Science.gov

Sample records for tomography showed multiple

  1. Multiple-illumination photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Barber, Quinn M.; Zemp, Roger J.

    2016-03-01

    Previously we described the potential for multiple illumination photoacoustic tomography to provide quantitative reconstructions, however this work used only simulated data. We have developed a custom photoacoustic-ultrasound tomography system capable of multiple illuminations and parallel acquisition from a 256 element 5 MHz transducer ring array with 8-cm diameter. The multiple illumination scheme uses a free-space light delivery geometry where a rotational stage scans a pulsed laser beam onto different incident locations around the sample. For each illumination location a photoacoustic image is reconstructed using a modified backprojection algorithm. Images from different source locations have the potential to be combined to form an improved deep-tissue image using our previously developed iterative algorithms. We complement the photoacoustic imaging data with unique ultrasound imaging data. Most previous ultrasound tomography methods have used migration algorithms, iterative ray-based analysis, wave-equation modeling, or frequency-based algorithms that all demand large amounts of data and computational power. We propose a new UST method that offers isotropic resolution, provides scattering contrast, as well as the potential for measuring ultrasound scattering anisotropy and decoupling density and compressibility contributions. The imaging system is driven by a Verasonics scan engine and programmed for both ultrasound and photoacoustic imaging modes. Resolution has been measured to be 150 μm for ultrasound and 200 μm for photoacoustic images. Imaging capabilities are demonstrated on phantoms with custom-tailored ultrasound scattering and optical properties, as well as in murine models.

  2. Kepler Systems That Show Multiple Transiting Objects

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.; Fabrycky, D. C.; Ford, E. B.; Holman, M. J.; Lissauer, J. J.; Ragozzine, D.; Welsh, W. F.; Kepler Science Team

    2011-01-01

    Exoplanetary systems that have multiple transiting planets provide unique and important insight into the formation, evolution, and dynamics of exoplanetary systems. Kepler has announced the discovery of a confirmed planetary system with multiple transiting planets (Kepler 9, Holman et al. 2010) as well as several candidate planetary systems that show multiple transiting objects (Steffen et al. 2010). Kepler 9 shows deviations from a constant period due to the ongoing dynamical interactions between the confirmed planets. From these transit timing variations (TTV) one can measure the planetary masses from the photometric data alone. The presence of several systems with multiple transiting candidates from the first quarter of data indicate that Kepler should continue to find systems with multiple transiting planets. Such systems will provide important, general information about the histories of planetary systems.

  3. AD-1 multiple exposure showing wing sweep

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This photograph is a multiple exposure showing the AD-1 aircraft with its wing swept at different angles between zero and 60 degrees. The Ames-Dryden-1 (AD-1) aircraft was designed to investigate the concept of an oblique (pivoting) wing. The wing could be rotated on its center pivot, so that it could be set at its most efficient angle for the speed at which the aircraft was flying. NASA Ames Research Center Aeronautical Engineer Robert T. Jones conceived the idea of an oblique wing. His wind tunnel studies at Ames (Moffett Field, CA) indicated that an oblique wing design on a supersonic transport might achieve twice the fuel economy of an aircraft with conventional wings. The oblique wing on the AD-1 pivoted about the fuselage, remaining perpendicular to it during slow flight and rotating to angles of up to 60 degrees as aircraft speed increased. Analytical and wind tunnel studiesthat Jones conducted at Ames indicated that a transport-sized oblique-wing aircraft flying at speeds of up to Mach 1.4 (1.4 times the speed of sound) would have substantially better aerodynamic performance than aircraft with conventional wings. The AD-1 structure allowed the project to complete all of its technical objectives. The type of low-speed, low-cost vehicle - as expected - exhibited aeroelastic and pitch-roll-coupling effects that contributed to poor handling at sweep angles above 45 degrees. The fiberglass structure limited the wing stiffness that would have improved the handling qualities. Thus, after completion of the AD-1 project, there was still a need for a transonic oblique-wing research aircraft to assess the effects of compressibility, evaluate a more representative structure, and analyze flight performance at transonic speeds (those on either side of the speed of sound). The aircraft was delivered to the Dryden Flight Research Center, Edwards, CA, in March 1979 and its first flight was on December 21, 1979. Piloting the aircraft on that flight, as well as on its last

  4. Finite frequency tomography shows a variety of plumes

    NASA Astrophysics Data System (ADS)

    Nolet, G.; Montelli, R.; Masters, G.; Dahlen, F. A.; Hung, S.

    2003-04-01

    The new technique of finite-frequency tomography (see abstract by Montelli et al., this meeting) is very powerful in imaging objects of small dimension in the lower mantle. The first global images of P velocity anomalies obtained by using this technique to invert a small but very accurate data set of long period P arrivals bottoming in the lower mantle show 18 low velocity anomalies in excess of -0.5%, all but two of which are associated with a known hotspot at the surface, and they serve as an unprecented glimpse into the deep mechanisms that give rise to hotspots. The following synopsis is given under the caveat that we have not yet incorporated high frequency waves into the interpretation, nor completed a full resolution analysis at the time of writing of this abstract (both will be presented at the meeting). We observe six or seven hotspots fed by a plume extending to the core-mantle boundary: Cap Verde, Easter Island, Hawaii, Kerguelen, St Helena, Tahiti, and perhaps also Azores. Several hotspots, among which are Bouvet, Bowie, and Mount Erebus, seem to originate at mid-mantle depth, while others (Afar, Ascension, Galapagos, Iceland, la Reunion and others) seem to be mostly confined to the upper mantle. Many renowned hotspots (such as Eifel, Samoa and Yellowstone) have only very weak low velocity anomalies at depth and may be the result of superficial processes confined to the top of the upper mantle. We confirm the existence of the two superplumes which both have Δ V_P < -0.5% extending as high as 2000 km depth. It is clear that no one plume/hotspot model can explain the variety in deep expressions of hotspots in the mantle. If midmantle plume origins represent originally deep plumes in their end stage, while the two unidentified anomalies are either beginning new plumes (Greenland) or plumes cut off in their initial ascent (W. Pacific), the large number of plumes caught in this phase would point to lengthy rise times of the order of tens of millions of

  5. Complementary roles of brain scintigraphy and computed tomography in multiple sclerosis

    SciTech Connect

    Moreno, A.J.; Brown, J.M.; Waller, S.F.; Lundy, M.M.; Brown, T.J.

    1983-12-01

    Cerebral computed tomography, with and without iodinated contrast, revealed the appearance and evolution of lesions in a 32-year-old man with multiple sclerosis. Two areas were enhanced with contrast, with one showing a mild mass effect and rim of enhancement. Serial brain scintigraphy using technetium-/sub 99m/ glucoheptonate, following the computed tomography, showed the appearance and regression of corresponding regions of increased uptake. Computed tomography one day prior to brain scintigraphy failed to demonstrate a region of increased accumulation of radiotracer. One week later, however, evidence of a corresponding unenhanced defect was noted on computed tomography. Clinical correlation is given additionally.

  6. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  7. View of southern quarry wall, facing west, showing multiple drill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of southern quarry wall, facing west, showing multiple drill holes on face - Granite Hill Plantation, Quarry No. 4, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  8. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    NASA Astrophysics Data System (ADS)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  9. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  10. 7. SOUTHEAST VIEW OF BIG DALTON DAM SHOWING THE MULTIPLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTHEAST VIEW OF BIG DALTON DAM SHOWING THE MULTIPLE ARCHES, AN UPSTREAM VIEW OF THE PARAPET WALL ALONG THE CREST OF THE DAM, AND THE SHELTER HOUSE AT THE EAST END OF THE DAM. - Big Dalton Dam, 2600 Big Dalton Canyon Road, Glendora, Los Angeles County, CA

  11. 13. Interior view of office space with multiple stations; showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Interior view of office space with multiple stations; showing exterior windows and opened doorway to private office; towards west end and north side of main section of building on top floor; view to northeast. - Ellsworth Air Force Base, Group Administration & Secure Storage Building, 2372 Westover Avenue, Blackhawk, Meade County, SD

  12. Analysis of multiple scattering effects in optical Doppler tomography

    NASA Astrophysics Data System (ADS)

    Yura, Harold T.; Thrane, Lars; Andersen, Peter E.

    2005-08-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth-resolved retinal flow profiles where the influence of multiple scattering was observed [Yazdanfar et al., Opt. Lett. 25, 1448 (2000)]. To the best of our knowledge, no analytical model exists that are able to explain these observations.

  13. Analysis of multiple scattering effects in optical Doppler tomography

    NASA Astrophysics Data System (ADS)

    Yura, Harold T.; Thrane, Lars; Andersen, Peter E.

    2005-04-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth-resolved retinal flow profiles where the influence of multiple scattering was observed [Yazdanfar et al., Opt. Lett. 25, 1448 (2000)]. To the best of our knowledge, no analytical model exists that are able to explain these observations.

  14. Diffuse optical tomography based on multiple access coding

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Wang, Yuanqing; Su, Jinshan; Xu, Fan

    2016-04-01

    Diffuse optical tomography (DOT) has the advantages of being a non-invasive, non-radiation emitting and low-cost biological tissue imaging method, and many recent studies have employed this technology. By improving the spatial resolution and developing a new method for constantly improving the flexibility of the experimental device, the system can perform data acquisition rapidly and conveniently. We propose a method for rapid data acquisition based on multiple access coding; it can acquire data in parallel, and the system can greatly improve the temporal resolution of the data acquisition step in diffuse optical tomography thereafter. We simulate the encoding and decoding process of the source-detector pair and successfully isolate the source signal from mixed signals. The DOT image reconstruction highlight the effectiveness of the system.

  15. Five Kepler target stars that show multiple transiting exoplanet candidates

    SciTech Connect

    Steffen, Jason H.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Caldwell, Douglas A.; Cochran, William D.; Endl, Michael; Fabrycky, Daniel C.; Fressin, Francois; Ford, Eric B.; Fortney, Jonathan J.; /UC, Santa Cruz, Phys. Dept. /NASA, Ames

    2010-06-01

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities - two near 2:1 and one just outside 5:2. We discuss the implications that multitransiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories; as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTV) due to gravitational interactions - though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  16. FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES

    SciTech Connect

    Steffen, Jason H.; Batalha, Natalie M.; Borucki, William J.; Caldwell, Douglas A.; Haas, Michael J.; Jenkins, Jon M.; Koch, David; Lissauer, Jack J.; Buchhave, Lars A.; Fabrycky, Daniel C.; Fressin, Francois; Holman, Matthew J.; Latham, David W.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Moorhead, Althea V.; Fortney, Jonathan J.; Howell, Steve B.; Isaacson, Howard

    2010-12-10

    We present and discuss five candidate exoplanetary systems identified with the Kepler spacecraft. These five systems show transits from multiple exoplanet candidates. Should these objects prove to be planetary in nature, then these five systems open new opportunities for the field of exoplanets and provide new insights into the formation and dynamical evolution of planetary systems. We discuss the methods used to identify multiple transiting objects from the Kepler photometry as well as the false-positive rejection methods that have been applied to these data. One system shows transits from three distinct objects while the remaining four systems show transits from two objects. Three systems have planet candidates that are near mean motion commensurabilities-two near 2:1 and one just outside 5:2. We discuss the implications that multi-transiting systems have on the distribution of orbital inclinations in planetary systems, and hence their dynamical histories, as well as their likely masses and chemical compositions. A Monte Carlo study indicates that, with additional data, most of these systems should exhibit detectable transit timing variations (TTVs) due to gravitational interactions, though none are apparent in these data. We also discuss new challenges that arise in TTV analyses due to the presence of more than two planets in a system.

  17. Swept-Source OCT Angiography Shows Sparing of the Choriocapillaris in Multiple Evanescent White Dot Syndrome.

    PubMed

    Yannuzzi, Nicolas A; Swaminathan, Swarup S; Zheng, Fang; Miller, Andrew; Gregori, Giovanni; Davis, Janet L; Rosenfeld, Philip J

    2017-01-01

    Two women with unilateral vision loss from multiple evanescent white dot syndrome were imaged serially with swept-source optical coherence tomography (SS-OCT). En face wide-field structural images revealed peripapillary outer photoreceptor disruption better than conventional fundus autofluorescence imaging. OCT angiography (OCTA) imaging showed preservation of flow within the retinal vasculature and choriocapillaris. As OCTA imaging of the choriocapillaris continues to evolve, these images may lay the groundwork for future investigation. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:69-74.].

  18. Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Xiaoying, Wang; Ziqiang, Dai; Enhong, Zhang; Fuyang, K. E.; Yunchang, Cao; Lianchun, Song

    2014-01-01

    Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method.

  19. New World cattle show ancestry from multiple independent domestication events

    PubMed Central

    McTavish, Emily Jane; Decker, Jared E.; Schnabel, Robert D.; Taylor, Jeremy F.; Hillis, David M.

    2013-01-01

    Previous archeological and genetic research has shown that modern cattle breeds are descended from multiple independent domestication events of the wild aurochs (Bos primigenius) ∼10,000 y ago. Two primary areas of domestication in the Middle East/Europe and the Indian subcontinent resulted in taurine and indicine lines of cattle, respectively. American descendants of cattle brought by European explorers to the New World beginning in 1493 generally have been considered to belong to the taurine lineage. Our analyses of 47,506 single nucleotide polymorphisms show that these New World cattle breeds, as well as many related breeds of cattle in southern Europe, actually exhibit ancestry from both the taurine and indicine lineages. In this study, we show that, although European cattle are largely descended from the taurine lineage, gene flow from African cattle (partially of indicine origin) contributed substantial genomic components to both southern European cattle breeds and their New World descendants. New World cattle breeds, such as Texas Longhorns, provide an opportunity to study global population structure and domestication in cattle. Following their introduction into the Americas in the late 1400s, semiferal herds of cattle underwent between 80 and 200 generations of predominantly natural selection, as opposed to the human-mediated artificial selection of Old World breeding programs. Our analyses of global cattle breed population history show that the hybrid ancestry of New World breeds contributed genetic variation that likely facilitated the adaptation of these breeds to a novel environment. PMID:23530234

  20. New World cattle show ancestry from multiple independent domestication events.

    PubMed

    McTavish, Emily Jane; Decker, Jared E; Schnabel, Robert D; Taylor, Jeremy F; Hillis, David M

    2013-04-09

    Previous archeological and genetic research has shown that modern cattle breeds are descended from multiple independent domestication events of the wild aurochs (Bos primigenius) ∼10,000 y ago. Two primary areas of domestication in the Middle East/Europe and the Indian subcontinent resulted in taurine and indicine lines of cattle, respectively. American descendants of cattle brought by European explorers to the New World beginning in 1493 generally have been considered to belong to the taurine lineage. Our analyses of 47,506 single nucleotide polymorphisms show that these New World cattle breeds, as well as many related breeds of cattle in southern Europe, actually exhibit ancestry from both the taurine and indicine lineages. In this study, we show that, although European cattle are largely descended from the taurine lineage, gene flow from African cattle (partially of indicine origin) contributed substantial genomic components to both southern European cattle breeds and their New World descendants. New World cattle breeds, such as Texas Longhorns, provide an opportunity to study global population structure and domestication in cattle. Following their introduction into the Americas in the late 1400s, semiferal herds of cattle underwent between 80 and 200 generations of predominantly natural selection, as opposed to the human-mediated artificial selection of Old World breeding programs. Our analyses of global cattle breed population history show that the hybrid ancestry of New World breeds contributed genetic variation that likely facilitated the adaptation of these breeds to a novel environment.

  1. Single vs. Multiple Transponders for Radio Tomography of Asteroids

    NASA Astrophysics Data System (ADS)

    Pursiainen, Sampsa; Kaasalainen, M.; TUT Inverse Problems Group led by Mikko Kaasalainen, Prof.

    2013-10-01

    The purpose of this study was to develop numerical inverse methods for radio tomography of asteroids in which the goal is to recover the internal electric permittivity distribution of an asteroid based on radio frequency data gathered by an orbiter. The present tomography approach with a single transponder has been utilized in the CONSERT experiment which aims at reconstruction of a comet nucleus structure as a part of the ROSETTA (comet rendezvous) mission. This study aims at progress in designing the coming missions which necessitates a through investigation of implementable data gathering setups as well as forward (data) simulation and inverse computation schemes. The current signal generation approach of utilizing multiple transponders provides one potential scenario which can even be essential to achieve an appropriate reconstruction quality. Research to find the simplest and most robust (best bang for the buck) scenarios for signal generation and measurements is of utmost importance due to the high cost and long duration of planning and implementing a space mission, necessitating a highly optimized payload. Regarding the forward and inverse approaches, this study, in particular, validated the iterative alternating sequential (IAS) inversion (reconstruction) strategy with a forward simulation relying on the wave equation of the electric potential. To enable the IAS inverse approach, a linearized forward model was utilized to find the reconstructions. The inverse problem was given a Bayesian formulation. The numerical experiments included in this study compared the single and multiple transponder signal generation approaches in localization of permittivity anomalies. Three different anomaly strengths and four levels of total noise were tested to examine the tolerance of present reconstruction strategy to different error sources. Noise due to forward simulation was estimated. The results obtained were promising regarding the combination of the current forward

  2. Multiple pinhole collimator based X-ray luminescence computed tomography.

    PubMed

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-07-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT.

  3. Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography.

    PubMed

    Shao, Peng; Cox, Ben; Zemp, Roger J

    2011-07-01

    While photoacoustic methods offer significant promise for high-resolution optical contrast imaging, quantification has thus far proved challenging. In this paper, a noniterative reconstruction technique for producing quantitative photoacoustic images of both absorption and scattering perturbations is introduced for the case when the optical properties of the turbid background are known and multiple optical illumination locations are used. Through theoretical developments and computational examples, it is demonstrated that multiple-illumination photoacoustic tomography (MI-PAT) can alleviate ill-posedness due to absorption-scattering nonuniqueness and produce quantitative high-resolution reconstructions of optical absorption, scattering, and Gruneisen parameter distributions. While numerical challenges still exist, we show that the linearized MI-PAT framework that we propose has orders of magnitude improved condition number compared with CW diffuse optical tomography.

  4. X-5 Multiple Exposure Photo Showing Wing Sweep

    NASA Technical Reports Server (NTRS)

    1952-01-01

    This NACA High-Speed Flight Research Station photograph of the X-5 was taken at the South Base of Edwards Air Force Base. The photograph, a multiple exposure, illustrates the X-5's variably swept wing capability. The Bell, X-5 was flight tested at the NACA High-Speed Flight Research Station (now the NASA Dryden Flight Research Center, Edwards, California) from 1952 to 1955. The X-5 was the first aircraft capable of sweeping its wings in flight. It helped provide data about wing-sweep at angles of up to 60 degrees at subsonic and transonic speeds. There were two X-5 vehicles. Ship 1 was flown at the NACA High-Speed Flight Research Station (High-Speed Flight Station, as it was redesignated in 1954) from 1951 to 1955. Ship 2 was operated by Bell and the U.S. Air Force and was lost in a spin accident in 1953. Following the conclusion of the contractor's test program, the X-5 was grounded for installation of a NACA instrument package. The Air Force conducted a short, six-flight, evaluation program. Since the Air Force evaluation program included data collection, it was considered as part of the overall NACA effort and flights were logged as AF/NACA. In the NACA test program, the X-5 demonstrated severe stall-spin instability. The X-5 was also used as a chase plane for other research aircraft because it could vary its flying characteristics to suit the airplane it was chasing. Ship 1 flew a total of 133 flights during its three years of service. In spite of the problems with the aircraft, the X-5 provided a significant full-scale verification of NACA wind-tunnel predictions for reduced drag and improved performance that resulted from this configuration's increasing the wing sweep as the speed of the aircraft approached the speed of sound. The X-5 flight tests provided some of the design data for the Air Force F-111 and Navy F-14 tactical aircraft. Although the mechanism by which the X-5 changed its wing sweep made this particular design impractical, development of a

  5. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle

    USGS Publications Warehouse

    Foulger, G.R.; Pritchard, M.J.; Julian, B.R.; Evans, J.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.

    2001-01-01

    range ??? 100-300 km beneath east-central Iceland. The anomalous body is approximately cylindrical in the top 250 km but tabular in shape at greater depth, elongated north-south and generally underlying the spreading plate boundary. Such a morphological change and its relationship to surface rift zones are predicted to occur in convective upwellings driven by basal heating, passive upwelling in response to plate separation and lateral temperature gradients. Although we cannot resolve structure deeper than ??? 450 km, and do not detect a bottom to the anomaly, these models suggest that it extends no deeper than the mantle transition zone. Such models thus suggest a shallow origin for the Iceland hotspot rather than a deep mantle plume, and imply that the hotspot has been located on the spreading ridge in the centre of the north Atlantic for its entire history, and is not fixed relative to other Atlantic hotspots. The results are consistent with recent, regional full-thickness mantle tomography and whole-mantle tomography images that show a strong, low-wave-speed anomaly beneath the Iceland region that is confined to the upper mantle and thus do not require a plume in the lower mantle. Seismic and geochemical observations that are interpreted as indicating a lower mantle, or core-mantle boundary origin for the North Atlantic Igneous Province and the Iceland hotspot should be re-examined to consider whether they are consistent with upper mantle processes.

  6. [A Patient with Early-Stage Multiple System Atrophy Showing Augmented Nystagmus in Light].

    PubMed

    Oguri, Masayoshi; Nakamura, Yousuke; Hara, Ayako; Kitano, Hiroya; Motokura, Toru

    2015-04-01

    The ability to fix the eyes on a target, visual fixation, is important for the maintenance of equilibrium. The visual suppression (VS) test is one method of measuring the function of visual fixation. The test records caloric nystagmus by electrooculography, and the maximum slow phase velocity of caloric nystagmus in darkness is compared with the slow phase velocity in light with eyes fixed. Lesions of the cerebellum, brain stem, and cerebrum cause abnormalities of VS. We report a patient whose VS became a clue in the diagnosis of a disorder of the central nervous system. A 54-year-old man complained of dizziness, which gradually increased in frequency over 5 months. He visited several clinics, where vestibular neutritis and cervical spondylosis were suspected and treated without improvement. Although a pure-tone auditory test revealed bilateral normal hearing, a caloric test showed a weak response and VS was lost with augmentation of caloric nystagmus in light on both sides. Both eye tracking and optokinetic nystagmus tests were abnormal. Although magnetic resonance imaging showed no abnormalities, single photon emission computed tomography revealed decreased blood flow in the parietal area. VS of caloric nystagmus towards the side of a lesion is reduced or abolished after unilateral flocculus damage, and is abolished bilaterally after bilateral flocculus damage. In the case of a parietal lobe or pontine lesion, VS is strongly abolished, and even augmentation of caloric nystagmus may be observed. In the present case, the patient was diagnosed with multiple-system atrophy after onset of dizziness.

  7. The utility of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography for detecting lung and esophagus multiple primary cancers involved in the larynx: Two case reports.

    PubMed

    Wang, Qinying; Chai, Liang; Zhou, Shuihong

    2015-01-01

    Multiple primary cancers involved in the larynx of differentiating synchronous multiple primary cancers from metastasis can often be very difficult, especially when they have the same histology. However, it is very important because the therapeutic approach is completely different. Clinical situations like this appear to be increasing as a result of the recent popular use of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography. Herein, we report two cases of multiple primary cancers involved in the larynx.

  8. Feature-space assessment of electrical impedance tomography coregistered with computed tomography in detecting multiple contrast targets

    SciTech Connect

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    2014-06-15

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance and diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand

  9. Applied potential tomography shows differential changes in fluid content of leg tissue layers in microgravity

    NASA Astrophysics Data System (ADS)

    Baisch, F. J.

    1994-08-01

    Absence of hydrostatic forces in the human cardiocirculatory system normally leads to an overall body fluid deficit. It was hypothesized that this is mainly due to a loss of interstitial fluid. An experiment was performed on board the Russian MIR station. Cuffs were positioned around both thighs and inflated up to suprasystolic values. This maneuver took place just before and after immediately a lower body negative pressure session (LBNP). The redistribution of fluids underneath the cuffs was assessed by means of cross-sectional impedance tomography (Applied Potential Tomography, APT). A μ-g induced loss of interstitial fluid was measured in all layers of the observed cross-section. The APT-readings changed significantly (SD~+/-.9) from 3.0 at 1g to 1.7 at 0g for the outer layer and from 2.7 at 1g to 2.0 at 0g for the middle layer (expressed in arbitrary units). The LBNP maneuver was able to fill the interstitial space but only at levels higher than - 15 mmHg LBNP. This suggests that the superficial tissues in the legs are as much affected as the deeper ones by changing g-conditions and LBNP can be used to counteract interstitial fluid loss in this area.

  10. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography

    PubMed Central

    Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.

    2010-01-01

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566

  11. Phase-sensitive multiple reference optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dsouza, Roshan I.; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2016-03-01

    Multiple reference OCT (MR-OCT) is a recently developed novel time-domain OCT platform based on a miniature reference arm optical delay, which utilizes a single miniature actuator and a partial mirror to generate recirculating optical delay for extended axial-scan range. MR-OCT technology promises to fit into a robust and cost-effective design, compatible with integration into consumer-level devices for addressing wide applications in mobile healthcare and biometry applications. Using conventional intensity based OCT processing techniques, the high-resolution structural imaging capability of MR-OCT has been recently demonstrated for various applications including in vivo human samples. In this study, we demonstrate the feasibility of implementing phase based processing with MR-OCT for various functional applications such as Doppler imaging and sensing of blood vessels, and for tissue vibrography applications. The MR-OCT system operates at 1310nm with a spatial resolution of ~26 µm and an axial scan rate of 600Hz. Initial studies show a displacement-sensitivity of ~20 nm to ~120 nm for the first 1 to 9 orders of reflections, respectively with a mirror as test-sample. The corresponding minimum resolvable velocity for these orders are ~2.3 µm/sec and ~15 µm/sec respectively. Data from a chick chorioallantoic membrane (CAM) model will be shown to demonstrate the feasibility of MR-OCT for imaging in-vivo blood flow.

  12. Multiple-frequency tomography with shear waves and Love waves

    NASA Astrophysics Data System (ADS)

    Tian, Yue

    In this thesis I study the velocity and attenuation structure of the North American mantle using multiple-frequency shear-wave and Love-wave measurements, together with finite-frequency sensitivity kernels. The software for dynamic ray tracing and fast computation of body-wave finite-frequency sensitivity kernels is described and extensively validated and tested for accuracy. The program works for arbitrarily defined phases and one-dimensional background models. In kinematic and dynamic ray tracing, an integration step size of about 20 km is needed to produce travel-time errors under 0.1 s for the most common seismic phases. In kernel computation, a minimum integration step size of 10--30 km is sufficient to obtain numerical errors of the kernel's spatial quadrature below observational uncertainties. Larger errors may occur for long-period minimax phases such as SS . The paraxial approximation fails and errors become intolerable at epicentral distances larger than 140°. A global data set is built to contain multiple-frequency SH-wave travel-time and amplitude anomalies and SS-wave differential delays, estimated by band-pass filtering and cross-correlation. Most of the data are recorded at USArray stations. Frequency dependence is observed for all three types of data, and is strongest for amplitudes. The shallow structure is constrained by the addition of Love-wave phase delays. Velocity and attenuation heterogeneities are simultaneously estimated by allowing for focusing. The velocity model shows evidence of heavy fragmentation of the Farallon slab, including two separate subduction systems under western and eastern North America respectively, trench-perpendicular slab tears, and blob-like slab fragments in the lower mantle. The velocity model reveals a lower-mantle plume originating at about 1500 km depth beneath the Yellowstone area and tilting about 40° from vertical. Complex interaction between the plume and slab fragments is observed. High correlation

  13. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography.

    PubMed

    Bennett, J L; de Seze, J; Lana-Peixoto, M; Palace, J; Waldman, A; Schippling, S; Tenembaum, S; Banwell, B; Greenberg, B; Levy, M; Fujihara, K; Chan, K H; Kim, H J; Asgari, N; Sato, D K; Saiz, A; Wuerfel, J; Zimmermann, H; Green, A; Villoslada, P; Paul, F

    2015-05-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients' RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies.

  14. Characterizing Multiple Wireless Sensor Networks for Large-Scale Radio Tomography

    DTIC Science & Technology

    2015-03-01

    Network in Home Automation Network and Smart Grid,” in 2012 International Conference on Complex Systems, Agadir, Morocco, Nov. 2012, pp. 1–6. [13] D. Maas...CHARACTERIZING MULTIPLE WIRELESS SENSOR NETWORKS FOR LARGE-SCALE RADIO TOMOGRAPHY THESIS Tan Van, Captain, USAF AFIT-ENG-MS-15-M-057 DEPARTMENT OF...subject to copyright protection in the United States. AFIT-ENG-MS-15-M-057 CHARACTERIZING MULTIPLE WIRELESS SENSOR NETWORKS FOR LARGE-SCALE RADIO

  15. Multiple cardiac lipomas and pericardial lipomatosis: multidedector-row computer tomography findings.

    PubMed

    Sanal, Hatice Tuba; Kocaoğlu, Murat; Yildirim, Düzgün; Ors, Fatih

    2007-10-01

    Being rare tumors of the heart, cardiac lipomas are usually discovered incidentally during non-cardiac-related examinations of the chest. Although they are reported to be typically solitary, multiplicity has been described in tuberosclerosis patients. Here we reported the multidedector-row computer tomography (MDCT) findings of a nontuberosclerosis case with multiple cardiac lipomas along with pericardial lipomatosis, who presented with symptoms of left heart failure after a hysterectomy surgery but otherwise healthy before that operation.

  16. RTM-based Teleseismic Reflection Tomography with Free Surface Multiples

    NASA Astrophysics Data System (ADS)

    Burdick, S. A.; De Hoop, M. V.; van der Hilst, R. D.

    2013-12-01

    Receiver function analysis of teleseismic converted and free surface reflected phases has long been a cornerstone of lithospheric studies. Discontinuities in elastic properties are revealed by deconvolving the incident wavefield from scattered phases and projecting the time differences to depth to form an image. The accuracy of the image is determined to a large extent by the accuracy of the method and background velocity model used, but popular approaches for projecting receiver functions to depth commonly rely on simplifying assumptions of a 1D velocity and planar discontinuities. In tectonically complex regions like subduction zones and rift systems, strong heterogeneity can create an ambiguous tradeoff between the background velocity and the depth of the discontinuities. Furthermore, such structures are apt to create caustics at high frequencies, rendering ray-based methods inadequate. In order to better constrain the background velocity and correctly place the discontinuities at depth, we employ a novel reverse-time migration (RTM) based reflection tomography method. We adapt our reflection tomography from exploration seismology for use with teleseismic phases. Active source methods for exploration have focused on the annihilation of extended images - image gathers formed with different subsurface angle or offset information - as a means of judging the accuracy of the model. Applying these approaches to teleseismic data is untenable because 1) the sparse and uneven distribution of earthquake sources leads to the incomplete construction of extended image, 2) the imperfect separation and source deconvolution of the scattered wavefield render previous error measurements unreliable, and 3) the planar geometry of incoming arrivals makes measures of subsurface offset insensitive to perturbations in the model. To overcome these obstacles, we have developed a flexible approach based on pairwise single-source image correlations. We determine the success of the RTM and

  17. Multiple-energy Techniques in Industrial Computerized Tomography

    DOE R&D Accomplishments Database

    Schneberk, D.; Martz, H.; Azevedo, S.

    1990-08-01

    Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.

  18. Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    PubMed Central

    Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael

    2012-01-01

    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108

  19. Multiple large splenic abscesses managed with computed tomography-guided percutaneous catheter drainage in children.

    PubMed

    Yeom, Jung Sook; Park, Ji Sook; Seo, Ji-Hyun; Park, Eun Sil; Lim, Jae-Young; Park, Chan Hoo; Woo, Hyang Ok; Park, Jung Je; Cho, Jae Min; Youn, Hee-Shang

    2013-12-01

    Splenic abscess is a rare finding in children. Splenectomy combined with broad-spectrum antibiotics has been the treatment of choice for multiple splenic abscesses. Herein, we report the case of a 14-year-old girl with multiple large splenic abscesses that were successfully managed after two image-guided percutaneous drainage procedures and administration of intravenous antibiotics. Initially, an abscess located at the periphery in the lower pole of the spleen was aspirated under ultrasound guidance. Finally, another abscess located near the hilum of the spleen was drained under computed tomography guidance. To the best of our knowledge, this is the first report of multiple large splenic abscesses treated with computed tomography-guided percutaneous drainage.

  20. Noninvasive evaluation of active pan-ulcerative colitis with multiple strictures using Fluorine-18-Fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Gupta, Rajesh; Mittal, Bhagwant Rai

    2016-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease characterized by waxing and waning inflammation that changes in severity and extent and may progress to neoplasia, especially in the presence of strictures. When patients have nonnegotiable strictures or severe inflammation with ulcers, colonoscopy is difficult and carries the risk of perforation. The authors present a patient with pan-UC with multiple strictures, in whom fluorodeoxyglucose positron emission tomography/computed tomography was used to noninvasively evaluate the extent and severity of the disease.

  1. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP

    PubMed Central

    Legarreta, Andrew D.; Legarreta, John E.; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X.; Ferguson, R. Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S.

    2016-01-01

    Purpose: To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. Methods: A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Results: Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Conclusion: Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease. PMID:26735319

  2. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography

    PubMed Central

    Bennett, JL; de Seze, J; Lana-Peixoto, M; Palace, J; Waldman, A; Schippling, S; Tenembaum, S; Banwell, B; Greenberg, B; Levy, M; Fujihara, K; Chan, KH; Kim, HJ; Asgari, N; Sato, DK; Saiz, A; Wuerfel, J; Zimmermann, H; Green, A; Villoslada, P

    2015-01-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients’ RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies. PMID:25662342

  3. [A case of multiple cerebral aneurysm which showed rapid growth caused by left atrial myxoma].

    PubMed

    Hayashi, S; Takahashi, H; Shimura, T; Nakazawa, S

    1995-11-01

    A 24-year-old woman was admitted complaining of right hemiparesis and episodes of syncope. Computed tomography demonstrated a low density area in the left putaminal region. Intravenous digital subtraction angiography (IVDSA) showed two aneurysms in the distal segment of the right middle cerebral artery. Cerebral emboli from a cardiac source was suspected, and cardioechography was performed. Myxoma was located in the left atrium. The patient was transferred to a cardio surgical unit, and the myxoma was successfully removed. After removal by operation of the cardiac tumor, follow-up third IVDSA was performed. One aneurysm of the distal segment of the right middle cerebral artery had grown larger. On the other hand, the other aneurysm had disappeared. Clipping of the enlarged aneurysm was performed. After the clipping operation of the enlarged aneurysm, a follow-up 4th IVDSA was performed. A new aneurysm of the proximal segment of the left cerebral artery was observed. A follow-up 5th IVDSA was performed, revealing that the new aneurysm was enlarging. No operation was performed, because the aneurysm was the fusiform type. At present, the patient is complaining of slight right hemiparesis and has returned to her job. Here we reported a case of cerebral aneurysm caused by left atrial myxoma.

  4. Multiple-frequency tomography of the upper mantle beneath the African/Iberian collision zone

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickaël; Nolet, Guust; Villaseñor, Antonio; Gallart, Josep; Thomas, Christine

    2014-09-01

    During the Cenozoic, the geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study, we take advantage of the dense broad-band station networks now available in the Alborán Sea region, to develop a high-resolution 3-D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will better constraint the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centred between 0.03 and 1.0 Hz, and for the first time interpreted using multiple frequency tomography. Our model shows, beneath the Alborán Sea, a strong (4 per cent) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly, and its extent at depth, are coherent with a lithospheric slab, thus favouring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper mantle, high intensity slow anomalies are widespread in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at the surface with the position of the Rif and Atlas orogens and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot?) upper mantle, but without clear indication for a lateral spreading of the Canary plume to the east.

  5. Noninvasive evaluation of active pan-ulcerative colitis with multiple strictures using Fluorine-18-Fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Gupta, Rajesh; Mittal, Bhagwant Rai

    2016-01-01

    Ulcerative colitis (UC) is an inflammatory bowel disease characterized by waxing and waning inflammation that changes in severity and extent and may progress to neoplasia, especially in the presence of strictures. When patients have nonnegotiable strictures or severe inflammation with ulcers, colonoscopy is difficult and carries the risk of perforation. The authors present a patient with pan-UC with multiple strictures, in whom fluorodeoxyglucose positron emission tomography/computed tomography was used to noninvasively evaluate the extent and severity of the disease. PMID:26917901

  6. Signal simulation and signal processing for multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Neuhaus, Kai; Subhash, Hrebesh; Dsouza, Roshan; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2015-03-01

    The generation of a synthetic MR-OCT signal is presented and compared to a real acquired signal. Multiple reference optical coherence tomography (MR-OCT) is a novel time-domain interferometric system. The MR-OCT principle is adding a partial mirror to extend the axial scan range, which effectively extends the scan depth for imaging. The actuation of the scan mirror required for time-domain OCT, was demonstrated to operate with a low cost miniature voice coil, such as a speaker extracted from a smartphone or CD/DVD pick-up system. Building a compact and cost-effective optical imaging system will enable affordable medical diagnosis at low-resource setting applications. The partial mirror recirculates multiple reflections (orders) into the interferometric system and the increase of optical path delay does increase the beat frequency of the interference signal. The synthesis of such an interference signal using a numerical method is described in this manuscript.

  7. Community males show multiple-perpetrator rape proclivity: development and preliminary validation of an interest scale.

    PubMed

    Alleyne, Emma; Gannon, Theresa A; Ó Ciardha, Caoilte; Wood, Jane L

    2014-02-01

    The literature on Multiple Perpetrator Rape (MPR) is scant; however, a significant proportion of sexual offending involves multiple perpetrators. In addition to the need for research with apprehended offenders of MPR, there is also a need to conduct research with members of the general public. Recent advances in the forensic literature have led to the development of self-report proclivity scales. These scales have enabled researchers to conduct evaluative studies sampling from members of the general public who may be perpetrators of sexual offenses and have remained undetected, or at highest risk of engaging in sexual offending. The current study describes the development and preliminary validation of the Multiple-Perpetrator Rape Interest Scale (M-PRIS), a vignette-based measure assessing community males' sexual arousal to MPR, behavioral propensity toward MPR and enjoyment of MPR. The findings show that the M-PRIS is a reliable measure of community males' sexual interest in MPR with high internal reliability and temporal stability. In a sample of university males we found that a large proportion (66%) did not emphatically reject an interest in MPR. We also found that rape-supportive cognitive distortions, antisocial attitudes, and high-risk sexual fantasies were predictors of sexual interest in MPR. We discuss these findings and the implications for further research employing proclivity measures referencing theory development and clinical practice.

  8. Multispectral excitation based multiple fluorescent targets resolving in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Bai, Jing; Luo, Jianwen

    2016-04-01

    Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and resolve multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. An algorithm based on independent component analysis (ICA) for multispectral excited FMT is proposed to resolve multiple fluorescent targets in this study. Fluorescent targets are excited by multispectral excitation, and the three-dimensional distribution of fluorescent yields under the excitation spectrum is reconstructed by an iterative Tikhonov regularization algorithm. Subsequently, multiple fluorescent targets are resolved from mixed fluorescence signals by employing ICA. Simulations were performed and the results demonstrate that multiple adjacent fluorescent targets can be resolved if the number of excitation wavelengths is not smaller than that of fluorescent targets with different concentrations. The algorithm obtains both independent components that provide spatial information of different fluorescent targets and spectral courses that reflect variation trends of fluorescent yields along with the excitation spectrum. By using this method, it is possible to visualize the metabolism status of drugs in different structure organs, and quantitatively depict the variation trends of fluorescent yields of each functional organ under the excitation spectrum. This method may provide a pattern for tumor detection, drug delivery and treatment monitoring in vivo.

  9. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk

    PubMed Central

    Rhead, Brooke; Bäärnhielm, Maria; Gianfrancesco, Milena; Mok, Amanda; Shao, Xiaorong; Quach, Hong; Shen, Ling; Schaefer, Catherine; Link, Jenny; Gyllenberg, Alexandra; Hedström, Anna Karin; Olsson, Tomas; Hillert, Jan; Kockum, Ingrid; Glymour, M. Maria; Alfredsson, Lars

    2016-01-01

    Objective: We sought to estimate the causal effect of low serum 25(OH)D on multiple sclerosis (MS) susceptibility that is not confounded by environmental or lifestyle factors or subject to reverse causality. Methods: We conducted mendelian randomization (MR) analyses using an instrumental variable (IV) comprising 3 single nucleotide polymorphisms found to be associated with serum 25(OH)D levels at genome-wide significance. We analyzed the effect of the IV on MS risk and both age at onset and disease severity in 2 separate populations using logistic regression models that controlled for sex, year of birth, smoking, education, genetic ancestry, body mass index at age 18–20 years or in 20s, a weighted genetic risk score for 110 known MS-associated variants, and the presence of one or more HLA-DRB1*15:01 alleles. Results: Findings from MR analyses using the IV showed increasing levels of 25(OH)D are associated with a decreased risk of MS in both populations. In white, non-Hispanic members of Kaiser Permanente Northern California (1,056 MS cases and 9,015 controls), the odds ratio (OR) was 0.79 (p = 0.04, 95% confidence interval (CI): 0.64–0.99). In members of a Swedish population from the Epidemiological Investigation of Multiple Sclerosis and Genes and Environment in Multiple Sclerosis MS case-control studies (6,335 cases and 5,762 controls), the OR was 0.86 (p = 0.03, 95% CI: 0.76–0.98). A meta-analysis of the 2 populations gave a combined OR of 0.85 (p = 0.003, 95% CI: 0.76–0.94). No association was observed for age at onset or disease severity. Conclusions: These results provide strong evidence that low serum 25(OH)D concentration is a cause of MS, independent of established risk factors. PMID:27652346

  10. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    PubMed Central

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  11. Optical Coherence Tomography in Multiple Sclerosis and Neuromyelitis Optica: An Update

    PubMed Central

    Noval, Susana; Contreras, Inés; Muñoz, Silvia; Oreja-Guevara, Celia; Manzano, Beatriz; Rebolleda, Gema

    2011-01-01

    Optical coherence tomography (OCT) uses light interference patterns to produce a cross-sectional image of the retina. It is capable of measuring the unmyelinated axons of the retinal ganglionar cells as they converge on the optic disc. In a disease like multiple sclerosis (MS), in which axonal loss has been identified as an important cause of sustained disability, it may prove an invaluable tool. OCT has demonstrated that axonal loss occurs after each episode of optic neuritis and that the degree of axonal loss is correlated to visual outcomes. Furthermore, axonal loss occurs in MS even in the absence of inflammatory episodes, and the degree of this loss is correlated with the duration of the disease process, with more thinning as the disease advances and in progressive forms. Thus, OCT retinal nerve fiber layer measurements may represent an objective outcome measure with which to evaluate the effect of treatment. PMID:22096638

  12. Retinal nerve fiber layer evaluation in multiple sclerosis with spectral domain optical coherence tomography

    PubMed Central

    Khanifar, Aziz A; Parlitsis, George J; Ehrlich, Joshua R; Aaker, Grant D; D’Amico, Donald J; Gauthier, Susan A; Kiss, Szilárd

    2010-01-01

    Purpose: Histopathologic studies have reported retinal nerve fiber layer (RNFL) thinning in various neurodegenerative diseases. Attempts to quantify this loss in vivo have relied on time-domain optical coherence tomography (TDOCT), which has low resolution and requires substantial interpolation of data for volume measurements. We hypothesized that the significantly higher resolution of spectral-domain optical coherence tomography (SDOCT) would better detect RNFL changes in patients with multiple sclerosis, and that RNFL thickness differences between eyes with and without optic neuritis might be identified more accurately. Methods: In this retrospective case series, patients with multiple sclerosis were recruited from the Judith Jaffe Multiple Sclerosis Center at Weill Cornell Medical College in New York. Patients with a recent clinical diagnosis of optic neuritis (less than three months) were excluded. Eyes with a history of glaucoma, optic neuropathy (other than multiple sclerosis-related optic neuritis), age-related macular degeneration, or other relevant retinal and/or optic nerve disease were excluded. Both eyes of each patient were imaged with the Heidelberg Spectralis® HRA + OCT. RNFL and macular thickness were measured for each eye using the Heidelberg OCT software. These measurements were compared with validated published normal values, and were modeled as linear functions of duration of disease. The odds of an optic neuritis diagnosis as a function of RNFL and macular thickness were calculated. Results: Ninety-four eyes were prospectively evaluated using OCT. Ages of patients ranged from 26 to 69 years, with an average age of 39 years. Peripapillary RNFL thinning was demonstrated in multiple sclerosis patients; mean RNFL thickness was 88.5 μm for individuals with multiple sclerosis compared with a reported normal value of 97 μm (P < 0.001). Eyes with a history of optic neuritis had more thinning compared with those without optic neuritis (83.0

  13. Genome-wide association study of blood lead shows multiple associations near ALAD

    PubMed Central

    Warrington, Nicole M.; Zhu, Gu; Dy, Veronica; Heath, Andrew C.; Madden, Pamela A.F.; Hemani, Gibran; Kemp, John P.; Mcmahon, George; St Pourcain, Beate; Timpson, Nicholas J.; Taylor, Caroline M.; Golding, Jean; Lawlor, Debbie A.; Steer, Colin; Montgomery, Grant W.; Martin, Nicholas G.; Davey Smith, George; Evans, David M.; Whitfield, John B.

