministration was similar manner as that in intestinal absorption, suggesting that the increased accumulation of insulin in the liver and kidney induced by coadministration of CPPs was associated with the increased intestinal absorption of insulin. This is the first study to show that PET imaging enables one to quantitatively analyze the distribution behavior of intestinally absorbed insulin in several organs. This imaging methodology is likely to be useful for developing effective drug delivery systems targeted to specific organs. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography.

    PubMed

    Meisenkothen, Frederick; Steel, Eric B; Prosa, Ty J; Henry, Karen T; Prakash Kolli, R

    2015-12-01

    In atom probe tomography (APT), some elements tend to field evaporate preferentially in multi-hit detection events. Boron (B) is one such element. It is thought that a large fraction of the B signal may be lost during data acquisition and is not reported in the mass spectrum or in the 3-D APT reconstruction. Understanding the relationship between the field evaporation behavior of B and the limitations for detecting multi-hit events can provide insight into the signal loss mechanism for B and may suggest ways to improve B detection accuracy. The present work reports data for nominally pure B and for B-implanted silicon (Si) (NIST-SRM2137) at dose levels two-orders of magnitude lower than previously studied by Da Costa, et al. in 2012. Boron concentration profiles collected from SRM2137 specimens qualitatively confirmed a signal loss mechanism is at work in laser pulsed atom probe measurements of B in Si. Ion correlation analysis was used to graphically demonstrate that the detector dead-time results in few same isotope, same charge-state (SISCS) ion pairs being properly recorded in the multi-hit data, explaining why B is consistently under-represented in quantitative analyses. Given the important role of detector dead-time as a signal loss mechanism, the results from three different methods of estimating the detector dead-time are presented. The findings of this study apply to all quantitative analyses that involve multi-hit data, but the dead-time will have the greatest effect on the elements that have a significant quantity of ions detected in multi-hit events. Published by Elsevier B.V.

  12. Discordance between Prevalent Vertebral Fracture and Vertebral Strength Estimated by the Finite Element Method Based on Quantitative Computed Tomography in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    2015-01-01

    Background Bone fragility is increased in patients with type 2 diabetes mellitus (T2DM), but a useful method to estimate bone fragility in T2DM patients is lacking because bone mineral density alone is not sufficient to assess the risk of fracture. This study investigated the association between prevalent vertebral fractures (VFs) and the vertebral strength index estimated by the quantitative computed tomography-based nonlinear finite element method (QCT-based nonlinear FEM) using multi-detector computed tomography (MDCT) for clinical practice use. Research Design and Methods A cross-sectional observational study was conducted on 54 postmenopausal women and 92 men over 50 years of age, all of whom had T2DM. The vertebral strength index was compared in patients with and without VFs confirmed by spinal radiographs. A standard FEM procedure was performed with the application of known parameters for the bone material properties obtained from nondiabetic subjects. Results A total of 20 women (37.0%) and 39 men (42.4%) with VFs were identified. The vertebral strength index was significantly higher in the men than in the women (P<0.01). Multiple regression analysis demonstrated that the vertebral strength index was significantly and positively correlated with the spinal bone mineral density (BMD) and inversely associated with age in both genders. There were no significant differences in the parameters, including the vertebral strength index, between patients with and without VFs. Logistic regression analysis adjusted for age, spine BMD, BMI, HbA1c, and duration of T2DM did not indicate a significant relationship between the vertebral strength index and the presence of VFs. Conclusion The vertebral strength index calculated by QCT-based nonlinear FEM using material property parameters obtained from nondiabetic subjects, whose risk of fracture is lower than that of T2DM patients, was not significantly associated with bone fragility in patients with T2DM. This discordance may indirectly suggest that patients with T2DM have deteriorated bone material compared with nondiabetic subjects, a potential cause of bone fragility in T2DM patients. PMID:26642210

  13. Correction of Motion Artifacts From Shuttle Mode Computed Tomography Acquisitions for Body Perfusion Imaging Applications.

    PubMed

    Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S

    2016-01-01

    The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.

  14. Acoustic Source Analysis of Magnetoacoustic Tomography With Magnetic Induction for Conductivity Gradual-Varying Tissues.

    PubMed

    Wang, Jiawei; Zhou, Yuqi; Sun, Xiaodong; Ma, Qingyu; Zhang, Dong

    2016-04-01

    As a multiphysics imaging approach, magnetoacoustic tomography with magnetic induction (MAT-MI) works on the physical mechanism of magnetic excitation, acoustic vibration, and transmission. Based on the theoretical analysis of the source vibration, numerical studies are conducted to simulate the pathological changes of tissues for a single-layer cylindrical conductivity gradual-varying model and estimate the strengths of sources inside the model. The results suggest that the inner source is generated by the product of the conductivity and the curl of the induced electric intensity inside conductivity homogeneous medium, while the boundary source is produced by the cross product of the gradient of conductivity and the induced electric intensity at conductivity boundary. For a biological tissue with low conductivity, the strength of boundary source is much higher than that of the inner source only when the size of conductivity transition zone is small. In this case, the tissue can be treated as a conductivity abrupt-varying model, ignoring the influence of inner source. Otherwise, the contributions of inner and boundary sources should be evaluated together quantitatively. This study provide basis for further study of precise image reconstruction of MAT-MI for pathological tissues.

  15. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  16. Osteoporosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riggs, B.L. Melton III, L.J.

    This book contains 20 chapters. Some of the titles are: Radiology of asteoporosis; Quantitative computed tomography in assessment of osteoporosis; Nuclear medicine and densitometry; Assessment of bone turnover by histormorphometry in osteoporosis; and The biochemistry of bone.

  17. Grating-based tomography applications in biomedical engineering

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Thalmann, Peter; Khimchenko, Anna; Müller, Bert

    2017-10-01

    For the investigation of soft tissues or tissues consisting of soft and hard tissues on the microscopic level, hard X-ray phase tomography has become one of the most suitable imaging techniques. Besides other phase contrast methods grating interferometry has the advantage of higher sensitivity than inline methods and the quantitative results. One disadvantage of the conventional double-grating setup (XDGI) compared to inline methods is the limitation of the spatial resolution. This limitation can be overcome by removing the analyser grating resulting in a single-grating setup (XSGI). In order to verify the performance of XSGI concerning contrast and spatial resolution, a quantitative comparison of XSGI and XDGI tomograms of a human nerve was performed. Both techniques provide sufficient contrast to allow for the distinction of tissue types. The spatial resolution of the two-fold binned XSGI data set is improved by a factor of two in comparison to XDGI which underlies its performance in tomography of soft tissues. Another application for grating-based X-ray phase tomography is the simultaneous visualization of soft and hard tissues of a plaque-containing coronary artery. The simultaneous visualization of both tissues is important for the segmentation of the lumen. The segmented data can be used for flow simulations in order to obtain information about the three-dimensional wall shear stress distribution needed for the optimization of mechano-sensitive nanocontainers used for drug delivery.

  18. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other. Copyright 2000 S. Karger AG, Basel.

  19. Progress and opportunities in EELS and EDS tomography.

    PubMed

    Collins, Sean M; Midgley, Paul A

    2017-09-01

    Electron tomography using energy loss and X-ray spectroscopy in the electron microscope continues to develop in rapidly evolving and diverse directions, enabling new insight into the three-dimensional chemistry and physics of nanoscale volumes. Progress has been made recently in improving reconstructions from EELS and EDS signals in electron tomography by applying compressed sensing methods, characterizing new detector technologies in detail, deriving improved models of signal generation, and exploring machine learning approaches to signal processing. These disparate threads can be brought together in a cohesive framework in terms of a model-based approach to analytical electron tomography. Models incorporate information on signal generation and detection as well as prior knowledge of structures in the spectrum image data. Many recent examples illustrate the flexibility of this approach and its feasibility for addressing challenges in non-linear or limited signals in EELS and EDS tomography. Further work in combining multiple imaging and spectroscopy modalities, developing synergistic data acquisition, processing, and reconstruction approaches, and improving the precision of quantitative spectroscopic tomography will expand the frontiers of spatial resolution, dose limits, and maximal information recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  1. Cerebral capillary velocimetry based on temporal OCT speckle contrast.

    PubMed

    Choi, Woo June; Li, Yuandong; Qin, Wan; Wang, Ruikang K

    2016-12-01

    We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.

  2. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  3. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish

    PubMed Central

    Correia, Teresa; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J.; McGinty, James; Frankel, Paul; French, Paul M. W.; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  4. Compensation of missing wedge effects with sequential statistical reconstruction in electron tomography.

    PubMed

    Paavolainen, Lassi; Acar, Erman; Tuna, Uygar; Peltonen, Sari; Moriya, Toshio; Soonsawad, Pan; Marjomäki, Varpu; Cheng, R Holland; Ruotsalainen, Ulla

    2014-01-01

    Electron tomography (ET) of biological samples is used to study the organization and the structure of the whole cell and subcellular complexes in great detail. However, projections cannot be acquired over full tilt angle range with biological samples in electron microscopy. ET image reconstruction can be considered an ill-posed problem because of this missing information. This results in artifacts, seen as the loss of three-dimensional (3D) resolution in the reconstructed images. The goal of this study was to achieve isotropic resolution with a statistical reconstruction method, sequential maximum a posteriori expectation maximization (sMAP-EM), using no prior morphological knowledge about the specimen. The missing wedge effects on sMAP-EM were examined with a synthetic cell phantom to assess the effects of noise. An experimental dataset of a multivesicular body was evaluated with a number of gold particles. An ellipsoid fitting based method was developed to realize the quantitative measures elongation and contrast in an automated, objective, and reliable way. The method statistically evaluates the sub-volumes containing gold particles randomly located in various parts of the whole volume, thus giving information about the robustness of the volume reconstruction. The quantitative results were also compared with reconstructions made with widely-used weighted backprojection and simultaneous iterative reconstruction technique methods. The results showed that the proposed sMAP-EM method significantly suppresses the effects of the missing information producing isotropic resolution. Furthermore, this method improves the contrast ratio, enhancing the applicability of further automatic and semi-automatic analysis. These improvements in ET reconstruction by sMAP-EM enable analysis of subcellular structures with higher three-dimensional resolution and contrast than conventional methods.

  5. Volumetric computed tomography analysis of the olfactory cleft in patients with chronic rhinosinusitis.

    PubMed

    Soler, Zachary M; Pallanch, John F; Sansoni, Eugene Ritter; Jones, Cameron S; Lawrence, Lauren A; Schlosser, Rodney J; Mace, Jess C; Smith, Timothy L

    2015-09-01

    Commonly used computed tomography (CT) staging systems for chronic rhinosinusitis (CRS) focus on the sinuses and do not quantify disease in the olfactory cleft. The goal of the current study was to determine whether precise measurements of olfactory cleft opacification better correlate with olfaction in patients with CRS. Olfaction was assessed using the 40-item Smell Identification Test (SIT-40) before and after sinus surgery in adult patients. Olfactory cleft opacification was quantified precisely using three-dimensional (3D), computerized volumetric analysis, as well as via semiquantitative Likert scale estimations at predetermined anatomic sites. Sinus opacification was also quantified using the Lund-Mackay staging system. The overall cohort (n = 199) included 89 (44.7%) patients with CRS with nasal polyposis (CRSwNP) and 110 (55.3%) with CRS without nasal polyposis (CRSsNP). The olfactory cleft opacified volume correlated with objective olfaction as determined by the SIT-40 (Spearman's rank correlation coefficient [Rs ] = -0.461; p < 0.001). The correlation was significantly stronger in the CRSwNP subgroup (Rs = -0.573; p < 0.001), whereas no appreciable correlation was found in the CRSsNP group (Rs = -0.141; p = 0.141). Correlations between sinus-specific Lund-Mackay CT scoring and SIT-40 scores were weaker in the CRSwNP (Rs = -0.377; p < 0.001) subgroup but stronger in the CRSsNP (Rs = -0.225; p = 0.018) group when compared to olfactory cleft correlations. Greater intraclass correlations (ICCs) were found between quantitative volumetric measures of olfactory cleft opacification (ICC = 0.844; p < 0.001) as compared with semiquantitative Likert grading (ICC = 0.627; p < 0.001). Quantitative measures of olfactory cleft opacification correlate with objective olfaction, with the strongest correlations seen in patients with nasal polyps. © 2015 ARS-AAOA, LLC.

  6. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    PubMed

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites showed correlations with SER and SUV in the ER positive, HER2 negative, and Ki-67 negative groups. High levels of PC, choline, and glycine acquired from HR-MAS MRS using CNB specimens were noted in the high SER group via DCE MRI and the high SUV group via PET-CT, with significant correlations between choline and SER and between PC and SUV. Further studies should investigate whether HR-MAS MRS using CNB specimens can provide similar or more prognostic information than conventional quantitative imaging parameters.

  7. Quantitative analysis of a reconstruction method for fully three-dimensional PET.

    PubMed

    Suckling, J; Ott, R J; Deehan, B J

    1992-03-01

    The major advantage of positron emission tomography (PET) using large area planar detectors over scintillator-based commercial ring systems is the potentially larger (by a factor of two or three) axial field-of-view (FOV). However, to achieve the space invariance of the point spread function necessary for Fourier filtering a polar angle rejection criterion is applied to the data during backprojection resulting in a trade-off between FOV size and sensitivity. A new algorithm due to Defrise and co-workers developed for list-mode data overcomes this problem with a solution involving the division of the image into several subregions. A comparison between the existing backprojection-then-filter algorithm and the new method (with three subregions) has been made using both simulated and real data collected from the MUP-PET positron camera. Signal-to-noise analysis reveals that improvements of up to a factor of 1.4 are possible resulting from an increased data usage of up to a factor of 2.5 depending on the axial extent of the imaged object. Quantitation is also improved.

  8. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Weili; Fiddy, Michael A.

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  9. DMD-based quantitative phase microscopy and optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie

    2018-02-01

    Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.

  10. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  11. Micro-computed tomography of false starts produced on bone by different hand-saws.

    PubMed

    Pelletti, Guido; Viel, Guido; Fais, Paolo; Viero, Alessia; Visentin, Sindi; Miotto, Diego; Montisci, Massimo; Cecchetto, Giovanni; Giraudo, Chiara

    2017-05-01

    The analysis of macro- and microscopic characteristics of saw marks on bones can provide useful information about the class of the tool utilized to produce the injury. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of false starts experimentally produced on 32 human bone sections using 4 different hand-saws in order to verify the potential utility of micro-CT for distinguishing false starts produced by different saws and to correlate the morphology of the tool with that of the bone mark. Each sample was analysed through stereomicroscopy and micro-CT. Stereomicroscopic analysis allowed the identification of the false starts and the detection of the number of tool marks left by each saw. Micro-CT scans, through the integration of 3D renders and multiplanar reconstructions (MPR), allowed the identification of the shape of each false start correlating it to the injuring tool. Our results suggest that micro-CT could be a useful technique for assessing false starts produced by different classes of saws, providing accurate morphological profiles of the bone marks with all the advantages of high resolution 3D imaging (e.g., high accuracy, non-destructive analysis, preservation and documentation of evidence). However, further studies are necessary to integrate qualitative data with quantitative metrical analysis in order to further characterize the false start and the related injuring tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos Santos, T. M.; Lima, I.; Lopes, R. T.

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  13. Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography

    PubMed Central

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2014-01-01

    We report on a quantitative optical elastographic method based on shear wave imaging optical coherence tomography (SWI-OCT) for biomechanical characterization of cardiac muscle through noncontact elasticity measurement. The SWI-OCT system employs a focused air-puff device for localized loading of the cardiac muscle and utilizes phase-sensitive OCT to monitor the induced tissue deformation. Phase information from the optical interferometry is used to reconstruct 2-D depth-resolved shear wave propagation inside the muscle tissue. Cross-correlation of the displacement profiles at various spatial locations in the propagation direction is applied to measure the group velocity of the shear waves, based on which the Young’s modulus of tissue is quantified. The quantitative feature and measurement accuracy of this method is demonstrated from the experiments on tissue-mimicking phantoms with the verification using uniaxial compression test. The experiments are performed on ex vivo cardiac muscle tissue from mice with normal and genetically altered myocardium. Our results indicate this optical elastographic technique is useful as a noncontact tool to assist the cardiac muscle studies. PMID:25071943

  14. Retrospective Analysis of the Outcome of Ridge Preservation with Anorganic Bovine Bone Minerals: Microcomputed Tomographic Assessment of Wound Healing in Grafted Extraction Sockets.

    PubMed

    Bakhshalian, Neema; Freire, Marcelo; Min, Seiko; Wu, Ivy; Zadeh, Homayoun H

    A total of 68 extraction sockets were grafted with anorganic bovine bone mineral and covered by dense polytetrafluoroethylene membrane. Quantitative analysis of three-dimensional microcomputed tomography imaging of core samples retrieved after a mean of 21.0 ± 14.2 weeks revealed 40.1% bone volume fraction (bone volume [BV]/total volume [TV]) and 12% residual graft. Evidence of de novo bone formation was observed in the form of discrete islands of newly formed bone in direct apposition to graft particles, separated from parent bone. Anterior sockets exhibited a significantly higher percentage of residual graft compared to premolar sockets (P = .05). The BV/TV and percentage of residual graft correlated well with histomorphometric analysis of the same sites, but not with implant outcomes.

  15. Detecting cell death with optical coherence tomography and envelope statistics

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-02-01

    Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.

  16. A Phase 2 Study of 16α-[18F]-fluoro-17β-estradiol Positron Emission Tomography (FES-PET) as a Marker of Hormone Sensitivity in Metastatic Breast Cancer (MBC)

    PubMed Central

    Peterson, Lanell M.; Kurland, Brenda F.; Schubert, Erin K.; Link, Jeanne M.; Gadi, V.K.; Specht, Jennifer M.; Eary, Janet F.; Porter, Peggy; Shankar, Lalitha K.; Mankoff, David A.; Linden, Hannah M.

    2014-01-01

    Purpose 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) quantifies estrogen receptor (ER) expression in tumors and may provide diagnostic benefit. Procedures Women with newly diagnosed metastatic breast cancer (MBC) from an ER-positive primary tumor were imaged before starting endocrine therapy. FES uptake was evaluated qualitatively and quantitatively, and associated with response and with ER expression. Results Nineteen patients underwent FES imaging. Fifteen had a biopsy of a metastasis and 15 were evaluable for response. Five patients had quantitatively low FES uptake, six had at least one site of qualitatively FES-negative disease. All patients with an ER-negative biopsy had both low uptake and at least one site of FES-negative disease. Of response-evaluable patients, 2/2 with low FES standard uptake value tumors had progressive disease within 6 months, as did 2/3 with qualitatively FES-negative tumors. Conclusions Low/absent FES uptake correlates with lack of ER expression. FES-positron emission tomography can help identify patients with endocrine resistant disease and safely measures ER in MBC. PMID:24170452

  17. Adaptive Statistical Iterative Reconstruction-V Versus Adaptive Statistical Iterative Reconstruction: Impact on Dose Reduction and Image Quality in Body Computed Tomography.

    PubMed

    Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo

    The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P < 0.0001) for the ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P < 0.0001) for ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.

  18. Positron emission tomography in cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correia, J.A.; Alpert, N.M.

    1985-12-01

    This article reviews the basis of PET imaging and current applications to cardiology. Included is a discussion of physical principles, detectors, quantitative estimation of regional radioactivity concentrations, radiopharmaceuticals, and application to flow and metabolism measurements in the myocardium.

  19. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  20. Automatic quantitative analysis of in-stent restenosis using FD-OCT in vivo intra-arterial imaging.

