TreeQ-VISTA: An Interactive Tree Visualization Tool withFunctional Annotation Query Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Shengyin; Anderson, Iain; Kunin, Victor
2007-05-07
Summary: We describe a general multiplatform exploratorytool called TreeQ-Vista, designed for presenting functional annotationsin a phylogenetic context. Traits, such as phenotypic and genomicproperties, are interactively queried from a relational database with auser-friendly interface which provides a set of tools for users with orwithout SQL knowledge. The query results are projected onto aphylogenetic tree and can be displayed in multiple color groups. A richset of browsing, grouping and query tools are provided to facilitatetrait exploration, comparison and analysis.Availability: The program,detailed tutorial and examples are available online athttp://genome-test.lbl.gov/vista/TreeQVista.
Modular Digital Missile Guidance, Phase I2
1976-01-28
at OMR. The revised study plan was fornally approved by ONR on 29 May 1975, confining the sinulatlon analysis work to a Class II missile with...functions analyzed in tne Phase I and Phase 11 studies . It can be seen thatf tnere practicable» (based on the results of function partitioning trade...llaillAU AS a result of this study » three generic missile families have oeen established and» relative to this classification» on
GeneTools--application for functional annotation and statistical hypothesis testing.
Beisvag, Vidar; Jünge, Frode K R; Bergum, Hallgeir; Jølsum, Lars; Lydersen, Stian; Günther, Clara-Cecilie; Ramampiaro, Heri; Langaas, Mette; Sandvik, Arne K; Laegreid, Astrid
2006-10-24
Modern biology has shifted from "one gene" approaches to methods for genomic-scale analysis like microarray technology, which allow simultaneous measurement of thousands of genes. This has created a need for tools facilitating interpretation of biological data in "batch" mode. However, such tools often leave the investigator with large volumes of apparently unorganized information. To meet this interpretation challenge, gene-set, or cluster testing has become a popular analytical tool. Many gene-set testing methods and software packages are now available, most of which use a variety of statistical tests to assess the genes in a set for biological information. However, the field is still evolving, and there is a great need for "integrated" solutions. GeneTools is a web-service providing access to a database that brings together information from a broad range of resources. The annotation data are updated weekly, guaranteeing that users get data most recently available. Data submitted by the user are stored in the database, where it can easily be updated, shared between users and exported in various formats. GeneTools provides three different tools: i) NMC Annotation Tool, which offers annotations from several databases like UniGene, Entrez Gene, SwissProt and GeneOntology, in both single- and batch search mode. ii) GO Annotator Tool, where users can add new gene ontology (GO) annotations to genes of interest. These user defined GO annotations can be used in further analysis or exported for public distribution. iii) eGOn, a tool for visualization and statistical hypothesis testing of GO category representation. As the first GO tool, eGOn supports hypothesis testing for three different situations (master-target situation, mutually exclusive target-target situation and intersecting target-target situation). An important additional function is an evidence-code filter that allows users, to select the GO annotations for the analysis. GeneTools is the first "all in one" annotation tool, providing users with a rapid extraction of highly relevant gene annotation data for e.g. thousands of genes or clones at once. It allows a user to define and archive new GO annotations and it supports hypothesis testing related to GO category representations. GeneTools is freely available through www.genetools.no
GARNET--gene set analysis with exploration of annotation relations.
Rho, Kyoohyoung; Kim, Bumjin; Jang, Youngjun; Lee, Sanghyun; Bae, Taejeong; Seo, Jihae; Seo, Chaehwa; Lee, Jihyun; Kang, Hyunjung; Yu, Ungsik; Kim, Sunghoon; Lee, Sanghyuk; Kim, Wan Kyu
2011-02-15
Gene set analysis is a powerful method of deducing biological meaning for an a priori defined set of genes. Numerous tools have been developed to test statistical enrichment or depletion in specific pathways or gene ontology (GO) terms. Major difficulties towards biological interpretation are integrating diverse types of annotation categories and exploring the relationships between annotation terms of similar information. GARNET (Gene Annotation Relationship NEtwork Tools) is an integrative platform for gene set analysis with many novel features. It includes tools for retrieval of genes from annotation database, statistical analysis & visualization of annotation relationships, and managing gene sets. In an effort to allow access to a full spectrum of amassed biological knowledge, we have integrated a variety of annotation data that include the GO, domain, disease, drug, chromosomal location, and custom-defined annotations. Diverse types of molecular networks (pathways, transcription and microRNA regulations, protein-protein interaction) are also included. The pair-wise relationship between annotation gene sets was calculated using kappa statistics. GARNET consists of three modules--gene set manager, gene set analysis and gene set retrieval, which are tightly integrated to provide virtually automatic analysis for gene sets. A dedicated viewer for annotation network has been developed to facilitate exploration of the related annotations. GARNET (gene annotation relationship network tools) is an integrative platform for diverse types of gene set analysis, where complex relationships among gene annotations can be easily explored with an intuitive network visualization tool (http://garnet.isysbio.org/ or http://ercsb.ewha.ac.kr/garnet/).
Pérez-Pérez, Martín; Glez-Peña, Daniel; Fdez-Riverola, Florentino; Lourenço, Anália
2015-02-01
Document annotation is a key task in the development of Text Mining methods and applications. High quality annotated corpora are invaluable, but their preparation requires a considerable amount of resources and time. Although the existing annotation tools offer good user interaction interfaces to domain experts, project management and quality control abilities are still limited. Therefore, the current work introduces Marky, a new Web-based document annotation tool equipped to manage multi-user and iterative projects, and to evaluate annotation quality throughout the project life cycle. At the core, Marky is a Web application based on the open source CakePHP framework. User interface relies on HTML5 and CSS3 technologies. Rangy library assists in browser-independent implementation of common DOM range and selection tasks, and Ajax and JQuery technologies are used to enhance user-system interaction. Marky grants solid management of inter- and intra-annotator work. Most notably, its annotation tracking system supports systematic and on-demand agreement analysis and annotation amendment. Each annotator may work over documents as usual, but all the annotations made are saved by the tracking system and may be further compared. So, the project administrator is able to evaluate annotation consistency among annotators and across rounds of annotation, while annotators are able to reject or amend subsets of annotations made in previous rounds. As a side effect, the tracking system minimises resource and time consumption. Marky is a novel environment for managing multi-user and iterative document annotation projects. Compared to other tools, Marky offers a similar visually intuitive annotation experience while providing unique means to minimise annotation effort and enforce annotation quality, and therefore corpus consistency. Marky is freely available for non-commercial use at http://sing.ei.uvigo.es/marky. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
RATT: Rapid Annotation Transfer Tool
Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew
2011-01-01
Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991
Approaches to Fungal Genome Annotation
Haas, Brian J.; Zeng, Qiandong; Pearson, Matthew D.; Cuomo, Christina A.; Wortman, Jennifer R.
2011-01-01
Fungal genome annotation is the starting point for analysis of genome content. This generally involves the application of diverse methods to identify features on a genome assembly such as protein-coding and non-coding genes, repeats and transposable elements, and pseudogenes. Here we describe tools and methods leveraged for eukaryotic genome annotation with a focus on the annotation of fungal nuclear and mitochondrial genomes. We highlight the application of the latest technologies and tools to improve the quality of predicted gene sets. The Broad Institute eukaryotic genome annotation pipeline is described as one example of how such methods and tools are integrated into a sequencing center’s production genome annotation environment. PMID:22059117
Semi-automatic semantic annotation of PubMed Queries: a study on quality, efficiency, satisfaction
Névéol, Aurélie; Islamaj-Doğan, Rezarta; Lu, Zhiyong
2010-01-01
Information processing algorithms require significant amounts of annotated data for training and testing. The availability of such data is often hindered by the complexity and high cost of production. In this paper, we investigate the benefits of a state-of-the-art tool to help with the semantic annotation of a large set of biomedical information queries. Seven annotators were recruited to annotate a set of 10,000 PubMed® queries with 16 biomedical and bibliographic categories. About half of the queries were annotated from scratch, while the other half were automatically pre-annotated and manually corrected. The impact of the automatic pre-annotations was assessed on several aspects of the task: time, number of actions, annotator satisfaction, inter-annotator agreement, quality and number of the resulting annotations. The analysis of annotation results showed that the number of required hand annotations is 28.9% less when using pre-annotated results from automatic tools. As a result, the overall annotation time was substantially lower when pre-annotations were used, while inter-annotator agreement was significantly higher. In addition, there was no statistically significant difference in the semantic distribution or number of annotations produced when pre-annotations were used. The annotated query corpus is freely available to the research community. This study shows that automatic pre-annotations are found helpful by most annotators. Our experience suggests using an automatic tool to assist large-scale manual annotation projects. This helps speed-up the annotation time and improve annotation consistency while maintaining high quality of the final annotations. PMID:21094696
A semi-automatic annotation tool for cooking video
NASA Astrophysics Data System (ADS)
Bianco, Simone; Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo; Margherita, Roberto; Marini, Gianluca; Gianforme, Giorgio; Pantaleo, Giuseppe
2013-03-01
In order to create a cooking assistant application to guide the users in the preparation of the dishes relevant to their profile diets and food preferences, it is necessary to accurately annotate the video recipes, identifying and tracking the foods of the cook. These videos present particular annotation challenges such as frequent occlusions, food appearance changes, etc. Manually annotate the videos is a time-consuming, tedious and error-prone task. Fully automatic tools that integrate computer vision algorithms to extract and identify the elements of interest are not error free, and false positive and false negative detections need to be corrected in a post-processing stage. We present an interactive, semi-automatic tool for the annotation of cooking videos that integrates computer vision techniques under the supervision of the user. The annotation accuracy is increased with respect to completely automatic tools and the human effort is reduced with respect to completely manual ones. The performance and usability of the proposed tool are evaluated on the basis of the time and effort required to annotate the same video sequences.
Assisted annotation of medical free text using RapTAT
Gobbel, Glenn T; Garvin, Jennifer; Reeves, Ruth; Cronin, Robert M; Heavirland, Julia; Williams, Jenifer; Weaver, Allison; Jayaramaraja, Shrimalini; Giuse, Dario; Speroff, Theodore; Brown, Steven H; Xu, Hua; Matheny, Michael E
2014-01-01
Objective To determine whether assisted annotation using interactive training can reduce the time required to annotate a clinical document corpus without introducing bias. Materials and methods A tool, RapTAT, was designed to assist annotation by iteratively pre-annotating probable phrases of interest within a document, presenting the annotations to a reviewer for correction, and then using the corrected annotations for further machine learning-based training before pre-annotating subsequent documents. Annotators reviewed 404 clinical notes either manually or using RapTAT assistance for concepts related to quality of care during heart failure treatment. Notes were divided into 20 batches of 19–21 documents for iterative annotation and training. Results The number of correct RapTAT pre-annotations increased significantly and annotation time per batch decreased by ∼50% over the course of annotation. Annotation rate increased from batch to batch for assisted but not manual reviewers. Pre-annotation F-measure increased from 0.5 to 0.6 to >0.80 (relative to both assisted reviewer and reference annotations) over the first three batches and more slowly thereafter. Overall inter-annotator agreement was significantly higher between RapTAT-assisted reviewers (0.89) than between manual reviewers (0.85). Discussion The tool reduced workload by decreasing the number of annotations needing to be added and helping reviewers to annotate at an increased rate. Agreement between the pre-annotations and reference standard, and agreement between the pre-annotations and assisted annotations, were similar throughout the annotation process, which suggests that pre-annotation did not introduce bias. Conclusions Pre-annotations generated by a tool capable of interactive training can reduce the time required to create an annotated document corpus by up to 50%. PMID:24431336
Apollo: a sequence annotation editor
Lewis, SE; Searle, SMJ; Harris, N; Gibson, M; Iyer, V; Richter, J; Wiel, C; Bayraktaroglu, L; Birney, E; Crosby, MA; Kaminker, JS; Matthews, BB; Prochnik, SE; Smith, CD; Tupy, JL; Rubin, GM; Misra, S; Mungall, CJ; Clamp, ME
2002-01-01
The well-established inaccuracy of purely computational methods for annotating genome sequences necessitates an interactive tool to allow biological experts to refine these approximations by viewing and independently evaluating the data supporting each annotation. Apollo was developed to meet this need, enabling curators to inspect genome annotations closely and edit them. FlyBase biologists successfully used Apollo to annotate the Drosophila melanogaster genome and it is increasingly being used as a starting point for the development of customized annotation editing tools for other genome projects. PMID:12537571
VideoANT: Extending Online Video Annotation beyond Content Delivery
ERIC Educational Resources Information Center
Hosack, Bradford
2010-01-01
This paper expands the boundaries of video annotation in education by outlining the need for extended interaction in online video use, identifying the challenges faced by existing video annotation tools, and introducing Video-ANT, a tool designed to create text-based annotations integrated within the time line of a video hosted online. Several…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Elo; Huang, Amy; Cadag, Eithon
In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less
Leung, Elo; Huang, Amy; Cadag, Eithon; ...
2016-01-20
In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less
IMG ER: a system for microbial genome annotation expert review and curation.
Markowitz, Victor M; Mavromatis, Konstantinos; Ivanova, Natalia N; Chen, I-Min A; Chu, Ken; Kyrpides, Nikos C
2009-09-01
A rapidly increasing number of microbial genomes are sequenced by organizations worldwide and are eventually included into various public genome data resources. The quality of the annotations depends largely on the original dataset providers, with erroneous or incomplete annotations often carried over into the public resources and difficult to correct. We have developed an Expert Review (ER) version of the Integrated Microbial Genomes (IMG) system, with the goal of supporting systematic and efficient revision of microbial genome annotations. IMG ER provides tools for the review and curation of annotations of both new and publicly available microbial genomes within IMG's rich integrated genome framework. New genome datasets are included into IMG ER prior to their public release either with their native annotations or with annotations generated by IMG ER's annotation pipeline. IMG ER tools allow addressing annotation problems detected with IMG's comparative analysis tools, such as genes missed by gene prediction pipelines or genes without an associated function. Over the past year, IMG ER was used for improving the annotations of about 150 microbial genomes.
A survey on annotation tools for the biomedical literature.
Neves, Mariana; Leser, Ulf
2014-03-01
New approaches to biomedical text mining crucially depend on the existence of comprehensive annotated corpora. Such corpora, commonly called gold standards, are important for learning patterns or models during the training phase, for evaluating and comparing the performance of algorithms and also for better understanding the information sought for by means of examples. Gold standards depend on human understanding and manual annotation of natural language text. This process is very time-consuming and expensive because it requires high intellectual effort from domain experts. Accordingly, the lack of gold standards is considered as one of the main bottlenecks for developing novel text mining methods. This situation led the development of tools that support humans in annotating texts. Such tools should be intuitive to use, should support a range of different input formats, should include visualization of annotated texts and should generate an easy-to-parse output format. Today, a range of tools which implement some of these functionalities are available. In this survey, we present a comprehensive survey of tools for supporting annotation of biomedical texts. Altogether, we considered almost 30 tools, 13 of which were selected for an in-depth comparison. The comparison was performed using predefined criteria and was accompanied by hands-on experiences whenever possible. Our survey shows that current tools can support many of the tasks in biomedical text annotation in a satisfying manner, but also that no tool can be considered as a true comprehensive solution.
A Case Study of Using a Social Annotation Tool to Support Collaboratively Learning
ERIC Educational Resources Information Center
Gao, Fei
2013-01-01
The purpose of the study was to understand student interaction and learning supported by a collaboratively social annotation tool--Diigo. The researcher examined through a case study how students participated and interacted when learning an online text with the social annotation tool--Diigo, and how they perceived their experience. The findings…
Geib, Scott M; Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle; Sim, Sheina B
2018-04-01
One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI's annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline. The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI.
Hall, Brian; Derego, Theodore; Bremer, Forest T; Cannoles, Kyle
2018-01-01
Abstract Background One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation assembly filtering, annotation, and conversion into the NCBI’s annotation table format, these tools typically require back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming (Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. Findings The Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file that is consistent with the NCBI submission pipeline Conclusions The Genome Annotation Generator achieves the goal of providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to the NCBI. PMID:29635297
EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome
Thibaud-Nissen, Françoise; Campbell, Matthew; Hamilton, John P; Zhu, Wei; Buell, C Robin
2007-01-01
Background Despite the improvements of tools for automated annotation of genome sequences, manual curation at the structural and functional level can provide an increased level of refinement to genome annotation. The Institute for Genomic Research Rice Genome Annotation (hereafter named the Osa1 Genome Annotation) is the product of an automated pipeline and, for this reason, will benefit from the input of biologists with expertise in rice and/or particular gene families. Leveraging knowledge from a dispersed community of scientists is a demonstrated way of improving a genome annotation. This requires tools that facilitate 1) the submission of gene annotation to an annotation project, 2) the review of the submitted models by project annotators, and 3) the incorporation of the submitted models in the ongoing annotation effort. Results We have developed the Eukaryotic Community Annotation Package (EuCAP), an annotation tool, and have applied it to the rice genome. The primary level of curation by community annotators (CA) has been the annotation of gene families. Annotation can be submitted by email or through the EuCAP Web Tool. The CA models are aligned to the rice pseudomolecules and the coordinates of these alignments, along with functional annotation, are stored in the MySQL EuCAP Gene Model database. Web pages displaying the alignments of the CA models to the Osa1 Genome models are automatically generated from the EuCAP Gene Model database. The alignments are reviewed by the project annotators (PAs) in the context of experimental evidence. Upon approval by the PAs, the CA models, along with the corresponding functional annotations, are integrated into the Osa1 Genome Annotation. The CA annotations, grouped by family, are displayed on the Community Annotation pages of the project website , as well as in the Community Annotation track of the Genome Browser. Conclusion We have applied EuCAP to rice. As of July 2007, the structural and/or functional annotation of 1,094 genes representing 57 families have been deposited and integrated into the current gene set. All of the EuCAP components are open-source, thereby allowing the implementation of EuCAP for the annotation of other genomes. EuCAP is available at . PMID:17961238
A Software Tool for the Annotation of Embolic Events in Echo Doppler Audio Signals
Pierleoni, Paola; Maurizi, Lorenzo; Palma, Lorenzo; Belli, Alberto; Valenti, Simone; Marroni, Alessandro
2017-01-01
The use of precordial Doppler monitoring to prevent decompression sickness (DS) is well known by the scientific community as an important instrument for early diagnosis of DS. However, the timely and correct diagnosis of DS without assistance from diving medical specialists is unreliable. Thus, a common protocol for the manual annotation of echo Doppler signals and a tool for their automated recording and annotation are necessary. We have implemented original software for efficient bubble appearance annotation and proposed a unified annotation protocol. The tool auto-sets the response time of human “bubble examiners,” performs playback of the Doppler file by rendering it independent of the specific audio player, and enables the annotation of individual bubbles or multiple bubbles known as “showers.” The tool provides a report with an optimized data structure and estimates the embolic risk level according to the Extended Spencer Scale. The tool is built in accordance with ISO/IEC 9126 on software quality and has been projected and tested with assistance from the Divers Alert Network (DAN) Europe Foundation, which employs this tool for its diving data acquisition campaigns. PMID:29242701
BEACON: automated tool for Bacterial GEnome Annotation ComparisON.
Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B
2015-08-18
Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .
Weirick, Tyler; John, David; Uchida, Shizuka
2017-03-01
Maintaining the consistency of genomic annotations is an increasingly complex task because of the iterative and dynamic nature of assembly and annotation, growing numbers of biological databases and insufficient integration of annotations across databases. As information exchange among databases is poor, a 'novel' sequence from one reference annotation could be annotated in another. Furthermore, relationships to nearby or overlapping annotated transcripts are even more complicated when using different genome assemblies. To better understand these problems, we surveyed current and previous versions of genomic assemblies and annotations across a number of public databases containing long noncoding RNA. We identified numerous discrepancies of transcripts regarding their genomic locations, transcript lengths and identifiers. Further investigation showed that the positional differences between reference annotations of essentially the same transcript could lead to differences in its measured expression at the RNA level. To aid in resolving these problems, we present the algorithm 'Universal Genomic Accession Hash (UGAHash)' and created an open source web tool to encourage the usage of the UGAHash algorithm. The UGAHash web tool (http://ugahash.uni-frankfurt.de) can be accessed freely without registration. The web tool allows researchers to generate Universal Genomic Accessions for genomic features or to explore annotations deposited in the public databases of the past and present versions. We anticipate that the UGAHash web tool will be a valuable tool to check for the existence of transcripts before judging the newly discovered transcripts as novel. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
AnnotateGenomicRegions: a web application.
Zammataro, Luca; DeMolfetta, Rita; Bucci, Gabriele; Ceol, Arnaud; Muller, Heiko
2014-01-01
Modern genomic technologies produce large amounts of data that can be mapped to specific regions in the genome. Among the first steps in interpreting the results is annotation of genomic regions with known features such as genes, promoters, CpG islands etc. Several tools have been published to perform this task. However, using these tools often requires a significant amount of bioinformatics skills and/or downloading and installing dedicated software. Here we present AnnotateGenomicRegions, a web application that accepts genomic regions as input and outputs a selection of overlapping and/or neighboring genome annotations. Supported organisms include human (hg18, hg19), mouse (mm8, mm9, mm10), zebrafish (danRer7), and Saccharomyces cerevisiae (sacCer2, sacCer3). AnnotateGenomicRegions is accessible online on a public server or can be installed locally. Some frequently used annotations and genomes are embedded in the application while custom annotations may be added by the user. The increasing spread of genomic technologies generates the need for a simple-to-use annotation tool for genomic regions that can be used by biologists and bioinformaticians alike. AnnotateGenomicRegions meets this demand. AnnotateGenomicRegions is an open-source web application that can be installed on any personal computer or institute server. AnnotateGenomicRegions is available at: http://cru.genomics.iit.it/AnnotateGenomicRegions.
AnnotateGenomicRegions: a web application
2014-01-01
Background Modern genomic technologies produce large amounts of data that can be mapped to specific regions in the genome. Among the first steps in interpreting the results is annotation of genomic regions with known features such as genes, promoters, CpG islands etc. Several tools have been published to perform this task. However, using these tools often requires a significant amount of bioinformatics skills and/or downloading and installing dedicated software. Results Here we present AnnotateGenomicRegions, a web application that accepts genomic regions as input and outputs a selection of overlapping and/or neighboring genome annotations. Supported organisms include human (hg18, hg19), mouse (mm8, mm9, mm10), zebrafish (danRer7), and Saccharomyces cerevisiae (sacCer2, sacCer3). AnnotateGenomicRegions is accessible online on a public server or can be installed locally. Some frequently used annotations and genomes are embedded in the application while custom annotations may be added by the user. Conclusions The increasing spread of genomic technologies generates the need for a simple-to-use annotation tool for genomic regions that can be used by biologists and bioinformaticians alike. AnnotateGenomicRegions meets this demand. AnnotateGenomicRegions is an open-source web application that can be installed on any personal computer or institute server. AnnotateGenomicRegions is available at: http://cru.genomics.iit.it/AnnotateGenomicRegions. PMID:24564446
Shen, Lishuang; Attimonelli, Marcella; Bai, Renkui; Lott, Marie T; Wallace, Douglas C; Falk, Marni J; Gai, Xiaowu
2018-06-01
Accurate mitochondrial DNA (mtDNA) variant annotation is essential for the clinical diagnosis of diverse human diseases. Substantial challenges to this process include the inconsistency in mtDNA nomenclatures, the existence of multiple reference genomes, and a lack of reference population frequency data. Clinicians need a simple bioinformatics tool that is user-friendly, and bioinformaticians need a powerful informatics resource for programmatic usage. Here, we report the development and functionality of the MSeqDR mtDNA Variant Tool set (mvTool), a one-stop mtDNA variant annotation and analysis Web service. mvTool is built upon the MSeqDR infrastructure (https://mseqdr.org), with contributions of expert curated data from MITOMAP (https://www.mitomap.org) and HmtDB (https://www.hmtdb.uniba.it/hmdb). mvTool supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants. Besides generic annotations from dbNSFP and Variant Effect Predictor (VEP), mvTool provides allele frequencies in more than 47,000 germline mitogenomes, and disease and pathogenicity classifications from MSeqDR, Mitomap, HmtDB and ClinVar (Landrum et al., 2013). mvTools also provides mtDNA somatic variants annotations. "mvTool API" is implemented for programmatic access using inputs in VCF, HGVS, or classical mtDNA variant nomenclatures. The results are reported as hyperlinked html tables, JSON, Excel, and VCF formats. MSeqDR mvTool is freely accessible at https://mseqdr.org/mvtool.php. © 2018 Wiley Periodicals, Inc.