    2015-01-01

    Exposure to high levels of environmental lead, or biomarker evidence of high body lead content, is associated with anaemia, developmental and neurological deficits in children, and increased mortality in adults. Adverse effects of lead still occur despite substantial reduction in environmental exposure. There is genetic variation between individuals in blood lead concentration but the polymorphisms contributing to this have not been defined. We measured blood or erythrocyte lead content, and carried out genome-wide association analysis, on population-based cohorts of adult volunteers from Australia and UK (N = 5433). Samples from Australia were collected in two studies, in 1993–1996 and 2002–2005 and from UK in 1991–1992. One locus, at ALAD on chromosome 9, showed consistent association with blood lead across countries and evidence for multiple independent allelic effects. The most significant single nucleotide polymorphism (SNP), rs1805313 (P = 3.91 × 10−14 for lead concentration in a meta-analysis of all data), is known to have effects on ALAD expression in blood cells but other SNPs affecting ALAD expression did not affect blood lead. Variants at 12 other loci, including ABO, showed suggestive associations (5 × 10−6 > P > 5 × 10−8). Identification of genetic polymorphisms affecting blood lead reinforces the view that genetic factors, as well as environmental ones, are important in determining blood lead levels. The ways in which ALAD variation affects lead uptake or distribution are still to be determined. PMID:25820613

  14. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients

    PubMed Central

    Hegen, Harald; Adrianto, Indra; Lessard, Christopher J.; Millonig, Alban; Bertolotto, Antonio; Comabella, Manuel; Giovannoni, Gavin; Guger, Michael; Hoelzl, Martina; Khalil, Michael; Fazekas, Franz; Killestein, Joep; Lindberg, Raija L.P.; Malucchi, Simona; Mehling, Matthias; Montalban, Xavier; Rudzki, Dagmar; Schautzer, Franz; Sellebjerg, Finn; Sorensen, Per Soelberg; Deisenhammer, Florian; Steinman, Lawrence

    2016-01-01

    Objective: To evaluate serum cytokine profiles for their utility to determine the heterogeneous responses to interferon (IFN)–β treatment in patients with multiple sclerosis (MS). Methods: Patients with relapsing-remitting MS (RRMS) or clinically isolated syndrome receiving de novo IFN-β treatment were included in this prospective, observational study. Number of relapses and changes in disability were assessed 2 years prior to and 2 years after initiation of treatment. Sera were collected at baseline and after 3 months on therapy. Cytokine levels in sera were assessed by Luminex multiplex assays. Baseline cytokine profiles were grouped by hierarchical clustering analysis. Demographic features, changes in cytokines, and clinical outcome were then assessed in the clustered patient groups. Results: A total of 157 patients were included in the study and clustered into 6 distinct subsets by baseline cytokine profiles. These subsets differed significantly in their clinical and biological response to IFN-β therapy. Two subsets were associated with patients who responded poorly to therapy. Two other subsets, associated with a good response to therapy, showed a significant reduction in relapse rates and no worsening of disability. Each subset also had differential changes in cytokine levels after 3 months of IFN-β treatment. Conclusions: There is heterogeneity in the immunologic pathways of the RRMS population, which correlates with IFN-β response. PMID:26894205

  15. The impact of relative intensity noise on the signal in multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Neuhaus, Kai; Subhash, Hrebesh; Alexandrov, Sergey; Dsouza, Roshan; Hogan, Josh; Wilson, Carol; Leahy, Martin; Slepneva, Svetlana; Huyet, Guillaume

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) applies a unique low-cost solution to enhance the scanning depth of standard time domain OCT by inserting an partial mirror into the reference arm of the interferometric system. This novel approach achieves multiple reflections for different layers and depths of an sample with minimal effort of engineering and provides an excellent platform for low-cost OCT systems based on well understood production methods for micro-mechanical systems such as CD/DVD pick-up systems. The direct integration of a superluminescent light-emitting diode (SLED) is a preferable solution to reduce the form- factor of an MR-OCT system. Such direct integration exposes the light source to environmental conditions that can increase fluctuations in heat dissipation and vibrations and affect the noise characteristics of the output spectrum. This work describes the impact of relative intensity noise (RIN) on the quality of the interference signal of MR-OCT related to a variety of environmental conditions, such as temperature.

  16. Noise reduction in computed tomography using a multiplicative continuous-time image reconstruction method

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yusaku; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    In clinical X-ray computed tomography (CT), filtered back-projection as a transform method and iterative reconstruction such as the maximum-likelihood expectation-maximization (ML-EM) method are known methods to reconstruct tomographic images. As the other reconstruction method, we have presented a continuous-time image reconstruction (CIR) system described by a nonlinear dynamical system, based on the idea of continuous methods for solving tomographic inverse problems. Recently, we have also proposed a multiplicative CIR system described by differential equations based on the minimization of a weighted Kullback-Leibler divergence. We prove theoretically that the divergence measure decreases along the solution to the CIR system, for consistent inverse problems. In consideration of the noisy nature of projections in clinical CT, the inverse problem belongs to the category of ill-posed problems. The performance of a noise-reduction scheme for a new (previously developed) CIR system was investigated by means of numerical experiments using a circular phantom image. Compared to the conventional CIR and the ML-EM methods, the proposed CIR method has an advantage on noisy projection with lower signal-to-noise ratios in terms of the divergence measure on the actual image under the same common measure observed via the projection data. The results lead to the conclusion that the multiplicative CIR method is more effective and robust for noise reduction in CT compared to the ML-EM as well as conventional CIR methods.

  17. Development of a first-generation miniature multiple reference optical coherence tomography imaging device

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; Dsouza, Roshan; O'Riordan, Colm; Collins, Seán; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-12-01

    Multiple reference optical coherence tomography (MR-OCT) is a technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short scan range of a miniature voice coil motor on which the scanning mirror is mounted. This work details early stage development of the first iteration of a miniature MR-OCT device. This iteration utilizes a fiber-coupled input from an off-board superluminescent diode. The dimensions of the module are 40×57 mm. Off-the-shelf miniature optical components, voice coil motors, and photodetectors are used, with the complexity of design depending on the specific application. The photonic module can be configured as either polarized or nonpolarized and can include balanced detection. The results shown in this work are from the nonpolarized device. The system was characterized through measurement of the input spectrum, axial resolution, and signal-to-noise ratio. Typical B-scans of static and in vivo samples are shown, which illustrate the potential applications for such a technology.

  18. Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography

    PubMed Central

    Bhaduri, Basanta; Nolan, Ryan M.; Shelton, Ryan L.; Pilutti, Lara A.; Motl, Robert W.; Moss, Heather E.; Pula, John H.; Boppart, Stephen A.

    2016-01-01

    Although retinal vasculitis is common in multiple sclerosis (MS), it is not known if MS is associated with quantitative abnormalities in retinal blood vessels (BVs). Optical coherence tomography (OCT) is suitable for examining the integrity of the anterior visual pathways in MS. In this paper we have compared the size and number of retinal blood vessels in patients with MS, with and without a history of optic neuritis (ON), and control subjects from the cross-sectional retinal images from OCT. Blood vessel diameter (BVD), blood vessel number (BVN), and retinal nerve fiber layer thickness (RNFLT) were extracted from OCT images collected from around the optic nerves of 129 eyes (24 control, 24 MS + ON, 81 MS-ON) of 71 subjects. Associations between blood vessel metrics, MS diagnosis, MS disability, ON, and RNFLT were evaluated using generalized estimating equation (GEE) models. MS eyes had a lower total BVD and BVN than control eyes. The effect was more pronounced with increased MS disability, and persisted in multivariate models adjusting for RNFLT and ON history. Twenty-nine percent (29%) of MS subjects had fewer retinal blood vessels than all control subjects. MS diagnosis, disability, and ON history were not associated with average blood vessel size. The relationship between MS and lower total BVD/BVN is not accounted for by RNFLT or ON. Further study is needed to determine the relationship between OCT blood vessel metrics and qualitative retinal blood vessel abnormalities in MS. PMID:27375947

  19. Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors

    PubMed Central

    Abdelnour, Farras; Genovese, Christopher; Huppert, Theodore

    2010-01-01

    Diffuse optical tomography (DOT) is a non-invasive brain imaging technique that uses low-levels of near-infrared light to measure optical absorption changes due to regional blood flow and blood oxygen saturation in the brain. By arranging light sources and detectors in a grid over the surface of the scalp, DOT studies attempt to spatially localize changes in oxy- and deoxy-hemoglobin in the brain that result from evoked brain activity during functional experiments. However, the reconstruction of accurate spatial images of hemoglobin changes from DOT data is an ill-posed linearized inverse problem, which requires model regularization to yield appropriate solutions. In this work, we describe and demonstrate the application of a parametric restricted maximum likelihood method (ReML) to incorporate multiple statistical priors into the recovery of optical images. This work is based on similar methods that have been applied to the inverse problem for magnetoencephalography (MEG). Herein, we discuss the adaptation of this model to DOT and demonstrate that this approach provides a means to objectively incorporate reconstruction constraints and demonstrate this approach through a series of simulated numerical examples. PMID:21258532

  20. A study of retinal parameters measured by optical coherence tomography in patients with multiple sclerosis

    PubMed Central

    Hu, Sai-Jing; You, Yi-An; Zhang, Yi

    2015-01-01

    AIM To investigate the difference of retinal nerve fiber layer (RNFL) thickness and macular fovea thickness/volume between multiple sclerosis (MS) patients and healthy normal individuals using optical coherence tomography (OCT) and assess its association with visual field parameters. METHODS Thirty consecutive MS patients and 28 healthy controls were recruited in this prospective study. Comprehensive standardized ophthalmic examinations included visual acuity, cycloplegic refraction, intraocular pressure, gonioscopy, visual field, and RNFL thickness and macular fovea thickness/volume detection using Humphrey OCT. Mean values for the thickness of the peripapillary RNFL and macular volume were calculated. Associations between visual field parameters and RNFL thickness/macular volume were analyzed by Pearson correlation analysis. RESULTS The RNFL thicknesses in each quadrant, the average macular thickness, and the average macular volume in MS patients were all less than those in healthy controls, with statistically significant differences. The RNFL thickness and macular fovea thickness/volume were greater in eyes without optic neuritis than in eyes with optic neuritis. The average visual field parameters had positive correlations with the RNFL thickness and negative correlations with macular parameters in MS patients. CONCLUSION OCT measurements can effectively identify the nerve changes of MS patients, which provide more data for the diagnosis of MS. PMID:26682175

  1. Dermascope assisted interactive patient interface for multiple reference optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dsouza, Roshan; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2014-02-01

    There has been a growing interest in the development of a low cost depth-resolved non-invasive dermis imaging tool for both clinical and fundamental investigations of skin diseases. Multiple reference optical coherence tomography (MR-OCT) is a recently developed miniature time-domain low coherence interferometeric imaging platform, which promises to fit into robust, cost-effective designs that are virtually solid state, typical of handheld devices. In this paper we demonstrate the feasibility of MR-OCT for dermis imaging applications by incorporating it in a dermascope, which provides simultaneous imaging of dermis and an interactive tool for beam steering and registration of the OCT imaging beam at the dermis area. This allows the user to interactively investigate the depth resolved information of any target position of interest on the dermis by pointing the mouse cursor within the dermis image or selecting the area on a touch screen. Image acquisition is controlled with software that displays both the dermis and MR-OCT axial-scan, and allows detailed information of the depth scan signal to screen for skin disease. We believe this approach will have a significant impact on medical care.

  2. P-wave travel-time tomography reveals multiple mantle upwellings beneath the northern East-Africa Rift

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Civiero, C.; Goes, S. D. B.; Ahmed, A.; Ayele, A.; Doubre, C.; Goitom, B.; Keir, D.; Kendall, M.; Leroy, S. D.; Ogubazghi, G.; Rumpker, G.; Stuart, G. W.

    2014-12-01

    The East African Rift (EAR) shows evidence for active magmatism from the eruption of flood basalts 30 Ma to active volcanism associated with rifting today. Mantle plumes have been invoked as the likely cause. However, the nature of mantle upwelling is debated, with proposed models ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to multiple distinct sources of upwelling along the East-Africa Rift. We present a new relative travel-time tomography model that images detailed P-wave velocities below the northern East-African rift from the surface to lower mantle depths. Data comes from 439 stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time low-velocity structures of ~ 100-km length scales down to depths of 900 km beneath this region. Our images provide evidence of at least two separate low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first, and most pronounced, is beneath the Afar Depression, which extends to at least 900 km depth and a second is located beneath the Main Ethiopian Rift that extends to at least 750 km. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of ~ 100-150 K. Such temperatures are also fully consistent with previous petrological and other geophysical estimates. Furthermore, the separate structures could explain differences in geochemistry of erupted magmas along the rift zone, as well as the dynamic topography seen at the surface. Our findings thus support the involvement of multiple plumes in the evolution of the EAR and a direct connection between lower mantle features and the volcanism at the surface.

  3. Findings of Optical Coherence Tomography of Retinal Nerve Fiber Layer in Two Common Types of Multiple Sclerosis.

    PubMed

    Yousefipour, Gholamali; Hashemzahi, Zabihollah; Yasemi, Masood; Jahani, Pegah

    2016-06-01

    Multiple sclerosis (MS) is the most prevalent disease caused by the inflammatory demyelinating process that causes progressive nervous system degeneration over the time. Optical Coherence Tomography (OCT) is a non-invasive optical imaging technology, which can measure the thickness of retinal nerve fiber layer as well as the diameter of the macula. The purpose of the study is evaluation OCT findings in two common types of multiple sclerosis. For doing the cross-sectional study, 63 patients with two prevalent types of multiple sclerosis (35 patients with Relapse Remitting Multiple Sclerosis (RRMS) and 28 patients with Secondary Progressive Multiple Sclerosis (SPMS) were evaluated for 6 months. Exclusion criteria of the study were a history of optic neuritis, suffering from diabetes mellitus, hypertension, ocular disease, and the presence of other neurologic degenerative diseases. Then, the thickness of retinal nerve fiber layer (RNFL), as well as thickness and volume of the macula, were measured in the patients using OCT technology. The disability rate of patients was evaluated according to Expanded Disability Status Scale (EDSS). Finally, data was analyzed by means of SPSS software. Overall, 35 patients with RRMS (with mean age of 32.37+10.01, average disease period of 3.81+3.42 and mean EDSS of 1.84+0.45) and 28 patients with SPMS (with mean age of 39.21+9.33, average disease period of 11.32+5.87 and mean EDSS of 5.12+1.46) were assessed and compared in terms of retinal nerve fiber layer and size and thickness of macula. In all of these sections, the thicknesses were smaller in SPMS patients than patients with RRMS. But, there was a significant difference in total thickness (81.82µm versus 96.03µm with P=0.04) and thickness of temporal sector (54.5 µm versus 69.34 µm with P=0.04) of retinal nerve fiber layer and macular size at the superior sector of external ring (1.48 mm³ versus 1.58 mm³ with P=0.03), and nasal sector of external ring surrounding macula (1

  4. Patient No-Show Predictive Model Development using Multiple Data Sources for an Effective Overbooking Approach

    PubMed Central

    Hanauer, D.A.

    2014-01-01

    Summary Background Patient no-shows in outpatient delivery systems remain problematic. The negative impacts include underutilized medical resources, increased healthcare costs, decreased access to care, and reduced clinic efficiency and provider productivity. Objective To develop an evidence-based predictive model for patient no-shows, and thus improve overbooking approaches in outpatient settings to reduce the negative impact of no-shows. Methods Ten years of retrospective data were extracted from a scheduling system and an electronic health record system from a single general pediatrics clinic, consisting of 7,988 distinct patients and 104,799 visits along with variables regarding appointment characteristics, patient demographics, and insurance information. Descriptive statistics were used to explore the impact of variables on show or no-show status. Logistic regression was used to develop a no-show predictive model, which was then used to construct an algorithm to determine the no-show threshold that calculates a predicted show/no-show status. This approach aims to overbook an appointment where a scheduled patient is predicted to be a no-show. The approach was compared with two commonly-used overbooking approaches to demonstrate the effectiveness in terms of patient wait time, physician idle time, overtime and total cost. Results From the training dataset, the optimal error rate is 10.6% with a no-show threshold being 0.74. This threshold successfully predicts the validation dataset with an error rate of 13.9%. The proposed overbooking approach demonstrated a significant reduction of at least 6% on patient waiting, 27% on overtime, and 3% on total costs compared to other common flat-overbooking methods. Conclusions This paper demonstrates an alternative way to accommodate overbooking, accounting for the prediction of an individual patient’s show/no-show status. The predictive no-show model leads to a dynamic overbooking policy that could improve patient

  5. Optical Coherence Tomography and Magnetic Resonance Imaging in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder

    PubMed Central

    Manogaran, Praveena; Hanson, James V. M.; Olbert, Elisabeth D.; Egger, Christine; Wicki, Carla; Gerth-Kahlert, Christina; Landau, Klara; Schippling, Sven

    2016-01-01

    Irreversible disability in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) is largely attributed to neuronal and axonal degeneration, which, along with inflammation, is one of the major pathological hallmarks of these diseases. Optical coherence tomography (OCT) is a non-invasive imaging tool that has been used in MS, NMOSD, and other diseases to quantify damage to the retina, including the ganglion cells and their axons. The fact that these are the only unmyelinated axons within the central nervous system (CNS) renders the afferent visual pathway an ideal model for studying axonal and neuronal degeneration in neurodegenerative diseases. Structural magnetic resonance imaging (MRI) can be used to obtain anatomical information about the CNS and to quantify evolving pathology in MS and NMOSD, both globally and in specific regions of the visual pathway including the optic nerve, optic radiations and visual cortex. Therefore, correlations between brain or optic nerve abnormalities on MRI, and retinal pathology using OCT, may shed light on how damage to one part of the CNS can affect others. In addition, these imaging techniques can help identify important differences between MS and NMOSD such as disease-specific damage to the visual pathway, trans-synaptic degeneration, or pathological changes independent of the underlying disease process. This review focuses on the current knowledge of the role of the visual pathway using OCT and MRI in patients with MS and NMOSD. Emphasis is placed on studies that employ both MRI and OCT to investigate damage to the visual system in these diseases. PMID:27854301

  6. Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.

    2017-01-01

    Purpose To assess the effect of the previously reported optical coherence tomography (OCT) signal normalization method on reducing the discrepancies in image appearance among spectral-domain OCT (SD-OCT) devices. Methods Healthy eyes and eyes with various retinal pathologies were scanned at the macular region using similar volumetric scan patterns with at least two out of three SD-OCT devices at the same visit (Cirrus HD-OCT, Zeiss, Dublin, CA; RTVue, Optovue, Fremont, CA; and Spectralis, Heidelberg Engineering, Heidelberg, Germany). All the images were processed with the signal normalization. A set of images formed a questionnaire with 24 pairs of cross-sectional images from each eye with any combination of the three SD-OCT devices either both pre- or postsignal normalization. Observers were asked to evaluate the similarity of the two displayed images based on the image appearance. The effects on reducing the differences in image appearance before and after processing were analyzed. Results Twenty-nine researchers familiar with OCT images participated in the survey. Image similarity was significantly improved after signal normalization for all three combinations (P ≤ 0.009) as Cirrus and RTVue combination became the most similar pair, followed by Cirrus and Spectralis, and RTVue and Spectralis. Conclusions The signal normalization successfully minimized the disparities in the image appearance among multiple SD-OCT devices, allowing clinical interpretation and comparison of OCT images regardless of the device differences. Translational Relevance The signal normalization would enable direct OCT images comparisons without concerning about device differences and broaden OCT usage by enabling long-term follow-ups and data sharing. PMID:28275528

  7. Development of a miniature multiple reference optical coherence tomography imaging device

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  8. A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations.

    PubMed

    Haile-Selassie, Yohannes; Saylor, Beverly Z; Deino, Alan; Levin, Naomi E; Alene, Mulugeta; Latimer, Bruce M

    2012-03-28

    A newly discovered partial hominin foot skeleton from eastern Africa indicates the presence of more than one hominin locomotor adaptation at the beginning of the Late Pliocene epoch. Here we show that new pedal elements, dated to about 3.4 million years ago, belong to a species that does not match the contemporaneous Australopithecus afarensis in its morphology and inferred locomotor adaptations, but instead are more similar to the earlier Ardipithecus ramidus in possessing an opposable great toe. This not only indicates the presence of more than one hominin species at the beginning of the Late Pliocene of eastern Africa, but also indicates the persistence of a species with Ar. ramidus-like locomotor adaptation into the Late Pliocene.

  9. Juvenile mice show greater flexibility in multiple choice reversal learning than adults

    PubMed Central

    Johnson, Carolyn; Wilbrecht, Linda

    2011-01-01

    We hypothesized that decision-making strategies in juvenile animals, rather than being immature, are optimized to navigate the uncertainty and instability likely to be encountered in the environment at the time of the animal’s transition to independence. We tested juvenile and young adult mice on discrimination and reversal of a 4-choice and 2-choice odor-based foraging task. Juvenile mice (P26–27) learned a 4-choice discrimination and reversal faster than adults (P60–70), making fewer perseverative and distraction errors. Juvenile mice had shorter choice latencies and more focused search strategies. In both ages, performance of the task was significantly impaired by a lesion of the dorsomedial frontal cortex. Our data show that the frontal cortex can support highly flexible behavior in juvenile mice at a time coincident with weaning and first independence. The unexpected developmental decline in flexibility of behavior one month later suggests that frontal cortex based executive function may not inevitably become more flexible with age, but rather may be developmentally tuned to optimize exploratory and exploitative behavior for each life stage. PMID:21949556

  10. Multiple regression methods show great potential for rare variant association tests.

    PubMed

    Xu, ChangJiang; Ladouceur, Martin; Dastani, Zari; Richards, J Brent; Ciampi, Antonio; Greenwood, Celia M T

    2012-01-01

    The investigation of associations between rare genetic variants and diseases or phenotypes has two goals. Firstly, the identification of which genes or genomic regions are associated, and secondly, discrimination of associated variants from background noise within each region. Over the last few years, many new methods have been developed which associate genomic regions with phenotypes. However, classical methods for high-dimensional data have received little attention. Here we investigate whether several classical statistical methods for high-dimensional data: ridge regression (RR), principal components regression (PCR), partial least squares regression (PLS), a sparse version of PLS (SPLS), and the LASSO are able to detect associations with rare genetic variants. These approaches have been extensively used in statistics to identify the true associations in data sets containing many predictor variables. Using genetic variants identified in three genes that were Sanger sequenced in 1998 individuals, we simulated continuous phenotypes under several different models, and we show that these feature selection and feature extraction methods can substantially outperform several popular methods for rare variant analysis. Furthermore, these approaches can identify which variants are contributing most to the model fit, and therefore both goals of rare variant analysis can be achieved simultaneously with the use of regression regularization methods. These methods are briefly illustrated with an analysis of adiponectin levels and variants in the ADIPOQ gene.

  11. Optical coherence tomography segmentation analysis in relapsing remitting versus progressive multiple sclerosis

    PubMed Central

    Behbehani, Raed; Abu Al-Hassan, Abdullah; Al-Salahat, Ali; Sriraman, Devarajan; Oakley, J. D.; Alroughani, Raed

    2017-01-01

    Introduction Optical coherence tomography (OCT) with retinal segmentation analysis is a valuable tool in assessing axonal loss and neuro-degeneration in multiple sclerosis (MS) by in-vivo imaging, delineation and quantification of retinal layers. There is evidence of deep retinal involvement in MS beyond the inner retinal layers. The ultra-structural retinal changes in MS in different MS phenotypes can reflect differences in the pathophysiologic mechanisms. There is limited data on the pattern of deeper retinal layer involvement in progressive MS (PMS) versus relapsing remitting MS (RRMS). We have compared the OCT segmentation analysis in patients with relapsing-remitting MS and progressive MS. Methods Cross-sectional study of 113 MS patients (226 eyes) (29 PMS, 84 RRMS) and 38 healthy controls (72 eyes). Spectral domain OCT (SDOCT) using the macular cube acquisition protocol (Cirrus HDOCT 5000; Carl Zeiss Meditec) and segmentation of the retinal layers for quantifying the thicknesses of the retinal layers. Segmentation of the retinal layers was carried out utilizing Orion software (Voxeleron, USA) for quantifying the thicknesses of individual retinal layers. Results The retinal nerve finer layer (RNFL) (p = 0.023), the ganglion-cell/inner plexiform layer (GCIPL) (p = 0.006) and the outer plexiform layer (OPL) (p = 0.033) were significantly thinner in PMS compared to RRMS. There was significant negative correlation between the outer nuclear layer (ONL) and EDSS (r = -0.554, p = 0.02) in PMS patients. In RRMS patients with prior optic neuritis, the GCIPL correlated negatively (r = -0.317; p = 0.046), while the photoreceptor layer (PR) correlated positively with EDSS (r = 0.478; p = 0.003). Conclusions Patients with PMS exhibit more atrophy of both the inner and outer retinal layers than RRMS. The ONL in PMS and the GCIPL and PR in RRMS can serve as potential surrogate of disease burden and progression (EDSS). The specific retinal layer predilection and its

  12. Large variation in mitochondrial DNA of sexual and parthenogenetic Dahlica triquetrella (Lepidoptera: Psychidae) shows multiple origins of parthenogenesis

    PubMed Central

    2013-01-01

    Background Obligate parthenogenesis is relatively rare in animals. Still, in some groups it is quite common and has evolved and persisted multiple times. These groups may provide important clues to help solve the ‘paradox of sex’. Several species in the Psychidae (Lepidoptera) have obligate parthenogenesis. Dahlica triquetrella is one of those species where multiple transitions to parthenogenesis are postulated based on intensive cytological and behavioural studies. This has led to the hypothesis that multiple transitions from sexuals to diploid parthenogens occurred during and after the last glacial period, followed by transitions from parthenogenetic diploids to parthenogenetic tetraploids. Our study is the first to test these hypotheses using a molecular phylogeny based on mtDNA from multiple sexual and parthenogenetic populations from a wide geographic range. Results Parthenogenetic (and sexual) D. triquetrella are not monophyletic, and considerable sequence variation is present suggesting multiple transitions to parthenogenesis. However, we could not establish ancestral sexual haplotypes from our dataset. Our data suggest that some parthenogenetic clades have evolved, indicating origins of parthenogenesis before the last glacial period. Conclusions Multiple transitions to parthenogenesis have taken place in Dahlica triquetrella, confirming previous hypotheses. The number of different parthenogenetic clades, haplotypes and their apparent evolutionary age, clearly show that parthenogenesis has been a very successful reproductive strategy in this species over a long period. PMID:23622052

  13. Computed tomography synthesis from magnetic resonance images in the pelvis using multiple random forests and auto-context features

    NASA Astrophysics Data System (ADS)

    Andreasen, Daniel; Edmund, Jens M.; Zografos, Vasileios; Menze, Bjoern H.; Van Leemput, Koen

    2016-03-01

    In radiotherapy treatment planning that is only based on magnetic resonance imaging (MRI), the electron density information usually obtained from computed tomography (CT) must be derived from the MRI by synthesizing a so-called pseudo CT (pCT). This is a non-trivial task since MRI intensities are neither uniquely nor quantitatively related to electron density. Typical approaches involve either a classification or regression model requiring specialized MRI sequences to solve intensity ambiguities, or an atlas-based model necessitating multiple registrations between atlases and subject scans. In this work, we explore a machine learning approach for creating a pCT of the pelvic region from conventional MRI sequences without using atlases. We use a random forest provided with information about local texture, edges and spatial features derived from the MRI. This helps to solve intensity ambiguities. Furthermore, we use the concept of auto-context by sequentially training a number of classification forests to create and improve context features, which are finally used to train a regression forest for pCT prediction. We evaluate the pCT quality in terms of the voxel-wise error and the radiologic accuracy as measured by water-equivalent path lengths. We compare the performance of our method against two baseline pCT strategies, which either set all MRI voxels in the subject equal to the CT value of water, or in addition transfer the bone volume from the real CT. We show an improved performance compared to both baseline pCTs suggesting that our method may be useful for MRI-only radiotherapy.

  14. Multiple Baseline SAR Tomography's Performance Analysis in Forest 3-D Structure Mapping with long term ALOS L band repeat pass InSAR data

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Zebker, H. A.

    2013-12-01

    Acquiring accurate measurement of three-dimensional structure of forest globally , is key to improve quantitative understanding of the state and dynamics of ecosystems, particularly global carbon cycle. Moreover, forest contains a large portion of Earth's renewable natural resources. All these require an accurate, timely and cost-effective global forest vertical structure mapping. Synthetic Aperture Radar Interferometry (InSAR) remote sensing is widely acknowledged as a powerful tool to accomplish this task. Within the last decade, a number of experimental demonstrations of 3-D InSAR techniques have suggested the possibility of remotely sensing global 3-D vegetation structure. Among all the 3-D InSAR techniques, Multiple Baseline SAR Tomography( MB Tomo-SAR) is a very promising one. Multiple baseline SAR tomography exploits InSAR images acquired from different baselines and form a synthetic aperture in the vertical direction in order to retrieval vertical structure. Though theoretical predictions and several laboratory experiments show great reconstruction results, applying the method in real world condition still face a lot of challenges, including low acquisition number, irregular sample distribution, atmospheric phase noise and time decorrelation effect. In this article, we use L band ALOS spaceborne SAR data in Hawaii area to test the performance of MB TomoSAR . In the process, advanced Fourier beamforming method, atmospheric phase screen removal algorithm and time decorrelation effect are all applied. In addition, we also utilize the Landsat vegetation index and the result with other 3-D reconstruction methods as comparison to validate its performance.

  15. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    PubMed Central

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-01-01

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO4 scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 × 2 mm2 using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems. PMID:21992368

  16. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    PubMed Central

    Jia, Jingfei

    2015-01-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5~3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. PMID:26345531

  17. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography.

    PubMed

    Jia, Jingfei; Kim, Hyun K; Hielscher, Andreas H

    2015-12-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5~3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners.

  18. Preoperative computed tomography-guided dye injection to localize multiple lung nodules for video-assisted thoracoscopic surgery

    PubMed Central

    Tseng, Yao-Hui; Lee, Yee-Fan; Hsieh, Min-Shu; Chien, Ning; Ko, Wei-Chun; Chen, Jo-Yu; Lee, Jang-Ming; Huang, Pei-Ming; Lin, Mong-Wei; Chen, Jin-Shing

    2016-01-01

    Background Preoperative computed tomography (CT)-guided localization of small lung nodules is important for accurate and efficient video-assisted thoracoscopic surgery (VATS). Resection of multiple small pulmonary nodules in one VATS procedure can aid in patient management. The aim of this study was to evaluate the usefulness of CT-guided Patent Blue V (PBV) dye localization in patients with multiple pulmonary nodules who underwent VATS. Methods This retrospective study was conducted from January 2013 to December 2015. One hundred consecutive patients (59.9±10.5 years of age) with 217 nodules who underwent preoperative CT-guided PBV dye localization for multiple (2 to 4) nodules before VATS were enrolled. Results The mean nodule size was 0.8±0.4 cm, with a mean depth from the pleura or fissure of 0.7±0.7 cm. The mean procedure duration was 50±20 minutes. The mean amount of injected PBV dye was 0.2±0.1 mL per nodule. The overall success rate was 99% by nodule. Failed localization of two nodules in two patients was due to poor dye visualization (n=1) and significant pneumothorax (n=1). Cases of hemorrhage (24%) were mild and asymptomatic, and none of the patients had hemoptysis. None of the cases of pneumothorax (40%) required chest tube placement before VATS. One (1%) patient developed anaphylaxis. The mean post-operative hospital stay was 6.4±4.4 days. Conclusions CT-guided PBV dye localization for multiple small pulmonary nodules before VATS is a safe, feasible, and accurate method with high success rate. This approach makes it easy to perform multiple nodule resections during one VATS operation. PMID:28066667

  19. Multiple Determinations of Sperm DNA Fragmentation Show That Varicocelectomy Is Not Indicated for Infertile Patients with Subclinical Varicocele

    PubMed Central

    García-Peiró, Agustín; Ribas-Maynou, Jordi; Oliver-Bonet, María; Navarro, Joaquima; Checa, Miguel A.; Nikolaou, Alexandros; Amengual, María J.; Abad, Carlos; Benet, Jordi

    2014-01-01

    Varicocele is one of the most common causes of low semen quality, which is reflected in high percentages of sperm cells with fragmented DNA. While varicocelectomy is usually performed to ameliorate a patient's fertility, its impact on sperm DNA integrity in the case of subclinical varicocele is poorly documented. In this study, multiple DNA fragmentation analyses (TUNEL, SCD, and SCSA) were performed on semen samples from sixty infertile patients with varicocele (15 clinical varicoceles, 19 clinical varicoceles after surgical treatment, 16 subclinical varicoceles, and 10 subclinical varicoceles after surgical treatment). TUNEL, SCD, and SCSA assays all showed substantial sperm DNA fragmentation levels that were comparable between subclinical and clinical varicocele patients. Importantly, varicocelectomy did improve sperm quality in patients with clinical varicocele; however, this was not the case in patients with subclinical varicocele. In summary, although infertile patients with clinical and subclinical varicocele have similar sperm DNA quality, varicocelectomy should only be advised for patients with clinical varicocele. PMID:24967335

  20. Hardware Implementation of Multiple Fan Beam Projection Technique in Optical Fibre Process Tomography

    PubMed Central

    Rahim, Ruzairi Abdul; Fazalul Rahiman, Mohd Hafiz; Leong, Lai Chen; Chan, Kok San; Pang, Jon Fea

    2008-01-01

    The main objective of this project is to implement the multiple fan beam projection technique using optical fibre sensors with the aim to achieve a high data acquisition rate. Multiple fan beam projection technique here is defined as allowing more than one emitter to transmit light at the same time using the switch-mode fan beam method. For the thirty-two pairs of sensors used, the 2-projection technique and 4-projection technique are being investigated. Sixteen sets of projections will complete one frame of light emission for the 2-projection technique while eight sets of projection will complete one frame of light emission for the 4-projection technique. In order to facilitate data acquisition process, PIC microcontroller and the sample and hold circuit are being used. This paper summarizes the hardware configuration and design for this project. PMID:27879885

  1. Multiple Rapid Swallow Maneuver Enhances the Clinical Utility of High-Resolution Manometry in Patients Showing Ineffective Esophageal Motility.

    PubMed

    Min, Yang Won; Shin, Inseub; Son, Hee Jung; Rhee, Poong-Lyul

    2015-10-01

    The clinical significance of ineffective esophageal motility (IEM) together with multiple rapid swallow (MRS) has not been yet evaluated in the Chicago Classification v3.0. This study evaluated the adjunctive role of MRS in IEM and determined the criteria of abnormal MRS to maximize the utility of IEM. We analyzed 186 patients showing IEM or normal esophageal motility (NEM), who underwent esophageal high-resolution impedance-manometry for esophageal symptoms. Two different criteria for abnormal MRS were applied to IEM subjects, resulting in 2 corresponding subgroups: IEM-A when distal contractile integral (DCI) ratio between an average wet swallows and MRS contraction was < 1 and IEM-B when MRS contraction DCI was <450 mm Hg-s-cm. One IEM subject inadequately performed MRS. Among the remaining 52 IEM subjects, 18 (34.6%) were classified into IEM-A and 23 (44.2%) into IEM-B. IEM subjects showed less complete bolus transit (median 0.0%, interquartile range 0.0-20.0% vs 60.0%, 30.0-80.0; P < 0.001) resulting in higher impaired bolus transit than NEM subjects (98.1% vs 66.9%, P = 0.001). IEM-B subjects showed additionally higher pathologic bolus exposure than NEM subjects (55.6% vs 29.3%, P = 0.001), whereas IEM-A subjects could not. Although IEM-B subjects had the highest prevalence of gastroesophageal reflux disease among the subjects groups, it did not reach statistical significance. In conclusion, IEM patients with abnormal MRS contraction have an increased risk of prolonged bolus clearance, poor bolus transit, and pathologic bolus exposure. IEM patients need to be assessed concerning whether MRS contraction DCI is < 450 mm Hg-s-cm to segregate clinically relevant patients.

  2. [A Case Strongly Suspected of Being Pulmonary Toxocariasis Showing Multiple Pulmonary Nodules with a Disappearing and Reappearing Halo Sign].

    PubMed

    Takakura, Akira; Harada, Shinya; Katono, Ken; Igawa, Satoshi; Katagiri, Masato; Yanase, Nobuo; Masuda, Noriyuki

    2015-03-01

    We report herein on a case strongly suspected of being pulmonary toxocariasis. A 22-year-old Indonesian man referred to our hospital presented with abnormal chest shadows upon medical examination. He had no symptoms. He did not have any pets nor did he eat raw beef or chicken. Hematological examination revealed eosinophilia and elevation of IgE. Chest computed tomography revealed 3 pulmonary nodules with the halo sign. We suspected a parasite infection and performed antiparasite antibody testing. Ascaris suum was slightly positive on the screening test. As specific antibody against the larval excretory-secretory products of Toxocara canis, measured at the National Institute of Infectious Diseases, was positive (level 3 up to 8). Subsequently, the abnormal chest shadows disappeared. However, two months later, 2 pulmonary nodules with the halo sign reappeared in other places. Diagnostic therapy with albendazole was performed for 8 weeks. Mild hepatic impairment emerged during therapy, but it was within the allowed range. Thereafter, the results improved for the imaging findings, eosinophilia, serum IgE level, and specific antibody. The antibody level became negative two months after the treatment had ended. We should consider toxocariasis in the differential diagnosis of migratory nodular shadows with the halo sign on chest computed tomography, and immunoserological testing is useful for the diagnosis.

  3. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.

    PubMed

    Wang, Ruikang K

    2002-07-07

    Multiple scattering is a major source that limits light penetration into biotissues, thereby preventing visualization of the deep microstructures for high-resolution optical imaging techniques. The optical clearing approach is a new adventure in biomedical optics for manipulating the optical properties of tissue; for example, the scattering coefficient and the degree of forward scattering of photons, by the use of the chemical administration method in order to improve the optical imaging depth, particularly for the recently developed optical coherence tomography (OCT). This paper investigates systematically how the multiple scattering affects signal attenuation and localization in general, and how the alterations of optical properties of tissue enhance the optical imaging depth and signal localization in particular, by the use of Monte Carlo simulations through the separate considerations of the least scattered photons (LSP) and multiple scattered photons (MSP). The LSP are those photons that contribute to the precise OCT signal, i.e. localization, and the MSP are those that degrade the OCT signal. It is shown that with either the reduction of the scattering coefficient or the increase of the degree of forward scattering, signal localization and imaging depth for OCT is enhanced. Whilst the increase of the anisotropic factor of the medium is more efficient in improving signal localization, it introduces more scattering events for the photons travelling within the tissue for both the LSP and MSP. It is also found that the OCT imaging resolution is almost reduced exponentially with the increase of the probing depth as opposed to the claimed system resolution. We demonstrate that optical clearing could be a useful tool to improve the imaging resolution when the light progressively penetrates the high scattering medium. Experimental results are also presented to show intuitively how multiple scattering affects OCT signal profiles by the use of intralipid solution and

  4. Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis.

    PubMed

    Liu, Zheng; Pardini, Matteo; Yaldizli, Özgür; Sethi, Varun; Muhlert, Nils; Wheeler-Kingshott, Claudia A M; Samson, Rebecca S; Miller, David H; Chard, Declan T

    2015-05-01

    In multiple sclerosis, there is increasing evidence that demyelination, and neuronal damage occurs preferentially in cortical grey matter next to the outer surface of the brain. It has been suggested that this may be due to the effects of pathology outside the brain parenchyma, in particular meningeal inflammation or through cerebrospinal fluid mediated factors. White matter lesions are often located adjacent to the ventricles of the brain, suggesting the possibility of a similar outside-in pathogenesis, but an investigation of the relationship of periventricular normal-appearing white matter abnormalities with distance from the ventricles has not previously been undertaken. The present study investigates this relationship in vivo using quantitative magnetic resonance imaging and compares the abnormalities between secondary progressive and relapsing remitting multiple sclerosis. Forty-three patients with relapsing remitting and 28 with secondary progressive multiple sclerosis, and 38 healthy control subjects were included in this study. T1-weighted volumetric, magnetization transfer and proton density/T2-weighted scans were acquired for all subjects. From the magnetization transfer data, magnetization transfer ratio maps were prepared. White matter tissue masks were derived from SPM8 segmentations of the T1-weighted images. Normal-appearing white matter masks were generated by subtracting white matter lesions identified on the proton density/T2 scan, and a two-voxel perilesional ring, from the SPM8 derived white matter masks. White matter was divided in concentric bands, each ∼1-mm thick, radiating from the ventricles toward the cortex. The first periventricular band was excluded from analysis to mitigate partial volume effects, and normal-appearing white matter and lesion magnetization transfer ratio values were then computed for the 10 bands nearest to the ventricles. Compared with controls, magnetization transfer ratio in the normal-appearing white matter

  5. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments.

    PubMed

    Konno, Yoshihiro; Jin, Yusuke; Uchiumi, Takashi; Nagao, Jiro

    2013-06-01

    We present a novel setup for measuring the effective gas-water permeability of methane-hydrate-bearing sediments. We developed a core holder with multiple pressure taps for measuring the pressure gradient of the gas and water phases. The gas-water flooding process was simultaneously detected using an X-ray computed tomography scanner. We successfully measured the effective gas-water permeability of an artificial sandy core with methane hydrate during the gas-water flooding test.

  6. Two-stage subduction history under North America inferred from multiple-frequency tomography

    NASA Astrophysics Data System (ADS)

    Sigloch, Karin; McQuarrie, Nadine; Nolet, Guust

    2008-07-01

    Eastward subduction of oceanic tectonic plates has shaped the geologic history of western North America over the past 150million years. The mountain-building and volcanism that brought forth the spectacular landscapes of the West are credited to the vast ancient Farallon plate, which interacted mechanically and chemically with the overlying continent as it plunged back into the mantle. Here, we use finite-frequency travel-time and amplitude measurements of teleseismic P-waves in seven frequency bands to obtain a high-resolution tomographic image to ~1,800km depth. We discover several large, previously unknown pieces of the plate which show that two distinct stages of whole-mantle subduction are present under North America. The currently active one descends from the Pacific northwest coast to 1,500km depth beneath the Great Plains, whereas its stalled predecessor occupies the transition zone and lower mantle beneath the eastern half of the continent. We argue that the separation between them is linked to the Laramide era 70-50Myr ago, a time of unusual volcanism and mountain-building far inland generally explained by an episode of extremely flat subduction.

  7. Simultaneous multiplicative column-normalized method (SMART) for 3-D ionosphere tomography in comparison to other algebraic methods

    NASA Astrophysics Data System (ADS)

    Gerzen, T.; Minkwitz, D.

    2016-01-01

    The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The tomography of the ionosphere is one of the major tools to provide link specific ionospheric corrections as well as to study and monitor physical processes in the ionosphere. In this paper, we introduce a simultaneous multiplicative column-normalized method (SMART) for electron density reconstruction. Further, SMART+ is developed by combining SMART with a successive correction method. In this way, a balancing between the measurements of intersected and not intersected voxels is realised. The methods are compared with the well-known algebraic reconstruction techniques ART and SART. All the four methods are applied to reconstruct the 3-D electron density distribution by ingestion of ground-based GNSS TEC data into the NeQuick model. The comparative case study is implemented over Europe during two periods of the year 2011 covering quiet to disturbed ionospheric conditions. In particular, the performance of the methods is compared in terms of the convergence behaviour and the capability to reproduce sTEC and electron density profiles. For this purpose, independent sTEC data of four IGS stations and electron density profiles of four ionosonde stations are taken as reference. The results indicate that SMART significantly reduces the number of iterations necessary to achieve a predefined accuracy level. Further, SMART+ decreases the median of the absolute sTEC error up to 15, 22, 46 and 67 % compared to SMART, SART, ART and NeQuick respectively.

  8. Radiation Treatment Planning Using Positron Emission and Computed Tomography for Lung and Pharyngeal Cancers: A Multiple-Threshold Method for [{sup 18}F]Fluoro-2-Deoxyglucose Activity

    SciTech Connect

    Okubo, Mitsuru; Nishimura, Yasumasa; Nakamatsu, Kiyoshi; Okumura, Masahiko R.T.; Shibata, Toru; Kanamori, Shuichi; Hanaoka, Kouhei R.T.; Hosono, Makoto

    2010-06-01

    Purpose: Clinical applicability of a multiple-threshold method for [{sup 18}F]fluoro-2-deoxyglucose (FDG) activity in radiation treatment planning was evaluated. Methods and Materials: A total of 32 patients who underwent positron emission and computed tomography (PET/CT) simulation were included; 18 patients had lung cancer, and 14 patients had pharyngeal cancer. For tumors of <=2 cm, 2 to 5 cm, and >5 cm, thresholds were defined as 2.5 standardized uptake value (SUV), 35%, and 20% of the maximum FDG activity, respectively. The cervical and mediastinal lymph nodes with the shortest axial diameter of >=10 mm were considered to be metastatic on CT (LNCT). The retropharyngeal lymph nodes with the shortest axial diameter of >=5 mm on CT and MRI were also defined as metastatic. Lymph nodes showing maximum FDG activity greater than the adopted thresholds for radiation therapy planning were designated LNPET-RTP, and lymph nodes with a maximum FDG activity of >=2.5 SUV were regarded as malignant and were designated LNPET-2.5 SUV. Results: The sizes of gross tumor volumes on PET (GTVPET) with the adopted thresholds in the axial plane were visually well fitted to those of GTV on CT (GTVCT). However, the volumes of GTVPET were larger than those of GTVCT, with significant differences (p < 0.0001) for lung cancer, due to respiratory motion. For lung cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 29, 28, and 34, respectively. For pharyngeal cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 14, 9, and 15, respectively. Conclusions: Our multiple thresholds were applicable for delineating the primary target on PET/CT simulation. However, these thresholds were inaccurate for depicting malignant lymph nodes.

  9. Three-dimensional printing of X-ray computed tomography datasets with multiple materials using open-source data processing.

    PubMed

    Sander, Ian M; McGoldrick, Matthew T; Helms, My N; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W Matthew

    2017-02-23

    Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing has the potential to advance learning, many academic programs have been slow to adopt its use in the classroom despite increased availability of the equipment and digital databases already established for educational use. Herein, a protocol is reported for the production of enlarged bone core and accurate representation of human sinus passages in a 3D printed format using entirely consumer-grade printers and a combination of free-software platforms. The comparative resolutions of three surface rendering programs were also determined using the sinuses, a human body, and a human wrist data files to compare the abilities of different software available for surface map generation of biomedical data. Data shows that 3D Slicer provided highest compatibility and surface resolution for anatomical 3D printing. Generated surface maps were then 3D printed via fused deposition modeling (FDM printing). In conclusion, a methodological approach that explains the production of anatomical models using entirely consumer-grade, fused deposition modeling machines, and a combination of free software platforms is presented in this report. The methods outlined will facilitate the incorporation of 3D printed anatomical models in the classroom. Anat Sci Educ. © 2017 American Association of Anatomists.

  10. A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL

    PubMed Central

    2009-01-01

    Background Prolificacy is the most important trait influencing the reproductive efficiency of pig production systems. The low heritability and sex-limited expression of prolificacy have hindered to some extent the improvement of this trait through artificial selection. Moreover, the relative contributions of additive, dominant and epistatic QTL to the genetic variance of pig prolificacy remain to be defined. In this work, we have undertaken this issue by performing one-dimensional and bi-dimensional genome scans for number of piglets born alive (NBA) and total number of piglets born (TNB) in a three generation Iberian by Meishan F2 intercross. Results The one-dimensional genome scan for NBA and TNB revealed the existence of two genome-wide highly significant QTL located on SSC13 (P < 0.001) and SSC17 (P < 0.01) with effects on both traits. This relative paucity of significant results contrasted very strongly with the wide array of highly significant epistatic QTL that emerged in the bi-dimensional genome-wide scan analysis. As much as 18 epistatic QTL were found for NBA (four at P < 0.01 and five at P < 0.05) and TNB (three at P < 0.01 and six at P < 0.05), respectively. These epistatic QTL were distributed in multiple genomic regions, which covered 13 of the 18 pig autosomes, and they had small individual effects that ranged between 3 to 4% of the phenotypic variance. Different patterns of interactions (a × a, a × d, d × a and d × d) were found amongst the epistatic QTL pairs identified in the current work. Conclusions The complex inheritance of prolificacy traits in pigs has been evidenced by identifying multiple additive (SSC13 and SSC17), dominant and epistatic QTL in an Iberian × Meishan F2 intercross. Our results demonstrate that a significant fraction of the phenotypic variance of swine prolificacy traits can be attributed to first-order gene-by-gene interactions emphasizing that the phenotypic effects of alleles might be strongly modulated by the

  11. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales

    PubMed Central

    Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L

    2015-01-01

    Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614

  12. Organ dose measurements from multiple-detector computed tomography using a commercial dosimetry system and tomographic, physical phantoms

    NASA Astrophysics Data System (ADS)

    Lavoie, Lindsey K.