    PubMed

    Mandelias, Kostas; Tsantis, Stavros; Spiliopoulos, Stavros; Katsakiori, Paraskevi F; Karnabatidis, Dimitris; Nikiforidis, George C; Kagadis, George C

    2013-06-01

    A new segmentation technique is implemented for automatic lumen area extraction and stent strut detection in intravascular optical coherence tomography (OCT) images for the purpose of quantitative analysis of in-stent restenosis (ISR). In addition, a user-friendly graphical user interface (GUI) is developed based on the employed algorithm toward clinical use. Four clinical datasets of frequency-domain OCT scans of the human femoral artery were analyzed. First, a segmentation method based on fuzzy C means (FCM) clustering and wavelet transform (WT) was applied toward inner luminal contour extraction. Subsequently, stent strut positions were detected by utilizing metrics derived from the local maxima of the wavelet transform into the FCM membership function. The inner lumen contour and the position of stent strut were extracted with high precision. Compared to manual segmentation by an expert physician, the automatic lumen contour delineation had an average overlap value of 0.917 ± 0.065 for all OCT images included in the study. The strut detection procedure achieved an overall accuracy of 93.80% and successfully identified 9.57 ± 0.5 struts for every OCT image. Processing time was confined to approximately 2.5 s per OCT frame. A new fast and robust automatic segmentation technique combining FCM and WT for lumen border extraction and strut detection in intravascular OCT images was designed and implemented. The proposed algorithm integrated in a GUI represents a step forward toward the employment of automated quantitative analysis of ISR in clinical practice.

  1. [Research progress of polyethylene inserts wear measurement and evaluation in total knee arthroplasty].

    PubMed

    Zhao, Feng; Wang, Chuan; Fan, Yubo

    2015-01-01

    Wear of polyethylene (PE) tibial inserts is a significant cause of implant failure of total knee arthroplasty (TKA). PE inserts wear measurement and evaluation is the key in TKA researches. There are many methods to measure insert wear. Qualitative methods such as observation are used to determine the wear and its type. Quantitative methods such as gravimetric analysis, coordinate measuring machines (CMM) and micro-computed tomography (micro-CT) are used to measure the mass, volume and geometry of wear. In this paper, the principle, characteristics and research progress of main insert wear evaluation method were introduced and the problems and disadvantages were analyzed.

  2. Estimating ankle rotational constraints from anatomic structure

    NASA Astrophysics Data System (ADS)

    Baker, H. H.; Bruckner, Janice S.; Langdon, John H.

    1992-09-01

    Three-dimensional biomedical data obtained through tomography provide exceptional views of biological anatomy. While visualization is one of the primary purposes for obtaining these data, other more quantitative and analytic uses are possible. These include modeling of tissue properties and interrelationships, simulation of physical processes, interactive surgical investigation, and analysis of kinematics and dynamics. As an application of our research in modeling tissue structure and function, we have been working to develop interactive and automated tools for studying joint geometry and kinematics. We focus here on discrimination of morphological variations in the foot and determining the implications of these on both hominid bipedal evolution and physical therapy treatment for foot disorders.

  3. Cerebral edema, mass effects, and regional blood volume in man.

    PubMed

    Penn, R D; Kurtz, D

    1977-03-01

    The authors conducted quantitative analysis of computerized tomography (CT) scans to measure tumor size, cerebral edema, and regional blood volume in man. Mass lesions without edema caused a local reduction in blood volume. Cerebral edema also reduced blood volume in proportion to its severity. Consideration of the electrolyte changes and water shifts in white-matter edema suggested that the decrease in absorption coefficient seen in CT scans was due to the increase in water content. Thus, in cerebral edema separation of blood vessels as well as increased interstitial pressure decrease blood volume, and the regional differences in turn reflect pressure gradients within the brain.

  4. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo

    2010-09-01

    To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.

  5. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and spatial distribution on infiltration into heterogeneous soils. The research was supported by the Czech Science Foundation Project No. 14-03691S.

  6. Ultrasonic guided wave tomography of pipes: A development of new techniques for the nondestructive evaluation of cylindrical geometries and guided wave multi-mode analysis

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin Raymond

    This dissertation concentrates on the development of two new tomographic techniques that enable wide-area inspection of pipe-like structures. By envisioning a pipe as a plate wrapped around upon itself, the previous Lamb Wave Tomography (LWT) techniques are adapted to cylindrical structures. Helical Ultrasound Tomography (HUT) uses Lamb-like guided wave modes transmitted and received by two circumferential arrays in a single crosshole geometry. Meridional Ultrasound Tomography (MUT) creates the same crosshole geometry with a linear array of transducers along the axis of the cylinder. However, even though these new scanning geometries are similar to plates, additional complexities arise because they are cylindrical structures. First, because it is a single crosshole geometry, the wave vector coverage is poorer than in the full LWT system. Second, since waves can travel in both directions around the circumference of the pipe, modes can also constructively and destructively interfere with each other. These complexities necessitate improved signal processing algorithms to produce accurate and unambiguous tomographic reconstructions. Consequently, this work also describes a new algorithm for improving the extraction of multi-mode arrivals from guided wave signals. Previous work has relied solely on the first arriving mode for the time-of-flight measurements. In order to improve the LWT, HUT and MUT systems reconstructions, improved signal processing methods are needed to extract information about the arrival times of the later arriving modes. Because each mode has different through-thickness displacement values, they are sensitive to different types of flaws, and the information gained from the multi-mode analysis improves understanding of the structural integrity of the inspected material. Both tomographic frequency compounding and mode sorting algorithms are introduced. It is also shown that each of these methods improve the reconstructed images both qualitatively and quantitatively.

  7. Doppler Fourier Domain Optical Coherence Tomography for Label-Free Tissue Angiography

    NASA Astrophysics Data System (ADS)

    Leitgeb, Rainer A.; Szkulmowski, Maciej; Blatter, Cedric; Wojtkowski, Maciej

    Information about tissue perfusion and the vascular structure is certainly most important for assessment of tissue state or personal health and the diagnosis of any pathological conditions. It is therefore of key medical interest to have tools available for both quantitative blood flow assessment as well as qualitative vascular imaging. The strength of optical techniques is the unprecedented level of detail even for small capillary structures or microaneurysms and the possibility to combine different techniques for additional tissue spectroscopy giving insight into tissue metabolism. There is an immediate diagnostic and pharmacological demand for high-resolution, label-free, tissue angiography and flow assessment that in addition allow for precise depth gating of flow information. The most promising candidate is Doppler optical coherence tomography (DOCT) being noncontact, label free, and without employing hazardous radiation. DOCT provides fully quantitative volumetric information about blood flow together with the vascular and structural anatomy. Besides flow quantification, analysis of OCT signal fluctuations allows to contrast moving scatterers in tissue such as red blood cells from static tissue. This allows for non-invasive optical angiography and yields high resolution even for smallest capillaries. Because of the huge potential of DOCT and lable-free optical angiography for diagnosis, the last years saw a rapid increase of publications in this field with many different approaches. The present chapter gives an overview over existing Doppler OCT approaches and angiography techniques. It furthermore discusses limitations and noise issues, and gives examples for angiography in the eye and the skin.

  8. An Approach for Determining Quantitative Measures for Bone Volume and Bone Mass in the Pediatric Spina Bifida Population

    PubMed Central

    Horenstein, Rachel E.; Shefelbine, Sandra J.; Mueske, Nicole M.; Fisher, Carissa L.; Wren, Tishya A.L.

    2015-01-01

    Background The pediatric spina bifida population suffers from decreased mobility and recurrent fractures. This study aimed to develop a method for quantifying bone mass along the entire tibia in youth with spina bifida. This will provide information about all potential sites of bone deficiencies. Methods Computed tomography images of the tibia for 257 children (n=80 ambulatory spina bifida, n=10 non-ambulatory spina bifida, n=167 typically developing) were analyzed. Bone area was calculated at regular intervals along the entire tibia length and then weighted by calibrated pixel intensity for density weighted bone area. Integrals of density weighted bone area were used to quantify bone mass in the proximal and distal epiphyses and diaphysis. Group differences were evaluated using analysis of variance. Findings Non-ambulatory children suffer from decreased bone mass in the diaphysis and proximal and distal epiphyses compared to ambulatory and control children (P≤0.001). Ambulatory children with spina bifida showed statistically insignificant differences in bone mass in comparison to typically developing children at these sites (P>0.5). Interpretation This method provides insight into tibial bone mass distribution in the pediatric spina bifida population by incorporating information along the whole length of the bone, thereby providing more information than dual-energy x-ray absorptiometry and peripheral quantitative computed tomography. This method can be applied to any population to assess bone mass distribution across the length of any long bone. PMID:26002057

  9. Longitudinal study of arteriogenesis with swept source optical coherence tomography and hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Poole, Kristin M.; Patil, Chetan A.; Nelson, Christopher E.; McCormack, Devin R.; Madonna, Megan C.; Duvall, Craig L.; Skala, Melissa C.

    2014-03-01

    Peripheral arterial disease (PAD) is an atherosclerotic disease of the extremities that leads to high rates of myocardial infarction and stroke, increased mortality, and reduced quality of life. PAD is especially prevalent in diabetic patients, and is commonly modeled by hind limb ischemia in mice to study collateral vessel development and test novel therapies. Current techniques used to assess recovery cannot obtain quantitative, physiological data non-invasively. Here, we have applied hyperspectral imaging and swept source optical coherence tomography (OCT) to study longitudinal changes in blood oxygenation and vascular morphology, respectively, intravitally in the diabetic mouse hind limb ischemia model. Additionally, recommended ranges for controlling physiological variability in blood oxygenation with respect to respiration rate and body core temperature were determined from a control animal experiment. In the longitudinal study with diabetic mice, hyperspectral imaging data revealed the dynamics of blood oxygenation recovery distally in the ischemic footpad. In diabetic mice, there is an early increase in oxygenation that is not sustained in the long term. Quantitative analysis of vascular morphology obtained from Hessian-filtered speckle variance OCT volumes revealed temporal dynamics in vascular density, total vessel length, and vessel diameter distribution in the adductor muscle of the ischemic limb. The combination of hyperspectral imaging and speckle variance OCT enabled acquisition of novel functional and morphological endpoints from individual animals, and provides a more robust platform for future preclinical evaluations of novel therapies for PAD.

  10. A Quantitative Approach to Distinguish Pneumonia From Atelectasis Using Computed Tomography Attenuation.

    PubMed

    Edwards, Rachael M; Godwin, J David; Hippe, Dan S; Kicska, Gregory

    2016-01-01

    It is known that atelectasis demonstrates greater contrast enhancement than pneumonia on computed tomography (CT). However, the effectiveness of using a Hounsfield unit (HU) threshold to distinguish pneumonia from atelectasis has never been shown. The objective of the study is to demonstrate that an HU threshold can be quantitatively used to effectively distinguish pneumonia from atelectasis. Retrospectively identified CT pulmonary angiogram examinations that did not show pulmonary embolism but contained nonaerated lungs were classified as atelectasis or pneumonia based on established clinical criteria. The HU attenuation was measured in these nonaerated lungs. Receiver operating characteristic (ROC) analysis was performed to determine the area under the ROC curve, sensitivity, and specificity of using the attenuation to distinguish pneumonia from atelectasis. Sixty-eight nonaerated lungs were measured in 55 patients. The mean (SD) enhancement was 62 (18) HU in pneumonia and 119 (24) HU in atelectasis (P < 0.001). A threshold of 92 HU diagnosed pneumonia with 97% sensitivity (confidence interval [CI], 80%-99%) and 85% specificity (CI, 70-93). Accuracy, measured as area under the ROC curve, was 0.97 (CI, 0.89-0.99). We have established that a threshold HU value can be used to confidently distinguish pneumonia from atelectasis with our standard CT pulmonary angiogram imaging protocol and patient population. This suggests that a similar threshold HU value may be determined for other scanning protocols, and application of this threshold may facilitate a more confident diagnosis of pneumonia and thus speed treatment.

  11. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters.

    PubMed

    Lasnon, Charline; Quak, Elske; Briand, Mélanie; Gu, Zheng; Louis, Marie-Hélène; Aide, Nicolas

    2013-01-17

    The use of iodinated contrast media in small-animal positron emission tomography (PET)/computed tomography (CT) could improve anatomic referencing and tumor delineation but may introduce inaccuracies in the attenuation correction of the PET images. This study evaluated the diagnostic performance and accuracy of quantitative values in contrast-enhanced small-animal PET/CT (CEPET/CT) as compared to unenhanced small animal PET/CT (UEPET/CT). Firstly, a NEMA NU 4-2008 phantom (filled with 18F-FDG or 18F-FDG plus contrast media) and a homemade phantom, mimicking an abdominal tumor surrounded by water or contrast media, were used to evaluate the impact of iodinated contrast media on the image quality parameters and accuracy of quantitative values for a pertinent-sized target. Secondly, two studies in 22 abdominal tumor-bearing mice and rats were performed. The first animal experiment studied the impact of a dual-contrast media protocol, comprising the intravenous injection of a long-lasting contrast agent mixed with 18F-FDG and the intraperitoneal injection of contrast media, on tumor delineation and the accuracy of quantitative values. The second animal experiment compared the diagnostic performance and quantitative values of CEPET/CT versus UEPET/CT by sacrificing the animals after the tracer uptake period and imaging them before and after intraperitoneal injection of contrast media. There was minimal impact on IQ parameters (%SDunif and spillover ratios in air and water) when the NEMA NU 4-2008 phantom was filled with 18F-FDG plus contrast media. In the homemade phantom, measured activity was similar to true activity (-0.02%) and overestimated by 10.30% when vials were surrounded by water or by an iodine solution, respectively. The first animal experiment showed excellent tumor delineation and a good correlation between small-animal (SA)-PET and ex vivo quantification (r2 = 0.87, P < 0.0001). The second animal experiment showed a good correlation between CEPET/CT and UEPET/CT quantitative values (r2 = 0.99, P < 0.0001). Receiver operating characteristic analysis demonstrated better diagnostic accuracy of CEPET/CT versus UEPET/CT (senior researcher, area under the curve (AUC) 0.96 versus 0.77, P = 0.004; junior researcher, AUC 0.78 versus 0.58, P = 0.004). The use of iodinated contrast media for small-animal PET imaging significantly improves tumor delineation and diagnostic performance, without significant alteration of SA-PET quantitative accuracy and NEMA NU 4-2008 IQ parameters.

  12. Quantitative observation of tracer transport with high-resolution PET

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-04-01

    Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes, like conservative flow, reative transport, and diffusion (Kulenkampff et al, 2015). Such experimental data are complementary to the outcome of model simulations based upon structural μCT-images. The PET-data can be evaluated with respect to specific process parameters, like effective volume and flow velocity distribution. They can further serve as a basis for establishing intermediate-scale simulation models which directly incorporate the observed specific response functions, without requiring modeling on the pore scale at the highest possible spatial resolution. Kulenkampff, J., Gründig, M., Richter, M., Wolf, M., Dietzel, O.: First applications of a small-animal-PET scanner for process monitoring in rocks and soils. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03727, 2008a. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008b. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, accepted 2015, 2015.

  13. Effectiveness of Adaptive Statistical Iterative Reconstruction for 64-Slice Dual-Energy Computed Tomography Pulmonary Angiography in Patients With a Reduced Iodine Load: Comparison With Standard Computed Tomography Pulmonary Angiography.

    PubMed

    Lee, Ji Won; Lee, Geewon; Lee, Nam Kyung; Moon, Jin Il; Ju, Yun Hye; Suh, Young Ju; Jeong, Yeon Joo

    2016-01-01

    The aim of the study was to assess the effectiveness of the adaptive statistical iterative reconstruction (ASIR) for dual-energy computed tomography pulmonary angiography (DE-CTPA) with a reduced iodine load. One hundred forty patients referred for chest CT were randomly divided into a DE-CTPA group with a reduced iodine load or a standard CTPA group. Quantitative and qualitative image qualities of virtual monochromatic spectral (VMS) images with filtered back projection (VMS-FBP) and those with 50% ASIR (VMS-ASIR) in the DE-CTPA group were compared. Image qualities of VMS-ASIR images in the DE-CTPA group and ASIR images in the standard CTPA group were also compared. All quantitative and qualitative indices, except attenuation value of pulmonary artery in the VMS-ASIR subgroup, were superior to those in the VMS-FBP subgroup (all P < 0.001). Noise and signal-to-noise ratio of VMS-ASIR images were superior to those of ASIR images in the standard CTPA group (P < 0.001 and P = 0.007, respectively). Regarding qualitative indices, noise was significantly lower in VMS-ASIR images of the DE-CTPA group than in ASIR images of the standard CTPA group (P = 0.001). The ASIR technique tends to improve the image quality of VMS imaging. Dual-energy computed tomography pulmonary angiography with ASIR can reduce contrast medium volume and produce images of comparable quality with those of standard CTPA.

  14. Optical coherence tomography angiography in age-related macular degeneration: The game changer.

    PubMed

    Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo

    2018-04-01

    Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.

  15. Comparison of intravascular ultrasound to contrast-enhanced 64-slice computed tomography to assess the significance of angiographically ambiguous coronary narrowings.

    PubMed

    Okabe, Teruo; Weigold, Wm Guy; Mintz, Gary S; Roswell, Robert; Joshi, Subodh; Lee, Sung Yun; Lee, Bongryeol; Steinberg, Daniel H; Roy, Probal; Slottow, Tina L Pinto; Smith, Kimberly; Torguson, Rebecca; Xue, Zhenyi; Satler, Lowell F; Kent, Kenneth M; Pichard, Augusto D; Weissman, Neil J; Lindsay, Joseph; Waksman, Ron

    2008-10-15

    The efficacy of contrast-enhanced multislice computed tomography (MSCT) for assessment of ambiguous lesions is unknown. We compared both quantitative coronary angiography (QCA) and MSCT to the gold standard for a significant stenosis-minimum luminal area (MLA) by intravascular ultrasound (IVUS)-in 51 patients (64 +/- 10 years old, 19 men) with 69 angiographically ambiguous, nonleft main lesions. The MSCT was performed 17 +/- 18 days before IVUS analysis. Overall diameter stenosis by QCAwas 51.0 +/- 9.8%; 39 of 51 patients (76%) eventually underwent revascularization (38 by percutaneous coronary intervention and 1 by coronary artery bypass graft). By univariate analysis, minimum luminal diameter, MLA, lumen visibility by MSCT, and minimum luminal diameter by QCA were significant predictors of MLA by IVUS

  16. Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography.

    PubMed

    Li, Chen; Zeitler, J Axel; Dong, Yue; Shen, Yao-Chun

    2014-01-01

    Full-field optical coherence tomography (FF-OCT) using a conventional light-emitting diode and a complementary metal-oxide semiconductor camera has been developed for characterising coatings on small pellet samples. A set of en-face images covering an area of 700 × 700 μm(2) was taken over a depth range of 166 μm. The three-dimensional structural information, such as the coating thickness and uniformity, was subsequently obtained by analysis of the recorded en-face images. Drug-loaded pharmaceutical sustained-release pellets with two coating layers and of a sub-millimetre diameter were studied to demonstrate the usefulness of the developed system. We have shown that both coatings can be clearly resolved and the thickness was determined to be 40 and 50 μm for the outer and inner coating layers, respectively. It was also found that the outer coating layer is relatively uniform, whereas the inner coating layer has many particle-like features. X-ray computed microtomography measurements carried out on the same pellet sample confirmed all these findings. The presented FF-OCT approach is inexpensive and has better spatial resolution compared with other non-destructive analysis techniques such as terahertz pulsed imaging, and is thus considered advantageous for the quantitative analysis of thin coatings on small pellet samples. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes.