AutoFACT: An Automatic Functional Annotation and Classification Tool
Koski, Liisa B; Gray, Michael W; Lang, B Franz; Burger, Gertraud
2005-01-01
Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1) analyzes nucleotide and protein sequence data; (2) determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3) assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4) generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at . PMID:15960857
A computational platform to maintain and migrate manual functional annotations for BioCyc databases.
Walsh, Jesse R; Sen, Taner Z; Dickerson, Julie A
2014-10-12
BioCyc databases are an important resource for information on biological pathways and genomic data. Such databases represent the accumulation of biological data, some of which has been manually curated from literature. An essential feature of these databases is the continuing data integration as new knowledge is discovered. As functional annotations are improved, scalable methods are needed for curators to manage annotations without detailed knowledge of the specific design of the BioCyc database. We have developed CycTools, a software tool which allows curators to maintain functional annotations in a model organism database. This tool builds on existing software to improve and simplify annotation data imports of user provided data into BioCyc databases. Additionally, CycTools automatically resolves synonyms and alternate identifiers contained within the database into the appropriate internal identifiers. Automating steps in the manual data entry process can improve curation efforts for major biological databases. The functionality of CycTools is demonstrated by transferring GO term annotations from MaizeCyc to matching proteins in CornCyc, both maize metabolic pathway databases available at MaizeGDB, and by creating strain specific databases for metabolic engineering.
RysannMD: A biomedical semantic annotator balancing speed and accuracy.
Cuzzola, John; Jovanović, Jelena; Bagheri, Ebrahim
2017-07-01
Recently, both researchers and practitioners have explored the possibility of semantically annotating large and continuously evolving collections of biomedical texts such as research papers, medical reports, and physician notes in order to enable their efficient and effective management and use in clinical practice or research laboratories. Such annotations can be automatically generated by biomedical semantic annotators - tools that are specifically designed for detecting and disambiguating biomedical concepts mentioned in text. The biomedical community has already presented several solid automated semantic annotators. However, the existing tools are either strong in their disambiguation capacity, i.e., the ability to identify the correct biomedical concept for a given piece of text among several candidate concepts, or they excel in their processing time, i.e., work very efficiently, but none of the semantic annotation tools reported in the literature has both of these qualities. In this paper, we present RysannMD (Ryerson Semantic Annotator for Medical Domain), a biomedical semantic annotation tool that strikes a balance between processing time and performance while disambiguating biomedical terms. In other words, RysannMD provides reasonable disambiguation performance when choosing the right sense for a biomedical term in a given context, and does that in a reasonable time. To examine how RysannMD stands with respect to the state of the art biomedical semantic annotators, we have conducted a series of experiments using standard benchmarking corpora, including both gold and silver standards, and four modern biomedical semantic annotators, namely cTAKES, MetaMap, NOBLE Coder, and Neji. The annotators were compared with respect to the quality of the produced annotations measured against gold and silver standards using precision, recall, and F 1 measure and speed, i.e., processing time. In the experiments, RysannMD achieved the best median F 1 measure across the benchmarking corpora, independent of the standard used (silver/gold), biomedical subdomain, and document size. In terms of the annotation speed, RysannMD scored the second best median processing time across all the experiments. The obtained results indicate that RysannMD offers the best performance among the examined semantic annotators when both quality of annotation and speed are considered simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.
Brettin, Thomas; Davis, James J.; Disz, Terry; ...
2015-02-10
The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offersmore » a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.« less
ERIC Educational Resources Information Center
Lu, Jingyan; Deng, Liping
2012-01-01
This study seeks to design and facilitate active reading among secondary school students with an online annotation tool--Diigo. Two classes of different academic performance levels were recruited to examine their annotation behavior and perceptions of Diigo. We wanted to determine whether the two classes differed in how they used Diigo; how they…
Gene calling and bacterial genome annotation with BG7.
Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo
2015-01-01
New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).
Marsch, Amanda F; Espiritu, Baltazar; Groth, John; Hutchens, Kelli A
2014-06-01
With today's technology, paraffin-embedded, hematoxylin & eosin-stained pathology slides can be scanned to generate high quality virtual slides. Using proprietary software, digital images can also be annotated with arrows, circles and boxes to highlight certain diagnostic features. Previous studies assessing digital microscopy as a teaching tool did not involve the annotation of digital images. The objective of this study was to compare the effectiveness of annotated digital pathology slides versus non-annotated digital pathology slides as a teaching tool during dermatology and pathology residencies. A study group composed of 31 dermatology and pathology residents was asked to complete an online pre-quiz consisting of 20 multiple choice style questions, each associated with a static digital pathology image. After completion, participants were given access to an online tutorial composed of digitally annotated pathology slides and subsequently asked to complete a post-quiz. A control group of 12 residents completed a non-annotated version of the tutorial. Nearly all participants in the study group improved their quiz score, with an average improvement of 17%, versus only 3% (P = 0.005) in the control group. These results support the notion that annotated digital pathology slides are superior to non-annotated slides for the purpose of resident education. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Meystre, Stéphane M; Lee, Sanghoon; Jung, Chai Young; Chevrier, Raphaël D
2012-08-01
An increasing need for collaboration and resources sharing in the Natural Language Processing (NLP) research and development community motivates efforts to create and share a common data model and a common terminology for all information annotated and extracted from clinical text. We have combined two existing standards: the HL7 Clinical Document Architecture (CDA), and the ISO Graph Annotation Format (GrAF; in development), to develop such a data model entitled "CDA+GrAF". We experimented with several methods to combine these existing standards, and eventually selected a method wrapping separate CDA and GrAF parts in a common standoff annotation (i.e., separate from the annotated text) XML document. Two use cases, clinical document sections, and the 2010 i2b2/VA NLP Challenge (i.e., problems, tests, and treatments, with their assertions and relations), were used to create examples of such standoff annotation documents, and were successfully validated with the XML schemata provided with both standards. We developed a tool to automatically translate annotation documents from the 2010 i2b2/VA NLP Challenge format to GrAF, and automatically generated 50 annotation documents using this tool, all successfully validated. Finally, we adapted the XSL stylesheet provided with HL7 CDA to allow viewing annotation XML documents in a web browser, and plan to adapt existing tools for translating annotation documents between CDA+GrAF and the UIMA and GATE frameworks. This common data model may ease directly comparing NLP tools and applications, combining their output, transforming and "translating" annotations between different NLP applications, and eventually "plug-and-play" of different modules in NLP applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Sma3s: a three-step modular annotator for large sequence datasets.
Muñoz-Mérida, Antonio; Viguera, Enrique; Claros, M Gonzalo; Trelles, Oswaldo; Pérez-Pulido, Antonio J
2014-08-01
Automatic sequence annotation is an essential component of modern 'omics' studies, which aim to extract information from large collections of sequence data. Most existing tools use sequence homology to establish evolutionary relationships and assign putative functions to sequences. However, it can be difficult to define a similarity threshold that achieves sufficient coverage without sacrificing annotation quality. Defining the correct configuration is critical and can be challenging for non-specialist users. Thus, the development of robust automatic annotation techniques that generate high-quality annotations without needing expert knowledge would be very valuable for the research community. We present Sma3s, a tool for automatically annotating very large collections of biological sequences from any kind of gene library or genome. Sma3s is composed of three modules that progressively annotate query sequences using either: (i) very similar homologues, (ii) orthologous sequences or (iii) terms enriched in groups of homologous sequences. We trained the system using several random sets of known sequences, demonstrating average sensitivity and specificity values of ~85%. In conclusion, Sma3s is a versatile tool for high-throughput annotation of a wide variety of sequence datasets that outperforms the accuracy of other well-established annotation algorithms, and it can enrich existing database annotations and uncover previously hidden features. Importantly, Sma3s has already been used in the functional annotation of two published transcriptomes. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Chemical annotation of small and peptide-like molecules at the Protein Data Bank
Young, Jasmine Y.; Feng, Zukang; Dimitropoulos, Dimitris; Sala, Raul; Westbrook, John; Zhuravleva, Marina; Shao, Chenghua; Quesada, Martha; Peisach, Ezra; Berman, Helen M.
2013-01-01
Over the past decade, the number of polymers and their complexes with small molecules in the Protein Data Bank archive (PDB) has continued to increase significantly. To support scientific advancements and ensure the best quality and completeness of the data files over the next 10 years and beyond, the Worldwide PDB partnership that manages the PDB archive is developing a new deposition and annotation system. This system focuses on efficient data capture across all supported experimental methods. The new deposition and annotation system is composed of four major modules that together support all of the processing requirements for a PDB entry. In this article, we describe one such module called the Chemical Component Annotation Tool. This tool uses information from both the Chemical Component Dictionary and Biologically Interesting molecule Reference Dictionary to aid in annotation. Benchmark studies have shown that the Chemical Component Annotation Tool provides significant improvements in processing efficiency and data quality. Database URL: http://wwpdb.org PMID:24291661
Chemical annotation of small and peptide-like molecules at the Protein Data Bank.
Young, Jasmine Y; Feng, Zukang; Dimitropoulos, Dimitris; Sala, Raul; Westbrook, John; Zhuravleva, Marina; Shao, Chenghua; Quesada, Martha; Peisach, Ezra; Berman, Helen M
2013-01-01
Over the past decade, the number of polymers and their complexes with small molecules in the Protein Data Bank archive (PDB) has continued to increase significantly. To support scientific advancements and ensure the best quality and completeness of the data files over the next 10 years and beyond, the Worldwide PDB partnership that manages the PDB archive is developing a new deposition and annotation system. This system focuses on efficient data capture across all supported experimental methods. The new deposition and annotation system is composed of four major modules that together support all of the processing requirements for a PDB entry. In this article, we describe one such module called the Chemical Component Annotation Tool. This tool uses information from both the Chemical Component Dictionary and Biologically Interesting molecule Reference Dictionary to aid in annotation. Benchmark studies have shown that the Chemical Component Annotation Tool provides significant improvements in processing efficiency and data quality. Database URL: http://wwpdb.org.
A call for benchmarking transposable element annotation methods.
Hoen, Douglas R; Hickey, Glenn; Bourque, Guillaume; Casacuberta, Josep; Cordaux, Richard; Feschotte, Cédric; Fiston-Lavier, Anna-Sophie; Hua-Van, Aurélie; Hubley, Robert; Kapusta, Aurélie; Lerat, Emmanuelle; Maumus, Florian; Pollock, David D; Quesneville, Hadi; Smit, Arian; Wheeler, Travis J; Bureau, Thomas E; Blanchette, Mathieu
2015-01-01
DNA derived from transposable elements (TEs) constitutes large parts of the genomes of complex eukaryotes, with major impacts not only on genomic research but also on how organisms evolve and function. Although a variety of methods and tools have been developed to detect and annotate TEs, there are as yet no standard benchmarks-that is, no standard way to measure or compare their accuracy. This lack of accuracy assessment calls into question conclusions from a wide range of research that depends explicitly or implicitly on TE annotation. In the absence of standard benchmarks, toolmakers are impeded in improving their tools, annotators cannot properly assess which tools might best suit their needs, and downstream researchers cannot judge how accuracy limitations might impact their studies. We therefore propose that the TE research community create and adopt standard TE annotation benchmarks, and we call for other researchers to join the authors in making this long-overdue effort a success.
AGORA : Organellar genome annotation from the amino acid and nucleotide references.
Jung, Jaehee; Kim, Jong Im; Jeong, Young-Sik; Yi, Gangman
2018-03-29
Next-generation sequencing (NGS) technologies have led to the accumulation of highthroughput sequence data from various organisms in biology. To apply gene annotation of organellar genomes for various organisms, more optimized tools for functional gene annotation are required. Almost all gene annotation tools are mainly focused on the chloroplast genome of land plants or the mitochondrial genome of animals.We have developed a web application AGORA for the fast, user-friendly, and improved annotations of organellar genomes. AGORA annotates genes based on a BLAST-based homology search and clustering with selected reference sequences from the NCBI database or user-defined uploaded data. AGORA can annotate the functional genes in almost all mitochondrion and plastid genomes of eukaryotes. The gene annotation of a genome with an exon-intron structure within a gene or inverted repeat region is also available. It provides information of start and end positions of each gene, BLAST results compared with the reference sequence, and visualization of gene map by OGDRAW. Users can freely use the software, and the accessible URL is https://bigdata.dongguk.edu/gene_project/AGORA/.The main module of the tool is implemented by the python and php, and the web page is built by the HTML and CSS to support all browsers. gangman@dongguk.edu.
Dugas, Martin; Meidt, Alexandra; Neuhaus, Philipp; Storck, Michael; Varghese, Julian
2016-06-01
The volume and complexity of patient data - especially in personalised medicine - is steadily increasing, both regarding clinical data and genomic profiles: Typically more than 1,000 items (e.g., laboratory values, vital signs, diagnostic tests etc.) are collected per patient in clinical trials. In oncology hundreds of mutations can potentially be detected for each patient by genomic profiling. Therefore data integration from multiple sources constitutes a key challenge for medical research and healthcare. Semantic annotation of data elements can facilitate to identify matching data elements in different sources and thereby supports data integration. Millions of different annotations are required due to the semantic richness of patient data. These annotations should be uniform, i.e., two matching data elements shall contain the same annotations. However, large terminologies like SNOMED CT or UMLS don't provide uniform coding. It is proposed to develop semantic annotations of medical data elements based on a large-scale public metadata repository. To achieve uniform codes, semantic annotations shall be re-used if a matching data element is available in the metadata repository. A web-based tool called ODMedit ( https://odmeditor.uni-muenster.de/ ) was developed to create data models with uniform semantic annotations. It contains ~800,000 terms with semantic annotations which were derived from ~5,800 models from the portal of medical data models (MDM). The tool was successfully applied to manually annotate 22 forms with 292 data items from CDISC and to update 1,495 data models of the MDM portal. Uniform manual semantic annotation of data models is feasible in principle, but requires a large-scale collaborative effort due to the semantic richness of patient data. A web-based tool for these annotations is available, which is linked to a public metadata repository.
Genome and proteome annotation: organization, interpretation and integration
Reeves, Gabrielle A.; Talavera, David; Thornton, Janet M.
2008-01-01
Recent years have seen a huge increase in the generation of genomic and proteomic data. This has been due to improvements in current biological methodologies, the development of new experimental techniques and the use of computers as support tools. All these raw data are useless if they cannot be properly analysed, annotated, stored and displayed. Consequently, a vast number of resources have been created to present the data to the wider community. Annotation tools and databases provide the means to disseminate these data and to comprehend their biological importance. This review examines the various aspects of annotation: type, methodology and availability. Moreover, it puts a special interest on novel annotation fields, such as that of phenotypes, and highlights the recent efforts focused on the integrating annotations. PMID:19019817
An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets.
Hosseini, Parsa; Tremblay, Arianne; Matthews, Benjamin F; Alkharouf, Nadim W
2010-07-02
The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease.
AgBase: supporting functional modeling in agricultural organisms
McCarthy, Fiona M.; Gresham, Cathy R.; Buza, Teresia J.; Chouvarine, Philippe; Pillai, Lakshmi R.; Kumar, Ranjit; Ozkan, Seval; Wang, Hui; Manda, Prashanti; Arick, Tony; Bridges, Susan M.; Burgess, Shane C.
2011-01-01
AgBase (http://www.agbase.msstate.edu/) provides resources to facilitate modeling of functional genomics data and structural and functional annotation of agriculturally important animal, plant, microbe and parasite genomes. The website is redesigned to improve accessibility and ease of use, including improved search capabilities. Expanded capabilities include new dedicated pages for horse, cat, dog, cotton, rice and soybean. We currently provide 590 240 Gene Ontology (GO) annotations to 105 454 gene products in 64 different species, including GO annotations linked to transcripts represented on agricultural microarrays. For many of these arrays, this provides the only functional annotation available. GO annotations are available for download and we provide comprehensive, species-specific GO annotation files for 18 different organisms. The tools available at AgBase have been expanded and several existing tools improved based upon user feedback. One of seven new tools available at AgBase, GOModeler, supports hypothesis testing from functional genomics data. We host several associated databases and provide genome browsers for three agricultural pathogens. Moreover, we provide comprehensive training resources (including worked examples and tutorials) via links to Educational Resources at the AgBase website. PMID:21075795
Solar Tutorial and Annotation Resource (STAR)
NASA Astrophysics Data System (ADS)
Showalter, C.; Rex, R.; Hurlburt, N. E.; Zita, E. J.
2009-12-01
We have written a software suite designed to facilitate solar data analysis by scientists, students, and the public, anticipating enormous datasets from future instruments. Our “STAR" suite includes an interactive learning section explaining 15 classes of solar events. Users learn software tools that exploit humans’ superior ability (over computers) to identify many events. Annotation tools include time slice generation to quantify loop oscillations, the interpolation of event shapes using natural cubic splines (for loops, sigmoids, and filaments) and closed cubic splines (for coronal holes). Learning these tools in an environment where examples are provided prepares new users to comfortably utilize annotation software with new data. Upon completion of our tutorial, users are presented with media of various solar events and asked to identify and annotate the images, to test their mastery of the system. Goals of the project include public input into the data analysis of very large datasets from future solar satellites, and increased public interest and knowledge about the Sun. In 2010, the Solar Dynamics Observatory (SDO) will be launched into orbit. SDO’s advancements in solar telescope technology will generate a terabyte per day of high-quality data, requiring innovation in data management. While major projects develop automated feature recognition software, so that computers can complete much of the initial event tagging and analysis, still, that software cannot annotate features such as sigmoids, coronal magnetic loops, coronal dimming, etc., due to large amounts of data concentrated in relatively small areas. Previously, solar physicists manually annotated these features, but with the imminent influx of data it is unrealistic to expect specialized researchers to examine every image that computers cannot fully process. A new approach is needed to efficiently process these data. Providing analysis tools and data access to students and the public have proven efficient in similar astrophysical projects (e.g. the “Galaxy Zoo.”) For “crowdsourcing” to be effective for solar research, the public needs knowledge and skills to recognize and annotate key events on the Sun. Our tutorial can provide this training, with over 200 images and 18 movies showing examples of active regions, coronal dimmings, coronal holes, coronal jets, coronal waves, emerging flux, sigmoids, coronal magnetic loops, filaments, filament eruption, flares, loop oscillation, plage, surges, and sunspots. Annotation tools are provided for many of these events. Many features of the tutorial, such as mouse-over definitions and interactive annotation examples, are designed to assist people without previous experience in solar physics. After completing the tutorial, the user is presented with an interactive quiz: a series of movies and images to identify and annotate. The tutorial teaches the user, with feedback on correct and incorrect answers, until the user develops appropriate confidence and skill. This prepares users to annotate new data, based on their experience with event recognition and annotation tools. Trained users can contribute significantly to our data analysis tasks, even as our training tool contributes to public science literacy and interest in solar physics.
Accessing the SEED genome databases via Web services API: tools for programmers.
Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A
2010-06-14
The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.
AnnotCompute: annotation-based exploration and meta-analysis of genomics experiments
Zheng, Jie; Stoyanovich, Julia; Manduchi, Elisabetta; Liu, Junmin; Stoeckert, Christian J.
2011-01-01
The ever-increasing scale of biological data sets, particularly those arising in the context of high-throughput technologies, requires the development of rich data exploration tools. In this article, we present AnnotCompute, an information discovery platform for repositories of functional genomics experiments such as ArrayExpress. Our system leverages semantic annotations of functional genomics experiments with controlled vocabulary and ontology terms, such as those from the MGED Ontology, to compute conceptual dissimilarities between pairs of experiments. These dissimilarities are then used to support two types of exploratory analysis—clustering and query-by-example. We show that our proposed dissimilarity measures correspond to a user's intuition about conceptual dissimilarity, and can be used to support effective query-by-example. We also evaluate the quality of clustering based on these measures. While AnnotCompute can support a richer data exploration experience, its effectiveness is limited in some cases, due to the quality of available annotations. Nonetheless, tools such as AnnotCompute may provide an incentive for richer annotations of experiments. Code is available for download at http://www.cbil.upenn.edu/downloads/AnnotCompute. Database URL: http://www.cbil.upenn.edu/annotCompute/ PMID:22190598
Digital Ink: In-Class Annotation of PowerPoint Lectures
ERIC Educational Resources Information Center
Johnson, Anne E.
2008-01-01
Digital ink is a tool that, in conjunction with Microsoft PowerPoint software, allows real-time freehand annotation of presentations. Annotation of slides during class encourages student engagement with the material and problems under discussion. Digital ink annotation is a technique suitable for teaching across many disciplines, but is especially…
Chen, I-Min A; Markowitz, Victor M; Palaniappan, Krishna; Szeto, Ernest; Chu, Ken; Huang, Jinghua; Ratner, Anna; Pillay, Manoj; Hadjithomas, Michalis; Huntemann, Marcel; Mikhailova, Natalia; Ovchinnikova, Galina; Ivanova, Natalia N; Kyrpides, Nikos C
2016-04-26
The exponential growth of genomic data from next generation technologies renders traditional manual expert curation effort unsustainable. Many genomic systems have included community annotation tools to address the problem. Most of these systems adopted a "Wiki-based" approach to take advantage of existing wiki technologies, but encountered obstacles in issues such as usability, authorship recognition, information reliability and incentive for community participation. Here, we present a different approach, relying on tightly integrated method rather than "Wiki-based" method, to support community annotation and user collaboration in the Integrated Microbial Genomes (IMG) system. The IMG approach allows users to use existing IMG data warehouse and analysis tools to add gene, pathway and biosynthetic cluster annotations, to analyze/reorganize contigs, genes and functions using workspace datasets, and to share private user annotations and workspace datasets with collaborators. We show that the annotation effort using IMG can be part of the research process to overcome the user incentive and authorship recognition problems thus fostering collaboration among domain experts. The usability and reliability issues are addressed by the integration of curated information and analysis tools in IMG, together with DOE Joint Genome Institute (JGI) expert review. By incorporating annotation operations into IMG, we provide an integrated environment for users to perform deeper and extended data analysis and annotation in a single system that can lead to publications and community knowledge sharing as shown in the case studies.
CuGene as a tool to view and explore genomic data
NASA Astrophysics Data System (ADS)
Haponiuk, Michał; Pawełkowicz, Magdalena; Przybecki, Zbigniew; Nowak, Robert M.
2017-08-01
Integrated CuGene is an easy-to-use, open-source, on-line tool that can be used to browse, analyze, and query genomic data and annotations. It places annotation tracks beneath genome coordinate positions, allowing rapid visual correlation of different types of information. It also allows users to upload and display their own experimental results or annotation sets. An important functionality of the application is a possibility to find similarity between sequences by applying four different algorithms of different accuracy. The presented tool was tested on real genomic data and is extensively used by Polish Consortium of Cucumber Genome Sequencing.
A UIMA wrapper for the NCBO annotator.
Roeder, Christophe; Jonquet, Clement; Shah, Nigam H; Baumgartner, William A; Verspoor, Karin; Hunter, Lawrence
2010-07-15
The Unstructured Information Management Architecture (UIMA) framework and web services are emerging as useful tools for integrating biomedical text mining tools. This note describes our work, which wraps the National Center for Biomedical Ontology (NCBO) Annotator-an ontology-based annotation service-to make it available as a component in UIMA workflows. This wrapper is freely available on the web at http://bionlp-uima.sourceforge.net/ as part of the UIMA tools distribution from the Center for Computational Pharmacology (CCP) at the University of Colorado School of Medicine. It has been implemented in Java for support on Mac OS X, Linux and MS Windows.
Redefining the genetics of Murine Gammaherpesvirus 68 via transcriptome-based annotation
Johnson, L. Steven; Willert, Erin K.; Virgin, Herbert W.