    The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT

  13. Isoliquiritigenin showed strong inhibitory effects towards multiple UDP-glucuronosyltransferase (UGT) isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation.

    PubMed

    Lu, Hang; Fang, Zhong-Ze; Cao, Yun-Feng; Hu, Cui-Min; Hong, Mo; Sun, Xiao-Yu; Li, Hua; Liu, Yan; Fu, Xiaoguang; Sun, Hongzhi

    2013-01-01

    Isoliquiritigenin, a herbal ingredient with chalcone structure, has been speculated to be able to inhibit one of the most drug-metabolizing enzymes (DMEs) UDP-glucuronosyltransferase (UGT). Therefore, the aim of the present study was to investigate the inhibition of isoliquiritigenin towards important UGT isoforms in the liver and intestine, including UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10. The recombinant UGT-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as probe reactions. The results showed that 100μM of isoliquiritigenin inhibited the activity of UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 by 95.2%, 76.1%, 78.9%, 87.2%, 67.2%, 94.8%, and 91.7%, respectively. The data fitting using Dixon plot and Lineweaver-Burk plot showed that the inhibition of UGT1A1, UGT1A9 and UGT1A10 by isoliquiritigenin was all best fit to the competitive inhibition, and the second plot using the slopes from the Lineweaver-Burk plot versus isoliquiritigenin concentrations was used to calculate the inhibition kinetic parameter (K(i)) to be 0.7μM, 0.3μM, and 18.3μM for UGT1A1, UGT1A9, and UGT1A10, respectively. All these results indicated the risk of clinical application of isoliquiritigenin on the drug-drug interaction and other possible diseases induced by the inhibition of isoliquiritigenin towards these UGT isoforms.

  14. Organic Anion Transporter 1 Is Inhibited by Multiple Mechanisms and Shows a Transport Mode Independent of Exchange.

    PubMed

    Hotchkiss, Adam G; Gao, Tiandai; Khan, Usman; Berrigan, Liam; Li, Mansong; Ingraham, Leslie; Pelis, Ryan M

    2015-12-01

    The mechanism by which drugs inhibit organic anion transporter 1 (OAT1) was examined. OAT1 was stably expressed in Chinese hamster ovary (CHO) cells, and para-aminohippurate (PAH) and 6-carboxyfluorescein were the substrates. Most compounds (10 of 14) inhibited competitively, increasing the Michaelis constant (Km) without affecting the maximal transport rate (Jmax). Others were mixed-type (lowering Jmax and increasing Km) or noncompetitive (lowering Jmax only) inhibitors. The interaction of a noncompetitive inhibitor (telmisartan) with OAT1 was examined further. Binding of telmisartan to OAT1 was observed, but translocation was not. Telmisartan did not alter the plasma membrane expression of OAT1, indicating that it lowers Jmax by reducing the turnover number. PAH transport after telmisartan treatment and its washout recovered faster in the presence of 10% fetal bovine serum in the washout buffer, indicating that binding of telmisartan to OAT1 and its inhibitory effect are reversible. Together, these data suggest that telmisartan binds reversibly to a site distinct from substrate and stabilizes the transporter in a conformation unfavorable for translocation. In the absence of an exchangeable extracellular substrate, PAH efflux from CHO-OAT1 cells was relatively rapid. Telmisartan slowed PAH efflux, suggesting that some transporter-mediated efflux occurs independent of exchange. Although drug-drug interaction predictions at OAT1 assume competitive inhibition, these data show that OAT1 can be inhibited by other mechanisms, which could influence the accuracy of drug-drug interaction predictions at the transporter. Telmisartan was useful for examining how a noncompetitive inhibitor can alter OAT1 transport activity and for uncovering a transport mode independent of exchange.

  15. Correlative Tomography

    PubMed Central

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  16. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells

    PubMed Central

    Wang, Xin; Mazurkiewicz, Magdalena; Hillert, Ellin-Kristina; Olofsson, Maria Hägg; Pierrou, Stefan; Hillertz, Per; Gullbo, Joachim; Selvaraju, Karthik; Paulus, Aneel; Akhtar, Sharoon; Bossler, Felicitas; Khan, Asher Chanan; Linder, Stig; D’Arcy, Padraig

    2016-01-01

    Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity. PMID:27264969

  17. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET/CT) Findings in an Unusual Case of Multiple Myeloma Presenting with a Large Extra-Axial Intracranial Mass

    PubMed Central

    Ayaz, Sevin; Ayaz, Ümit Yaşar

    2016-01-01

    Summary Background We aimed to present unusual cranial FDG PET/CT findings of a 56-year-old female with multiple myeloma (MM). Case Report Plain CT images revealed a lytic lesion in the right parietal bone, filled with an oval-shaped, large, extra-axial, extradural, intracranial mass which measured 75×75×40 mm and had smooth borders. The right parietal lobe was compressed by the mass. The maximum standardized uptake value (SUVmax) of the mass lesion was 8.94 on FDG PET/CT images. Multiple lytic lesions with an increased uptake were also detected in other calvarial bones, in several vertebras and in the proximal left femur. After seven months, a control FDG PET/CT following radiotherapy and chemotherapy revealed almost complete regression of the right parietal extra-axial mass lesion. The number, size and metabolism of lytic lesions in other bones also decreased. Conclusions FDG PET/CT was useful for an initial evaluation of MM lesions and was effective in monitoring the response of these lesions to therapy. PMID:28058074

  18. Radiation-induced meningiomas in multiple regions, showing rapid recurrence and a high MIB 1 labeling index: a case report and review of the literature.

    PubMed

    Goto, Yoshiaki; Yamada, So; Yamada, Shoko M; Nakaguchi, Hiroshi; Hoya, Katsumi; Murakami, Mineko; Yamazaki, Kazuto; Ishida, Yasuo; Matsuno, Akira

    2014-04-26

    Combined chemotherapy and prophylactic cranial irradiation has improved the prognosis of children with acute leukemia. However cranial irradiation carries a latent risk of the induction of secondary intracranial tumors. We encountered a patient who developed multiple intracranial radiation-induced meningiomas (RIMs) 25 years after prophylactic cranial irradiation for the treatment of acute leukemia in childhood. The patient had 3 intracranial lesions, 1 of which showed rapid growth within 6 months; another of the tumors also enlarged within a short period. All of the tumors were surgically treated, and immunohistochemistry indicated a high MIB-1 labeling index in each of the multiple lesions. In the literature, the MIB-1 labeling indices of 27 tumors from 21 patients were examined. Among them, 12 recurrent tumors showed higher MIB-1 labeling indices compared to the MIB-1 labeling indices of the non-recurrent tumors. Overall, 11 of the patients with RIM had multiple lesions and 8 cases developed recurrence (72.7%). RIM cases with multiple lesions had higher MIB-1 labeling indices compared to the MIB-1 labeling indices of cases with single lesions. Collectively, these data showed that the MIB-1 labeling index is as important for predicting RIM recurrences, as it is for predicting sporadic meningioma (SM) recurrences. RIMs should be treated more aggressively than SMs because of their greater malignant potential.

  19. Missing Omo L338y-6 occipital-marginal sinus drainage pattern: ground sectioning, computer tomography scanning, and the original fossil fail to show it.

    PubMed

    Holloway, Ralph L; Yuan, Michael S; Broadfield, Douglas C; Degusta, David; Richards, Gary D; Silvers, Adam; Shapiro, Jill S; White, Tim D

    2002-04-01

    The Omo L338y-6 occipital region has been recently studied by White and Falk (1999), who claim that it shows a readily identifiable enlarged left occipital-marginal sinus (O/M). These observations are contrary to the direct observations of previous investigators (Rak and Howell, 1978; Kimbel, 1984; Holloway, 1981; Holloway, 1988). White and Falk (1999) further argue that the presence of this enlarged O/M strongly suggests that the Omo L338y-6 hominid was indeed a "robust" Australopithecus. We used direct sectioning and CT scanning to analyze magnified sections of a high-quality first-generation cast of the newly cleaned original fossil. These methods fail to show any evidence of a morphological landmark that can be interpreted as an enlarged O/M, either as an eminence or a sulcus. In contrast, the same techniques used with both SK 1585 and OH5 ("robust" Australopithecus with an enlarged O/M) show extremely visible and palpable enlarged O/M's. Examination of the original Omo fossil confirms that it lacks an O/M. This evidence clearly shows that an enlarged O/M cannot be identified on either the original fossil or a first-generation cast, although this does not rule out the possibility that the Omo L338y-6 hominid was a "robust" Australopithecus. We believe that the differences between observers regarding this feature are most probably due to displacement caused by a crack and the different source materials employed, i.e., the difference between a first-generation cast of the original fossil and a third- or fourth-generation cast of the endocast made two decades ago.

  20. Identification and localization of multiple intrastromal foreign bodies with anterior segment optical coherence tomography and ocular Pentacam.

    PubMed

    Al-Ghadeer, Huda A; Al-Assiri, Abdullah

    2014-04-01

    To report the clinical aspects and the imaging of a patient with intrastromal glass foreign bodies after a road traffic accident using both anterior segment optical coherence tomography (OCT) and ocular Pentacam. A detailed case report was made of the use of anterior segment OCT (AS-OCT) and ocular Pentacam to evaluate intrastromal foreign bodies. AS-OCT and Pentacam were valuable non-invasive tools in identification, localization and monitoring patients with intrastromal foreign bodies. This report demonstrates that AS-OCT and ocular Pentacam are effective and necessary procedures for both the diagnosis and follow-up of intracorneal foreign bodies.

  1. Meaning of Interior Tomography

    PubMed Central

    Wang, Ge; Yu, Hengyong

    2013-01-01

    The classic imaging geometry for computed tomography is for collection of un-truncated projections and reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a novel framework known as “omni-tomography” is being developed for grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features. PMID:23912256

  2. SPECIAL ISSUE DEVOTED TO MULTIPLE RADIATION SCATTERING IN RANDOM MEDIA: Optical coherent tomography measurements of the diffusion rate of water and drugs in an isolated and whole cornea

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ghosn, M. G.

    2006-12-01

    The passive diffusion of drugs through the epithelial surfaces of an eye (the most widespread method for medical treatment of various diseases) is considered. The permeability of water and drugs through rabbit cornea was measured in the isolated cornea (separate from an eye) and in the whole cornea. The permeability coefficients of water and dexamethasone were estimated by the method of optical coherence tomography (OCT). Because multiple photon scattering introduces noise and distortions to the OCT signal, measurements were performed at depths up to 500 μm where most likely single scattering of light occurs in cornea. It is shown that the permeability coefficients in the isolated and whole cornea strongly differ from each other. For example, the water permeability in the isolated and whole cornea is (7.09±0.12)×10-5 and (1.71±0.51)×10-5 cm s-1, respectively.

  3. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime.

    PubMed

    Almasian, Mitra; Bosschaart, Nienke; van Leeuwen, Ton G; Faber, Dirk J

    2015-01-01

    Optical coherence tomography (OCT) has the potential to quantitatively measure optical properties of tissue such as the attenuation coefficient and backscattering coefficient. However, to obtain reliable values for strong scattering tissues, accurate consideration of the effects of multiple scattering and the nonlinear relation between the scattering coefficient and scatterer concentration (concentration-dependent scattering) is required. We present a comprehensive model for the OCT signal in which we quantitatively account for both effects, as well as our system parameters (confocal point spread function and sensitivity roll-off). We verify our model with experimental data from controlled phantoms of monodisperse silica beads (scattering coefficients between 1 and 30  mm(−1) and scattering anisotropy between 0.4 and 0.9). The optical properties of the phantoms are calculated using Mie theory combined with the Percus–Yevick structure factor to account for concentration-dependent scattering. We demonstrate excellent agreement between the OCT attenuation and backscattering coefficient predicted by our model and experimentally derived values. We conclude that this model enables us to accurately model OCT-derived parameters (i.e., attenuation and backscattering coefficients) in the concentration-dependent and multiple scattering regime for spherical monodisperse samples.

  4. The phenotype alterations showed by the res tomato mutant disappear when the plants are grown under semi-arid conditions: Is the res mutant tolerant to multiple stresses?

    PubMed

    Garcia-Abellan, José O; Albaladejo, Irene; Egea, Isabel; Flores, Francisco B; Capel, Carmen; Capel, Juan; Angosto, Trinidad; Lozano, Rafael; Bolarin, Maria C

    2016-02-23

    The res (restored cell structure by salinity) mutant, recently identified as the first tomato mutant accumulating jasmonate (JA) without stress, exhibited important morphological alterations when plants were grown under control conditions but these disappeared under salt stress. Since the defense responses against stresses are activated in the res mutant as a consequence of the increased expression of genes from the JA biosynthetic and signaling pathways, the mutant may display a tolerance response not only to salt stress but also to multiple stresses. Here, we show that when res mutant plants are grown under the summer natural conditions of the Mediterranean area, with high temperatures and low relative humidity, the characteristic leaf chlorosis exhibited by the mutant disappears and leaves become dark green over time, with a similar aspect to WT leaves. Moreover, the mutant plants are able to achieve chlorophyll and fluorescence levels similar to those of WT. These results hint that research on res tomato mutant may allow very significant advances in the knowledge of defense responses activated by JA against multiple stresses.

  5. Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number.

    PubMed

    Wang, Qun; Diskin, Sharon; Rappaport, Eric; Attiyeh, Edward; Mosse, Yael; Shue, Daniel; Seiser, Eric; Jagannathan, Jayanti; Shusterman, Suzanne; Bansal, Manisha; Khazi, Deepa; Winter, Cynthia; Okawa, Erin; Grant, Gregory; Cnaan, Avital; Zhao, Huaqing; Cheung, Nai-Kong; Gerald, William; London, Wendy; Matthay, Katherine K; Brodeur, Garrett M; Maris, John M

    2006-06-15

    Neuroblastoma is remarkable for its clinical heterogeneity and is characterized by genomic alterations that are strongly correlated with tumor behavior. The specific genes that influence neuroblastoma biology and are targeted by genomic alterations remain largely unknown. We quantified mRNA expression in a highly annotated series of 101 prospectively collected diagnostic neuroblastoma primary tumors using an oligonucleotide-based microarray. Genomic copy number status at the prognostically relevant loci 1p36, 2p24 (MYCN), 11q23, and 17q23 was determined by PCR and was aberrant in 26, 20, 40, and 38 cases, respectively. In addition, 72 diagnostic neuroblastoma primary tumors assayed in a different laboratory were used as an independent validation set. Unsupervised hierarchical clustering showed that gene expression was highly correlated with genomic alterations and clinical markers of tumor behavior. The vast majority of samples with MYCN amplification and 1p36 loss of heterozygosity (LOH) clustered together on a terminal node of the sample dendrogram, whereas the majority of samples with 11q deletion clustered separately and both of these were largely distinct from the copy number neutral group of tumors. Genes involved in neurodevelopment were broadly overrepresented in the more benign tumors, whereas genes involved in RNA processing and cellular proliferation were highly represented in the most malignant cases. By combining transcriptomic and genomic data, we showed that LOH at 1p and 11q was associated with significantly decreased expression of 122 (61%) and 88 (27%) of the genes mapping to 1p35-36 and all of 11q, respectively, suggesting that multiple genes may be targeted by LOH events. A total of 71 of the 1p35-36 genes were also differentially expressed in the independent validation data set, providing a prioritized list of candidate neuroblastoma suppressor genes. Taken together, these data are consistent with the hypotheses that the neuroblastoma

  6. Multiple medullary venous malformations decreasing cerebral blood flow: Case report

    SciTech Connect

    Tomura, N.; Inugami, A.; Uemura, K.; Hadeishi, H.; Yasui, N. )

    1991-02-01

    A rare case of multiple medullary venous malformations in the right cerebral hemisphere is reported. The literature review yielded only one case of multiple medullary venous malformations. Computed tomography scan showed multiple calcified lesions with linear contrast enhancement representing abnormal dilated vessels and mild atrophic change of the right cerebral hemisphere. Single-photon emission computed tomography using N-isopropyl-p-({sup 123}I) iodoamphetamine demonstrated decreased cerebral blood flow in the right cerebral hemisphere.

  7. The evolution of computed tomography from organ-selective to whole-body scanning in managing unconscious patients with multiple trauma: A retrospective cohort study.

    PubMed

    Hong, Zhi-Jie; Chen, Cheng-Jueng; Yu, Jyh-Cherng; Chan, De-Chuan; Chou, Yu-Ching; Liang, Chia-Ming; Hsu, Sheng-Der

    2016-09-01

    We aimed to evaluate the benefit of whole-body computed tomography (WBCT) scanning for unconscious adult patients suffering from high-energy multiple trauma compared with the conventional stepwise approach of organ-selective CT.Totally, 144 unconscious patients with high-energy multiple trauma from single level I trauma center in North Taiwan were enrolled from January 2009 to December 2013. All patients were managed by a well-trained trauma team and were suitable for CT examination. The enrolled patients are all transferred directly from the scene of an accident, not from other medical institutions with a definitive diagnosis. The scanning regions of WBCT include head, neck, chest, abdomen, and pelvis. We analyzed differences between non-WBCT and WBCT groups, including gender, age, hospital stay, Injury Severity Score, Glasgow Coma Scale, Revised Trauma Score, time in emergency department (ED), medical cost, and survival outcome.Fifty-five patients received the conventional approach for treating trauma, and 89 patients received immediate WBCT scanning after an initial examination. Patients' time in ED was significantly shorter in the WBCT group in comparison with the non-WBCT group (158.62 ± 80.13 vs 216.56 ± 168.32 min, P = 0.02). After adjusting for all possible confounding factors, we also found that survival outcome of the WBCT group was better than that of the non-WBCT group (odds ratio: 0.21, 95% confidence interval: 0.06-0.75, P = 0.016).Early performing WBCT during initial trauma management is a better approach for treating unconscious patients with high-energy multiple trauma.

  8. Laser-assisted atom probe tomography of four paired poly-Si/SiO2 multiple-stacks with each thickness of 10 nm

    NASA Astrophysics Data System (ADS)

    Kwak, C.-M.; Seol, J.-B.; Kim, Y.-T.; Park, C.-G.

    2017-02-01

    For the past 10 years, laser-assisted atom probe tomography (APT) analysis has been performed to quantify the near-atomic scale distribution of elements and their local chemical compositions within interfaces that determine the design, processing, and properties of virtually all materials. However, the nature of the occurring laser-induced emission at the surface of needle-shaped sample is highly complex and it has been an ongoing challenge to understand the surface-related interactions between laser-sources and tips containing non-conductive oxides for a robust and reliable analysis of multiple-stacked devices. Here, we find that the APT analysis of four paired poly-Si/SiO2 (conductive/non-conductive) multiple stacks with each thickness of 10 nm is governed by experimentally monitoring three experimental conditions, such as laser-beam energies ranged from 30 to 200 nJ, analysis temperatures varying with 30-100 K, and the inclination of aligned interfaces within a given tip toward analysis direction. Varying with laser-energy and analysis temperature, a drastic compositional ratio of doubly charged Si ions to single charged Si ions within conductive poly-Si layers is modified, as compared with ones detected in the non-conductive layers. Severe distorted APT images of multiple stacks are also inevitable, especially at the conductive layers, and leading to a lowering of the successful analysis yields. This lower throughput has been overcome though changing the inclination of interfaces within a given tip to analysis direction (planar interfaces parallel to the tip axis), but significant deviations in chemical compositions of a conductive layer counted from those of tips containing planar interfaces perpendicular to the tip axis are unavoidable owing to the Si2, SiH2O, and Si2O ions detected, for the first time, within poly-Si layers.

  9. Primary multiple sulfur isotopic compositions of pyrite in 2.7 Ga shales from the Joy Lake sequence (Superior Province) show felsic volcanic array-like signature

    NASA Astrophysics Data System (ADS)

    Li, Jianghanyang; Zhang, Zhe; Stern, Richard A.; Hannah, Judith L.; Stein, Holly J.; Yang, Gang; Li, Long

    2017-04-01

    Multiple sulfur isotopes provide a powerful tool to study photochemical and biological processes controlling the Archean sulfur cycle and infer related atmospheric and marine environments. However, our understanding of early Earth's environment remains limited by the availability of well-preserved geological samples, as most Archean sedimentary rocks have experienced some degree of metamorphic alteration. To evaluate sulfur isotopic behavior during post-depositional processes and elucidate the sulfur cycle at 2.7 Ga, we use high-resolution in situ analytical techniques (EPMA and SIMS) to determine elemental compositions and multiple sulfur isotopic compositions of large diagenetic pyrite nodules and fine-grained secondary pyrite disseminated in quartz veins (formed during a lower greenschist metamorphic event) in shales from the 2.7 Ga Joy Lake sequence in the southwest Superior Province. Results show that trace metals and sulfur in the secondary pyrite were derived from both metamorphic fluid and pre-existing diagenetic pyrite. Diagenetic pyrite nodules could have been partially dissolved by metamorphic fluid. But the surviving nodules show elemental and isotopic features different from those of the deduced metamorphic fluid endmember, suggesting the nodules were not geochemically altered by metamorphism, and thus preserve primary isotopic signatures acquired during diagenesis. The sulfur isotopic ratios of pyrite nodules show strong variations, with decreasing δ34S values and increasing Δ33S values from cores to rims. This negative Δ33S-δ34S relationship is different from the commonly observed 'Archean reference line' defined by most Archean pyrite data, but similar to the 'felsic volcanic array'. Our observation provides a first possible case from 2.7 Ga, the age of peak crustal growth in the Archean, to support the hypothesis that photochemical pathways could be different under conditions of intense volcanic emission. This study also shows that high

  10. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  11. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    PubMed Central

    2013-01-01

    Background ‘Encephalomyelitis disseminata’ (multiple sclerosis) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are both classified as diseases of the central nervous system by the World Health Organization. This review aims to compare the phenomenological and neuroimmune characteristics of MS with those of ME/CFS. Discussion There are remarkable phenomenological and neuroimmune overlaps between both disorders. Patients with ME/CFS and MS both experience severe levels of disabling fatigue and a worsening of symptoms following exercise and resort to energy conservation strategies in an attempt to meet the energy demands of day-to-day living. Debilitating autonomic symptoms, diminished cardiac responses to exercise, orthostatic intolerance and postural hypotension are experienced by patients with both illnesses. Both disorders show a relapsing-remitting or progressive course, while infections and psychosocial stress play a large part in worsening of fatigue symptoms. Activated immunoinflammatory, oxidative and nitrosative (O+NS) pathways and autoimmunity occur in both illnesses. The consequences of O+NS damage to self-epitopes is evidenced by the almost bewildering and almost identical array of autoantibodies formed against damaged epitopes seen in both illnesses. Mitochondrial dysfunctions, including lowered levels of ATP, decreased phosphocreatine synthesis and impaired oxidative phosphorylation, are heavily involved in the pathophysiology of both MS and ME/CFS. The findings produced by neuroimaging techniques are quite similar in both illnesses and show decreased cerebral blood flow, atrophy, gray matter reduction, white matter hyperintensities, increased cerebral lactate and choline signaling and lowered acetyl-aspartate levels. Summary This review shows that there are neuroimmune similarities between MS and ME/CFS. This further substantiates the view that ME/CFS is a neuroimmune illness and that patients with MS are immunologically primed to

  12. The tyrosinase-positive oculocutaneous albinism gene shows locus homogeneity on chromosome 15q11-q13 and evidence of multiple mutations in southern African negroids

    SciTech Connect

    Kedda, M.A.; Stevens, G.; Manga, P.; Viljoen, C.; Jenkins, T.; Ramsay, M. Univ. of Witwatersrand, Johannesburg )

    1994-06-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA) is an autosomal recessive disorder of the melanin pigmentary system. South African ty-pos OCA individuals occur with two distinct phenotypes, with or without darkly pigmented patches (ephelides, or dendritic freckles) on exposed areas of the skin. These phenotypes are concordant within families, suggesting that there may be more than one mutation at the ty-pos OCA locus. Linkage studies carried out in 41 families have shown linkage between markers in the Prader-Willi/Angelman syndrome (PWS/AS) region on chromosome 15q11-q13 and ty-pos OCA. Analysis showed no obligatory crossovers between the alleles at the D15S12 locus and ty-pos OCA, suggesting that the D15S12 locus is very close to or part of the disease locus, which is postulated to be the human homologue, P, of the mouse pink-eyed dilution gene, p. Unlike caucasoid [open quotes]ty-pos OCA[close quotes] individuals, negroid ty-pos OCA individuals do not show any evidence of locus heterogeneity. Studies of allelic association between the polymorphic alleles detected at the D15S12 locus and ephelus status suggest that there was a single major mutation giving rise to ty-pos OCA without ephelides. There may, however, be two major mutations causing ty-pos OCA with ephelides, one associated with D15S12 allele 1 and the other associated with D15S12 allele 2. The two loci, GABRA5 and D15S24, flanking D15S12, are both hypervariable, and many different haplotypes were observed with the alleles at the three loci on both ty-pos OCA-associated chromosomes and [open quotes]normal[close quotes] chromosomes. No haplotype showed statistically significant association with ty-pos OCA, and thus none could be used to predict the origins of the ty-pos OCA mutations. On the basis of the D15S12 results, there is evidence for multiple ty-pos OCA mutations in southern African negroids. 31 refs., 1 fig., 3 tabs.

  13. Stripe sensor tomography.

    PubMed

    Barbic, Mladen; Vltava, Lvcian; Barrett, Christopher P; Emery, Teresa H; Scherer, Axel

    2008-03-01

    We introduce a general concept of tomographic imaging for the case of an imaging sensor that has a stripelike shape. We first show that there is no difference, in principle, between two-dimensional tomography using conventional electromagnetic or particle radiation and tomography where a stripe sensor is mechanically scanned over a sample at a sequence of different angles. For a single stripe detector imaging, linear motion and angular rotation are required. We experimentally demonstrate single stripe sensor imaging principle using an elongated inductive coil detector. By utilizing an array of parallel stripe sensors that can be individually addressed, two-dimensional imaging can be performed with rotation only, eliminating the requirement for linear motion, as we also experimentally demonstrate with parallel coil array. We conclude that imaging with a stripe-type sensor of particular width and thickness (where the width is much larger than the thickness) is resolution limited only by the thickness (smaller parameter) of the sensor. We give examples of multiple sensor families where this imaging technique may be beneficial such as magnetoresistive, inductive, superconducting quantum interference device, and Hall effect sensors, and, in particular, discuss the possibilities of the technique in the field of magnetic resonance imaging.

  14. The utility of susceptibility-weighted imaging for differentiating Parkinsonism-predominant multiple system atrophy from Parkinson's disease: correlation with 18F-flurodeoxyglucose positron-emission tomography.

    PubMed

    Yoon, Ra Gyoung; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Kim, Jae Seung; Oh, Jungsu; Chung, Sun J; Lee, Chong Sik

    2015-01-01

    Our study was intended to demonstrate the different signal intensity (SI) pattern of the putamen seen on susceptibility-weighted imaging (SWI) between that of Parkinson's disease (PD) and Parkinsonism-predominant multiple system atrophy (MSA-P), and to correlate it with (18)F-flurodeoxyglucose positron-emission tomography ((18)F-FDG PET). Thirty patients with PD and 17 with MSA-P underwent SWI, and (18)F-FDG PET were included. The SI was measured on SWI in the anterior and posterior halves of the putamen using a region-of-interest (ROI) on both sides. The normalized regional glucose metabolism (standardized uptake value ratio, SUVR) was measured on co-registered (18)F-FDG PET images using the ROI obtained with SWI. Analysis included a group-level comparison of the SI values obtained on SWI, and these results were correlated with the SUVR on (18)F-FDG PET. The SIs of the bilateral posterior, dominant-side of the posterior, mean values of the bilateral anterior and posterior halves of the putamen on SWI, differed significantly between the two groups (P < 0.001, respectively). The SUVR of the all locations also differed significantly between PD and MSA-P (P < 0.001, respectively). There was a moderate degree of positive correlation between the SI and the SUVR of the left posterior half, and mean value of the bilateral posterior putamen in MSA-P (r = 0.634, P = 0.006, r = 0.492, P = 0.045). In conclusion, the low SI seen on the posterior putamen may differentiate MSA-P from PD. Furthermore, low SI in the putamen correlated with hypometabolism on (18)F-FDG PET. Therefore, SWI could be a potential complementary diagnostic tool to (18)F-FDG PET for differentiating these conditions.

  15. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  16. Adding Papillomacular Bundle Measurements to Standard Optical Coherence Tomography Does Not Increase Sensitivity to Detect Prior Optic Neuritis in Patients with Multiple Sclerosis

    PubMed Central

    Laible, Mona; Jarius, Sven; Schmidt-Bacher, Annette; Platten, Michael; Haas, Jürgen

    2016-01-01

    Purpose To improve the detection of retinal nerve fiber layer (RNFL) thinning in multiple sclerosis (MS), a special peripapillary ring scanning algorithm (N-site RNFL, N-RNFL) was developed for spectral domain optical coherence tomography (SD-OCT). In contrast to the standard protocol (ST-RNFL) scanning starts nasally, not temporally, and provides an additional sector of analysis, the papillomacular bundle (PMB). We aimed to ascertain whether the temporal RNFL differs between the two techniques, whether N-RNFL is more sensitive than ST-RNFL to detect previous optic neuritis (ON), and whether analyzing the PMB adds additional sensitivity. Furthermore, we investigated whether RNFL is associated with disease severity and/or disease duration. Methods We conducted a cross-sectional case-control study of 38 patients with MS, of whom 24 had a history of ON, and 40 healthy controls (HC). Subjects with ON within the previous 6 months were excluded. Records included clinical characteristics, visual evoked potentials (VEP), and SD-OCT in both techniques. Results In a total of 73 evaluable MS eyes, temporal N-RNFL was abnormal in 17.8%, temporal ST-RNFL in 19.2%, and the PMB-RNFL in 21.9%. In ON eyes, the sensitivity of temporal N-RNFL and ST-RNFL did not differ significantly (37.0%/33.3%, p = 0.556). The sensitivity of VEP was 85.2%. RNFL thickness was associated with disease severity in all eyes, with and without a history of ON, and with disease duration. Conclusion The two OCT techniques detected previous ON with similar sensitivity, but the sensitivity of VEPs was superior to that of both N-RNFL and ST-RNFL. Our results indicate that the widely used ST-RNFL technique is appropriate for peripapillary RNFL measurements in MS patients. PMID:27171375

  17. Attenuation-difference radar tomography: results of a multiple-plane experiment at the U.S. Geological Survey Fractured-Rock Research Site, Mirror Lake, New Hampshire

    USGS Publications Warehouse

    Lane, J.W.; Day-Lewis, F. D.; Harris, J.M.; Haeni, F.P.; Gorelick, S.M.

    2000-01-01

    Attenuation-difference, borehole-radar tomography was used to monitor a series of sodium chloride tracer injection tests conducted within the FSE, wellfield at the U.S. Geological Survey Fractured-Rock Hydrology Research Site in Grafton County, New Hampshire, USA. Borehole-radar tomography surveys were conducted using the sequential-scanning and injection method in three boreholes that form a triangular prism of adjoining tomographic image planes. Results indicate that time-lapse tomography methods provide high-resolution images of tracer distribution in permeable zones.

  18. Relationship between Optical Coherence Tomography and Electrophysiology of the Visual Pathway in Non-Optic Neuritis Eyes of Multiple Sclerosis Patients

    PubMed Central

    Sriram, Prema; Wang, Chenyu; Yiannikas, Con; Garrick, Raymond; Barnett, Michael; Parratt, John; Graham, Stuart L.; Arvind, Hemamalini; Klistorner, Alexander

    2014-01-01

    Purpose Loss of retinal ganglion cells in in non-optic neuritis eyes of Multiple Sclerosis patients (MS-NON) has recently been demonstrated. However, the pathological basis of this loss at present is not clear. Therefore, the aim of the current study was to investigate associations of clinical (high and low contrast visual acuity) and electrophysiological (electroretinogram and multifocal Visual Evoked Potentials) measures of the visual pathway with neuronal and axonal loss of RGC in order to better understand the nature of this loss. Methods Sixty-two patients with relapsing remitting multiple sclerosis with no previous history of optic neuritis in at least one eye were enrolled. All patients underwent a detailed ophthalmological examination in addition to low contrast visual acuity, Optical Coherence Tomography, full field electroretinogram (ERG) and multifocal visual evoked potentials (mfVEP). Results There was significant reduction of ganglion cell layer thickness, and total and temporal retinal nerve fibre layer (RNFL) thickness (p<0.0001, 0.002 and 0.0002 respectively). Multifocal VEP also demonstrated significant amplitude reduction and latency delay (p<0.0001 for both). Ganglion cell layer thickness, total and temporal RNFL thickness inversely correlated with mfVEP latency (r = −0.48, p<0.0001 respectively; r = −0.53, p<0.0001 and r = −0.59, p<0.0001 respectively). Ganglion cell layer thickness, total and temporal RNFL thickness also inversely correlated with the photopic b-wave latency (r = −0.35, p = 0.01; r = −0.33, p = 0.025; r = −0.36, p = 0.008 respectively). Multivariate linear regression model demonstrated that while both factors were significantly associated with RGC axonal and neuronal loss, the estimated predictive power of the posterior visual pathway damage was considerably larger compare to retinal dysfunction. Conclusion The results of our study demonstrated significant association of RGC axonal

  19. Multiple myeloma.

    PubMed

    Peller, Patrick J

    2015-04-01

    This article presents a review of multiple myeloma, precursor states, and related plasma cell disorders. The clinical roles of fluorodeoxyglucose PET/computed tomography (CT) and the potential to improve the management of patients with multiple myeloma are discussed. The clinical and research data supporting the utility of PET/CT use in evaluating myeloma and other plasma cell dyscrasias continues to grow.

  20. Extramedullary Plasmacytoma of the Gallbladder Detected on Fluorine 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Fakhri, Asif Ali; Rodrigue, Paul David; Fakhri, Amena Fatima

    2016-01-01

    Extramedullary plasmacytoma is rare in patients with diagnosed multiple myeloma. Soft tissue plasmacytoma of the gallbladder is particularly uncommon and has been described in only a handful of cases. Diagnosis of gallbladder plasmacytoma with fluorine 18-fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (PET/CT) has not previously been reported. We present a 65-year-old female with a history of multiple myeloma who underwent a restaging F18-FDG-PET/CT which showed a focal area of hypermetabolic activity, corresponding to a nodular lesion within the posterior gallbladder wall. The patient underwent successful cholecystectomy, with surgical pathology revealing gallbladder plasmacytoma. A follow-up scan was negative for active malignancy. This is a novel case of gallbladder plasmacytoma diagnosed on whole-body F18-FDG PET/CT – thus demonstrating the clinical value of this imaging modality in staging, restaging, and surveillance for patients with multiple myeloma. PMID:27761300

  1. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the…

  2. Lymphoma-type adult T-cell leukaemia-lymphoma with a bulky cutaneous tumour showing multiple human T-lymphotropic virus-1 DNA integration.

    PubMed

    Kato, N; Sugawara, H; Aoyagi, S; Mayuzumi, M

    2001-06-01

    Human T-lymphotropic virus-1 (HTLV-1) is considered to be the cause of adult T-cell leukaemia-lymphoma (ATL). Monoclonal integration of HTLV-1 proviral DNA, as is analysed by Southern blotting, has been demonstrated in ATL patients. Unusual integration patterns of HTLV-1 proviral DNA have occasionally been described, and it is suggested that the patterns have clinical implications for ATL pathophysiology. Multiple, complete and defective types of integration patterns, in that order, are apparently associated with prognoses from good to poor. We report a 73-year-old Japanese woman with lymphoma-type ATL and a bulky cutaneous tumour on the left thigh. Four bands of slightly differing intensity were seen after EcoRI digestion of skin and lymph node samples on Southern blot analysis of HTLV-1 proviral DNA. Analysis for T-cell receptor-beta gene revealed five novel bands after restriction enzyme digestion with HindIII, indicating that the patient has four separate tumour cell clones, each of which carries one copy of the provirus. She was treated with chemotherapy and radiation and remains under reasonable control despite some relapsing cutaneous nodules. The indolent course in this present case could be related to the multiple integration pattern of HTLV-1 proviral DNA detected.

  3. Parallel acoustic delay lines for photoacoustic tomography

    PubMed Central

    Yapici, Murat Kaya; Kim, Chulhong; Chang, Cheng-Chung; Jeon, Mansik; Guo, Zijian; Cai, Xin

    2012-01-01

    Abstract. Achieving real-time photoacoustic (PA) tomography typically requires multi-element ultrasound transducer arrays and their associated multiple data acquisition (DAQ) electronics to receive PA waves simultaneously. We report the first demonstration of a photoacoustic tomography (PAT) system using optical fiber-based parallel acoustic delay lines (PADLs). By employing PADLs to introduce specific time delays, the PA signals (on the order of a few micro seconds) can be forced to arrive at the ultrasonic transducers at different times. As a result, time-delayed PA signals in multiple channels can be ultimately received and processed in a serial manner with a single-element transducer, followed by single-channel DAQ electronics. Our results show that an optically absorbing target in an optically scattering medium can be photoacoustically imaged using the newly developed PADL-based PAT system. Potentially, this approach could be adopted to significantly reduce the complexity and cost of ultrasonic array receiver systems. PMID:23139043

  4. Post-coma persons emerged from a minimally conscious state and showing multiple disabilities learn to manage a radio-listening activity.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Colonna, Fabio; Buonocunto, Francesca; Sacco, Valentina; Megna, Marisa; Oliva, Doretta

    2012-01-01

    This study assessed microswitch-based technology to enable three post-coma adults, who had emerged from a minimally conscious state but presented motor and communication disabilities, to operate a radio device. The material involved a modified radio device, a microprocessor-based electronic control unit, a personal microswitch, and an amplified MP3 player. The study was carried out according to a non-concurrent multiple baseline design across participants. During the intervention, all three participants learned to operate the radio device, changing stations and tuning on some of them longer amounts of time than on others (i.e., suggesting preferences among the topics covered by those stations). They also ended a number of sessions before the maximum length of time allowed for them had elapsed. The practical (rehabilitation) implications of the findings were discussed.

  5. Single-Cell Analysis and Next-Generation Immuno-Sequencing Show That Multiple Clones Persist in Patients with Chronic Lymphocytic Leukemia.

    PubMed

    Kriangkum, Jitra; Motz, Sarah N; Mack, Tanner; Beiggi, Sara; Baigorri, Eva; Kuppusamy, Hemalatha; Belch, Andrew R; Johnston, James B; Pilarski, Linda M

    2015-01-01

    The immunoglobulin heavy chain (IGH) gene rearrangement in chronic lymphocytic leukemia (CLL) provides a unique molecular signature; however, we demonstrate that 26/198 CLL patients (13%) had more than one IGH rearrangement, indicating the power of molecular technology over phenotypic analysis. Single-cell PCR analysis and next-generation immuno-sequencing identified IGH-defined clones. In 23% (18/79) of cases whose clones carried unmutated immunoglobulin heavy chain variable (IGHV) genes (U-CLL), IGH rearrangements were bialleic with one productive (P) and one non-productive (NP) allele. Two U-CLL were biclonal, each clone being monoallelic (P). In 119 IGHV-mutated (M-CLL) cases, one had biallelic rearrangements in their CLL (P/NP) and five had 2-4 distinct clones. Allelic exclusion was maintained in all B-clones analyzed. Based on single-cell PCR analysis, 5/11 partner clones (45%) reached levels of >5x10(9) cells/L, suggesting second CLL clones. Partner clones persisted over years. Conventional IGH characterization and next-generation sequencing of 13 CLL, 3 multiple myeloma, 2 Waldenstrom's macroglobulinemia and 3 age-matched healthy donors consistently identified the same rearranged IGH sequences. Most multiple clones occurred in M-CLL, perhaps indicative of weak clonal dominance, thereby associating with a good prognosis. In contrast, biallelic CLL occurred primarily in U-CLL thus being associated with poor prognosis. Extending beyond intra-clonal diversity, molecular analysis of clonal evolution and apparent subclones in CLL may also reflect inter-clonal diversity.

  6. New Geomorphic map of SW Fraser Lowland, NW Washington, Shows Multiple Post-LGM Moraines, Fossil Shorelines, Outburst Flood and Glacial Outwash Features

    NASA Astrophysics Data System (ADS)

    Easterbrook, D. J.; Kovanen, D. J.; Haugerud, R. A.

    2008-12-01

    We have interpreted a ~1 pulse/m2 lidar survey (acquired in 2006 in leaf-on conditions under contract to the USGS) to construct a geomorphic map of western Whatcom County. The new lidar data reveal the existence of previously unrecognized landforms. Within this landscape, we see these features that reflect a rich post-LGM history: Glacial: Ice contact deposits interpreted as moraines reveal at least 8 successive moraines associated with the late Pleistocene Fraser Glaciation. At least two of the moraine crests were formed during ice re- advance; others may mark stillstands during ice retreat. All are older than about 10,250 14C yrs BP, based on basal peat from a kettle in outwash associated with the youngest moraine. Marine: Extensive and successive fossil shorelines, wave-cut notches, wave-washed surfaces, down- slope truncation of gullies, and deltas along the fringe of uplands surrounding the SW Fraser Lowland document former relative sea level and probable glacioisostatic tilting. The highest shorelines are at nearly 150 m above sea level. Some shorelines are cut into moraines, while others are truncated by them. Uplifted back-beach surfaces of likely mid-Holocene age at Birch Bay and Neptune Beach (elevations ~1 m and ~3 m higher than modern back-beach surfaces) suggest Holocene uplift. Glaciofluvial: Large, stepped, sediment wave bed-forms, with wavelengths of 430 to 850 m and heights from 1 to 3.5 m, record deposition associated with high discharge and rapid water release. Sub-parallel, narrow scour troughs are up to 4 km in length and 8 m in depth. These high energy geomorphic features record at least three large discharge events. Their apparent associations with former ice margins indicate that they are the result of outburst floods. Multiple outwash surfaces in the lowland are also related to former ice margins. Fluvial: At present the Nooksack River flows west from the town of Everson and reaches Bellingham Bay just south of Ferndale. Relatively low

  7. Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity

    PubMed Central

    Werner, Tomáš; Motyka, Václav; Laucou, Valérie; Smets, Rafaël; Van Onckelen, Harry; Schmülling, Thomas

    2003-01-01

    Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase (AtCKX) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5:GUS (β-glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter:GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions. PMID:14555694

  8. Mitochondrial phylogeny shows multiple independent ecological transitions and northern dispersion despite of Pleistocene glaciations in meadow and steppe vipers (Vipera ursinii and Vipera renardi).

    PubMed

    Zinenko, Oleksandr; Stümpel, Nikolaus; Mazanaeva, Lyudmila; Bakiev, Andrey; Shiryaev, Konstantin; Pavlov, Aleksey; Kotenko, Tatiana; Kukushkin, Oleg; Chikin, Yury; Duisebayeva, Tatiana; Nilson, Göran; Orlov, Nikolai L; Tuniyev, Sako; Ananjeva, Natalia B; Murphy, Robert W; Joger, Ulrich

    2015-03-01

    The phylogeny and historical demography of small Eurasian vipers of the Vipera ursinii and V. renardi complexes were studied using mitochondrial DNA sequences analysed with Bayesian inference, Maximum Likelihood and Maximum Parsimony approaches, and mismatch distributions. Diversification in the group resulted from an initial dispersion in the later Pliocene - Pleistocene in two directions: north-westwards via the Balkans (V. ursinii complex) and north-eastwards from Asia Minor via the Caucasus (V. renardi complex). An independent, comparatively recent transition occurred from montane habitats to lowland grasslands in different mitochondrial lineages during the Late Pleistocene, when representatives of the both complexes had reached lowland steppes to the north. Effective population size showed clear signs of rapid growth in eastern V. renardi, triggered by colonization of vast lowland steppes, but in western V. ursinii complex grew during the Last Glaciation and experienced stabilization in Holocene. Expansion and population growth in lowland lineages of V. renardi was not strongly affected by Pleistocene climatic oscillations, when cold, dry conditions could have favoured species living in open grasslands. The high diversity of closely related haplotypes in the Caucasus and Tien-Shan could have resulted from repetitive expansion-constriction-isolation events in montane regions during Pleistocene climate fluctuations. The mitochondrial phylogeny pattern conflicts with the current taxonomy.

  9. A Multiple siRNA-Based Anti-HIV/SHIV Microbicide Shows Protection in Both In Vitro and In Vivo Models

    PubMed Central

    Raulji, Payal; Mohapatra, Subhra; Mohapatra, Shyam S

    2015-01-01

    Human immunodeficiency virus (HIV) types 1 and 2 (HIV-1 and HIV-2) are the etiologic agents of AIDS. Most HIV-1 infected individuals worldwide are women, who acquire HIV infections during sexual contact. Blocking HIV mucosal transmission and local spread in the female lower genital tract is important in preventing infection and ultimately eliminating the pandemic. Microbicides work by destroying the microbes or preventing them from establishing an infection. Thus, a number of different types of microbicides are under investigation, however, the lack of their solubility and bioavailability, and toxicity has been major hurdles. Herein, we report the development of multifunctional chitosan-lipid nanocomplexes that can effectively deliver plasmids encoding siRNA(s) as microbicides without adverse effects and provide significant protection against HIV in both in vitro and in vivo models. Chitosan or chitosan-lipid (chlipid) was complexed with a cocktail of plasmids encoding HIV-1-specific siRNAs (psiRNAs) and evaluated for their efficacy in HEK-293 cells, PBMCs derived from nonhuman primates, 3-dimensional human vaginal ectocervical tissue (3D-VEC) model and also in non-human primate model. Moreover, prophylactic administration of the chlipid to deliver a psiRNA cocktail intravaginally with a cream formulation in a non-human primate model showed substantial reduction of SHIV (simian/human immunodeficiency virus SF162) viral titers. Taken together, these studies demonstrate the potential of chlipid-siRNA nanocomplexes as a potential genetic microbicide against HIV infections. PMID:26407080

  10. Cardiac cavernous hemangioma and multiple pulmonary cavernous hemangiomas.

    PubMed

    Yang, Lili; Dai, Jun; Xiao, Ying; Cheng, Henghui; Ruan, Qiurong

    2014-02-01

    We describe for the first time a rare coexistence of a cardiac cavernous hemangioma with multiple pulmonary cavernous hemangiomas. Computed tomography revealed bilateral pulmonary nodules, left pleural effusion, and pericardial effusion. Positron emission tomography showed a pericardial neoplasm. Pathologically, multiple large dilated vascular spaces, lined by a single layer of endothelial cells and filled with blood, were revealed in both the cardiac tumor and the pulmonary nodules. Immunohistochemical examination of the lining cells showed positivity for CD31, FLI1, FVIII, and CD34. Taken together, these findings led to the diagnosis of cardiac cavernous hemangioma and multiple pulmonary cavernous hemangiomas.

  11. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  12. Pseudolocal tomography

    DOEpatents

    Katsevich, Alexander J.; Ramm, Alexander G.

    1996-01-01

    Local tomographic data is used to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. The relative attenuation data is input to a pseudo-local tomography function, where the difference between the internal density and the pseudo-local tomography function is computed across the discontinuity. The pseudo-local tomography function outputs the location of the discontinuity and the difference in density between the first density and the second density.

  13. Seismic Tomography.

    ERIC Educational Resources Information Center

    Anderson, Don L.; Dziewonski, Adam M.