    PubMed

    Schreiber, Stefanie; Landau, Susan M; Fero, Allison; Schreiber, Frank; Jagust, William J

    2015-10-01

    The applicability of β-amyloid peptide (Aβ) positron emission tomography (PET) as a biomarker in clinical settings to aid in selection of individuals at preclinical and prodromal Alzheimer disease (AD) will depend on the practicality of PET image analysis. In this context, visual-based Aβ PET assessment seems to be the most feasible approach. To determine the agreement between visual and quantitative Aβ PET analysis and to assess the ability of both techniques to predict conversion from mild cognitive impairment (MCI) to AD. A longitudinal study was conducted among the Alzheimer's Disease Neuroimaging Initiative (ADNI) sites in the United States and Canada during a 1.6-year mean follow-up period. The study was performed from September 21, 2010, to August 11, 2014; data analysis was conducted from September 21, 2014, to May 26, 2015. Participants included 401 individuals with MCI receiving care at a specialty clinic (219 [54.6%] men; mean [SD] age, 71.6 [7.5] years; 16.2 [2.7] years of education). All participants were studied with florbetapir F 18 [18F] PET. The standardized uptake value ratio (SUVR) positivity threshold was 1.11, and one reader rated all images, with a subset of 125 scans rated by a second reader. Sensitivity and specificity of positive and negative [18F] florbetapir PET categorization, which was estimated with cerebrospinal fluid Aβ1-42 as the reference standard. Risk for conversion to AD was assessed using Cox proportional hazards regression models. The frequency of Aβ positivity was 48.9% (196 patients; visual analysis), 55.1% (221 patients; SUVR), and 64.8% (166 patients; cerebrospinal fluid), yielding substantial agreement between visual and SUVR data (κ = 0.74) and between all methods (Fleiss κ = 0.71). For approximately 10% of the 401 participants in whom visual and SUVR data disagreed, interrater reliability was moderate (κ = 0.44), but it was very high if visual and quantitative results agreed (κ = 0.92). Visual analysis had a lower sensitivity (79% vs 85%) but higher specificity (96% vs 90%), respectively, compared with SUVR. The conversion rate was 15.2% within a mean of 1.6 years, and a positive [18F] florbetapir baseline scan was associated with a 6.91-fold (SUVR) or 11.38-fold (visual) greater hazard for AD conversion, which changed only modestly after covariate adjustment for apolipoprotein ε4, concurrent fludeoxyglucose F 18 PET scan, and baseline cognitive status. Visual and SUVR Aβ PET analysis may be equivalently used to determine Aβ status for individuals with MCI participating in clinical trials, and both approaches add significant value for clinical course prognostication.

  18. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  19. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    NASA Astrophysics Data System (ADS)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  20. Quantitative computer-aided diagnostic algorithm for automated detection of peak lesion attenuation in differentiating clear cell from papillary and chromophobe renal cell carcinoma, oncocytoma, and fat-poor angiomyolipoma on multiphasic multidetector computed tomography.

    PubMed

    Coy, Heidi; Young, Jonathan R; Douek, Michael L; Brown, Matthew S; Sayre, James; Raman, Steven S

    2017-07-01

    To evaluate the performance of a novel, quantitative computer-aided diagnostic (CAD) algorithm on four-phase multidetector computed tomography (MDCT) to detect peak lesion attenuation to enable differentiation of clear cell renal cell carcinoma (ccRCC) from chromophobe RCC (chRCC), papillary RCC (pRCC), oncocytoma, and fat-poor angiomyolipoma (fp-AML). We queried our clinical databases to obtain a cohort of histologically proven renal masses with preoperative MDCT with four phases [unenhanced (U), corticomedullary (CM), nephrographic (NP), and excretory (E)]. A whole lesion 3D contour was obtained in all four phases. The CAD algorithm determined a region of interest (ROI) of peak lesion attenuation within the 3D lesion contour. For comparison, a manual ROI was separately placed in the most enhancing portion of the lesion by visual inspection for a reference standard, and in uninvolved renal cortex. Relative lesion attenuation for both CAD and manual methods was obtained by normalizing the CAD peak lesion attenuation ROI (and the reference standard manually placed ROI) to uninvolved renal cortex with the formula [(peak lesion attenuation ROI - cortex ROI)/cortex ROI] × 100%. ROC analysis and area under the curve (AUC) were used to assess diagnostic performance. Bland-Altman analysis was used to compare peak ROI between CAD and manual method. The study cohort comprised 200 patients with 200 unique renal masses: 106 (53%) ccRCC, 32 (16%) oncocytomas, 18 (9%) chRCCs, 34 (17%) pRCCs, and 10 (5%) fp-AMLs. In the CM phase, CAD-derived ROI enabled characterization of ccRCC from chRCC, pRCC, oncocytoma, and fp-AML with AUCs of 0.850 (95% CI 0.732-0.968), 0.959 (95% CI 0.930-0.989), 0.792 (95% CI 0.716-0.869), and 0.825 (95% CI 0.703-0.948), respectively. On Bland-Altman analysis, there was excellent agreement of CAD and manual methods with mean differences between 14 and 26 HU in each phase. A novel, quantitative CAD algorithm enabled robust peak HU lesion detection and discrimination of ccRCC from other renal lesions with similar performance compared to the manual method.

  1. On iterative algorithms for quantitative photoacoustic tomography in the radiative transport regime

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhou, Tie

    2017-11-01

    In this paper, we present a numerical reconstruction method for quantitative photoacoustic tomography (QPAT), based on the radiative transfer equation (RTE), which models light propagation more accurately than diffusion approximation (DA). We investigate the reconstruction of absorption coefficient and scattering coefficient of biological tissues. An improved fixed-point iterative method to retrieve the absorption coefficient, given the scattering coefficient, is proposed for its cheap computational cost; the convergence of this method is also proved. The Barzilai-Borwein (BB) method is applied to retrieve two coefficients simultaneously. Since the reconstruction of optical coefficients involves the solutions of original and adjoint RTEs in the framework of optimization, an efficient solver with high accuracy is developed from Gao and Zhao (2009 Transp. Theory Stat. Phys. 38 149-92). Simulation experiments illustrate that the improved fixed-point iterative method and the BB method are competitive methods for QPAT in the relevant cases.

  2. Sex- and Age-Related Differences in Bone Microarchitecture in Men Relative to Women Assessed by High-Resolution Peripheral Quantitative Computed Tomography

    PubMed Central

    Amin, Shreyasee; Khosla, Sundeep

    2012-01-01

    The trabecular and cortical compartments of bone each contributes to bone strength. Until recently, assessment of trabecular and cortical microstructure has required a bone biopsy. Now, trabecular and cortical microstructure of peripheral bone sites can be determined noninvasively using high-resolution peripheral quantitative computed tomography (HR-pQCT). Studies that have used HR-pQCT to evaluate cohorts of both men and women have provided novel insights into the changes in bone microarchitecture that occur with age between the sexes, which may help to explain the lower fracture incidence in older men relative to women. This review will highlight observations from these studies on both the sex- and age-related differences in trabecular and cortical microstructure that may underlie the differences in bone strength, and thereby fracture risk, between men and women. PMID:22496983

  3. The dynamic micro computed tomography at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.

    2018-05-01

    Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.

  4. Multispectral breast imaging using a ten-wavelength, 64 x 64 source/detector channels silicon photodiode-based diffuse optical tomography system.

    PubMed

    Li, Changqing; Zhao, Hongzhi; Anderson, Bonnie; Jiang, Huabei

    2006-03-01

    We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.

  5. Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies

    PubMed Central

    Campbell, Graeme M; Sophocleous, Antonia

    2014-01-01

    Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037

  6. Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.

    PubMed

    Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice

    2018-01-01

    Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.

  7. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.

    PubMed

    Larue, Ruben T H M; Defraene, Gilles; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-02-01

    Quantitative analysis of tumour characteristics based on medical imaging is an emerging field of research. In recent years, quantitative imaging features derived from CT, positron emission tomography and MR scans were shown to be of added value in the prediction of outcome parameters in oncology, in what is called the radiomics field. However, results might be difficult to compare owing to a lack of standardized methodologies to conduct quantitative image analyses. In this review, we aim to present an overview of the current challenges, technical routines and protocols that are involved in quantitative imaging studies. The first issue that should be overcome is the dependency of several features on the scan acquisition and image reconstruction parameters. Adopting consistent methods in the subsequent target segmentation step is evenly crucial. To further establish robust quantitative image analyses, standardization or at least calibration of imaging features based on different feature extraction settings is required, especially for texture- and filter-based features. Several open-source and commercial software packages to perform feature extraction are currently available, all with slightly different functionalities, which makes benchmarking quite challenging. The number of imaging features calculated is typically larger than the number of patients studied, which emphasizes the importance of proper feature selection and prediction model-building routines to prevent overfitting. Even though many of these challenges still need to be addressed before quantitative imaging can be brought into daily clinical practice, radiomics is expected to be a critical component for the integration of image-derived information to personalize treatment in the future.

  8. Analysis of x-ray tomography data of an extruded low density styrenic foam: an image analysis study

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Ching; Heeschen, William

    2016-10-01

    Extruded styrenic foams are low density foams that are widely used for thermal insulation. It is difficult to precisely characterize the structure of the cells in low density foams by traditional cross-section viewing due to the frailty of the walls of the cells. X-ray computed tomography (CT) is a non-destructive, three dimensional structure characterization technique that has great potential for structure characterization of styrenic foams. Unfortunately the intrinsic artifacts of the data and the artifacts generated during image reconstruction are often comparable in size and shape to the thin walls of the foam, making robust and reliable analysis of cell sizes challenging. We explored three different image processing methods to clean up artifacts in the reconstructed images, thus allowing quantitative three dimensional determination of cell size in a low density styrenic foam. Three image processing approaches - an intensity based approach, an intensity variance based approach, and a machine learning based approach - are explored in this study, and the machine learning image feature classification method was shown to be the best. Individual cells are segmented within the images after the images were cleaned up using the three different methods and the cell sizes are measured and compared in the study. Although the collected data with the image analysis methods together did not yield enough measurements for a good statistic of the measurement of cell sizes, the problem can be resolved by measuring multiple samples or increasing imaging field of view.

  9. A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier.

    PubMed

    Nanthagopal, A Padma; Rajamony, R Sukanesh

    2012-07-01

    The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.

  10. Fiber-reinforced composite analysis using optical coherence tomography after mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Kyotoku, B. B. C.; Braz, A. K. S.; Braz, R.; Gomes, A. S. L.

    2007-02-01

    Fiber-reinforced composites are new materials which have been used for a variety of dental applications, including tooth splinting, replacement of missing teeth, treatment of dental emergencies, reinforcement of resin provisional fixed prosthodontic restorations, orthodontic retention, and other clinical applications. Different fiber types are available, but little clinical information has been disseminated. The traditional microscopy investigation, most commonly used to study this material, is a destructive technique, which requires specimen sectioning and are essentially surface measurements. On the basis of these considerations, the aim of this research is to analyze the interior of a dental sample reinforced with fiber after a mechanical and thermal cycling to emulate oral conditions using optical coherence tomography (OCT). The device we are using is a home built Fourier domain OCT working at 800 nm with 6 μm resolution. The results are compared with microscopy images to validate OCT as a working method. In long term, fractures allow bacterial invasion provoking plaque and calculus formation that can cause caries and periodontal disease. Therefore, non invasive imaging of the bridge fiber enables the possibility of periodic clinical evaluation to ensure the patient health. Furthermore, OCT images can provide a powerful method for quantitative analysis of crack propagation, and can potentially be used for in vivo assessment.

  11. Analysis of photodynamic cream effect in dental caries using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Barbosa, P. S.; Freitas, A. Z.; de Sant´Anna, G. R.

    2015-06-01

    The aim of this study was to assess the effect in the enamel demineralization of low-intensity infrared laser (λ=810 nm, 100 mW/cm2, 90 sec, 4.47 J/cm2, 9 J) with or without photodynamic cream fluorinated or not fluorinated, using Optical Coherence Tomography (OCT). Background data: Lasers can be used as tools for the prevention of tooth enamel demineralization. All enamel specimens (n= 105) were analyzed using OCT at baseline, and randomly assigned into seven groups (n=15): C (+), laser application; C(-), no treatment; (F), acid fluoride gel; cream (IV); cream and neutral fluoride (IVF); cream and laser (IVL); and cream with neutral fluoride+ laser (IVFL). The specimens were submitted to all kind of treatments before demineralizing pH cycling challenge and were reanalyzed. ANOVA and Tukey's multiple comparative analysis (p <0.01) demonstrated a greater delta attenuation between baseline and post challenge for C + (0.034 +/- 0.011) compared to IVF (0.016 +/- 0.007) F (0.018 +/- 0.010) IVFL (0.019 +/- 0.008), and IVL (0.014 +/- 0.010). The cream laser group (IVL) also showed lower delta (0.014 +/- 0.010) compared to C - (0.025 +/- 0.008). The OCT technique demonstrated that cream associated with laser showed the lowest quantitative enamel mineral looses after cariogenic challenge.

  12. Gunshot energy transfer profile in ballistic gelatine, determined with computed tomography using the total crack length method.

    PubMed

    Bolliger, Stephan A; Thali, Michael J; Bolliger, Michael J; Kneubuehl, Beat P

    2010-11-01

    By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.

  13. Sodankylä ionospheric tomography data set 2003-2014

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Roininen, Lassi; Kero, Antti; Raita, Tero; Ulich, Thomas; Markkanen, Markku; Juusola, Liisa; Kauristie, Kirsti

    2016-07-01

    Sodankylä Geophysical Observatory has been operating a receiver network for ionospheric tomography and collecting the produced data since 2003. The collected data set consists of phase difference curves measured from COSMOS navigation satellites from the Russian Parus network (Wood and Perry, 1980) and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three to five operational stations at the Fennoscandia sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this data set, one solar cycle of ionospheric VTEC estimates is constructed. The measurements are compared against the International Reference Ionosphere (IRI)-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model results are on average 40 % higher than that of the tomographic results.

  14. Childhood Forearm Breaks Resulting from Mild Trauma May Indicate Bone Deficits

    MedlinePlus

    ... a powerful new technology called high-resolution peripheral quantitative computed tomography (HRpQCT), which, unlike DXA, can assess ... persist throughout life. The investigators concluded that additional research is needed to determine if childhood bone weakness ...

  15. Zernike ultrasonic tomography for fluid velocity imaging based on pipeline intrusive time-of-flight measurements.

    PubMed

    Besic, Nikola; Vasile, Gabriel; Anghel, Andrei; Petrut, Teodor-Ion; Ioana, Cornel; Stankovic, Srdjan; Girard, Alexandre; d'Urso, Guy

    2014-11-01

    In this paper, we propose a novel ultrasonic tomography method for pipeline flow field imaging, based on the Zernike polynomial series. Having intrusive multipath time-offlight ultrasonic measurements (difference in flight time and speed of ultrasound) at the input, we provide at the output tomograms of the fluid velocity components (axial, radial, and orthoradial velocity). Principally, by representing these velocities as Zernike polynomial series, we reduce the tomography problem to an ill-posed problem of finding the coefficients of the series, relying on the acquired ultrasonic measurements. Thereupon, this problem is treated by applying and comparing Tikhonov regularization and quadratically constrained ℓ1 minimization. To enhance the comparative analysis, we additionally introduce sparsity, by employing SVD-based filtering in selecting Zernike polynomials which are to be included in the series. The first approach-Tikhonov regularization without filtering, is used because it is the most suitable method. The performances are quantitatively tested by considering a residual norm and by estimating the flow using the axial velocity tomogram. Finally, the obtained results show the relative residual norm and the error in flow estimation, respectively, ~0.3% and ~1.6% for the less turbulent flow and ~0.5% and ~1.8% for the turbulent flow. Additionally, a qualitative validation is performed by proximate matching of the derived tomograms with a flow physical model.

  16. XDesign: an open-source software package for designing X-ray imaging phantoms and experiments.

    PubMed

    Ching, Daniel J; Gürsoy, Dogˇa

    2017-03-01

    The development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  17. XDesign: An open-source software package for designing X-ray imaging phantoms and experiments

    DOE PAGES

    Ching, Daniel J.; Gursoy, Dogˇa

    2017-02-21

    Here, the development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.

  18. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography.

    PubMed

    Liu, Li; Gao, Simon S; Bailey, Steven T; Huang, David; Li, Dengwang; Jia, Yali

    2015-09-01

    Optical coherence tomography angiography has recently been used to visualize choroidal neovascularization (CNV) in participants with age-related macular degeneration. Identification and quantification of CNV area is important clinically for disease assessment. An automated algorithm for CNV area detection is presented in this article. It relies on denoising and a saliency detection model to overcome issues such as projection artifacts and the heterogeneity of CNV. Qualitative and quantitative evaluations were performed on scans of 7 participants. Results from the algorithm agreed well with manual delineation of CNV area.

  19. [Measurement of intracranial hematoma volume by personal computer].

    PubMed

    DU, Wanping; Tan, Lihua; Zhai, Ning; Zhou, Shunke; Wang, Rui; Xue, Gongshi; Xiao, An

    2011-01-01

    To explore the method for intracranial hematoma volume measurement by the personal computer. Forty cases of various intracranial hematomas were measured by the computer tomography with quantitative software and personal computer with Photoshop CS3 software, respectively. the data from the 2 methods were analyzed and compared. There was no difference between the data from the computer tomography and the personal computer (P>0.05). The personal computer with Photoshop CS3 software can measure the volume of various intracranial hematomas precisely, rapidly and simply. It should be recommended in the clinical medicolegal identification.

  20. Quantification of Dynamic [18F]FDG Pet Studies in Acute Lung Injury.

    PubMed

    Grecchi, Elisabetta; Veronese, Mattia; Moresco, Rosa Maria; Bellani, Giacomo; Pesenti, Antonio; Messa, Cristina; Bertoldo, Alessandra

    2016-02-01

    This work aims to investigate lung glucose metabolism using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomography (PET) imaging in acute lung injury (ALI) patients. Eleven ALI patients and five healthy controls underwent a dynamic [(18)F]FDG PET/X-ray computed tomography (CT) scan. The standardized uptake values (SUV) and three different methods for the quantification of glucose metabolism (i.e., ratio, Patlak, and spectral analysis iterative filter, SAIF) were applied both at the region and the voxel levels. SUV reported a lower correlation than the ratio with the net tracer uptake. Patlak and SAIF analyses did not show any significant spatial or quantitative (R(2) > 0.80) difference. The additional information provided by SAIF showed that in lung inflammation, elevated tracer uptake is coupled with abnormal tracer exchanges within and between lung tissue compartments. Full kinetic modeling provides a multi-parametric description of glucose metabolism in the lungs. This allows characterizing the spatial distribution of lung inflammation as well as returning the functional state of the tissues.

  1. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    PubMed

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  2. An improved ring removal procedure for in-line x-ray phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia

    2018-02-01

    The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.

  3. Polarization sensitive optical coherence tomography in equine bone

    NASA Astrophysics Data System (ADS)

    Jacobs, J. W.; Matcher, S. J.