2010-01-01
Summary Viral genetic studies often focus on large open reading frames (ORFs) identified during genome annotation (ORF-based annotation). Here we provide a tool and software set for defining gene expression by murine gammaherpesvirus 68 (γHV68) nucleotide-by-nucleotide across the 119,450 basepair (bp) genome. These tools allowed us to determine that viral RNA expression was significantly more complex than predicted from ORF-based annotation, including over 73,000 nucleotides of unexpected transcription within 30 expressed genomic regions (EGRs). Approximately 90% of this RNA expression was antisense to genomic regions containing known large ORFs. We verified the existence of novel transcripts in three EGRs using standard methods to validate the approach and determined which parts of the transcriptome depend on protein or viral DNA synthesis. This redefines the genetic map of γHV68, indicates that herpesviruses contain significantly more genetic complexity than predicted from ORF-based genome annotations, and provides new tools and approaches for viral genetic studies. PMID:20542255
A Collaborative Multimedia Annotation Tool for Enhancing Knowledge Sharing in CSCL
ERIC Educational Resources Information Center
Yang, Stephen J. H.; Zhang, Jia; Su, Addison Y. S.; Tsai, Jeffrey J. P.
2011-01-01
Knowledge sharing in computer supported collaborative learning (CSCL) requires intensive social interactions among participants, typically in the form of annotations. An annotation refers to an explicit expression of knowledge that is attached to a document to reveal the conceptual meanings of an annotator's implicit thoughts. In this research, we…
Aggarwal, Gautam; Worthey, E A; McDonagh, Paul D; Myler, Peter J
2003-06-07
Seattle Biomedical Research Institute (SBRI) as part of the Leishmania Genome Network (LGN) is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces. Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN) into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODONUSAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence. An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.
Bovine Genome Database: supporting community annotation and analysis of the Bos taurus genome
2010-01-01
Background A goal of the Bovine Genome Database (BGD; http://BovineGenome.org) has been to support the Bovine Genome Sequencing and Analysis Consortium (BGSAC) in the annotation and analysis of the bovine genome. We were faced with several challenges, including the need to maintain consistent quality despite diversity in annotation expertise in the research community, the need to maintain consistent data formats, and the need to minimize the potential duplication of annotation effort. With new sequencing technologies allowing many more eukaryotic genomes to be sequenced, the demand for collaborative annotation is likely to increase. Here we present our approach, challenges and solutions facilitating a large distributed annotation project. Results and Discussion BGD has provided annotation tools that supported 147 members of the BGSAC in contributing 3,871 gene models over a fifteen-week period, and these annotations have been integrated into the bovine Official Gene Set. Our approach has been to provide an annotation system, which includes a BLAST site, multiple genome browsers, an annotation portal, and the Apollo Annotation Editor configured to connect directly to our Chado database. In addition to implementing and integrating components of the annotation system, we have performed computational analyses to create gene evidence tracks and a consensus gene set, which can be viewed on individual gene pages at BGD. Conclusions We have provided annotation tools that alleviate challenges associated with distributed annotation. Our system provides a consistent set of data to all annotators and eliminates the need for annotators to format data. Involving the bovine research community in genome annotation has allowed us to leverage expertise in various areas of bovine biology to provide biological insight into the genome sequence. PMID:21092105
MicroScope: a platform for microbial genome annotation and comparative genomics
Vallenet, D.; Engelen, S.; Mornico, D.; Cruveiller, S.; Fleury, L.; Lajus, A.; Rouy, Z.; Roche, D.; Salvignol, G.; Scarpelli, C.; Médigue, C.
2009-01-01
The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope’s rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of microbial genome annotation, especially for genomes initially analyzed by automatic procedures alone. Database URLs: http://www.genoscope.cns.fr/agc/mage and http://www.genoscope.cns.fr/agc/microcyc PMID:20157493
MicroScope: a platform for microbial genome annotation and comparative genomics.
Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C
2009-01-01
The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of microbial genome annotation, especially for genomes initially analyzed by automatic procedures alone.Database URLs: http://www.genoscope.cns.fr/agc/mage and http://www.genoscope.cns.fr/agc/microcyc.
Kawano, Shin; Watanabe, Tsutomu; Mizuguchi, Sohei; Araki, Norie; Katayama, Toshiaki; Yamaguchi, Atsuko
2014-07-01
TogoTable (http://togotable.dbcls.jp/) is a web tool that adds user-specified annotations to a table that a user uploads. Annotations are drawn from several biological databases that use the Resource Description Framework (RDF) data model. TogoTable uses database identifiers (IDs) in the table as a query key for searching. RDF data, which form a network called Linked Open Data (LOD), can be searched from SPARQL endpoints using a SPARQL query language. Because TogoTable uses RDF, it can integrate annotations from not only the reference database to which the IDs originally belong, but also externally linked databases via the LOD network. For example, annotations in the Protein Data Bank can be retrieved using GeneID through links provided by the UniProt RDF. Because RDF has been standardized by the World Wide Web Consortium, any database with annotations based on the RDF data model can be easily incorporated into this tool. We believe that TogoTable is a valuable Web tool, particularly for experimental biologists who need to process huge amounts of data such as high-throughput experimental output. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Current and future trends in marine image annotation software
NASA Astrophysics Data System (ADS)
Gomes-Pereira, Jose Nuno; Auger, Vincent; Beisiegel, Kolja; Benjamin, Robert; Bergmann, Melanie; Bowden, David; Buhl-Mortensen, Pal; De Leo, Fabio C.; Dionísio, Gisela; Durden, Jennifer M.; Edwards, Luke; Friedman, Ariell; Greinert, Jens; Jacobsen-Stout, Nancy; Lerner, Steve; Leslie, Murray; Nattkemper, Tim W.; Sameoto, Jessica A.; Schoening, Timm; Schouten, Ronald; Seager, James; Singh, Hanumant; Soubigou, Olivier; Tojeira, Inês; van den Beld, Inge; Dias, Frederico; Tempera, Fernando; Santos, Ricardo S.
2016-12-01
Given the need to describe, analyze and index large quantities of marine imagery data for exploration and monitoring activities, a range of specialized image annotation tools have been developed worldwide. Image annotation - the process of transposing objects or events represented in a video or still image to the semantic level, may involve human interactions and computer-assisted solutions. Marine image annotation software (MIAS) have enabled over 500 publications to date. We review the functioning, application trends and developments, by comparing general and advanced features of 23 different tools utilized in underwater image analysis. MIAS requiring human input are basically a graphical user interface, with a video player or image browser that recognizes a specific time code or image code, allowing to log events in a time-stamped (and/or geo-referenced) manner. MIAS differ from similar software by the capability of integrating data associated to video collection, the most simple being the position coordinates of the video recording platform. MIAS have three main characteristics: annotating events in real time, posteriorly to annotation and interact with a database. These range from simple annotation interfaces, to full onboard data management systems, with a variety of toolboxes. Advanced packages allow to input and display data from multiple sensors or multiple annotators via intranet or internet. Posterior human-mediated annotation often include tools for data display and image analysis, e.g. length, area, image segmentation, point count; and in a few cases the possibility of browsing and editing previous dive logs or to analyze the annotations. The interaction with a database allows the automatic integration of annotations from different surveys, repeated annotation and collaborative annotation of shared datasets, browsing and querying of data. Progress in the field of automated annotation is mostly in post processing, for stable platforms or still images. Integration into available MIAS is currently limited to semi-automated processes of pixel recognition through computer-vision modules that compile expert-based knowledge. Important topics aiding the choice of a specific software are outlined, the ideal software is discussed and future trends are presented.
xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud[OPEN
Merchant, Nirav
2016-01-01
Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today’s pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant’s Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. PMID:27020957
xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud.
Duvick, Jon; Standage, Daniel S; Merchant, Nirav; Brendel, Volker P
2016-04-01
Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today's pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant's Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. © 2016 American Society of Plant Biologists. All rights reserved.
An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets
2010-01-01
Background The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. Findings We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. Conclusions TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease. PMID:20598141
Beginning Science Teachers' Use of a Digital Video Annotation Tool to Promote Reflective Practices
NASA Astrophysics Data System (ADS)
McFadden, Justin; Ellis, Joshua; Anwar, Tasneem; Roehrig, Gillian
2014-06-01
The development of teachers as reflective practitioners is a central concept in national guidelines for teacher preparation and induction (National Council for Accreditation of Teacher Education 2008). The Teacher Induction Network (TIN) supports the development of reflective practice for beginning secondary science teachers through the creation of online "communities of practice" (Barab et al. in Inf Soc, 237-256, 2003), which have been shown to have positive impacts on teacher collaboration, communication, and reflection. Specifically, TIN integrated the use of asynchronous, video annotation as an affordance to directly facilitate teachers' reflection on their classroom practices (Tripp and Rich in Teach Teach Educ 28(5):728-739, 2013). This study examines the use of video annotation as a tool for developing reflective practices for beginning secondary science teachers. Teachers were enrolled in an online teacher induction course designed to promote reflective practice and inquiry-based instruction. A modified version of the Learning to Notice Framework (Sherin and van Es in J Teach Educ 60(1):20-37, 2009) was used to classify teachers' annotations on video of their teaching. Findings from the study include the tendency of teachers to focus on themselves in their annotations, as well as a preponderance of annotations focused on lower-level reflective practices of description and explanation. Suggestions for utilizing video annotation tools are discussed, as well as design features, which could be improved to further the development of richer annotations and deeper reflective practices.
Chen, I-Min A.; Markowitz, Victor M.; Palaniappan, Krishna; ...
2016-04-26
Background: The exponential growth of genomic data from next generation technologies renders traditional manual expert curation effort unsustainable. Many genomic systems have included community annotation tools to address the problem. Most of these systems adopted a "Wiki-based" approach to take advantage of existing wiki technologies, but encountered obstacles in issues such as usability, authorship recognition, information reliability and incentive for community participation. Results: Here, we present a different approach, relying on tightly integrated method rather than "Wiki-based" method, to support community annotation and user collaboration in the Integrated Microbial Genomes (IMG) system. The IMG approach allows users to use existingmore » IMG data warehouse and analysis tools to add gene, pathway and biosynthetic cluster annotations, to analyze/reorganize contigs, genes and functions using workspace datasets, and to share private user annotations and workspace datasets with collaborators. We show that the annotation effort using IMG can be part of the research process to overcome the user incentive and authorship recognition problems thus fostering collaboration among domain experts. The usability and reliability issues are addressed by the integration of curated information and analysis tools in IMG, together with DOE Joint Genome Institute (JGI) expert review. Conclusion: By incorporating annotation operations into IMG, we provide an integrated environment for users to perform deeper and extended data analysis and annotation in a single system that can lead to publications and community knowledge sharing as shown in the case studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Min A.; Markowitz, Victor M.; Palaniappan, Krishna
Background: The exponential growth of genomic data from next generation technologies renders traditional manual expert curation effort unsustainable. Many genomic systems have included community annotation tools to address the problem. Most of these systems adopted a "Wiki-based" approach to take advantage of existing wiki technologies, but encountered obstacles in issues such as usability, authorship recognition, information reliability and incentive for community participation. Results: Here, we present a different approach, relying on tightly integrated method rather than "Wiki-based" method, to support community annotation and user collaboration in the Integrated Microbial Genomes (IMG) system. The IMG approach allows users to use existingmore » IMG data warehouse and analysis tools to add gene, pathway and biosynthetic cluster annotations, to analyze/reorganize contigs, genes and functions using workspace datasets, and to share private user annotations and workspace datasets with collaborators. We show that the annotation effort using IMG can be part of the research process to overcome the user incentive and authorship recognition problems thus fostering collaboration among domain experts. The usability and reliability issues are addressed by the integration of curated information and analysis tools in IMG, together with DOE Joint Genome Institute (JGI) expert review. Conclusion: By incorporating annotation operations into IMG, we provide an integrated environment for users to perform deeper and extended data analysis and annotation in a single system that can lead to publications and community knowledge sharing as shown in the case studies.« less
Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas
2017-07-01
Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases. Thus, a tool that can seamlessly annotate variants with clinically relevant databases under one common interface would be of great help for variant annotation, cross-referencing, and visualization. This tool would allow variants to be processed in an automated and high-throughput manner and facilitate the investigation of variants in several genome browsers. Several analysis tools are available for raw sequencing-read processing and variant identification, but an automated variant filtering, annotation, cross-referencing, and visualization tool is still lacking. To fulfill these requirements, we developed DaMold, a Web-based, user-friendly tool that can filter and annotate variants and can access and compile information from 37 resources. It is easy to use, provides flexible input options, and accepts variants from NGS and Sanger sequencing as well as hotspots in VCF and BED formats. DaMold is available as an online application at http://damold.platomics.com/index.html, and as a Docker container and virtual machine at https://sourceforge.net/projects/damold/. © 2017 Wiley Periodicals, Inc.
Semantic annotation in biomedicine: the current landscape.
Jovanović, Jelena; Bagheri, Ebrahim
2017-09-22
The abundance and unstructured nature of biomedical texts, be it clinical or research content, impose significant challenges for the effective and efficient use of information and knowledge stored in such texts. Annotation of biomedical documents with machine intelligible semantics facilitates advanced, semantics-based text management, curation, indexing, and search. This paper focuses on annotation of biomedical entity mentions with concepts from relevant biomedical knowledge bases such as UMLS. As a result, the meaning of those mentions is unambiguously and explicitly defined, and thus made readily available for automated processing. This process is widely known as semantic annotation, and the tools that perform it are known as semantic annotators.Over the last dozen years, the biomedical research community has invested significant efforts in the development of biomedical semantic annotation technology. Aiming to establish grounds for further developments in this area, we review a selected set of state of the art biomedical semantic annotators, focusing particularly on general purpose annotators, that is, semantic annotation tools that can be customized to work with texts from any area of biomedicine. We also examine potential directions for further improvements of today's annotators which could make them even more capable of meeting the needs of real-world applications. To motivate and encourage further developments in this area, along the suggested and/or related directions, we review existing and potential practical applications and benefits of semantic annotators.
CycADS: an annotation database system to ease the development and update of BioCyc databases
Vellozo, Augusto F.; Véron, Amélie S.; Baa-Puyoulet, Patrice; Huerta-Cepas, Jaime; Cottret, Ludovic; Febvay, Gérard; Calevro, Federica; Rahbé, Yvan; Douglas, Angela E.; Gabaldón, Toni; Sagot, Marie-France; Charles, Hubert; Colella, Stefano
2011-01-01
In recent years, genomes from an increasing number of organisms have been sequenced, but their annotation remains a time-consuming process. The BioCyc databases offer a framework for the integrated analysis of metabolic networks. The Pathway tool software suite allows the automated construction of a database starting from an annotated genome, but it requires prior integration of all annotations into a specific summary file or into a GenBank file. To allow the easy creation and update of a BioCyc database starting from the multiple genome annotation resources available over time, we have developed an ad hoc data management system that we called Cyc Annotation Database System (CycADS). CycADS is centred on a specific database model and on a set of Java programs to import, filter and export relevant information. Data from GenBank and other annotation sources (including for example: KAAS, PRIAM, Blast2GO and PhylomeDB) are collected into a database to be subsequently filtered and extracted to generate a complete annotation file. This file is then used to build an enriched BioCyc database using the PathoLogic program of Pathway Tools. The CycADS pipeline for annotation management was used to build the AcypiCyc database for the pea aphid (Acyrthosiphon pisum) whose genome was recently sequenced. The AcypiCyc database webpage includes also, for comparative analyses, two other metabolic reconstruction BioCyc databases generated using CycADS: TricaCyc for Tribolium castaneum and DromeCyc for Drosophila melanogaster. Linked to its flexible design, CycADS offers a powerful software tool for the generation and regular updating of enriched BioCyc databases. The CycADS system is particularly suited for metabolic gene annotation and network reconstruction in newly sequenced genomes. Because of the uniform annotation used for metabolic network reconstruction, CycADS is particularly useful for comparative analysis of the metabolism of different organisms. Database URL: http://www.cycadsys.org PMID:21474551
Lynx web services for annotations and systems analysis of multi-gene disorders.
Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia
2014-07-01
Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
An Atlas of annotations of Hydra vulgaris transcriptome.
Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario
2016-09-22
RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .
Zhang, Jimmy F; James, Francis; Shukla, Anju; Girisha, Katta M; Paciorkowski, Alex R
2017-06-27
We built India Allele Finder, an online searchable database and command line tool, that gives researchers access to variant frequencies of Indian Telugu individuals, using publicly available fastq data from the 1000 Genomes Project. Access to appropriate population-based genomic variant annotation can accelerate the interpretation of genomic sequencing data. In particular, exome analysis of individuals of Indian descent will identify population variants not reflected in European exomes, complicating genomic analysis for such individuals. India Allele Finder offers improved ease-of-use to investigators seeking to identify and annotate sequencing data from Indian populations. We describe the use of India Allele Finder to identify common population variants in a disease quartet whole exome dataset, reducing the number of candidate single nucleotide variants from 84 to 7. India Allele Finder is freely available to investigators to annotate genomic sequencing data from Indian populations. Use of India Allele Finder allows efficient identification of population variants in genomic sequencing data, and is an example of a population-specific annotation tool that simplifies analysis and encourages international collaboration in genomics research.
GAP Final Technical Report 12-14-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew J. Bordner, PhD, Senior Research Scientist
2004-12-14
The Genomics Annotation Platform (GAP) was designed to develop new tools for high throughput functional annotation and characterization of protein sequences and structures resulting from genomics and structural proteomics, benchmarking and application of those tools. Furthermore, this platform integrated the genomic scale sequence and structural analysis and prediction tools with the advanced structure prediction and bioinformatics environment of ICM. The development of GAP was primarily oriented towards the annotation of new biomolecular structures using both structural and sequence data. Even though the amount of protein X-ray crystal data is growing exponentially, the volume of sequence data is growing even moremore » rapidly. This trend was exploited by leveraging the wealth of sequence data to provide functional annotation for protein structures. The additional information provided by GAP is expected to assist the majority of the commercial users of ICM, who are involved in drug discovery, in identifying promising drug targets as well in devising strategies for the rational design of therapeutics directed at the protein of interest. The GAP also provided valuable tools for biochemistry education, and structural genomics centers. In addition, GAP incorporates many novel prediction and analysis methods not available in other molecular modeling packages. This development led to signing the first Molsoft agreement in the structural genomics annotation area with the University of oxford Structural Genomics Center. This commercial agreement validated the Molsoft efforts under the GAP project and provided the basis for further development of the large scale functional annotation platform.« less
Coding gestural behavior with the NEUROGES--ELAN system.
Lausberg, Hedda; Sloetjes, Han
2009-08-01
We present a coding system combined with an annotation tool for the analysis of gestural behavior. The NEUROGES coding system consists of three modules that progress from gesture kinetics to gesture function. Grounded on empirical neuropsychological and psychological studies, the theoretical assumption behind NEUROGES is that its main kinetic and functional movement categories are differentially associated with specific cognitive, emotional, and interactive functions. ELAN is a free, multimodal annotation tool for digital audio and video media. It supports multileveled transcription and complies with such standards as XML and Unicode. ELAN allows gesture categories to be stored with associated vocabularies that are reusable by means of template files. The combination of the NEUROGES coding system and the annotation tool ELAN creates an effective tool for empirical research on gestural behavior.
Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M
2012-04-05
The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.
2012-01-01
Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257
Semantator: semantic annotator for converting biomedical text to linked data.
Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G
2013-10-01
More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.
AnnoLnc: a web server for systematically annotating novel human lncRNAs.
Hou, Mei; Tang, Xing; Tian, Feng; Shi, Fangyuan; Liu, Fenglin; Gao, Ge
2016-11-16
Long noncoding RNAs (lncRNAs) have been shown to play essential roles in almost every important biological process through multiple mechanisms. Although the repertoire of human lncRNAs has rapidly expanded, their biological function and regulation remain largely elusive, calling for a systematic and integrative annotation tool. Here we present AnnoLnc ( http://annolnc.cbi.pku.edu.cn ), a one-stop portal for systematically annotating novel human lncRNAs. Based on more than 700 data sources and various tool chains, AnnoLnc enables a systematic annotation covering genomic location, secondary structure, expression patterns, transcriptional regulation, miRNA interaction, protein interaction, genetic association and evolution. An intuitive web interface is available for interactive analysis through both desktops and mobile devices, and programmers can further integrate AnnoLnc into their pipeline through standard JSON-based Web Service APIs. To the best of our knowledge, AnnoLnc is the only web server to provide on-the-fly and systematic annotation for newly identified human lncRNAs. Compared with similar tools, the annotation generated by AnnoLnc covers a much wider spectrum with intuitive visualization. Case studies demonstrate the power of AnnoLnc in not only rediscovering known functions of human lncRNAs but also inspiring novel hypotheses.
The Collaborative Lecture Annotation System (CLAS): A New TOOL for Distributed Learning
ERIC Educational Resources Information Center
Risko, E. F.; Foulsham, T.; Dawson, S.; Kingstone, A.
2013-01-01
In the context of a lecture, the capacity to readily recognize and synthesize key concepts is crucial for comprehension and overall educational performance. In this paper, we introduce a tool, the Collaborative Lecture Annotation System (CLAS), which has been developed to make the extraction of important information a more collaborative and…
Annotare--a tool for annotating high-throughput biomedical investigations and resulting data.
Shankar, Ravi; Parkinson, Helen; Burdett, Tony; Hastings, Emma; Liu, Junmin; Miller, Michael; Srinivasa, Rashmi; White, Joseph; Brazma, Alvis; Sherlock, Gavin; Stoeckert, Christian J; Ball, Catherine A
2010-10-01
Computational methods in molecular biology will increasingly depend on standards-based annotations that describe biological experiments in an unambiguous manner. Annotare is a software tool that enables biologists to easily annotate their high-throughput experiments, biomaterials and data in a standards-compliant way that facilitates meaningful search and analysis. Annotare is available from http://code.google.com/p/annotare/ under the terms of the open-source MIT License (http://www.opensource.org/licenses/mit-license.php). It has been tested on both Mac and Windows.
ERIC Educational Resources Information Center
Herman, Heather A.
2017-01-01
This mixed methods research explores the effects of literacy support tools to support comprehension strategies when reading informational e-books and print-based text with 14 first-grade students. This study focused on the following comprehension strategies: annotating connections, annotating "I wonders," and looking back in the text.…
The Educational Use of Social Annotation Tools in Higher Education: A Literature Review
ERIC Educational Resources Information Center
Novak, Elena; Razzouk, Rim; Johnson, Tristan E.
2012-01-01
This paper presents a literature review of empirical research related to the use and effect of online social annotation (SA) tools in higher education settings. SA technology is an emerging educational technology that has not yet been extensively used and examined in education. As such, the research focusing on this technology is still very…
Examining Students' Use of Online Annotation Tools in Support of Argumentative Reading
ERIC Educational Resources Information Center
Lu, Jingyan; Deng, Liping
2013-01-01
This study examined how students in a Hong Kong high school used Diigo, an online annotation tool, to support their argumentative reading activities. Two year 10 classes, a high-performance class (HPC) and an ordinary-performance class (OPC), highlighted passages of text and wrote and attached sticky notes to them to clarify argumentation…
Barakat, Mohamed; Ortet, Philippe; Whitworth, David E
2013-04-20
Regulatory proteins (RPs) such as transcription factors (TFs) and two-component system (TCS) proteins control how prokaryotic cells respond to changes in their external and/or internal state. Identification and annotation of TFs and TCSs is non-trivial, and between-genome comparisons are often confounded by different standards in annotation. There is a need for user-friendly, fast and convenient tools to allow researchers to overcome the inherent variability in annotation between genome sequences. We have developed the web-server P2RP (Predicted Prokaryotic Regulatory Proteins), which enables users to identify and annotate TFs and TCS proteins within their sequences of interest. Users can input amino acid or genomic DNA sequences, and predicted proteins therein are scanned for the possession of DNA-binding domains and/or TCS domains. RPs identified in this manner are categorised into families, unambiguously annotated, and a detailed description of their features generated, using an integrated software pipeline. P2RP results can then be outputted in user-specified formats. Biologists have an increasing need for fast and intuitively usable tools, which is why P2RP has been developed as an interactive system. As well as assisting experimental biologists to interrogate novel sequence data, it is hoped that P2RP will be built into genome annotation pipelines and re-annotation processes, to increase the consistency of RP annotation in public genomic sequences. P2RP is the first publicly available tool for predicting and analysing RP proteins in users' sequences. The server is freely available and can be accessed along with documentation at http://www.p2rp.org.