    1984-01-01

    Describes how seismic tomography is used to analyze the waves produced by earthquakes. The information obtained from the procedure can then be used to map the earth's mantle in three dimensions. The resulting maps are then studied to determine such information as the convective flow that propels the crustal plates. (JN)

  14. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  15. Experimental adaptive process tomography

    NASA Astrophysics Data System (ADS)

    Pogorelov, I. A.; Struchalin, G. I.; Straupe, S. S.; Radchenko, I. V.; Kravtsov, K. S.; Kulik, S. P.

    2017-01-01

    Adaptive measurements were recently shown to significantly improve the performance of quantum state tomography. Utilizing information about the system for the online choice of optimal measurements allows one to reach the ultimate bounds of precision for state reconstruction. In this article we generalize an adaptive Bayesian approach to the case of process tomography and experimentally show its superiority in the task of learning unknown quantum operations. Our experiments with photonic polarization qubits cover all types of single-qubit channels. We also discuss instrumental errors and the criteria for evaluation of the ultimate achievable precision in an experiment. It turns out that adaptive tomography provides a lower noise floor in the presence of strong technical noise.

  16. Noise reduction in muon tomography for detecting high density objects

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  17. Inferring Positions of Tumor and Nodes in Stage III Lung Cancer From Multiple Anatomical Surrogates Using Four-Dimensional Computed Tomography

    SciTech Connect

    Malinowski, Kathleen T.; Pantarotto, Jason R.; Senan, Suresh

    2010-08-01

    Purpose: To investigate the feasibility of modeling Stage III lung cancer tumor and node positions from anatomical surrogates. Methods and Materials: To localize their centroids, the primary tumor and lymph nodes from 16 Stage III lung cancer patients were contoured in 10 equal-phase planning four-dimensional (4D) computed tomography (CT) image sets. The centroids of anatomical respiratory surrogates (carina, xyphoid, nipples, mid-sternum) in each image set were also localized. The correlations between target and surrogate positions were determined, and ordinary least-squares (OLS) and partial least-squares (PLS) regression models based on a subset of respiratory phases (three to eight randomly selected) were created to predict the target positions in the remaining images. The three-phase image sets that provided the best predictive information were used to create models based on either the carina alone or all surrogates. Results: The surrogate most correlated with target motion varied widely. Depending on the number of phases used to build the models, mean OLS and PLS errors were 1.0 to 1.4 mm and 0.8 to 1.0 mm, respectively. Models trained on the 0%, 40%, and 80% respiration phases had mean ({+-} standard deviation) PLS errors of 0.8 {+-} 0.5 mm and 1.1 {+-} 1.1 mm for models based on all surrogates and carina alone, respectively. For target coordinates with motion >5 mm, the mean three-phase PLS error based on all surrogates was 1.1 mm. Conclusions: Our results establish the feasibility of inferring primary tumor and nodal motion from anatomical surrogates in 4D CT scans of Stage III lung cancer. Using inferential modeling to decrease the processing time of 4D CT scans may facilitate incorporation of patient-specific treatment margins.

  18. Assessment of Interfraction Patient Setup for Head-and-Neck Cancer Intensity Modulated Radiation Therapy Using Multiple Computed Tomography-Based Image Guidance

    SciTech Connect

    Qi, X. Sharon; Hu, Angie Y.; Lee, Steve P.; Lee, Percy; DeMarco, John; Li, X. Allen; Steinberg, Michael L.; Kupelian, Patrick; Low, Daniel

    2013-07-01

    Purpose: Various image guidance systems are commonly used in conjunction with intensity modulated radiation therapy (IMRT) in head-and-neck cancer irradiation. The purpose of this study was to assess interfraction patient setup variations for 3 computed tomography (CT)-based on-board image guided radiation therapy (IGRT) modalities. Methods and Materials: A total of 3302 CT scans for 117 patients, including 53 patients receiving megavoltage cone-beam CT (MVCBCT), 29 receiving kilovoltage cone-beam CT (KVCBCT), and 35 receiving megavoltage fan-beam CT (MVFBCT), were retrospectively analyzed. The daily variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. The clinical target volume-to-planned target volume (CTV-to-PTV) margins were calculated using 2.5Σ + 0.7 σ, where Σ and σ were systematic and random positioning errors, respectively. Various patient characteristics for the MVCBCT group, including weight, weight loss, tumor location, and initial body mass index, were analyzed to determine their possible correlation with daily patient setup. Results: The average interfraction displacements (± standard deviation) in the ML, CC, and AP directions were 0.5 ± 1.5, −0.3 ± 2.0, and 0.3 ± 1.7 mm (KVCBCT); 0.2 ± 1.9, −0.2 ± 2.4, and 0.0 ± 1.7 mm (MVFBCT); and 0.0 ± 1.8, 0.5 ± 1.7, and 0.8 ± 3.0 mm (MVCBCT). The day-to-day random errors for KVCBCT, MVFBCT, and MVCBCT were 1.4-1.6, 1.7, and 2.0-2.1 mm. The interobserver variations were 0.8, 1.1, and 0.7 mm (MVCBCT); 0.5, 0.4, and 0.8 mm (MVFBCT); and 0.5, 0.4, and 0.6 mm (KVCBCT) in the ML, CC, and AP directions, respectively. The maximal calculated uniform CTV-to-PTV margins were 5.6, 6.9, and 8.9 mm for KVCBCT, MVFBCT, and MVCBCT, respectively. For the evaluated patient characteristics, the calculated margins for different patient parameters appeared to differ; analysis of variance (ANOVA) and/or t test analysis found no statistically significant setup

  19. Quantum tomography of an electron.

    PubMed

    Jullien, T; Roulleau, P; Roche, B; Cavanna, A; Jin, Y; Glattli, D C

    2014-10-30

    The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may

  20. Potassium Chloride Infusion as the Cause of Altered Bio Distribution of 18F-Fluorodeoxyglucose on Whole-Body Positron Emission Tomography-Computed Tomography Scan

    PubMed Central

    Mahajan, Shimpi Madhuri; Natasha, Singh; Sudeshna, Maitra; Pereira, Melvika

    2017-01-01

    18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography is a standard diagnostic imaging tool in many types of cancer. Its physiological in vivo distribution includes the brain, liver, heart, kidneys, and urinary tract at 1 h after tracer injection. Skeletal muscle is known to show variable amounts of 18F-FDG uptake because it has a relatively high-glucose metabolism. We report a case of a 20-year-old patient with gross 18F-FDG uptake involving multiple muscle groups and its likely correlation to potassium chloride infusion before 18F-FDG injection. PMID:28217028

  1. Quantum gate-set tomography

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    2014-03-01

    Quantum information technology is built on (1) physical qubits and (2) precise, accurate quantum logic gates that transform their states. Developing quantum logic gates requires good characterization - both in the development phase, where we need to identify a device's flaws so as to fix them, and in the production phase, where we need to make sure that the device works within specs and predict residual error rates and types. This task falls to quantum state and process tomography. But until recently, protocols for tomography relied on a pre-existing and perfectly calibrated reference frame comprising the measurements (and, for process tomography, input states) used to characterize the device. In practice, these measurements are neither independent nor perfectly known - they are usually implemented via exactly the same gates that we are trying to characterize! In the past year, several partial solutions to this self-consistency problem have been proposed. I will present a framework (gate set tomography, or GST) that addresses and resolves this problem, by self-consistently characterizing an entire set of quantum logic gates on a black-box quantum device. In particular, it contains an explicit closed-form protocol for linear-inversion gate set tomography (LGST), which is immune to both calibration error and technical pathologies like local maxima of the likelihood (which plagued earlier methods). GST also demonstrates significant (multiple orders of magnitude) improvements in efficiency over standard tomography by using data derived from long sequences of gates (much like randomized benchmarking). GST has now been applied to qubit devices in multiple technologies. I will present and discuss results of GST experiments in technologies including a single trapped-ion qubit and a silicon quantum dot qubit. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  2. Comparative Diagnostic Accuracy of Ganglion Cell-Inner Plexiform and Retinal Nerve Fiber Layer Thickness Measures by Cirrus and Spectralis Optical Coherence Tomography in Relapsing-Remitting Multiple Sclerosis

    PubMed Central

    González-López, Julio J.; Rebolleda, Gema; Leal, Marina; Oblanca, Noelia; Muñoz-Negrete, Francisco J.; Costa-Frossard, Lucienne; Álvarez-Cermeño, José C.

    2014-01-01

    Objective. To estimate sensitivity and specificity of several optical coherence tomography (OCT) measurements for detecting retinal thickness changes in patients with relapsing-remitting multiple sclerosis (RRMS), such as macular ganglion cell-inner plexiform layer (GCIPL) thickness measured with Cirrus (OCT) and peripapillary retinal nerve fiber layer (pRNFL) thickness measured with Cirrus and Spectralis OCT. Methods. Seventy patients (140 eyes) with RRMS and seventy matched healthy subjects underwent pRNFL and GCIPL thickness analysis using Cirrus OCT and pRNFL using Spectralis OCT. A prospective, cross-sectional evaluation of sensitivities and specificities was performed using latent class analysis due to the absence of a gold standard. Results. GCIPL measures had higher sensitivity and specificity than temporal pRNFL measures obtained with both OCT devices. Average GCIPL thickness was significantly more sensitive than temporal pRNFL by Cirrus (96.34% versus 58.41%) and minimum GCIPL thickness was significantly more sensitive than temporal pRNFL by Spectralis (96.41% versus 69.69%). Generalised estimating equation analysis revealed that age (P = 0.030), optic neuritis antecedent (P = 0.001), and disease duration (P = 0.002) were significantly associated with abnormal results in average GCIPL thickness. Conclusion. Average and minimum GCIPL measurements had significantly better sensitivity to detect retinal thickness changes in RRMS than temporal pRNFL thickness measured by Cirrus and Spectralis OCT, respectively. PMID:25313352

  3. Smart optical coherence tomography for ultra-deep imaging through highly scattering media.

    PubMed

    Badon, Amaury; Li, Dayan; Lerosey, Geoffroy; Boccara, A Claude; Fink, Mathias; Aubry, Alexandre

    2016-11-01

    Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging.

  4. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    SciTech Connect

    Kosztyla, Robert; Chan, Elisa K.; Hsu, Fred; Wilson, Don; Ma, Roy; Cheung, Arthur; Zhang, Susan; Moiseenko, Vitali; Benard, Francois; Nichol, Alan

    2013-12-01

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified by the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm

  5. Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    Photoacoustic tomography (PAT) refers to imaging that is based on the photoacoustic effect. Although the photoacoustic effect as a physical phenomenon was first reported on by Alexander Graham Bell in 1880 [1], PAT as an imaging technology was developed only after the advent of ultrasonic transducers, computers, and lasers [2-31]. A review on biomedical photoacoustics is available [32]. The motivation for PAT is to combine optical-absorption contrast with ultrasonic spatial resolution for deep imaging in the optical quasi-diffusive or diffusive regime. In PAT, the tissue is irradiated by usually a short-pulsed laser beam to achieve a thermal and acoustic impulse response (Fig. 19.1). Locally absorbed light is converted into heat, which is further converted to a pressure rise via thermo-elastic expansion. The initial pressure rise - determined by the local optical absorption coefficient (μ â ), fluence (ψ) and other thermal and mechanical properties - propagates as an ultrasonic wave, which is referred to as a photoacoustic wave.

  6. Internal tide oceanic tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2016-09-01

    A concept of internal tide oceanic tomography (ITOT) is proposed to monitor ocean warming on a global scale. ITOT is similar to acoustic tomography, but that work waves are internal tides. ITOT detects ocean temperature changes by precisely measuring travel time changes of long-range propagating internal tides. The underlying principle is that upper ocean warming strengthens ocean stratification and thus increases the propagation speed of internal tides. This concept is inspired by recent advances in observing internal tides by satellite altimetry. In particular, a plane wave fit method can separately resolve multiple internal tidal waves and thus accurately determines the phase of each wave. Two examples are presented to demonstrate the feasibility and usefulness of ITOT. In the eastern tropical Pacific, the yearly time series of travel time changes of the M2 internal tide is closely correlated with the El Niño-Southern Oscillation index. In the North Atlantic, significant interannual variations and bidecadal trends are observed and consistent with the changes in ocean heat content measured by Argo floats. ITOT offers a long-term, cost-effective, environmentally friendly technique for monitoring global ocean warming. Future work is needed to quantify the accuracy of this technique.

  7. A multi-phase level set framework for source reconstruction in bioluminescence tomography

    SciTech Connect

    Huang Heyu; Qu Xiaochao; Liang Jimin; He Xiaowei; Chen Xueli; Yang Da'an; Tian Jie

    2010-07-01

    We propose a novel multi-phase level set algorithm for solving the inverse problem of bioluminescence tomography. The distribution of unknown interior source is considered as piecewise constant and represented by using multiple level set functions. The localization of interior bioluminescence source is implemented by tracing the evolution of level set function. An alternate search scheme is incorporated to ensure the global optimal of reconstruction. Both numerical and physical experiments are performed to evaluate the developed level set reconstruction method. Reconstruction results show that the proposed method can stably resolve the interior source of bioluminescence tomography.

  8. Time-resolved diffuse optical tomography for non-invasive flap viability assessment: pre-clinical tests on rats

    NASA Astrophysics Data System (ADS)

    Di Sieno, L.; Bettega, G.; Berger, M.; Hamou, C.; Aribert, M.; Dalla Mora, A.; Puszka, A.; Grateau, H.; Contini, D.; Hervé, L.; Coll, J.-L.; Dinten, J.-M.; Pifferi, A.; Planat-Chrétien, A.

    2015-07-01

    We present a new setup for time-resolved diffuse optical tomography based on multiple source-detector acquisitions analysed by means of the Mellin-Laplace transform. The proposed setup has been used to perform pre-clinical measurements on rats in order to show its suitability for non-invasive assessment of flap viability.

  9. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  10. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  11. RF tomography of metallic objects in free space: preliminary results

    NASA Astrophysics Data System (ADS)

    Li, Jia; Ewing, Robert L.; Berdanier, Charles; Baker, Christopher

    2015-05-01

    RF tomography has great potential in defense and homeland security applications. A distributed sensing research facility is under development at Air Force Research Lab. To develop a RF tomographic imaging system for the facility, preliminary experiments have been performed in an indoor range with 12 radar sensors distributed on a circle of 3m radius. Ultra-wideband pulses are used to illuminate single and multiple metallic targets. The echoes received by distributed sensors were processed and combined for tomography reconstruction. Traditional matched filter algorithm and truncated singular value decomposition (SVD) algorithm are compared in terms of their complexity, accuracy, and suitability for distributed processing. A new algorithm is proposed for shape reconstruction, which jointly estimates the object boundary and scatter points on the waveform's propagation path. The results show that the new algorithm allows accurate reconstruction of object shape, which is not available through the matched filter and truncated SVD algorithms.

  12. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  13. Multi-wavelength fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Lo, Pei-An; Cho, Jaedu; Nouizi, Farouk; Chiang, Huihua K.; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.

  14. Array tomography: semiautomated image alignment.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. Successful array tomography requires that the captured images be properly stacked and aligned, and the software to achieve these ends is freely available. This protocol describes the construction of volumetric image stacks from images of fluorescently labeled arrays for three-dimensional image visualization, analysis, and archiving.

  15. Utility of (18)F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma.

    PubMed

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of (18)F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that (18)F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels.

  16. Utility of 18F-choline photon emission tomography/computed tomography in the diagnosis of parathyroid adenoma

    PubMed Central

    Damle, Nishikant Avinash; Tripathi, Madhavi; Behera, Abhishek; Aggarwal, Sameer; Bal, Chandrasekhar; Aggarwal, Shipra; Aggarwal, Vivek; Kandasamy, Devasenathipathi; Taywade, Sameer

    2016-01-01

    Recently, the role of 18F-choline in the detection of parathyroid adenomas has been reported. At our institution, we are currently studying the role of this tracer in comparison to the standard methoxy-isobutyl-isonitrile.(MIBI) scan with single photon emission tomography/computed tomography. Our initial results show that 18F-choline is at least as good as 99mTc-MIBI scan. We present here a representative case of a 45-year-old woman with multiple skeletal lytic lesions and a high parathyroid hormone.(PTH) who underwent both these imaging techniques with concordant results, further confirmed by histopathology and postoperative fall in serum PTH levels. PMID:27385893

  17. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in a Patient with HIV (-) Kaposi Sarcoma

    PubMed Central

    Cengiz, Arzu; Şavk, Ekin; Tataroğlu, Canten; Yürekli, Yakup

    2016-01-01

    Kaposi sarcoma (KS) is a vascular neoplasm that often manifests with multiple vascular nodules on the skin and other organs. Various imaging modalities can be used to display disease extent. Herein we present a 65-year-old female patient with human immunodeficiency virus negative KS along with her whole-body positron emission tomography/computed tomography imaging findings. PMID:27751977

  18. Turbocharging Quantum Tomography

    SciTech Connect

    Blume-Kohout, Robin J.; Gamble, John King; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  19. Computed tomography findings of paracoccidiodomycosis in musculoskeletal system

    PubMed Central

    Lima Júnior, Francisco Valtenor Araújo; Savarese, Leonor Garbin; Monsignore, Lucas Moretti; Martinez, Roberto; Nogueira-Barbosa, Marcello Henrique

    2015-01-01

    Objective To evaluate musculoskeletal involvement in paracoccidioidomycosis at computed tomography. Materials and Methods Development of a retrospective study based on a review of radiologic and pathologic reports in the institution database. Patients with histopathologically confirmed musculoskeletal paracoccidioidomycosis and submitted to computed tomography were included in the present study. The imaging findings were consensually described by two radiologists. In order to avoid bias in the analysis, one patient with uncountable bone lesions was excluded from the study. Results A total of seven patients were included in the present study. A total of 18 bone lesions were counted. The study group consisted of 7 patients. A total number of 18 bone lesions were counted. Osteoarticular lesions were the first manifestation of the disease in four patients (57.14%). Bone lesions were multiple in 42.85% of patients. Appendicular and axial skeleton were affected in 85.71% and 42.85% of cases, respectively. Bone involvement was characterized by well-demarcated osteolytic lesions. Marginal osteosclerosis was identified in 72.22% of the lesions, while lamellar periosteal reaction and soft tissue component were present in 5.55% of them. One patient showed multiple small lesions with bone sequestra. Conclusion Paracoccidioidomycosis can be included in the differential diagnosis of either single or multiple osteolytic lesions in young patients even in the absence of a previous diagnosis of pulmonary or visceral paracoccidioidomycosis PMID:25798000

  20. Array tomography: imaging stained arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated.

  1. Array tomography: production of arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy.

  2. Two Cases of Legionella pneumophila Pneumonia with Prolonged Neurologic Symptoms and Brain Hypoperfusion on Single-Photon Emission Computed Tomography

    PubMed Central

    Miura, You; Seto, Akira; Kanazawa, Minoru; Nagata, Makoto

    2016-01-01

    Cerebral and cerebellar symptoms are frequently associated with Legionnaires' disease. However, corresponding brain lesions are difficult to demonstrate using either computed tomography (CT) or magnetic resonance imaging (MRI). We report here two patients with Legionella pneumophila pneumonia accompanied by prolonged neurologic symptoms. In contrast to brain CT and MRI, which failed to detect any abnormalities, single-photon emission computed tomography (SPECT) showed multiple sites of hypoperfusion within the brains of both patients. These cases suggest that vasculopathy, which is detectable by SPECT, might be one of the causes of neurologic symptoms in patients with Legionnaires' disease. PMID:27478660

  3. Controlled Cardiac Computed Tomography

    PubMed Central

    Wang, Chenglin; Liu, Ying; Wang, Ge

    2006-01-01

    Cardiac computed tomography (CT) has been a hot topic for years because of the clinical importance of cardiac diseases and the rapid evolution of CT systems. In this paper, we propose a novel strategy for controlled cardiac CT that may effectively reduce image artifacts due to cardiac and respiratory motions. Our approach is radically different from existing ones and is based on controlling the X-ray source rotation velocity and powering status in reference to the cardiac motion. We theoretically show that by such a control-based intervention the data acquisition process can be optimized for cardiac CT in the cases of periodic and quasiperiodic cardiac motions. Specifically, we formulate the corresponding coordination/control schemes for either exact or approximate matches between the ideal and actual source positions, and report representative simulation results that support our analytic findings. PMID:23165017

  4. THE SLOAN DIGITAL SKY SURVEY CO-ADD: CROSS-CORRELATION WEAK LENSING AND TOMOGRAPHY OF GALAXY CLUSTERS

    SciTech Connect

    Simet, Melanie; Dodelson, Scott; Kubo, Jeffrey M.; Annis, James T.; Hao Jiangang; Johnston, David; Lin, Huan; Soares-Santos, Marcelle; Reis, Ribamar R. R.; Seo, Hee-Jong

    2012-04-01

    The shapes of distant galaxies are sheared by intervening galaxy clusters. We examine this effect in Stripe 82, a 275 deg{sup 2} region observed multiple times in the Sloan Digital Sky Survey (SDSS) and co-added to achieve greater depth. We obtain a mass-richness calibration that is similar to other SDSS analyses, demonstrating that the co-addition process did not adversely affect the lensing signal. We also propose a new parameterization of the effect of tomography on the cluster lensing signal which does not require binning in redshift, and we show that using this parameterization we can detect tomography for stacked clusters at varying redshifts. Finally, due to the sensitivity of the tomographic detection to accurately marginalize over the effect of the cluster mass, we show that tomography at low redshift (where dependence on exact cosmological models is weak) can be used to constrain mass profiles in clusters.

  5. TOPICAL REVIEW: Pulsed terahertz tomography

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, X.-C.

    2004-02-01

    Terahertz time-domain spectroscopy (THz-TDS) is a coherent measurement technology. Using THz-TDS, the phase and amplitude of the THz pulse at each frequency can be determined. Like radar, THz-TDS also provides time information that allows us to develop various three-dimensional THz tomographic imaging modalities. The three-dimensional THz tomographic imagings we investigated are: terahertz diffraction tomography (THz DT), terahertz computed tomography (THz CT), THz binary lens tomography and THz digital holography. THz DT uses the THz wave as a probe beam to interact with a target, and then reconstructs the three-dimensional image of the target using the THz waves scattered by the target. THz CT is based on geometrical optics and inspired by x-ray CT. THz binary lens tomography uses the frequency dependent focal length property of binary lenses to obtain tomographic images of an object. THz three-dimensional holography combines radar and conventional holography technology. By separating the multiple scattered THz waves of different scattering orders, we used a digital holography method to reconstruct the sparsely distributed scattering centres. Three-dimensional THz imaging has potential in such applications as non-destructive inspection. The interaction between a coherent THz pulse and an object provides rich information about the object under study; therefore, three-dimensional THz imaging is a very useful tool to inspect or characterize dielectric and semiconductor objects. For example, three-dimensional THz imaging can be used to detect and identify the defects inside a space shuttle insulation tile.

  6. Ultra-wideband noise radar imaging of cylindrical PEC objects using diffraction tomography

    NASA Astrophysics Data System (ADS)

    Shin, Hee Jung; Narayanan, Ram M.; Rangaswamy, Muralidhar

    2014-05-01

    In this paper, we show that a single transmission of a random noise waveform may not sufficient to obtain a successful tomographic image of an object. In order to overcome this shortcoming, multiple independent and identically distributed (iid) random noise waveforms over a frequency range from 8 to 10 GHz are transmitted to reconstruct the final image of various objects. Diffraction tomography theorem is applied for each noise waveform transmission so that the image of the multiple objects is reconstructed based on the backward scattered field at the end of each noise waveform transmission realization. After all iid noise waveforms are transmitted, the final tomographic image of the target is reconstructed by averaging all obtained images from multiple transmissions. Several numerical simulations in the spatial frequency domain are performed, and the successful tomographic image of the multiple cylindrical PEC objects is achieved after transmission of multiple iid ultra-wideband (UWB) random noise waveforms.

  7. Computed Tomography: Image and Dose Assessment

    SciTech Connect

    Valencia-Ortega, F.; Ruiz-Trejo, C.; Rodriguez-Villafuerte, M.; Buenfil, A. E.; Mora-Hernandez, L. A.

    2006-09-08

    In this work an experimental evaluation of image quality and dose imparted during a computed tomography study in a Public Hospital in Mexico City is presented; The measurements required the design and construction of two phantoms at the Institute of Physics, UNAM, according to the recommendations of American Association of Physicists in Medicine (AAPM). Image assessment was performed in terms the spatial resolution and image contrast. Dose measurements were carried out using LiF: Mg,Ti (TLD-100) dosemeters and pencil-shaped ionisation chamber; The results for a computed tomography head study in single and multiple detector modes are presented.

  8. Computed Tomography (CT) -- Sinuses

    MedlinePlus

    ... More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, air-filled spaces within the bones of the face surrounding the ...

  9. Nasal computed tomography.

    PubMed

    Kuehn, Ned F

    2006-05-01

    Chronic nasal disease is often a challenge to diagnose. Computed tomography greatly enhances the ability to diagnose chronic nasal disease in dogs and cats. Nasal computed tomography provides detailed information regarding the extent of disease, accurate discrimination of neoplastic versus nonneoplastic diseases, and identification of areas of the nose to examine rhinoscopically and suspicious regions to target for biopsy.

  10. Ocean acoustic tomography

    NASA Astrophysics Data System (ADS)

    Cornuelle, Bruce D.; Worcester, Peter F.; Dzieciuch, Matthew A.

    2008-10-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  11. Image reconstruction in optical tomography.

    PubMed Central

    Arridge, S R; Schweiger, M

    1997-01-01

    Optical tomography is a new medical imaging modality that is at the threshold of realization. A large amount of clinical work has shown the very real benefits that such a method could provide. At the same time a considerable effort has been put into theoretical studies of its probable success. At present there exist gaps between these two realms. In this paper we review some general approaches to inverse problems to set the context for optical tomography, defining both the terms forward problem and inverse problem. An essential requirement is to treat the problem in a nonlinear fashion, by using an iterative method. This in turn requires a convenient method of evaluating the forward problem, and its derivatives and variance. Photon transport models are described for obtaining analytical and numerical solutions for the most commonly used ones are reviewed. The inverse problem is approached by classical gradient-based solution methods. In order to develop practical implementations of these methods, we discuss the important topic of photon measurement density functions, which represent the derivative of the forward problem. We show some results that represent the most complex and realistic simulations of optical tomography yet developed. We suggest, in particular, that both time-resolved, and intensity-modulated systems can reconstruct variations in both optical absorption and scattering, but that unmodulated, non-time-resolved systems are prone to severe artefact. We believe that optical tomography reconstruction methods can now be reliably applied to a wide variety of real clinical data. The expected resolution of the method is poor, meaning that it is unlikely that the type of high-resolution images seen in computed tomography or medical resonance imaging can ever be obtained. Nevertheless we strongly expect the functional nature of these images to have a high degree of clinical significance. PMID:9232860

  12. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  13. Numerical study of grating-assisted optical diffraction tomography

    SciTech Connect

    Chaumet, Patrick C.; Belkebir, Kamal; Sentenac, Anne

    2007-07-15

    We study the resolution of an optical diffraction tomography system in which the objects are either in an homogeneous background or deposited onto a glass prism, a prism surmounted by a thin metallic film or a prism surmounted by a metallic film covered by a periodically nanostructured dielectric layer. For all these configurations, we present an inversion procedure that yields the map of the relative permittivity of the objects from their diffracted far field. When multiple scattering can be neglected, we show that the homogeneous, prism, and metallic film configurations yield a resolution about {lambda}/4 while the grating substrate yields a resolution better than {lambda}/10. When Born approximation fails, we point out that it is possible to neglect the coupling between the object and the substrate and account solely for the multiple scattering within the objects to obtain a satisfactory reconstruction. Last, we present the robustness of our inversion procedure to noise.

  14. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata

    PubMed Central

    Diniz, Daniel G.; Silva, Geane O.; Naves, Thaís B.; Fernandes, Taiany N.; Araújo, Sanderson C.; Diniz, José A. P.; de Farias, Luis H. S.; Sosthenes, Marcia C. K.; Diniz, Cristovam G.; Anthony, Daniel C.; da Costa Vasconcelos, Pedro F.; Picanço Diniz, Cristovam W.

    2016-01-01

    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous. PMID:27047345

  15. Computed tomography in supratentorial hemangioblastoma.

    PubMed

    Romero, F J; Rovira, M; Ortega, A; Ibarra, B

    1984-01-01

    Supratentorial hemangioblastomas are rare. A 28-yr-old man with a solid tumor in the left temporal region is described. There was neither meningeal connection nor associated polycythemia or Von Hippel-Lindau disease. Contrast enhanced computerized tomography showed a hyperdense, homogeneous lesion and cerebral angiography demonstrated a nodular tumor blush. The microscopic appearance of the lesion is described with a review of previously reported cases.

  16. Giant primary angiosarcoma of the small intestine showing severe sepsis.

    PubMed

    Takahashi, Mizuna; Ohara, Masanori; Kimura, Noriko; Domen, Hiromitsu; Yamabuki, Takumi; Komuro, Kazuteru; Tsuchikawa, Takahiro; Hirano, Satoshi; Iwashiro, Nozomu

    2014-11-21

    Primary malignant tumors of the small intestine are rare, comprising less than 2% of all gastrointestinal tumors. An 85-year-old woman was admitted with fever of 40 °C and marked abdominal distension. Her medical history was unremarkable, but blood examination showed elevated inflammatory markers. Abdominal computed tomography showed a giant tumor with central necrosis, extending from the epigastrium to the pelvic cavity. Giant gastrointestinal stromal tumor of the small intestine communicating with the gastrointestinal tract or with superimposed infection was suspected. Because no improvement occurred in response to antibiotics, surgery was performed. Laparotomy revealed giant hemorrhagic tumor adherent to the small intestine and occupying the peritoneal cavity. The giant tumor was a solid tumor weighing 3490 g, measuring 24 cm × 17.5 cm × 18 cm and showing marked necrosis. Histologically, the tumor comprised spindle-shaped cells with anaplastic large nuclei. Immunohistochemical studies showed tumor cells positive for vimentin, CD31, and factor VIII-related antigen, but negative for c-kit and CD34. Angiosarcoma was diagnosed. Although no postoperative complications occurred, the patient experienced enlargement of multiple metastatic tumors in the abdominal cavity and died 42 d postoperatively. The prognosis of small intestinal angiosarcoma is very poor, even after volume-reducing palliative surgery.

  17. Improved precision-guaranteed quantum tomography

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takanori

    Quantum tomography is one of the standard tool in current quantum information experiments for verifying that a state/process/measurement prepared in the lab is close to an ideal target. Precision-guaranteed quantum tomography (Sugiyama, Turner, Murao, PRL 111, 160406 2013) gives rigorous error bars on a result estimated from arbitrary finite data sets from any given informationally complete tomography experiments. The rigorous error bars were derived with a real-valued concentration inequality called Hoeffding's inequality. In this talk, with a vector-valued concentration inequality, we provide an improved version of the error bars of precision-guaranteed quantum tomography. We examine the new error bars for specific cases of multi-qubit systems and numerically show that the degree of improvement becomes large as the dimension of the system increases. Supported by JSPS Research Fellowships for Young Scientists H27-276 and JSPS Postdoctoral Fellowships for Research Abroad H25-32.

  18. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs

    PubMed Central

    Fischer, Martin A.; Güllert, Simon; Neulinger, Sven C.; Streit, Wolfgang R.; Schmitz, Ruth A.

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  19. Showing What They Know

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Having students show their skills in three dimensions, known as performance-based assessment, dates back at least to Socrates. Individual schools such as Barrington High School--located just outside of Providence--have been requiring students to actively demonstrate their knowledge for years. The Rhode Island's high school graduating class became…

  20. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  1. What Do Maps Show?

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This curriculum packet, appropriate for grades 4-8, features a teaching poster which shows different types of maps (different views of Salt Lake City, Utah), as well as three reproducible maps and reproducible activity sheets which complement the maps. The poster provides teacher background, including step-by-step lesson plans for four geography…

  2. Show Me the Way

    ERIC Educational Resources Information Center

    Dicks, Matthew J.

    2005-01-01

    Because today's students have grown up steeped in video games and the Internet, most of them expect feedback, and usually gratification, very soon after they expend effort on a task. Teachers can get quick feedback to students by showing them videotapes of their learning performances. The author, a 3rd grade teacher describes how the seemingly…

  3. Chemistry Game Shows

    NASA Astrophysics Data System (ADS)

    Campbell, Susan; Muzyka, Jennifer

    2002-04-01

    We present a technological improvement to the use of game shows to help students review for tests. Our approach uses HTML files interpreted with a browser on a computer attached to an LCD projector. The HTML files can be easily modified for use of the game in a variety of courses.

  4. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  5. Talk Show Science.

    ERIC Educational Resources Information Center

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  6. Stage a Water Show

    ERIC Educational Resources Information Center

    Frasier, Debra

    2008-01-01

    In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…

  7. Computerised Axial Tomography (CAT)

    DTIC Science & Technology

    1990-06-01

    OF COMPUTERISED AXIAL TOMOGRAPHY Paragraph 1.1 ORIGIN, DEVELOPMENT AND MARKET OF CAT Paragraph 1.2 EQUIPMENT Chapter 2 OPERATIONAL PRINCIPLE OF A CT...DEVELOPMENT OF THE COMPUTERISED AXIAL TOMOGRAPHY 1.1 Origin, development and marketing of the CAT The origin of the CAT goes back to 1961 when...count on wide commercial possibilities, in the international market . In particular, EMI entered, very forcefully, the American market , always

  8. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in a rare case of carcinoma stomach with concomitant silicosis

    PubMed Central

    Sasikumar, Arun; Joy, Ajith; Unni, Madhavan; Madhavan, Jayaprakash

    2016-01-01

    The role of fluorine-18 fluorodeoxyglucose. (18F-FDG) positron emission tomography. (PET)/computed tomography. (CT) in the initial staging of various malignancies is now well established. However, nonspecificity of FDG occasionally results in tracer uptake in benign lung lesions. The authors describe a complicated case of carcinoma stomach with multiple nodules and a cavitary lesion in lungs where 18F-FDG PET CT done for initial staging revealed FDG avid mass in stomach, FDG avid multiple mediastinal lymph nodes and multiple intensely FDG avid bilateral lung lesions. The FDG avid lung lesions turned out to be due to silicosis as confirmed by histopathology. PMID:27833322

  9. Acoustic tomography. Laboratory technique Implementation.

    NASA Astrophysics Data System (ADS)

    Galvis, Jorge; Carvajal, Jenny

    2010-05-01

    From geomechanical tests carried out on rocks it is possible to determine its physico-mechanical properties, which relate the strain and applied stress; even so, conventional tests do not allow to identify how stress is distributed and how it has affected porous media. Today, techniques like acoustic tomography widely used in medicine, geophysics and others sciences, generates images by sections of the interior of a body. Acoustic tomography allows inferring the stress state within porous media; since wave velocities are closely related to media density, if a stress is applied to a rock, it will generate grains compaction and this will be showed by an increase of wave velocity. Implementation was conducted on rock plugs under diverse stress fields, simultaneously recording P-wave velocities (Compressional) on perpendicular planes to sample vertical axis. Transmission and reception of acoustic waves through porous media were done by piezoelectric crystals (PZT) used as sensors. A transmitting crystal excited by a voltage pulse causes a mechanical vibration, which travels across media; this is known as inverse piezoelectric effect. This vibration is recorded by a receiving crystal in which the direct piezoelectric effect appears; which dictates that if a piezoelectric is disturbed mechanically, an electrical signal between its terminals will appear. This electrical signal is used to obtain the wave velocity. Nevertheless, acoustic tomography corresponds to one of those called inverse Problems that arise when from observed data the model parameters must be obtained; in this way, tomography involves iterative reconstruction techniques (ART or SIRT) which are projections of observed data and its later inversion. Obtained results are cross-sectional images of velocity within the rock. In these images it is possible to identify where stress has a greater concentration observing the color map generated; thus, a greater velocity density area corresponding to a greater

  10. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  11. Three-dimensional multifunctional optical coherence tomography for skin imaging

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  12. Applied potential tomography. A new noninvasive technique for measuring gastric emptying.

    PubMed

    Avill, R; Mangnall, Y F; Bird, N C; Brown, B H; Barber, D C; Seagar, A D; Johnson, A G; Read, N W

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  13. Single-cell diffraction tomography with optofluidic rotation about a tilted axis

    NASA Astrophysics Data System (ADS)

    Müller, Paul; Schürmann, Mirjam; Chan, Chii J.; Guck, Jochen

    2015-08-01

    Optical diffraction tomography (ODT) is a tomographic technique that can be used to measure the three-dimensional (3D) refractive index distribution within living cells without the requirement of any marker. In principle, ODT can be regarded as a generalization of optical projection tomography which is equivalent to computerized tomography (CT). Both optical tomographic techniques require projection-phase images of cells measured at multiple angles. However, the reconstruction of the 3D refractive index distribution post-measurement differs for the two techniques. It is known that ODT yields better results than projection tomography, because it takes into account diffraction of the imaging light due to the refractive index structure of the sample. Here, we apply ODT to biological cells in a microfluidic chip which combines optical trapping and microfluidic flow to achieve an optofluidic single-cell rotation. In particular, we address the problem that arises when the trapped cell is not rotating about an axis perpendicular to the imaging plane, but is instead arbitrarily tilted. In this paper we show that the 3D reconstruction can be improved by taking into account such a tilted rotational axis in the reconstruction process.

  14. Public medical shows.

    PubMed

    Walusinski, Olivier

    2014-01-01

    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre.

  15. Wavelet-based time-dependent travel time tomography method and its application in imaging the Etna volcano in Italy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Haijiang

    2015-10-01

    It has been a challenge to image velocity changes in real time by seismic travel time tomography. If more seismic events are included in the tomographic system, the inverted velocity models do not have necessary time resolution to resolve velocity changes. But if fewer events are used for real-time tomography, the system is less stable and the inverted model may contain some artifacts, and thus, resolved velocity changes may not be real. To mitigate these issues, we propose a wavelet-based time-dependent double-difference (DD) tomography method. The new method combines the multiscale property of wavelet representation and the fast converging property of the simultaneous algebraic reconstruction technique to solve the velocity models at multiple scales for sequential time segments. We first test the new method using synthetic data constructed using real event and station distribution for Mount Etna volcano in Italy. Then we show its effectiveness to determine velocity changes for the 2001 and 2002 eruptions of Mount Etna volcano. Compared to standard DD tomography that uses seismic events from a longer time period, wavelet-based time-dependent tomography better resolves velocity changes that may be caused by fracture closure and opening as well as fluid migration before and after volcano eruptions.

  16. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome.

    PubMed

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome.

  17. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  18. Experimental compressive phase space tomography

    PubMed Central

    Tian, Lei; Lee, Justin; Oh, Se Baek; Barbastathis, George

    2012-01-01

    Phase space tomography estimates correlation functions entirely from snapshots in the evolution of the wave function along a time or space variable. In contrast, traditional interferometric methods require measurement of multiple two–point correlations. However, as in every tomographic formulation, undersampling poses a severe limitation. Here we present the first, to our knowledge, experimental demonstration of compressive reconstruction of the classical optical correlation function, i.e. the mutual intensity function. Our compressive algorithm makes explicit use of the physically justifiable assumption of a low–entropy source (or state.) Since the source was directly accessible in our classical experiment, we were able to compare the compressive estimate of the mutual intensity to an independent ground–truth estimate from the van Cittert–Zernike theorem and verify substantial quantitative improvements in the reconstruction. PMID:22513541

  19. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  20. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  1. Evaluating Polypoidal Choroidal Vasculopathy With Optical Coherence Tomography Angiography

    PubMed Central

    Wang, Min; Zhou, Yao; Gao, Simon S.; Liu, Wei; Huang, Yongheng; Huang, David; Jia, Yali

    2016-01-01

    Purpose We observed and analyzed the morphologic characteristics of polypoidal lesions and abnormal branching vascular network (BVN) in patients with polypoidal choroidal vasculopathy (PCV) by optical coherence tomography angiography (OCTA). Methods A retrospective observational case series was done of patients with PCV. All patients were scanned with a 70-kHz spectral-domain OCT system using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm to distinguish blood flow from static tissue. The OCTA images of these patients were compared to those from indocyanine green angiography (ICGA). Semiautomated segmentation was used to further analyze the polypoidal lesion and the BVN. Results We studied 13 eyes of 13 patients 51 to 69 years old. A total of 11 patients were treatment-naive. Two patients had multiple anti-VEGF injections and one underwent photodynamic therapy (PDT). Optical coherence tomography angiography was able to detect the BVN in all cases. Using cross-sectional OCTA, BVN locations were shown to be in the space between the RPE and Bruch's membrane. Using en face OCTA, the BVN vascular pattern could be shown more clearly than by ICGA. Polypoidal lesions showed high flow signals in different patterns in 12 cases in the outer retina slab. Using cross-sectional OCTA, the polyps were shown to be just below the top of the pigment epithelial detachment (PED). In one case, the polypoidal lesion was not detectable at the outer retina slab. Conclusions Optical coherence tomography angiography is a noninvasive imaging tool for detecting vascular changes in PCV. Branching vascular networks showed more clearly on OCTA than on ICGA. Polypoidal lesions had variable patterns on OCTA and were not always detected. The OCTA patterns of the polypoidal lesions and the BVN are helpful in understanding the pathology of PCV. PMID:27472276

  2. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  3. Diffuse skeletal muscles uptake of [18F] fluorodeoxyglucose on positron emission tomography in primary muscle peripheral T-cell lymphoma.

    PubMed

    Tanaka, Yuji; Hayashi, Yuichi; Kato, Jun'ichi; Yamada, Megumi; Koumura, Akihiro; Sakurai, Takeo; Kimura, Akio; Hozumi, Isao; Hatano, Yuichiro; Hirose, Yoshinobu; Takami, Tsuyoshi; Nakamura, Hiroshi; Kasahara, Senji; Tsurumi, Hisashi; Moriwaki, Hisataka; Inuzuka, Takashi

    2011-01-01

    A 40-year-old man presented with weakness of neck extensor muscles. Cervical magnetic resonance imaging showed high-intensity areas in muscles of the left lateral cervical region on T2-weighted images. Fluorodeoxyglucose-positron emission tomography scan demonstrated striking fluorodeoxyglucose uptake by multiple skeletal muscles of the neck, chest, and abdominal region. Muscle biopsy demonstrated peripheral T-cell lymphoma, unspecified. The diagnosis was primary skeletal muscle peripheral T-cell lymphoma. Primary skeletal muscle non-Hodgkin's lymphoma of T-cell immunophenotype is extremely rare and fluorodeoxyglucose-positron emission tomography demonstrated striking fluorodeoxyglucose uptake in multiple skeletal muscles and served as a quite useful modality for the diagnosis of this patient.

  4. Computed tomography and thin-section tomography in facial trauma.

    PubMed

    Kreipke, D L; Moss, J J; Franco, J M; Maves, M D; Smith, D J

    1984-05-01

    The efficacy of radiographic methods in detecting and classifying facial fractures was assessed. Thirty-one patients with maxillofacial trauma were studied with plain radiography, coronal and lateral pluridirectional tomography (PT), and axial and direct coronal computed tomography (CT). PT and CT were compared to assess how many fractures each method could demonstrate. In addition, plain films were used in combination with each special study to see how efficacious each combination was at classifying fractures into types, such as blow-out, tripod, etc. To reflect the fact that it is sometimes impossible to obtain lateral PT or direct coronal CT scans at this institution, the same analysis was done using just coronal PT and axial CT. With two projections, CT was better than PT at demonstrating fractured surfaces (168 vs. 156) and in classifying fractures in combination with plain films (48 vs. 43). However, when only one projection from each special study was used, PT surpassed CT in showing fractures (137 vs. 124) and in classifying fractures (42 vs. 40). Failures with each method occurred when the plane of section was parallel or oblique to the plane of the structure being examined, that is, axial CT failed to show the floor of the orbit well and coronal PT failed to show the anterior maxillary sinus wall well. Imaging in two planes, including the coronal plane, is desirable for greatest accuracy in fracture detection, whether by CT, PT, or both. CT is generally better for the display of soft-tissue abnormalities.

  5. Computed tomography of intrathoracic goiters

    SciTech Connect

    Bashist, B.; Ellis, K.; Gold, R.P.

    1983-03-01

    Ten patients with intrathoracic goiters were evaluated by computed tomography (CT). In comparison with chest radiographs, CT showed additional features helpful in suggesting the correct diagnosis. These observations included: (1) clear continuity with the cervical thyroid gland (8/10 cases); (2) well defined borders (9/10); (3) punctate, coarse, or ringlike calcifications (8/10); (4) nonhomogeneity (9/10) often with discrete, nonenhancing, low-density areas (6/10); (5) precontrast attenuation values at least 15 H greater than adjacent muscles (4/10) with more than 25 H after contrast enhancement (8/8); and (6) characteristic patterns of goiter extension into mediastinum.

  6. Speckle reduction in optical coherence tomography imaging by affine-motion image registration

    NASA Astrophysics Data System (ADS)

    Alonso-Caneiro, David; Read, Scott A.; Collins, Michael J.

    2011-11-01

    Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.

  7. Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures

    PubMed Central

    Foglia, Efrem Alessandro; Pistocchi, Anna; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Cotelli, Franco

    2012-01-01

    Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish. PMID:23185643

  8. Array tomography: rodent brain fixation and embedding.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. This protocol describes the fixation and processing required to prepare tissues for immunofluorescence array tomography.

  9. Gabor fusion master slave optical coherence tomography

    PubMed Central

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller; Bang, Ole; Rivet, Sylvain; Keane, Pearse A.; Heath, David-Garway; Rajendram, Ranjan; Podoleanu, Adrian

    2017-01-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright parts of A-scans for each focus position, to be placed in a final B-scan image (or in a final volume), and discarding the rest, the MS principle can be employed to advantageously deliver signal from the depths within each focus range only. The MS procedure is illustrated on creating volumes of data of constant transversal resolution from a cucumber and from an insect by repeating data acquisition for 4 different focus positions. In addition, advantage is taken from the tolerance to dispersion of the MS principle that allows automatic compensation for dispersion created by layers above the object of interest. By combining the two techniques, Gabor filtering and Master/Slave, a powerful imaging instrument is demonstrated. The master/slave technique allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two cross-sectional OCT images and a confocal like image obtained by averaging the en-face ones. We also demonstrate the superiority of MS-OCT over its FFT based counterpart when used with a Gabor filtering OCT instrument in terms of the speed of assembling the fused volume. For our case, we show that when more than 4 focus positions are required to produce the final volume, MS is faster than the conventional FFT based procedure. PMID:28270987

  10. Gabor fusion master slave optical coherence tomography.

    PubMed

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller; Bang, Ole; Rivet, Sylvain; Keane, Pearse A; Heath, David-Garway; Rajendram, Ranjan; Podoleanu, Adrian

    2017-02-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright parts of A-scans for each focus position, to be placed in a final B-scan image (or in a final volume), and discarding the rest, the MS principle can be employed to advantageously deliver signal from the depths within each focus range only. The MS procedure is illustrated on creating volumes of data of constant transversal resolution from a cucumber and from an insect by repeating data acquisition for 4 different focus positions. In addition, advantage is taken from the tolerance to dispersion of the MS principle that allows automatic compensation for dispersion created by layers above the object of interest. By combining the two techniques, Gabor filtering and Master/Slave, a powerful imaging instrument is demonstrated. The master/slave technique allows simultaneous display of three categories of images in one frame: multiple depth en-face OCT images, two cross-sectional OCT images and a confocal like image obtained by averaging the en-face ones. We also demonstrate the superiority of MS-OCT over its FFT based counterpart when used with a Gabor filtering OCT instrument in terms of the speed of assembling the fused volume. For our case, we show that when more than 4 focus positions are required to produce the final volume, MS is faster than the conventional FFT based procedure.