    2009-02-01

    Optical coherence tomography (OCT) has been used to image equine bone samples. OCT and polarization sensitive OCT (PS-OCT) images of equine bone samples, before and after demineralization, are presented. Using a novel approach, taking a series of images at different angles of illumination, the polar angle and true birefringence of collagen within the tissue is determined, at one site in the sample. The images were taken before and after the bones were passed through a demineralization process. The images show an improvement in depth penetration after demineralization allowing better visualization of the internal structure of the bone and the optical orientation of the collagen. A quantitative measurement of true birefringence has been made of the bone; true birefringence was shown to be 1.9x10-3 before demineralization increasing to 2.7x10-3 after demineralization. However, determined collagen fiber orientation remains the same before and after demineralization. The study of bone is extensive within the field of tissue engineering where an understanding of the internal structures is essential. OCT in bone, and improved depth penetration through demineralization, offers a useful approach to bone analysis.

  4. Long-term stress distribution patterns of the ankle joint in varus knee alignment assessed by computed tomography osteoabsorptiometry.

    PubMed

    Onodera, Tomohiro; Majima, Tokifumi; Iwasaki, Norimasa; Kamishima, Tamotsu; Kasahara, Yasuhiko; Minami, Akio

    2012-09-01

    The stress distribution of an ankle under various physiological conditions is important for long-term survival of total ankle arthroplasty. The aim of this study was to measure subchondral bone density across the distal tibial joint surface in patients with malalignment/instability of the lower limb. We evaluated subchondral bone density across the distal tibial joint in patients with malalignment/instability of the knee by computed tomography (CT) osteoabsorptiometry from ten ankles as controls and from 27 ankles with varus deformity/instability of the knee. The quantitative analysis focused on the location of the high-density area at the articular surface, to determine the resultant long-term stress on the ankle joint. The area of maximum density of subchondral bone was located in the medial part in all subjects. The pattern of maximum density in the anterolateral area showed stepwise increases with the development of varus deformity/instability of the knee. Our results should prove helpful for designing new prostheses and determining clinical indications for total ankle arthroplasty.

  5. Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography.

    PubMed

    Yuan, Jianchao; Zhang, Haiyuan; Kaur, Harpreet; Oupicky, David; Peng, Fangyu

    2013-05-01

    Poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers were synthesized and characterized for tumor localization in vivo as a theranostic scaffold for cancer imaging and anticancer drug delivery targeting tumor angiogenesis. Tumor localization of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was visualized in mice bearing human prostate cancer xenografts by positron emission tomography (PET) using a microPET scanner. PET quantitative analysis demonstrated that tumor 64Cu radioactivity (2.75 ± 0.34 %ID/g) in tumor-bearing mice 3 hours following intravenous injection of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was significantly higher than the tumor 64Cu radioactivity (1.29 ± 0.26 %ID/g) in tumor-bearing mice injected with the nontargeted poly(HPMA)-DOTA-64Cu copolymers (p = .004). The poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers hold potential as a theranostic scaffold for cancer imaging and radiochemotherapy of prostate cancer targeting tumor angiogenesis by noninvasive tracking with PET.

  6. Singular value decomposition: a diagnostic tool for ill-posed inverse problems in optical computed tomography

    NASA Astrophysics Data System (ADS)

    Lanen, Theo A.; Watt, David W.

    1995-10-01

    Singular value decomposition has served as a diagnostic tool in optical computed tomography by using its capability to provide insight into the condition of ill-posed inverse problems. Various tomographic geometries are compared to one another through the singular value spectrum of their weight matrices. The number of significant singular values in the singular value spectrum of a weight matrix is a quantitative measure of the condition of the system of linear equations defined by a tomographic geometery. The analysis involves variation of the following five parameters, characterizing a tomographic geometry: 1) the spatial resolution of the reconstruction domain, 2) the number of views, 3) the number of projection rays per view, 4) the total observation angle spanned by the views, and 5) the selected basis function. Five local basis functions are considered: the square pulse, the triangle, the cubic B-spline, the Hanning window, and the Gaussian distribution. Also items like the presence of noise in the views, the coding accuracy of the weight matrix, as well as the accuracy of the accuracy of the singular value decomposition procedure itself are assessed.

  7. A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography.

    PubMed

    Liang, Zhiting; Guan, Yong; Liu, Gang; Chen, Xiangyu; Li, Fahu; Guo, Pengfei; Tian, Yangchao

    2016-03-01

    The `missing wedge', which is due to a restricted rotation range, is a major challenge for quantitative analysis of an object using tomography. With prior knowledge of the grey levels, the discrete algebraic reconstruction technique (DART) is able to reconstruct objects accurately with projections in a limited angle range. However, the quality of the reconstructions declines as the number of grey levels increases. In this paper, a modified DART (MDART) was proposed, in which each independent region of homogeneous material was chosen as a research object, instead of the grey values. The grey values of each discrete region were estimated according to the solution of the linear projection equations. The iterative process of boundary pixels updating and correcting the grey values of each region was executed alternately. Simulation experiments of binary phantoms as well as multiple grey phantoms show that MDART is capable of achieving high-quality reconstructions with projections in a limited angle range. The interesting advancement of MDART is that neither prior knowledge of the grey values nor the number of grey levels is necessary.

  8. An improved ring removal procedure for in-line x-ray phase contrast tomography.

    PubMed

    Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia

    2018-02-12

    The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.

  9. Do Concomitant Cranium and Axis Injuries Predict Worse Outcome? A Trauma Database Quantitative Analysis

    PubMed Central

    Chittiboina, Prashant; Banerjee, Anirban Deep; Nanda, Anil

    2011-01-01

    We performed a trauma database analysis to identify the effect of concomitant cranial injuries on outcome in patients with fractures of the axis. We identified patients with axis fractures over a 14-year period. A binary outcome measure was used. Univariate and multiple logistic regression analysis were performed. There were 259 cases with axis fractures. Closed head injury was noted in 57% and skull base trauma in 14%. Death occurred in 17 cases (6%). Seventy-two percent had good outcome. Presence of abnormal computed tomography head findings, skull base fractures, and visceral injury was significantly associated with poor outcome. Skull base injury in association with fractures of the axis is a significant independent predictor of worse outcomes, irrespective of the severity of the head injury. We propose that presence of concomitant cranial and upper vertebral injuries require careful evaluation in view of the associated poor prognosis. PMID:22470268

  10. Resolution, uncertainty and data predictability of tomographic Lg attenuation models—application to Southeastern China

    NASA Astrophysics Data System (ADS)

    Chen, Youlin; Xie, Jiakang

    2017-07-01

    We address two fundamental issues that pertain to Q tomography using high-frequency regional waves, particularly the Lg wave. The first issue is that Q tomography uses complex 'reduced amplitude data' as input. These data are generated by taking the logarithm of the product of (1) the observed amplitudes and (2) the simplified 1D geometrical spreading correction. They are thereby subject to 'modeling errors' that are dominated by uncompensated 3D structural effects; however, no knowledge of the statistical behaviour of these errors exists to justify the widely used least-squares methods for solving Q tomography. The second issue is that Q tomography has been solved using various iterative methods such as LSQR (Least-Squares QR, where QR refers to a QR factorization of a matrix into the product of an orthogonal matrix Q and an upper triangular matrix R) and SIRT (Simultaneous Iterative Reconstruction Technique) that do not allow for the quantitative estimation of model resolution and error. In this study, we conduct the first rigorous analysis of the statistics of the reduced amplitude data and find that the data error distribution is predominantly normal, but with long-tailed outliers. This distribution is similar to that of teleseismic traveltime residuals. We develop a screening procedure to remove outliers so that data closely follow a normal distribution. Next, we develop an efficient tomographic method based on the PROPACK software package to perform singular value decomposition on a data kernel matrix, which enables us to solve for the inverse, model resolution and covariance matrices along with the optimal Q model. These matrices permit for various quantitative model appraisals, including the evaluation of the formal resolution and error. Further, they allow formal uncertainty estimates of predicted data (Q) along future paths to be made at any specified confidence level. This new capability significantly benefits the practical missions of source identification and source size estimation, for which reliable uncertainty estimates are especially important. We apply the new methodologies to data from southeastern China to obtain a 1 Hz Lg Q model, which exhibits patterns consistent with what is known about the geology and tectonics of the region. We also solve for the site response model.

  11. The Evolution of 3D Microimaging Techniques in Geosciences

    NASA Astrophysics Data System (ADS)

    Sahagian, D.; Proussevitch, A.

    2009-05-01

    In the analysis of geomaterials, it is essential to be able to analyze internal structures on a quantitative basis. Techniques have evolved from rough qualitative methods to highly accurate quantitative methods coupled with 3-D numerical analysis. The earliest primitive method for "seeing'" what was inside a rock was multiple sectioning to produce a series of image slices. This technique typically completely destroyed the sample being analyzed. Another destructive method was developed to give more detailed quantitative information by forming plastic casts of internal voids in sedimentary and volcanic rocks. For this, void were filled with plastic and the rock dissolved away with HF to reveal plastic casts of internal vesicles. Later, new approaches to stereology were developed to extract 3D information from 2D cross-sectional images. This has long been possible for spheres because the probability distribution for cutting a sphere along any small circle is known analytically (greatest probability is near the equator). However, large numbers of objects are required for statistical validity, and geomaterials are seldom spherical, so crystals, vesicles, and other inclusions would need a more sophisticated approach. Consequently, probability distributions were developed using numerical techniques for rectangular solids and various ellipsoids so that stereological techniques could be applied to these. The "holy grail" has always been to obtain 3D quantitative images non-destructively. A key method is Computed X-ray Tomography (CXT), in which attenuation of X-rays is recorded as a function of angular position in a cylindrical sample, providing a 2D "slice" of the interior. When a series of these "slices" is stacked (in increments equivalent with the resolution of the X-ray to make cubic voxels), a 3D image results with quantitative information regarding internal structure, particle/void volumes, nearest neighbors, coordination numbers, preferred orientations, etc. CXT can be done at three basic levels of resolution, with "normal" x-rays providing tens of microns resolution, synchrotron sources providing single to few microns, and emerging XuM techniques providing a practical 300 nm and theoretical 60 nm. The main challenges in CXT imaging have been in segmentation, which delineates material boundaries, and object recognition (registration), in which the individual objects within a material are identified. The former is critical in quantifying object volume, while the latter is essential for preventing the false appearance of individual objects as a continuous structure. Additional, new techniques are now being developed to enhance resolution and provide more detailed analysis without the complex infrastructure needed for CXT. One such method is Laser Scanning Confocal Microscopy, in which a laser is reflected from individual interior surfaces of a fluorescing material, providing a series of sharp images of internal slices with quantitative information available, just as in x-ray tomography, after "z-stacking" of planes of pixels. Another novel approach is the use of Stereo Scanning Electron Microscopy to create digital elevation models of 3D surficial features such as partial bubble margins on the surfaces of fine volcanic ash particles. As other novel techniques emerge, new opportunities will be presented to the geological research community to obtain ever more detailed and accurate information regarding the interior structure of geomaterials.

  12. Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Favicchio, Rosy; Psycharakis, Stylianos; Schönig, Kai; Bartsch, Dusan; Mamalaki, Clio; Papamatheakis, Joseph; Ripoll, Jorge; Zacharakis, Giannis

    2016-02-01

    Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities. Fluorescence molecular tomography (FMT) detects and reconstructs in three dimensions the distribution of a fluorophore in vivo. Noncontact FMT allows fast scanning of an excitation source and noninvasive measurement of emitted fluorescent light using a virtual array detector operating in free space. Here, a rigorous process is defined that fully characterizes the performance of a custom-built horizontal noncontact FMT setup. Dynamic range, sensitivity, and quantitative accuracy across the visible spectrum were evaluated using fluorophores with emissions between 520 and 660 nm. These results demonstrate that high-performance quantitative three-dimensional visible light FMT allowed the detection of challenging mesenteric lymph nodes in vivo and the comparison of spectrally distinct fluorescent reporters in cell culture.

  13. Correlation of quantitative computed tomographic subchondral bone density and ash density in horses.

    PubMed

    Drum, M G; Les, C M; Park, R D; Norrdin, R W; McIlwraith, C W; Kawcak, C E

    2009-02-01

    The purpose of this study was to compare subchondral bone density obtained using quantitative computed tomography with ash density values from intact equine joints, and to determine if there are measurable anatomic variations in mean subchondral bone density. Five adult equine metacarpophalangeal joints were scanned with computed tomography (CT), disarticulated, and four 1-cm(3) regions of interest (ROI) cut from the distal third metacarpal bone. Bone cubes were ashed, and percent mineralization and ash density were recorded. Three-dimensional models were created of the distal third metacarpal bone from CT images. Four ROIs were measured on the distal aspect of the third metacarpal bone at axial and abaxial sites of the medial and lateral condyles for correlation with ash samples. Overall correlations of mean quantitative CT (QCT) density with ash density (r=0.82) and percent mineralization (r=0.93) were strong. There were significant differences between abaxial and axial ROIs for mean QCT density, percent bone mineralization and ash density (p<0.05). QCT appears to be a good measure of bone density in equine subchondral bone. Additionally, differences existed between axial and abaxial subchondral bone density in the equine distal third metacarpal bone.

  14. Quantitative assessment on coronary computed tomography angiography (CCTA) image quality: comparisons between genders and different tube voltage settings.

    PubMed

    Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md; Sabarudin, Akmal

    2017-02-01

    This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient.

  15. Experimental validation of a Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Buchmann, Jens; Kaplan, Bernhard A.; Prohaska, Steffen; Laufer, Jan

    2017-03-01

    Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo-based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values.

  16. Quantitative analysis of packed and compacted granular systems by x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Fu, Xiaowei; Milroy, Georgina E.; Dutt, Meenakshi; Bentham, A. Craig; Hancock, Bruno C.; Elliott, James A.

    2005-04-01

    The packing and compaction of powders are general processes in pharmaceutical, food, ceramic and powder metallurgy industries. Understanding how particles pack in a confined space and how powders behave during compaction is crucial for producing high quality products. This paper outlines a new technique, based on modern desktop X-ray tomography and image processing, to quantitatively investigate the packing of particles in the process of powder compaction and provide great insights on how powder densify during powder compaction, which relate in terms of materials properties and processing conditions to tablet manufacture by compaction. A variety of powder systems were considered, which include glass, sugar, NaCl, with a typical particle size of 200-300 mm and binary mixtures of NaCl-Glass Spheres. The results are new and have been validated by SEM observation and numerical simulations using discrete element methods (DEM). The research demonstrates that XMT technique has the potential in further investigating of pharmaceutical processing and even verifying other physical models on complex packing.

  17. Statistical Issues in Testing Conformance with the Quantitative Imaging Biomarker Alliance (QIBA) Profile Claims.

    PubMed

    Obuchowski, Nancy A; Buckler, Andrew; Kinahan, Paul; Chen-Mayer, Heather; Petrick, Nicholas; Barboriak, Daniel P; Bullen, Jennifer; Barnhart, Huiman; Sullivan, Daniel C

    2016-04-01

    A major initiative of the Quantitative Imaging Biomarker Alliance is to develop standards-based documents called "Profiles," which describe one or more technical performance claims for a given imaging modality. The term "actor" denotes any entity (device, software, or person) whose performance must meet certain specifications for the claim to be met. The objective of this paper is to present the statistical issues in testing actors' conformance with the specifications. In particular, we present the general rationale and interpretation of the claims, the minimum requirements for testing whether an actor achieves the performance requirements, the study designs used for testing conformity, and the statistical analysis plan. We use three examples to illustrate the process: apparent diffusion coefficient in solid tumors measured by MRI, change in Perc 15 as a biomarker for the progression of emphysema, and percent change in solid tumor volume by computed tomography as a biomarker for lung cancer progression. Copyright © 2016 The Association of University Radiologists. All rights reserved.

  18. Quantitative EEG and Current Source Density Analysis of Combined Antiepileptic Drugs and Dopaminergic Agents in Genetic Epilepsy: Two Case Studies.

    PubMed

    Emory, Hamlin; Wells, Christopher; Mizrahi, Neptune

    2015-07-01

    Two adolescent females with absence epilepsy were classified, one as attention deficit and the other as bipolar disorder. Physical and cognitive exams identified hypotension, bradycardia, and cognitive dysfunction. Their initial electroencephalograms (EEGs) were considered slightly slow, but within normal limits. Quantitative EEG (QEEG) data included relative theta excess and low alpha mean frequencies. A combined treatment of antiepileptic drugs with a catecholamine agonist/reuptake inhibitor was sequentially used. Both patients' physical and cognitive functions improved and they have remained seizure free. The clinical outcomes were correlated with statistically significant changes in QEEG measures toward normal Z-scores in both anterior and posterior regions. In addition, low resolution electromagnetic tomography (LORETA) Z-scored source correlation analyses of the initial and treated QEEG data showed normalized patterns, supporting a neuroanatomic resolution. This study presents preliminary evidence for a neurophysiologic approach to patients with absence epilepsy and comorbid disorders and may provide a method for further research. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  19. Advanced Technologies for Structural and Functional Optical Coherence Tomography

    DTIC Science & Technology

    2015-01-07

    vertical scale bar: 500 um. 9 OCT speckle noise can significantly affect polarimetry measurement and must be reduced for birefringence...shown in Figure 7. This technique enables more accurate polarimetry measurement and quantitative assessment of tissue birefringence. Figure 7

  20. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  1. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics

    PubMed Central

    Ding, Hong; Wu, Fang

    2012-01-01

    Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121

  2. Attenuation correction for brain PET imaging using deep neural network based on dixon and ZTE MR images.

    PubMed

    Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng

    2018-05-23

    Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.

  3. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?

    PubMed

    Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C

    2012-08-01

    The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.

  4. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    DOE PAGES

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J.; ...

    2015-06-18

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is amore » technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. Here, this review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. Electron tomography produces quantitative 3D reconstructions for biological and physical sciences from sets of 2D projections acquired at different tilting angles in a transmission electron microscope. Finally, state-of-the-art techniques capable of producing 3D representations such as Pt-Pd core-shell nanoparticles and IgG1 antibody molecules are reviewed.« less

  5. Digital Longitudinal Tomosynthesis

    NASA Astrophysics Data System (ADS)

    Rimkus, Daniel Steven

    1985-12-01

    The purpose of this dissertation was to investigate the clinical utility of digital longitudinal tomosynthesis in radiology. By acquiring a finite group of digital images during a longitudinal tomographic exposure, and processing these images, tomographic planes, other than the fulcrum plane, can be reconstructed. This process is now termed "tomosynthesis". A prototype system utilizing this technique was developed. Both phantom and patient studies were done with this system. The phantom studies were evaluated by subjective, visual criterion and by quantitative analysis of edge sharpness and noise in the reconstructions. Two groups of patients and one volunteer were studied. The first patient group consisted of 8 patients undergoing intravenous urography (IVU). These patients had digital tomography and film tomography of the abdomen. The second patient group consisted of 4 patients with lung cancer admitted to the hospital for laser resection of endobronchial tumor. These patients had mediastinal digital tomograms to evaluate the trachea and mainstem bronchi. The knee of one volunteer was imaged by film tomography and digital tomography. The results of the phantom studies showed that the digital reconstructions accurately produced images of the desired planes. The edge sharpness of the reconstructions approached that of the acquired images. Adequate reconstructions were achieved with as few as 5 images acquired during the exposure, with the quality of the reconstructions improving as the number of images acquired increased. The IVU patients' digital studies had less contrast and spatial resolution than the film tomograms. The single renal lesion visible on the film tomograms was also visible in the digital images. The digital mediastinal studies were felt by several radiologists to be superior to a standard chest xray in evaluating the airways. The digital images of the volunteer's knee showed many of the same anatomic features as the film tomogram, but the digital images had less spatial and contrast resolution. With the equipment improvements discussed in the thesis, digital tomography may have an important role in radiology.