2012-01-01
Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920
Segtor: Rapid Annotation of Genomic Coordinates and Single Nucleotide Variations Using Segment Trees
Renaud, Gabriel; Neves, Pedro; Folador, Edson Luiz; Ferreira, Carlos Gil; Passetti, Fabio
2011-01-01
Various research projects often involve determining the relative position of genomic coordinates, intervals, single nucleotide variations (SNVs), insertions, deletions and translocations with respect to genes and their potential impact on protein translation. Due to the tremendous increase in throughput brought by the use of next-generation sequencing, investigators are routinely faced with the need to annotate very large datasets. We present Segtor, a tool to annotate large sets of genomic coordinates, intervals, SNVs, indels and translocations. Our tool uses segment trees built using the start and end coordinates of the genomic features the user wishes to use instead of storing them in a database management system. The software also produces annotation statistics to allow users to visualize how many coordinates were found within various portions of genes. Our system currently can be made to work with any species available on the UCSC Genome Browser. Segtor is a suitable tool for groups, especially those with limited access to programmers or with interest to analyze large amounts of individual genomes, who wish to determine the relative position of very large sets of mapped reads and subsequently annotate observed mutations between the reads and the reference. Segtor (http://lbbc.inca.gov.br/segtor/) is an open-source tool that can be freely downloaded for non-profit use. We also provide a web interface for testing purposes. PMID:22069465
Annotation an effective device for student feedback: a critical review of the literature.
Ball, Elaine C
2010-05-01
The paper examines hand-written annotation, its many features, difficulties and strengths as a feedback tool. It extends and clarifies what modest evidence is in the public domain and offers an evaluation of how to use annotation effectively in the support of student feedback [Marshall, C.M., 1998a. The Future of Annotation in a Digital (paper) World. Presented at the 35th Annual GLSLIS Clinic: Successes and Failures of Digital Libraries, June 20-24, University of Illinois at Urbana-Champaign, March 24, pp. 1-20; Marshall, C.M., 1998b. Toward an ecology of hypertext annotation. Hypertext. In: Proceedings of the Ninth ACM Conference on Hypertext and Hypermedia, June 20-24, Pittsburgh Pennsylvania, US, pp. 40-49; Wolfe, J.L., Nuewirth, C.M., 2001. From the margins to the centre: the future of annotation. Journal of Business and Technical Communication, 15(3), 333-371; Diyanni, R., 2002. One Hundred Great Essays. Addison-Wesley, New York; Wolfe, J.L., 2002. Marginal pedagogy: how annotated texts affect writing-from-source texts. Written Communication, 19(2), 297-333; Liu, K., 2006. Annotation as an index to critical writing. Urban Education, 41, 192-207; Feito, A., Donahue, P., 2008. Minding the gap annotation as preparation for discussion. Arts and Humanities in Higher Education, 7(3), 295-307; Ball, E., 2009. A participatory action research study on handwritten annotation feedback and its impact on staff and students. Systemic Practice and Action Research, 22(2), 111-124; Ball, E., Franks, H., McGrath, M., Leigh, J., 2009. Annotation is a valuable tool to enhance learning and assessment in student essays. Nurse Education Today, 29(3), 284-291]. Although a significant number of studies examine annotation, this is largely related to on-line tools and computer mediated communication and not hand-written annotation as comment, phrase or sign written on the student essay to provide critique. Little systematic research has been conducted to consider how this latter form of annotation influences student learning and assessment or, indeed, helps tutors to employ better annotative practices [Juwah, C., Macfarlane-Dick, D., Matthew, B., Nicol, D., Ross, D., Smith, B., 2004. Enhancing student learning through effective formative feedback. The Higher Education Academy, 1-40; Jewitt, C., Kress, G., 2005. English in classrooms: only write down what you need to know: annotation for what? English in Education, 39(1), 5-18]. There is little evidence on ways to heighten students' self-awareness when their essays are returned with annotated feedback [Storch, N., Tapper, J., 1997. Student annotations: what NNS and NS university students say about their own writing. Journal of Second Language Writing, 6(3), 245-265]. The literature review clarifies forms of annotation as feedback practice and offers a summary of the challenges and usefulness of annotation. Copyright 2009. Published by Elsevier Ltd.
DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures.
Mazandu, Gaston K; Mulder, Nicola J
2013-09-25
The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis.
ERIC Educational Resources Information Center
Tomita, Kei
2016-01-01
In response to concerns regarding effects of hyperlinked annotation on reading comprehension, this study was undertaken to compare hyperlinked annotation with student highlighting of unknown/difficult words. An online highlighting tool was used to help students reflect their prior vocabulary in a hyperlink-based annotated passage. Highlighting…
Annotare—a tool for annotating high-throughput biomedical investigations and resulting data
Shankar, Ravi; Parkinson, Helen; Burdett, Tony; Hastings, Emma; Liu, Junmin; Miller, Michael; Srinivasa, Rashmi; White, Joseph; Brazma, Alvis; Sherlock, Gavin; Stoeckert, Christian J.; Ball, Catherine A.
2010-01-01
Summary: Computational methods in molecular biology will increasingly depend on standards-based annotations that describe biological experiments in an unambiguous manner. Annotare is a software tool that enables biologists to easily annotate their high-throughput experiments, biomaterials and data in a standards-compliant way that facilitates meaningful search and analysis. Availability and Implementation: Annotare is available from http://code.google.com/p/annotare/ under the terms of the open-source MIT License (http://www.opensource.org/licenses/mit-license.php). It has been tested on both Mac and Windows. Contact: rshankar@stanford.edu PMID:20733062
Investigating the Social Interactions of Beginning Teachers Using a Video Annotation Tool
ERIC Educational Resources Information Center
Ellis, Joshua; McFadden, Justin; Anwar, Tasneem; Roehrig, Gillian
2015-01-01
This study examines the use of a digital video annotation tool used by beginning in-service secondary science and mathematics teachers in the Teacher Induction Network (TIN). TIN is an online induction program in its ninth year of existence and has served over 180 teachers. The need to provide spaces for beginning teachers to reflect on their…
Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil
2016-03-15
Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk. © The Author 2015. Published by Oxford University Press.
DynGO: a tool for visualizing and mining of Gene Ontology and its associations
Liu, Hongfang; Hu, Zhang-Zhi; Wu, Cathy H
2005-01-01
Background A large volume of data and information about genes and gene products has been stored in various molecular biology databases. A major challenge for knowledge discovery using these databases is to identify related genes and gene products in disparate databases. The development of Gene Ontology (GO) as a common vocabulary for annotation allows integrated queries across multiple databases and identification of semantically related genes and gene products (i.e., genes and gene products that have similar GO annotations). Meanwhile, dozens of tools have been developed for browsing, mining or editing GO terms, their hierarchical relationships, or their "associated" genes and gene products (i.e., genes and gene products annotated with GO terms). Tools that allow users to directly search and inspect relations among all GO terms and their associated genes and gene products from multiple databases are needed. Results We present a standalone package called DynGO, which provides several advanced functionalities in addition to the standard browsing capability of the official GO browsing tool (AmiGO). DynGO allows users to conduct batch retrieval of GO annotations for a list of genes and gene products, and semantic retrieval of genes and gene products sharing similar GO annotations. The result are shown in an association tree organized according to GO hierarchies and supported with many dynamic display options such as sorting tree nodes or changing orientation of the tree. For GO curators and frequent GO users, DynGO provides fast and convenient access to GO annotation data. DynGO is generally applicable to any data set where the records are annotated with GO terms, as illustrated by two examples. Conclusion We have presented a standalone package DynGO that provides functionalities to search and browse GO and its association databases as well as several additional functions such as batch retrieval and semantic retrieval. The complete documentation and software are freely available for download from the website . PMID:16091147
Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine
2013-01-01
MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest. PMID:23193269
PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.
Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S
2007-10-11
By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.
Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database.
Carver, Tim; Berriman, Matthew; Tivey, Adrian; Patel, Chinmay; Böhme, Ulrike; Barrell, Barclay G; Parkhill, Julian; Rajandream, Marie-Adèle
2008-12-01
Artemis and Artemis Comparison Tool (ACT) have become mainstream tools for viewing and annotating sequence data, particularly for microbial genomes. Since its first release, Artemis has been continuously developed and supported with additional functionality for editing and analysing sequences based on feedback from an active user community of laboratory biologists and professional annotators. Nevertheless, its utility has been somewhat restricted by its limitation to reading and writing from flat files. Therefore, a new version of Artemis has been developed, which reads from and writes to a relational database schema, and allows users to annotate more complex, often large and fragmented, genome sequences. Artemis and ACT have now been extended to read and write directly to the Generic Model Organism Database (GMOD, http://www.gmod.org) Chado relational database schema. In addition, a Gene Builder tool has been developed to provide structured forms and tables to edit coordinates of gene models and edit functional annotation, based on standard ontologies, controlled vocabularies and free text. Artemis and ACT are freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute web sites: http://www.sanger.ac.uk/Software/Artemis/ http://www.sanger.ac.uk/Software/ACT/
The web server of IBM's Bioinformatics and Pattern Discovery group.
Huynh, Tien; Rigoutsos, Isidore; Parida, Laxmi; Platt, Daniel; Shibuya, Tetsuo
2003-07-01
We herein present and discuss the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server is operational around the clock and provides access to a variety of methods that have been published by the group's members and collaborators. The available tools correspond to applications ranging from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences and the interactive annotation of amino acid sequences. Additionally, annotations for more than 70 archaeal, bacterial, eukaryotic and viral genomes are available on-line and can be searched interactively. The tools and code bundles can be accessed beginning at http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/.
The web server of IBM's Bioinformatics and Pattern Discovery group
Huynh, Tien; Rigoutsos, Isidore; Parida, Laxmi; Platt, Daniel; Shibuya, Tetsuo
2003-01-01
We herein present and discuss the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server is operational around the clock and provides access to a variety of methods that have been published by the group's members and collaborators. The available tools correspond to applications ranging from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences and the interactive annotation of amino acid sequences. Additionally, annotations for more than 70 archaeal, bacterial, eukaryotic and viral genomes are available on-line and can be searched interactively. The tools and code bundles can be accessed beginning at http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/. PMID:12824385
DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures
2013-01-01
Background The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. Results We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. Conclusions The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis. PMID:24067102
Klee, Kathrin; Ernst, Rebecca; Spannagl, Manuel; Mayer, Klaus F X
2007-08-30
Apollo, a genome annotation viewer and editor, has become a widely used genome annotation and visualization tool for distributed genome annotation projects. When using Apollo for annotation, database updates are carried out by uploading intermediate annotation files into the respective database. This non-direct database upload is laborious and evokes problems of data synchronicity. To overcome these limitations we extended the Apollo data adapter with a generic, configurable web service client that is able to retrieve annotation data in a GAME-XML-formatted string and pass it on to Apollo's internal input routine. This Apollo web service adapter, Apollo2Go, simplifies the data exchange in distributed projects and aims to render the annotation process more comfortable. The Apollo2Go software is freely available from ftp://ftpmips.gsf.de/plants/apollo_webservice.
Klee, Kathrin; Ernst, Rebecca; Spannagl, Manuel; Mayer, Klaus FX
2007-01-01
Background Apollo, a genome annotation viewer and editor, has become a widely used genome annotation and visualization tool for distributed genome annotation projects. When using Apollo for annotation, database updates are carried out by uploading intermediate annotation files into the respective database. This non-direct database upload is laborious and evokes problems of data synchronicity. Results To overcome these limitations we extended the Apollo data adapter with a generic, configurable web service client that is able to retrieve annotation data in a GAME-XML-formatted string and pass it on to Apollo's internal input routine. Conclusion This Apollo web service adapter, Apollo2Go, simplifies the data exchange in distributed projects and aims to render the annotation process more comfortable. The Apollo2Go software is freely available from . PMID:17760972
2012-01-01
The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org. PMID:23013645
Haas, Brian J; Salzberg, Steven L; Zhu, Wei; Pertea, Mihaela; Allen, Jonathan E; Orvis, Joshua; White, Owen; Buell, C Robin; Wortman, Jennifer R
2008-01-01
EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation. PMID:18190707
ANALYTiC: An Active Learning System for Trajectory Classification.
Soares Junior, Amilcar; Renso, Chiara; Matwin, Stan
2017-01-01
The increasing availability and use of positioning devices has resulted in large volumes of trajectory data. However, semantic annotations for such data are typically added by domain experts, which is a time-consuming task. Machine-learning algorithms can help infer semantic annotations from trajectory data by learning from sets of labeled data. Specifically, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web-based interactive tool visually guides users through this annotation process.
Amin, Waqas; Parwani, Anil V; Schmandt, Linda; Mohanty, Sambit K; Farhat, Ghada; Pople, Andrew K; Winters, Sharon B; Whelan, Nancy B; Schneider, Althea M; Milnes, John T; Valdivieso, Federico A; Feldman, Michael; Pass, Harvey I; Dhir, Rajiv; Melamed, Jonathan; Becich, Michael J
2008-08-13
Advances in translational research have led to the need for well characterized biospecimens for research. The National Mesothelioma Virtual Bank is an initiative which collects annotated datasets relevant to human mesothelioma to develop an enterprising biospecimen resource to fulfill researchers' need. The National Mesothelioma Virtual Bank architecture is based on three major components: (a) common data elements (based on College of American Pathologists protocol and National North American Association of Central Cancer Registries standards), (b) clinical and epidemiologic data annotation, and (c) data query tools. These tools work interoperably to standardize the entire process of annotation. The National Mesothelioma Virtual Bank tool is based upon the caTISSUE Clinical Annotation Engine, developed by the University of Pittsburgh in cooperation with the Cancer Biomedical Informatics Grid (caBIG, see http://cabig.nci.nih.gov). This application provides a web-based system for annotating, importing and searching mesothelioma cases. The underlying information model is constructed utilizing Unified Modeling Language class diagrams, hierarchical relationships and Enterprise Architect software. The database provides researchers real-time access to richly annotated specimens and integral information related to mesothelioma. The data disclosed is tightly regulated depending upon users' authorization and depending on the participating institute that is amenable to the local Institutional Review Board and regulation committee reviews. The National Mesothelioma Virtual Bank currently has over 600 annotated cases available for researchers that include paraffin embedded tissues, tissue microarrays, serum and genomic DNA. The National Mesothelioma Virtual Bank is a virtual biospecimen registry with robust translational biomedical informatics support to facilitate basic science, clinical, and translational research. Furthermore, it protects patient privacy by disclosing only de-identified datasets to assure that biospecimens can be made accessible to researchers.
iPad: Semantic annotation and markup of radiological images.
Rubin, Daniel L; Rodriguez, Cesar; Shah, Priyanka; Beaulieu, Chris
2008-11-06
Radiological images contain a wealth of information,such as anatomy and pathology, which is often not explicit and computationally accessible. Information schemes are being developed to describe the semantic content of images, but such schemes can be unwieldy to operationalize because there are few tools to enable users to capture structured information easily as part of the routine research workflow. We have created iPad, an open source tool enabling researchers and clinicians to create semantic annotations on radiological images. iPad hides the complexity of the underlying image annotation information model from users, permitting them to describe images and image regions using a graphical interface that maps their descriptions to structured ontologies semi-automatically. Image annotations are saved in a variety of formats,enabling interoperability among medical records systems, image archives in hospitals, and the Semantic Web. Tools such as iPad can help reduce the burden of collecting structured information from images, and it could ultimately enable researchers and physicians to exploit images on a very large scale and glean the biological and physiological significance of image content.
ERIC Educational Resources Information Center
Mirriahi, Negin; Liaqat, Daniyal; Dawson, Shane; Gaševic, Dragan
2016-01-01
This study explores the types of learning profiles that evolve from student use of video annotation software for reflective learning. The data traces from student use of the software were analysed across four undergraduate courses with differing instructional conditions. That is, the use of graded or non-graded self-reflective annotations. Using…
A web-based video annotation system for crowdsourcing surveillance videos
NASA Astrophysics Data System (ADS)
Gadgil, Neeraj J.; Tahboub, Khalid; Kirsh, David; Delp, Edward J.
2014-03-01
Video surveillance systems are of a great value to prevent threats and identify/investigate criminal activities. Manual analysis of a huge amount of video data from several cameras over a long period of time often becomes impracticable. The use of automatic detection methods can be challenging when the video contains many objects with complex motion and occlusions. Crowdsourcing has been proposed as an effective method for utilizing human intelligence to perform several tasks. Our system provides a platform for the annotation of surveillance video in an organized and controlled way. One can monitor a surveillance system using a set of tools such as training modules, roles and labels, task management. This system can be used in a real-time streaming mode to detect any potential threats or as an investigative tool to analyze past events. Annotators can annotate video contents assigned to them for suspicious activity or criminal acts. First responders are then able to view the collective annotations and receive email alerts about a newly reported incident. They can also keep track of the annotators' training performance, manage their activities and reward their success. By providing this system, the process of video analysis is made more efficient.
Performance and Architecture Lab Modeling Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-06-19
Analytical application performance models are critical for diagnosing performance-limiting resources, optimizing systems, and designing machines. Creating models, however, is difficult. Furthermore, models are frequently expressed in forms that are hard to distribute and validate. The Performance and Architecture Lab Modeling tool, or Palm, is a modeling tool designed to make application modeling easier. Palm provides a source code modeling annotation language. Not only does the modeling language divide the modeling task into sub problems, it formally links an application's source code with its model. This link is important because a model's purpose is to capture application behavior. Furthermore, this linkmore » makes it possible to define rules for generating models according to source code organization. Palm generates hierarchical models according to well-defined rules. Given an application, a set of annotations, and a representative execution environment, Palm will generate the same model. A generated model is a an executable program whose constituent parts directly correspond to the modeled application. Palm generates models by combining top-down (human-provided) semantic insight with bottom-up static and dynamic analysis. A model's hierarchy is defined by static and dynamic source code structure. Because Palm coordinates models and source code, Palm's models are 'first-class' and reproducible. Palm automates common modeling tasks. For instance, Palm incorporates measurements to focus attention, represent constant behavior, and validate models. Palm's workflow is as follows. The workflow's input is source code annotated with Palm modeling annotations. The most important annotation models an instance of a block of code. Given annotated source code, the Palm Compiler produces executables and the Palm Monitor collects a representative performance profile. The Palm Generator synthesizes a model based on the static and dynamic mapping of annotations to program behavior. The model -- an executable program -- is a hierarchical composition of annotation functions, synthesized functions, statistics for runtime values, and performance measurements.« less
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.
Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W
2010-09-01
Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.
ERIC Educational Resources Information Center
Sun, Yanyan; Gao, Fei
2014-01-01
Web annotation is a Web 2.0 technology that allows learners to work collaboratively on web pages or electronic documents. This study explored the use of Web annotation as an online discussion tool by comparing it to a traditional threaded discussion forum. Ten graduate students participated in the study. Participants had access to both a Web…
Plant genome and transcriptome annotations: from misconceptions to simple solutions
Bolger, Marie E; Arsova, Borjana; Usadel, Björn
2018-01-01
Abstract Next-generation sequencing has triggered an explosion of available genomic and transcriptomic resources in the plant sciences. Although genome and transcriptome sequencing has become orders of magnitudes cheaper and more efficient, often the functional annotation process is lagging behind. This might be hampered by the lack of a comprehensive enumeration of simple-to-use tools available to the plant researcher. In this comprehensive review, we present (i) typical ontologies to be used in the plant sciences, (ii) useful databases and resources used for functional annotation, (iii) what to expect from an annotated plant genome, (iv) an automated annotation pipeline and (v) a recipe and reference chart outlining typical steps used to annotate plant genomes/transcriptomes using publicly available resources. PMID:28062412
A sentence sliding window approach to extract protein annotations from biomedical articles
Krallinger, Martin; Padron, Maria; Valencia, Alfonso
2005-01-01
Background Within the emerging field of text mining and statistical natural language processing (NLP) applied to biomedical articles, a broad variety of techniques have been developed during the past years. Nevertheless, there is still a great ned of comparative assessment of the performance of the proposed methods and the development of common evaluation criteria. This issue was addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative) contest. The aim of this contest was to assess the performance of text mining systems applied to biomedical texts including tools which recognize named entities such as genes and proteins, and tools which automatically extract protein annotations. Results The "sentence sliding window" approach proposed here was found to efficiently extract text fragments from full text articles containing annotations on proteins, providing the highest number of correctly predicted annotations. Moreover, the number of correct extractions of individual entities (i.e. proteins and GO terms) involved in the relationships used for the annotations was significantly higher than the correct extractions of the complete annotations (protein-function relations). Conclusion We explored the use of averaging sentence sliding windows for information extraction, especially in a context where conventional training data is unavailable. The combination of our approach with more refined statistical estimators and machine learning techniques might be a way to improve annotation extraction for future biomedical text mining applications. PMID:15960831
Automated and Accurate Estimation of Gene Family Abundance from Shotgun Metagenomes
Nayfach, Stephen; Bradley, Patrick H.; Wyman, Stacia K.; Laurent, Timothy J.; Williams, Alex; Eisen, Jonathan A.; Pollard, Katherine S.; Sharpton, Thomas J.
2015-01-01
Shotgun metagenomic DNA sequencing is a widely applicable tool for characterizing the functions that are encoded by microbial communities. Several bioinformatic tools can be used to functionally annotate metagenomes, allowing researchers to draw inferences about the functional potential of the community and to identify putative functional biomarkers. However, little is known about how decisions made during annotation affect the reliability of the results. Here, we use statistical simulations to rigorously assess how to optimize annotation accuracy and speed, given parameters of the input data like read length and library size. We identify best practices in metagenome annotation and use them to guide the development of the Shotgun Metagenome Annotation Pipeline (ShotMAP). ShotMAP is an analytically flexible, end-to-end annotation pipeline that can be implemented either on a local computer or a cloud compute cluster. We use ShotMAP to assess how different annotation databases impact the interpretation of how marine metagenome and metatranscriptome functional capacity changes across seasons. We also apply ShotMAP to data obtained from a clinical microbiome investigation of inflammatory bowel disease. This analysis finds that gut microbiota collected from Crohn’s disease patients are functionally distinct from gut microbiota collected from either ulcerative colitis patients or healthy controls, with differential abundance of metabolic pathways related to host-microbiome interactions that may serve as putative biomarkers of disease. PMID:26565399
SNAD: Sequence Name Annotation-based Designer.
Sidorov, Igor A; Reshetov, Denis A; Gorbalenya, Alexander E
2009-08-14
A growing diversity of biological data is tagged with unique identifiers (UIDs) associated with polynucleotides and proteins to ensure efficient computer-mediated data storage, maintenance, and processing. These identifiers, which are not informative for most people, are often substituted by biologically meaningful names in various presentations to facilitate utilization and dissemination of sequence-based knowledge. This substitution is commonly done manually that may be a tedious exercise prone to mistakes and omissions. Here we introduce SNAD (Sequence Name Annotation-based Designer) that mediates automatic conversion of sequence UIDs (associated with multiple alignment or phylogenetic tree, or supplied as plain text list) into biologically meaningful names and acronyms. This conversion is directed by precompiled or user-defined templates that exploit wealth of annotation available in cognate entries of external databases. Using examples, we demonstrate how this tool can be used to generate names for practical purposes, particularly in virology. A tool for controllable annotation-based conversion of sequence UIDs into biologically meaningful names and acronyms has been developed and placed into service, fostering links between quality of sequence annotation, and efficiency of communication and knowledge dissemination among researchers.
Collaborative Movie Annotation
NASA Astrophysics Data System (ADS)
Zad, Damon Daylamani; Agius, Harry
In this paper, we focus on metadata for self-created movies like those found on YouTube and Google Video, the duration of which are increasing in line with falling upload restrictions. While simple tags may have been sufficient for most purposes for traditionally very short video footage that contains a relatively small amount of semantic content, this is not the case for movies of longer duration which embody more intricate semantics. Creating metadata is a time-consuming process that takes a great deal of individual effort; however, this effort can be greatly reduced by harnessing the power of Web 2.0 communities to create, update and maintain it. Consequently, we consider the annotation of movies within Web 2.0 environments, such that users create and share that metadata collaboratively and propose an architecture for collaborative movie annotation. This architecture arises from the results of an empirical experiment where metadata creation tools, YouTube and an MPEG-7 modelling tool, were used by users to create movie metadata. The next section discusses related work in the areas of collaborative retrieval and tagging. Then, we describe the experiments that were undertaken on a sample of 50 users. Next, the results are presented which provide some insight into how users interact with existing tools and systems for annotating movies. Based on these results, the paper then develops an architecture for collaborative movie annotation.