  11. Emission tomography of the kidney

    SciTech Connect

    Teates, C.D.; Croft, B.Y.; Brenbridge, N.A.; Bray, S.T.; Williamson, B.R.

    1983-12-01

    Single photon emission computerized tomography (SPECT) was done on two patients with suspected renal masses. Nuclear scintigraphy was equivocal on two tumors readily identified by SPECT. Single photon tomography is cost effective and increases the reliability of nuclear scintigraphy.

  12. Smart optical coherence tomography for ultra-deep imaging through highly scattering media

    PubMed Central

    Badon, Amaury; Li, Dayan; Lerosey, Geoffroy; Boccara, A. Claude; Fink, Mathias; Aubry, Alexandre

    2016-01-01

    Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging. PMID:27847864

  13. Maxillary Swelling as the First Evidence of Multiple Myeloma

    PubMed Central

    Kasamatsu, Atsushi; Kimura, Yasushi; Tsujimura, Hideki; Kanazawa, Harusachi; Koide, Nao; Miyamoto, Isao; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Multiple myeloma is a malignant neoplasm of plasma cells characterized by proliferation of a single clone of abnormal immunoglobulin-secreting plasma cells. Since the amount of hemopoietic bone marrow is decreased in the maxilla, oral manifestations of multiple myeloma are less common in the maxilla than in the mandible. We report the case of 33-year-old Japanese man who presented with a mass in the right maxillary alveolar region. Computed tomography and magnetic resonance images showed a soft tissue mass in the right maxilla eroding the anterior and lateral walls of the maxillary sinus and extending into the buccal space. The biopsy results, imaging, and laboratory investigations led to the diagnosis of multiple myeloma. This case report suggests that oral surgeons and dentists should properly address oral manifestations as first indications of multiple myeloma. PMID:26640721

  14. Seismic Window Selection and Misfit Measurements for Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Lei, W.; Bozdag, E.; Lefebvre, M.; Podhorszki, N.; Smith, J. A.; Tromp, J.

    2013-12-01

    Global Adjoint Tomography requires fast parallel processing of large datasets. After obtaing the preprocessed observed and synthetic seismograms, we use the open source software packages FLEXWIN (Maggi et al. 2007) to select time windows and MEASURE_ADJ to make measurements. These measurements define adjoint sources for data assimilation. Previous versions of these tools work on a pair of SAC files---observed and synthetic seismic data for the same component and station, and loop over all seismic records associated with one earthquake. Given the large number of stations and earthquakes, the frequent read and write operations create severe I/O bottlenecks on modern computing platforms. We present new versions of these tools utilizing a new seismic data format, namely the Adaptive Seismic Data Format(ASDF). This new format shows superior scalability for applications on high-performance computers and accommodates various types of data, including earthquake, industry and seismic interferometry datasets. ASDF also provides user-friendly APIs, which can be easily integrated into the adjoint tomography workflow and combined with other data processing tools. In addition to solving the I/O bottleneck, we are making several improvements to these tools. For example, FLEXWIN is tuned to select windows for different types of earthquakes. To capture their distinct features, we categorize earthquakes by their depths and frequency bands. Moreover, instead of only picking phases between the first P arrival and the surface-wave arrivals, our aim is to select and assimilate many other later prominent phases in adjoint tomography. For example, in the body-wave band (17 s - 60 s), we include SKS, sSKS and their multiple, while in the surface-wave band (60 s - 120 s) we incorporate major-arc surface waves.

  15. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    SciTech Connect

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang; Luo, Jia

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  16. Matrix-based image reconstruction methods for tomography

    SciTech Connect

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures.

  17. Measurement of Three-dimensional Density Distributions by Holographic Interferometry and Computer Tomography

    NASA Technical Reports Server (NTRS)

    Vest, C. M.

    1982-01-01

    The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.

  18. [Multiple brown tumors in a female hemodialyzed patient with severe secondary hyperparathyroidism].

    PubMed

    Peces, R; Gil, F; González, F; Ablanedo, P

    2002-01-01

    Skeletal brown tumours are relatively uncommon, and brown tumours that involve multiple bones are considered very rare. We describe a 29-year-old woman with chronic renal failure (CRF) who had undergone hemodialysis for 21 years and developed multiple brown tumours associated with severe secondary hyperparathyroidism. Computed tomography (CT) revealed multiple brown tumours involving scapula, ribs, spine and sacroiliac bone. Microscopic analysis of the brown tumour showed dense infiltration of the marrow space by reactive fibroblastic tissue with irregularly distributed multinucleated osteoclastic giants cells and marked increase in hematopoietic elements.

  19. Holography and tomography

    SciTech Connect

    Howells, M.

    1997-02-01

    This session includes a collection of outlines of pertinent information, diagrams, graphs, electron micrographs, and color photographs pertaining to historical aspects and recent advances in the development of X-ray Gabor Holography. Many of the photographs feature or pertain to instrumentation used in holography, tomography, and cryo-holography.

  20. Waste inspection tomography (WIT)

    SciTech Connect

    Bernardi, R.T.; Han, K.S.

    1994-12-31

    The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

  1. Dental Optical Coherence Tomography

    PubMed Central

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Tsai, Jui-che; Lin, Kun-Feng; Sun, Chia-Wei

    2013-01-01

    This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed. PMID:23857261

  2. Double-difference adjoint seismic tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Yanhua O.; Simons, Frederik J.; Tromp, Jeroen

    2016-09-01

    We introduce a `double-difference' method for the inversion for seismic wave speed structure based on adjoint tomography. Differences between seismic observations and model predictions at individual stations may arise from factors other than structural heterogeneity, such as errors in the assumed source-time function, inaccurate timings and systematic uncertainties. To alleviate the corresponding non-uniqueness in the inverse problem, we construct differential measurements between stations, thereby reducing the influence of the source signature and systematic errors. We minimize the discrepancy between observations and simulations in terms of the differential measurements made on station pairs. We show how to implement the double-difference concept in adjoint tomography, both theoretically and practically. We compare the sensitivities of absolute and differential measurements. The former provide absolute information on structure along the ray paths between stations and sources, whereas the latter explain relative (and thus higher resolution) structural variations in areas close to the stations. Whereas in conventional tomography a measurement made on a single earthquake-station pair provides very limited structural information, in double-difference tomography one earthquake can actually resolve significant details of the structure. The double-difference methodology can be incorporated into the usual adjoint tomography workflow by simply pairing up all conventional measurements; the computational cost of the necessary adjoint simulations is largely unaffected. Rather than adding to the computational burden, the inversion of double-difference measurements merely modifies the construction of the adjoint sources for data assimilation.

  3. Application of electron tomography to fungal ultrastructure studies.

    PubMed

    Hohmann-Marriott, Martin F; Uchida, Maho; van de Meene, Allison M L; Garret, Matthew; Hjelm, Brooke E; Kokoori, Shylaja; Roberson, Robert W

    2006-01-01

    Access to structural information at the nanoscale enables fundamental insights into many complex biological systems. The development of the transmission electron microscope (TEM) has vastly increased our understanding of multiple biological systems. However, when attempting to visualize and understand the organizational and functional complexities that are typical of cells and tissues, the standard 2-D analyses that TEM affords often fall short. In recent years, high-resolution electron tomography methods, coupled with advances in specimen preparation and instrumentation and computational speed, have resulted in a revolution in the biological sciences. Electron tomography is analogous to medical computerized axial tomography (CAT-scan imaging) except at a far finer scale. It utilizes the TEM to assemble multiple projections of an object which are then combined for 3-D analyses. For biological specimens, tomography enables the highest 3-D resolution (5 nm spatial resolution) of internal structures in relatively thick slices of material (0.2-0.4 microm) without requiring the collection and alignment of large numbers of thin serial sections. Thus accurate and revealing 3-D reconstructions of complex cytoplasmic entities and architecture can be obtained. Electron tomography is now being applied to a variety of biological questions with great success. This review gives a brief introduction into cryopreservation and electron tomography relative to aspects of cytoplasmic organization in the hyphal tip of Aspergillus nidulans.

  4. Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman

    PubMed Central

    de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K

    2016-01-01

    We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch’s membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch’s membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption. PMID:27398405

  5. Multidetector computed tomography angiography of the abdomen.

    PubMed

    Güven, Koray; Acunaş, Bülent

    2004-10-01

    Multidetector computed tomography (MDCT) angiography has provided excellent opportunities for advancement of computed tomography (CT) technology and clinical applications. It has a wide range of applications in the abdomen including vascular pathologies either occlusive or aneurysmal; enables the radiologist to produce vascular mapping that clearly show tumor invasion of vasculature and the relationship of vessels to mass lesions. MDCTA can be used in preoperative planning for hepatic resection, preoperative evaluation and planning for liver transplantation. MDCTA can also provide extremely valuable information in the evaluation of ischemic bowel disease, active Crohn disease, the extent and location of collateral vessels in cirrhosis.

  6. Seeing the unseen--bioturbation in 4D: tracing bioirrigation in marine sediment using positron emission tomography and computed tomography.

    PubMed

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions.

  7. Seeing the Unseen—Bioturbation in 4D: Tracing Bioirrigation in Marine Sediment Using Positron Emission Tomography and Computed Tomography

    PubMed Central

    Delefosse, Matthieu; Kristensen, Erik; Crunelle, Diane; Braad, Poul Erik; Dam, Johan Hygum; Thisgaard, Helge; Thomassen, Anders; Høilund-Carlsen, Poul Flemming

    2015-01-01

    Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions. PMID:25837626

  8. Standardized medical terminology for cardiac computed tomography: a report of the Society of Cardiovascular Computed Tomography.

    PubMed

    Weigold, Wm Guy; Abbara, Suhny; Achenbach, Stephan; Arbab-Zadeh, Armin; Berman, Daniel; Carr, J Jeffrey; Cury, Ricardo C; Halliburton, Sandra S; McCollough, Cynthia H; Taylor, Allen J

    2011-01-01

    Since the emergence of cardiac computed tomography (CT) at the turn of the 21st century, there has been an exponential growth in research and clinical development of the technique, with contributions from investigators and clinicians from varied backgrounds: physics and engineering, informatics, cardiology, and radiology. However, terminology for the field is not unified. As a consequence, there are multiple abbreviations for some terms, multiple terms for some concepts, and some concepts that lack clear definitions and/or usage. In an effort to aid the work of all those who seek to contribute to the literature, clinical practice, and investigation of the field, the Society of Cardiovascular Computed Tomography sets forth a standard set of medical terms commonly used in clinical and investigative practice of cardiac CT.

  9. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  10. Quantum tomography protocols with positivity are compressed sensing protocols

    NASA Astrophysics Data System (ADS)

    Kalev, Amir; Kosut, Robert L.; Deutsch, Ivan H.

    2015-12-01

    Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well-designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal reconstruction technique known as ‘compressed sensing’ has been ported to quantum information science to overcome this challenge: accurate tomography can be achieved with substantially fewer measurement settings, thereby greatly enhancing the efficiency of quantum tomography. Here we show that compressed sensing tomography of quantum systems is essentially guaranteed by a special property of quantum mechanics itself—that the mathematical objects that describe the system in quantum mechanics are matrices with non-negative eigenvalues. This result has an impact on the way quantum tomography is understood and implemented. In particular, it implies that the information obtained about a quantum system through compressed sensing methods exhibits a new sense of ‘informational completeness.’ This has important consequences on the efficiency of the data taking for quantum tomography, and enables us to construct informationally complete measurements that are robust to noise and modelling errors. Moreover, our result shows that one can expand the numerical tool-box used in quantum tomography and employ highly efficient algorithms developed to handle large dimensional matrices on a large dimensional Hilbert space. Although we mainly present our results in the context of quantum tomography, they apply to the general case of positive semidefinite matrix recovery.

  11. Atomic-scale tomography: a 2020 vision.

    PubMed

    Kelly, Thomas F; Miller, Michael K; Rajan, Krishna; Ringer, Simon P

    2013-06-01

    Atomic-scale tomography (AST) is defined and its place in microscopy is considered. Arguments are made that AST, as defined, would be the ultimate microscopy. The available pathways for achieving AST are examined and we conclude that atom probe tomography (APT) may be a viable basis for AST on its own and that APT in conjunction with transmission electron microscopy is a likely path as well. Some possible configurations of instrumentation for achieving AST are described. The concept of metaimages is introduced where data from multiple techniques are melded to create synergies in a multidimensional data structure. When coupled with integrated computational materials engineering, structure-properties microscopy is envisioned. The implications of AST for science and technology are explored.

  12. Computed tomography and thin-section tomography in facial trauma

    SciTech Connect

    Kreipke, D.L.; Moss, J.J.; Franco, J.M.; Maves, M.D.; Smith, D.J.

    1984-05-01

    The efficacy of radiographic methods in detecting and classifying facial fractures was assessed. Thirty-one patients with maxillofacial trauma were studied with plain radiography, coronal and lateral pluridirectional tomography (PT), and axial and direct coronal computed tomography (CT). PT and CT were compared to assess how many fractures each method could demonstrate. In addition, plain films were used in combination with each special study to see how efficacious each combination was at classifying fractures into types. With two projection, CT was better than PT at demonstrating fracture surfaces (168 vs. 156) and in classifying fractures in combination with plain films (48 vs. 43). However, when only one projection from each special study was used, PT surpassed CT in showing fractures (137 vs. 124) and in classifying fractures (42 vs. 40). Failures with each method occurred when the plane of section was parallel or oblique to the plane of the structure being examined. Imaging in two planes, including the coronal plane, is desirable for greatest accuracy in fracture detection, whether by CT, PT, or both. CT is generally better for the display of soft-tissue abnormalities.

  13. In vivo deep tissue imaging using wavefront shaping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Lee, KyeoReh; Jang, Jaeduck; Lim, Jaeguyn; Jang, Wooyoung; Jeong, Yong; Park, YongKeun

    2016-10-01

    Multiple light scattering in tissue limits the penetration of optical coherence tomography (OCT) imaging. Here, we present in vivo OCT imaging of a live mouse using wavefront shaping (WS) to enhance the penetration depth. A digital micromirror device was used in a spectral-domain OCT system for complex WS of an incident beam which resulted in the optimal delivery of light energy into deep tissue. Ex vivo imaging of chicken breasts and mouse ear tissues showed enhancements in the strength of the image signals and the penetration depth, and in vivo imaging of the tail of a live mouse provided a multilayered structure inside the tissue.

  14. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun

    2016-12-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  15. Spectral partitioning in diffraction tomography

    SciTech Connect

    Lehman, S K; Chambers, D H; Candy, J V

    1999-06-14

    The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the measured scattered fields. During the forward propagation process, the spatial spectrum of the object under investigation is ''smeared,'' by a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care must be taken in performing the reconstruction, as the object's spectral information has been moved into regions where it may be considered to be noise rather than useful information. This will reduce the quality and resolution of the reconstruction. We show haw the object's spectrum can be partitioned into resolvable and non-resolvable parts based upon the cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam-forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum.

  16. Electron tomography of viruses.

    PubMed

    Subramaniam, Sriram; Bartesaghi, Alberto; Liu, Jun; Bennett, Adam E; Sougrat, Rachid

    2007-10-01

    Understanding the molecular architectures of enveloped and complex viruses is a challenging frontier in structural biology. In these viruses, the structural and compositional variation from one viral particle to another generally precludes the use of either crystallization or image averaging procedures that have been successfully implemented in the past for highly symmetric viruses. While advances in cryo electron tomography of unstained specimens provide new opportunities for identification and molecular averaging of individual subcomponents such as the surface glycoprotein spikes on purified viruses, electron tomography of stained and plunge-frozen cells is being used to visualize the cellular context of viral entry and replication. Here, we review recent developments in both areas as they relate to our understanding of the biology of heterogeneous and pleiomorphic viruses.

  17. Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Faber, Dirk J.; van Leeuwen, Ton G.

    Seventy percent of our body is made up of water. For that reason, radiation based medical imaging techniques operate in spectral regions where water absorption is low (Fig. 18.1, panel). Well known modalities are MRI that operates at radio frequencies, and PET/SPECT which work in the high frequency range. Water absorption is also low around the part of the spectrum that is visible to the human eye. In this spectral region, scattering of the light by tissue structures roughly decreases with wavelength. Therefore, most optical imaging techniques such as (confocal) microscopy, optical tomography and Optical Coherence Tomography (OCT) use wavelengths between 650 and 1300 nm to allow reasonable imaging depths.

  18. Computed tomography status

    SciTech Connect

    Hansche, B.D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  19. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  20. Tutorial on photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Yao, Junjie; Wang, Lihong V.

    2016-06-01

    Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT's basic principles, major implementations, imaging contrasts, and recent applications.

  1. Proton computed tomography

    NASA Astrophysics Data System (ADS)

    Bucciantonio, Martina; Sauli, Fabio

    2015-05-01

    Proton computed tomography (pCT) is a diagnostic method capable of in situ imaging the three-dimensional density distribution in a patient before irradiation with charged particle beams. Proposed long time ago, this technology has been developed by several groups, and may become an essential tool for advanced quality assessment in hadrontherapy. We describe the basic principles of the method, its performance and limitations as well as provide a summary of experimental systems and of results achieved.

  2. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  3. Compton tomography system

    DOEpatents

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  4. Panoramic cone beam computed tomography

    SciTech Connect

    Chang Jenghwa; Zhou Lili; Wang Song; Clifford Chao, K. S.

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{sub cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and

  5. Atom Probe Tomography of Geomaterials

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Diercks, D.; Gorman, B.; Cooper, R. F.

    2013-12-01

    trace elements (100ppm level) below 20%. The images of the PGA grains have sub-nm spatial resolution, remarkably showing clear atomic planes of the hexoctahedral structure. Conducting materials such as the PGA grains are ideal materials for APT analysis. Silicates present a much more challenging target due to their electrical resistance and strong metal-oxygen bonds. The oxide bonds are difficult to break, resulting in ablation of oxide molecules with various charge states. These cause multiple interferences for many major elements of interest such as Si, Fe, Mg and Ca. We have imaged a range of olivine compositions (Fo0 to Fo90). Due to its higher electrical conductivity, fayalite evaporates at lower field voltages than more Mg-rich olivines. The spatial resolution is ~nm scale, so atomic planes are not resolvable. Chemical analyses are improved by low laser energies (<0.1pJ) at laser pulse rates of 500 kHz, as well as by large tip radii, which improves heat diffusion out of the needle. [1] Pearson et al 2007 Nature 449: 202-205 [2] Luguet et al 2008 Science 319: 453-456

  6. Ultrasonic Lamb wave tomography

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin R.; Malyarenko, Eugene V.; Hinders, Mark K.

    2002-12-01

    Nondestructive evaluation (NDE) of aerospace structures using traditional methods is a complex, time-consuming process critical to maintaining mission readiness and flight safety. Limited access to corrosion-prone structure and the restricted applicability of available NDE techniques for the detection of hidden corrosion or other damage often compound the challenge. In this paper we discuss our recent work using ultrasonic Lamb wave tomography to address this pressing NDE technology need. Lamb waves are ultrasonic guided waves, which allow large sections of aircraft structures to be rapidly inspected for structural flaws such as disbonds, corrosion and delaminations. Because the velocity of Lamb waves depends on thickness, for example, the travel times of the fundamental Lamb modes can be converted into a thickness map of the inspection region. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. Our work focuses on tomographic reconstruction to produce quantitative maps that can be easily interpreted by technicians or fed directly into structural integrity and lifetime prediction codes. Laboratory measurements discussed here demonstrate that Lamb wave tomography using a square perimeter array of transducers with algebraic reconstruction tomography is appropriate for detecting flaws in aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this paper.

  7. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  8. Enhanced local tomography

    DOEpatents

    Katsevich, Alexander J.; Ramm, Alexander G.

    1996-01-01

    Local tomography is enhanced to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. In a first method for evaluating the value of the discontinuity, the relative attenuation data is inputted to a local tomography function .function..sub..LAMBDA. to define the location S of the density discontinuity. The asymptotic behavior of .function..sub..LAMBDA. is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA.. In a second method for evaluating the value of the discontinuity, a gradient value for a mollified local tomography function .gradient..function..sub..LAMBDA..epsilon. (x.sub.ij) is determined along the discontinuity; and the value of the jump of the density across the discontinuity curve (or surface) S is estimated from the gradient values.

  9. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  10. Polychromatic diffraction contrast tomography

    SciTech Connect

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-11-15

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented.

  11. Recent Advances in Electron Tomography: TEM and HAADF-STEM Tomography for Materials Science and IC Applications

    SciTech Connect

    Kubel, C; Voigt, A; Schoenmakers, R; Otten, M; Su, D; Lee, T; Carlsson, A; Engelmann, H; Bradley, J

    2005-11-09

    Electron tomograph tomography is a well y well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life science applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution 3D structural information in physical sciences. In this paper, we evaluate the capabilities and limitations of TEM and HAADF-STEM tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in 3D by electron tomography. For partially crystalline materials with small single crystalline domains, TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  12. EDITORIAL: Optical tomography and digital holography

    NASA Astrophysics Data System (ADS)

    Coupland, Jeremy; Lobera, Julia

    2008-07-01

    the resolution now places a limit on the size of the object that can be recorded. Some 60 years after the pioneering work of Gabor, digital imaging and associated computer technology offers a step change in capability with which to further exploit holography. Modern image sensors are now available with almost 30 million photosensitive elements, which corresponds to a staggering 100-fold increase compared to standard television images. At the same time personal computers have been optimized for imaging and graphics applications and this allows more sophisticated algorithms to be used in the reconstruction process. Although resolution still falls short of the materials used for optical holography, the ability to process data numerically generally outweighs this drawback and presents us with a host of new opportunities. Faced with the ability to record and process holograms numerically, it is natural to ask the question 'what information is present within recordings of scattered light?'. In fact this question could be posed by anyone using light, or indeed any other wave disturbance, for measurement purposes. For the case of optical holography, Wolf published his answer in 1969 [6], showing that for the case of weak scattering (small perturbations) and plane wave illumination, the amplitude and phase of each plane wave within the scattered field are proportional to those of a periodic variation in the refractive index contrast (i.e. a Bragg grating). This Fourier decomposition of the object was published almost simultaneously by Dandliker and Weiss [7], who also provided a graphical illustration of the technique. These works are the basis of optical tomography and provide us with the link between holographic data and 3D form. Digital holographic reconstruction and optical tomography was the theme of an international workshop [8] held in Loughborough in 2007, and many of the topics debated at the workshop have become the subject of the papers in this issue. In general

  13. Ionospheric tomography using the FORTE satellite

    SciTech Connect

    Murphy, T.C.

    1993-08-01

    The possibility of obtaining ionospheric profile data via tomographic techniques has elicited considerable interest in recent years. The input data for the method is a set of total electron content measurements along intersecting lines of sight which form a grid. This can conveniently be provided by a fast-moving satellite with a VHF beacon which will generate the multiple paths needed for effective tomography. Los Alamos and Sandia National Laboratories will launch and operate the FORTE satellite for the US Department of Energy, with launch scheduled in 1995. FORTE will provide such a beacon. Additionally, wideband VHF receivers aboard the satellite will allow corraborative measurements of ionospheric profile parameters in some cases.

  14. Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

    PubMed Central

    Borsic, A.; Attardo, E. A.; Halter, R. J.

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of

  15. Super-sensing through industrial process tomography.

    PubMed

    Soleimani, Manuchehr

    2016-06-28

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  16. Array tomography: immunostaining and antibody elution.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are prepared for imaging by tagging with primary antibodies against specific cellular targets, followed by labeling with fluorescent secondary antibodies. Alternatively, fluorescent proteins that have been introduced into the tissue before dissection can be used.

  17. Computed tomography of Krukenberg tumors

    SciTech Connect

    Cho, K.C.; Gold, B.M.

    1985-08-01

    Computed tomography (CT) of three patients with Kurkenberg tumor was reviewed retrospectively. CT showed large, lobulated, multicystic masses with soft-tissue components, indistinguishable from primary ovarian carcinoma. Much has been written about metastatic ovarian tumor, but this is the first report in the radiologic literature about their CT features. The authors emphasize the importance of recognizing the ovary as a frequent site of metastases and the proper approach to this problem. In patients with a history of colon or gastric carcinoma, the mixed cystic and solid ovarian mass on CT should be regarded as metastatic tumor until proven otherwise. A careful search for gastrointestinal tract signs or symptoms should be done in any patient with a pelvic tumor. When CT is done for evaluation of ovarian tumor, the stomach and colon should be carefully evaluated, and the ovaries routinely examined in the preoperative CT staging of gastric or colon carcinoma.

  18. Photoacoustic tomography: principles and advances

    PubMed Central

    Xia, Jun; Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results. PMID:25642127

  19. Electrical impedance tomography of electrolysis.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  20. Spatial light interference tomography (SLIT)

    PubMed Central

    Wang, Zhuo; Marks, Daniel L.; Carney, Paul Scott; Millet, Larry J.; Gillette, Martha U.; Mihi, Agustin; Braun, Paul V.; Shen, Zhen; Prasanth, Supriya G.; Popescu, Gabriel

    2011-01-01

    We present spatial light interference tomography (SLIT), a label-free method for 3D imaging of transparent structures such as live cells. SLIT uses the principle of interferometric imaging with broadband fields and combines the optical gating due to the micron-scale coherence length with that of the high numerical aperture objective lens. Measuring the phase shift map associated with the object as it is translated through focus provides full information about the 3D distribution associated with the refractive index. Using a reconstruction algorithm based on the Born approximation, we show that the sample structure may be recovered via a 3D, complex field deconvolution. We illustrate the method with reconstructed tomographic refractive index distributions of microspheres, photonic crystals, and unstained living cells. PMID:21996999

  1. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for primary thyroid langerhans histiocytosis: A case report and literature review

    PubMed Central

    Long, Qi; Shaoyan, Wang; Hui, Wang

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare clonal proliferative disease, with an incidence rate of 4.0–5.4/1 million individuals. LCH encompasses a spectrum of disorders with diverse clinical presentations ranging from a single organ to multiple organ involvement. LCH rarely involves the thyroid gland. We presented a case with LCH of thyroid gland. The patient had painless progressive neck enlargement and then diabetes insipidus. Ultrasonic scan and magnetic resonance imaging scan revealed nodular goiter and pituitary stalk enlargement, respectively. Histopathological analysis revealed features of histiocytoid cells. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) was performed in order to rule out the presence of whole body infiltration. 18F-FDG PET/CT also demonstrated increased uptake in the thickening pituitary stalk and maxillofacial skin lesion, in addition to the bilateral thyroid nodules, CT showed the left lung nodule and the skull destruction without 18F-FDG uptake. This report emphasizes the role of 18F-FDG PET/CT in multiple organs involvement of patients with LCH. PMID:26430317

  2. Coding Strategies for X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Holmgren, Andrew

    This work focuses on the construction and application of coded apertures to compressive X-ray tomography. Coded apertures can be made in a number of ways, each method having an impact on system background and signal contrast. Methods of constructing coded apertures for structuring X-ray illumination and scatter are compared and analyzed. Apertures can create structured X-ray bundles that investigate specific sets of object voxels. The tailored bundles of rays form a code (or pattern) and are later estimated through computational inversion. Structured illumination can be used to subsample object voxels and make inversion feasible for low dose computed tomography (CT) systems, or it can be used to reduce background in limited angle CT systems. On the detection side, coded apertures modulate X-ray scatter signals to determine the position and radiance of scatter points. By forming object dependent projections in measurement space, coded apertures multiplex modulated scatter signals onto a detector. The multiplexed signals can be inverted with knowledge of the code pattern and system geometry. This work shows two systems capable of determining object position and type in a 2D plane, by illuminating objects with an X-ray `fan beam,' using coded apertures and compressive measurements. Scatter tomography can help identify materials in security and medicine that may be ambiguous with transmission tomography alone.

  3. Radial reflection diffraction tomography

    DOEpatents

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  4. Optical Coherence Tomography Angiography

    PubMed Central

    Gao, Simon S.; Jia, Yali; Zhang, Miao; Su, Johnny P.; Liu, Gangjun; Hwang, Thomas S.; Bailey, Steven T.; Huang, David

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a noninvasive approach that can visualize blood vessels down to the capillary level. With the advent of high-speed OCT and efficient algorithms, practical OCTA of ocular circulation is now available to ophthalmologists. Clinical investigations that used OCTA have increased exponentially in the past few years. This review will cover the history of OCTA and survey its most important clinical applications. The salient problems in the interpretation and analysis of OCTA are described, and recent advances are highlighted. PMID:27409483

  5. Compressive Phase Contrast Tomography

    SciTech Connect

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-09-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  6. Transurethral Ultrasound Diffraction Tomography

    DTIC Science & Technology

    2007-03-01

    transmitter. These are then 7 Fourier transformed into the frequency domain data. The clock rate is 33 MHz, and the FFT is performed after 1536 time...B. Yazgan and O.K. Ersoy, Multistage parallel algorithm for diffraction tomography, Applied Optica , vol. 34, pp, 1426-1431, 1995. [9] J. Wiskin, D.T...J1k0a2. Note that Eq. 34 reflects the well-known fact that in the Born approxi- mation the Fourier frequencies of the object are confined within a

  7. Abdominal perfusion computed tomography.

    PubMed

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-02-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis.

  8. Abdominal Perfusion Computed Tomography

    PubMed Central

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M. Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-01-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis. PMID:25610249

  9. Kikuchi-Fujimoto Disease with 18F-Fludeoxyglucose Uptake in Cervical Lymph Nodes on Dual-time-point Imaging Positron Emission Tomography/Computed Tomography Mimicking Malignant Disease

    PubMed Central

    Aoyama, Ken-ichi; Otsuru, Mitsunobu; Uchibori, Masahiro; Ota, Yoshihide

    2017-01-01

    Kikuchi-Fujimoto disease (KFD) is a benign but self-limiting disorder. However, KFD is often misdiagnosed as a malignant disease. Although 18F-fludeoxyglucose (FDG) uptake on dual-time-point imaging (DTPI) positron emission tomography (PET)/computed tomography (CT) is useful in distinguishing malignant from benign disease, the latter sometimes mimics malignancy on DTPI PET/CT, resulting in a misdiagnosis. Here, we describe the case of a 30-year-old woman who complained of cervical lymphadenopathy. PET showed increased FDG uptake in multiple lymph nodes, with a maximum standardized uptake value (SUVmax) of 19.0 in the early phase to 21.8 in the late phase. A biopsy was performed, and pathological examination revealed KFD. KFD with FDG uptake in lymph nodes on DTPI PET/CT is rare and difficult to be distinguished from a malignant disease. PMID:28217024

  10. Computed tomography: the investigation of choice for aortic dissection?

    PubMed Central

    Singh, H; Fitzgerald, E; Ruttley, M S

    1986-01-01

    Computed tomography has become established as complementary to aortography in the investigation of patients with suspected aortic dissection. Two cases of dissecting aneurysm are reported in which extensive aortography failed to show evidence of dissection. In both cases dissection was demonstrated by computed tomography. The diagnosis was confirmed in one case at operation and in the other case by follow up. It is suggested that computed tomography is the diagnostic method of first choice in aortic dissection. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:3730218

  11. Positron emission tomography and computed tomography assessments of the aging human brain

    SciTech Connect

    de Leon, M.J.; George, A.E.; Ferris, S.H.; Christman, D.R.; Fowler, J.S.; Gentes, C.I.; Brodie, J.; Reisberg, B.; Wolf, A.P.

    1984-02-01

    The relationship between alterations in brain structure and brain function was studied in vivo in both young and elderly human subjects. Computed tomography revealed significant age-related ventricular and cortical sulcal dilatation. The cortical changes were most closely related to age. Positron emission tomography failed to show regional changes in brain glucose metabolic rate. The results suggest that the normal aging brain undergoes structural atrophic changes without incurring regional metabolic changes. Examination of the correlations between the structural and the metabolic measures revealed no significant relationships. These data are discussed with respect to the significant structure-function relationships that have been reported in Alzheimer disease. 27 references, 3 figures, 2 tables.

  12. Radiology of giant cell tumors of bone: computed tomography, arthro-tomography, and scintigraphy.

    PubMed

    Hudson, T M; Schiebler, M; Springfield, D S; Enneking, W F; Hawkins, I F; Spanier, S S

    1984-01-01

    Radiologic studies of 50 giant cell tumors of bone in 48 patients were useful in assessing the anatomic extent for planning surgical treatment. Contrast-enhanced computed tomography (CT) provided the most useful and complete evaluation, including soft tissue extent and relationship to major vessels. Angiography was useful when the extraosseous extent and vascular relationships were not entirely clear on CT. Arthro-tomography was the best way to evaluate tumor invasion through subchondral cortex and articular cartilage. Reactive soft tissues, with edema and hyperemia, were difficult to distinguish from tumor tissue on CT and angiograms. Bone scintigrams often showed intense uptake beyond the true tumor limits.

  13. Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ma, Xiaopeng; Prakash, Jaya; Ruscitti, Francesca; Glasl, Sarah; Stellari, Fabio Franco; Villetti, Gino; Ntziachristos, Vasilis

    2016-01-01

    Nuclear imaging plays a critical role in asthma research but is limited in its readings of biology due to the short-lived signals of radio-isotopes. We employed hybrid fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) for the assessment of asthmatic inflammation based on resolving cathepsin activity and matrix metalloproteinase activity in dust mite, ragweed, and Aspergillus species-challenged mice. The reconstructed multimodal fluorescence distribution showed good correspondence with ex vivo cryosection images and histological images, confirming FMT-XCT as an interesting alternative for asthma research.

  14. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    NASA Astrophysics Data System (ADS)

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-10-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries.

  15. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    PubMed Central

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-01-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries. PMID:27748437

  16. Waste inspection tomography (WIT)

    SciTech Connect

    Bernardi, R.T.

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  17. Optical tomography of plastic deformations

    SciTech Connect

    Puro, A.E.

    1994-12-01

    In the framework of linear dependence of the dielectric constant tensor on the strain tensor (birefringence described by the Neumann law), weak optical anisotropy, and incompressibility of a material, we consider the application of optical tomography to the problem of photoplasticity. As starting information, the path difference and the isocline parameter measured by tomography are used. 18 refs., 1 fig.

  18. Muon Tomography for Geological Repositories.

    NASA Astrophysics Data System (ADS)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  19. Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography

    SciTech Connect

    Dinerstein, S.L.; Kovarsky, J.

    1984-08-01

    A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvis were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.

  20. Statistical reconstruction for cosmic ray muon tomography.

    PubMed

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  1. Time-domain diffuse optical tomography using analytic statistical characteristics of photon trajectories

    SciTech Connect

    Konovalov, Aleksandr B; Vlasov, V V; Kalintsev, A G; Lyubimov, Vladimir V; Kravtsenyuk, Olga V

    2006-11-30

    The inverse problem of diffuse optical tomography (DOT) is reduced by the method of photon average trajectories (PAT) to the solution of the integral equation integrated along the conditional mean statistical photon trajectory. The PAT bending near the flat boundary of a scattering medium is estimated analytically. These estimates are used to determine the analytic statistical characteristics of photon trajectories for the flat layer geometry. The inverse DOT problem is solved by using the multiplicative algebraic algorithm modified to improve the convergence of the iteration reconstruction process. The numerical experiment shows that the modified PAT method permits the reconstruction of near-surface optical inhomogeneities virtually without distortions. (special issue devoted to multiple radiation scattering in random media)

  2. The lunar seismic tomography and internal heterogeneity

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Zhu, P.; Yuan, Y.; Zhang, J.

    2012-12-01

    A seismic tomography is presented to show the internal lateral heterogeneities of moon. The lunar seismic tomography is made from the moonquake arrival-time data acquired by the Apollo program during 1971 to 1977. The seismic records obtained from the four seismic station of Apollo Lunar Surface Experiments Package on the moon. The research target covers the surround of Apollo-12, 14, 15 and 16 landing sites. A preliminary image of three-dimensional P- and S-wave velocity structures of lunar interior have been calculated using hundreds of arrival-times of moonquake events from surface to deep mantle. These results show that some evidences of lateral heterogeneities in the lunar mantle and crust, which implies the existence of complex structure inside the moon.

  3. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  4. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome

    PubMed Central

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome. PMID:26917907

  5. Gallstone ileus with multiple stones: Where Rigler triad meets Bouveret’s syndrome

    PubMed Central

    Gaduputi, Vinaya; Tariq, Hassan; Rahnemai-Azar, Amir A; Dev, Anil; Farkas, Daniel T

    2015-01-01

    A 53-year-old man with multiple medical conditions presented to the emergency department with complaints of vomiting, anorexia and diffuse colicky abdominal pain for 3 d. A computed tomography scan of the abdomen and pelvis showed radiographic findings consistent with Rigler triad seen in small proportion of patients with small bowel obstruction secondary to gallstone impaction. In addition there was a gastric outlet obstruction, consistent with Bouveret’s syndrome. The patient underwent an exploratory laparotomy and enterotomy with multiple stones extracted. The patient had an uneventful post-surgical clinical course and was discharged home. PMID:26730285

  6. Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels

    NASA Astrophysics Data System (ADS)

    Tape, C.; Tromp, J.; Liu, Q.

    2004-12-01

    We demonstrate that Fréchet derivatives for tomographic inversions may be obtained based upon just two calculations for each earthquake: one calculation for the current model and a second, `adjoint', calculation that uses time-reversed signals at the receivers as simultaneous, fictitious sources. For a given model~m, we consider objective functions χ(m) that minimize differences between waveforms, traveltimes, or amplitudes. We show that the Fréchet derivatives of such objective functions may be written in the generic form δ χ=∫ VK_m( {x}) δ ln m( {x}) d3 {x}, where δ ln m=δ m/m denotes the relative model perturbation. The volumetric kernel Km is defined throughout the model volume V and is determined by time-integrated products between spatial and temporal derivatives of the regular displacement field {s} and the adjoint displacement field {s} obtained by using time-reversed signals at the receivers as simultaneous sources. In waveform tomography the time-reversed signal consists of differences between the data and the synthetics, in traveltime tomography it is determined by synthetic velocities, and in amplitude tomography it is controlled by synthetic displacements. For each event, the construction of the kernel Km requires one forward calculation for the regular field {s} and one adjoint calculation involving the fields {s} and {s}. For multiple events the kernels are simply summed. The final summed kernel is controlled by the distribution of events and stations and thus determines image resolution. In the case of traveltime tomography, the kernels Km are weighted combinations of banana-doughnut kernels. We demonstrate also how amplitude anomalies may be inverted for lateral variations in elastic and anelastic structure. The theory is illustrated based upon 2D spectral-element simulations.

  7. EDITORIAL: Industrial Process Tomography

    NASA Astrophysics Data System (ADS)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  8. Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system

    PubMed Central

    Kumavor, Patrick D.; Xu, Chen; Aguirre, Andres; Gamelin, John; Ardeshirpour, Yasaman; Tavakoli, Behnoosh; Zanganeh, Saeid; Alqasemi, Umar; Yang, Yi; Zhu, Quing

    2011-01-01

    We present a photoacoustic tomography-guided diffuse optical tomography approach using a hand-held probe for detection and characterization of deeply-seated targets embedded in a turbid medium. Diffuse optical tomography guided by coregistered ultrasound, MRI, and x ray has demonstrated a great clinical potential to overcome lesion location uncertainty and to improve light quantification accuracy. However, due to the different contrast mechanisms, some lesions may not be detectable by a nonoptical modality but yet have high optical contrast. Photoacoustic tomography utilizes a short-pulsed laser beam to diffusively penetrate into tissue. Upon absorption of the light by the target, photoacoustic waves are generated and used to reconstruct, at ultrasound resolution, the optical absorption distribution that reveals optical contrast. However, the robustness of optical property quantification of targets by photoacoustic tomography is complicated because of the wide range of ultrasound transducer sensitivity, the orientation and shape of the targets relative to the ultrasound array, and the uniformity of the laser beam. We show in this paper that the relative optical absorption map provided by photoacoustic tomography can potentially guide the diffuse optical tomography to accurately reconstruct target absorption maps. PMID:21529079

  9. Beam tomography research at Daresbury Laboratory

    NASA Astrophysics Data System (ADS)

    Hock, K. M.; Ibison, M. G.; Holder, D. J.; Muratori, B. D.; Wolski, A.; Kourkafas, G.; Shepherd, B. J. A.

    2014-07-01

    Beam tomography research at Daresbury Laboratory has focussed on the development of normalised phase space techniques-starting with the idea of sampling tomographic projections at equal phase advances. This idea has influenced the design and operation of the tomography sections at the Photo Injector Test Facility at Zeuthen (PITZ) and at the Accelerator and Lasers in Combined Experiments (ALICE) at Daresbury. We have studied the feasibility of using normalised phase space to measure the effect of space charge. Quadrupole scan measurements are carried out at two different parts of a beamline. Reconstructions at the same location give results that are clearly rotated with respect to each other in normalised phase space. We are able to show that a significant part of this rotation can be attributed to the effect of space charge. We show how the normalised phase space technique can be used to increase the reliability of the Maximum Entropy Technique (MENT). While MENT is known for its ability to work with just a few projections, the accuracy of its reconstructions has seldom been questioned. We show that for typical phase space distributions, MENT could produce results that look quite different from the original. We demonstrate that a normalised phase space technique could give results that are closer to the actual distribution. We also present simpler ways of deriving the phase space tomography formalism and the Maximum Entropy Technique.

  10. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography improves the diagnostic accuracy of osteoid osteoma

    PubMed Central

    Squier, Samuel Brian; Lewis, Jacob Ian; Accurso, Joseph Matthew; Jain, Manoj Kumar

    2016-01-01

    We present a case of a 17-year-old football player who had previously received multiple facet joint injections for presumed secondary osteoarthritis. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography imaging of the cervical spine demonstrated focal increased radiopharmaceutical activity in the right C2 lamina, which was associated with an osteolytic lesion with a central irregular sclerotic nidus. Surgical pathology confirmed an osteoid osteoma. PMID:27833319

  11. Simplified quantum process tomography

    NASA Astrophysics Data System (ADS)

    Branderhorst, M. P. A.; Nunn, J.; Walmsley, I. A.; Kosut, R. L.

    2009-11-01

    We propose and evaluate experimentally an approach to quantum process tomography that completely removes the scaling problem plaguing the standard approach. The key to this simplification is the incorporation of prior knowledge of the class of physical interactions involved in generating the dynamics, which reduces the problem to one of parameter estimation. This allows part of the problem to be tackled using efficient convex methods, which, when coupled with a constraint on some parameters, allows globally optimal estimates for the Krauss operators to be determined from experimental data. Parameterizing the maps provides further advantages: it allows the incorporation of mixed states of the environment as well as some initial correlation between the system and environment, both of which are common physical situations following excitation of the system away from thermal equilibrium. Although the approach is not universal, in cases where it is valid it returns a complete set of positive maps for the dynamical evolution of a quantum system at all times.

  12. 4-D photoacoustic tomography.

    PubMed

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  13. 4-D Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  14. Evolution prediction from tomography

    NASA Astrophysics Data System (ADS)

    Dominy, Jason M.; Venuti, Lorenzo Campos; Shabani, Alireza; Lidar, Daniel A.

    2017-03-01

    Quantum process tomography provides a means of measuring the evolution operator for a system at a fixed measurement time t. The problem of using that tomographic snapshot to predict the evolution operator at other times is generally ill-posed since there are, in general, infinitely many distinct and compatible solutions. We describe the prediction, in some "maximal ignorance" sense, of the evolution of a quantum system based on knowledge only of the evolution operator for finitely many times 0<τ 1

  15. Mapping distributed brain function and networks with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  16. Waste Inspection Tomography (WIT)

    SciTech Connect

    Bernardi, R.T.

    1995-12-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

  17. Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen

    2015-04-01

    We will present our initial results of global adjoint tomography based on 3D seismic wave simulations which is one of the most challenging examples in seismology in terms of intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated in inversions. Using a spectral-element method, we incorporate full 3D wave propagation in seismic tomography by running synthetic seismograms and adjoint simulations to compute exact sensitivity kernels in realistic 3D background models. We run our global simulations on the Oak Ridge National Laboratory's Cray XK7 "Titan" system taking advantage of the GPU version of the SPECFEM3D_GLOBE package. We have started iterations with initially selected 253 earthquakes within the magnitude range of 5.5 < Mw < 7.0 and numerical simulations having resolution down to ~27 s to invert for a transversely isotropic crust and mantle model using a non-linear conjugate gradient algorithm. The measurements are currently based on frequency-dependent traveltime misfits. We use both minor- and major-arc body and surface waves by running 200 min simulations where inversions are performed with more than 2.6 million measurements. Our initial results after 12 iterations already indicate several prominent features such as enhanced slab (e.g., Hellenic, Japan, Bismarck, Sandwich), plume/hotspot (e.g., the Pacific superplume, Caroline, Yellowstone, Hawaii) images, etc. To improve the resolution and ray coverage, particularly in the lower mantle, our aim is to increase the resolution of numerical simulations first going down to ~17 s and then to ~9 s to incorporate high-frequency body waves in inversions. While keeping track of the progress and illumination of features in our models with a limited data set, we work towards to assimilate all available data in inversions from all seismic networks and earthquakes in the global CMT catalogue.

  18. 15. Detail showing lower chord pinconnected to vertical member, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail showing lower chord pin-connected to vertical member, showing floor beam riveted to extension of vertical member below pin-connection, and showing brackets supporting cantilevered sidewalk. View to southwest. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  19. Time-dependent seismic tomography

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2010-01-01

    Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.

  20. Whole-body 18F-fluorodeoxyglucose positron emission tomography/computed tomography images before and after chemotherapy for Kaposi sarcoma and highly active antiretrovirus therapy.

    PubMed

    Morooka, Miyako; Ito, Kimiteru; Kubota, Kazuo; Minamimoto, Ryogo; Shida, Yoshitaka; Hasuo, Kanehiro; Ito, Tateki; Tasato, Daisuke; Honda, Haruhito; Teruya, Katsuji; Kikuchi, Yoshimi; Ohtomo, Kuni

    2010-12-01

    Kaposi sarcoma is an acquired immunodeficiency syndrome-related disease that mainly involves the skin, gastrointestinal gut, and lungs. Whole-body 18F-fluorodeoxyglucose-positron emission tomography and computed tomography (FDG-PET/CT) scanning is useful for simultaneous detection of multiple lesions of Kaposi sarcoma. We present a 67-year-old man with a history of infection with human immunodeficiency virus who presented with numerous cutaneous lesions. FDG-PET/CT images showed lesions in the skin, lung, and lymph nodes. The gastrointestinal lesions were detected using gastric fiberscopy (GF) and colon fiberscopy (CF). After Kaposi sarcoma therapy, the uptake in the lesions of the skin, lung, and lymph nodes decreased, but new lesions were detected in the pancreas and lumbar spine. He had pancreatitis and Candida spondilitis. Whole-body FDG-PET/CT is useful for detecting lesions and determining the extension to which the disease has spread, adding the gastrointestinal lesions by GF and CF. After therapy, FDG-PET/CT can be used to demonstrate which lesions remain active and to determine the overall response to treatment. In this case, we show how useful FDG-PET/CT is and how difficult it is to treat Kaposi sarcoma.