  6. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  7. Assessment of the usefulness of the standardized uptake values and the radioactivity levels for the preoperative diagnosis of thyroid cancer measured by using 18F-FDG PET/CT dual-time-point imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon-Guck; Hong, Seong-Jong; Cho, Jae-Hwan; Han, Man-Seok; Kim, Tae-Hyung; Lee, Ik-Han

    2013-02-01

    The purpose of this study was to assess and compare the changes in the SUV (standardized uptake value), the 18F-FDG (18F-fluorodeoxyglucose) uptake pattern, and the radioactivity level for the diagnosis of thyroid cancer via dual-time-point 18F-FDG PET/CT (positron emission tomographycomputed tomography) imaging. Moreover, the study aimed to verify the usefulness and significance of SUV values and radioactivity levels to discriminate tumor malignancy. A retrospective analysis was performed on 40 patients who received 18F-FDG PET/CT for thyroid cancer as a primary tumor. To set the background, we compared changes in values by calculating the dispersion of scattered rays in the neck area and the lung apex, and by comparing the mean and SD (standard deviation) values of the maxSUV and the radioactivity levels. According to the statistical analysis of the changes in 18F-FDG uptake for the diagnosis of thyroid cancer, a high similarity was observed with the coefficient of determination being R2 = 0.939, in the SUVs and the radioactivity levels. Moreover, similar results were observed in the assessment of tumor malignancy using dual-time-point. The quantitative analysis method for assessing tumor malignancy using radioactivity levels was neither specific nor discriminative compared to the semi-quantitative analysis method.

  8. Quantitative computer tomography analysis of post-operative subdural fluid volume predicts recurrence of chronic subdural haematoma.

    PubMed

    Xu, Fei-Fan; Chen, Jin-Hong; Leung, Gilberto Ka Kit; Hao, Shu-Yu; Xu, Long; Hou, Zong-Gang; Mao, Xiang; Shi, Guang-Zhi; Li, Jing-Sheng; Liu, Bai-Yun

    2014-01-01

    Post-operative volume of subdural fluid is considered to correlate with recurrence in chronic subdural haematoma (CSDH). Information on the applications of computer-assisted volumetric analysis in patients with CSDHs is lacking. To investigate the relationship between haematoma recurrence and longitudinal changes in subdural fluid volume using CT volumetric analysis. Fifty-four patients harbouring 64 CSDHs were studied prospectively. The association between recurrence rate and CT findings were investigated. Eleven patients (20.4%) experienced post-operative recurrence. Higher pre-operative (over 120 ml) and/or pre-discharge subdural fluid volumes (over 22 ml) were significantly associated with recurrence; the probability of non-recurrence for values below these thresholds were 92.7% and 95.2%, respectively. CSDHs with larger pre-operative (over 15.1 mm) and/or residual (over 11.7 mm) widths also had significantly increased recurrence rates. Bilateral CSDHs were not found to be more likely to recur in this series. On receiver-operating characteristic curve, the areas under curve for the magnitude of changes in subdural fluid volume were greater than a single time-point measure of either width or volume of the subdural fluid cavity. Close imaging follow-up is important for CSDH patients for recurrence prediction. Using quantitative CT volumetric analysis, strong evidence was provided that changes in the residual fluid volume during the 'self-resolution' period can be used as significantly radiological predictors of recurrence.

  9. Quantization of liver tissue in dual kVp computed tomography using linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Tkaczyk, J. Eric; Langan, David; Wu, Xiaoye; Xu, Daniel; Benson, Thomas; Pack, Jed D.; Schmitz, Andrea; Hara, Amy; Palicek, William; Licato, Paul; Leverentz, Jaynne

    2009-02-01

    Linear discriminate analysis (LDA) is applied to dual kVp CT and used for tissue characterization. The potential to quantitatively model both malignant and benign, hypo-intense liver lesions is evaluated by analysis of portal-phase, intravenous CT scan data obtained on human patients. Masses with an a priori classification are mapped to a distribution of points in basis material space. The degree of localization of tissue types in the material basis space is related to both quantum noise and real compositional differences. The density maps are analyzed with LDA and studied with system simulations to differentiate these factors. The discriminant analysis is formulated so as to incorporate the known statistical properties of the data. Effective kVp separation and mAs relates to precision of tissue localization. Bias in the material position is related to the degree of X-ray scatter and partial-volume effect. Experimental data and simulations demonstrate that for single energy (HU) imaging or image-based decomposition pixel values of water-like tissues depend on proximity to other iodine-filled bodies. Beam-hardening errors cause a shift in image value on the scale of that difference sought between in cancerous and cystic lessons. In contrast, projection-based decomposition or its equivalent when implemented on a carefully calibrated system can provide accurate data. On such a system, LDA may provide novel quantitative capabilities for tissue characterization in dual energy CT.

  10. Texture analysis of pulmonary parenchymateous changes related to pulmonary thromboembolism in dogs - a novel approach using quantitative methods.

    PubMed

    Marschner, C B; Kokla, M; Amigo, J M; Rozanski, E A; Wiinberg, B; McEvoy, F J

    2017-07-11

    Diagnosis of pulmonary thromboembolism (PTE) in dogs relies on computed tomography pulmonary angiography (CTPA), but detailed interpretation of CTPA images is demanding for the radiologist and only large vessels may be evaluated. New approaches for better detection of smaller thrombi include dual energy computed tomography (DECT) as well as computer assisted diagnosis (CAD) techniques. The purpose of this study was to investigate the performance of quantitative texture analysis for detecting dogs with PTE using grey-level co-occurrence matrices (GLCM) and multivariate statistical classification analyses. CT images from healthy (n = 6) and diseased (n = 29) dogs with and without PTE confirmed on CTPA were segmented so that only tissue with CT numbers between -1024 and -250 Houndsfield Units (HU) was preserved. GLCM analysis and subsequent multivariate classification analyses were performed on texture parameters extracted from these images. Leave-one-dog-out cross validation and receiver operator characteristic (ROC) showed that the models generated from the texture analysis were able to predict healthy dogs with optimal levels of performance. Partial Least Square Discriminant Analysis (PLS-DA) obtained a sensitivity of 94% and a specificity of 96%, while Support Vector Machines (SVM) yielded a sensitivity of 99% and a specificity of 100%. The models, however, performed worse in classifying the type of disease in the diseased dog group: In diseased dogs with PTE sensitivities were 30% (PLS-DA) and 38% (SVM), and specificities were 80% (PLS-DA) and 89% (SVM). In diseased dogs without PTE the sensitivities of the models were 59% (PLS-DA) and 79% (SVM) and specificities were 79% (PLS-DA) and 82% (SVM). The results indicate that texture analysis of CTPA images using GLCM is an effective tool for distinguishing healthy from abnormal lung. Furthermore the texture of pulmonary parenchyma in dogs with PTE is altered, when compared to the texture of pulmonary parenchyma of healthy dogs. The models' poorer performance in classifying dogs within the diseased group, may be related to the low number of dogs compared to texture variables, a lack of balanced number of dogs within each group or a real lack of difference in the texture features among the diseased dogs.

  11. X-ray phase contrast tomography from whole organ down to single cells

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim

    2014-09-01

    We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.

  12. Quantification of Posterior Globe Flattening: Methodology Development and Validationc

    NASA Technical Reports Server (NTRS)

    Lumpkins, S. B.; Garcia, K. M.; Sargsyan, A. E.; Hamilton, D. R.; Berggren, M. D.; Antonsen, E.; Ebert, D.

    2011-01-01

    Microgravity exposure affects visual acuity in a subset of astronauts, and mechanisms may include structural changes in the posterior globe and orbit. Particularly, posterior globe flattening has been implicated in several astronauts. This phenomenon is known to affect some terrestrial patient populations, and has been shown to be associated with intracranial hypertension. It is commonly assessed by magnetic resonance imaging (MRI), computed tomography (CT), or B-mode ultrasound (US), without consistent objective criteria. NASA uses a semi-quantitative scale of 0-3 as part of eye/orbit MRI and US analysis for occupational monitoring purposes. The goal of this study was to initiate development of an objective quantification methodology for posterior globe flattening.

  13. Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns.

    PubMed

    Rungruanganunt, Patchanee; Kelly, J Robert; Adams, Douglas J

    2010-12-01

    Internal three-dimensional (3D) "fit" of prostheses to prepared teeth is likely more important clinically than "fit" judged only at the level of the margin (i.e. marginal "opening"). This work evaluates two techniques for quantitatively defining 3D "fit", both using pre-cementation space impressions: X-ray microcomputed tomography (micro-CT) and quantitative optical analysis. Both techniques are of interest for comparison of CAD/CAM system capabilities and for documenting "fit" as part of clinical studies. Pre-cementation space impressions were taken of a single zirconia coping on its die using a low viscosity poly(vinyl siloxane) impression material. Calibration specimens of this material were fabricated between the measuring platens of a micrometre. Both calibration curves and pre-cementation space impression data sets were obtained by examination using micro-CT and quantitative optical analysis. Regression analysis was used to compare calibration curves with calibration sets. Micro-CT calibration data showed tighter 95% confidence intervals and was able to measure over a wider thickness range than for the optical technique. Regions of interest (e.g., lingual, cervical) were more easily analysed with optical image analysis and this technique was more suitable for extremely thin impression walls (<10-15μm). Specimen preparation is easier for micro-CT and segmentation parameters appeared to capture dimensions accurately. Both micro-CT and the optical method can be used to quantify the thickness of pre-cementation space impressions. Each has advantages and limitations but either technique has the potential for use as part of clinical studies or CAD/CAM protocol optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Qualitative and quantitative interpretation of computed tomography of the lungs in healthy neonatal foals.

    PubMed

    Lascola, Kara M; O'Brien, Robert T; Wilkins, Pamela A; Clark-Price, Stuart C; Hartman, Susan K; Mitchell, Mark A

    2013-09-01

    To qualitatively describe lung CT images obtained from sedated healthy equine neonates (≤ 14 days of age), use quantitative analysis of CT images to characterize attenuation and distribution of gas and tissue volumes within the lungs, and identify differences between lung characteristics of foals ≤ 7 days of age and foals > 7 days of age. 10 Standardbred foals between 2.5 and 13 days of age. Foals were sedated with butorphanol, midazolam, and propofol and positioned in sternal recumbency for thoracic CT. Image analysis software was used to exclude lung from nonlung structures. Lung attenuation was measured in Hounsfield units (HU) for analysis of whole lung and regional changes in attenuation and lung gas and tissue components. Degree of lung attenuation was classified as follows: hyperinflated or emphysema, -1,000 to -901 HU; well aerated, -900 to -501 HU; poorly aerated, -500 to -101 HU; and nonaerated, > -100 HU. Qualitative evidence of an increase in lung attenuation and patchy alveolar patterns in the ventral lung region were more pronounced in foals ≤ 7 days of age than in older foals. Quantitative analysis revealed that mean ± SD lung attenuation was greater in foals ≤ 7 days of age (-442 ± 28 HU) than in foals > 7 days of age (-521 ± 24 HU). Lung aeration and gas volumes were lower than in other regions ventrally and in the mid lung region caudal to the heart. CONCLUSIONS AND CLINICAL RELEVANCE-Identified radiographic patterns and changes in attenuation were most consistent with atelectasis and appeared more severe in foals ≤ 7 days of age than in older neonatal foals. Recognition of these changes may have implications for accurate CT interpretation in sedated neonatal foals with pulmonary disease.

  15. Diagnostic value of quantitative assessment of cardiac 18F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis.

    PubMed

    Lebasnier, Adrien; Legallois, Damien; Bienvenu, Boris; Bergot, Emmanuel; Desmonts, Cédric; Zalcman, Gérard; Agostini, Denis; Manrique, Alain

    2018-06-01

    The identification of cardiac sarcoidosis is challenging as there is no gold standard consensually admitted for its diagnosis. The aim of this study was to evaluate the diagnostic value of the assessment of cardiac dynamic 18 F-fluoro-2-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and net influx constant (Ki) in patients suspected of cardiac sarcoidosis. Data obtained from 30 biopsy-proven sarcoidosis patients suspected of cardiac sarcoidosis who underwent a 50-min list-mode cardiac dynamic 18 F-FDG PET/CT after a 24 h high-fat and low-carbohydrate diet were analyzed. A normalized coefficient of variation of quantitative glucose influx constant, calculated as the ratio: standard deviation of the segmental Ki (min -1 )/global Ki (min -1 ) was determined using a validated software (Carimas ® 2.4, Turku PET Centre). Cardiac sarcoidosis was diagnosed according to the Japanese Ministry of Health and Welfare criteria. Receiving operating curve analysis was performed to determine sensitivity and specificity of cardiac dynamic 18 F-FDG PET/CT analysis to diagnose cardiac sarcoidosis. Six out of 30 patients (20%) were diagnosed as having cardiac sarcoidosis. Myocardial glucose metabolism was significantly heterogeneous in patients with cardiac sarcoidosis who showed significantly higher normalized coefficient of variation values compared to patients without cardiac sarcoidosis (0.513 ± 0.175 vs. 0.205 ± 0.081; p = 0.0007). Using ROC curve analysis, we found a cut-off value of 0.38 for the diagnosis of cardiac sarcoidosis with a sensitivity of 100% and a specificity of 91%. Our results suggest that quantitative analysis of cardiac dynamic 18 F-FDG PET/CT could be a useful tool for the diagnosis of cardiac sarcoidosis.

  16. MACULAR ATROPHY FINDINGS BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY COMPARED WITH FUNDUS AUTOFLUORESCENCE IN TREATED EXUDATIVE AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Takasago, Yukari; Shiragami, Chieko; Kobayashi, Mamoru; Osaka, Rie; Ono, Aoi; Yamashita, Ayana; Tsujikawa, Akitaka; Hirooka, Kazuyuki

    2017-11-28

    To compare the areas of choriocapillaris (CC) nonperfusion and macular atrophy (MA) in treated exudative age-related macular degeneration. This was a prospective, observational, cross-sectional study. Forty-four eyes exhibiting MA (42 patients with age-related macular degeneration), with a dry macula, underwent fundus autofluorescence and optical coherence tomography angiography. The area of MA detected by fundus autofluorescence and CC nonperfusion detected by optical coherence tomography angiography was measured using image analysis software. The rates of concordance between the MA and CC nonperfusion areas were calculated. We qualitatively and quantitatively compared the areas of MA and CC nonperfusion in age-related macular degeneration eyes. The mean areas of MA and CC nonperfusion were 5.95 ± 4.50 mm and 10.66 ± 7.05 mm, respectively (paired t-test, P < 0.001). In 39 eyes (88.6%), the CC nonperfusion area was larger than the MA area, and the mean CC nonperfusion area was significantly larger than the mean MA area. Fundus autofluorescence matching optical coherence tomography angiography showed that the CC nonperfusion area was almost included in the MA area. The mean concordance rate for the MA area inside the CC nonperfusion area was 87.7 ± 13.9%. The MA and CC nonperfusion areas markedly overlapped. The area of CC nonperfusion correlated with the MA area. Choroidal ischemia might be involved in the pathogenesis of MA in treated age-related macular degeneration.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  17. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  18. PATIENT STUDY OF IN VIVO VERIFICATION OF BEAM DELIVERY AND RANGE, USING POSITRON EMISSION TOMOGRAPHY AND COMPUTED TOMOGRAPHY IMAGING AFTER PROTON THERAPY

    PubMed Central

    Parodi, Katia; Paganetti, Harald; Shih, Helen A.; Michaud, Susan; Loeffler, Jay S.; Delaney, Thomas F.; Liebsch, Norbert J.; Munzenrider, John E.; Fischman, Alan J.; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    Purpose To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8–3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CT and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1–2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800–1,150 s. Conclusions This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application. PMID:17544003

  19. Standardized Uptake Values from PET/MRI in Metastatic Breast Cancer: An Organ-based Comparison With PET/CT

    PubMed Central

    Pujara, Akshat C.; Raad, Roy A.; Ponzo, Fabio; Wassong, Carolyn; Babb, James S.; Moy, Linda; Melsaether, Amy N.

    2016-01-01

    Quantitative standardized uptake values (SUVs) from fluorine-18 (18F) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) are commonly used to evaluate the extent of disease and response to treatment in breast cancer patients. Recently, PET/magnetic resonance imaging (MRI) has been shown to qualitatively detect metastases from various primary cancers with similar sensitivity to PET/CT. However, quantitative validation of PET/ MRI requires assessing the reliability of SUVs from MR attenuation correction (MRAC) relative to CT attenuation correction (CTAC). The purpose of this retrospective study was to assess the utility of PET/MRI-derived SUVs in breast cancer patients by testing the hypothesis that SUVs derived from MRAC correlate well with those from CTAC. Between August 2012 and May 2013, 35 breast cancer patients (age 37–78 years, 1 man) underwent clinical 18F-FDG PET/CT followed by PET/MRI. One hundred seventy metastases were seen in 21 of 35 patients; metastases to bone in 16 patients, to liver in seven patients, and to nonaxillary lymph nodes in eight patients were sufficient for statistical analysis on an organ-specific per patient basis. SUVs in the most FDG-avid metastasis per organ per patient from PET/CT and PET/MRI were measured and compared using Pearson’s correlations. Correlations between CTAC- and MRAC-derived SUVmax and SUVmean in 31 metastases to bone, liver, and nonaxillary lymph nodes were strong overall (ρ= 0.80, 0.81). SUVmax and SUVmean correlations were also strong on an organ-specific basis in 16 bone metastases (ρ= 0.76, 0.74), seven liver metastases (ρ= 0.85, 0.83), and eight nonaxillary lymph node metastases (ρ= 0.95, 0.91). These strong organ-specific correlations between SUVs from PET/CT and PET/MRI in breast cancer metastases support the use of SUVs from PET/MRI for quantitation of 18F-FDG activity. PMID:26843433

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, S; Shulkin, B

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed withmore » the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co-localization of hybrid CT anatomy and PET radioisotope uptake.« less

  1. Analysis of Visual Appearance of Retinal Nerve Fibers in High Resolution Fundus Images: A Study on Normal Subjects

    PubMed Central

    Tornow, Ralf P.; Odstrcilik, Jan; Mayer, Markus A.; Gazarek, Jiri; Jan, Jiri; Kubena, Tomas; Cernosek, Pavel

    2013-01-01

    The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL). This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects. PMID:24454526

  2. Analysis of visual appearance of retinal nerve fibers in high resolution fundus images: a study on normal subjects.

    PubMed

    Kolar, Radim; Tornow, Ralf P; Laemmer, Robert; Odstrcilik, Jan; Mayer, Markus A; Gazarek, Jiri; Jan, Jiri; Kubena, Tomas; Cernosek, Pavel

    2013-01-01

    The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL). This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

  3. Computerized Doppler Tomography and Spectrum Analysis of Carotid Artery Flow

    PubMed Central

    Morton, Paul; Goldman, Dave; Nichols, W. Kirt

    1981-01-01

    Contrast angiography remains the definitive study in the evaluation of atherosclerotic occlusive vascular disease. However, a safer technique for serial screening of symptomatic patients and for routine follow up is necessary. Computerized pulsed Doppler ultrasonic arteriography is a noninvasive technique developed by Miles6 for imaging lateral, antero-posterior and transverse sections of the carotid artery. We [ill] this system with new software and hardware to analyze the three-dimensional blood flow data. The system now provides information about the location of the occlusive process in the artery and a semi-quantitative evaluation of the degree of obstruction. In addition, we interfaced a digital signal analyzer to the system which permits spectrum analysis of the pulsed Doppler signal. This addition has allowed us to identify lesions which are not yet hemodynamically significant. ImagesFig. 2bFig. 2c

  4. Please Don't Move-Evaluating Motion Artifact From Peripheral Quantitative Computed Tomography Scans Using Textural Features.