The Community Junior College: An Annotated Bibliography.
ERIC Educational Resources Information Center
Rarig, Emory W., Jr., Ed.
This annotated bibliography on the junior college is arranged by topic: research tools, history, functions and purposes, organization and administration, students, programs, personnel, facilities, and research. It covers publications through the fall of 1965 and has an author index. (HH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.
2012-04-25
Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.
TabSQL: a MySQL tool to facilitate mapping user data to public databases.
Xia, Xiao-Qin; McClelland, Michael; Wang, Yipeng
2010-06-23
With advances in high-throughput genomics and proteomics, it is challenging for biologists to deal with large data files and to map their data to annotations in public databases. We developed TabSQL, a MySQL-based application tool, for viewing, filtering and querying data files with large numbers of rows. TabSQL provides functions for downloading and installing table files from public databases including the Gene Ontology database (GO), the Ensembl databases, and genome databases from the UCSC genome bioinformatics site. Any other database that provides tab-delimited flat files can also be imported. The downloaded gene annotation tables can be queried together with users' data in TabSQL using either a graphic interface or command line. TabSQL allows queries across the user's data and public databases without programming. It is a convenient tool for biologists to annotate and enrich their data.
TabSQL: a MySQL tool to facilitate mapping user data to public databases
2010-01-01
Background With advances in high-throughput genomics and proteomics, it is challenging for biologists to deal with large data files and to map their data to annotations in public databases. Results We developed TabSQL, a MySQL-based application tool, for viewing, filtering and querying data files with large numbers of rows. TabSQL provides functions for downloading and installing table files from public databases including the Gene Ontology database (GO), the Ensembl databases, and genome databases from the UCSC genome bioinformatics site. Any other database that provides tab-delimited flat files can also be imported. The downloaded gene annotation tables can be queried together with users' data in TabSQL using either a graphic interface or command line. Conclusions TabSQL allows queries across the user's data and public databases without programming. It is a convenient tool for biologists to annotate and enrich their data. PMID:20573251
Gao, Jianing; Wan, Changlin; Zhang, Huan; Li, Ao; Zang, Qiguang; Ban, Rongjun; Ali, Asim; Yu, Zhenghua; Shi, Qinghua; Jiang, Xiaohua; Zhang, Yuanwei
2017-10-03
Copy number variations (CNVs) are the main genetic structural variations in cancer genome. Detecting CNVs in genetic exome region is efficient and cost-effective in identifying cancer associated genes. Many tools had been developed accordingly and yet these tools lack of reliability because of high false negative rate, which is intrinsically caused by genome exonic bias. To provide an alternative option, here, we report Anaconda, a comprehensive pipeline that allows flexible integration of multiple CNV-calling methods and systematic annotation of CNVs in analyzing WES data. Just by one command, Anaconda can generate CNV detection result by up to four CNV detecting tools. Associated with comprehensive annotation analysis of genes involved in shared CNV regions, Anaconda is able to deliver a more reliable and useful report in assistance with CNV-associate cancer researches. Anaconda package and manual can be freely accessed at http://mcg.ustc.edu.cn/bsc/ANACONDA/ .
Wang, Shur-Jen; Laulederkind, Stanley J F; Hayman, G Thomas; Petri, Victoria; Smith, Jennifer R; Tutaj, Marek; Nigam, Rajni; Dwinell, Melinda R; Shimoyama, Mary
2016-08-01
Cardiovascular diseases are complex diseases caused by a combination of genetic and environmental factors. To facilitate progress in complex disease research, the Rat Genome Database (RGD) provides the community with a disease portal where genome objects and biological data related to cardiovascular diseases are systematically organized. The purpose of this study is to present biocuration at RGD, including disease, genetic, and pathway data. The RGD curation team uses controlled vocabularies/ontologies to organize data curated from the published literature or imported from disease and pathway databases. These organized annotations are associated with genes, strains, and quantitative trait loci (QTLs), thus linking functional annotations to genome objects. Screen shots from the web pages are used to demonstrate the organization of annotations at RGD. The human cardiovascular disease genes identified by annotations were grouped according to data sources and their annotation profiles were compared by in-house tools and other enrichment tools available to the public. The analysis results show that the imported cardiovascular disease genes from ClinVar and OMIM are functionally different from the RGD manually curated genes in terms of pathway and Gene Ontology annotations. The inclusion of disease genes from other databases enriches the collection of disease genes not only in quantity but also in quality. Copyright © 2016 the American Physiological Society.
Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil
2015-01-01
The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp. PMID:25362073
Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.
Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan
2017-10-01
Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.
Validation of the Swine Protein-Annotated Oligonucleotide Microarray
USDA-ARS?s Scientific Manuscript database
The specificity and utility of the Swine Protein-Annotated Oligonucleotide Microarray, or Pigoligoarray (www.pigoligoarray.org), has been evaluated by profiling the expression of transcripts from four porcine tissues. Tools for comparative analyses of expression on the Pigoligoarray were developed i...
Zhao, Min; Chen, Yanming; Qu, Dacheng; Qu, Hong
2015-01-01
The substrates of a transporter are not only useful for inferring function of the transporter, but also important to discover compound-compound interaction and to reconstruct metabolic pathway. Though plenty of data has been accumulated with the developing of new technologies such as in vitro transporter assays, the search for substrates of transporters is far from complete. In this article, we introduce METSP, a maximum-entropy classifier devoted to retrieve transporter-substrate pairs (TSPs) from semistructured text. Based on the high quality annotation from UniProt, METSP achieves high precision and recall in cross-validation experiments. When METSP is applied to 182,829 human transporter annotation sentences in UniProt, it identifies 3942 sentences with transporter and compound information. Finally, 1547 confidential human TSPs are identified for further manual curation, among which 58.37% pairs with novel substrates not annotated in public transporter databases. METSP is the first efficient tool to extract TSPs from semistructured annotation text in UniProt. This tool can help to determine the precise substrates and drugs of transporters, thus facilitating drug-target prediction, metabolic network reconstruction, and literature classification.
An overview of the BioCreative 2012 Workshop Track III: interactive text mining task
Arighi, Cecilia N.; Carterette, Ben; Cohen, K. Bretonnel; Krallinger, Martin; Wilbur, W. John; Fey, Petra; Dodson, Robert; Cooper, Laurel; Van Slyke, Ceri E.; Dahdul, Wasila; Mabee, Paula; Li, Donghui; Harris, Bethany; Gillespie, Marc; Jimenez, Silvia; Roberts, Phoebe; Matthews, Lisa; Becker, Kevin; Drabkin, Harold; Bello, Susan; Licata, Luana; Chatr-aryamontri, Andrew; Schaeffer, Mary L.; Park, Julie; Haendel, Melissa; Van Auken, Kimberly; Li, Yuling; Chan, Juancarlos; Muller, Hans-Michael; Cui, Hong; Balhoff, James P.; Chi-Yang Wu, Johnny; Lu, Zhiyong; Wei, Chih-Hsuan; Tudor, Catalina O.; Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar; Cejuela, Juan Miguel; Dubey, Pratibha; Wu, Cathy
2013-01-01
In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators’ overall experience of a system, regardless of the system’s high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV. PMID:23327936
An overview of the BioCreative 2012 Workshop Track III: interactive text mining task.
Arighi, Cecilia N; Carterette, Ben; Cohen, K Bretonnel; Krallinger, Martin; Wilbur, W John; Fey, Petra; Dodson, Robert; Cooper, Laurel; Van Slyke, Ceri E; Dahdul, Wasila; Mabee, Paula; Li, Donghui; Harris, Bethany; Gillespie, Marc; Jimenez, Silvia; Roberts, Phoebe; Matthews, Lisa; Becker, Kevin; Drabkin, Harold; Bello, Susan; Licata, Luana; Chatr-aryamontri, Andrew; Schaeffer, Mary L; Park, Julie; Haendel, Melissa; Van Auken, Kimberly; Li, Yuling; Chan, Juancarlos; Muller, Hans-Michael; Cui, Hong; Balhoff, James P; Chi-Yang Wu, Johnny; Lu, Zhiyong; Wei, Chih-Hsuan; Tudor, Catalina O; Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar; Cejuela, Juan Miguel; Dubey, Pratibha; Wu, Cathy
2013-01-01
In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators' overall experience of a system, regardless of the system's high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV.
Developing national on-line services to annotate and analyse underwater imagery in a research cloud
NASA Astrophysics Data System (ADS)
Proctor, R.; Langlois, T.; Friedman, A.; Davey, B.
2017-12-01
Fish image annotation data is currently collected by various research, management and academic institutions globally (+100,000's hours of deployments) with varying degrees of standardisation and limited formal collaboration or data synthesis. We present a case study of how national on-line services, developed within a domain-oriented research cloud, have been used to annotate habitat images and synthesise fish annotation data sets collected using Autonomous Underwater Vehicles (AUVs) and baited remote underwater stereo-video (stereo-BRUV). Two developing software tools have been brought together in the marine science cloud to provide marine biologists with a powerful service for image annotation. SQUIDLE+ is an online platform designed for exploration, management and annotation of georeferenced images & video data. It provides a flexible annotation framework allowing users to work with their preferred annotation schemes. We have used SQUIDLE+ to sample the habitat composition and complexity of images of the benthos collected using stereo-BRUV. GlobalArchive is designed to be a centralised repository of aquatic ecological survey data with design principles including ease of use, secure user access, flexible data import, and the collection of any sampling and image analysis information. To easily share and synthesise data we have implemented data sharing protocols, including Open Data and synthesis Collaborations, and a spatial map to explore global datasets and filter to create a synthesis. These tools in the science cloud, together with a virtual desktop analysis suite offering python and R environments offer an unprecedented capability to deliver marine biodiversity information of value to marine managers and scientists alike.
Chado controller: advanced annotation management with a community annotation system.
Guignon, Valentin; Droc, Gaëtan; Alaux, Michael; Baurens, Franc-Christophe; Garsmeur, Olivier; Poiron, Claire; Carver, Tim; Rouard, Mathieu; Bocs, Stéphanie
2012-04-01
We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr Supplementary data are available at Bioinformatics online.
Krystkowiak, Izabella; Manguy, Jean; Davey, Norman E
2018-06-05
There is a pressing need for in silico tools that can aid in the identification of the complete repertoire of protein binding (SLiMs, MoRFs, miniMotifs) and modification (moiety attachment/removal, isomerization, cleavage) motifs. We have created PSSMSearch, an interactive web-based tool for rapid statistical modeling, visualization, discovery and annotation of protein motif specificity determinants to discover novel motifs in a proteome-wide manner. PSSMSearch analyses proteomes for regions with significant similarity to a motif specificity determinant model built from a set of aligned motif-containing peptides. Multiple scoring methods are available to build a position-specific scoring matrix (PSSM) describing the motif specificity determinant model. This model can then be modified by a user to add prior knowledge of specificity determinants through an interactive PSSM heatmap. PSSMSearch includes a statistical framework to calculate the significance of specificity determinant model matches against a proteome of interest. PSSMSearch also includes the SLiMSearch framework's annotation, motif functional analysis and filtering tools to highlight relevant discriminatory information. Additional tools to annotate statistically significant shared keywords and GO terms, or experimental evidence of interaction with a motif-recognizing protein have been added. Finally, PSSM-based conservation metrics have been created for taxonomic range analyses. The PSSMSearch web server is available at http://slim.ucd.ie/pssmsearch/.
Dfam: a database of repetitive DNA based on profile hidden Markov models.
Wheeler, Travis J; Clements, Jody; Eddy, Sean R; Hubley, Robert; Jones, Thomas A; Jurka, Jerzy; Smit, Arian F A; Finn, Robert D
2013-01-01
We present a database of repetitive DNA elements, called Dfam (http://dfam.janelia.org). Many genomes contain a large fraction of repetitive DNA, much of which is made up of remnants of transposable elements (TEs). Accurate annotation of TEs enables research into their biology and can shed light on the evolutionary processes that shape genomes. Identification and masking of TEs can also greatly simplify many downstream genome annotation and sequence analysis tasks. The commonly used TE annotation tools RepeatMasker and Censor depend on sequence homology search tools such as cross_match and BLAST variants, as well as Repbase, a collection of known TE families each represented by a single consensus sequence. Dfam contains entries corresponding to all Repbase TE entries for which instances have been found in the human genome. Each Dfam entry is represented by a profile hidden Markov model, built from alignments generated using RepeatMasker and Repbase. When used in conjunction with the hidden Markov model search tool nhmmer, Dfam produces a 2.9% increase in coverage over consensus sequence search methods on a large human benchmark, while maintaining low false discovery rates, and coverage of the full human genome is 54.5%. The website provides a collection of tools and data views to support improved TE curation and annotation efforts. Dfam is also available for download in flat file format or in the form of MySQL table dumps.
The Biological Reference Repository (BioR): a rapid and flexible system for genomics annotation.
Kocher, Jean-Pierre A; Quest, Daniel J; Duffy, Patrick; Meiners, Michael A; Moore, Raymond M; Rider, David; Hossain, Asif; Hart, Steven N; Dinu, Valentin
2014-07-01
The Biological Reference Repository (BioR) is a toolkit for annotating variants. BioR stores public and user-specific annotation sources in indexed JSON-encoded flat files (catalogs). The BioR toolkit provides the functionality to combine and retrieve annotation from these catalogs via the command-line interface. Several catalogs from commonly used annotation sources and instructions for creating user-specific catalogs are provided. Commands from the toolkit can be combined with other UNIX commands for advanced annotation processing. We also provide instructions for the development of custom annotation pipelines. The package is implemented in Java and makes use of external tools written in Java and Perl. The toolkit can be executed on Mac OS X 10.5 and above or any Linux distribution. The BioR application, quickstart, and user guide documents and many biological examples are available at http://bioinformaticstools.mayo.edu. © The Author 2014. Published by Oxford University Press.
SOBA: sequence ontology bioinformatics analysis.
Moore, Barry; Fan, Guozhen; Eilbeck, Karen
2010-07-01
The advent of cheaper, faster sequencing technologies has pushed the task of sequence annotation from the exclusive domain of large-scale multi-national sequencing projects to that of research laboratories and small consortia. The bioinformatics burden placed on these laboratories, some with very little programming experience can be daunting. Fortunately, there exist software libraries and pipelines designed with these groups in mind, to ease the transition from an assembled genome to an annotated and accessible genome resource. We have developed the Sequence Ontology Bioinformatics Analysis (SOBA) tool to provide a simple statistical and graphical summary of an annotated genome. We envisage its use during annotation jamborees, genome comparison and for use by developers for rapid feedback during annotation software development and testing. SOBA also provides annotation consistency feedback to ensure correct use of terminology within annotations, and guides users to add new terms to the Sequence Ontology when required. SOBA is available at http://www.sequenceontology.org/cgi-bin/soba.cgi.
EST databases and web tools for EST projects.
Shen, Yao-Qing; O'Brien, Emmet; Koski, Liisa; Lang, B Franz; Burger, Gertraud
2009-01-01
This chapter outlines key considerations for constructing and implementing an EST database. Instead of showing the technological details step by step, emphasis is put on the design of an EST database suited to the specific needs of EST projects and how to choose the most suitable tools. Using TBestDB as an example, we illustrate the essential factors to be considered for database construction and the steps for data population and annotation. This process employs technologies such as PostgreSQL, Perl, and PHP to build the database and interface, and tools such as AutoFACT for data processing and annotation. We discuss these in comparison to other available technologies and tools, and explain the reasons for our choices.
Diroma, Maria Angela; Lubisco, Paolo; Attimonelli, Marcella
2016-11-08
The abundance of biological data characterizing the genomics era is contributing to a comprehensive understanding of human mitochondrial genetics. Nevertheless, many aspects are still unclear, specifically about the variability of the 22 human mitochondrial transfer RNA (tRNA) genes and their involvement in diseases. The complex enrichment and isolation of tRNAs in vitro leads to an incomplete knowledge of their post-transcriptional modifications and three-dimensional folding, essential for correct tRNA functioning. An accurate annotation of mitochondrial tRNA variants would be definitely useful and appreciated by mitochondrial researchers and clinicians since the most of bioinformatics tools for variant annotation and prioritization available so far cannot shed light on the functional role of tRNA variations. To this aim, we updated our MToolBox pipeline for mitochondrial DNA analysis of high throughput and Sanger sequencing data by integrating tRNA variant annotations in order to identify and characterize relevant variants not only in protein coding regions, but also in tRNA genes. The annotation step in the pipeline now provides detailed information for variants mapping onto the 22 mitochondrial tRNAs. For each mt-tRNA position along the entire genome, the relative tRNA numbering, tRNA type, cloverleaf secondary domains (loops and stems), mature nucleotide and interactions in the three-dimensional folding were reported. Moreover, pathogenicity predictions for tRNA and rRNA variants were retrieved from the literature and integrated within the annotations provided by MToolBox, both in the stand-alone version and web-based tool at the Mitochondrial Disease Sequence Data Resource (MSeqDR) website. All the information available in the annotation step of MToolBox were exploited to generate custom tracks which can be displayed in the GBrowse instance at MSeqDR website. To the best of our knowledge, specific data regarding mitochondrial variants in tRNA genes were introduced for the first time in a tool for mitochondrial genome analysis, supporting the interpretation of genetic variants in specific genomic contexts.
Young, Nelson; Chang, Zhan; Wishart, David S
2004-04-12
GelScape is a web-based tool that permits facile, interactive annotation, comparison, manipulation and storage of protein gel images. It uses Java applet-servlet technology to allow rapid, remote image handling and image processing in a platform-independent manner. It supports many of the features found in commercial, stand-alone gel analysis software including spot annotation, spot integration, gel warping, image resizing, HTML image mapping, image overlaying as well as the storage of gel image and gel annotation data in compliance with Federated Gel Database requirements.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
tmBioC: improving interoperability of text-mining tools with BioC.
Khare, Ritu; Wei, Chih-Hsuan; Mao, Yuqing; Leaman, Robert; Lu, Zhiyong
2014-01-01
The lack of interoperability among biomedical text-mining tools is a major bottleneck in creating more complex applications. Despite the availability of numerous methods and techniques for various text-mining tasks, combining different tools requires substantial efforts and time owing to heterogeneity and variety in data formats. In response, BioC is a recent proposal that offers a minimalistic approach to tool interoperability by stipulating minimal changes to existing tools and applications. BioC is a family of XML formats that define how to present text documents and annotations, and also provides easy-to-use functions to read/write documents in the BioC format. In this study, we introduce our text-mining toolkit, which is designed to perform several challenging and significant tasks in the biomedical domain, and repackage the toolkit into BioC to enhance its interoperability. Our toolkit consists of six state-of-the-art tools for named-entity recognition, normalization and annotation (PubTator) of genes (GenNorm), diseases (DNorm), mutations (tmVar), species (SR4GN) and chemicals (tmChem). Although developed within the same group, each tool is designed to process input articles and output annotations in a different format. We modify these tools and enable them to read/write data in the proposed BioC format. We find that, using the BioC family of formats and functions, only minimal changes were required to build the newer versions of the tools. The resulting BioC wrapped toolkit, which we have named tmBioC, consists of our tools in BioC, an annotated full-text corpus in BioC, and a format detection and conversion tool. Furthermore, through participation in the 2013 BioCreative IV Interoperability Track, we empirically demonstrate that the tools in tmBioC can be more efficiently integrated with each other as well as with external tools: Our experimental results show that using BioC reduces >60% in lines of code for text-mining tool integration. The tmBioC toolkit is publicly available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.
Hur, Junguk; Danes, Larson; Hsieh, Jui-Hua; McGregor, Brett; Krout, Dakota; Auerbach, Scott
2018-05-01
The US Toxicology Testing in the 21st Century (Tox21) program was established to develop more efficient and human-relevant toxicity assessment methods. The Tox21 program screens >10,000 chemicals using quantitative high-throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date, more than 70 assays have yielded >12 million concentration-response curves. The patterns of activity across assays can be used to define similarity between chemicals. Assuming chemicals with similar activity profiles have similar toxicological properties, we may infer toxicological properties based on its neighbourhood. One approach to inference is chemical/biological annotation enrichment analysis. Here, we present Tox21 Enricher, a web-based chemical annotation enrichment tool for the Tox21 toxicity screening platform. Tox21 Enricher identifies over-represented chemical/biological annotations among lists of chemicals (neighbourhoods), facilitating the identification of the toxicological properties and mechanisms in the chemical set. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
RNApdbee 2.0: multifunctional tool for RNA structure annotation.
Zok, Tomasz; Antczak, Maciej; Zurkowski, Michal; Popenda, Mariusz; Blazewicz, Jacek; Adamiak, Ryszard W; Szachniuk, Marta
2018-04-30
In the field of RNA structural biology and bioinformatics, an access to correctly annotated RNA structure is of crucial importance, especially in the secondary and 3D structure predictions. RNApdbee webserver, introduced in 2014, primarily aimed to address the problem of RNA secondary structure extraction from the PDB files. Its new version, RNApdbee 2.0, is a highly advanced multifunctional tool for RNA structure annotation, revealing the relationship between RNA secondary and 3D structure given in the PDB or PDBx/mmCIF format. The upgraded version incorporates new algorithms for recognition and classification of high-ordered pseudoknots in large RNA structures. It allows analysis of isolated base pairs impact on RNA structure. It can visualize RNA secondary structures-including that of quadruplexes-with depiction of non-canonical interactions. It also annotates motifs to ease identification of stems, loops and single-stranded fragments in the input RNA structure. RNApdbee 2.0 is implemented as a publicly available webserver with an intuitive interface and can be freely accessed at http://rnapdbee.cs.put.poznan.pl/.
The web server of IBM's Bioinformatics and Pattern Discovery group: 2004 update
Huynh, Tien; Rigoutsos, Isidore
2004-01-01
In this report, we provide an update on the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server, which is operational around the clock, provides access to a large number of methods that have been developed and published by the group's members. There is an increasing number of problems that these tools can help tackle; these problems range from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences, the identification—directly from sequence—of structural deviations from α-helicity and the annotation of amino acid sequences for antimicrobial activity. Additionally, annotations for more than 130 archaeal, bacterial, eukaryotic and viral genomes are now available on-line and can be searched interactively. The tools and code bundles continue to be accessible from http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/. PMID:15215340
The web server of IBM's Bioinformatics and Pattern Discovery group: 2004 update.
Huynh, Tien; Rigoutsos, Isidore
2004-07-01
In this report, we provide an update on the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server, which is operational around the clock, provides access to a large number of methods that have been developed and published by the group's members. There is an increasing number of problems that these tools can help tackle; these problems range from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences, the identification--directly from sequence--of structural deviations from alpha-helicity and the annotation of amino acid sequences for antimicrobial activity. Additionally, annotations for more than 130 archaeal, bacterial, eukaryotic and viral genomes are now available on-line and can be searched interactively. The tools and code bundles continue to be accessible from http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/.
Masseroli, Marco; Stella, Andrea; Meani, Natalia; Alcalay, Myriam; Pinciroli, Francesco
2004-12-12
High-throughput technologies create the necessity to mine large amounts of gene annotations from diverse databanks, and to integrate the resulting data. Most databanks can be interrogated only via Web, for a single gene at a time, and query results are generally available only in the HTML format. Although some databanks provide batch retrieval of data via FTP, this requires expertise and resources for locally reimplementing the databank. We developed MyWEST, a tool aimed at researchers without extensive informatics skills or resources, which exploits user-defined templates to easily mine selected annotations from different Web-interfaced databanks, and aggregates and structures results in an automatically updated database. Using microarray results from a model system of retinoic acid-induced differentiation, MyWEST effectively gathered relevant annotations from various biomolecular databanks, highlighted significant biological characteristics and supported a global approach to the understanding of complex cellular mechanisms. MyWEST is freely available for non-profit use at http://www.medinfopoli.polimi.it/MyWEST/
Chado Controller: advanced annotation management with a community annotation system
Guignon, Valentin; Droc, Gaëtan; Alaux, Michael; Baurens, Franc-Christophe; Garsmeur, Olivier; Poiron, Claire; Carver, Tim; Rouard, Mathieu; Bocs, Stéphanie
2012-01-01
Summary: We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. Availability: The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form Contact: valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22285827
The KIT Motion-Language Dataset.