  1. Grating-based tomography of human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  2. Super-sensing through industrial process tomography

    PubMed Central

    2016-01-01

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185965

  3. Mesoscale ionospheric tomography at the Auroral region

    NASA Astrophysics Data System (ADS)

    Luntama, J.; Kokkatil, G. V.

    2008-12-01

    (MIRACLE), riometers, and the ionosonde station at SGO. This presentation will show the results from the ionospheric tomography research at FMI. References: Fremouw, E., J. Secan and B. Howe (1992): Application of stochastic inverse theory to ionospheric tomography, Radio Sci., 27(5), 721-732. Mitchell, C.N. and Spencer, P.S.J. (2003): A three-dimensional time-dependent algorithm for ionospheric imaging using GPS, Ann. Geophys., 46, 687-696.

  4. Multiple Fan-Beam Optical Tomography: Modelling Techniques

    PubMed Central

    Rahim, Ruzairi Abdul; Chen, Leong Lai; San, Chan Kok; Rahiman, Mohd Hafiz Fazalul; Fea, Pang Jon

    2009-01-01

    This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image. PMID:22291523

  5. Optical coherence tomography image enhancement by using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ponce-de-Leon, Y. R.; Lopez-Rios, J. A.; Pichardo-Molina, J. L.; Alcalá Ochoa, N.

    2011-08-01

    Optical Coherence Tomography (OCT) is an imaging technique to get cross-sectional images with resolutions of a few microns and deep penetration in tissue of some millimeters. For many years OCT has been applied to analyze different human tissues like eyes, skin, teeth, urinary bladders, gastrointestinal, respiratory or genitourinary tracts and recently breast cancer tissues have been studied. Many of these tissues are composed specially of lipids and collagen, proteins which cause multiple light scattering (MLS) reducing significantly the optical depth and the contrast of OCT imaging. So, one of the big challenges of this technique is to acquire images with good contrast. Gold nanoparticles (NPs) exhibit interesting optical properties due to its plasmon resonance frequency. Optical absorbance is strong when gold NPs have dimension under 50 nm, but over this size optical scattering becomes dominant. In this work we show the preliminary results of the use of gold NPs as a contrast medium to enhance the OCT images quality. Our experimental results show which type of particles (morphology and size) present the best enhancement in the region of 1325 nm which corresponds to the central wavelength source excitation. All our experiments were carried out with a commercial OCT (thorlabs) system and our NPs were tested in water and gel phantoms.

  6. Multiple Books, Multiple Authors.

    ERIC Educational Resources Information Center

    Kountz, Carol

    When a class of lethargic college students showed no enthusiasm for their reading assignments in English class, one instructor turned to drama. She assigned a collaborative script, and the students' enthusiasm and motivation relegated her to a "pleasant oblivion." She thought that the novelty of the play genre might enliven the class,…

  7. Quantum field tomography

    NASA Astrophysics Data System (ADS)

    Steffens, A.; Riofrío, C. A.; Hübener, R.; Eisert, J.

    2014-12-01

    We introduce the concept of quantum field tomography, the efficient and reliable reconstruction of unknown quantum fields based on data of correlation functions. At the basis of the analysis is the concept of continuous matrix product states (cMPS), a complete set of variational states grasping states in one-dimensional quantum field theory. We innovate a practical method, making use of and developing tools in estimation theory used in the context of compressed sensing such as Prony methods and matrix pencils, allowing us to faithfully reconstruct quantum field states based on low-order correlation functions. In the absence of a phase reference, we highlight how specific higher order correlation functions can still be predicted. We exemplify the functioning of the approach by reconstructing randomized cMPS from their correlation data and study the robustness of the reconstruction for different noise models. Furthermore, we apply the method to data generated by simulations based on cMPS and using the time-dependent variational principle. The presented approach is expected to open up a new window into experimentally studying continuous quantum systems, such as those encountered in experiments with ultra-cold atoms on top of atom chips. By virtue of the analogy with the input-output formalism in quantum optics, it also allows for studying open quantum systems.

  8. Multiphoton tomography of astronauts

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  9. Endoscopic Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Fujimoto, James G.; Tsai, Tsung-Han; Mashimo, Hiroshi

    New gastrointestinal (GI) cancers are expected to affect more than 290,200 new patients and will cause more than 144,570 deaths in the United States in 2013 [1]. When detected and treated early, the 5-year survival rate for colorectal cancer increases by a factor of 1.4 [1]. For esophageal cancer, the rate increases by a factor of 2 [1]. The majority of GI cancers begin as small lesions that are difficult to identify with conventional endoscopy. With resolutions approaching that of histopathology, optical coherence tomography (OCT) is well suited for detecting the changes in tissue microstructure associated with early GI cancers. Since the lesions are not endoscopically apparent, however, it is necessary to survey a relatively large area of the GI tract. Tissue motion is another limiting factor in the GI tract; therefore, in vivo imaging must be performed at extremely high speeds. OCT imaging can be performed using fiber optics and miniaturized lens systems, enabling endoscopic OCT inside the human body in conjunction with conventional video endoscopy. An OCT probe can be inserted through the working channel of a standard endoscope, thus enabling depth-resolved imaging of tissue microstructure in the GI tract with micron-scale resolution simultaneously with the endoscopic view (Fig. 68.1).

  10. Fast dual tomography

    NASA Astrophysics Data System (ADS)

    Carrion, Philip M.

    1990-09-01

    This paper can be considered as a continuation of the work by Carrion and Carneiro (1989), where a generalized approach to linearized inversion of geophysical data was developed. Their method allows one to incorporate virtually any constraints in the inversion and reformulate the problem in the dual space of Langrangian multipliers (see also Carrion, 1989a). The constrained tomography makes traveltime inversion robust: it automatically rejects “bad data” which correspond to solutions beyond the chosen constraints and allows one to start inversion with an arbitrary chosen initial model.In this paper, I will derive basic formulas for constrained tomographic imaging that can be used in such areas of geophysics as global mapping of the earth interior, exploration geophysics, etc. The method is fast: an example that will be shown in the paper took only 6 min. of VAX CPU time. Had the conventional least-squares matrix inversion been used it would have taken more than 10 hours of the CPU time to solve the same problem.

  11. Interventional video tomography

    NASA Astrophysics Data System (ADS)

    Truppe, Michael J.; Pongracz, Ferenc; Ploder, Oliver; Wagner, Arne; Ewers, Rolf

    1995-05-01

    Interventional Video Tomography (IVT) is a new imaging modality for Image Directed Surgery to visualize in real-time intraoperatively the spatial position of surgical instruments relative to the patient's anatomy. The video imaging detector is based on a special camera equipped with an optical viewing and lighting system and electronic 3D sensors. When combined with an endoscope it is used for examining the inside of cavities or hollow organs of the body from many different angles. The surface topography of objects is reconstructed from a sequence of monocular video or endoscopic images. To increase accuracy and speed of the reconstruction the relative movement between objects and endoscope is continuously tracked by electronic sensors. The IVT image sequence represents a 4D data set in stereotactic space and contains image, surface topography and motion data. In ENT surgery an IVT image sequence of the planned and so far accessible surgical path is acquired prior to surgery. To simulate the surgical procedure the cross sectional imaging data is superimposed with the digitally stored IVT image sequence. During surgery the video sequence component of the IVT simulation is substituted by the live video source. The IVT technology makes obsolete the use of 3D digitizing probes for the patient image coordinate transformation. The image fusion of medical imaging data with live video sources is the first practical use of augmented reality in medicine. During surgery a head-up display is used to overlay real-time reformatted cross sectional imaging data with the live video image.

  12. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  13. Cardiovascular Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Yonetsu, Taishi; Villiger, Martin; Bouma, Brett E.; Jang, Ik-Kyung

    The potential of optical coherence tomography (OCT) for intravascular imaging and assessing the microstructure of atherosclerosis was suggested already by Huang et al. at the very beginning of OCT [1]. For ophthalmology, the eye provides a natural window for OCT to image the retinal microstructure, and OCT has rapidly become the standard imaging modality to diagnose retinal disease and assess disease progression and response to therapy [1, 2]. Intravascular imaging is more invasive by nature and requires imaging through a catheter probe. This has triggered the development of advanced fiber-optic OCT systems with compact, rotating fiber probes, to image the vessel by circumferentially scanning the luminal wall [3, 4]. In 1998, we established the first cardiac OCT research group at the Massachusetts General Hospital to explore the clinical applications of OCT. The first imaging of rabbit aorta was reported by Fujimoto et al. [5], followed by the first swine measurements in vivo by Tearney et al. [6], and finally the first assessment of coronary arteries in patients by Jang et al. [7]. The scope of this chapter is to highlight the steps taken to bring intravascular OCT from bench to bedside over the last 15 years. We will give a general description of atherosclerosis and its pathophysiology and the specific technical implementation of OCT for intravascular imaging through a fiber-optic probe. The motivation is to provide sufficient medical details to provide a basic introduction to the terminology, principles, and challenges of intracoronary imaging.

  14. Computerized tomography calibrator

    NASA Technical Reports Server (NTRS)

    Engel, Herbert P. (Inventor)

    1991-01-01

    A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.

  15. Atomic scale chemical tomography of human bone

    NASA Astrophysics Data System (ADS)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale – the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  16. Atomic scale chemical tomography of human bone

    PubMed Central

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale – the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone. PMID:28054636

  17. Field implementation of geophysical diffraction tomography

    SciTech Connect

    Witten, A.J.; Stevens, S.S.

    1984-01-01

    Geophysical diffraction tomography is a new technique that shows promise as a tool for quantitative subsurface (below-ground) imaging. The approach being used is based upon the filtered backpropagation algorithm, which is a mathematical extension of the reconstruction software used in conventional X-ray CAT scanners. The difference between this method and existing methods is that the new algorithm rigorously accounts for diffraction effects through an exact inversion of the wave equation. This refinement is necessary in that it admits the use of acoustic and long-wavelength electromagnetic waves, allowing tomography to be taken from the laboratory to the field. ORNL's effort in geophysical diffraction tomography involves reducing the filtered backpropagation algorithm to practice. This requires the design and construction of field instrumentation as well as the development of an improved algorithm. The original algorithm requires the imaged region to be illuminated by plane waves. This requirement simplifies the algorithm but complicates its field implementation in that plane waves are difficult to generate. Consequently, ORNL has been working to generalize the filtered backpropagation algorithm to allow a broader range of incoming wave fields which can more easily be realized in the field. The instrumentation aspects involve the selection of appropriate sonic sources and receivers along with the development of a state-of-art, portable, computer-controlled, multichannel data acquisition system. 5 references, 6 figures.

  18. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  19. Hey Teacher, Your Personality's Showing!

    ERIC Educational Resources Information Center

    Paulsen, James R.

    1977-01-01

    A study of 30 fourth, fifth, and sixth grade teachers and 300 of their students showed that a teacher's age, sex, and years of experience did not relate to students' mathematics achievement, but that more effective teachers showed greater "freedom from defensive behavior" than did less effective teachers. (DT)

  20. Planning a Successful Tech Show

    ERIC Educational Resources Information Center

    Nikirk, Martin

    2011-01-01

    Tech shows are a great way to introduce prospective students, parents, and local business and industry to a technology and engineering or career and technical education program. In addition to showcasing instructional programs, a tech show allows students to demonstrate their professionalism and skills, practice public presentations, and interact…

  1. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  2. Optical homodyne tomography with polynomial series expansion

    SciTech Connect

    Benichi, Hugo; Furusawa, Akira

    2011-09-15

    We present and demonstrate a method for optical homodyne tomography based on the inverse Radon transform. Different from the usual filtered back-projection algorithm, this method uses an appropriate polynomial series to expand the Wigner function and the marginal distribution, and discretize Fourier space. We show that this technique solves most technical difficulties encountered with kernel deconvolution-based methods and reconstructs overall better and smoother Wigner functions. We also give estimators of the reconstruction errors for both methods and show improvement in noise handling properties and resilience to statistical errors.

  3. Uniqueness theorems in bioluminescence tomography.

    PubMed

    Wang, Ge; Li, Yi; Jiang, Ming

    2004-08-01

    Motivated by bioluminescent imaging needs for studies on gene therapy and other applications in the mouse models, a bioluminescence tomography (BLT) system is being developed in the University of Iowa. While the forward imaging model is described by the well-known diffusion equation, the inverse problem is to recover an internal bioluminescent source distribution subject to Cauchy data. Our primary goal in this paper is to establish the solution uniqueness for BLT under practical constraints despite the ill-posedness of the inverse problem in the general case. After a review on the inverse source literature, we demonstrate that in the general case the BLT solution is not unique by constructing the set of all the solutions to this inverse problem. Then, we show the uniqueness of the solution in the case of impulse sources. Finally, we present our main theorem that solid/hollow ball sources can be uniquely determined up to nonradiating sources. For better readability, the exact conditions for and rigorous proofs of the theorems are given in the Appendices. Further research directions are also discussed.

  4. [Computerized tomography and craniocerebral trauma].

    PubMed

    Richter, H P; Braun, V

    1993-11-01

    Computed tomography (CT) is now the standard neuroradiological examination for patients with major head injuries, although conventional X-ray of the skull should not be neglected. Whereas the latter only shows such skull pathology as fractures or intracranial air following a basal fracture, CT clearly visualizes intracranial pathology. It allows differentiation between haematoma and contusion, between localized oedema and generalized brain swelling; CT is therefore indicated in every patient with disturbed consciousness, focal neurological signs, and/or secondary clinical impairment, and also in all drunken patients with head injury. In a patient with impaired consciousness and focal neurological deficit the probability of a pathologic CT is 85%. An extracerebral haematoma is often present, which needs urgent evacuation. A modern, non-expensive communications system using a standard telephone line enables hospitals without a neurosurgical unit to send CT pictures that are difficult to interpret to a neurosurgeon and to discuss them on-line by telephone. This system has now been in operation for over 2 years and has improved the care of patients with head injury in our region. It is highly efficient and reliable and improves cooperation between distant hospitals. It also helps to avoid unnecessary transfers, which are not only expensive but may even harm a critically ill patient.

  5. Multiple Sclerosis

    MedlinePlus

    Multiple sclerosis Overview By Mayo Clinic Staff Multiple sclerosis (MS) is a potentially disabling disease of the brain and spinal cord (central nervous system). In MS, the immune system attacks the protective ...

  6. Multiple Sclerosis

    MedlinePlus

    Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the ... attacks healthy cells in your body by mistake. Multiple sclerosis affects women more than men. It often begins ...

  7. Multiple myeloma

    MedlinePlus

    Plasma cell dyscrasia; Plasma cell myeloma; Malignant plasmacytoma; Plasmacytoma of bone; Myeloma - multiple ... Multiple myeloma most commonly causes: Low red blood cell count ( anemia ), which can lead to fatigue and ...

  8. Axial super-resolution evanescent wave tomography

    NASA Astrophysics Data System (ADS)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of $\\sim$130 nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like STORM and can also be adapted for THz and microwave near-field tomography.

  9. Snapshot Spectral Domain Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Valdez, Ashley

    Optical coherence tomography systems are used to image the retina in 3D to allow ophthalmologists diagnose ocular disease. These systems yield large data sets that are often labor-intensive to analyze and require significant expertise in order to draw conclusions, especially when used over time to monitor disease progression. Spectral Domain Optical Coherence Tomography (SD-OCT) instantly acquires depth profiles at a single location with a broadband source. These systems require mechanical scanning to generate two- or three-dimensional images. Instead of mechanically scanning, a beamlet array was used to permit multiple depth measurements on the retina with a single snapshot using a 3x 3 beamlet array. This multi-channel system was designed, assembled, and tested using a 1 x 2 beamlet lens array instead of a 3 x 3 beamlet array as a proof of concept prototype. The source was a superluminescent diode centered at 840nm with a 45nm bandwidth. Theoretical axial resolution was 6.92um and depth of focus was 3.45mm. Glass samples of varying thickness ranging from 0.18mm to 1.14mm were measured with the system to validate that correct depth profiles can be acquired for each channel. The results demonstrated the prototype system performed as expected, and is ready to be modified for in vivo applicability.

  10. Axial super-resolution evanescent wave tomography.

    PubMed

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a three-dimensional (3D) nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography method that enables the use of regular evanescent wave microscopes like the total internal reflection fluorescence microscope beyond surface imaging and achieve a tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of 3D fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by one-dimensional (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of ∼130  nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like stochastic optical reconstruction microscopy and can also be adapted for THz and microwave near-field tomography.

  11. Ocular Granulocytic Sarcoma as an Initial Clinical Presentation of Acute Myeloid Leukemia Identified on Flurodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Chandra, Piyush; Purandare, Nilendu; Shah, Sneha; Agrawal, Archi; Rangarajan, Venkatesh

    2017-01-01

    Granulocytic sarcoma (GS) or chloroma, rare extramedullary manifestation of acute myeloid leukemia and not infrequently, can be presenting clinical feature. Multiple studies have demonstrated the clinical utility of fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in early detection and follow-up assessment of GS after chemotherapy. Commonly involved areas include bones, lymph nodes, breasts, and skin and not uncommonly, the disease can be multifocal. We present a rare case of ocular GS, where FDG-PET/CT in addition to the identifying the ocular mass, revealed multiple clinically occult extramedullary lesions. PMID:28242990

  12. Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging

    PubMed Central

    Ragan, Timothy; Kadiri, Lolahon R.; Venkataraju, Kannan Umadevi; Bahlmann, Karsten; Sutin, Jason; Taranda, Julian; Arganda-Carreras, Ignacio; Kim, Yongsoo; Seung, H. Sebastian

    2011-01-01

    Here we describe an automated method, which we call serial two-photon (STP) tomography, that achieves high-throughput fluorescence imaging of mouse brains by integrating two-photon microscopy and tissue sectioning. STP tomography generates high-resolution datasets that are free of distortions and can be readily warped in 3D, for example, for comparing multiple anatomical tracings. This method opens the door to routine systematic studies of neuroanatomy in mouse models of human brain disorders. PMID:22245809

  13. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response

    PubMed Central

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-01-01

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin’s lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as “GEM-P”) as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy. PMID:27672640

  14. Fluorodeoxyglucose positron emission tomography-computed tomography: a novel approach for the diagnosis of cholecystitis for equivocal diagnoses after ultrasound imaging.

    PubMed

    Nasseri, Yosef; Ourian, Ariel J; Waxman, Alan; D'Angolo, Alessandro; Thomson, Louise E; Margulies, Daniel R

    2012-10-01

    Although hepatobiliary iminodiacetic acid (HIDA) scan is often used when the diagnosis of cholecystitis remains questionable after ultrasound, it carries a high false-positive rate and has other limitations. Fluorodeoxyglucose positron emission tomography-computed tomography (18FDG PET-CT) has recently gained enthusiasm for its ability to detect infection and inflammation. In this study, we evaluate the accuracy of 18FDG PET-CT in diagnosing cholecystitis. Nineteen patients with suspected cholecystitis (Group S) underwent PET-CT and 10 had positive PET-CT findings. Of these 10, nine underwent cholecystectomies, and pathology confirmed cholecystitis in all nine. One patient was managed nonoperatively as a result of multiple comorbidities. Of the nine patients with negative PET-CT, six were managed nonoperatively, safely discharged, and had no readmissions at 3-month follow-up. The other three patients with negative PET-CT underwent cholecystectomies, and two showed no cholecystitis on pathology. The third had mild to moderate cholecystitis with focal mucosal erosion/ulceration without gallbladder wall thickening on pathology. 18FDG PET-CT detected gallbladder inflammation in all but one patient with pathology-proven cholecystitis with a sensitivity and specificity of 0.90 and 1.00, respectively. 18FDG-PET-CT appears to be a promising, rapid, direct, and accurate test in diagnosing cholecystitis and could replace HIDA scan in cases that remain equivocal after ultrasound.

  15. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method

    PubMed Central

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-01-01

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account. PMID:27445105

  16. Satellite Animation Shows California Storms

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite shows a series of moisture-laden storms affecting California from Jan. 6 through Jan. 9, 2017. TRT: 00:36 Credit: NASA...

  17. Satellite Movie Shows Erika Dissipate

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from Aug. 27 to 29 shows Tropical Storm Erika move through the Eastern Caribbean Sea and dissipate near eastern Cuba. ...

  18. Multiple taurodontism: the challenge of endodontic treatment.

    PubMed

    Marques-da-Silva, Bruno; Baratto-Filho, Flares; Abuabara, Allan; Moura, Paula; Losso, Estela M; Moro, Alexandre

    2010-12-01

    This article describe a rare case of multiple taurodontism involving all molars in a 17-year-old male. Volumetric cone-beam computed tomography was used to investigate internal and external root morphology, including that of a maxillary first molar which required endodontic treatment and retreatment. Medical history was not contributory; however, Klinefelter syndrome was the diagnostic hypothesis in this case.

  19. ICG enhanced co-registered diffuse optical tomography and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Kumavor, Patrick D.; Xu, Yan; Zhu, Quing

    2013-03-01

    To overcome the intensive light scattering in the biological tissue, diffuse optical tomography (DOT) in the near infrared range for breast lesion detection usually is combined with other imaging modalities such as ultrasound, X-ray, and MRI, to provide guidance. However, the guided imaging modalities may depend on different contrast mechanics compared to the optical contrast in the DOT. As a result, they can't provide reliable guidance for diffuse optical tomography because some lesions may not be detectable by a non-optical modality but yet have high optical contrast. An imaging modality which can provide the guidance from optical contrast is desirable for DOT. In this paper, we present a system that combines diffuse optical tomography and photoacoustic tomography (PAT), to detect and characterize the deeply-seated targets embedded in a turbid medium. Photoacoustic tomography utilizes a short-pulsed laser beam to penetrate into tissue diffusively. Upon absorption of the light by the target, photoacoustic waves are generated and used to reconstruct, at ultrasound resolution, the optical absorption distribution that reveals optical contrast. The combined system used in the experiment combines a 64-channel photoacoustic system with a frequency-domain diffused optical system. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG) is used. Our experiment results show that the combined system can detect a tumormimicking phantom up to 2.5 cm in depth and 10 μM in concentration. Mice experiments also confirmed that the combined system can detect the tumor region and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect the small breast lesions or any lesions which are sensitive to the reference change, such as the lesions located on the chest wall.

  20. Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Huang, David

    Optical coherence tomography (OCT) is a new method for noninvasive cross-sectional imaging in biological systems. In OCT, the longitudinal locations of tissue structures are determined by measuring the time-of-flight delays of light backscattered from these structures. The optical delays are measured by low coherence interferometry. Information on lateral position is provided by transverse scanning of the probe beam. The two dimensional map of optical scattering from internal tissue microstructures is then represented in a false-color or grayscale image. OCT is the optical analog of ultrasonic pulse-echo imaging, but with greatly improved spatial resolutions (a few microns). This thesis describes the development of this new high resolution tomographic imaging technology and the demonstration of its use in a variety of tissues under both in vitro and in vivo conditions. In vitro OCT ranging and imaging studies were performed using human ocular and arterial tissues, two clinically relevant examples of transparent and turbid media, respectively. In the anterior eye, precise measurements of cornea and anterior chamber dimensions were made. In the arterial specimens, the differentiation between fatty -calcified and fibromuscular tissues was demonstrated. In vivo OCT imaging in the retina and optic nerve head in human subjects was also performed. The delineation of retinal layers, which has not been possible with other noninvasive imaging techniques, is demonstrated in these OCT images. OCT has high spatial resolution but limited penetration into turbid tissue. It has potential for diagnostic applications where high resolution is needed and optical access is available, such as in the eye, skin, surgically exposed tissues, and surfaces that can be reached by various catheters and endoscopic probes. In particular, the measurement of fine retinal structures promises improvements in the diagnosis and management of glaucoma, macular edema and other vitreo-retinal diseases

  1. Optical Coherency Matrix Tomography

    DTIC Science & Technology

    2015-10-19

    multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of...spatial-mode characterization16. In exploring these settings, it has recently proven fruitful to adopt the Hilbert-space formulation used in quantum ...multiple DoFs, such a treatment necessitates introducing the notion of ‘classical entanglement’10,19–25. In quantum mechanics, states associated with

  2. Multiplicity Counting

    SciTech Connect

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  3. Computed Tomography Findings in Xanthogranulomatous Pyelonephritis

    PubMed Central

    Rajesh, Arumugam; Jakanani, George; Mayer, Nick; Mulcahy, Kevin

    2011-01-01

    Background: Xanthogranulomatous pyelonephritis (XGN) is an uncommon condition characterized by chronic suppurative renal inflammation that leads to progressive parenchymal destruction. Purpose: To review the computed tomography (CT) findings of patients diagnosed with XGN. Materials and Methods: A retrospective review of CT findings in patients with histologically proven XGN was carried out. Results: Thirteen CT examinations of 11 patients were analyzed. Renal enlargement was demonstrable on the affected side in all patients. Nine patients (82%) had multiple dilated calyces and abnormal parenchyma. Six patients (55%) had a renal pelvis or upper ureteric calculus causing obstruction. Three patients (27%) had focal fat deposits identifiable within the inflamed renal parenchyma. Two patients had renal abscesses. Ten patients (91%) had extrarenal extension of the inflammatory changes. Three patients (27%) demonstrated extensive retroperitoneal inflammation. Conclusion: Unilateral renal enlargement and inflammation were the most consistent findings of XGN on CT. Perinephric inflammation and collections or abscess should also alert the radiologist to the possibility of this diagnosis. PMID:22315712

  4. Blood oxygenation monitoring by diffuse optical tomography

    SciTech Connect

    Patachia, M; Dutu, D.C.A.; Dumitras, D.C.

    2011-01-24

    Diffuse optical tomography (DOT) makes it possible to reconstruct, in two or three dimensions, the internal structure of the biological tissues based on the distribution of the absorption coefficient and the reduced scattering coefficient, using optical measurements at multiple source - detector positions on the tissue surface. The measurement of the light intensity transmitted through the tissue can be also used to compute the haemoglobin and oxyhaemoglobin concentrations, measuring the selective absorption of the main blood chromophores by near infrared spectroscopy (NIRS). The spectral selectivity of the system and the evaluation of the blood volume and blood oxygenation (BV and OXY distributions), together with the reconstruction of the inner structure of the tissue, can improve the accuracy of early cancer diagnosis, based on the tissue angiogenesis characterisation. (application of lasers and laser-optical methods in life sciences)

  5. National Orange Show Photovoltaic Demonstration

    SciTech Connect

    Dan Jimenez Sheri Raborn, CPA; Tom Baker

    2008-03-31

    National Orange Show Photovoltaic Demonstration created a 400KW Photovoltaic self-generation plant at the National Orange Show Events Center (NOS). The NOS owns a 120-acre state fairground where it operates an events center and produces an annual citrus fair known as the Orange Show. The NOS governing board wanted to employ cost-saving programs for annual energy expenses. It is hoped the Photovoltaic program will result in overall savings for the NOS, help reduce the State's energy demands as relating to electrical power consumption, improve quality of life within the affected grid area as well as increase the energy efficiency of buildings at our venue. In addition, the potential to reduce operational expenses would have a tremendous effect on the ability of the NOS to service its community.

  6. A fast SPAD-based small animal imager for early-photon diffuse optical tomography.

    PubMed

    Mu, Ying; Niedre, Mark

    2014-01-01

    Photon scatter is the dominant light transport process in biological tissue and is well understood to degrade imaging performance in near-infrared diffuse optical tomography. Measurement of photons arriving at early times following a short laser pulse is considered to be an effective method to improve this limitation, i.e. by systematically selecting photons that have experienced fewer scattering events. Previously, we tested the performance of single photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media and showed that it outperformed photo-multiplier tube (PMT) systems in similar configurations, principally due to its faster temporal response. In this paper, we extended this work and developed a fast SPAD-based time-resolved diffuse optical tomography system. As a first validation of the instrument, we scanned an optical phantom with multiple absorbing inclusions and measured full time-resolved data at 3240 scan points per axial slice. We performed image reconstruction with very early-arriving photon data and showed significant improvements compared to time-integrated data. Extension of this work to mice in vivo and measurement of time-resolved fluorescence data is the subject of ongoing research.

  7. An optimal parametrization framework for infrasonic tomography of the stratospheric winds using non-local sources

    NASA Astrophysics Data System (ADS)

    Blom, Philip S.; Marcillo, Omar E.

    2017-03-01

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.

  8. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    NASA Astrophysics Data System (ADS)

    Blom, Philip S.; Marcillo, Omar

    2016-12-01

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multi-modal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parameterization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Comparison of the resulting estimates for synthetic datasets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic travel time observations.

  9. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    DOE PAGES

    Blom, Philip Stephen; Marcillo, Omar Eduardo

    2016-12-05

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. Inmore » order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.« less

  10. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    SciTech Connect

    Blom, Philip Stephen; Marcillo, Omar Eduardo

    2016-12-05

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.

  11. Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation

    NASA Astrophysics Data System (ADS)

    Lu, Yujie; Douraghy, Ali; Machado, Hidevaldo B.; Stout, David; Tian, Jie; Herschman, Harvey; Chatziioannou, Arion F.

    2009-11-01

    Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative three-dimensional bioluminescent source information obtained by using bioluminescence tomography can directly and much more accurately reflect biological changes as opposed to planar bioluminescence imaging. Preliminary simulated and experimental reconstruction results demonstrate the feasibility and promise of bioluminescence tomography. However, the use of multiple approximations, particularly the diffusion approximation theory, affects the quality of in vivo small animal-based image reconstructions. In the development of new reconstruction algorithms, high-order approximation models of the radiative transfer equation and spectrally resolved data introduce new challenges to the reconstruction algorithm and speed. In this paper, an SP3-based (the third-order simplified spherical harmonics approximation) spectrally resolved reconstruction algorithm is proposed. The simple linear relationship between the unknown source distribution and the spectrally resolved data is established in this algorithm. A parallel version of this algorithm is realized, making BLT reconstruction feasible for the whole body of small animals especially for fine spatial domain discretization. In simulation validations, the proposed algorithm shows improved reconstruction quality compared with diffusion approximation-based methods when high absorption, superficial sources and detection modes are considered. In addition, comparisons between fine and coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the potential and effectiveness of the SP3-based reconstruction algorithm.

  12. Phyllodes tumor showing intraductal growth.

    PubMed

    Makidono, Akari; Tsunoda, Hiroko; Mori, Miki; Yagata, Hiroshi; Onoda, Yui; Kikuchi, Mari; Nozaki, Taiki; Saida, Yukihisa; Nakamura, Seigo; Suzuki, Koyu

    2013-07-01

    Phyllodes tumor of the breast is a rare fibroepithelial lesion and particularly uncommon in adolescent girls. It is thought to arise from the periductal rather than intralobular stroma. Usually, it is seen as a well-defined mass. Phyllodes tumor showing intraductal growth is extremely rare. Here we report a girl who has a phyllodes tumor with intraductal growth.

  13. Electrical impedance tomography for assessing ventilation/perfusion mismatch for pulmonary embolism detection without interruptions in respiration.

    PubMed

    Nguyen, Doan Trang; Thiagalingam, Aravinda; Bhaskaran, Abhishek; Barry, Michael A; Pouliopoulos, Jim; Jin, Craig; McEwan, Alistair L

    2014-01-01

    Recent studies have shown high correlation between pulmonary perfusion mapping with impedance contrast enhanced Electrical Impedance Tomography (EIT) and standard perfusion imaging methods such as Computed Tomography (CT) and Single Photon Emission Computerized Tomography (SPECT). EIT has many advantages over standard imaging methods as it is highly portable and non-invasive. Contrast enhanced EIT uses hypertonic saline bolus instead of nephrotoxic contrast medium that are utilized by CT and nuclear Ventilation/Perfusion (V/Q) scans. However, current implementation of contrast enhanced EIT requires induction of an apnea period for perfusion measurement, rendering it disadvantageous compared with current gold standard imaging modalities. In the present paper, we propose the use of a wavelet denoising algorithm to separate perfusion signal from ventilation signal such that no interruption in patient's ventilation would be required. Furthermore, right lung to left lung perfusion ratio and ventilation ratio are proposed to assess the mismatch between ventilation and perfusion for detection of Pulmonary Embolism (PE). The proposed methodology was validated on an ovine model (n=3, 83.7±7.7 kg) with artificially induced PE in the right lung. The results showed a difference in right lung to left lung perfusion ratio between baseline and diseased states in all cases with all paired t-tests between baseline and PE yielding p <; 0.01, while the right lung to left lung ventilation ratio remained unchanged in two out of three experiments. Statistics were pooled from multiple repetitions of measurements per experiment.

  14. Database tomography for commercial application

    NASA Technical Reports Server (NTRS)

    Kostoff, Ronald N.; Eberhart, Henry J.

    1994-01-01

    Database tomography is a method for extracting themes and their relationships from text. The algorithms, employed begin with word frequency and word proximity analysis and build upon these results. When the word 'database' is used, think of medical or police records, patents, journals, or papers, etc. (any text information that can be computer stored). Database tomography features a full text, user interactive technique enabling the user to identify areas of interest, establish relationships, and map trends for a deeper understanding of an area of interest. Database tomography concepts and applications have been reported in journals and presented at conferences. One important feature of the database tomography algorithm is that it can be used on a database of any size, and will facilitate the users ability to understand the volume of content therein. While employing the process to identify research opportunities it became obvious that this promising technology has potential applications for business, science, engineering, law, and academe. Examples include evaluating marketing trends, strategies, relationships and associations. Also, the database tomography process would be a powerful component in the area of competitive intelligence, national security intelligence and patent analysis. User interests and involvement cannot be overemphasized.

  15. Diffractive molecular-orbital tomography

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Zhu, Xiaosong; Lan, Pengfei; Wang, Feng; He, Lixin; Shi, Wenjing; Li, Yang; Li, Min; Zhang, Qingbin; Lu, Peixiang

    2017-03-01

    High-order-harmonic generation in the interaction of femtosecond lasers with atoms and molecules opens the path to molecular-orbital tomography and to probe the electronic dynamics with attosecond-Ångström resolutions. Molecular-orbital tomography requires both the amplitude and phase of the high-order harmonics. Yet the measurement of phases requires sophisticated techniques and represents formidable challenges at present. Here we report a scheme, called diffractive molecular-orbital tomography, to retrieve the molecular orbital solely from the amplitude of high-order harmonics without measuring any phase information. We have applied this method to image the molecular orbitals of N2, CO2, and C2H2 . The retrieved orbital is further improved by taking account the correction of Coulomb potential. The diffractive molecular-orbital tomography scheme, removing the roadblock of phase measurement, significantly simplifies the molecular-orbital tomography procedure and paves an efficient and robust way to the imaging of more complex molecules.

  16. Modularized compact positron emission tomography detector for rapid system development.

    PubMed

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2017-01-01

    We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is [Formula: see text] in extent (excluding I/O connectors) and contains an [Formula: see text] array of [Formula: see text] one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of [Formula: see text].

  17. Chemical mapping of mammalian cells by atom probe tomography

    PubMed Central

    Narayan, Kedar; Prosa, Ty; Fu, Jing; Kelly, Thomas F; Subramaniam, Sriram

    2012-01-01

    In atom probe tomography (APT), a technique that has been used to determine 3D maps of ion compositions of metals and semiconductors at sub-nanometer resolution, controlled emissions of ions can be induced from needle-shaped specimens in the vicinity of a strong electric field. Detection of these ions in the plane of a position sensitive detector provides two-dimensional compositional information while the sequence of ion arrival at the detector provides information in the third dimension. However, the applicability of APT to imaging unstained cells has not been explored. Here, we report the use of APT to obtain 3D spatial distributions of cellular ions and metabolites from unstained, freeze-dried mammalian cells. Multiple peaks were reliably obtained in the mass spectrum from tips with diameters of ~ 50 nm and heights of ~ 200 nm, with mass-to-charge ratios (m/z) ranging from 1 to 80. Peaks at m/z 12, 23, 28 and 39, corresponding to carbon, sodium, carbonyl and potassium ions respectively, showed distinct patterns of spatial distribution within the cell. Our studies establish that APT could become a powerful tool for mapping the sub-cellular distribution of atomic species, such as labeled metabolites, at 3D spatial resolutions as high as ~ 1 nm. PMID:22245777

  18. Automated Segmentation of Soils Using X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; McKinley, J.

    2014-12-01

    X-ray tomography (CT) has long been a useful tool for three-dimensional imaging of compositionally heterogeneous objects. In the environmental sciences, CT is an efficient tool for the nondestructive inspection of sediment and soil cores. However, in order to extract parameters describing such properties as pore space and solid-phase distribution, the imaged volume must be segmented according to relevant categories. When done manually by image inspection, segmentation produces results that are often inconsistent, and applying the method over multiple images may be impractical. Modern machine learning techniques have been shown to be more accurate than humans at some vision tasks in fields of histology and remote sensing, and those techniques may be useful for environmental samples. We present a technique using deep learning to categorize a tomographic volume into solid and pore regions, while also identifying morphologically similar solid-phase regions within the imaged object. Finally, we show how the composition of these characteristic solid constituents may be estimated by propagating two dimensional XRF data through the segmented volume. This research was funded by the Chemical Imaging Initiative under the Laboratory Directed Research and Development Program at PNNL.

  19. Voxel Based Morphometry in Optical Coherence Tomography: Validation & Core Findings

    PubMed Central

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-01-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype. PMID:27199503

  20. Lung vasculature imaging using speckle variance optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lee, Anthony M. D.; Lane, Pierre M.; McWilliams, Annette; Shaipanich, Tawimas; MacAulay, Calum E.; Yang, Victor X. D.; Lam, Stephen

    2012-02-01

    Architectural changes in and remodeling of the bronchial and pulmonary vasculature are important pathways in diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. However, there is a lack of methods that can find and examine small bronchial vasculature in vivo. Structural lung airway imaging using optical coherence tomography (OCT) has previously been shown to be of great utility in examining bronchial lesions during lung cancer screening under the guidance of autofluorescence bronchoscopy. Using a fiber optic endoscopic OCT probe, we acquire OCT images from in vivo human subjects. The side-looking, circumferentially-scanning probe is inserted down the instrument channel of a standard bronchoscope and manually guided to the imaging location. Multiple images are collected with the probe spinning proximally at 100Hz. Due to friction, the distal end of the probe does not spin perfectly synchronous with the proximal end, resulting in non-uniform rotational distortion (NURD) of the images. First, we apply a correction algorithm to remove NURD. We then use a speckle variance algorithm to identify vasculature. The initial data show a vascaulture density in small human airways similar to what would be expected.

  1. Magic Carpet Shows Its Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The upper left image in this display is from the panoramic camera on the Mars Exploration Rover Spirit, showing the 'Magic Carpet' region near the rover at Gusev Crater, Mars, on Sol 7, the seventh martian day of its journey (Jan. 10, 2004). The lower image, also from the panoramic camera, is a monochrome (single filter) image of a rock in the 'Magic Carpet' area. Note that colored portions of the rock correlate with extracted spectra shown in the plot to the side. Four different types of materials are shown: the rock itself, the soil in front of the rock, some brighter soil on top of the rock, and some dust that has collected in small recesses on the rock face ('spots'). Each color on the spectra matches a line on the graph, showing how the panoramic camera's different colored filters are used to broadly assess the varying mineral compositions of martian rocks and soils.

  2. Quantitative photoacoustic tomography

    PubMed Central

    Yuan, Zhen; Jiang, Huabei

    2009-01-01

    In this paper, several algorithms that allow for quantitative photoacoustic reconstruction of tissue optical, acoustic and physiological properties are described in a finite-element method based framework. These quantitative reconstruction algorithms are compared, and the merits and limitations associated with these methods are discussed. In addition, a multispectral approach is presented for concurrent reconstructions of multiple parameters including deoxyhaemoglobin, oxyhaemoglobin and water concentrations as well as acoustic speed. Simulation and in vivo experiments are used to demonstrate the effectiveness of the reconstruction algorithms presented. PMID:19581254

  3. Monitoring High Velocity Salt Tracer via 4D Electrical Resistivity Tomography - Possibility for Salt Tracer Tomography

    NASA Astrophysics Data System (ADS)

    Doro, K. O.; Cirpka, O. A.; Patzelt, A.; Leven, C.

    2014-12-01

    Hydrogeological testing in a tomographic sequence as shown by the use of hydraulic tomography, allows an improvement of the spatial resolution of subsurface parameters. In this regard, recent studies show increasing interest in tracer tomography which involves sequential and spatially separated tracer injections and the measurement of their corresponding tracer breakthrough at different locations and depths. Such concentration measurements however require large experimental efforts and can be simplified by geophysical tracer monitoring techniques such as electrical resistivity. In this study, we present the use of 4-D, cross-hole electrical resistivity tomography (ERT) for monitoring salt tracer experiments in high velocity flow fields. For our study, we utilized a set up that enables the conduction of salt tracer experiments with complete recovery within 84 hours over a transport distance of 16 m. This allows the repetition of the experiments with different injection depths for a tomographic salt tracer testing. For ERT monitoring, we designed modular borehole electrodes for repeated usage in a flexible manner. We also assess the use of a high speed resistivity data acquisition mode for field scale tracer monitoring ensuring high spatial and temporal resolution without sacrificing data accuracy. We applied our approach at the Lauswiesen test site, Tübingen, Germany. In our 10 m × 10 m tracer monitoring domain with 16 borehole electrodes, we acquired 4650 data points in less than 18 minutes for each monitoring cycle. Inversion results show that the tracer could be successfully imaged using this approach. The results show that repeated salt tracer tests can be efficiently monitored at a high resolution with ERT which gives the possibility for salt tracer tomography at field scale. Our results also provide a data base for extending current hydrogeophysical inversion approaches to field scale data.

  4. How noise affects quantum detector tomography

    SciTech Connect

    Wang, Q. Renema, J. J.; Exter, M. P.van; Dood, M. J. A. de; Gaggero, A.; Mattioli, F.; Leoni, R.

    2015-10-07

    We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.

  5. Monkey brain cortex imaging by photoacoustic tomography.

    PubMed

    Yang, Xinmai; Wang, Lihong V

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultrasound signal attenuation and distortion caused by a relatively thick skull.

  6. Error estimation in the direct state tomography

    NASA Astrophysics Data System (ADS)

    Sainz, I.; Klimov, A. B.

    2016-10-01

    We show that reformulating the Direct State Tomography (DST) protocol in terms of projections into a set of non-orthogonal bases one can perform an accuracy analysis of DST in a similar way as in the standard projection-based reconstruction schemes, i.e., in terms of the Hilbert-Schmidt distance between estimated and true states. This allows us to determine the estimation error for any measurement strength, including the weak measurement case, and to obtain an explicit analytic form for the average minimum square errors.

  7. "Medicine show." Alice in Doctorland.

    PubMed

    1987-01-01

    This is an excerpt from the script of a 1939 play provided to the Institute of Social Medicine and Community Health by the Library of Congress Federal Theater Project Collection at George Mason University Library, Fairfax, Virginia, pages 2-1-8 thru 2-1-14. The Federal Theatre Project (FTP) was part of the New Deal program for the arts 1935-1939. Funded by the Works Progress Administration (WPA) its goal was to employ theater professionals from the relief rolls. A number of FTP plays deal with aspects of medicine and public health. Pageants, puppet shows and documentary plays celebrated progress in medical science while examining social controversies in medical services and the public health movement. "Medicine Show" sharply contrasts technological wonders with social backwardness. The play was rehearsed by the FTP but never opened because funding ended. A revised version ran on Broadway in 1940. The preceding comments are adapted from an excellent, well-illustrated review of five of these plays by Barabara Melosh: "The New Deal's Federal Theatre Project," Medical Heritage, Vol. 2, No. 1 (Jan/Feb 1986), pp. 36-47.

  8. Structured interference optical coherence tomography.

    PubMed

    Yi, Ji; Wei, Qing; Zhang, Hao F; Backman, Vadim

    2012-08-01

    We developed a structured interference optical coherence tomography (SIOCT) to enhance the lateral resolution beyond the diffraction limit. A sinusoidal pattern is created on the interferometric beam with the reference intensity temporally modulated. In the Fourier domain, the high spatial frequencies are shifted into the detectable range, which enhances the lateral resolution beyond the diffraction limit by a factor of 2. The lateral resolution of SIOCT was characterized in our study as ~5.5 μm, surpassing the diffraction limit ~9.6 μm as in conventional Fourier-domain optical coherence tomography. SIOCT was demonstrated on phantoms and ex vivo adipose tissues.

  9. Electron tomography of dislocation structures

    SciTech Connect

    Liu, G.S.; House, S.D.; Kacher, J.; Tanaka, M.; Higashida, K.; Robertson, I.M.

    2014-01-15

    Recent developments in the application of electron tomography for characterizing microstructures in crystalline solids are described. The underlying principles for electron tomography are presented in the context of typical challenges in adapting the technique to crystalline systems and in using diffraction contrast imaging conditions. Methods for overcoming the limitations associated with the angular range, the number of acquired images, and uniformity of image contrast are introduced. In addition, a method for incorporating the real space coordinate system into the tomogram is presented. As the approach emphasizes development of experimental solutions to the challenges, the solutions developed and implemented are presented in the form of examples.

  10. Self-Guided Quantum Tomography

    NASA Astrophysics Data System (ADS)

    Ferrie, Christopher

    2014-11-01

    We introduce a self-learning tomographic technique in which the experiment guides itself to an estimate of its own state. Self-guided quantum tomography uses measurements to directly test hypotheses in an iterative algorithm which converges to the true state. We demonstrate through simulation on many qubits that Self-guided quantum tomography is a more efficient and robust alternative to the usual paradigm of taking a large amount of informationally complete data and solving the inverse problem of postprocessed state estimation.

  11. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    PubMed

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.

  12. The Development, Commercialization, and Impact of Optical Coherence Tomography

    PubMed Central

    Fujimoto, James; Swanson, Eric

    2016-01-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459

  13. "Show me" bioethics and politics.

    PubMed

    Christopher, Myra J

    2007-10-01

    Missouri, the "Show Me State," has become the epicenter of several important national public policy debates, including abortion rights, the right to choose and refuse medical treatment, and, most recently, early stem cell research. In this environment, the Center for Practical Bioethics (formerly, Midwest Bioethics Center) emerged and grew. The Center's role in these "cultural wars" is not to advocate for a particular position but to provide well researched and objective information, perspective, and advocacy for the ethical justification of policy positions; and to serve as a neutral convener and provider of a public forum for discussion. In this article, the Center's work on early stem cell research is a case study through which to argue that not only the Center, but also the field of bioethics has a critical role in the politics of public health policy.

  14. Phoenix Scoop Inverted Showing Rasp

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on Sol 49, or the 49th Martian day of the mission (July 14, 2008), shows the silver colored rasp protruding from NASA's Phoenix Mars Lander's Robotic Arm scoop. The scoop is inverted and the rasp is pointing up.