    PubMed

    Rantalainen, Timo; Chivers, Paola; Beck, Belinda R; Robertson, Sam; Hart, Nicolas H; Nimphius, Sophia; Weeks, Benjamin K; McIntyre, Fleur; Hands, Beth; Siafarikas, Aris

    Most imaging methods, including peripheral quantitative computed tomography (pQCT), are susceptible to motion artifacts particularly in fidgety pediatric populations. Methods currently used to address motion artifact include manual screening (visual inspection) and objective assessments of the scans. However, previously reported objective methods either cannot be applied on the reconstructed image or have not been tested for distal bone sites. Therefore, the purpose of the present study was to develop and validate motion artifact classifiers to quantify motion artifact in pQCT scans. Whether textural features could provide adequate motion artifact classification performance in 2 adolescent datasets with pQCT scans from tibial and radial diaphyses and epiphyses was tested. The first dataset was split into training (66% of sample) and validation (33% of sample) datasets. Visual classification was used as the ground truth. Moderate to substantial classification performance (J48 classifier, kappa coefficients from 0.57 to 0.80) was observed in the validation dataset with the novel texture-based classifier. In applying the same classifier to the second cross-sectional dataset, a slight-to-fair (κ = 0.01-0.39) classification performance was observed. Overall, this novel textural analysis-based classifier provided a moderate-to-substantial classification of motion artifact when the classifier was specifically trained for the measurement device and population. Classification based on textural features may be used to prescreen obviously acceptable and unacceptable scans, with a subsequent human-operated visual classification of any remaining scans. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Coupled X-ray computed tomography and grey level co-occurrence matrices as a method for quantification of mineralogy and texture in 3D

    NASA Astrophysics Data System (ADS)

    Jardine, M. A.; Miller, J. A.; Becker, M.

    2018-02-01

    Texture is one of the most basic descriptors used in the geological sciences. The value derived from textural characterisation extends into engineering applications associated with mining, mineral processing and metal extraction where quantitative textural information is required for models predicting the response of the ore through a particular process. This study extends the well-known 2D grey level co-occurrence matrices methodology into 3D as a method for image analysis of 3D x-ray computed tomography grey scale volumes of drill core. Subsequent interrogation of the information embedded within the grey level occurrence matrices (GLCM) indicates they are sensitive to changes in mineralogy and texture of samples derived from a magmatic nickel sulfide ore. The position of the peaks in the GLCM is an indication of the relative density (specific gravity, SG) of the minerals and when interpreted using a working knowledge of the mineralogy of the ore presented a means to determine the relative abundance of the sulfide minerals (SG > 4), dense silicate minerals (SG > 3), and lighter silicate minerals (SG < 3). The spread of the peaks in the GLCM away from the diagonal is an indication of the degree of grain boundary interaction with wide peaks representing fine grain sizes and narrow peaks representing coarse grain sizes. The method lends itself to application as part of a generic methodology for routine use on large XCT volumes providing quantitative, timely, meaningful and automated information on mineralogy and texture in 3D.

  6. Characterization of human oral tissues based on quantitative analysis of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Salehi, Hassan S.; Kosa, Ali; Mahdian, Mina; Moslehpour, Saeid; Alnajjar, Hisham; Tadinada, Aditya

    2017-02-01

    In this paper, five types of tissues, human enamel, human cortical bone, human trabecular bone, muscular tissue, and fatty tissue were imaged ex vivo using optical coherence tomography (OCT). The specimens were prepared in blocks of 5 x 5 x 3 mm (width x length x height). The OCT imaging system was a swept source OCT system operating at wavelengths ranging between 1250 nm and 1360 nm with an average power of 18 mW and a scan rate of 50 to 100 kHz. The imaging probe was placed on top of a 2 x 2 cm stabilizing device to maintain a standard distance from the samples. Ten image samples from each type of tissue were obtained. To acquire images with minimum inhomogeneity, imaging was performed multiple times at different points. Based on the observed texture differences between OCT images of soft and hard tissues, spatial and spectral features were quantitatively extracted from the OCT images. The Radon transform from angles of 0 deg to 90 deg was computed, averaged over all the angles, normalized to peak at unity, and then fitted with Gaussian function. The mean absolute values of the spatial frequency components of the OCT image were considered as a feature, where 2-D fast Fourier transform (FFT) was done to OCT images. These OCT features can reliably differentiate between a range of hard and soft tissues, and could be extremely valuable in assisting dentists for in vivo evaluation of oral tissues and early detection of pathologic changes in tissues.

  7. Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice.

    PubMed

    Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew

    2014-10-08

    Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.

  8. Disease quantification on PET/CT images without object delineation

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Wu, Caiyun; Fitzpatrick, Danielle; Winchell, Nicole; Schuster, Stephen J.; Torigian, Drew A.

    2017-03-01

    The derivation of quantitative information from images to make quantitative radiology (QR) clinically practical continues to face a major image analysis hurdle because of image segmentation challenges. This paper presents a novel approach to disease quantification (DQ) via positron emission tomography/computed tomography (PET/CT) images that explores how to decouple DQ methods from explicit dependence on object segmentation through the use of only object recognition results to quantify disease burden. The concept of an object-dependent disease map is introduced to express disease severity without performing explicit delineation and partial volume correction of either objects or lesions. The parameters of the disease map are estimated from a set of training image data sets. The idea is illustrated on 20 lung lesions and 20 liver lesions derived from 18F-2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT scans of patients with various types of cancers and also on 20 NEMA PET/CT phantom data sets. Our preliminary results show that, on phantom data sets, "disease burden" can be estimated to within 2% of known absolute true activity. Notwithstanding the difficulty in establishing true quantification on patient PET images, our results achieve 8% deviation from "true" estimates, with slightly larger deviations for small and diffuse lesions where establishing ground truth becomes really questionable, and smaller deviations for larger lesions where ground truth set up becomes more reliable. We are currently exploring extensions of the approach to include fully automated body-wide DQ, extensions to just CT or magnetic resonance imaging (MRI) alone, to PET/CT performed with radiotracers other than FDG, and other functional forms of disease maps.

  9. A Four-Dimensional Computed Tomography Comparison of Healthy vs. Asthmatic Human Lungs

    PubMed Central

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Haghighi, Babak; Hoffman, Eric A.; Comellas, Alejandro P.; Kline, Joel N.; Lin, Ching-Long

    2017-01-01

    The purpose of this study was to explore new insights in non-linearity, hysteresis and ventilation heterogeneity of asthmatic human lungs using four-dimensional computed tomography (4D-CT) image data acquired during tidal breathing. Volumetric image data were acquired for 5 non-severe and one severe asthmatic volunteers. Besides 4D-CT image data, function residual capacity and total lung capacity image data during breath-hold were acquired for comparison with dynamic scans. Quantitative results were compared with the previously reported analysis of five healthy human lungs. Using an image registration technique, local variables such as regional ventilation and anisotropic deformation index (ADI) were estimated. Regional ventilation characteristics of non-severe asthmatic subjects were similar to those of healthy subjects, but different from the severe asthmatic subject. Lobar airflow fractions were also well correlated between static and dynamic scans (R2 > 0.84). However, local ventilation heterogeneity significantly increased during tidal breathing in both healthy and asthmatic subjects relative to that of breath-hold perhaps because of airway resistance present only in dynamic breathing. ADI was used to quantify non-linearity and hysteresis of lung motion during tidal breathing. Nonlinearity was greater on inhalation than exhalation among all subjects. However, exhalation nonlinearity among asthmatic subjects was greater than healthy subjects and the difference diminished during inhalation. An increase of non-linearity during exhalation in asthmatic subjects accounted for lower hysteresis relative to that of healthy ones. Thus, assessment of nonlinearity differences between healthy and asthmatic lungs during exhalation may provide quantitative metrics for subject identification and outcome assessment of new interventions. PMID:28372795

  10. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  11. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography

    PubMed Central

    Merkle, Conrad W.; Srinivasan, Vivek J.

    2015-01-01

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. PMID:26477654

  12. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference < 0.1cm-1). Image analysis was performed on the attenuation coefficient images to derive quantitative endpoints. We observed a statistically significant difference among the median attenuation coefficients of these five regions (one-way ANOVA, p<0.05). Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  13. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

    PubMed

    Merkle, Conrad W; Srinivasan, Vivek J

    2016-01-15

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography.

    PubMed

    Precht, H; Kitslaar, P H; Broersen, A; Gerke, O; Dijkstra, J; Thygesen, J; Egstrup, K; Lambrechtsen, J

    2017-02-01

    Investigate the influence of adaptive statistical iterative reconstruction (ASIR) and the model-based IR (Veo) reconstruction algorithm in coronary computed tomography angiography (CCTA) images on quantitative measurements in coronary arteries for plaque volumes and intensities. Three patients had three independent dose reduced CCTA performed and reconstructed with 30% ASIR (CTDI vol at 6.7 mGy), 60% ASIR (CTDI vol 4.3 mGy) and Veo (CTDI vol at 1.9 mGy). Coronary plaque analysis was performed for each measured CCTA volumes, plaque burden and intensities. Plaque volume and plaque burden show a decreasing tendency from ASIR to Veo as median volume for ASIR is 314 mm 3 and 337 mm 3 -252 mm 3 for Veo and plaque burden is 42% and 44% for ASIR to 39% for Veo. The lumen and vessel volume decrease slightly from 30% ASIR to 60% ASIR with 498 mm 3 -391 mm 3 for lumen volume and vessel volume from 939 mm 3 to 830 mm 3 . The intensities did not change overall between the different reconstructions for either lumen or plaque. We found a tendency of decreasing plaque volumes and plaque burden but no change in intensities with the use of low dose Veo CCTA (1.9 mGy) compared to dose reduced ASIR CCTA (6.7 mGy & 4.3 mGy), although more studies are warranted. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  15. A New Quantitative 3D Imaging Method for Characterizing Spray in the Near-field of Nozzle Exits

    DTIC Science & Technology

    2015-01-13

    measurements were performed on a flat-panel tabletop cone - beam CT system in the Radiology Department at Stanford University. The X-ray generator (CPI...quantitative measurement technique to examine the dense near-field region of sprays using X-ray computed tomography (CT). An optimized “spray CT system” was...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 X-ray CT, Spray, Hollow Cone Spray, Near Field REPORT DOCUMENTATION PAGE 11. SPONSOR

  16. Three-dimensional quantitative flow diagnostics

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Nosenchuck, Daniel M.

    1989-01-01

    The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

  17. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography.

    PubMed

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C; Gulsen, Gultekin

    2015-09-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed "temperature-modulated fluorescence tomography" (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40  mm×W:100  mm) is recovered as an elongated object in the conventional FT (x=4.5  mm; y=10.4  mm), while TM-FT recovers it successfully in both directions (x=3.8  mm; y=4.6  mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT.

  18. Evaluation of a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography of scaphoid fixation screws.

    PubMed

    Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman

    2014-12-01

    The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra- and postoperative follow-up imaging.

  19. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients.

    PubMed

    Herweh, Christian; Ringleb, Peter A; Rauch, Geraldine; Gerry, Steven; Behrens, Lars; Möhlenbruch, Markus; Gottorf, Rebecca; Richter, Daniel; Schieber, Simon; Nagel, Simon

    2016-06-01

    The Alberta Stroke Program Early CT score (ASPECTS) is an established 10-point quantitative topographic computed tomography scan score to assess early ischemic changes. We compared the performance of the e-ASPECTS software with those of stroke physicians at different professional levels. The baseline computed tomography scans of acute stroke patients, in whom computed tomography and diffusion-weighted imaging scans were obtained less than two hours apart, were retrospectively scored by e-ASPECTS as well as by three stroke experts and three neurology trainees blinded to any clinical information. The ground truth was defined as the ASPECTS on diffusion-weighted imaging scored by another two non-blinded independent experts on consensus basis. Sensitivity and specificity in an ASPECTS region-based and an ASPECTS score-based analysis as well as receiver-operating characteristic curves, Bland-Altman plots with mean score error, and Matthews correlation coefficients were calculated. Comparisons were made between the human scorers and e-ASPECTS with diffusion-weighted imaging being the ground truth. Two methods for clustered data were used to estimate sensitivity and specificity in the region-based analysis. In total, 34 patients were included and 680 (34 × 20) ASPECTS regions were scored. Mean time from onset to computed tomography was 172 ± 135 min and mean time difference between computed tomographyand magnetic resonance imaging was 41 ± 31 min. The region-based sensitivity (46.46% [CI: 30.8;62.1]) of e-ASPECTS was better than three trainees and one expert (p ≤ 0.01) and not statistically different from another two experts. Specificity (94.15% [CI: 91.7;96.6]) was lower than one expert and one trainee (p < 0.01) and not statistically different to the other four physicians. e-ASPECTS had the best Matthews correlation coefficient of 0.44 (experts: 0.38 ± 0.08 and trainees: 0.19 ± 0.05) and the lowest mean score error of 0.56 (experts: 1.44 ± 1.79 and trainees: 1.97 ± 2.12). e-ASPECTS showed a similar performance to that of stroke experts in the assessment of brain computed tomographys of acute ischemic stroke patients with the Alberta Stroke Program Early CT score method. © 2016 World Stroke Organization.

  20. Temporal Processing of Dynamic Positron Emission Tomography via Principal Component Analysis in the Sinogram Domain

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.

    2004-10-01

    In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.

  1. Point-by-point compositional analysis for atom probe tomography.

    PubMed

    Stephenson, Leigh T; Ceguerra, Anna V; Li, Tong; Rojhirunsakool, Tanaporn; Nag, Soumya; Banerjee, Rajarshi; Cairney, Julie M; Ringer, Simon P

    2014-01-01

    This new alternate approach to data processing for analyses that traditionally employed grid-based counting methods is necessary because it removes a user-imposed coordinate system that not only limits an analysis but also may introduce errors. We have modified the widely used "binomial" analysis for APT data by replacing grid-based counting with coordinate-independent nearest neighbour identification, improving the measurements and the statistics obtained, allowing quantitative analysis of smaller datasets, and datasets from non-dilute solid solutions. It also allows better visualisation of compositional fluctuations in the data. Our modifications include:.•using spherical k-atom blocks identified by each detected atom's first k nearest neighbours.•3D data visualisation of block composition and nearest neighbour anisotropy.•using z-statistics to directly compare experimental and expected composition curves. Similar modifications may be made to other grid-based counting analyses (contingency table, Langer-Bar-on-Miller, sinusoidal model) and could be instrumental in developing novel data visualisation options.

  2. Integrated scanning laser ophthalmoscopy and optical coherence tomography for quantitative multimodal imaging of retinal degeneration and autofluorescence

    NASA Astrophysics Data System (ADS)

    Issaei, Ali; Szczygiel, Lukasz; Hossein-Javaheri, Nima; Young, Mei; Molday, L. L.; Molday, R. S.; Sarunic, M. V.

    2011-03-01

    Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.

  3. In vivo fluorescence lifetime optical projection tomography

    PubMed Central

    McGinty, James; Taylor, Harriet B.; Chen, Lingling; Bugeon, Laurence; Lamb, Jonathan R.; Dallman, Margaret J.; French, Paul M. W.

    2011-01-01

    We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions. PMID:21559145

  4. Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Rajian, Justin R.; Fabiilli, Mario L.; Fowlkes, J. Brian; Carson, Paul L.

    2012-02-01

    We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. Other than providing a new photoacoustic contrast agent, the ICG encapsulated double emulsion, when imaged with photoacoustic tomography, could facilitate spatial and quantitative monitoring of ultrasound initiated drug delivery.

  5. Polarization sensitive optical coherence tomography – a review [Invited

    PubMed Central

    de Boer, Johannes F.; Hitzenberger, Christoph K.; Yasuno, Yoshiaki

    2017-01-01

    Optical coherence tomography (OCT) is now a well-established modality for high-resolution cross-sectional and three-dimensional imaging of transparent and translucent samples and tissues. Conventional, intensity based OCT, however, does not provide a tissue-specific contrast, causing an ambiguity with image interpretation in several cases. Polarization sensitive (PS) OCT draws advantage from the fact that several materials and tissues can change the light’s polarization state, adding an additional contrast channel and providing quantitative information. In this paper, we review basic and advanced methods of PS-OCT and demonstrate its use in selected biomedical applications. PMID:28663869

  6. Label-free evanescent microscopy for membrane nano-tomography in living cells.

    PubMed

    Bon, Pierre; Barroca, Thomas; Lévèque-Fort, Sandrine; Fort, Emmanuel

    2014-11-01

    We show that through-the-objective evanescent microscopy (epi-EM) is a powerful technique to image membranes in living cells. Readily implementable on a standard inverted microscope, this technique enables full-field and real-time tracking of membrane processes without labeling and thus signal fading. In addition, we demonstrate that the membrane/interface distance can be retrieved with 10 nm precision using a multilayer Fresnel model. We apply this nano-axial tomography of living cell membranes to retrieve quantitative information on membrane invagination dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  7. Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants.

    PubMed

    Cuijpers, Vincent M J I; Jaroszewicz, Jacub; Anil, Sukumaran; Al Farraj Aldosari, Abdullah; Walboomers, X Frank; Jansen, John A

    2014-03-01

    The aims of this study were (i) to determine the spatial resolution and sensitivity of micro- versus nano-computed tomography (CT) techniques and (ii) to validate micro- versus nano-CT in a dog dental implant model, comparative to histological analysis. To determine spatial resolution and sensitivity, standardized reference samples containing standardized nano- and microspheres were prepared in polymer and ceramic matrices. Thereafter, 10 titanium-coated polymer dental implants (3.2 mm in Ø by 4 mm in length) were placed in the mandible of Beagle dogs. Both micro- and nano-CT, as well as histological analyses, were performed. The reference samples confirmed the high resolution of the nano-CT system, which was capable of revealing sub-micron structures embedded in radiodense matrices. The dog implantation study and subsequent statistical analysis showed equal values for bone area and bone-implant contact measurements between micro-CT and histology. However, because of the limited sample size and field of view, nano-CT was not rendering reliable data representative of the entire bone-implant specimen. Micro-CT analysis is an efficient tool to quantitate bone healing parameters at the bone-implant interface, especially when using titanium-coated PMMA implants. Nano-CT is not suitable for such quantification, but reveals complementary morphological information rivaling histology, yet with the advantage of a 3D visualization. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  8. Standardized Index of Shape (DCE-MRI) and Standardized Uptake Value (PET/CT): Two quantitative approaches to discriminate chemo-radiotherapy locally advanced rectal cancer responders under a functional profile

    PubMed Central

    Petrillo, Antonella; Fusco, Roberta; Petrillo, Mario; Granata, Vincenza; Delrio, Paolo; Bianco, Francesco; Pecori, Biagio; Botti, Gerardo; Tatangelo, Fabiana; Caracò, Corradina; Aloj, Luigi; Avallone, Antonio; Lastoria, Secondo

    2017-01-01

    Purpose To investigate dynamic contrast enhanced-MRI (DCE-MRI) in the preoperative chemo-radiotherapy (CRT) assessment for locally advanced rectal cancer (LARC) compared to18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Methods 75 consecutive patients with LARC were enrolled in a prospective study. DCE-MRI analysis was performed measuring SIS: linear combination of percentage change (Δ) of maximum signal difference (MSD) and wash-out slope (WOS). 18F-FDG PET/CT analysis was performed using SUV maximum (SUVmax). Tumor regression grade (TRG) were estimated after surgery. Non-parametric tests, receiver operating characteristic were evaluated. Results 55 patients (TRG1-2) were classified as responders while 20 subjects as non responders. ΔSIS reached sensitivity of 93%, specificity of 80% and accuracy of 89% (cut-off 6%) to differentiate responders by non responders, sensitivity of 93%, specificity of 69% and accuracy of 79% (cut-off 30%) to identify pathological complete response (pCR). Therapy assessment via ΔSUVmax reached sensitivity of 67%, specificity of 75% and accuracy of 70% (cut-off 60%) to differentiate responders by non responders and sensitivity of 80%, specificity of 31% and accuracy of 51% (cut-off 44%) to identify pCR. Conclusions CRT response assessment by DCE-MRI analysis shows a higher predictive ability than 18F-FDG PET/CT in LARC patients allowing to better discriminate significant and pCR. PMID:28042958

  9. Standardized Index of Shape (DCE-MRI) and Standardized Uptake Value (PET/CT): Two quantitative approaches to discriminate chemo-radiotherapy locally advanced rectal cancer responders under a functional profile.