Plappert, Matthias; Mandery, Christian; Asfour, Tamim
2016-12-01
Linking human motion and natural language is of great interest for the generation of semantic representations of human activities as well as for the generation of robot activities based on natural language input. However, although there have been years of research in this area, no standardized and openly available data set exists to support the development and evaluation of such systems. We, therefore, propose the Karlsruhe Institute of Technology (KIT) Motion-Language Dataset, which is large, open, and extensible. We aggregate data from multiple motion capture databases and include them in our data set using a unified representation that is independent of the capture system or marker set, making it easy to work with the data regardless of its origin. To obtain motion annotations in natural language, we apply a crowd-sourcing approach and a web-based tool that was specifically build for this purpose, the Motion Annotation Tool. We thoroughly document the annotation process itself and discuss gamification methods that we used to keep annotators motivated. We further propose a novel method, perplexity-based selection, which systematically selects motions for further annotation that are either under-represented in our data set or that have erroneous annotations. We show that our method mitigates the two aforementioned problems and ensures a systematic annotation process. We provide an in-depth analysis of the structure and contents of our resulting data set, which, as of October 10, 2016, contains 3911 motions with a total duration of 11.23 hours and 6278 annotations in natural language that contain 52,903 words. We believe this makes our data set an excellent choice that enables more transparent and comparable research in this important area.
Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil
2015-02-01
The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Tedersoo, Leho; Abarenkov, Kessy; Nilsson, R. Henrik; Schüssler, Arthur; Grelet, Gwen-Aëlle; Kohout, Petr; Oja, Jane; Bonito, Gregory M.; Veldre, Vilmar; Jairus, Teele; Ryberg, Martin; Larsson, Karl-Henrik; Kõljalg, Urmas
2011-01-01
Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi. PMID:21949797
RELATIONSHIP BETWEEN PHYLOGENETIC DISTRIBUTION AND GENOMIC FEATURES IN NEUROSPORA CRASSA
USDA-ARS?s Scientific Manuscript database
In the post-genome era, insufficient functional annotation of predicted genes greatly restricts the potential of mining genome data. We demonstrate that an evolutionary approach, which is independent of functional annotation, has great potential as a tool for genome analysis. We chose the genome o...
A UIMA wrapper for the NCBO annotator
Roeder, Christophe; Jonquet, Clement; Shah, Nigam H.; Baumgartner, William A.; Verspoor, Karin; Hunter, Lawrence
2010-01-01
Summary: The Unstructured Information Management Architecture (UIMA) framework and web services are emerging as useful tools for integrating biomedical text mining tools. This note describes our work, which wraps the National Center for Biomedical Ontology (NCBO) Annotator—an ontology-based annotation service—to make it available as a component in UIMA workflows. Availability: This wrapper is freely available on the web at http://bionlp-uima.sourceforge.net/ as part of the UIMA tools distribution from the Center for Computational Pharmacology (CCP) at the University of Colorado School of Medicine. It has been implemented in Java for support on Mac OS X, Linux and MS Windows. Contact: chris.roeder@ucdenver.edu PMID:20505005
Weegar, Rebecka; Kvist, Maria; Sundström, Karin; Brunak, Søren; Dalianis, Hercules
2015-01-01
Detection of early symptoms in cervical cancer is crucial for early treatment and survival. To find symptoms of cervical cancer in clinical text, Named Entity Recognition is needed. In this paper the Clinical Entity Finder, a machine-learning tool trained on annotated clinical text from a Swedish internal medicine emergency unit, is evaluated on cervical cancer records. The Clinical Entity Finder identifies entities of the types body part, finding and disorder and is extended with negation detection using the rule-based tool NegEx, to distinguish between negated and non-negated entities. To measure the performance of the tools on this new domain, two physicians annotated a set of clinical notes from the health records of cervical cancer patients. The inter-annotator agreement for finding, disorder and body part obtained an average F-score of 0.677 and the Clinical Entity Finder extended with NegEx had an average F-score of 0.667. PMID:26958270
Weegar, Rebecka; Kvist, Maria; Sundström, Karin; Brunak, Søren; Dalianis, Hercules
2015-01-01
Detection of early symptoms in cervical cancer is crucial for early treatment and survival. To find symptoms of cervical cancer in clinical text, Named Entity Recognition is needed. In this paper the Clinical Entity Finder, a machine-learning tool trained on annotated clinical text from a Swedish internal medicine emergency unit, is evaluated on cervical cancer records. The Clinical Entity Finder identifies entities of the types body part, finding and disorder and is extended with negation detection using the rule-based tool NegEx, to distinguish between negated and non-negated entities. To measure the performance of the tools on this new domain, two physicians annotated a set of clinical notes from the health records of cervical cancer patients. The inter-annotator agreement for finding, disorder and body part obtained an average F-score of 0.677 and the Clinical Entity Finder extended with NegEx had an average F-score of 0.667.
The coffee genome hub: a resource for coffee genomes
Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan
2015-01-01
The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413
TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes
Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine
2012-01-01
In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565
Oellrich, Anika; Collier, Nigel; Smedley, Damian; Groza, Tudor
2015-01-01
Electronic health records and scientific articles possess differing linguistic characteristics that may impact the performance of natural language processing tools developed for one or the other. In this paper, we investigate the performance of four extant concept recognition tools: the clinical Text Analysis and Knowledge Extraction System (cTAKES), the National Center for Biomedical Ontology (NCBO) Annotator, the Biomedical Concept Annotation System (BeCAS) and MetaMap. Each of the four concept recognition systems is applied to four different corpora: the i2b2 corpus of clinical documents, a PubMed corpus of Medline abstracts, a clinical trails corpus and the ShARe/CLEF corpus. In addition, we assess the individual system performances with respect to one gold standard annotation set, available for the ShARe/CLEF corpus. Furthermore, we built a silver standard annotation set from the individual systems' output and assess the quality as well as the contribution of individual systems to the quality of the silver standard. Our results demonstrate that mainly the NCBO annotator and cTAKES contribute to the silver standard corpora (F1-measures in the range of 21% to 74%) and their quality (best F1-measure of 33%), independent from the type of text investigated. While BeCAS and MetaMap can contribute to the precision of silver standard annotations (precision of up to 42%), the F1-measure drops when combined with NCBO Annotator and cTAKES due to a low recall. In conclusion, the performances of individual systems need to be improved independently from the text types, and the leveraging strategies to best take advantage of individual systems' annotations need to be revised. The textual content of the PubMed corpus, accession numbers for the clinical trials corpus, and assigned annotations of the four concept recognition systems as well as the generated silver standard annotation sets are available from http://purl.org/phenotype/resources. The textual content of the ShARe/CLEF (https://sites.google.com/site/shareclefehealth/data) and i2b2 (https://i2b2.org/NLP/DataSets/) corpora needs to be requested with the individual corpus providers.
DWARF – a data warehouse system for analyzing protein families
Fischer, Markus; Thai, Quan K; Grieb, Melanie; Pleiss, Jürgen
2006-01-01
Background The emerging field of integrative bioinformatics provides the tools to organize and systematically analyze vast amounts of highly diverse biological data and thus allows to gain a novel understanding of complex biological systems. The data warehouse DWARF applies integrative bioinformatics approaches to the analysis of large protein families. Description The data warehouse system DWARF integrates data on sequence, structure, and functional annotation for protein fold families. The underlying relational data model consists of three major sections representing entities related to the protein (biochemical function, source organism, classification to homologous families and superfamilies), the protein sequence (position-specific annotation, mutant information), and the protein structure (secondary structure information, superimposed tertiary structure). Tools for extracting, transforming and loading data from public available resources (ExPDB, GenBank, DSSP) are provided to populate the database. The data can be accessed by an interface for searching and browsing, and by analysis tools that operate on annotation, sequence, or structure. We applied DWARF to the family of α/β-hydrolases to host the Lipase Engineering database. Release 2.3 contains 6138 sequences and 167 experimentally determined protein structures, which are assigned to 37 superfamilies 103 homologous families. Conclusion DWARF has been designed for constructing databases of large structurally related protein families and for evaluating their sequence-structure-function relationships by a systematic analysis of sequence, structure and functional annotation. It has been applied to predict biochemical properties from sequence, and serves as a valuable tool for protein engineering. PMID:17094801
Building a comprehensive syntactic and semantic corpus of Chinese clinical texts.
He, Bin; Dong, Bin; Guan, Yi; Yang, Jinfeng; Jiang, Zhipeng; Yu, Qiubin; Cheng, Jianyi; Qu, Chunyan
2017-05-01
To build a comprehensive corpus covering syntactic and semantic annotations of Chinese clinical texts with corresponding annotation guidelines and methods as well as to develop tools trained on the annotated corpus, which supplies baselines for research on Chinese texts in the clinical domain. An iterative annotation method was proposed to train annotators and to develop annotation guidelines. Then, by using annotation quality assurance measures, a comprehensive corpus was built, containing annotations of part-of-speech (POS) tags, syntactic tags, entities, assertions, and relations. Inter-annotator agreement (IAA) was calculated to evaluate the annotation quality and a Chinese clinical text processing and information extraction system (CCTPIES) was developed based on our annotated corpus. The syntactic corpus consists of 138 Chinese clinical documents with 47,426 tokens and 2612 full parsing trees, while the semantic corpus includes 992 documents that annotated 39,511 entities with their assertions and 7693 relations. IAA evaluation shows that this comprehensive corpus is of good quality, and the system modules are effective. The annotated corpus makes a considerable contribution to natural language processing (NLP) research into Chinese texts in the clinical domain. However, this corpus has a number of limitations. Some additional types of clinical text should be introduced to improve corpus coverage and active learning methods should be utilized to promote annotation efficiency. In this study, several annotation guidelines and an annotation method for Chinese clinical texts were proposed, and a comprehensive corpus with its NLP modules were constructed, providing a foundation for further study of applying NLP techniques to Chinese texts in the clinical domain. Copyright © 2017. Published by Elsevier Inc.
Environment and the Community: An Annotated Bibliography.
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC.
Three hundred and nine citations of books, reports, and articles dating from 1964 to 1971 are included in this annotated bibliography, intended as a selection tool for concerned citizens, architects, builders, and city planners emphasizing the environment of American cities and communities. It is topically arranged into sixteen broad sections with…
Migrant Education: An Annotated Bibliography.
ERIC Educational Resources Information Center
Palmer, Barbara C., Comp.
Materials selected for inclusion in the annotated bibliography of 139 publications from 1970 to 1980 give a general understanding of the lives of migrant children, their educational needs and problems, and various attempts made to meet those needs. The bibliography, a valuable tool for researchers and teachers in migrant education, includes books,…
Health Communication and Literacy: An Annotated Bibliography.
ERIC Educational Resources Information Center
Beveridge, Jennifer
This annotated bibliography lists publications and World Wide Web sites dealing with health communication and literacy. The 51 publications, which were all published between 1982 and 1998, contain information about and/or for use in the following areas: assessment, assessment tools, elderly adults, empowerment, maternal and child health, patient…
Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra; Pereira, Emiliano; Schnetzer, Julia; Arvanitidis, Christos; Jensen, Lars Juhl
2016-01-01
The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have therefore developed an interactive annotation tool, EXTRACT, which helps curators identify and extract standard-compliant terms for annotation of metagenomic records and other samples. Behind its web-based user interface, the system combines published methods for named entity recognition of environment, organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed. Database URL: https://extract.hcmr.gr/. © The Author(s) 2016. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra
The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have therefore developed an interactive annotation tool, EXTRACT, which helps curators identify and extract standard-compliant terms for annotation of metagenomic records and other samples. Behind its web-based user interface, the system combines published methods for named entity recognition of environment, organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, wellmore » documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Here the comparison of fully manual and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15–25% and helps curators to detect terms that would otherwise have been missed.« less
Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu
2015-05-27
Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.
Recognition of Protein-coding Genes Based on Z-curve Algorithms
-Biao Guo, Feng; Lin, Yan; -Ling Chen, Ling
2014-01-01
Recognition of protein-coding genes, a classical bioinformatics issue, is an absolutely needed step for annotating newly sequenced genomes. The Z-curve algorithm, as one of the most effective methods on this issue, has been successfully applied in annotating or re-annotating many genomes, including those of bacteria, archaea and viruses. Two Z-curve based ab initio gene-finding programs have been developed: ZCURVE (for bacteria and archaea) and ZCURVE_V (for viruses and phages). ZCURVE_C (for 57 bacteria) and Zfisher (for any bacterium) are web servers for re-annotation of bacterial and archaeal genomes. The above four tools can be used for genome annotation or re-annotation, either independently or combined with the other gene-finding programs. In addition to recognizing protein-coding genes and exons, Z-curve algorithms are also effective in recognizing promoters and translation start sites. Here, we summarize the applications of Z-curve algorithms in gene finding and genome annotation. PMID:24822027
Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra; ...
2016-01-01
The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have therefore developed an interactive annotation tool, EXTRACT, which helps curators identify and extract standard-compliant terms for annotation of metagenomic records and other samples. Behind its web-based user interface, the system combines published methods for named entity recognition of environment, organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, wellmore » documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Here the comparison of fully manual and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15–25% and helps curators to detect terms that would otherwise have been missed.« less
ezTag: tagging biomedical concepts via interactive learning.
Kwon, Dongseop; Kim, Sun; Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong
2018-05-18
Recently, advanced text-mining techniques have been shown to speed up manual data curation by providing human annotators with automated pre-annotations generated by rules or machine learning models. Due to the limited training data available, however, current annotation systems primarily focus only on common concept types such as genes or diseases. To support annotating a wide variety of biological concepts with or without pre-existing training data, we developed ezTag, a web-based annotation tool that allows curators to perform annotation and provide training data with humans in the loop. ezTag supports both abstracts in PubMed and full-text articles in PubMed Central. It also provides lexicon-based concept tagging as well as the state-of-the-art pre-trained taggers such as TaggerOne, GNormPlus and tmVar. ezTag is freely available at http://eztag.bioqrator.org.
Improving Microbial Genome Annotations in an Integrated Database Context
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.
2013-01-01
Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620
DEVA: An extensible ontology-based annotation model for visual document collections
NASA Astrophysics Data System (ADS)
Jelmini, Carlo; Marchand-Maillet, Stephane
2003-01-01
The description of visual documents is a fundamental aspect of any efficient information management system, but the process of manually annotating large collections of documents is tedious and far from being perfect. The need for a generic and extensible annotation model therefore arises. In this paper, we present DEVA, an open, generic and expressive multimedia annotation framework. DEVA is an extension of the Dublin Core specification. The model can represent the semantic content of any visual document. It is described in the ontology language DAML+OIL and can easily be extended with external specialized ontologies, adapting the vocabulary to the given application domain. In parallel, we present the Magritte annotation tool, which is an early prototype that validates the DEVA features. Magritte allows to manually annotating image collections. It is designed with a modular and extensible architecture, which enables the user to dynamically adapt the user interface to specialized ontologies merged into DEVA.
PAZAR: a framework for collection and dissemination of cis-regulatory sequence annotation
Portales-Casamar, Elodie; Kirov, Stefan; Lim, Jonathan; Lithwick, Stuart; Swanson, Magdalena I; Ticoll, Amy; Snoddy, Jay; Wasserman, Wyeth W
2007-01-01
PAZAR is an open-access and open-source database of transcription factor and regulatory sequence annotation with associated web interface and programming tools for data submission and extraction. Curated boutique data collections can be maintained and disseminated through the unified schema of the mall-like PAZAR repository. The Pleiades Promoter Project collection of brain-linked regulatory sequences is introduced to demonstrate the depth of annotation possible within PAZAR. PAZAR, located at , is open for business. PMID:17916232
PAZAR: a framework for collection and dissemination of cis-regulatory sequence annotation.
Portales-Casamar, Elodie; Kirov, Stefan; Lim, Jonathan; Lithwick, Stuart; Swanson, Magdalena I; Ticoll, Amy; Snoddy, Jay; Wasserman, Wyeth W
2007-01-01
PAZAR is an open-access and open-source database of transcription factor and regulatory sequence annotation with associated web interface and programming tools for data submission and extraction. Curated boutique data collections can be maintained and disseminated through the unified schema of the mall-like PAZAR repository. The Pleiades Promoter Project collection of brain-linked regulatory sequences is introduced to demonstrate the depth of annotation possible within PAZAR. PAZAR, located at http://www.pazar.info, is open for business.
The Accuracy and Reliability of Crowdsource Annotations of Digital Retinal Images
Mitry, Danny; Zutis, Kris; Dhillon, Baljean; Peto, Tunde; Hayat, Shabina; Khaw, Kay-Tee; Morgan, James E.; Moncur, Wendy; Trucco, Emanuele; Foster, Paul J.
2016-01-01
Purpose Crowdsourcing is based on outsourcing computationally intensive tasks to numerous individuals in the online community who have no formal training. Our aim was to develop a novel online tool designed to facilitate large-scale annotation of digital retinal images, and to assess the accuracy of crowdsource grading using this tool, comparing it to expert classification. Methods We used 100 retinal fundus photograph images with predetermined disease criteria selected by two experts from a large cohort study. The Amazon Mechanical Turk Web platform was used to drive traffic to our site so anonymous workers could perform a classification and annotation task of the fundus photographs in our dataset after a short training exercise. Three groups were assessed: masters only, nonmasters only and nonmasters with compulsory training. We calculated the sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) plots for all classifications compared to expert grading, and used the Dice coefficient and consensus threshold to assess annotation accuracy. Results In total, we received 5389 annotations for 84 images (excluding 16 training images) in 2 weeks. A specificity and sensitivity of 71% (95% confidence interval [CI], 69%–74%) and 87% (95% CI, 86%–88%) was achieved for all classifications. The AUC in this study for all classifications combined was 0.93 (95% CI, 0.91–0.96). For image annotation, a maximal Dice coefficient (∼0.6) was achieved with a consensus threshold of 0.25. Conclusions This study supports the hypothesis that annotation of abnormalities in retinal images by ophthalmologically naive individuals is comparable to expert annotation. The highest AUC and agreement with expert annotation was achieved in the nonmasters with compulsory training group. Translational Relevance The use of crowdsourcing as a technique for retinal image analysis may be comparable to expert graders and has the potential to deliver timely, accurate, and cost-effective image analysis. PMID:27668130
The Accuracy and Reliability of Crowdsource Annotations of Digital Retinal Images.
Mitry, Danny; Zutis, Kris; Dhillon, Baljean; Peto, Tunde; Hayat, Shabina; Khaw, Kay-Tee; Morgan, James E; Moncur, Wendy; Trucco, Emanuele; Foster, Paul J
2016-09-01
Crowdsourcing is based on outsourcing computationally intensive tasks to numerous individuals in the online community who have no formal training. Our aim was to develop a novel online tool designed to facilitate large-scale annotation of digital retinal images, and to assess the accuracy of crowdsource grading using this tool, comparing it to expert classification. We used 100 retinal fundus photograph images with predetermined disease criteria selected by two experts from a large cohort study. The Amazon Mechanical Turk Web platform was used to drive traffic to our site so anonymous workers could perform a classification and annotation task of the fundus photographs in our dataset after a short training exercise. Three groups were assessed: masters only, nonmasters only and nonmasters with compulsory training. We calculated the sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) plots for all classifications compared to expert grading, and used the Dice coefficient and consensus threshold to assess annotation accuracy. In total, we received 5389 annotations for 84 images (excluding 16 training images) in 2 weeks. A specificity and sensitivity of 71% (95% confidence interval [CI], 69%-74%) and 87% (95% CI, 86%-88%) was achieved for all classifications. The AUC in this study for all classifications combined was 0.93 (95% CI, 0.91-0.96). For image annotation, a maximal Dice coefficient (∼0.6) was achieved with a consensus threshold of 0.25. This study supports the hypothesis that annotation of abnormalities in retinal images by ophthalmologically naive individuals is comparable to expert annotation. The highest AUC and agreement with expert annotation was achieved in the nonmasters with compulsory training group. The use of crowdsourcing as a technique for retinal image analysis may be comparable to expert graders and has the potential to deliver timely, accurate, and cost-effective image analysis.
RGmatch: matching genomic regions to proximal genes in omics data integration.
Furió-Tarí, Pedro; Conesa, Ana; Tarazona, Sonia
2016-11-22
The integrative analysis of multiple genomics data often requires that genome coordinates-based signals have to be associated with proximal genes. The relative location of a genomic region with respect to the gene (gene area) is important for functional data interpretation; hence algorithms that match regions to genes should be able to deliver insight into this information. In this work we review the tools that are publicly available for making region-to-gene associations. We also present a novel method, RGmatch, a flexible and easy-to-use Python tool that computes associations either at the gene, transcript, or exon level, applying a set of rules to annotate each region-gene association with the region location within the gene. RGmatch can be applied to any organism as long as genome annotation is available. Furthermore, we qualitatively and quantitatively compare RGmatch to other tools. RGmatch simplifies the association of a genomic region with its closest gene. At the same time, it is a powerful tool because the rules used to annotate these associations are very easy to modify according to the researcher's specific interests. Some important differences between RGmatch and other similar tools already in existence are RGmatch's flexibility, its wide range of user options, compatibility with any annotatable organism, and its comprehensive and user-friendly output.
Solving the Problem: Genome Annotation Standards before the Data Deluge.
Klimke, William; O'Donovan, Claire; White, Owen; Brister, J Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D; Tatusova, Tatiana
2011-10-15
The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries.
Using comparative genome analysis to identify problems in annotated microbial genomes.
Poptsova, Maria S; Gogarten, J Peter
2010-07-01
Genome annotation is a tedious task that is mostly done by automated methods; however, the accuracy of these approaches has been questioned since the beginning of the sequencing era. Genome annotation is a multilevel process, and errors can emerge at different stages: during sequencing, as a result of gene-calling procedures, and in the process of assigning gene functions. Missed or wrongly annotated genes differentially impact different types of analyses. Here we discuss and demonstrate how the methods of comparative genome analysis can refine annotations by locating missing orthologues. We also discuss possible reasons for errors and show that the second-generation annotation systems, which combine multiple gene-calling programs with similarity-based methods, perform much better than the first annotation tools. Since old errors may propagate to the newly sequenced genomes, we emphasize that the problem of continuously updating popular public databases is an urgent and unresolved one. Due to the progress in genome-sequencing technologies, automated annotation techniques will remain the main approach in the future. Researchers need to be aware of the existing errors in the annotation of even well-studied genomes, such as Escherichia coli, and consider additional quality control for their results.
Solving the Problem: Genome Annotation Standards before the Data Deluge
Klimke, William; O'Donovan, Claire; White, Owen; Brister, J. Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D.; Tatusova, Tatiana
2011-01-01
The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries. PMID:22180819
NCBI disease corpus: a resource for disease name recognition and concept normalization.
Doğan, Rezarta Islamaj; Leaman, Robert; Lu, Zhiyong
2014-02-01
Information encoded in natural language in biomedical literature publications is only useful if efficient and reliable ways of accessing and analyzing that information are available. Natural language processing and text mining tools are therefore essential for extracting valuable information, however, the development of powerful, highly effective tools to automatically detect central biomedical concepts such as diseases is conditional on the availability of annotated corpora. This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®). Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations. Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked against annotations of the rest of the corpus to assure corpus-wide consistency. The public release of the NCBI disease corpus contains 6892 disease mentions, which are mapped to 790 unique disease concepts. Of these, 88% link to a MeSH identifier, while the rest contain an OMIM identifier. We were able to link 91% of the mentions to a single disease concept, while the rest are described as a combination of concepts. In order to help researchers use the corpus to design and test disease identification methods, we have prepared the corpus as training, testing and development sets. To demonstrate its utility, we conducted a benchmarking experiment where we compared three different knowledge-based disease normalization methods with a best performance in F-measure of 63.7%. These results show that the NCBI disease corpus has the potential to significantly improve the state-of-the-art in disease name recognition and normalization research, by providing a high-quality gold standard thus enabling the development of machine-learning based approaches for such tasks. The NCBI disease corpus, guidelines and other associated resources are available at: http://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/. Published by Elsevier Inc.
dictyBase 2015: Expanding data and annotations in a new software environment.