    Shown with its forks pointing toward the ground is the thermal and electrical conductivity probe, at the lower right. The Robotic Arm Camera is pointed toward the ground.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  16. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  17. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  18. Computed tomography of the gastrointestinal tract

    SciTech Connect

    Meyers, M.A.

    1986-01-01

    This volume presents computed tomography of the major disease states involving the gastrointestinal tract, mesentery, and peritoneal cavity. Computed Tomography of the Gastrointestinal Tract combined experience of l5 authorities includes illustrations (most of these radiographs).

  19. Anisotropic resistivity tomography

    NASA Astrophysics Data System (ADS)

    Herwanger, J. V.; Pain, C. C.; Binley, A.; de Oliveira, C. R. E.; Worthington, M. H.

    2004-08-01

    , the inversion model is smoother than the true model and the difference in absolute value of anisotropy and conductivity between features is slightly underestimated. Using an anisotropic conductivity distribution aggravates the problem of non-uniqueness of the solution of the inverse electrical problem. This problem can be overcome by applying appropriate structural and anisotropy constraints. We find that running a suite of inversions with varying constraint levels and subsequent examination of the results (including the inspection of residual maps) offers a viable method for choosing appropriate numerical values for the imposed constraints. Inversion of field data reveals a strongly anisotropic subsurface with marked spatial variations of both magnitude of anisotropy and conductivity. Average conductivities range from 0.001 S m-1 (= 1000 Ω m) to 0.003 S m-1 (= 333 Ω m) and anisotropy values range from 0 per cent to more than 300 per cent. As an independent test of the reliability of the structures revealed by anisotropic electric tomography, anisotropic seismic traveltime tomograms were calculated. We find a convincing structural agreement between the two independently derived images. Areas of high electric anisotropy coincide with seismically anisotropic areas and we observe an anticorrelation between electric conductivity and seismic velocity. Both observations are consistent with anisotropy anomalies caused by fracturing or layering.

  20. Using Acceleration Records as Diffuse Fields for Tomography of the Valley of Mexico City: Synthetic Results

    NASA Astrophysics Data System (ADS)

    Baena, M.; Perton, M.; Molina-Villegas, J. C.; Sanchez-Sesma, F. J.

    2013-12-01

    In order to improve the understanding of the seismic response of Mexico City Valley, we have proposed to perform a tomography study of the seismic wave velocities. For that purpose, we used a collection of acceleration seismograms (corresponding to earthquakes with magnitudes ranging from 4.5 to 8.1 and various epicentral distances to the City) recorded since 1985 in 83 stations distributed across the Valley. The H/V spectral ratios (obtained from average autocorrelations) strongly suggest these movements belong to a 3D generalized diffuse field. Thus, we interpret that cross-correlations between the signals of station pairs are proportional to the imaginary part of the corresponding Green function. Finally, the dispersion curves are constructed from the Green function which lead to the tomography. Other tomographies have already been made around the world using either the seismic coda or seismic noise. We used instead the ensemble of many earthquakes from distant sources that have undergone multiple scattering by the heterogeneities of the Earth and assume the wave fields are equipartitioned. The purpose of the present study is to describe the different steps of the data processing by using synthetic models. The wave propagation within an alluvial basin is simulated using the Indirect Boundary Element Method (IBEM) in 2D configuration for the propagation of P and SV waves. The theoretical Green function for a station pair is obtained by placing a unit force at one station and a receiver at the other. The valley illumination is composed by incoming waves which are simulated using distant independent sources and several diffractors. Data process is validated by the correct retrieval the theoretical Green function. We present here the in-plane Green function for the P-SV case and show the dispersion curves constructed from the cross-correlations compared with analytic results for a layer over a half-space. ACKNOWLEDGEMENTS. This study is partially supported by AXA

  1. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth.

    PubMed

    Gordon, Lyle M; Joester, Derk

    2011-01-13

    Biological organisms possess an unparalleled ability to control the structure and properties of mineralized tissues. They are able, for example, to guide the formation of smoothly curving single crystals or tough, lightweight, self-repairing skeletal elements. In many biominerals, an organic matrix interacts with the mineral as it forms, controls its morphology and polymorph, and is occluded during mineralization. The remarkable functional properties of the resulting composites-such as outstanding fracture toughness and wear resistance-can be attributed to buried organic-inorganic interfaces at multiple hierarchical levels. Analysing and controlling such interfaces at the nanometre length scale is critical also in emerging organic electronic and photovoltaic hybrid materials. However, elucidating the structural and chemical complexity of buried organic-inorganic interfaces presents a challenge to state-of-the-art imaging techniques. Here we show that pulsed-laser atom-probe tomography reveals three-dimensional chemical maps of organic fibres with a diameter of 5-10 nm in the surrounding nano-crystalline magnetite (Fe(3)O(4)) mineral in the tooth of a marine mollusc, the chiton Chaetopleura apiculata. Remarkably, most fibres co-localize with either sodium or magnesium. Furthermore, clustering of these cations in the fibre indicates a structural level of hierarchy previously undetected. Our results demonstrate that in the chiton tooth, individual organic fibres have different chemical compositions, and therefore probably different functional roles in controlling fibre formation and matrix-mineral interactions. Atom-probe tomography is able to detect this chemical/structural heterogeneity by virtue of its high three-dimensional spatial resolution and sensitivity across the periodic table. We anticipate that the quantitative analysis and visualization of nanometre-scale interfaces by laser-pulsed atom-probe tomography will contribute greatly to our understanding not

  2. Casimir experiments showing saturation effects

    SciTech Connect

    Sernelius, Bo E.

    2009-10-15

    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a {sup 87}Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can explain the discrepancies between theory and experiment observed in all these cases.

  3. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Chu, Zhongdi; Lin, Jason; Gao, Chen; Xin, Chen; Zhang, Qinqin; Chen, Chieh-Li; Roisman, Luis; Gregori, Giovanni; Rosenfeld, Philip J.; Wang, Ruikang K.

    2016-06-01

    Optical coherence tomography angiography (OCTA) is clinically useful for the qualitative assessment of the macular microvasculature. However, there is a need for comprehensive quantitative tools to help objectively analyze the OCT angiograms. Few studies have reported the use of a single quantitative index to describe vessel density in OCT angiograms. In this study, we introduce a five-index quantitative analysis of OCT angiograms in an attempt to detect and assess vascular abnormalities from multiple perspectives. The indices include vessel area density, vessel skeleton density, vessel diameter index, vessel perimeter index, and vessel complexity index. We show the usefulness of the proposed indices with five illustrative cases. Repeatability is tested on both a healthy case and a stable diseased case, giving interclass coefficients smaller than 0.031. The results demonstrate that our proposed quantitative analysis may be useful as a complement to conventional OCTA for the diagnosis of disease and monitoring of treatment.

  4. Voxel based morphometry in optical coherence tomography: validation and core findings

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-03-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype.

  5. Infrared species tomography of a transient flow field using Kalman filtering.

    PubMed

    Daun, Kyle J; Waslander, Steven L; Tulloch, Brandon B

    2011-02-20

    In infrared species tomography, the unknown concentration distribution of a species is inferred from the attenuation of multiple collimated light beams shone through the measurement field. The resulting set of linear equations is rank-deficient, so prior assumptions about the smoothness and nonnegativity of the distribution must be imposed to recover a solution. This paper describes how the Kalman filter can be used to incorporate additional information about the time evolution of the distribution into the reconstruction. Results show that, although performing a series of static reconstructions is more accurate at low levels of measurement noise, the Kalman filter becomes advantageous when the measurements are corrupted with high levels of noise. The Kalman filter also enables signal multiplexing, which can help achieve the high sampling rates needed to resolve turbulent flow phenomena.

  6. Optimization of Volumetric Computed Tomography for Skeletal Analysis of Model Genetic Organisms

    PubMed Central

    Vasquez, Sergio X.; Hansen, Mark S.; Bahadur, Ali N.; Hockin, Matthew F.; Kindlmann, Gordon L.; Nevell, Lisa; Wu, Isabel Q.; Grunwald, David J.; Weinstein, David M.; Jones, Greg M.; Johnson, Christopher R.; Vandeberg, John L.; Capecchi, Mario R.; Keller, Charles

    2011-01-01

    Forward and reverse genetics now allow researchers to understand embryonic and postnatal gene function in a broad range of species. Although some genetic mutations cause obvious morphological change, other mutations can be more subtle and, without adequate observation and quantification, might be overlooked. For the increasing number of genetic model organisms examined by the growing field of phenomics, standardized but sensitive methods for quantitative analysis need to be incorporated into routine practice to effectively acquire and analyze ever-increasing quantities of phenotypic data. In this study, we present platform-independent parameters for the use of microscopic x-ray computed tomography (microCT) for phenotyping species-specific skeletal morphology of a variety of different genetic model organisms. We show that microCT is suitable for phenotypic characterization for prenatal and postnatal specimens across multiple species. PMID:18286615

  7. Field and synthetic experiments for virtual source crosswell tomography in vertical wells: Perth Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Almalki, Majed; Harris, Brett; Dupuis, J. Christian

    2013-11-01

    It is common for at least one monitoring well to be located proximally to a production well. This presents the possibility of applying crosswell technologies to resolve a range of earth properties between the wells. We present both field and synthetic examples of dual well walk-away vertical seismic profiling in vertical wells and show how the direct arrivals from a virtual source may be used to create velocity images between the wells. The synthetic experiments highlight the potential of virtual source crosswell tomography where large numbers of closely spaced receivers can be deployed in multiple wells. The field experiment is completed in two monitoring wells at an aquifer storage and recovery site near Perth, Western Australia. For this site, the crosswell velocity distribution recovered from inversion of travel times between in-hole virtual sources and receivers is highly consistent with what is expected from sonic logging and detailed zero-offset vertical seismic profiling. When compared to conventional walkaway vertical seismic profiling, the only additional effort required to complete dual-well walkaway vertical seismic profiling is the deployment of seismic sensors in the second well. The significant advantage of virtual source crosswell tomography is realised where strong near surface heterogeneity results in large travel time statics.

  8. Automated data selection method to improve robustness of diffuse optical tomography for breast cancer imaging

    PubMed Central

    Vavadi, Hamed; Zhu, Quing

    2016-01-01

    Imaging-guided near infrared diffuse optical tomography (DOT) has demonstrated a great potential as an adjunct modality for differentiation of malignant and benign breast lesions and for monitoring treatment response of breast cancers. However, diffused light measurements are sensitive to artifacts caused by outliers and errors in measurements due to probe-tissue coupling, patient and probe motions, and tissue heterogeneity. In general, pre-processing of the measurements is needed by experienced users to manually remove these outliers and therefore reduce imaging artifacts. An automated method of outlier removal, data selection, and filtering for diffuse optical tomography is introduced in this manuscript. This method consists of multiple steps to first combine several data sets collected from the same patient at contralateral normal breast and form a single robust reference data set using statistical tests and linear fitting of the measurements. The second step improves the perturbation measurements by filtering out outliers from the lesion site measurements using model based analysis. The results of 20 malignant and benign cases show similar performance between manual data processing and automated processing and improvement in tissue characterization of malignant to benign ratio by about 27%. PMID:27867711

  9. Classification and 3D averaging with missing wedge correction in biological electron tomography

    PubMed Central

    Bartesaghi, A.; Sprechmann, P.; Liu, J.; Randall, G.; Sapiro, G.; Subramaniam, S.

    2008-01-01

    Strategies for the determination of 3D structures of biological macromolecules using electron crystallography and single-particle electron microscopy utilize powerful tools for the averaging of information obtained from 2D projection images of structurally homogeneous specimens. In contrast, electron tomographic approaches have often been used to study the 3D structures of heterogeneous, one-of-a-kind objects such as whole cells where image-averaging strategies are not applicable. Complex entities such as cells and viruses, nevertheless, contain multiple copies of numerous macromolecules that can individually be subjected to 3D averaging. Here we present a complete framework for alignment, classification, and averaging of volumes derived by electron tomography that is computationally efficient and effectively accounts for the missing wedge that is inherent to limited-angle electron tomography. Modeling the missing data as a multiplying mask in reciprocal space we show that the effect of the missing wedge can be accounted for seamlessly in all alignment and classification operations. We solve the alignment problem using the convolution theorem in harmonic analysis, thus eliminating the need for approaches that require exhaustive angular search, and adopt an iterative approach to alignment and classification that does not require the use of external references. We demonstrate that our method can be successfully applied for 3D classification and averaging of phantom volumes as well as experimentally obtained tomograms of GroEL where the outcomes of the analysis can be quantitatively compared against the expected results. PMID:18440828

  10. Research of inverse synthetic aperture imaging lidar based on filtered back-projection tomography technique

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2014-07-01

    In order to obtain clear two-dimensional image under the conditions without using heterodyne interferometry by inverse synthetic aperture lidar(ISAL), designed imaging algorithms based on filtered back projection tomography technique, and the target "A" was reconstructed with simulation algorithm by the system in the turntable model. Analyzed the working process of ISAL, and the function of the reconstructed image was given. Detail analysis of the physical meaning of the various parameters in the process of echo data, and its parameters affect the reconstructed image. The image in test area was reconstructed by the one-dimensional distance information with filtered back projection tomography technique. When the measured target rotated, the sum of the echo light intensity at the same distance was constituted by the different position of the measured target. When the total amount collected is large enough, multiple equations can be solved change. Filtered back-projection image of the ideal image is obtained through MATLAB simulation, and analyzed that the angle intervals affected the reconstruction of image. The ratio of the intensity of echo light and loss light affected the reconstruction of image was analyzed. Simulation results show that, when the sampling angle is smaller, the resolution of the reconstructed image of measured target is higher. And the ratio of the intensity of echo light and loss light is greater, the resolution of the reconstructed image of measured target is higher. In conclusion after some data processing, the reconstructed image basically meets be effective identification requirements.

  11. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction

    PubMed Central

    Dehghani, Hamid; Eames, Matthew E.; Yalavarthy, Phaneendra K.; Davis, Scott C.; Srinivasan, Subhadra; Carpenter, Colin M.; Pogue, Brian W.; Paulsen, Keith D.

    2009-01-01

    SUMMARY Diffuse optical tomography, also known as near infrared tomography, has been under investigation, for non-invasive functional imaging of tissue, specifically for the detection and characterization of breast cancer or other soft tissue lesions. Much work has been carried out for accurate modeling and image reconstruction from clinical data. NIRFAST, a modeling and image reconstruction package has been developed, which is capable of single wavelength and multi-wavelength optical or functional imaging from measured data. The theory behind the modeling techniques as well as the image reconstruction algorithms is presented here, and 2D and 3D examples are presented to demonstrate its capabilities. The results show that 3D modeling can be combined with measured data from multiple wavelengths to reconstruct chromophore concentrations within the tissue. Additionally it is possible to recover scattering spectra, resulting from the dominant Mie-type scatter present in tissue. Overall, this paper gives a comprehensive over view of the modeling techniques used in diffuse optical tomographic imaging, in the context of NIRFAST software package. PMID:20182646

  12. Computed tomography of intracranial ependymomas

    SciTech Connect

    Swartz, J.D.; Zimmerman, R.A.; Bilaniuk, L.T.

    1982-04-01

    Twenty-six patients with ependymoma were evaluated by computed tomography (CT) over a period of 5 1/2 years. The usual CT appearance was an isodense, partially calcified mass, capable of contrast enhancement, occurring in the posterior fossa (73%) in an infant or child (77%). Outcome remains poor despite modern diagnostic and therapeutic methods.

  13. Computed tomography:the details.

    SciTech Connect

    Doerry, Armin Walter

    2007-07-01

    Computed Tomography (CT) is a well established technique, particularly in medical imaging, but also applied in Synthetic Aperture Radar (SAR) imaging. Basic CT imaging via back-projection is treated in many texts, but often with insufficient detail to appreciate subtleties such as the role of non-uniform sampling densities. Herein are given some details often neglected in many texts.

  14. Computed tomography of the thorax

    SciTech Connect

    Naidich, D.P.; Zerhouni, E.A.; Siegelman, S.S.

    1984-01-01

    This book contains chapters on: Principles and Techniques of Chest Computed Tomography; Aortic Arch and Great Vessels; Normal Anatomy and Variants; Mediastinum/Airways/Lobar Collapse/Pulmonary Hila/Pulmonary Nodule/Pulmonary Parenchyma/Pleura and Chest Wall/Pericardium/Diaphragm.

  15. Computed tomography in hepatic echinococcosis

    SciTech Connect

    Choliz, J.D.; Olaverri, F.J.L.; Casas, T.F.; Zubieta, S.O.

    1982-10-01

    Computed tomography (CT) was used to evaluate 50 cases of hydatid disease of the liver. It was definite in 49 cases and negative in one case. Pre- and postcontrast scans were performed. CT may reveal the exact location and extension of cysts and possible complications. However, a false-negative case was found in a hydatid cyst located in a fatty liver.

  16. Optical tomography with structured illumination.

    PubMed

    Lukic, Vladimir; Markel, Vadim A; Schotland, John C

    2009-04-01

    We consider the image reconstruction problem for optical tomography with structured illumination. A fast image reconstruction algorithm is proposed that reduces the required number of measurements of the optical field compared to methods that utilize point-source illumination. The results are illustrated with numerical simulations.

  17. Dynamic Quantum Tomography Model for Phase-Damping Channels

    NASA Astrophysics Data System (ADS)

    Czerwiński, Artur; Jamiołkowski, Andrzej

    In this paper we propose a dynamic quantum tomography model for open quantum systems with evolution given by phase-damping channels. Mathematically, these channels correspond to completely positive trace-preserving maps defined by the Hadamard product of the initial density matrix with a time-dependent matrix which carries the knowledge about the evolution. Physically, there is a strong motivation for considering this kind of evolution because such channels appear naturally in the theory of open quantum systems. The main idea behind a dynamic approach to quantum tomography claims that by performing the same kind of measurement at some time instants one can obtain new data for state reconstruction. Thus, this approach leads to a decrease in the number of distinct observables which are required for quantum tomography; however, the exact benefit for employing the dynamic approach depends strictly on how the quantum system evolves in time. Algebraic analysis of phase-damping channels allows one to determine criteria for quantum tomography of systems in question. General theorems and observations presented in the paper are accompanied by a specific example, which shows step by step how the theory works. The results introduced in this paper can potentially be applied in experiments where there is a tendency to look at quantum tomography from the point of view of economy of measurements, because each distinct kind of measurement requires, in general, preparing a separate setup.

  18. Mimas Showing False Colors #1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    False color images of Saturn's moon, Mimas, reveal variation in either the composition or texture across its surface.

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    The image at the left is a narrow angle clear-filter image, which was separately processed to enhance the contrast in brightness and sharpness of visible features. The image at the right is a color composite of narrow-angle ultraviolet, green, infrared and clear filter images, which have been specially processed to accentuate subtle changes in the spectral properties of Mimas' surface materials. To create this view, three color images (ultraviolet, green and infrared) were combined into a single black and white picture that isolates and maps regional color differences. This 'color map' was then superimposed over the clear-filter image at the left.

    The combination of color map and brightness image shows how the color differences across the Mimas surface materials are tied to geological features. Shades of blue and violet in the image at the right are used to identify surface materials that are bluer in color and have a weaker infrared brightness than average Mimas materials, which are represented by green.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of each image. The unusual bluer materials are seen to broadly surround Herschel crater. However, the bluer material is not uniformly distributed in and around the crater. Instead, it appears to be concentrated on the outside of the crater and more to the west than to the north or south. The origin of the color differences is not yet understood. It may represent ejecta material that was excavated from inside Mimas when the Herschel impact occurred. The bluer color of these materials may be caused by subtle differences in

  19. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  20. Process tomography applied to multi-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Dyakowski, T.

    1996-03-01

    This paper presents the state of the art in measuring multi-phase flows by using tomographic techniques. The results presented show a wide range of industrial applications of process tomography from the nuclear and chemical to the food industry. This is illustrated by examples of the application of various tomographic sensors to the measurement of geometric or kinematic parameters of multi-phase flows. An application of process tomography for the validation of computational fluid dynamic models and the possibility of constructing a flowmeter for multi-phase flow are addressed.

  1. Spectral domain optical coherence tomography finding in posterior microphthalmos.

    PubMed

    Kumar, Mukesh; Das, Taraprasad; Kesarwani, Siddharth

    2012-11-01

    An eight-year-old boy presented with decreased vision in both eyes. At presentation, the visual acuity was 6/60 in both eyes with high plus spheres. Anterior segment examination was normal. Fundus examination and spectral domain optical coherence tomography were consistent with posterior microphthalmos and showed an elevated foveal contour and fold in the outer plexiform layer. External limiting membrane, photoreceptor and retinal pigment epithelium were not involved in the fold. To the best of our knowledge this is the first such case report with optical coherence tomography imaging of the retinal layer involved in a case of posterior microphthalmos.

  2. Acousto-electric tomography and CGO solutions with internal data

    NASA Astrophysics Data System (ADS)

    Kocyigit, Ilker

    2012-12-01

    Acousto-electric tomography is a hybrid imaging technique that aims to overcome the ill-posedness of the electric impedance tomography. We consider the problem of reconstructing the internal conductivity of an object by making electric measurements on the boundary while perturbing the conductivity by sending ultrasound waves to the object. We show that the conductivity can be uniquely recovered by using one boundary potential. AET is reduced to an inverse problem with internal data, and corresponding uniqueness and Lipschitz-type stability results are given. An iterative method for reconstructing the current and then the conductivity is presented along with numerical examples.

  3. Ultrasonic guided wave tomography for ice detection.

    PubMed

    Zhao, Xiang; Rose, Joseph L

    2016-04-01

    Of great concern for many structures, particularly critical sections of rotary and fixed wing aircrafts, is the ability to detect ice either on grounded or in-flight vehicles. As a consequence, some work is reported here that could be useful for a variety of different industries where ice formation is an important problem. This paper presents experimental validations of a probability-based reconstruction algorithm (PRA) on ice detection of plate-like structures. The ice detection tests are performed for three different specimens: a single layer aluminum plate with a circular ice sensing array, a titanium plate with a sparse rectangular ice sensing array, and a carbon-fiber-reinforced titanium plate with an embedded ice sensing array mounted on a carbon fiber back plate. Cases from the simple to the more challenging exemplify that special modes can be used to differentiate ice from water, a sparse rectangular array could also be used for ice detection, and an ice sensing array could be further used to detect the ice on the sensor free side, a very useful application of ice sensing for aircraft wings, for example. Ice detection images for the respective cases are reconstructed to investigate the feasibility of ice sensing with ultrasonic guided wave tomography technology. The results show that the PRA based ultrasonic guided wave tomography method successfully detected and showed ice spots correctly for all three cases. This corroborates the fact that ultrasonic guided wave imaging technology could be a potential useful ice sensing tool in plate-like structures.

  4. Stable pure state quantum tomography from five orthonormal bases

    NASA Astrophysics Data System (ADS)

    Carmeli, Claudio; Heinosaari, Teiko; Kech, Michael; Schultz, Jussi; Toigo, Alessandro

    2016-08-01

    For any finite-dimensional Hilbert space, we construct explicitly five orthonormal bases such that the corresponding measurements allow for efficient tomography of an arbitrary pure quantum state. This means that such measurements can be used to distinguish an arbitrary pure state from any other state, pure or mixed, and the pure state can be reconstructed from the outcome distribution in a feasible way. The set of measurements we construct is independent of the unknown state, and therefore our results provide a fixed scheme for pure state tomography, as opposed to the adaptive (state-dependent) scheme proposed by Goyeneche et al. (Phys. Rev. Lett., 115 (2015) 090401). We show that our scheme is robust with respect to noise, in the sense that any measurement scheme which approximates these measurements well enough is equally suitable for pure state tomography. Finally, we present two convex programs which can be used to reconstruct the unknown pure state from the measurement outcome distributions.

  5. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  6. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  7. Imaging wet granules with different flow patterns by electrical capacitance tomography and microwave tomography

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Zhang, J. L.; Ramli, M. F.; Mao, M. X.; Ye, J. M.; Yang, W. Q.; Wu, Z. P.

    2016-11-01

    The moisture content of granules in fluidised bed drying, granulation and coating processes can typically be between 1%~25%, resulting in the change of permittivity and conductivity during the processes. Electrical capacitance tomography (ECT) has been used for this purpose, but has a limit because too much water can cause a problem in capacitance measurement. Considering that microwave tomography (MWT) has a wide range of frequency (1~2.5 GHz) and can be used to measure materials with high permittivity and conductivity, the objective of this research is to combine ECT and MWT together to investigate the solids concentration with different moisture content and different flow patterns. The measurement results show that both ECT and MWT are functions of moisture content as well as flow patterns, and their measurements are complementary to each other. This is the first time that these two tomography modalities have been combined together and applied to image the complex solids distribution. The obtained information may be used for the process control of fluidised bed drying, granulation and coating to improve operation efficiency.

  8. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions

    PubMed Central

    Olcum, Selim; Cermak, Nathan; Wasserman, Steven C.; Manalis, Scott R.

    2015-01-01

    Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop a general platform for independently and simultaneously oscillating multiple modes of mechanical resonators, enabling frequency measurements that can precisely track fast transient signals within a user-defined bandwidth that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple nanoparticles flowing simultaneously through a suspended nanochannel resonator and show that four resonant modes are sufficient for determining their individual position and mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit. We envision that our method can be readily extended to other systems to increase bandwidth, number of modes, or number of resonators. PMID:25963304

  9. Multiple bilateral pulmonary nodules masquerading as pulmonary metastasis; a case of nodular sarcoidosis

    PubMed Central

    Jafari, Mostafa; Farrokh, Donya; Mohammadpanah, Najmeh

    2016-01-01

    Sarcoidosis is a multi-system inflammatory disorder of unknown etiology that is manifested by the presence of non-caseating granulomas. Multiple pulmonary nodules are rare presentations of sarcoidosis. We report a case of nodular sarcoidosis in a young male of Middle-East origin who had initially presented with bilateral painful ankle edema. His chest X-ray showed multiple bilateral pulmonary nodules. A high resolution computed tomography scan of the chest demonstrated multiple pulmonary nodular lesions and also mediastinal and hilar lymphadenopathy. Subsequent biopsies revealed non-necrotizing granuloma with multi-nucleated giant cells indicative of sarcoidosis. An appropriate work-up was done to confirm the true nature of the nodules and facilitate treatment. PMID:27757192

  10. Design of a muon tomography system with a plastic scintillator and wavelength-shifting fiber arrays

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Baek, Cheol-Ha; Chung, Yong Hyun

    2013-12-01

    Recently, monitoring nuclear materials to avoid nuclear terrorism has become an important area of national security. It can be difficult to detect gamma rays from nuclear material because they are easily shielded by shielding material. Muon tomography using multiple -Coulomb scattering derived from muons can be utilized to detect special nuclear materials (SNMs) such as uranium-235 and plutonium-239. We designed a muon tomography system composed of four detector modules. The incident and scattered muon tracks can be calculated by two top and two bottom detectors, respectively. 3D tomographic images are obtained by extracting the crossing points of muon tracks with a point-of-closest-approach algorithm. The purpose of this study was to optimize the muon tomography system using Monte Carlo simulation code. The effects of the geometric parameters of the muon tomography system on material Z-discrimination capability were simulated and evaluated.

  11. Cellular resolution multiplexed FLIM tomography with dual-color Bessel beam

    PubMed Central

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-01-01

    Fourier multiplexed FLIM (FmFLIM) tomography enables multiplexed 3D lifetime imaging of whole embryos. In our previous FmFLIM system, the spatial resolution was limited to 25 μm because of the trade-off between the spatial resolution and the imaging depth. In order to achieve cellular resolution imaging of thick specimens, we built a tomography system with dual-color Bessel beam. In combination with FmFLIM, the Bessel FmFLIM tomography system can perform parallel 3D lifetime imaging on multiple excitation-emission channels at a cellular resolution of 2.8 μm. The image capability of the Bessel FmFLIM tomography system was demonstrated by 3D lifetime imaging of dual-labeled transgenic zebrafish embryos. PMID:28270968

  12. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  13. Analytic reconstruction approach for parallel translational computed tomography.

    PubMed

    Kong, Huihua; Yu, Hengyong

    2015-01-01

    To develop low-cost and low-dose computed tomography (CT) scanners for developing countries, recently a parallel translational computed tomography (PTCT) is proposed, and the source and detector are translated oppositely with respect to the imaging object without a slip-ring. In this paper, we develop an analytic filtered-backprojection (FBP)-type reconstruction algorithm for two dimensional (2D) fan-beam PTCT and extend it to three dimensional (3D) cone-beam geometry in a Feldkamp-type framework. Particularly, a weighting function is constructed to deal with data redundancy for multiple translations PTCT to eliminate image artifacts. Extensive numerical simulations are performed to validate and evaluate the proposed analytic reconstruction algorithms, and the results confirm their correctness and merits.

  14. Low-cost diffuse optical tomography for the classroom

    NASA Astrophysics Data System (ADS)

    Minagawa, Taisuke; Zirak, Peyman; Weigel, Udo M.; Kristoffersen, Anna K.; Mateos, Nicolas; Valencia, Alejandra; Durduran, Turgut

    2012-10-01

    Diffuse optical tomography (DOT) is an emerging imaging modality with potential applications in oncology, neurology, and other clinical areas. It allows the non-invasive probing of the tissue function using relatively inexpensive and safe instrumentation. An educational laboratory setup of a DOT system could be used to demonstrate how photons propagate through tissues, basics of medical tomography, and the concepts of multiple scattering and absorption. Here, we report a DOT setup that could be introduced to the advanced undergraduate or early graduate curriculum using inexpensive and readily available tools. The basis of the system is the LEGO Mindstorms NXT platform which controls the light sources, the detectors (photo-diodes), a mechanical 2D scanning platform, and the data acquisition. A basic tomographic reconstruction is implemented in standard numerical software, and 3D images are reconstructed. The concept was tested and developed in an educational environment that involved a high-school student and a group of post-doctoral fellows.

  15. Blastomycosis presenting as multiple splenic abscesses: Case report and review of the literature.

    PubMed

    Al-Nassar, Sami; Macnair, Tracy; Lipschitz, Jeremy; Greenberg, Howard; Trepman, Elly; Hamza, Sate; Embil, John M

    2010-01-01

    A 31-year-old Canadian Aboriginal man from northwestern Ontario presented with left upper quadrant pain and a tender left upper quadrant mass. Evaluation with a computed tomography scan showed multiple lesions within the spleen, a collection between the splenic tip and splenic flexure of the colon, and several small adrenal lesions. Computed tomographic-guided needle biopsy showed necrotizing granulomatous inflammation and multinucleated giant cells. Gomori's methenamine silver stain showed broad-based budding yeast consistent with Blastomyces dermatitidis. Abdominal symptoms resolved after two months of oral itraconazole. Multiple splenic abscesses are a rare presentation of blastomycosis and should be considered in the differential diagnosis of left upper quadrant abdominal pain in a patient with a history of travel or residence in a region endemic for B dermatitidis.

  16. Parenting Multiples

    MedlinePlus

    ... parents. It's important for caretakers to spend time speaking directly to each child, as well as reading to them and encouraging language. Social skills can come earlier for multiples, simply because they' ...

  17. Clinical multiphoton FLIM tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  18. Imaging Lithospheric Cascadia Structure with Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Allen, R. M.; Brudzinski, M. R.; Boyarko, D. C.; O'Driscoll, L.; Zhai, Y.; Levander, A.; Humphreys, E.; Pollitz, F. F.

    2010-12-01

    Imaging Cascadia Lithospheric Structure with Ambient Noise Tomography Along strike variation has been observed throughout the Cascadia Subduction Zone in multiple studies with complementary data sets. Body-wave tomography shows a broad zone in the center of the slab with a weak high velocity signal in an atypically quiescent seismic zone (Obrebski and Allen, 2009). Characteristics of primitive basalts found in the arc volcanoes change along strike defining four distinct magma sources or plumbing systems (Schmidt et al, 2007). However, the most striking variation is in the recurrence rate of episodic tremor and slip throughout the region (Brudzinski and Allen, 2007). Determining the detailed velocity structure of the lithosphere will help to unravel what role it plays in controlling the along strike variation of these separate observations. This study improves on previous observations by analysis of a surface wave model from ambient seismic noise cross-correlations with two Flexible Array deployments in addition to regional networks and the Transportable Array. Longer period bands than typically observed in ANT are recovered via improved statistical analysis resulting in robust group and phase velocity maps from 7-92 seconds. Thus structure is well resolved from the surface to approximately 100km in depth allowing for simultaneous interpretation of crust and uppermost mantle structure. Significant variations are observed along strike in this model. The high velocity mafic Siletzia terrain is observed in the lower-mid crust along the Cascadia forearc. This mafic material coincides with the region of long term tremor recurrence interval (~20 months) from Brudzinski and Allen (2007). The southern border of the Siletzia terrain is marked by a clear velocity variation along the expected Gorda-Juan de Fuca plate boundary. In this southern region, the root of the Klamath mountain is clearly compressing the subducting Gorda plate leading to increased vertical stress where

  19. Electron Tomography: Seeing Atoms in Three Dimensions

    SciTech Connect

    Arslan, Ilke; Stach, Eric A.

    2012-11-01

    Our eyes - a parallel lens system - have the phenomenal ability to observe and "reconstruct" the three-dimensional world, relaying a 3-D image to our brains. Imaging of the nanoworld is best done with electrons rather than photons because of their lower wavelengths and higher resolution. The advent of aberration-correction has led to transmission electron microscopes with sub-Angstrom resolution that can resolve single atoms. Yet, no matter what detector is used, the resulting images are only two-dimensional projections of three-dimensional objects. Electron tomography is a technique that allows reconstruction of the three-dimensional structure and morphology of nanomaterials from such projections. X-ray tomography has been used in many branches of science for nearly half a century, and in the biological sciences electron tomography has been a powerful tool for understanding ultrastructure. However, for many years crystalline materials posed a challenge to electron tomography because diffraction contrast (a change in intensity in the image at particular crystal orientations) creates artifacts in the 3-D reconstruction. In 2003, with advances in scanning transmission electron microscopy, Midgley and colleagues obtained the first electron tomograms of crystalline materials. Shortly thereafter, Arslan et al. showed that the spatial resolution could be improved to 1 nm in all three spatial dimensions and visualized the formation of faceted 3.5-nm quantum dots embedded in a Si matrix. However, with that work existing reconstruction algorithms appeared to have reached their limit. To attain a resolution of 1 nm, a total of 140 images over ±78 degrees of tilt were needed. Writing in Nature Materials, Goris et al. now report a novel algorithm for 3-D reconstruction of the atomic structure of free-standing Au nanorods, using only four projection images. I.A. acknowledges collaboration with J.D. Roehling, K.J. Batenburg, B.C. Gates and A. Katz for Figure 1, supported in

  20. Cauda equina syndrome associated with multiple lumbar arachnoid cysts in ankylosing spondylitis: improvement following surgical therapy.

    PubMed Central

    Shaw, P J; Allcutt, D A; Bates, D; Crawford, P J

    1990-01-01

    A case of cauda equina syndrome with multiple lumbar arachnoid cysts complicating ankylosing spondylitis (AS) is described. The value of computerised tomography (CT) and magnetic resonance imaging (MRI) as a non-invasive means of establishing the diagnosis is emphasised. In contrast to previously reported cases the patient showed neurological improvement following surgical therapy. Surgery may be indicated in some patients, particularly when there is nerve root compression by the arachnoid cysts and when the patient is seen early before irreversible damage to the cauda equina has occurred. Images PMID:2292702

  1. Fresnel coherent diffraction tomography.

    PubMed

    Putkunz, C T; Pfeifer, M A; Peele, A G; Williams, G J; Quiney, H M; Abbey, B; Nugent, K A; McNulty, I

    2010-05-24

    Tomographic coherent imaging requires the reconstruction of a series of two-dimensional projections of the object. We show that using the solution for the image of one projection as the starting point for the reconstruction of the next projection offers a reliable and rapid approach to the image reconstruction. The method is demonstrated on simulated and experimental data. This technique also simplifies reconstructions using data with curved incident wavefronts.

  2. Photoacoustic tomography of vascular compliance in humans

    PubMed Central

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2015-01-01

    Abstract. Characterization of blood vessel elastic properties can help in detecting thrombosis and preventing life-threatening conditions such as acute myocardial infarction or stroke. Vascular elastic photoacoustic tomography (VE-PAT) is proposed to measure blood vessel compliance in humans. Implemented on a linear-array-based photoacoustic computed tomography system, VE-PAT can quantify blood vessel compliance changes due to simulated thrombosis and occlusion. The feasibility of the VE-PAT system was first demonstrated by measuring the strains under uniaxial loading in perfused blood vessel phantoms and quantifying their compliance changes due to the simulated thrombosis. The VE-PAT system detected a decrease in the compliances of blood vessel phantoms with simulated thrombosis, which was validated by a standard compression test. The VE-PAT system was then applied to assess blood vessel compliance in a human subject. Experimental results showed a decrease in compliance when an occlusion occurred downstream from the measurement point in the blood vessels, demonstrating VE-PAT’s potential for clinical thrombosis detection. PMID:26720875

  3. Photoacoustic tomography of vascular compliance in humans

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2015-12-01

    Characterization of blood vessel elastic properties can help in detecting thrombosis and preventing life-threatening conditions such as acute myocardial infarction or stroke. Vascular elastic photoacoustic tomography (VE-PAT) is proposed to measure blood vessel compliance in humans. Implemented on a linear-array-based photoacoustic computed tomography system, VE-PAT can quantify blood vessel compliance changes due to simulated thrombosis and occlusion. The feasibility of the VE-PAT system was first demonstrated by measuring the strains under uniaxial loading in perfused blood vessel phantoms and quantifying their compliance changes due to the simulated thrombosis. The VE-PAT system detected a decrease in the compliances of blood vessel phantoms with simulated thrombosis, which was validated by a standard compression test. The VE-PAT system was then applied to assess blood vessel compliance in a human subject. Experimental results showed a decrease in compliance when an occlusion occurred downstream from the measurement point in the blood vessels, demonstrating VE-PAT's potential for clinical thrombosis detection.

  4. Gate-set tomography and beyond

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    Four years ago, there was no reliable way to characterize and debug quantum gates. Process tomography required perfectly pre-calibrated gates, while randomized benchmarking only yielded an overall error rate. Gate-set tomography (GST) emerged around 2012-13 in several variants (most notably at IBM; see PRA 87, 062119) to address this need, providing complete and calibration-free characterization of gates. At Sandia, we have pushed the capabilities of GST well beyond these initial goals. In this talk, I'll demonstrate our open web interface, show how we characterize gates with accuracy at the Heisenberg limit, discuss how we put error bars on the results, and present experimental GST estimates with 1e-5 error bars. I'll also present preliminary results of GST on 2-qubit gates, including a brief survey of the tricks we use to make it possible. I'll conclude with an analysis of GST's limitations (e.g., it scales poorly), and the techniques under development for characterizing and debugging larger (3+ qubit) systems.

  5. Added value of using a cocktail of F-18 sodium fluoride and F-18 fluorodeoxyglucose in positron emission tomography/computed tomography for detecting bony metastasis: a case report.

    PubMed

    Chan, Hung-Pin; Hu, Chin; Yu, Chang-Ching; Huang, Tsung-Chi; Peng, Nan-Jing

    2015-04-01

    Current nuclear imaging of the skeletal system is achieved using technetium-99m (Tc-99m) methylene diphosphonate (MDP), F-18 sodium fluoride (NaF), or F-18 fluorodeoxyglucose (FDG). However, comparisons of these are rare in the literature. We present a case of a 51-year-old female with suspicious lung cancer due to main symptoms of dyspnea, nonproductive cough, and pleural pain. Tc-99m MDP whole-body bone scan (WBBS) showed multiple bony metastases. Five days later, positron emission tomography/computed tomography (PET/CT) images using both F-18 NaF and a cocktail of F-18 NaF and F-18 FDG were obtained on the same day 2 hours apart. The former showed more foci and precisely showed bony lesions compared to those obtained using Tc-99m MDP WBBS. However, the latter demonstrated more extensive radiotracer uptake, especially in osteolytic lesions, and additional soft tissue lesions in the left axillary and surpraclavicular nodes as well as the left pleura. Surgical biopsy was performed in left axillary nodes, and the metastatic carcinoma was found to be of breast origin. This case demonstrated that a cocktail of F-18 NaF and F-18 FDG could be useful in PET/CT for not only detecting more skeletal lesions but also guiding biopsies accurately to the affected tissue.

  6. Vibration-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Rui; Rajian, Justin R.; Wang, Pu; Slipchenko, Mikhail N.; Cheng, Ji-Xin

    2013-03-01

    Photoacoustic imaging employing molecular overtone vibration as contrast mechanism opens a new avenue for deep tissue imaging with chemical bond selectivity. Here, we demonstrate vibration-based photoacoustic tomography with an imaging depth on the centimeter scale. To provide sufficient pulse energy at the overtone transition wavelengths, we constructed a compact, barium nitrite crystal-based Raman laser for excitation of 2nd overtone of C-H bond. Using a 5-ns Nd:YAG laser as pumping source, up to 105 mJ pulse energy at 1197 nm was generated. Vibrational photoacoutic spectroscopy and tomography of phantom (polyethylene tube) immersed in whole milk was performed. With a pulse energy of 47 mJ on the milk surface, up to 2.5 cm penetration depth was reached with a signal-to-noise ratio of 12.

  7. Seismic Tomography in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Shi, L.; Song, W.; Lees, J. M.; Xing, G.

    2012-12-01

    Tomography imaging, applied to seismology, requires a new, decentralized approach if high resolution calculations are to be performed in a sensor network configuration. The real-time data retrieval from a network of large-amount wireless seismic stations to a central server is virtually impossible due to the sheer data amount and resource limitations. In this paper, we propose and design a distributed algorithm for processing data and inverting tomography in the network, while avoiding costly data collections and centralized computations. Based on a partition of the tomographic inversion problem, the new algorithms distribute the computational burden to sensor nodes and perform real-time tomographic inversion in the network, so that we can recover a high resolution tomographic model in real-time under the constraints of network resources. Our emulation results indicate that the distributed algorithms successfully reconstruct the synthetic models, while reducing and balancing the communication and computation cost to a large extent.

  8. Optical coherence tomography findings in commotio retina.

    PubMed

    Sony, Parul; Venkatesh, Pradeep; Gadaginamath, Shailesh; Garg, Sat Pal

    2006-08-01

    A 16-year-old boy presented with diminished visual acuity of 6/60 following blunt trauma to his right eye with a cricket ball. Fundus examination showed commotio retinae. Optical coherence tomography (OCT) demonstrated increased reflectivity with small optically clear spaces in the area corresponding to the photoreceptor outer segment. At 2-month follow up the visual acuity improved to 6/6. A small area of retinal opacification persisted nasally, and OCT of the corresponding area continued to show increased reflectivity in the area of photoreceptor outer segment. Increased reflectivity on OCT in eyes with commotio retinae probably denotes photoreceptor outer segment disruption and seems to be reversible to a variable extent.

  9. Optical Coherence Tomography Velocimetry with Complex Fluids

    NASA Astrophysics Data System (ADS)

    Malm, A.; Waigh, T. A.; Jaradat, S.; Tomlin, R.

    2015-04-01

    We present recent results obtained with an Optical Coherence Tomography Velocimetry technique. An optical interferometer measures the velocity of a sheared fluid at specific depths of the sample using the coherence length of the light source. The technique allows the dynamics of 3 pico liter volumes to be probed inside opaque complex fluids. In a study of opaque starch suspensions, classical bulk rheology experiments show non-linear shear thickening, whereas observations of the velocity profiles as a function of distance across the gap show Newtonian behavior. The ability of the technique to measure velocity fluctuations is also discussed for the case of polyacrylamide samples which were observed to display shear banding behavior. A relationship between the viscoelasticity of the sample and the size of the apparent fluctuations is observed.

  10. 3D Multislice and Cone-beam Computed Tomography Systems for Dental Identification.

    PubMed

    Eliášová, Hana; Dostálová, Taťjana

    2017-01-01

    3D Multislice and Cone-beam computed tomography (CBCT) in forensic odontology has been shown to be useful not only in terms of one or a few of dead bodies but also in multiple fatality incidents. 3D Multislice and Cone-beam computed tomography and digital radiography were demonstrated in a forensic examination form. 3D images of the skull and teeth were analysed and validated for long ante mortem/post mortem intervals. The image acquisition was instantaneous; the images were able to be optically enlarged, measured, superimposed and compared prima vista or using special software and exported as a file. Digital radiology and computer tomography has been shown to be important both in common criminalistics practices and in multiple fatality incidents. Our study demonstrated that CBCT imaging offers less image artifacts, low image reconstruction times, mobility of the unit and considerably lower equipment cost.

  11. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  12. X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The primary advantage of the X-ray computed tomography (XRCT) NDE method is that features are not superposed in the image, thereby rendering them easier to interpret than radiographic projection images. Industrial XRCT systems, unlike medical diagnostic systems, have no size and dosage constraints; they are accordingly used for systems from the scale of gas turbine blades, with hundreds-of-kV energies, to those of the scale of ICBMs, requiring MV-level X-ray energies.

  13. Computed tomography of neutropenic colitis

    SciTech Connect

    Frick, M.P.; Maile, C.W.; Crass, J.R.; Goldberg, M.E.; Delaney, J.P.

    1984-10-01

    Four patients developed neutropenic colitis as a complication of acute leukemia (three) or aplastic anemia (one). On computed tomography (CT), neutropenic colitis was characterized by cecal wall thickening (four) and pneumatosis (one). Intramural areas of lower density presumably reflected edema or hemorrhage. Clinical improvement and return of adequate numbers of functioning neutrophils coincided with decrease in cecal wall thickening on CT. Prompt radiologic recognition of this serious condition is crucial, since surgical intervention is probably best avoided.

  14. Computed tomography of gynecologic diseases

    SciTech Connect

    Gross, B.H.; Moss, A.A.; Mihara, K.; Goldberg, H.I.; Glazer, G.M.

    1983-10-01

    Although computed tomography (CT) provides superb images of all areas of the body, sonography, because of its lack of ionizing radiation and its real-time and multiplanar capacities, has become the preferred initial method of evaluating the female pelvis. This has resulted in a relative paucity of information in the literature concerning CT features of benign pelvic disorders in particular and prompted the authors to review our experience with third-generation CT scanning of the uterus and ovaries.

  15. [Multiple meningiomas].

    PubMed

    Terrier, L-M; François, P

    2016-06-01

    Multiple meningiomas (MMs) or meningiomatosis are defined by the presence of at least 2 lesions that appear simultaneously or not, at different intracranial locations, without the association of neurofibromatosis. They present 1-9 % of meningiomas with a female predominance. The occurrence of multiple meningiomas is not clear. There are 2 main hypotheses for their development, one that supports the independent evolution of these tumors and the other, completely opposite, that suggests the propagation of tumor cells of a unique clone transformation, through cerebrospinal fluid. NF2 gene mutation is an important intrinsic risk factor in the etiology of multiple meningiomas and some exogenous risk factors have been suspected but only ionizing radiation exposure has been proven. These tumors can grow anywhere in the skull but they are more frequently observed in supratentorial locations. Their histologic types are similar to unique meningiomas of psammomatous, fibroblastic, meningothelial or transitional type and in most cases are benign tumors. The prognosis of these tumors is eventually good and does not differ from the unique tumors except for the cases of radiation-induced multiple meningiomas, in the context of NF2 or when diagnosed in children where the outcome is less favorable. Each meningioma lesion should be dealt with individually and their multiple character should not justify their resection at all costs.