    PubMed

    Petrillo, Antonella; Fusco, Roberta; Petrillo, Mario; Granata, Vincenza; Delrio, Paolo; Bianco, Francesco; Pecori, Biagio; Botti, Gerardo; Tatangelo, Fabiana; Caracò, Corradina; Aloj, Luigi; Avallone, Antonio; Lastoria, Secondo

    2017-01-31

    To investigate dynamic contrast enhanced-MRI (DCE-MRI) in the preoperative chemo-radiotherapy (CRT) assessment for locally advanced rectal cancer (LARC) compared to18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). 75 consecutive patients with LARC were enrolled in a prospective study. DCE-MRI analysis was performed measuring SIS: linear combination of percentage change (Δ) of maximum signal difference (MSD) and wash-out slope (WOS). 18F-FDG PET/CT analysis was performed using SUV maximum (SUVmax). Tumor regression grade (TRG) were estimated after surgery. Non-parametric tests, receiver operating characteristic were evaluated. 55 patients (TRG1-2) were classified as responders while 20 subjects as non responders. ΔSIS reached sensitivity of 93%, specificity of 80% and accuracy of 89% (cut-off 6%) to differentiate responders by non responders, sensitivity of 93%, specificity of 69% and accuracy of 79% (cut-off 30%) to identify pathological complete response (pCR). Therapy assessment via ΔSUVmax reached sensitivity of 67%, specificity of 75% and accuracy of 70% (cut-off 60%) to differentiate responders by non responders and sensitivity of 80%, specificity of 31% and accuracy of 51% (cut-off 44%) to identify pCR. CRT response assessment by DCE-MRI analysis shows a higher predictive ability than 18F-FDG PET/CT in LARC patients allowing to better discriminate significant and pCR.

  10. Diagnostic Yield of Transbronchial Biopsy in Comparison to High Resolution Computerized Tomography in Sarcoidosis Cases

    PubMed

    Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan

    2018-04-25

    This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License

  11. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    PubMed

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drayer, B.; Jaszczak, R.; Coleman, E.

    1982-06-01

    An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatummore » and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.« less

  13. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE PAGES

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  14. Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography: effect of acquisition time and implications for protocols.

    PubMed

    Goh, Vicky; Halligan, Steve; Hugill, Jo-Ann; Gartner, Louise; Bartram, Clive I

    2005-01-01

    To determine the effect of acquisition time on quantitative colorectal cancer perfusion measurement. Dynamic contrast-enhanced computed tomography (CT) was performed prospectively in 10 patients with histologically proven colorectal cancer using 4-detector row CT (Lightspeed Plus; GE Healthcare Technologies, Waukesha, WI). Tumor blood flow, blood volume, mean transit time, and permeability were assessed for 3 acquisition times (45, 65, and 130 seconds). Mean values for all 4 perfusion parameters for each acquisition time were compared using the paired t test. Significant differences in permeability values were noted between acquisitions of 45 seconds and 65 and 130 seconds, respectively (P=0.02, P=0.007). There was no significant difference for values of blood volume, blood flow, and mean transit time between any of the acquisition times. Scan acquisitions of 45 seconds are too short for reliable permeability measurement in the abdomen. Longer acquisition times are required.

  15. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  16. Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis.

    PubMed

    Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T

    2015-01-01

    Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.

  17. Automated measurement of stent strut coverage in intravascular optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ahn, Chi Young; Kim, Byeong-Keuk; Hong, Myeong-Ki; Jang, Yangsoo; Heo, Jung; Joo, Chulmin; Seo, Jin Keun

    2015-02-01

    Optical coherence tomography (OCT) is a non-invasive, cross-sectional imaging modality that has become a prominent imaging method in percutaneous intracoronary intervention. We present an automated detection algorithm for stent strut coordinates and coverage in OCT images. The algorithm for stent strut detection is composed of a coordinate transformation from the polar to the Cartesian domains and application of second derivative operators in the radial and the circumferential directions. Local region-based active contouring was employed to detect lumen boundaries. We applied the method to the OCT pullback images acquired from human patients in vivo to quantitatively measure stent strut coverage. The validation studies against manual expert assessments demonstrated high Pearson's coefficients ( R = 0.99) in terms of the stent strut coordinates, with no significant bias. An averaged Hausdorff distance of < 120 μm was obtained for vessel border detection. Quantitative comparison in stent strut to vessel wall distance found a bias of < 12.3 μm and a 95% confidence of < 110 μm.

  18. Estrogens are essential for male pubertal periosteal bone expansion.

    PubMed

    Bouillon, Roger; Bex, Marie; Vanderschueren, Dirk; Boonen, Steven

    2004-12-01

    The skeletal response to estrogen therapy was studied in a 17-yr-old boy with congenital aromatase deficiency. As expected, estrogen therapy (1 mg estradiol valeriate/d from age 17 until 20 yr) normalized total and free testosterone and reduced the rate of bone remodeling. Dual-energy x-ray absorptiometry-assessed areal bone mineral density (BMD) of the lumbar spine and femoral neck increased significantly (by 23% and 14%, respectively), but peripheral quantitative computed tomography at the ultradistal radius revealed no gain of either trabecular or cortical volumetric BMD. The increase in areal BMD was thus driven by an increase in bone size. Indeed, longitudinal bone growth (height, +8.5%) and especially cross-sectional area of the radius (+46%) and cortical thickness (+12%), as measured by peripheral quantitative computed tomography, increased markedly during estrogen treatment. These findings demonstrate that androgens alone are insufficient, whereas estrogens are essential for the process of pubertal periosteal bone expansion typically associated with the male bone phenotype.

  19. Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient

    PubMed Central

    Klyen, Blake R.; Scolaro, Loretta; Shavlakadze, Tea; Grounds, Miranda D.; Sampson, David D.

    2014-01-01

    We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy. PMID:24761302

  20. Preliminary experiments on pharmacokinetic diffuse fluorescence tomography of CT-scanning mode

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqi; Wang, Xin; Yin, Guoyan; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng; Zhang, Limin

    2016-10-01

    In vivo tomographic imaging of the fluorescence pharmacokinetic parameters in tissues can provide additional specific and quantitative physiological and pathological information to that of fluorescence concentration. This modality normally requires a highly-sensitive diffuse fluorescence tomography (DFT) working in dynamic way to finally extract the pharmacokinetic parameters from the measured pharmacokinetics-associated temporally-varying boundary intensity. This paper is devoted to preliminary experimental validation of our proposed direct reconstruction scheme of instantaneous sampling based pharmacokinetic-DFT: A highly-sensitive DFT system of CT-scanning mode working with parallel four photomultiplier-tube photon-counting channels is developed to generate an instantaneous sampling dataset; A direct reconstruction scheme then extracts images of the pharmacokinetic parameters using the adaptive-EKF strategy. We design a dynamic phantom that can simulate the agent metabolism in living tissue. The results of the dynamic phantom experiments verify the validity of the experiment system and reconstruction algorithms, and demonstrate that system provides good resolution, high sensitivity and quantitativeness at different pump speed.

  1. Changes in bone structure of Corriedale sheep with inherited rickets: a peripheral quantitative computed tomography assessment.

    PubMed

    Dittmer, Keren E; Firth, Elwyn C; Thompson, Keith G; Marshall, Jonathan C; Blair, Hugh T

    2011-03-01

    An inherited skeletal disease with gross and microscopic features of rickets has been diagnosed in Corriedale sheep in New Zealand. The aim of this study was to quantify the changes present in tibia from sheep with inherited rickets using peripheral quantitative computed tomography. In affected sheep, scans in the proximal tibia, where metaphysis becomes diaphysis, showed significantly greater trabecular bone mineral content (BMC) and bone mineral density (BMD). The sheep with inherited rickets had significantly greater BMC and bone area in the mid-diaphysis of the proximal tibia compared to control sheep. However, BMD in the mid-diaphysis was significantly less in affected sheep than in controls, due to the greater cortical area and lower voxel density values in affected sheep. From this it was concluded that the increased strain on under-mineralised bone in sheep with inherited rickets led to increased bone mass in an attempt to improve bone strength. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Quantitative 3D imaging of yeast by hard X-ray tomography.

    PubMed

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  3. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  4. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  5. Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-07-01

    We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.

  6. Three-Dimensional Analysis of Mandibular Angle Classification and Aesthetic Evaluation of the Lower Face in Chinese Female Adults.

    PubMed

    Mao, Xiaoyan; Fu, Xi; Niu, Feng; Chen, Ying; Jin, Qi; Qiao, Jia; Gui, Lai

    2018-05-14

    Reduction gonioplasty is very popular in East Asia. However, there has been little quantitative criteria for mandibular angle classification or aesthetics. The aim of this study was to investigate the quantitative differences of mandibular angle types and determine the morphologic features of mandibular angle in attractive women. We created a database of skull computed tomography and standardized frontal and lateral photographs of 96 Chinese female adults. Mandibular angle was classified into 3 groups, namely, extraversion, introversion, and healthy group, based on the position of gonion. We used a 5-point Likert scale to quantify attractiveness based on photographs. Those who scored 4 or higher were defined as attractive women. Three types of computed tomography measurements of the mandible were taken, including 4 distances, 4 angles, and 3 proportions. Discriminant analysis was applied to establish a mathematic model for mandibular angle aesthetics evaluation. Significant differences were observed between the different types of mandibular angle in lower facial width (Gol-Gor), mandibular angle (Co-Go-Me), and gonion divergence angle (Gol-Me-Gor) (P < 0.01). Chinese attractive women had a mandibular angle of 123.913 ± 2.989 degrees, a FH-MP of 27.033 ± 2.695 degrees, and a Go-Me/Co-Go index of 2.0. The "healthy" women had a mandibular angle of 116.402 ± 5.373 degrees, a FH-MP of 19.556 ± 5.999 degrees, and a Go-Me/Co-Go index of 1.6. The estimated Fisher linear discriminant function for the identification of attractive women was as follows: Y = -0.1516X1(Co-Go) + 0.128X2(Go-Me) + 0.04936X3(Co-Go-Me) +0.0218X4(FH-MP). Our study quantified the differences of mandibular angle types and identified the morphological features of mandibular angle in attractive Chinese female adults. Our results could assist plastic surgeons in presurgical designing of new aesthetic gonion and help to evaluate lower face aesthetics.

  7. Cluster analysis of bone microarchitecture from high resolution peripheral quantitative computed tomography demonstrates two separate phenotypes associated with high fracture risk in men and women.

    PubMed

    Edwards, M H; Robinson, D E; Ward, K A; Javaid, M K; Walker-Bone, K; Cooper, C; Dennison, E M

    2016-07-01

    Osteoporosis is a major healthcare problem which is conventionally assessed by dual energy X-ray absorptiometry (DXA). New technologies such as high resolution peripheral quantitative computed tomography (HRpQCT) also predict fracture risk. HRpQCT measures a number of bone characteristics that may inform specific patterns of bone deficits. We used cluster analysis to define different bone phenotypes and their relationships to fracture prevalence and areal bone mineral density (BMD). 177 men and 159 women, in whom fracture history was determined by self-report and vertebral fracture assessment, underwent HRpQCT of the distal radius and femoral neck DXA. Five clusters were derived with two clusters associated with elevated fracture risk. "Cluster 1" contained 26 women (50.0% fractured) and 30 men (50.0% fractured) with a lower mean cortical thickness and cortical volumetric BMD, and in men only, a mean total and trabecular area more than the sex-specific cohort mean. "Cluster 2" contained 20 women (50.0% fractured) and 14 men (35.7% fractured) with a lower mean trabecular density and trabecular number than the sex-specific cohort mean. Logistic regression showed fracture rates in these clusters to be significantly higher than the lowest fracture risk cluster [5] (p<0.05). Mean femoral neck areal BMD was significantly lower than cluster 5 in women in cluster 1 and 2 (p<0.001 for both), and in men, in cluster 2 (p<0.001) but not 1 (p=0.220). In conclusion, this study demonstrates two distinct high risk clusters in both men and women which may differ in etiology and response to treatment. As cluster 1 in men does not have low areal BMD, these men may not be identified as high risk by conventional DXA alone. Copyright © 2016. Published by Elsevier Inc.

  8. Quantitative characterisation of clinically significant intra-prostatic cancer by prostate-specific membrane antigen (PSMA) expression and cell density on PSMA-11.

    PubMed

    Domachevsky, Liran; Goldberg, Natalia; Bernstine, Hanna; Nidam, Meital; Groshar, David

    2018-05-30

    To quantitatively characterize clinically significant intra-prostatic cancer (IPC) by prostate-specific membrane antigen (PSMA) expression and cell density on PSMA-11 positron emission tomography/magnetic resonance (PET/MR). Retrospective study approved by the institutional review board with informed written consent obtained. Patients with a solitary, biopsy-proven prostate cancer, Gleason score (GS) ≥7, presenting for initial evaluation by PET/computerised tomography (PET/CT), underwent early prostate PET/MR immediately after PSMA-11 tracer injection. PET/MR [MRI-based attenuation correction (MRAC)] and PET/CT [CT-based AC (CTAC)] maximal standardised uptake value (SUVmax) and minimal and mean apparent diffusion coefficient (ADCmin, ADCmean; respectively) in normal prostatic tissue (NPT) were compared to IPC area. The relationship between SUVmax, ADCmin and ADCmean measurements was obtained. Twenty-two patients (mean age 69.5±5.0 years) were included in the analysis. Forty-four prostate areas were evaluated (22 IPC and 22 NPT). Median MRAC SUVmax of NPT was significantly lower than median MRAC SUVmax of IPC (p < 0.0001). Median ADCmin and ADCmean of NPT was significantly higher than median ADCmin and ADCmean of IPC (p < 0.0001). A very good correlation was found between MRAC SUVmax with CTAC SUVmax (rho = -0.843, p < 0.0001). A good inverse relationship was found between MRAC SUVmax and CTAC SUVmax with ADCmin (rho = -0.717, p < 0.0001 and -0.740, p < 0.0001; respectively; Z = 0.22, p = 0.82, NS) and with MRAC SUVmax and ADCmean (rho = -0.737, p < 0.0001). PET/MR SUVmax, ADCmin and ADCmean are distinct biomarkers able to differentiate between IPC and NPT in naïve prostate cancer patients with GS ≥ 7. • PSMA PET/MR metrics differentiate between normal and tumoural prostatic tissue. • A multi-parametric approach combining molecular and anatomical information might direct prostate biopsy. • PSMA PET/MR metrics are warranted for radiomics analysis.

  9. Comparison of Post-Processing Techniques for the Detection of Perfusion Defects by Cardiac Computed Tomography in Patients Presenting with Acute ST Segment Elevation Myocardial Infarction

    PubMed Central

    Rogers, Ian S.; Cury, Ricardo C.; Blankstein, Ron; Shapiro, Michael D.; Nieman, Koen; Hoffmann, Udo; Brady, Thomas J.; Abbara, Suhny

    2010-01-01

    Background Despite rapid advances in cardiac computed tomography (CT), a strategy for optimal visualization of perfusion abnormalities on CT has yet to be validated. Objective To evaluate the performance of several post-processing techniques of source data sets to detect and characterize perfusion defects in acute myocardial infarctions with cardiac CT. Methods Twenty-one subjects (18 men; 60 ± 13 years) that were successfully treated with percutaneous coronary intervention for ST-segment myocardial infarction underwent 64-slice cardiac CT and 1.5 Tesla cardiac MRI scans following revascularization. Delayed enhancement MRI images were analyzed to identify the location of infarcted myocardium. Contiguous short axis images of the left ventricular myocardium were created from the CT source images using 0.75mm multiplanar reconstruction (MPR), 5mm MPR, 5mm maximal intensity projection (MIP), and 5mm minimum intensity projection (MinIP) techniques. Segments already confirmed to contain infarction by MRI were then evaluated qualitatively and quantitatively with CT. Results Overall, 143 myocardial segments were analyzed. On qualitative analysis, the MinIP and thick MPR techniques had greater visibility and definition than the thin MPR and MIP techniques (p < 0.001). On quantitative analysis, the absolute difference in Hounsfield Unit (HU) attenuation between normal and infarcted segments was significantly greater for the MinIP (65.4 HU) and thin MPR (61.2 HU) techniques. However, the relative difference in HU attenuation was significantly greatest for the MinIP technique alone (95%, p < 0.001). Contrast to noise was greatest for the MinIP (4.2) and thick MPR (4.1) techniques (p < 0.001). Conclusion The results of our current investigation found that MinIP and thick MPR detected infarcted myocardium with greater visibility and definition than MIP and thin MPR. PMID:20579617

  10. Changes in quantitative 3D shape features of the optic nerve head associated with age

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.

  11. Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial

    PubMed Central

    Lang, T.; Boonen, S.; Cummings, S.; Delmas, P. D.; Cauley, J. A.; Horowitz, Z.; Kerzberg, E.; Bianchi, G.; Kendler, D.; Leung, P.; Man, Z.; Mesenbrink, P.; Eriksen, E. F.; Black, D. M.

    2016-01-01

    Summary Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength. Introduction To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength. Methods In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated. Results Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p<0.01) and QCT (5.7%, p<0.0001). Between-treatment differences were significant for trabecular spine (p=0.0017) [non-parametric test], trabecular trochanter (10.7%, p<0.0001), total hip (10.8%, p<0.0001), and compressive strength indices at femoral neck (8.6%, p=0.0001), and trochanter (14.1%, p<0.0001). Conclusions Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength. PMID:19802508

  12. Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy.

    PubMed

    Nomura, J-I; Uwano, I; Sasaki, M; Kudo, K; Yamashita, F; Ito, K; Fujiwara, S; Kobayashi, M; Ogasawara, K

    2017-12-01

    Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98%, respectively. Preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping identifies patients at risk for cerebral hyperperfusion following carotid endarterectomy. © 2017 by American Journal of Neuroradiology.

  13. Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle.

    PubMed

    Gilbert, Fabian; Böhm, Dirk; Eden, Lars; Schmalzl, Jonas; Meffert, Rainer H; Köstler, Herbert; Weng, Andreas M; Ziegler, Dirk

    2016-08-22

    The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman's rank correlation. Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of the Goutallier classification and thus improve the prediction of clinical results after rotator cuff repair. However, these techniques are currently only available in an experimental setting.

  14. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury

    PubMed Central

    Bigler, Erin D.