Basu, Siddhartha; Fey, Petra; Jimenez-Morales, David; Dodson, Robert J; Chisholm, Rex L
2015-08-01
dictyBase is the model organism database for the social amoeba Dictyostelium discoideum and related species. The primary mission of dictyBase is to provide the biomedical research community with well-integrated high quality data, and tools that enable original research. Data presented at dictyBase is obtained from sequencing centers, groups performing high throughput experiments such as large-scale mutagenesis studies, and RNAseq data, as well as a growing number of manually added functional gene annotations from the published literature, including Gene Ontology, strain, and phenotype annotations. Through the Dicty Stock Center we provide the community with an impressive amount of annotated strains and plasmids. Recently, dictyBase accomplished a major overhaul to adapt an outdated infrastructure to the current technological advances, thus facilitating the implementation of innovative tools and comparative genomics. It also provides new strategies for high quality annotations that enable bench researchers to benefit from the rapidly increasing volume of available data. dictyBase is highly responsive to its users needs, building a successful relationship that capitalizes on the vast efforts of the Dictyostelium research community. dictyBase has become the trusted data resource for Dictyostelium investigators, other investigators or organizations seeking information about Dictyostelium, as well as educators who use this model system. © 2015 Wiley Periodicals, Inc.
Questionnaires for research: an annotated bibliography on design, construction, and use.
Dale R. Potter; Kathryn M. Sharpe; John C. Hendee; Roger N. Clark
1972-01-01
Questionnaires as social science tools are used increasingly to study people aspects of outdoor recreation and other natural resource fields. An annotated bibliography including subjective evaluations of each article and a keyword list is presented for 193 references to aid researchers and managers in the design, construction, and use of mail questionnaires.
Latin America: Books for High Schools. An Annotated Bibliography.
ERIC Educational Resources Information Center
Farrell, Robert V., Comp.; Hohenstein, John F., Comp.
This bibliography, intended for use as a selection tool for social studies programs and libraries in order to supply secondary students and teachers with recent Latin American books, contains 171 annotated bibliographic citations prepared by the center for Inter-American Relations after examination of more than 1200 books for comprehensiveness,…
A Study of Multimedia Annotation of Web-Based Materials
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Wang, Chin-Yu; Sharples, Mike
2007-01-01
Web-based learning has become an important way to enhance learning and teaching, offering many learning opportunities. A limitation of current Web-based learning is the restricted ability of students to personalize and annotate the learning materials. Providing personalized tools and analyzing some types of learning behavior, such as students'…
Students' Framing of a Reading Annotation Tool in the Context of Research-Based Teaching
ERIC Educational Resources Information Center
Dahl, Jan Erik
2016-01-01
In the studied master's course, students participated both as research objects in a digital annotation experiment and as critical investigators of this technology in their semester projects. The students' role paralleled the researcher's role, opening an opportunity for researcher-student co-learning within what is often referred to as…
Recent Literature Shows Accelerated Growth in Hypermedia Tools: An Annotated Bibliography.
ERIC Educational Resources Information Center
Gabbard, Ralph
1994-01-01
Presents an annotated bibliography of materials on hypertext/hypermedia. Information available on the World Wide Web is described; journals that cover hypermedia are listed; and the main bibliography is divided into 3 sections on general hypertext applications (17 titles), DOS/Windows applications (17 titles), and HyperCard applications (18…
Khan, Waqasuddin; Saripella, Ganapathi Varma-; Ludwig, Thomas; Cuppens, Tania; Thibord, Florian; Génin, Emmanuelle; Deleuze, Jean-Francois; Trégouët, David-Alexandre
2018-05-03
Predicted deleteriousness of coding variants is a frequently used criterion to filter out variants detected in next-generation sequencing projects and to select candidates impacting on the risk of human diseases. Most available dedicated tools implement a base-to-base annotation approach that could be biased in presence of several variants in the same genetic codon. We here proposed the MACARON program that, from a standard VCF file, identifies, re-annotates and predicts the amino acid change resulting from multiple single nucleotide variants (SNVs) within the same genetic codon. Applied to the whole exome dataset of 573 individuals, MACARON identifies 114 situations where multiple SNVs within a genetic codon induce an amino acid change that is different from those predicted by standard single SNV annotation tool. Such events are not uncommon and deserve to be studied in sequencing projects with inconclusive findings. MACARON is written in python with codes available on the GENMED website (www.genmed.fr). david-alexandre.tregouet@inserm.fr. Supplementary data are available at Bioinformatics online.
PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.
Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay
2015-12-01
A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.
Damienikan, Aliaksandr U.
2016-01-01
The majority of bacterial genome annotations are currently automated and based on a ‘gene by gene’ approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows) open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators) in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB) and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp.) and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn’t fit with regulatory information allowed us to correct product and gene names for over 300 loci. PMID:27257541
Tripathi, Kumar Parijat; Evangelista, Daniela; Zuccaro, Antonio; Guarracino, Mario Rosario
2015-01-01
RNA-seq is a new tool to measure RNA transcript counts, using high-throughput sequencing at an extraordinary accuracy. It provides quantitative means to explore the transcriptome of an organism of interest. However, interpreting this extremely large data into biological knowledge is a problem, and biologist-friendly tools are lacking. In our lab, we developed Transcriptator, a web application based on a computational Python pipeline with a user-friendly Java interface. This pipeline uses the web services available for BLAST (Basis Local Search Alignment Tool), QuickGO and DAVID (Database for Annotation, Visualization and Integrated Discovery) tools. It offers a report on statistical analysis of functional and Gene Ontology (GO) annotation's enrichment. It helps users to identify enriched biological themes, particularly GO terms, pathways, domains, gene/proteins features and protein-protein interactions related informations. It clusters the transcripts based on functional annotations and generates a tabular report for functional and gene ontology annotations for each submitted transcript to the web server. The implementation of QuickGo web-services in our pipeline enable the users to carry out GO-Slim analysis, whereas the integration of PORTRAIT (Prediction of transcriptomic non coding RNA (ncRNA) by ab initio methods) helps to identify the non coding RNAs and their regulatory role in transcriptome. In summary, Transcriptator is a useful software for both NGS and array data. It helps the users to characterize the de-novo assembled reads, obtained from NGS experiments for non-referenced organisms, while it also performs the functional enrichment analysis of differentially expressed transcripts/genes for both RNA-seq and micro-array experiments. It generates easy to read tables and interactive charts for better understanding of the data. The pipeline is modular in nature, and provides an opportunity to add new plugins in the future. Web application is freely available at: http://www-labgtp.na.icar.cnr.it/Transcriptator.
Fu, Xiao; Batista-Navarro, Riza; Rak, Rafal; Ananiadou, Sophia
2015-01-01
Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disorder whose recent prevalence has led to an increasing burden on public healthcare. Phenotypic information in electronic clinical records is essential in providing suitable personalised treatment to patients with COPD. However, as phenotypes are often "hidden" within free text in clinical records, clinicians could benefit from text mining systems that facilitate their prompt recognition. This paper reports on a semi-automatic methodology for producing a corpus that can ultimately support the development of text mining tools that, in turn, will expedite the process of identifying groups of COPD patients. A corpus of 30 full-text papers was formed based on selection criteria informed by the expertise of COPD specialists. We developed an annotation scheme that is aimed at producing fine-grained, expressive and computable COPD annotations without burdening our curators with a highly complicated task. This was implemented in the Argo platform by means of a semi-automatic annotation workflow that integrates several text mining tools, including a graphical user interface for marking up documents. When evaluated using gold standard (i.e., manually validated) annotations, the semi-automatic workflow was shown to obtain a micro-averaged F-score of 45.70% (with relaxed matching). Utilising the gold standard data to train new concept recognisers, we demonstrated that our corpus, although still a work in progress, can foster the development of significantly better performing COPD phenotype extractors. We describe in this work the means by which we aim to eventually support the process of COPD phenotype curation, i.e., by the application of various text mining tools integrated into an annotation workflow. Although the corpus being described is still under development, our results thus far are encouraging and show great potential in stimulating the development of further automatic COPD phenotype extractors.
High-performance web services for querying gene and variant annotation.
Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei
2016-05-06
Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.
Scripps Genome ADVISER: Annotation and Distributed Variant Interpretation SERver
Pham, Phillip H.; Shipman, William J.; Erikson, Galina A.; Schork, Nicholas J.; Torkamani, Ali
2015-01-01
Interpretation of human genomes is a major challenge. We present the Scripps Genome ADVISER (SG-ADVISER) suite, which aims to fill the gap between data generation and genome interpretation by performing holistic, in-depth, annotations and functional predictions on all variant types and effects. The SG-ADVISER suite includes a de-identification tool, a variant annotation web-server, and a user interface for inheritance and annotation-based filtration. SG-ADVISER allows users with no bioinformatics expertise to manipulate large volumes of variant data with ease – without the need to download large reference databases, install software, or use a command line interface. SG-ADVISER is freely available at genomics.scripps.edu/ADVISER. PMID:25706643
Utilization of Automatic Tagging Using Web Information to Datamining
NASA Astrophysics Data System (ADS)
Sugimura, Hiroshi; Matsumoto, Kazunori
This paper proposes a data annotation system using the automatic tagging approach. Although annotations of data are useful for deep analysis and mining of it, the cost of providing them becomes huge in most of the cases. In order to solve this problem, we develop a semi-automatic method that consists of two stages. In the first stage, it searches the Web space for relating information, and discovers candidates of effective annotations. The second stage uses knowledge of a human user. The candidates are investigated and refined by the user, and then they become annotations. We in this paper focus on time-series data, and show effectiveness of a GUI tool that supports the above process.
AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome
Legeai, Fabrice; Shigenobu, Shuji; Gauthier, Jean-Pierre; Colbourne, John; Rispe, Claude; Collin, Olivier; Richards, Stephen; Wilson, Alex C. C.; Tagu, Denis
2015-01-01
AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com. PMID:20482635
SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and Metabolic Models
Aziz, Ramy K.; Devoid, Scott; Disz, Terrence; Edwards, Robert A.; Henry, Christopher S.; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Stevens, Rick L.; Vonstein, Veronika; Xia, Fangfang
2012-01-01
The remarkable advance in sequencing technology and the rising interest in medical and environmental microbiology, biotechnology, and synthetic biology resulted in a deluge of published microbial genomes. Yet, genome annotation, comparison, and modeling remain a major bottleneck to the translation of sequence information into biological knowledge, hence computational analysis tools are continuously being developed for rapid genome annotation and interpretation. Among the earliest, most comprehensive resources for prokaryotic genome analysis, the SEED project, initiated in 2003 as an integration of genomic data and analysis tools, now contains >5,000 complete genomes, a constantly updated set of curated annotations embodied in a large and growing collection of encoded subsystems, a derived set of protein families, and hundreds of genome-scale metabolic models. Until recently, however, maintaining current copies of the SEED code and data at remote locations has been a pressing issue. To allow high-performance remote access to the SEED database, we developed the SEED Servers (http://www.theseed.org/servers): four network-based servers intended to expose the data in the underlying relational database, support basic annotation services, offer programmatic access to the capabilities of the RAST annotation server, and provide access to a growing collection of metabolic models that support flux balance analysis. The SEED servers offer open access to regularly updated data, the ability to annotate prokaryotic genomes, the ability to create metabolic reconstructions and detailed models of metabolism, and access to hundreds of existing metabolic models. This work offers and supports a framework upon which other groups can build independent research efforts. Large integrations of genomic data represent one of the major intellectual resources driving research in biology, and programmatic access to the SEED data will provide significant utility to a broad collection of potential users. PMID:23110173
Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Bucholska, Justyna; Starowicz, Piotr; Czyrko, Emilia
2016-01-01
Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components) and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs. PMID:27929431
Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Bucholska, Justyna; Starowicz, Piotr; Czyrko, Emilia
2016-12-06
Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components) and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs.
Letunic, Ivica; Bork, Peer
2016-07-08
Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Plant Genome Integrative Explorer Resource: PlantGenIE.org.
Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R
2015-12-01
Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
CRAVAT is an easy to use web-based tool for analysis of cancer variants (missense, nonsense, in-frame indel, frameshift indel, splice site). CRAVAT provides scores and a variety of annotations that assist in identification of important variants. Results are provided in an interactive, highly graphical webpage and include annotated 3D structure visualization. CRAVAT is also available for local or cloud-based installation as a Docker container. MuPIT provides 3D visualization of mutation clusters and functional annotation and is now integrated with CRAVAT.
Multi-Atlas Segmentation using Partially Annotated Data: Methods and Annotation Strategies.
Koch, Lisa M; Rajchl, Martin; Bai, Wenjia; Baumgartner, Christian F; Tong, Tong; Passerat-Palmbach, Jonathan; Aljabar, Paul; Rueckert, Daniel
2017-08-22
Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation.
Open semantic annotation of scientific publications using DOMEO.
Ciccarese, Paolo; Ocana, Marco; Clark, Tim
2012-04-24
Our group has developed a useful shared software framework for performing, versioning, sharing and viewing Web annotations of a number of kinds, using an open representation model. The Domeo Annotation Tool was developed in tandem with this open model, the Annotation Ontology (AO). Development of both the Annotation Framework and the open model was driven by requirements of several different types of alpha users, including bench scientists and biomedical curators from university research labs, online scientific communities, publishing and pharmaceutical companies.Several use cases were incrementally implemented by the toolkit. These use cases in biomedical communications include personal note-taking, group document annotation, semantic tagging, claim-evidence-context extraction, reagent tagging, and curation of textmining results from entity extraction algorithms. We report on the Domeo user interface here. Domeo has been deployed in beta release as part of the NIH Neuroscience Information Framework (NIF, http://www.neuinfo.org) and is scheduled for production deployment in the NIF's next full release.Future papers will describe other aspects of this work in detail, including Annotation Framework Services and components for integrating with external textmining services, such as the NCBO Annotator web service, and with other textmining applications using the Apache UIMA framework.
Open semantic annotation of scientific publications using DOMEO
2012-01-01
Background Our group has developed a useful shared software framework for performing, versioning, sharing and viewing Web annotations of a number of kinds, using an open representation model. Methods The Domeo Annotation Tool was developed in tandem with this open model, the Annotation Ontology (AO). Development of both the Annotation Framework and the open model was driven by requirements of several different types of alpha users, including bench scientists and biomedical curators from university research labs, online scientific communities, publishing and pharmaceutical companies. Several use cases were incrementally implemented by the toolkit. These use cases in biomedical communications include personal note-taking, group document annotation, semantic tagging, claim-evidence-context extraction, reagent tagging, and curation of textmining results from entity extraction algorithms. Results We report on the Domeo user interface here. Domeo has been deployed in beta release as part of the NIH Neuroscience Information Framework (NIF, http://www.neuinfo.org) and is scheduled for production deployment in the NIF’s next full release. Future papers will describe other aspects of this work in detail, including Annotation Framework Services and components for integrating with external textmining services, such as the NCBO Annotator web service, and with other textmining applications using the Apache UIMA framework. PMID:22541592
Guizard, Sébastien; Piégu, Benoît; Arensburger, Peter; Guillou, Florian; Bigot, Yves
2016-08-19
The program RepeatMasker and the database Repbase-ISB are part of the most widely used strategy for annotating repeats in animal genomes. They have been used to show that avian genomes have a lower repeat content (8-12 %) than the sequenced genomes of many vertebrate species (30-55 %). However, the efficiency of such a library-based strategies is dependent on the quality and completeness of the sequences in the database that is used. An alternative to these library based methods are methods that identify repeats de novo. These alternative methods have existed for a least a decade and may be more powerful than the library based methods. We have used an annotation strategy involving several complementary de novo tools to determine the repeat content of the model genome galGal4 (1.04 Gbp), including identifying simple sequence repeats (SSRs), tandem repeats and transposable elements (TEs). We annotated over one Gbp. of the galGal4 genome and showed that it is composed of approximately 19 % SSRs and TEs repeats. Furthermore, we estimate that the actual genome of the red jungle fowl contains about 31-35 % repeats. We find that library-based methods tend to overestimate TE diversity. These results have a major impact on the current understanding of repeats distributions throughout chromosomes in the red jungle fowl. Our results are a proof of concept of the reliability of using de novo tools to annotate repeats in large animal genomes. They have also revealed issues that will need to be resolved in order to develop gold-standard methodologies for annotating repeats in eukaryote genomes.
v3NLP Framework: Tools to Build Applications for Extracting Concepts from Clinical Text
Divita, Guy; Carter, Marjorie E.; Tran, Le-Thuy; Redd, Doug; Zeng, Qing T; Duvall, Scott; Samore, Matthew H.; Gundlapalli, Adi V.
2016-01-01
Introduction: Substantial amounts of clinically significant information are contained only within the narrative of the clinical notes in electronic medical records. The v3NLP Framework is a set of “best-of-breed” functionalities developed to transform this information into structured data for use in quality improvement, research, population health surveillance, and decision support. Background: MetaMap, cTAKES and similar well-known natural language processing (NLP) tools do not have sufficient scalability out of the box. The v3NLP Framework evolved out of the necessity to scale-up these tools up and provide a framework to customize and tune techniques that fit a variety of tasks, including document classification, tuned concept extraction for specific conditions, patient classification, and information retrieval. Innovation: Beyond scalability, several v3NLP Framework-developed projects have been efficacy tested and benchmarked. While v3NLP Framework includes annotators, pipelines and applications, its functionalities enable developers to create novel annotators and to place annotators into pipelines and scaled applications. Discussion: The v3NLP Framework has been successfully utilized in many projects including general concept extraction, risk factors for homelessness among veterans, and identification of mentions of the presence of an indwelling urinary catheter. Projects as diverse as predicting colonization with methicillin-resistant Staphylococcus aureus and extracting references to military sexual trauma are being built using v3NLP Framework components. Conclusion: The v3NLP Framework is a set of functionalities and components that provide Java developers with the ability to create novel annotators and to place those annotators into pipelines and applications to extract concepts from clinical text. There are scale-up and scale-out functionalities to process large numbers of records. PMID:27683667
Propagating annotations of molecular networks using in silico fragmentation
da Silva, Ricardo R.; Wang, Mingxun; Fox, Evan; Balunas, Marcy J.; Klassen, Jonathan L.; Dorrestein, Pieter C.
2018-01-01
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp. PMID:29668671
Propagating annotations of molecular networks using in silico fragmentation.
da Silva, Ricardo R; Wang, Mingxun; Nothias, Louis-Félix; van der Hooft, Justin J J; Caraballo-Rodríguez, Andrés Mauricio; Fox, Evan; Balunas, Marcy J; Klassen, Jonathan L; Lopes, Norberto Peporine; Dorrestein, Pieter C
2018-04-01
The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.
Forestry-based biomass economic and financial information and tools: An annotated bibliography
Dan Loeffler; Jason Brandt; Todd Morgan; Greg Jones
2010-01-01
This annotated bibliography is a synthesis of information products available to land managers in the western United States regarding economic and financial aspects of forestry-based woody biomass removal, a component of fire hazard and/or fuel reduction treatments. This publication contains over 200 forestry-based biomass papers, financial models, sources of biomass...
MAKER-P: a tool-kit for the creation, management, and quality control of plant genome annotations
USDA-ARS?s Scientific Manuscript database
We have optimized and extended the widely used annotation-engine MAKER for use on plant genomes. We have benchmarked the resulting software, MAKER-P, using the A. thaliana genome and the TAIR10 gene models. Here we demonstrate the ability of the MAKER-P toolkit to generate de novo repeat databases, ...
ERIC Educational Resources Information Center
Carranza, Mario
2016-01-01
This paper addresses the process of transcribing and annotating spontaneous non-native speech with the aim of compiling a training corpus for the development of Computer Assisted Pronunciation Training (CAPT) applications, enhanced with Automatic Speech Recognition (ASR) technology. To better adapt ASR technology to CAPT tools, the recognition…
SNPit: a federated data integration system for the purpose of functional SNP annotation.
Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter
2009-08-01
Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies.
IMG 4 version of the integrated microbial genomes comparative analysis system
Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Woyke, Tanja; Huntemann, Marcel; Anderson, Iain; Billis, Konstantinos; Varghese, Neha; Mavromatis, Konstantinos; Pati, Amrita; Ivanova, Natalia N.; Kyrpides, Nikos C.
2014-01-01
The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu). PMID:24165883
IMG 4 version of the integrated microbial genomes comparative analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna
The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Finally, different IMG datamarts providemore » support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).« less
IMG 4 version of the integrated microbial genomes comparative analysis system.
Markowitz, Victor M; Chen, I-Min A; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Woyke, Tanja; Huntemann, Marcel; Anderson, Iain; Billis, Konstantinos; Varghese, Neha; Mavromatis, Konstantinos; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C
2014-01-01
The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG's data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG's annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).
Vlaic, Sebastian; Hoffmann, Bianca; Kupfer, Peter; Weber, Michael; Dräger, Andreas
2013-09-01
GRN2SBML automatically encodes gene regulatory networks derived from several inference tools in systems biology markup language. Providing a graphical user interface, the networks can be annotated via the simple object access protocol (SOAP)-based application programming interface of BioMart Central Portal and minimum information required in the annotation of models registry. Additionally, we provide an R-package, which processes the output of supported inference algorithms and automatically passes all required parameters to GRN2SBML. Therefore, GRN2SBML closes a gap in the processing pipeline between the inference of gene regulatory networks and their subsequent analysis, visualization and storage. GRN2SBML is freely available under the GNU Public License version 3 and can be downloaded from http://www.hki-jena.de/index.php/0/2/490. General information on GRN2SBML, examples and tutorials are available at the tool's web page.
Evaluating Functional Annotations of Enzymes Using the Gene Ontology.
Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C
2017-01-01
The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.
Aubourg, Sébastien; Brunaud, Véronique; Bruyère, Clémence; Cock, Mark; Cooke, Richard; Cottet, Annick; Couloux, Arnaud; Déhais, Patrice; Deléage, Gilbert; Duclert, Aymeric; Echeverria, Manuel; Eschbach, Aimée; Falconet, Denis; Filippi, Ghislain; Gaspin, Christine; Geourjon, Christophe; Grienenberger, Jean-Michel; Houlné, Guy; Jamet, Elisabeth; Lechauve, Frédéric; Leleu, Olivier; Leroy, Philippe; Mache, Régis; Meyer, Christian; Nedjari, Hafed; Negrutiu, Ioan; Orsini, Valérie; Peyretaillade, Eric; Pommier, Cyril; Raes, Jeroen; Risler, Jean-Loup; Rivière, Stéphane; Rombauts, Stéphane; Rouzé, Pierre; Schneider, Michel; Schwob, Philippe; Small, Ian; Soumayet-Kampetenga, Ghislain; Stankovski, Darko; Toffano, Claire; Tognolli, Michael; Caboche, Michel; Lecharny, Alain
2005-01-01
Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Prot. PMID:15608279
Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H
2012-01-01
Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.
Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.
2012-01-01
Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832
Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David
2017-09-12
The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.
Altermann, Eric; Lu, Jingli; McCulloch, Alan
2017-01-01
Expert curated annotation remains one of the critical steps in achieving a reliable biological relevant annotation. Here we announce the release of GAMOLA2, a user friendly and comprehensive software package to process, annotate and curate draft and complete bacterial, archaeal, and viral genomes. GAMOLA2 represents a wrapping tool to combine gene model determination, functional Blast, COG, Pfam, and TIGRfam analyses with structural predictions including detection of tRNAs, rRNA genes, non-coding RNAs, signal protein cleavage sites, transmembrane helices, CRISPR repeats and vector sequence contaminations. GAMOLA2 has already been validated in a wide range of bacterial and archaeal genomes, and its modular concept allows easy addition of further functionality in future releases. A modified and adapted version of the Artemis Genome Viewer (Sanger Institute) has been developed to leverage the additional features and underlying information provided by the GAMOLA2 analysis, and is part of the software distribution. In addition to genome annotations, GAMOLA2 features, among others, supplemental modules that assist in the creation of custom Blast databases, annotation transfers between genome versions, and the preparation of Genbank files for submission via the NCBI Sequin tool. GAMOLA2 is intended to be run under a Linux environment, whereas the subsequent visualization and manual curation in Artemis is mobile and platform independent. The development of GAMOLA2 is ongoing and community driven. New functionality can easily be added upon user requests, ensuring that GAMOLA2 provides information relevant to microbiologists. The software is available free of charge for academic use. PMID:28386247
Altermann, Eric; Lu, Jingli; McCulloch, Alan
2017-01-01
Expert curated annotation remains one of the critical steps in achieving a reliable biological relevant annotation. Here we announce the release of GAMOLA2, a user friendly and comprehensive software package to process, annotate and curate draft and complete bacterial, archaeal, and viral genomes. GAMOLA2 represents a wrapping tool to combine gene model determination, functional Blast, COG, Pfam, and TIGRfam analyses with structural predictions including detection of tRNAs, rRNA genes, non-coding RNAs, signal protein cleavage sites, transmembrane helices, CRISPR repeats and vector sequence contaminations. GAMOLA2 has already been validated in a wide range of bacterial and archaeal genomes, and its modular concept allows easy addition of further functionality in future releases. A modified and adapted version of the Artemis Genome Viewer (Sanger Institute) has been developed to leverage the additional features and underlying information provided by the GAMOLA2 analysis, and is part of the software distribution. In addition to genome annotations, GAMOLA2 features, among others, supplemental modules that assist in the creation of custom Blast databases, annotation transfers between genome versions, and the preparation of Genbank files for submission via the NCBI Sequin tool. GAMOLA2 is intended to be run under a Linux environment, whereas the subsequent visualization and manual curation in Artemis is mobile and platform independent. The development of GAMOLA2 is ongoing and community driven. New functionality can easily be added upon user requests, ensuring that GAMOLA2 provides information relevant to microbiologists. The software is available free of charge for academic use.