  16. Inherent Limitations of Hydraulic Tomography

    USGS Publications Warehouse

    Bohling, G.C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  17. Review of Terahertz Tomography Techniques

    NASA Astrophysics Data System (ADS)

    Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P.

    2014-04-01

    Terahertz and millimeter waves penetrate various dielectric materials, including plastics, ceramics, crystals, and concrete, allowing terahertz transmission and reflection images to be considered as a new imaging tool complementary to X-Ray or Infrared. Terahertz imaging is a well-established technique in various laboratory and industrial applications. However, these images are often two-dimensional. Three-dimensional, transmission-mode imaging is limited to thin samples, due to the absorption of the sample accumulated in the propagation direction. A tomographic imaging procedure can be used to acquire and to render three-dimensional images in the terahertz frequency range, as in the optical, infrared or X-ray regions of the electromagnetic spectrum. In this paper, after a brief introduction to two dimensional millimeter waves and terahertz imaging we establish the principles of tomography for Terahertz Computed tomography (CT), tomosynthesis (TS), synthetic aperture radar (SAR) and time-of-flight (TOF) terahertz tomography. For each technique, we present advantages, drawbacks and limitations for imaging the internal structure of an object.

  18. Inherent limitations of hydraulic tomography.

    PubMed

    Bohling, Geoffrey C; Butler, James J

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications.

  19. Radiography, computed tomography and virtual bronchoscopy in four dogs and two cats with lung lobe torsion.

    PubMed

    Schultz, R M; Peters, J; Zwingenberger, A

    2009-07-01

    This report describes the imaging features of radiography, computed tomography and virtual bronchoscopy in dogs and cats with lung lobe torsions. The medical records, thoracic radiographs and computed tomography images of four dogs and two cats with confirmed lung lobe torsions were retrospectively reviewed. Computed tomography with virtual bronchoscopy showed bronchial narrowing, collapse or occlusion in all six animals, while this was only appreciated on one radiographic examination. A tapering terminating angle of the air-filled bronchus proximal or distal to the collapsed region was seen only on computed tomography and virtual bronchoscopy in all six animals. The vesicular emphysema pattern typical of lung lobe torsion was seen on three computed tomographies but only on one radiographic examination. The lung lobe torsion-specific findings of vesicular emphysema and a proximally narrowed or occluded bronchus were more easily recognised on computed tomography and virtual bronchoscopy than with radiographs. Computed tomography slices acquired through the bronchus and lung lobe of interest in a cat or dog with possible lung lobe torsion can be reformatted into virtual bronchoscopic images that can be utilised along with computed tomography to help make a more definitive preoperative diagnosis.

  20. Multiple vibration displacements at multiple vibration frequencies stress impact on human femur computational analysis.

    PubMed

    Ezenwa, Bertram; Yeoh, Han Teik

    2011-01-01

    Whole-body vibration training using single-frequency methods has been reported to improve bone mineral density. However, the intensities can exceed safe levels and have drawn unfavorable comments from subjects. In a previous article, whole-body vibration training using multiple vibration displacements at multiple vibration frequencies (MVDMVF) was reported. This article presents the computational simulation evaluation of stress dispersion on a femur with and without the MVDMVF input. A model of bone femur was developed from a computed tomography image of the lower limb with Mimics software from Materialise (Plymouth, Michigan). We analyzed the mesh model in COMSOL Multiphysics (COMSOL, Inc; Burlington, Massachusetts) with and without MVDMVF input, with constraints and load applied to the femur model. We compared the results with published joint stresses during walking, jogging, and stair-climbing and descending and with standard vibration exposure limits. Results showed stress levels on the femur are significantly higher with MVDMVF input than without. The stress levels were within the published levels during walking and stair-climbing and descending but below the stress levels during jogging. Our computational results demonstrate that MVDMVF generates stress level equivalent to the level during walking and stair-climbing. This evidence suggests that MVDMVF is safe for prolonged use in subjects with osteoporosis who ambulate independently.

  1. Pancreatic tuberculosis: Evaluation of therapeutic response using F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography.

    PubMed

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Srinivasan, Radhika; Mittal, Bhagwant Rai

    2014-10-01

    F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG PET/CT) is a functional imaging technique that monitors glucose metabolism in tissues. Pulmonary tuberculosis (TB) has been reported to show intense uptake of FDG, with a decrease in metabolism of the tuberculous lesions after successful anti-tubercular treatment (ATT). The authors present a patient with pancreatic TB and demonstrate the usefulness of FDG PET/CT in monitoring the response to ATT.

  2. Limited-data computed tomography algorithms for the physical sciences.

    PubMed

    Verhoeven, D

    1993-07-10

    Five limited-data computed tomography algorithms are compared. The algorithms used are adapted versions of the algebraic reconstruction technique, the multiplicative algebraic reconstruction technique, the Gerchberg-Papoulis algorithm, a spectral extrapolation algorithm descended from that of Harris [J. Opt. Soc. Am. 54, 931-936 (1964)], and an algorithm based on the singular value decomposition technique. These algorithms were used to reconstruct phantom data with realistic levels of noise from a number of different imaging geometries. The phantoms, the imaging geometries, and the noise were chosen to simulate the conditions encountered in typical computed tomography applications in the physical sciences, and the implementations of the algorithms were optimized for these applications. The multiplicative algebraic reconstruction technique algorithm gave the best results overall; the algebraic reconstruction technique gave the best results for very smooth objects or very noisy (20-dB signal-to-noise ratio) data. My implementations of both of these algorithms incorporate apriori knowledge of the sign of the object, its extent, and its smoothness. The smoothness of the reconstruction is enforced through the use of an appropriate object model (by use of cubic B-spline basis functions and a number of object coefficients appropriate to the object being reconstructed). The average reconstruction error was 1.7% of the maximum phantom value with the multiplicative algebraic reconstruction technique of a phantom with moderate-to-steep gradients by use of data from five viewing angles with a 30-dB signal-to-noise ratio.

  3. The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography

    ERIC Educational Resources Information Center

    Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.

    2005-01-01

    Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…

  4. Cone-beam computed tomography: An inevitable investigation in cleidocranial dysplasia

    PubMed Central

    Gupta, Nandita S.; Gogri, Ajas A.; Kajale, Manasi M.; Kadam, Sonali G.

    2015-01-01

    Cleidocranial dysplasia is a heritable skeletal dysplasia and one of the most common features of this syndrome is multiple impacted supernumerary teeth. Cone-beam computed tomography, the most recent advancement in maxillofacial imaging, provides the clinician to view the morphology of the skull and the dentition in all three dimensions and help in treatment planning for the patient. PMID:26097368

  5. Multiple Intraglandular Metastases in a Patient with Invasive Ductal Carcinoma of the Pancreas.

    PubMed

    Morita, Shinichi; Onaya, Hiroaki; Kishi, Yoji; Hiraoka, Nobuyoshi; Arai, Yasuaki

    2015-01-01

    A 56-year-old man was admitted to our hospital for an evaluation of pancreatic lesions. Computed tomography revealed a hypoattenuating tumor in the head of the pancreas, with three other tumors detected in the body and tail. Magnetic resonance imaging showed similar enhancement patterns and signal intensities in all four lesions. The patient underwent total pancreatectomy based on a preoperative diagnosis of multiple invasive ductal carcinomas. Histopathologically, the lesion in the pancreatic head was considered to be the primary lesion, while the others were diagnosed as metastases. This is a rare case of pancreatic cancer with intraglandular metastases. The possibility of this differential diagnosis should thus be considered when imaging shows multiple hypovascular lesions in the pancreas.

  6. Bilateral Second Carpal Row Duplication Associated with Multiple Epiphyseal Dysplasia

    PubMed Central

    Cladiere-Nassif, Victoire; Delaroche, Caroline; Pottier, Edwige; Feron, Jean-Marc

    2015-01-01

    We report a case of a 75-year-old woman presenting a hitherto undescribed condition of bilateral second carpal row duplication. She was diagnosed in childhood with both Marfan and Ehlers-Danlos syndromes, with no clear evidence and no further medical follow-up. She presented throughout her life with various articular symptoms, which appeared to be compatible with a diagnosis of multiple epiphyseal dysplasia, and underwent several surgical procedures on her knees and hips. Most recently, she was reporting pain at the base of the fifth metacarpal bone of the left hand. X-ray images and computed tomography (CT) were obtained for exploration and showed a total second row duplication in both carpi, with a total number of 18 carpal bones in each wrist. PMID:26649258

  7. Finger Multiplication

    ERIC Educational Resources Information Center

    Holmes, Bill

    2010-01-01

    The author has been prompted to write this article about finger multiplication for a number of reasons. Firstly there are a number of related articles in past issues of "Mathematics Teaching" ("MT") which have connections to this algorithm. Secondly, very few of his primary teaching students and professional colleagues appear to be aware of the…

  8. Multiple Sclerosis.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on multiple sclerosis is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  9. Multiple Intelligences.

    ERIC Educational Resources Information Center

    Laughlin, Janet

    1999-01-01

    Details the characteristics of Howard Gardner's seven multiple intelligences (MI): linguistic, logical-mathematical, bodily-kinesthetic, spatial, musical, interpersonal, and intrapersonal. Discusses the implications of MI for instruction. Explores how students can study using their preferred learning style - visual, auditory, and physical study…

  10. Finite Quantum Tomography and Semidefinite Programming

    NASA Astrophysics Data System (ADS)

    Mirzaee, M.; Rezaee, M.; Jafarizadeh, M. A.

    2007-06-01

    Using the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: truncated coherent states tomography, phase tomography and coherent spin state tomography, qudit tomography, N-qubit tomography, where that obtained results are in agreement with those of References (Buzek et al., Chaos, Solitons and Fractals 10 (1999) 981; Schack and Caves, Separable states of N quantum bits. In: Proceedings of the X. International Symposium on Theoretical Electrical Engineering, 73. W. Mathis and T. Schindler, eds. Otto-von-Guericke University of Magdeburg, Germany (1999); Pegg and Barnett Physical Review A 39 (1989) 1665; Barnett and Pegg Journal of Modern Optics 36 (1989) 7; St. Weigert Acta Physica Slov. 4 (1999) 613).

  11. Slip-ring-based multi-transducer photoacoustic tomography system.

    PubMed

    Deng, Zijian; Li, Wenzhao; Li, Changhui

    2016-06-15

    Although the transducer array-based photoacoustic tomography (PAT) system provides fast imaging speed, its high cost and system complexity hinder its implementations. In this Letter, for the first time, to the best of our knowledge, the electrical slip ring was used to develop a PAT system that compromises the cost and the imaging speed. This system enables using multiple transducers to image the target simultaneously and continuously. In addition, it is versatile to use different transducers. The performance of this PAT system has been demonstrated by both phantom and in vivo animal experiments.

  12. One step geometrical calibration method for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Stritzel, Jenny; Rahlves, Maik; Majdani, Omid; Reithmeier, Eduard; Ortmaier, Tobias; Roth, Bernhard

    2016-01-01

    We present a novel one-step calibration methodology for geometrical distortion correction for optical coherence tomography (OCT). A calibration standard especially designed for OCT is introduced, which consists of an array of inverse pyramidal structures. The use of multiple landmarks situated on four different height levels on the pyramids allow performing a 3D geometrical calibration. The calibration procedure itself is based on a parametric model of the OCT beam propagation. It is validated by experimental results and enables the reduction of systematic errors by more than one order of magnitude. In future, our results can improve OCT image reconstruction and interpretation for medical applications such as real time monitoring of surgery.

  13. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography.

    PubMed

    Chang, Yi-Wei; Chen, Songye; Tocheva, Elitza I; Treuner-Lange, Anke; Löbach, Stephanie; Søgaard-Andersen, Lotte; Jensen, Grant J

    2014-07-01

    Cryo-electron tomography (CET) produces three-dimensional images of cells in a near-native state at macromolecular resolution, but identifying structures of interest can be challenging. Here we describe a correlated cryo-PALM (photoactivated localization microscopy)-CET method for localizing objects within cryo-tomograms to beyond the diffraction limit of the light microscope. Using cryo-PALM-CET, we identified multiple and new conformations of the dynamic type VI secretion system in the crowded interior of Myxococcus xanthus.

  14. X-ray Multimodal Tomography Using Speckle-Vector Tracking

    NASA Astrophysics Data System (ADS)

    Berujon, Sebastien; Ziegler, Eric

    2016-04-01

    We demonstrate computerized tomography (CT) reconstructions from absorption, phase, and dark-field signals obtained from scans acquired when the x-ray probe light is modulated with speckle. Two different interlaced schemes are proposed to reduce the number of sample exposures. First, the already demonstrated x-ray speckle-vector tracking (XSVT) concept for projection imaging allows the three signal CT reconstructions from multiple images per projection. Second, a modified XSVT approach is shown to provide absorption and phase reconstructions, this time from a single image per angular projection. Reconstructions from data obtained at a synchrotron facility emphasize the potential of the approaches for the imaging of complex samples.

  15. Optical coherence tomography imaging of optic disc cavernous haemangioma.

    PubMed

    Katta, Mohamed; Mehta, Hemal; Ho, Ivan; Garrick, Ray; Chong, Robert

    2016-11-01

    Optic disc cavernous haemangiomas are either found incidentally or after presentation with vitreous haemorrhage. They are characterised by a cluster of grapes appearance to the multiple vascular saccules that make up the tumour. They are more often found in the retinal periphery but rarely occur at the optic disc. Optical coherence tomography (OCT) imaging may be a useful non-invasive imaging modality to follow-up these lesions. We present the case of an asymptomatic 60-year-old lady referred from her optometrist with a lesion overlying the optic disc and the ensuing diagnosis of cavernous haemangioma using fundus fluorescein angiography and OCT.

  16. Role of positron emission tomography/computed tomography in dementia.

    PubMed

    Hinds, Sidney R; Stocker, Derek J; Bradley, Yong C

    2013-09-01

    This article provides a clinically based review of positron emission tomography (PET) imaging for dementia. Significant advances in nuclear medicine and molecular imaging techniques have improved the understanding of the genetic and molecular processes that define neurodegenerative dementia diseases. Metabolic imaging remains constant in its ability to document neuronal loss and lost function. Amyloid-β radiotracers are useful in documenting amyloid deposition, differentiating origins of dementia and possibly predicting disease progression. These radiotracers may be useful in diagnosis-specific treatment. PET radiotracers have increased sensitivity and specificity to complement clinical presentation and other adjunct testing in the evaluation of dementia.

  17. Acoustic Tomography of the Atmospheric Surface Layer

    DTIC Science & Technology

    2014-11-28

    resolution of an ultrasonic anemometer , it was suggested that one consider it is as a small acoustic tomography array and apply appropriate inverse...Fairall, D. Keith Wilson, Ludovic Bariteau. Sonic Anemometer as a Small Acoustic Tomography Array, Boundary-Layer Meteorology, (08 2013): 0. doi...Received Paper 3.00 S. N. Vecherin, V. E. Ostashev, D. K. Wilson, A. Grached. Utilization of an acoustic tomography array as a large sonic anemometer

  18. Hybrid diffraction tomography without phase information.

    PubMed

    Gbur, Greg; Wolf, Emil

    2002-11-01

    We introduce a hybrid tomographic method, based on recent investigations concerning the connection between computed tomography and diffraction tomography, that allows direct reconstruction of scattering objects from intensity measurements. This technique is noniterative and is intuitively easier to understand and easier to implement than some other methods described in the literature. The manner in which the new method reduces to computed tomography at short wavelengths is discussed. Numerical examples of reconstructions are presented.

  19. Photonic Breast Tomography and Tumor Aggressiveness Assessment

    DTIC Science & Technology

    2013-09-01

    Magnetic Resonance Spectroscopic Imaging Optical Techniques for Actuation, Sensing , and Imaging of Biological Systems Multi-functional tumor...Time Reversal Optical Tomography Non-negative Matrix Factorization- based Optical Tomography Optical Tomography based on Principal Component...of the two targets 3.9. Estimated size and absorption coefficient of the targets 4.1. Positions and optical strengths retrieved using ICA, PCA and

  20. Array tomography: high-resolution three-dimensional immunofluorescence.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography, which is described in this article, is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Although the fabrication procedures can be relatively difficult, the high resolution, depth invariance, and molecular discrimination offered by array tomography justify the effort involved. Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture.

  1. EPiK-a Workflow for Electron Tomography in Kepler*

    PubMed Central

    Wang, Jianwu; Crawl, Daniel; Phan, Sébastien; Lawrence, Albert; Ellisman, Mark

    2015-01-01

    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility. PMID:25621086

  2. EPiK-a Workflow for Electron Tomography in Kepler.

    PubMed

    Chen, Ruijuan; Wan, Xiaohua; Altintas, Ilkay; Wang, Jianwu; Crawl, Daniel; Phan, Sébastien; Lawrence, Albert; Ellisman, Mark

    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility.

  3. Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography

    SciTech Connect

    Lo, P. Brown, M. S.; Kim, H.; Kim, H.; Goldin, J. G.; Argula, R.; Strange, C.

    2015-05-15

    Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select a small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.

  4. Hydraulic Tomography to Characterization of Heterogeneity of Unconfined Aquifers

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Yeh, T. J.

    2008-12-01

    Analytical models are the most widely used methods for analyzing pumping tests in unconfined aquifers. However, one major group analytical models assume instantaneous and complete drainage at the water table and therefore are inadequate to account for gradual drainage of water from the vadose zone due to pumping; the other major group analytical models use an exponential function of drawdown at the water table to account for gradual drainage and are subsequently limited to represent the highly non-linear flow in the vadose zone. Moreover, both models assume aquifer homogeneity while the natural aquifers are inherently heterogeneous. Recently emerged Hydraulic tomography (HT) is a cost-effective method for mapping spatial distribution of aquifer hydraulic properties. HT takes advantage of the power of numerical models and fuses information from multiple cross-hole tests conducted at different locations to image aquifers in great details. In this study, we apply HT concept to unconfined aquifers. To accurately simulate the flow behavior due to a HT survey in an unconfined aquifer, a fully three dimensional variably saturated flow model based on mixed form of Richards equation is used. Pressure responses in both saturated and unsaturated zones are used to estimate spatial variations of hydraulic conductivity, specific storage, and soil water constitutive model parameters through a sequential successive linear estimator. A systematic approach that uses wavelet analysis, least-square method, and fuzzy similarity compassion is applied for data denoising, statistic inputs, convergence, and performance assessment. A cross-correlation is also performed to investigate the relation between pressure change and different parameters. The HT method for unconfined aquifers is tested in a synthetic aquifer. The tests show that the proposed HT method effectively maps heterogeneity of the unconfined aquifer and predicts the vadose zone responses due to a pumping test more accurately

  5. Gate Set Tomography on two qubits

    NASA Astrophysics Data System (ADS)

    Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rudinger, Kenneth

    Gate set tomography (GST) is a method for characterizing quantum gates that does not require pre-calibrated operations, and has been used to both certify and improve the operation of single qubits. We analyze the performance of GST applied to a simulated two-qubit system, and show that Heisenberg scaling is achieved in this case. We present a GST analysis of preliminary two-qubit experimental data, and draw comparisons with the simulated data case. Finally, we will discuss recent theoretical developments that have improved the efficiency of GST estimation procedures, and which are particularly beneficial when characterizing two qubit systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Cubic meter volume optical coherence tomography.

    PubMed

    Wang, Zhao; Potsaid, Benjamin; Chen, Long; Doerr, Chris; Lee, Hsiang-Chieh; Nielson, Torben; Jayaraman, Vijaysekhar; Cable, Alex E; Swanson, Eric; Fujimoto, James G

    2016-12-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.

  7. Mouse brain imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Xia, Jun; Wang, Lihong V.

    2014-03-01

    Photoacoustic computed tomography (PACT) provides structural and functional information when used in small animal brain imaging. Acoustic distortion caused by bone structures largely limits the deep brain image quality. In our work, we present ex vivo PACT images of freshly excised mouse brain, intending that can serve as a gold standard for future PACT in vivo studies on small animal brain imaging. Our results show that structures such as the striatum, hippocampus, ventricles, and cerebellum can be clearly di erentiated. An artery feature called the Circle of Willis, located at the bottom of the brain, can also be seen. These results indicate that if acoustic distortion can be accurately accounted for, PACT should be able to image the entire mouse brain with rich structural information.

  8. Electrical resistance tomography of concrete structures

    SciTech Connect

    Daily, W.; Ramirez, A.; Binley, A.; Henry-Poulter, S.

    1993-10-01

    The purpose of this work is to determine the feasibility of using Electrical resistance tomography (ERT) to nondestructively examine the interior of concrete structures such as bridge pillars and roadways. We report the results of experiments wherein ERT is used to image the two concrete specimens in the laboratory. Each specimen is 5 inches square and 12 inches long and contained steel reinforcing rods along its length. Twenty electrodes were placed on each sample and an-image of electrical resistivity distribution was generated from current and voltage measurements. We found that the images show the general location of the reinforcing steel and, what`s more important, delineate the absence of the steel. The method may therefore be useful for determining if such steel has been destroyed by corrosion, however to make it useful, the technique must have better resolution so that individual reinforcing steel units are resolved.

  9. Optical coherence tomography examination of hair

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Huang, Zheng; Xu, Jianshu; Yang, Hongqin; Li, Hui; Xie, Shusen

    2014-09-01

    Human hair is a keratinous tissue composed mostly of flexible keratin, which can form a complex architecture consisting of distinct compartments or units (e.g. hair bulb, inner root sheath, shaft). Variations in hair shaft morphology can reflect ethnical diversity, but may also indicate internal diseases, nutritional deficiency, or hair and scalp disorders. Hair shaft abnormalities in cross section and diameter, as well as ultramorphological characterization and follicle shapes, might be visualized non-invasively by high-speed 2D and 3D optical coherence tomography (OCT). In this study, swept source OCT (ThorLabs) was used to examine human hair. Preliminary results showed that the high-speed OCT was a suitable and promising tool for non-invasive analysis of hair conditions.

  10. Cubic meter volume optical coherence tomography

    PubMed Central

    WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.

    2017-01-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628

  11. In vivo multiphoton tomography of skin cancer

    NASA Astrophysics Data System (ADS)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Buckle, Rainer; Dimitrow, Enrico; Kaatz, Martin; Fluhr, Joachim; Elsner, Peter

    2006-02-01

    The multiphoton tomograph DermaInspect was used to perform first clinical studies on the early non-invasive detection of skin cancer based on non-invasive optical sectioning of skin by two-photon autofluorescence and second harmonic generation. In particular, deep-tissue pigmented lesions -nevi- have been imaged with intracellular resolution using near infrared (NIR) femtosecond laser radiation. So far, more than 250 patients have been investigated. Cancerous tissues showed significant morphological differences compared to normal skin layers. In the case of malignant melanoma, the occurrence of luminescent melanocytes has been detected. Multiphoton tomography will become a novel non-invasive method to obtain high-resolution 3D optical biopsies for early cancer detection, treatment control, and in situ drug screening.

  12. Radial anisotropy ambient noise tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  13. Parametric reconstruction method in optical tomography.

    PubMed

    Gu, Xuejun; Ren, Kui; Masciotti, James; Hielscher, Andreas H

    2006-01-01

    Optical tomography consists of reconstructing the spatial of a medium's optical properties from measurements of transmitted light on the boundary of the medium. Mathematically this problem amounts to parameter identification for the radiative transport equation (ERT) or diffusion approximation (DA). However, this type of boundary-value problem is highly ill-posed and the image reconstruction process is often unstable and non-unique. To overcome this problem, we present a parametric inverse method that considerably reduces the number of variables being reconstructed. In this way the amount of measured data is equal or larger than the number of unknowns. Using synthetic data, we show examples that demonstrate how this approach leads to improvements in imaging quality.

  14. Single Particle Tomography in EMAN2

    PubMed Central

    Galaz-Montoya, Jesús G.; Flanagan, John; Schmid, Michael F.; Ludtke, Steven J.

    2015-01-01

    Single particle tomography (SPT or subtomogram averaging) offers a powerful alternative to traditional 2-D single particle reconstruction for studying conformationally or compositionally heterogeneous macromolecules. It can also provide direct observation (without labeling or staining) of complexes inside cells at nanometer resolution. The development of computational methods and tools for SPT remains an area of active research. Here we present the EMAN2.1 SPT toolbox, which offers a full SPT processing pipeline, from particle picking to post-alignment analysis of subtomogram averages, automating most steps. Different algorithm combinations can be applied at each step, providing versatility and allowing for procedural cross-testing and specimen-specific strategies. Alignment methods include all-vs-all, binary tree, iterative single-model refinement, multiple-model refinement, and self-symmetry alignment. An efficient angular search, Graphic Processing Unit (GPU) acceleration and both threaded and distributed parallelism are provided to speed up processing. Finally, automated simulations, per particle reconstruction of subtiltseries, and per-particle Contrast Transfer Function (CTF) correction have been implemented. Processing examples using both real and simulated data are shown for several structures. PMID:25956334

  15. Computerized ionospheric tomography based on geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  16. Three dimensional time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  17. Performance of MCAO on the E-ELT using the Fractal Iterative Method for fast atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Tallon, Michel; Béchet, Clémentine; Tallon-Bosc, Isabelle; Le Louarn, Miska; Thiébaut, Éric; Clare, Richard; Marchetti, Enrico

    2011-09-01

    Adaptive optics (AO) on Extremely Large Telescopes (ELTs) must overcome the difficulty of solving a huge number of equations in real time, especially when atmospheric tomography is involved. This is particularly the case for multi-conjugate or multi-objects AO systems. The Fractal Iterative Method (FrIM) has been introduced as a fast iterative algorithm for minimum variance wavefront reconstruction and control on ELTs. In particular, it includes an accurate fast computation of turbulence priors by using the so-called fractal operator. We present the first results obtained with FrIM in closed-loop in the context of atmospheric tomography. The method has been tested on Octopus, the end-to-end AO simulator at ESO, by considering MAORY, the multi-conjugate AO module planed for the E-ELT. This module aims at correcting a 2 arcmin field-of-view, by using 3 deformable mirrors, 6 Sodium laser guide stars, and 3 natural guide stars for low-order wavefront sensing. We show the performance obtained in different conditions and analyze the effect of some parameters of FrIM, like the weight of the priors, or the number of conjugate gradient iterations for solving the reconstruction. We show how the duration of the simulations can be shortened on such a large aperture, with the introduction of artificial vibrations in the simulation. The results are also compared to a more classical approach using matrix-vector multiplication.

  18. Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation

    NASA Astrophysics Data System (ADS)

    Ji, Yuntao; Hall, Stephen A.; Baud, Patrick; Wong, Teng-fong

    2015-02-01

    Standard techniques for computed tomography imaging are not directly applicable to a carbonate rock because of the geometric complexity of its pore space. In this study, we first characterized the pore structure in Majella limestone with 30 per cent porosity. Microtomography data acquired on this rock was partitioned into three distinct domains: macropores, solid grains, and an intermediate domain made up of voxels of solid embedded with micropores below the resolution. A morphological analysis of the microtomography images shows that in Majella limestone both the solid and intermediate domains are interconnected in a manner similar to that reported previously in a less porous limestone. We however show that the macroporosity in Majella limestone is fundamentally different, in that it has a percolative backbone which may contribute significantly to its permeability. We then applied for the first time 3-D-volumetric digital image correlation (DIC) to characterize the mode of mechanical failure in this limestone. Samples were triaxially deformed over a wide range of confining pressures. Tomography imaging was performed on these samples before and after deformation. Inelastic compaction was observed at all tested pressures associated with both brittle and ductile behaviors. Our DIC analysis reveals the structure of compacting shear bands in Majella limestone deformed in the transitional regime. It also indicates an increase of geometric complexity with increasing confinement-from a planar shear band, to a curvilinear band, and ultimately to a diffuse multiplicity of bands, before shear localization is inhibited as the failure mode completes the transition to delocalized cataclastic flow.

  19. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice.

  20. Revisiting Seismic Tomography Through Direct Methods and High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Bogiatzis, P.; Davis, T. A.

    2015-12-01

    Over the last two decades, the rapid increase in data availability and computational power significantly increased the number of data and model parameters that can be investigated in seismic tomography problems. Often, the model space consists of 105-106 unknown parameters and there are comparable numbers of observations, making direct computational methods such as the singular value decomposition prohibitively expensive or impossible, leaving iterative solvers as the only alternative option. Among the disadvantages of the iterative algorithms is that the inverse of the matrix that defines the system is not explicitly formed. As a consequence, the model resolution and covariance matrices, that are crucial for the quantitative assessment of the uncertainty of the tomographic models, cannot be computed. Despite efforts in finding computationally affordable approximations of these matrices, challenges remain, and approaches such as the checkerboard resolution tests continue to be used. Based upon recent developments in sparse algorithms and high performance computing resources, we demonstrate that direct methods are becoming feasible for large seismic tomography problems, and apply the technique to obtain a regional P-wave tomography model and its full resolution matrix with 267,520 parameters. Furthermore, we show that the structural analysis of the forward operators of the seismic tomography problems can provide insights into the inverse problem, and allows us to determine and exploit approximations that yield accurate solutions.

  1. Tomography through Bayesian inversion - can we afford it?

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech; Danek, Tomasz

    2014-05-01

    Velocity tomography, is now routinely used to image velocity distributions which are subsequently interpreted in terms of the Earth or rock-sample structure. This technique has been successfully used in detailed mapping of the Earth in various scales ranging from the whole globe until very local rock-mass structure, e.g. in mines. At the early stage of the development the velocity tomography technique used the arrival time data only due to a limited computational resources. Currently, attempts of velocity imaging from the full waveform records are also successfully undertaken. However, in both cases optimization-based inversion techniques are still most often used for solving problems in hand and the alternative approach based on the probabilistic inverse theory is said to be impractical due to a demand of huge computational power. In this presentation we discuss this point thoroughly. We show that two new computational techniques namely the fast eikonal solvers based on the Godunov discretization and GPPGU (general purpose computing on graphics processing units) make a Bayesian travel-time based tomography possible on the global scale. We also expect that the waveform-based Bayesian tomography which can now be performed occasionally at local (for example, mining) scale will soon become widely used

  2. Laplace-domain waveform inversion versus refraction-traveltime tomography

    NASA Astrophysics Data System (ADS)

    Bae, Ho Seuk; Pyun, Sukjoon; Shin, Changsoo; Marfurt, Kurt J.; Chung, Wookeen

    2012-07-01

    Geophysicists and applied mathematicians have proposed a rich suite of long-wavelength velocity estimation algorithms to construct starting velocity models for subsequent pre-stack depth migration and inversion. Refraction-traveltime tomography derives subsurface velocity models from picked first-arrival traveltimes. In contrast, Laplace-domain waveform inversion recovers long-wavelength velocity structure using the weighted amplitudes of first and later arrivals. There are several implementations of first-arrival traveltime inversion, with most based on ray tracing, and some based on the damped monochromatic wave equation, which accurately represent simple and finite-frequency first arrivals. Computationally, Laplace-domain wavefield inversion is quite similar to refraction-traveltime tomography using damped monochromatic wavefield, but the objective functions used in inversion are radically different. As in classical ray trace-based traveltime inversion, the objective of refraction-traveltime tomography using damped monochromatic wavefield is to match the phase (traveltime) of the first arrival of each measured seismic trace. In contrast, the objective of Laplace-domain wavefield inversion is to match the weighted amplitudes of both first and later arrivals to the weighted amplitudes of the measured seismic trace. Principles of refraction-traveltime tomography were used to generate velocity models of the earth one century ago. Laplace-domain waveform inversion is a more recently introduced algorithm and has been less rigorously studied by the seismic research community, with many workers believing it be equivalent to finite-frequency first-arrival traveltime tomography. We show that Laplace-domain waveform inversion is both theoretically and empirically different from finite-frequency first-arrival traveltime tomography. Specifically, we examine the Jacobian (sensitivity) kernels used in the two inversion schemes to quantify the different sensitivities (and hence

  3. Interferometer for optical coherence tomography.

    PubMed

    Hauger, Christoph; Wörz, Marco; Hellmuth, Thomas

    2003-07-01

    We describe a new interferometer setup for optical coherence tomography (OCT). The interferometer is based on a fiber arrangement similar to Young's two-pinhole interference experiment with spatial coherent and temporal incoherent light. Depth gating is achieved detection of the interference signal on a linear CCD array. Therefore no reference optical delay scanning is needed. The interference signal, the modulation of the signal, the axial resolution, and the depth range are derived theoretically and compared with experiments. The dynamic range of the setup is compared with OCT sensors in the time domain. To our knowledge, the first images of porcine brain and heart tissue and human skin are presented.

  4. Atom probe tomography in nanoelectronics

    NASA Astrophysics Data System (ADS)

    Blavette, Didier; Duguay, Sébastien

    2014-10-01

    The role of laser assisted atom probe tomography (APT) in microelectronics is discussed on the basis of various illustrations related to SiGe epitaxial layers, bipolar transistors or MOS nano-devices including gate all around (GAA) devices that were carried out at the Groupe de Physique des Matériaux of Rouen (France). 3D maps as provided by APT reveal the atomic-scale distribution of dopants and nanostructural features that are vital for nanoelectronics. Because of trajectory aberrations, APT images are subjected to distortions and local composition at the nm scale may either be biased. Procedures accounting for these effects were applied so that to correct images.

  5. Scanning color optical tomography (SCOT)

    PubMed Central

    Hosseini, Poorya; Sung, Yongjin; Choi, Youngwoon; Lue, Niyom; Yaqoob, Zahid; So, Peter

    2015-01-01

    We have developed an interferometric optical microscope that provides three-dimensional refractive index map of a specimen by scanning the color of three illumination beams. Our design of the interferometer allows for simultaneous measurement of the scattered fields (both amplitude and phase) of such a complex input beam. By obviating the need for mechanical scanning of the illumination beam or detection objective lens; the proposed method can increase the speed of the optical tomography by orders of magnitude. We demonstrate our method using polystyrene beads of known refractive index value and live cells. PMID:26367632

  6. Computed Tomography software and standards

    SciTech Connect

    Azevedo, S.G.; Martz, H.E.; Skeate, M.F.; Schneberk, D.J.; Roberson, G.P.

    1990-02-20

    This document establishes the software design, nomenclature, and conventions for industrial Computed Tomography (CT) used in the Nondestructive Evaluation Section at Lawrence Livermore National Laboratory. It is mainly a users guide to the technical use of the CT computer codes, but also presents a proposed standard for describing CT experiments and reconstructions. Each part of this document specifies different aspects of the CT software organization. A set of tables at the end describes the CT parameters of interest in our project. 4 refs., 6 figs., 1 tab.

  7. Computed Tomography Imaging in Oncology.

    PubMed

    Forrest, Lisa J

    2016-05-01

    Computed tomography (CT) imaging has become the mainstay of oncology, providing accurate tumor staging and follow-up imaging to monitor treatment response. Presurgical evaluation of tumors is becoming commonplace and guides surgeons as to the extent and whether complete tumor resection is possible. CT imaging plays a crucial role in radiotherapy treatment planning. CT imaging in oncology has become ubiquitous in veterinary medicine because of increased availability of this imaging modality. This article focuses on CT cancer staging in veterinary oncology, CT imaging for surgical planning, and advances in CT simulation for radiation therapy planning.

  8. Molecularly sensitive optical coherence tomography.

    PubMed

    Bredfeldt, Jeremy S; Vinegoni, Claudio; Marks, Daniel L; Boppart, Stephen A

    2005-03-01

    Molecular contrast in optical coherence tomography (OCT) is demonstrated by use of coherent anti-Stokes Raman scattering (CARS) for molecular sensitivity. Femtosecond laser pulses are focused into a sample by use of a low-numerical-aperture lens to generate CARS photons, and the backreflected CARS signal is interferometrically measured. With the chemical selectivity provided by CARS and the advanced imaging capabilities of OCT, this technique may be useful for molecular contrast imaging in biological tissues. CARS can be generated and interferometrically measured over at least 600 microm of the depth of field of a low-numerical-aperture objective.

  9. Computed tomography of stress fracture

    SciTech Connect

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-06-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic.

  10. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  11. X-ray computerized tomography

    SciTech Connect

    Wellington, S.L.; Vinegar, H.J.

    1987-08-01

    Computerized tomography (CT) is a new radiological imaging technique that measures density and atomic composition inside opaque objects. A revolutionary advance in medical radiology since 1972, CT has only recently been applied in petrophysics and reservoir engineering. This paper discusses several petrophysical applications, including three-dimensional (3D) measurement of density and porosity; rock mechanics studies; correlation of core logs with well logs; characterization of mud invasion, fractures, and disturbed core; and quantification of complex mineralogies and sand/shale ratios. Reservoir engineering applications presented include fundamental studies of CO/sub 2/ displacement in cores, focussing on viscous fingering, gravity segregation, miscibility, and mobility control.

  12. Oscillatory Flow Testing in a Sandbox - Towards Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Lim, D.; Cupola, F.; Cardiff, M. A.

    2014-12-01

    Detailed knowledge of subsurface hydraulic properties is important for predicting groundwater flow and contaminant transport. The spatial variation of hydraulic properties in the shallow subsurface has been extensively studied in the past two decades. A recent approach to characterize subsurface properties is hydraulic tomography, in which pressure data from multiple constant-rate pumping tests is inverted using a numerical model. Many laboratory sandbox studies have explored the performance of hydraulic tomography under different controlled conditions and shown that detailed heterogeneity information can be extracted (Liu et al., 2002, Illman et al., 2007, 2008, 2010a, 2010b, Liu et al., 2007, 2008, Xiang et al., 2009, Yin and Illman, 2009, Liu and Kitanidis, 2011, Berg and Illman, 2011a). Recently, Cardiff et al. (2013) proposed a modified approach of Oscillatory Hydraulic Tomography (OHT) - in which periodic pumping signals of different frequencies are used for aquifer stimulation - to characterize aquifer properties. The potential advantages of OHT over traditional hydraulic tomography include: 1) no net injection or extraction of water; 2) little movement of existing contamination; 3) minimal impact of model boundary conditions; and 4) robust extraction of oscillatory signals from noisy data. To evaluate the premise of OHT, we built a highly-instrumented 2-D laboratory sandbox and record pressure responses to periodic pumping tests. In our setup, the laboratory sandbox is filled with sand of known hydraulic properties, and we measure aquifer responses at a variety of testing frequencies. The signals recorded are processed using Fourier-domain analysis, and compared against expected results under linear (Darcian) theory. The responses are analyzed using analytical and numerical models, which provide key insights as to: 1) how "effective" hydraulic properties estimated using homogeneous models are associated with aquifer heterogeneity; and 2) how OHT is able to

  13. Asymptomatic Multiple Myeloma Presenting as a Nodular Hepatic Lesion: A Case Report and Review of the Literature

    PubMed Central

    Huang, Hans; Bazerbachi, Fateh; Mesa, Hector; Gupta, Pankaj

    2015-01-01

    Background Plasma cell myeloma is the most common primary bone malignancy in adults. However, liver involvement in the form of an initial and asymptomatic nodular plasmacytoma is exceedingly rare. Case Report A 64-year-old male was found to have a right hepatic lobe nodule on a routine abdominal ultrasound prior to bariatric surgery. Liver biopsy revealed a plasma cell neoplasm that, given the location of the lesion, was favored to represent a lymphoma with prominent plasmacytic differentiation. Positron emission tomography (PET) demonstrated a hypermetabolic hepatic mass and identified multiple destructive bony lesions. Biopsy of a clavicular lesion revealed sheets of plasma cells and confirmed the diagnosis of multiple myeloma. The patient underwent 6 cycles of chemotherapy with cyclophosphamide, bortezomib, and dexamethasone before transitioning to lenalidomide and dexamethasone because of early disease progression. Although the patient had International Staging System I (low-risk) disease, his disease demonstrated an aggressive clinical course and resistance to multiple lines of therapy. Conclusion Extramedullary nodular hepatic plasmacytoma is exceedingly rare. Nevertheless, extramedullary plasmacytomas should be included in the differential diagnosis of patients with indistinct hepatic lesions visualized on computed tomography scan, especially if PET scans show associated bony lesions. In general, extramedullary plasmacytomas are a poor prognostic sign and a harbinger of an aggressive clinical course in the context of multiple myeloma. PMID:26730235

  14. Three dimensional image reconstruction based on a wide-field optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Feng, Yinqi; Feng, Shengtong; Zhang, Min; Hao, Junjun

    2014-07-01

    Wide-field optical coherence tomography has a promising application for its high scanning rate and resolution. The principle of a wide-field optical coherence tomography system is described, and 2D images of glass slides are reconstructed using eight-stepped phase-shifting method in the system. Using VC6.0 and OpenGL programming, 3D images are reconstructed based on the Marching Cube algorithm with 2D image sequences. The experimental results show that the depth detection and three-dimensional tomography for translucent materials could be implemented efficiently in the WFOCT system.

  15. Multiple ectopic hepatocellular carcinomas arising in the abdominal cavity.

    PubMed

    Miyake, Toru; Hoshino, Seiichiro; Yoshida, Yoichiro; Aisu, Naoya; Tanimura, Syu; Hisano, Satoshi; Kuno, Nobuaki; Sohda, Tetsuro; Sakisaka, Shotaro; Yamashita, Yuichi

    2012-09-01

    Ectopic hepatocellular carcinoma (HCC) is a very rare clinical entity that is defined as HCC arising from extrahepatic liver tissue. This report presents a case of ectopic multiple HCC arising in the abdominal cavity. A 42-year-old otherwise healthy male presented with liver dysfunction at a general health checkup. Both HCV antibody and hepatitis B surface antigen were negative. Laboratory examination showed elevations in serum alpha-fetoprotein and PIVKA-II. Ultrasonography and computed tomography revealed multiple nodular lesions in the abdominal cavity with ascites without a possible primary tumor. Exploratory laparoscopy was performed, which revealed bloody ascites and multiple brown nodular tumors measuring approximately 10 mm in size that were disseminated on the perineum and mesentery. A postoperative PET-CT scan was performed but it did not reveal any evidence of a tumor in the liver. The tumors resected from the peritoneum were diagnosed as HCC. The present case of HCC was thought to have possibly developed from ectopic liver on the peritoneum or mesentery.

  16. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.

    PubMed

    Passamonti, Luca; Vázquez Rodríguez, Patricia; Hong, Young T; Allinson, Kieren S J; Williamson, David; Borchert, Robin J; Sami, Saber; Cope, Thomas E; Bevan-Jones, W Richard; Jones, P Simon; Arnold, Robert; Surendranathan, Ajenthan; Mak, Elijah; Su, Li; Fryer, Tim D; Aigbirhio, Franklin I; O'Brien, John T; Rowe, James B

    2017-03-01

    The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P < 0.0001; region of interest × group interaction, F(2,68) = 7.5, P < 0.00001]. More specifically, 18F-AV-1451 binding was significantly increased in patients with Alzheimer's disease, relative to patients with progressive supranuclear palsy and with control subjects, in the hippocampus and in occipital, parietal, temporal, and frontal cortices (t's > 2.2, P's < 0.04). Conversely, in patients with progressive supranuclear palsy, relative to patients with Alzheimer's disease, 18F-AV-1451 binding was elevated in the midbrain (t = 2.1, P < 0.04); while patients with progressive supranuclear palsy showed, relative to controls, increased 18F-AV-1451 uptake in the putamen, pallidum

  17. Observation of the pulp horn by swept source optical coherence tomography and cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Iino, Yoshiko; Yoshioka, Toshihiko; Hanada, Takahiro; Ebihara, Arata; Sunakawa, Mitsuhiro; Sumi, Yasunori; Suda, Hideaki

    2015-02-01

    Cone-beam computed tomography (CBCT) is one of the most useful diagnostic techniques in dentistry but it involves ionizing radiation, while swept source optical coherence tomography (SS-OCT) has been introduced recently as a nondestructive, real-time, high resolution imaging technique using low-coherence interferometry, which involves no ionizing radiation. The purpose of this study was to evaluate the ability of SS-OCT to detect the pulp horn (PH) in comparison with that of CBCT. Ten extracted human mandibular molars were used. After horizontally removing a half of the tooth crown, the distance from the cut dentin surface to PH was measured using microfocus computed tomography (Micro CT) (SL) as the gold standard, by CBCT (CL) and by SS-OCT (OL). In the SS-OCT images, only when PH was observed beneath the overlying dentin, the distance from the cut dentin surface to PH was recorded. If the pulp was exposed, it was defined as pulp exposure (PE). The results obtained by the above three methods were statistically analyzed by Spearman's rank correlation coefficient at a significance level of p < 0.01. SS-OCT detected the presence of PH when the distance from the cut dentin surface to PH determined by SL was 2.33 mm or less. Strong correlations of the measured values were found between SL and CL (r=0.87), SL and OL (r=0.96), and CL and OL (r=0.86). The results showed that SS-OCT images correlated closely with CBCT images, suggesting that SS-OCT can be a useful tool for the detection of PH.

  18. Odor processing in multiple chemical sensitivity.

    PubMed

    Hillert, Lena; Musabasic, Vildana; Berglund, Hans; Ciumas, Carolina; Savic, Ivanka

    2007-03-01

    Multiple chemical sensitivity (MCS) is characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the mechanisms behind the reported hypersensitivity are unknown. Using the advantage of the well-defined trigger (odor), we investigated whether subjects with MCS could have an increased odor-signal response in the odor-processing neuronal circuits. Positron emission tomography (PET) activation studies with several different odorants were carried out in 12 MCS females and 12 female controls. Activation was defined as a significant increase in regional cerebral blood flow (rCBF) during smelling of the respective odorant compared to smelling of odorless air. The study also included online measurements of respiratory frequency and amplitude and heart rate variations by recording of R wave intervals (RR) on the surface electrocardiogram. The MCS subjects activated odor-processing brain regions less than controls, despite the reported, and physiologically indicated (decreased RR interval) distress. In parallel, they showed an odorant-related increase in activation of the anterior cingulate cortex and cuneus-precuneus. Notably, the baseline rCBF was normal. Thus, the abnormal patterns were observed only in response to odor signals. Subjects with MCS process odors differently from controls, however, without signs of neuronal sensitization. One possible explanation for the observed pattern of activation in MCS is a top-down regulation of odor-response via cingulate cortex.

  19. Temperature-modulated bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Shen, Haiou; Cong, Wenxiang; Zhao, Shan; Wei, Guo Wei

    2006-08-01

    It was recently reported that bioluminescent spectra can be significantly affected by temperature, which we recognize as a major opportunity to overcome the inherent illposedness of bioluminescence tomography (BLT). In this paper, we propose temperature-modulated bioluminescence tomography (TBT) to utilize the temperature dependence of bioluminescence for superior BLT performance. Specifically, we employ a focused ultrasound array to heat small volumes of interest (VOI) one at a time, and induce a detectable change in the optical signal on the body surface of a mouse. Based on this type of information, the BLT reconstruction can be stabilized and improved. Our numerical experiments clearly demonstrate the merits of our TBT with either noise-free or noisy datasets. Also, this idea is applicable in 2D bioluminescence imaging and computational optical biopsy (COB). We believe that our approach and technology represents a major step forward in the field of BLT, and has an important and immediate applicability in bioluminescence imaging of small animals in general.

  20. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.