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology perspective could represent a significant advancement for the field. PMID:27555810

  15. Three-dimensional analysis of third molar development to estimate age of majority.

    PubMed

    Márquez-Ruiz, Ana Belén; Treviño-Tijerina, María Concepción; González-Herrera, Lucas; Sánchez, Belén; González-Ramírez, Amanda Rocío; Valenzuela, Aurora

    2017-09-01

    Third molars are one of the few biological markers available for age estimation in undocumented juveniles close the legal age of majority, assuming an age of 18years as the most frequent legal demarcation between child and adult status. To obtain more accurate visualization and evaluation of third molar mineralization patterns from computed tomography images, a new software application, DentaVol©, was developed. Third molar mineralization according to qualitative (Demirjian's maturational stage) and quantitative parameters (third molar volume) of dental development was assessed in multi-slice helical computed tomography images of both maxillary arches displayed by DentaVol© from 135 individuals (62 females and 73 males) aged between 14 and 23years. Intra- and inter-observer agreement values were remarkably high for both evaluation procedures and for all third molars. A linear correlation between third molar mineralization and chronological age was found, with third molar maturity occurring earlier in males than in females. Assessment of dental development with both procedures, by using DentaVol© software, can be considered a good indicator of age of majority (18years or older) in all third molars. Our results indicated that virtual computed tomography imaging can be considered a valid alternative to orthopantomography for evaluations of third molar mineralization, and therefore a complementary tool for determining the age of majority. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  16. Feasibility of using optical coherence tomography to detect acute radiation-induced esophageal damage in small animal models

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; de Bruin, Daniel Martijn; Salguero, F. Javier; Borst, Gerben Roelof; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; Alderliesten, Tanja; van Herk, Marcel

    2018-04-01

    Lung cancer survival is poor, and radiation therapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to acute radiation-induced esophageal damage (ARIED). We investigated the feasibility of optical coherence tomography (OCT) for minimally invasive imaging of the esophagus with high resolution (10 μm) to detect ARIED in mice. Thirty mice underwent cone-beam computed tomography imaging for initial setup assessment and dose planning followed by a single-dose delivery of 4.0, 10.0, 16.0, and 20.0 Gy on 5.0-mm spots, spaced 10.0 mm apart in the esophagus. They were repeatedly imaged using OCT up to three months postirradiation. We compared OCT findings with histopathology obtained three months postirradiation qualitatively and quantitatively using the contrast-to-background-noise ratio (CNR). Histopathology mostly showed inflammatory infiltration and edema at higher doses; OCT findings were in agreement with most of the histopathological reports. We were able to identify the ARIED on OCT as a change in tissue scattering and layer thickness. Our statistical analysis showed significant difference between the CNR values of healthy tissue, edema, and inflammatory infiltration. Overall, the average CNR for inflammatory infiltration and edema damages was 1.6-fold higher and 1.6-fold lower than for the healthy esophageal wall, respectively. Our results showed the potential role of OCT to detect and monitor the ARIED in mice, which may translate to humans.

  17. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block.

    PubMed

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares, José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-12-01

    Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution's ethics committee. The patients' mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB.

  18. Quantitative assessment on coronary computed tomography angiography (CCTA) image quality: comparisons between genders and different tube voltage settings

    PubMed Central

    Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md

    2017-01-01

    Background This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Methods Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Results Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. Conclusions There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient. PMID:28275559

  19. Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja

    2016-03-01

    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.

  20. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. Volumetric characterization of human patellar cartilage matrix on phase contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel

    2015-03-01

    Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  2. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    PubMed

    Schouten, Corinne; Meijer, Gert J; van den Beucken, Jeroen J J P; Spauwen, Paul H M; Jansen, John A

    2009-09-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated+TGF-beta1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0-500 microm; middle: 500-1000 microm; and outer: 1000-1500 microm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.

  3. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    PubMed

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  4. Analysis of plastic deformation in cortical bone after insertion of coated and non-coated self-tapping orthopaedic screws.

    PubMed

    Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R

    2011-07-01

    Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.

  5. EEG topography and tomography (LORETA) in the classification and evaluation of the pharmacodynamics of psychotropic drugs.

    PubMed

    Saletu, Bernd; Anderer, Peter; Saletu-Zyhlarz, Gerda M

    2006-04-01

    By multi-lead computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (QEEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping or topography), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ, the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects and therapeutic efficacy will be discussed. Imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be shown for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently. By considering these differences between psychotropic drugs and placebo in normal subjects, as well as between mental disorder patients and normal controls, it may be possible to choose the optimum drug for a specific patient according to a key-lock principle, since the drug should normalize the deviant brain function. Thus, pharmaco-EEG topography and tomography are valuable methods in human neuropsychopharmacology, clinical psychiatry and neurology.

  6. Visual vs Fully Automatic Histogram-Based Assessment of Idiopathic Pulmonary Fibrosis (IPF) Progression Using Sequential Multidetector Computed Tomography (MDCT)

    PubMed Central

    Colombi, Davide; Dinkel, Julien; Weinheimer, Oliver; Obermayer, Berenike; Buzan, Teodora; Nabers, Diana; Bauer, Claudia; Oltmanns, Ute; Palmowski, Karin; Herth, Felix; Kauczor, Hans Ulrich; Sverzellati, Nicola

    2015-01-01

    Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years; M:F, 33:7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y; +11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Δ) in OE and Δ 40th percentile (r=0.69; p<0.001) as compared to Δ 80th percentile (r=0.58; p<0.001); closer correlation was found between Δ ground-glass extent and Δ 40th percentile (r=0.66, p<0.001) as compared to Δ 80th percentile (r=0.47, p=0.002), while the Δ reticulations correlated better with the Δ 80th percentile (r=0.56, p<0.001) in comparison to Δ 40th percentile (r=0.43, p=0.003). Conclusions There is a relevant and fully automatically measurable difference at MDCT in VSs and in histogram analysis at one year follow-up of IPF patients, whether treated or untreated: Δ 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern; furthermore Δ 80th percentile might reveal the course of reticular opacities. PMID:26110421

  7. Comparative assessment of three drug eluting stents with different platforms but with the same biodegradable polymer and the drug based on quantitative coronary angiography and optical coherence tomography at 12-month follow-up.

    PubMed

    Gil, Robert J; Bil, Jacek; Legutko, Jacek; Pawłowski, Tomasz; Gil, Katarzyna E; Dudek, Dariusz; Costa, Ricardo A

    2018-03-01

    The aim of this study was to compare neointima proliferation in three drug-eluting stents (DES) produced by the same company (Balton, Poland) which are covered with a biodegradable polymer and elute sirolimus (concentration: 1.0 and 1.2 µg/mm 2 ), but have different stent platforms and strut thickness: stainless steel Prolim ® (115 µm) and BiOSS LIM ® (120 µm) and cobalt-chromium Alex ® (70 µm). We analyzed data of patients with quantitative coronary angiography (QCA) and optical coherence tomography (OCT) at 12 months from BiOSS LIM Registry, Prolim Registry and Alex OCT clinical trial. There were 56 patients enrolled, in whom 29 Prolim ® stents were deployed, in 11-BiOSS LIM ® and in 16-Alex stents. The late lumen loss was the smallest in Prolim ® subgroup (0.26 ± 0.17 mm) and did not differ from Alex ® subgroup (0.28 ± 0.47 mm). This parameter was significantly bigger in BiOSS ® subgroup (0.38 ± 0.19 mm; p < 0.05). In OCT analysis there was no statistically significant difference between Prolim ® and Alex ® subgroups in terms of mean neointima burden (24.6 ± 8.6 vs. 19.27 ± 8.11%) and neointima volume (28.16 ± 15.10 vs. 24.51 ± 17.64 mm 3 ). In BiOSS ® group mean neointima burden (30.9 ± 6.2%) and mean neointima volume (44.9 ± 4.9 mm 3 ) were significantly larger. The morphological analysis revealed that in most cases in all groups the neointima was homogenous with plaque presence only around stent struts. In the QCA and OCT analysis regular DES (Prolim ® and Alex ® ) obtained similar results, whereas more pronounced response from the vessel wall was found in the BiOSS ® subgroup.

  8. Quantitative tomographic measurements of opaque multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less

  9. Detection of brain tumor margins using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Juarez-Chambi, Ronald M.; Kut, Carmen; Rico-Jimenez, Jesus; Campos-Delgado, Daniel U.; Quinones-Hinojosa, Alfredo; Li, Xingde; Jo, Javier

    2018-02-01

    In brain cancer surgery, it is critical to achieve extensive resection without compromising adjacent healthy, noncancerous regions. Various technological advances have made major contributions in imaging, including intraoperative magnetic imaging (MRI) and computed tomography (CT). However, these technologies have pros and cons in providing quantitative, real-time and three-dimensional (3D) continuous guidance in brain cancer detection. Optical Coherence Tomography (OCT) is a non-invasive, label-free, cost-effective technique capable of imaging tissue in three dimensions and real time. The purpose of this study is to reliably and efficiently discriminate between non-cancer and cancerinfiltrated brain regions using OCT images. To this end, a mathematical model for quantitative evaluation known as the Blind End-Member and Abundances Extraction method (BEAE). This BEAE method is a constrained optimization technique which extracts spatial information from volumetric OCT images. Using this novel method, we are able to discriminate between cancerous and non-cancerous tissues and using logistic regression as a classifier for automatic brain tumor margin detection. Using this technique, we are able to achieve excellent performance using an extensive cross-validation of the training dataset (sensitivity 92.91% and specificity 98.15%) and again using an independent, blinded validation dataset (sensitivity 92.91% and specificity 86.36%). In summary, BEAE is well-suited to differentiate brain tissue which could support the guiding surgery process for tissue resection.

  10. Detection of brain tumor margins using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Juarez-Chambi, Ronald M.; Kut, Carmen; Rico-Jimenez, Jesus; Campos-Delgado, Daniel U.; Quinones-Hinojosa, Alfredo; Li, Xingde; Jo, Javier

    2018-02-01

    In brain cancer surgery, it is critical to achieve extensive resection without compromising adjacent healthy, non-cancerous regions. Various technological advances have made major contributions in imaging, including intraoperative magnetic imaging (MRI) and computed tomography (CT). However, these technologies have pros and cons in providing quantitative, real-time and three-dimensional (3D) continuous guidance in brain cancer detection. Optical Coherence Tomography (OCT) is a non-invasive, label-free, cost-effective technique capable of imaging tissue in three dimensions and real time. The purpose of this study is to reliably and efficiently discriminate between non-cancer and cancer-infiltrated brain regions using OCT images. To this end, a mathematical model for quantitative evaluation known as the Blind End- Member and Abundances Extraction method (BEAE). This BEAE method is a constrained optimization technique which extracts spatial information from volumetric OCT images. Using this novel method, we are able to discriminate between cancerous and non-cancerous tissues and using logistic regression as a classifier for automatic brain tumor margin detection. Using this technique, we are able to achieve excellent performance using an extensive cross-validation of the training dataset (sensitivity 92.91% and specificity 98.15%) and again using an independent, blinded validation dataset (sensitivity 92.91% and specificity 86.36%). In summary, BEAE is well-suited to differentiate brain tissue which could support the guiding surgery process for tissue resection.

  11. Discrimination between patients with mild Alzheimer's disease and healthy subjects based on cerebral blood flow images of the lateral views in xenon-enhanced computed tomography.

    PubMed

    Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka

    2018-01-01

    Quantitative cerebral blood flow (CBF) measurement is expected to help early detection of functional abnormalities caused by Alzheimer's disease (AD) and enable AD treatment to begin in its early stages. Recently, a technique of layer analysis was reported that allowed CBF to be analyzed from the outer to inner layers of the brain. The aim of this work was to develop methods for discriminating between patients with mild AD and healthy subjects based on CBF images of the lateral views created with the layer analysis technique in xenon-enhanced computed tomography. Xenon-enhanced computed tomography using a wide-volume CT was performed on 17 patients with mild AD aged 75 or older and on 15 healthy age-matched volunteers. For each subject, we created CBF images of the right and left lateral views with a depth of 10-15 mm from the surface of the brain. Ten circular regions of interest (ROI) were placed on each image, and CBF was calculated for each ROI. We determined discriminant ROI that had CBF that could be used to differentiate between the AD and volunteer groups. AD patients' CBF range (mean - SD to mean + SD) and healthy volunteers' CBF range (mean - SD to mean + SD) were obtained for each ROI. Receiver-operator curves were created to identify patients with AD for each of the discriminant ROI and for the AD patients' and healthy volunteers' CBF ranges. We selected an ROI on both the right and left temporal lobes as the discriminant ROI. Areas under the receiver-operator curve were 93.3% using the ROI on the right temporal lobe, 95.3% using the ROI on the left temporal lobe, and 92.4% using the AD patients' and healthy volunteers' CBF ranges. We could effectively discriminate between patients with mild AD and healthy subjects using ROI placed on CBF images of the lateral views in xenon-enhanced computed tomography. © 2017 Japanese Psychogeriatric Society.

  12. Integration of XNAT/PACS, DICOM, and Research Software for Automated Multi-modal Image Analysis.

    PubMed

    Gao, Yurui; Burns, Scott S; Lauzon, Carolyn B; Fong, Andrew E; James, Terry A; Lubar, Joel F; Thatcher, Robert W; Twillie, David A; Wirt, Michael D; Zola, Marc A; Logan, Bret W; Anderson, Adam W; Landman, Bennett A

    2013-03-29

    Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes. Integration and management of disparate data types are major obstacles. In a multi-institution collaboration, we are collecting electroencephalogy (EEG), structural MRI, diffusion tensor MRI (DTI), and single photon emission computed tomography (SPECT) from a large cohort of US Army service members exposed to mild or moderate TBI who are undergoing experimental treatment. We have constructed a robust informatics backbone for this project centered on the DICOM standard and eXtensible Neuroimaging Archive Toolkit (XNAT) server. Herein, we discuss (1) optimization of data transmission, validation and storage, (2) quality assurance and workflow management, and (3) integration of high performance computing with research software.

  13. Integration of XNAT/PACS, DICOM, and research software for automated multi-modal image analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Burns, Scott S.; Lauzon, Carolyn B.; Fong, Andrew E.; James, Terry A.; Lubar, Joel F.; Thatcher, Robert W.; Twillie, David A.; Wirt, Michael D.; Zola, Marc A.; Logan, Bret W.; Anderson, Adam W.; Landman, Bennett A.

    2013-03-01

    Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes. Integration and management of disparate data types are major obstacles. In a multi-institution collaboration, we are collecting electroencephalogy (EEG), structural MRI, diffusion tensor MRI (DTI), and single photon emission computed tomography (SPECT) from a large cohort of US Army service members exposed to mild or moderate TBI who are undergoing experimental treatment. We have constructed a robust informatics backbone for this project centered on the DICOM standard and eXtensible Neuroimaging Archive Toolkit (XNAT) server. Herein, we discuss (1) optimization of data transmission, validation and storage, (2) quality assurance and workflow management, and (3) integration of high performance computing with research software.

  14. Integration of XNAT/PACS, DICOM, and Research Software for Automated Multi-modal Image Analysis

    PubMed Central

    Gao, Yurui; Burns, Scott S.; Lauzon, Carolyn B.; Fong, Andrew E.; James, Terry A.; Lubar, Joel F.; Thatcher, Robert W.; Twillie, David A.; Wirt, Michael D.; Zola, Marc A.; Logan, Bret W.; Anderson, Adam W.; Landman, Bennett A.

    2013-01-01

    Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes. Integration and management of disparate data types are major obstacles. In a multi-institution collaboration, we are collecting electroencephalogy (EEG), structural MRI, diffusion tensor MRI (DTI), and single photon emission computed tomography (SPECT) from a large cohort of US Army service members exposed to mild or moderate TBI who are undergoing experimental treatment. We have constructed a robust informatics backbone for this project centered on the DICOM standard and eXtensible Neuroimaging Archive Toolkit (XNAT) server. Herein, we discuss (1) optimization of data transmission, validation and storage, (2) quality assurance and workflow management, and (3) integration of high performance computing with research software. PMID:24386548

  15. Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency.

    PubMed

    Akman, Cigdem Inan; Provenzano, Frank; Wang, Dong; Engelstad, Kristin; Hinton, Veronica; Yu, Julia; Tikofsky, Ronald; Ichese, Masonari; De Vivo, Darryl C

    2015-02-01

    (18)F fluorodeoxyglucose positron emission tomography ((18)F FDG-PET) facilitates examination of glucose metabolism. Previously, we described regional cerebral glucose hypometabolism using (18)F FDG-PET in patients with Glucose transporter 1 Deficiency Syndrome (Glut1 DS). We now expand this observation in Glut1 DS using quantitative image analysis to identify the epileptic network based on the regional distribution of glucose hypometabolism. (18)F FDG-PET scans of 16 Glut1 DS patients and 7 healthy participants were examined using Statistical parametric Mapping (SPM). Summed images were preprocessed for statistical analysis using MATLAB 7.1 and SPM 2 software. Region of interest (ROI) analysis was performed to validate SPM results. Visual analysis of the (18)F FDG-PET images demonstrated prominent regional glucose hypometabolism in the thalamus, neocortical regions and cerebellum bilaterally. Group comparison using SPM analysis confirmed that the regional distribution of glucose hypo-metabolism was present in thalamus, cerebellum, temporal cortex and central lobule. Two mildly affected patients without epilepsy had hypometabolism in cerebellum, inferior frontal cortex, and temporal lobe, but not thalamus. Glucose hypometabolism did not correlate with age at the time of PET imaging, head circumference, CSF glucose concentration at the time of diagnosis, RBC glucose uptake, or CNS score. Quantitative analysis of (18)F FDG-PET imaging in Glut1 DS patients confirmed that hypometabolism was present symmetrically in thalamus, cerebellum, frontal and temporal cortex. The hypometabolism in thalamus correlated with the clinical history of epilepsy. Copyright © 2014. Published by Elsevier B.V.

  16. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  17. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    PubMed

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  18. Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography

    PubMed Central

    Deniz, Engin; Jonas, Stephan; Hooper, Michael; N. Griffin, John; Choma, Michael A.; Khokha, Mustafa K.

    2017-01-01

    Birth defects affect 3% of children in the United States. Among the birth defects, congenital heart disease and craniofacial malformations are major causes of mortality and morbidity. Unfortunately, the genetic mechanisms underlying craniocardiac malformations remain largely uncharacterized. To address this, human genomic studies are identifying sequence variations in patients, resulting in numerous candidate genes. However, the molecular mechanisms of pathogenesis for most candidate genes are unknown. Therefore, there is a need for functional analyses in rapid and efficient animal models of human disease. Here, we coupled the frog Xenopus tropicalis with Optical Coherence Tomography (OCT) to create a fast and efficient system for testing craniocardiac candidate genes. OCT can image cross-sections of microscopic structures in vivo at resolutions approaching histology. Here, we identify optimal OCT imaging planes to visualize and quantitate Xenopus heart and facial structures establishing normative data. Next we evaluate known human congenital heart diseases: cardiomyopathy and heterotaxy. Finally, we examine craniofacial defects by a known human teratogen, cyclopamine. We recapitulate human phenotypes readily and quantify the functional and structural defects. Using this approach, we can quickly test human craniocardiac candidate genes for phenocopy as a critical first step towards understanding disease mechanisms of the candidate genes. PMID:28195132

  19. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  20. Monitoring of interaction of low-frequency electric field with biological tissues upon optical clearing with optical coherence tomography.

    PubMed

    Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor

    2014-08-01

    The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.

Top