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-01
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. PMID:27899624
Linking microarray reporters with protein functions.
Gaj, Stan; van Erk, Arie; van Haaften, Rachel I M; Evelo, Chris T A
2007-09-26
The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.
Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine
Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.
2016-01-01
We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564
Martínez Barrio, Álvaro; Lagercrantz, Erik; Sperber, Göran O; Blomberg, Jonas; Bongcam-Rudloff, Erik
2009-01-01
Background The Distributed Annotation System (DAS) is a widely used network protocol for sharing biological information. The distributed aspects of the protocol enable the use of various reference and annotation servers for connecting biological sequence data to pertinent annotations in order to depict an integrated view of the data for the final user. Results An annotation server has been devised to provide information about the endogenous retroviruses detected and annotated by a specialized in silico tool called RetroTector. We describe the procedure to implement the DAS 1.5 protocol commands necessary for constructing the DAS annotation server. We use our server to exemplify those steps. Data distribution is kept separated from visualization which is carried out by eBioX, an easy to use open source program incorporating multiple bioinformatics utilities. Some well characterized endogenous retroviruses are shown in two different DAS clients. A rapid analysis of areas free from retroviral insertions could be facilitated by our annotations. Conclusion The DAS protocol has shown to be advantageous in the distribution of endogenous retrovirus data. The distributed nature of the protocol is also found to aid in combining annotation and visualization along a genome in order to enhance the understanding of ERV contribution to its evolution. Reference and annotation servers are conjointly used by eBioX to provide visualization of ERV annotations as well as other data sources. Our DAS data source can be found in the central public DAS service repository, , or at . PMID:19534743
Lazzarato, F; Franceschinis, G; Botta, M; Cordero, F; Calogero, R A
2004-11-01
RRE allows the extraction of non-coding regions surrounding a coding sequence [i.e. gene upstream region, 5'-untranslated region (5'-UTR), introns, 3'-UTR, downstream region] from annotated genomic datasets available at NCBI. RRE parser and web-based interface are accessible at http://www.bioinformatica.unito.it/bioinformatics/rre/rre.html
ERIC Educational Resources Information Center
Grayson, Craig M.
2012-01-01
The purpose of this dissertation is twofold-to investigate, in brief, the available guides to Russian lyric diction and to present my own comprehensive guide, which gives singers the tools to prepare the pronunciation of Russian vocal pieces independently. The survey examines four guides to Russian lyric diction found in popular anthologies or…
ERIC Educational Resources Information Center
Hess, Elmer B., Comp.
Following a brief discussion of the evolution of the atlas and its importance as a library reference tool, an annotated description is provided of each atlas found in this university library collection. Items in the bibliography are arranged in the following categories: (1) world atlases; (2) regional atlases; (3) national atlases; (4) state…
ERIC Educational Resources Information Center
Harper, Sheryll Lynch
This study reviews current research on teacher mentors. Mentoring is defined as teacher-to-teacher coaching or counseling. The annotated bibliography covers articles that deal with: (1) descriptions and definitions of mentors; (2) mentoring as a vehicle used in teacher induction programs; and (3) the value of mentoring as a staff development tool.…
ERIC Educational Resources Information Center
Shabajee, Paul; Miller, Libby; Dingley, Andy
A group of research projects based at HP-Labs Bristol, the University of Bristol (England) and ARKive (a new large multimedia database project focused on the worlds biodiversity based in the United Kingdom) are working to develop a flexible model for the indexing of multimedia collections that allows users to annotate content utilizing extensible…
BioCreative V CDR task corpus: a resource for chemical disease relation extraction.
Li, Jiao; Sun, Yueping; Johnson, Robin J; Sciaky, Daniela; Wei, Chih-Hsuan; Leaman, Robert; Davis, Allan Peter; Mattingly, Carolyn J; Wiegers, Thomas C; Lu, Zhiyong
2016-01-01
Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles. Despite previous efforts in biomedical corpus construction, none was found to be sufficient for the task. Thus, we developed our own corpus called BC5CDR during the challenge by inviting a team of Medical Subject Headings (MeSH) indexers for disease/chemical entity annotation and Comparative Toxicogenomics Database (CTD) curators for CID relation annotation. To ensure high annotation quality and productivity, detailed annotation guidelines and automatic annotation tools were provided. The resulting BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions. Each entity annotation includes both the mention text spans and normalized concept identifiers, using MeSH as the controlled vocabulary. To ensure accuracy, the entities were first captured independently by two annotators followed by a consensus annotation: The average inter-annotator agreement (IAA) scores were 87.49% and 96.05% for the disease and chemicals, respectively, in the test set according to the Jaccard similarity coefficient. Our corpus was successfully used for the BioCreative V challenge tasks and should serve as a valuable resource for the text-mining research community.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.
Sakji, Saoussen; Gicquel, Quentin; Pereira, Suzanne; Kergourlay, Ivan; Proux, Denys; Darmoni, Stéfan; Metzger, Marie-Hélène
2010-01-01
Surveillance of healthcare-associated infections is essential to prevention. A new collaborative project, namely ALADIN, was launched in January 2009 and aims to develop an automated detection tool based on natural language processing of medical documents. The objective of this study was to evaluate the annotation of natural language medical reports of healthcare-associated infections. A software MS Access application (NosIndex) has been developed to interface ECMT XML answer and manual annotation work. ECMT performances were evaluated by an infection control practitioner (ICP). Precision was evaluated for the 2 modules and recall only for the default module. Exclusion rate was defined as ratio between medical terms not found by ECMT and total number of terms evaluated. The medical discharge summaries were randomly selected in 4 medical wards. From the 247 medical terms evaluated, ECMT proposed 428 and 3,721 codes, respectively for the default and expansion modules. The precision was higher with the default module (P1=0.62) than with the expansion (P2=0.47). Performances of ECMT as support tool for the medical annotation were satisfactory.
He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian
2016-07-08
Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Danchin, Antoine; Ouzounis, Christos; Tokuyasu, Taku; Zucker, Jean-Daniel
2018-07-01
Science and engineering rely on the accumulation and dissemination of knowledge to make discoveries and create new designs. Discovery-driven genome research rests on knowledge passed on via gene annotations. In response to the deluge of sequencing big data, standard annotation practice employs automated procedures that rely on majority rules. We argue this hinders progress through the generation and propagation of errors, leading investigators into blind alleys. More subtly, this inductive process discourages the discovery of novelty, which remains essential in biological research and reflects the nature of biology itself. Annotation systems, rather than being repositories of facts, should be tools that support multiple modes of inference. By combining deduction, induction and abduction, investigators can generate hypotheses when accurate knowledge is extracted from model databases. A key stance is to depart from 'the sequence tells the structure tells the function' fallacy, placing function first. We illustrate our approach with examples of critical or unexpected pathways, using MicroScope to demonstrate how tools can be implemented following the principles we advocate. We end with a challenge to the reader. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Learning to merge: a new tool for interactive mapping
NASA Astrophysics Data System (ADS)
Porter, Reid B.; Lundquist, Sheng; Ruggiero, Christy
2013-05-01
The task of turning raw imagery into semantically meaningful maps and overlays is a key area of remote sensing activity. Image analysts, in applications ranging from environmental monitoring to intelligence, use imagery to generate and update maps of terrain, vegetation, road networks, buildings and other relevant features. Often these tasks can be cast as a pixel labeling problem, and several interactive pixel labeling tools have been developed. These tools exploit training data, which is generated by analysts using simple and intuitive paint-program annotation tools, in order to tailor the labeling algorithm for the particular dataset and task. In other cases, the task is best cast as a pixel segmentation problem. Interactive pixel segmentation tools have also been developed, but these tools typically do not learn from training data like the pixel labeling tools do. In this paper we investigate tools for interactive pixel segmentation that also learn from user input. The input has the form of segment merging (or grouping). Merging examples are 1) easily obtained from analysts using vector annotation tools, and 2) more challenging to exploit than traditional labels. We outline the key issues in developing these interactive merging tools, and describe their application to remote sensing.
Whiffin, Nicola; Walsh, Roddy; Govind, Risha; Edwards, Matthew; Ahmad, Mian; Zhang, Xiaolei; Tayal, Upasana; Buchan, Rachel; Midwinter, William; Wilk, Alicja E; Najgebauer, Hanna; Francis, Catherine; Wilkinson, Sam; Monk, Thomas; Brett, Laura; O'Regan, Declan P; Prasad, Sanjay K; Morris-Rosendahl, Deborah J; Barton, Paul J R; Edwards, Elizabeth; Ware, James S; Cook, Stuart A
2018-01-25
PurposeInternationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (http://www.cardioclassifier.org), a semiautomated decision-support tool for inherited cardiac conditions (ICCs).MethodsCardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.ResultsWe benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher's P = 1.1 × 10 -18 ), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.ConclusionCardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.GENETICS in MEDICINE advance online publication, 25 January 2018; doi:10.1038/gim.2017.258.
The caBIG annotation and image Markup project.
Channin, David S; Mongkolwat, Pattanasak; Kleper, Vladimir; Sepukar, Kastubh; Rubin, Daniel L
2010-04-01
Image annotation and markup are at the core of medical interpretation in both the clinical and the research setting. Digital medical images are managed with the DICOM standard format. While DICOM contains a large amount of meta-data about whom, where, and how the image was acquired, DICOM says little about the content or meaning of the pixel data. An image annotation is the explanatory or descriptive information about the pixel data of an image that is generated by a human or machine observer. An image markup is the graphical symbols placed over the image to depict an annotation. While DICOM is the standard for medical image acquisition, manipulation, transmission, storage, and display, there are no standards for image annotation and markup. Many systems expect annotation to be reported verbally, while markups are stored in graphical overlays or proprietary formats. This makes it difficult to extract and compute with both of them. The goal of the Annotation and Image Markup (AIM) project is to develop a mechanism, for modeling, capturing, and serializing image annotation and markup data that can be adopted as a standard by the medical imaging community. The AIM project produces both human- and machine-readable artifacts. This paper describes the AIM information model, schemas, software libraries, and tools so as to prepare researchers and developers for their use of AIM.
Sahota, Michael; Leung, Betty; Dowdell, Stephanie; Velan, Gary M
2016-12-12
Students in biomedical disciplines require understanding of normal and abnormal microscopic appearances of human tissues (histology and histopathology). For this purpose, practical classes in these disciplines typically use virtual microscopy, viewing digitised whole slide images in web browsers. To enhance engagement, tools have been developed to enable individual or collaborative annotation of whole slide images within web browsers. To date, there have been no studies that have critically compared the impact on learning of individual and collaborative annotations on whole slide images. Junior and senior students engaged in Pathology practical classes within Medical Science and Medicine programs participated in cross-over trials of individual and collaborative annotation activities. Students' understanding of microscopic morphology was compared using timed online quizzes, while students' perceptions of learning were evaluated using an online questionnaire. For senior medical students, collaborative annotation of whole slide images was superior for understanding key microscopic features when compared to individual annotation; whilst being at least equivalent to individual annotation for junior medical science students. Across cohorts, students agreed that the annotation activities provided a user-friendly learning environment that met their flexible learning needs, improved efficiency, provided useful feedback, and helped them to set learning priorities. Importantly, these activities were also perceived to enhance motivation and improve understanding. Collaborative annotation improves understanding of microscopic morphology for students with sufficient background understanding of the discipline. These findings have implications for the deployment of annotation activities in biomedical curricula, and potentially for postgraduate training in Anatomical Pathology.
MiMiR – an integrated platform for microarray data sharing, mining and analysis
Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence
2008-01-01
Background Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. Results A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. Conclusion The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies. PMID:18801157
MiMiR--an integrated platform for microarray data sharing, mining and analysis.
Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence
2008-09-18
Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies.
MIPS: analysis and annotation of genome information in 2007
Mewes, H. W.; Dietmann, S.; Frishman, D.; Gregory, R.; Mannhaupt, G.; Mayer, K. F. X.; Münsterkötter, M.; Ruepp, A.; Spannagl, M.; Stümpflen, V.; Rattei, T.
2008-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:18158298
MIPS: analysis and annotation of genome information in 2007.
Mewes, H W; Dietmann, S; Frishman, D; Gregory, R; Mannhaupt, G; Mayer, K F X; Münsterkötter, M; Ruepp, A; Spannagl, M; Stümpflen, V; Rattei, T
2008-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).
EvolView, an online tool for visualizing, annotating and managing phylogenetic trees.
Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Hu, Songnian; Chen, Wei-Hua
2012-07-01
EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html.
EvolView, an online tool for visualizing, annotating and managing phylogenetic trees
Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J.; Hu, Songnian; Chen, Wei-Hua
2012-01-01
EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html. PMID:22695796
A Software Architecture for Intelligent Synthesis Environments
NASA Technical Reports Server (NTRS)
Filman, Robert E.; Norvig, Peter (Technical Monitor)
2001-01-01
The NASA's Intelligent Synthesis Environment (ISE) program is a grand attempt to develop a system to transform the way complex artifacts are engineered. This paper discusses a "middleware" architecture for enabling the development of ISE. Desirable elements of such an Intelligent Synthesis Architecture (ISA) include remote invocation; plug-and-play applications; scripting of applications; management of design artifacts, tools, and artifact and tool attributes; common system services; system management; and systematic enforcement of policies. This paper argues that the ISA extend conventional distributed object technology (DOT) such as CORBA and Product Data Managers with flexible repositories of product and tool annotations and "plug-and-play" mechanisms for inserting "ility" or orthogonal concerns into the system. I describe the Object Infrastructure Framework, an Aspect Oriented Programming (AOP) environment for developing distributed systems that provides utility insertion and enables consistent annotation maintenance. This technology can be used to enforce policies such as maintaining the annotations of artifacts, particularly the provenance and access control rules of artifacts-, performing automatic datatype transformations between representations; supplying alternative servers of the same service; reporting on the status of jobs and the system; conveying privileges throughout an application; supporting long-lived transactions; maintaining version consistency; and providing software redundancy and mobility.
Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin
2011-01-01
The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.
2012-01-01
Background We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. Results Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. Conclusions The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. PMID:22901054
Active Wiki Knowledge Repository
2012-10-01
data using SPARQL queries or RESTful web-services; ‘gardening’ tools for examining the semantically tagged content in the wiki; high-level language tool...Tagging & RDF triple-store Fusion and inferences for collaboration Tools for Consuming Data SPARQL queries or RESTful WS Inference & Gardening tools...other stores using AW SPARQL queries and rendering templates; and 4) Interactively share maps and other content using annotation tools to post notes
ERIC Educational Resources Information Center
New Jersey State Dept. of Education, Trenton. Div. of Vocational Education.
This annotated bibliography includes about 400 books which are suitable for use in elementary industrial arts. These books, available in the state library system of New Jersey, are organized under 50 topics such as: (1) Automation, (2) Graphic Arts, (3) Machines, (4) Space Travel, and (5) Tools and Measuring. Most of the citations are children's…
ERIC Educational Resources Information Center
Lim, Ee-Lon; Hew, Khe Foon
2014-01-01
E-books offer a range of benefits to both educators and students, including ease of accessibility and searching capabilities. However, the majority of current e-books are repository-cum-delivery platforms of textual information. Hitherto, there is a lack of empirical research that examines e-books with annotative and sharing capabilities. This…
Jiang, Xiao-Sheng; Dai, Jie; Sheng, Quan-Hu; Zhang, Lei; Xia, Qi-Chang; Wu, Jia-Rui; Zeng, Rong
2005-01-01
Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.
Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine
2017-01-04
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Teixeira, Marlon Amaro Coelho; Belloze, Kele Teixeira; Cavalcanti, Maria Cláudia; Silva-Junior, Floriano P
2018-04-01
Semantic text annotation enables the association of semantic information (ontology concepts) to text expressions (terms), which are readable by software agents. In the scientific scenario, this is particularly useful because it reveals a lot of scientific discoveries that are hidden within academic articles. The Biomedical area has more than 300 ontologies, most of them composed of over 500 concepts. These ontologies can be used to annotate scientific papers and thus, facilitate data extraction. However, in the context of a scientific research, a simple keyword-based query using the interface of a digital scientific texts library can return more than a thousand hits. The analysis of such a large set of texts, annotated with such numerous and large ontologies, is not an easy task. Therefore, the main objective of this work is to provide a method that could facilitate this task. This work describes a method called Text and Ontology ETL (TOETL), to build an analytical view over such texts. First, a corpus of selected papers is semantically annotated using distinct ontologies. Then, the annotation data is extracted, organized and aggregated into the dimensional schema of a data mart. Besides the TOETL method, this work illustrates its application through the development of the TaP DM (Target Prioritization data mart). This data mart has focus on the research of gene essentiality, a key concept to be considered when searching for genes showing potential as anti-infective drug targets. This work reveals that the proposed approach is a relevant tool to support decision making in the prioritization of new drug targets, being more efficient than the keyword-based traditional tools. Copyright © 2018 Elsevier B.V. All rights reserved.
Linking microarray reporters with protein functions
Gaj, Stan; van Erk, Arie; van Haaften, Rachel IM; Evelo, Chris TA
2007-01-01
Background The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. Results This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Conclusion Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/. PMID:17897448
Dhanyalakshmi, K H; Naika, Mahantesha B N; Sajeevan, R S; Mathew, Oommen K; Shafi, K Mohamed; Sowdhamini, Ramanathan; N Nataraja, Karaba
2016-01-01
The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.
IsoSCM: improved and alternative 3′ UTR annotation using multiple change-point inference
Shenker, Sol; Miura, Pedro; Sanfilippo, Piero
2015-01-01
Major applications of RNA-seq data include studies of how the transcriptome is modulated at the levels of gene expression and RNA processing, and how these events are related to cellular identity, environmental condition, and/or disease status. While many excellent tools have been developed to analyze RNA-seq data, these generally have limited efficacy for annotating 3′ UTRs. Existing assembly strategies often fragment long 3′ UTRs, and importantly, none of the algorithms in popular use can apportion data into tandem 3′ UTR isoforms, which are frequently generated by alternative cleavage and polyadenylation (APA). Consequently, it is often not possible to identify patterns of differential APA using existing assembly tools. To address these limitations, we present a new method for transcript assembly, Isoform Structural Change Model (IsoSCM) that incorporates change-point analysis to improve the 3′ UTR annotation process. Through evaluation on simulated and genuine data sets, we demonstrate that IsoSCM annotates 3′ termini with higher sensitivity and specificity than can be achieved with existing methods. We highlight the utility of IsoSCM by demonstrating its ability to recover known patterns of tissue-regulated APA. IsoSCM will facilitate future efforts for 3′ UTR annotation and genome-wide studies of the breadth, regulation, and roles of APA leveraging RNA-seq data. The IsoSCM software and source code are available from our website https://github.com/shenkers/isoscm. PMID:25406361
FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome.
Wucher, Valentin; Legeai, Fabrice; Hédan, Benoît; Rizk, Guillaume; Lagoutte, Lætitia; Leeb, Tosso; Jagannathan, Vidhya; Cadieu, Edouard; David, Audrey; Lohi, Hannes; Cirera, Susanna; Fredholm, Merete; Botherel, Nadine; Leegwater, Peter A J; Le Béguec, Céline; Fieten, Hille; Johnson, Jeremy; Alföldi, Jessica; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Derrien, Thomas
2017-05-05
Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Islam, Mohammad Tawhidul; Mohamedali, Abidali; Ahn, Seong Beom; Nawar, Ishmam; Baker, Mark S; Ranganathan, Shoba
2017-01-01
In the past decade, proteomics and mass spectrometry have taken tremendous strides forward, particularly in the life sciences, spurred on by rapid advances in technology resulting in generation and conglomeration of vast amounts of data. Though this has led to tremendous advancements in biology, the interpretation of the data poses serious challenges for many practitioners due to the immense size and complexity of the data. Furthermore, the lack of annotation means that a potential gold mine of relevant biological information may be hiding within this data. We present here a simple and intuitive workflow for the research community to investigate and mine this data, not only to extract relevant data but also to segregate usable, quality data to develop hypotheses for investigation and validation. We apply an MS evidence workflow for verifying peptides of proteins from one's own data as well as publicly available databases. We then integrate a suite of freely available bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology and biochemical pathways. We also provide an example of the functional annotation of missing proteins in human chromosome 7 data from the NeXtProt database, where no evidence is available at the proteomic, antibody, or structural levels. We give examples of protocols, tools and detailed flowcharts that can be extended or tailored to interpret and annotate the proteome of any novel organism.
MannDB: A microbial annotation database for protein characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C; Lam, M; Smith, J
2006-05-19
MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-sourcemore » tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high-priority agents on the websites of several governmental organizations concerned with bio-terrorism. MannDB provides the user with a BLAST interface for comparison of native and non-native sequences and a query tool for conveniently selecting proteins of interest. In addition, the user has access to a web-based browser that compiles comprehensive and extensive reports.« less
Semantic annotation of consumer health questions.
Kilicoglu, Halil; Ben Abacha, Asma; Mrabet, Yassine; Shooshan, Sonya E; Rodriguez, Laritza; Masterton, Kate; Demner-Fushman, Dina
2018-02-06
Consumers increasingly use online resources for their health information needs. While current search engines can address these needs to some extent, they generally do not take into account that most health information needs are complex and can only fully be expressed in natural language. Consumer health question answering (QA) systems aim to fill this gap. A major challenge in developing consumer health QA systems is extracting relevant semantic content from the natural language questions (question understanding). To develop effective question understanding tools, question corpora semantically annotated for relevant question elements are needed. In this paper, we present a two-part consumer health question corpus annotated with several semantic categories: named entities, question triggers/types, question frames, and question topic. The first part (CHQA-email) consists of relatively long email requests received by the U.S. National Library of Medicine (NLM) customer service, while the second part (CHQA-web) consists of shorter questions posed to MedlinePlus search engine as queries. Each question has been annotated by two annotators. The annotation methodology is largely the same between the two parts of the corpus; however, we also explain and justify the differences between them. Additionally, we provide information about corpus characteristics, inter-annotator agreement, and our attempts to measure annotation confidence in the absence of adjudication of annotations. The resulting corpus consists of 2614 questions (CHQA-email: 1740, CHQA-web: 874). Problems are the most frequent named entities, while treatment and general information questions are the most common question types. Inter-annotator agreement was generally modest: question types and topics yielded highest agreement, while the agreement for more complex frame annotations was lower. Agreement in CHQA-web was consistently higher than that in CHQA-email. Pairwise inter-annotator agreement proved most useful in estimating annotation confidence. To our knowledge, our corpus is the first focusing on annotation of uncurated consumer health questions. It is currently used to develop machine learning-based methods for question understanding. We make the corpus publicly available to stimulate further research on consumer health QA.
Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool
ERIC Educational Resources Information Center
Bligh, Brett; Coyle, Do
2013-01-01
This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…
The Plant Ontology: A Tool for Plant Genomics.
Cooper, Laurel; Jaiswal, Pankaj
2016-01-01
The use of controlled, structured vocabularies (ontologies) has become a critical tool for scientists in the post-genomic era of massive datasets. Adoption and integration of common vocabularies and annotation practices enables cross-species comparative analyses and increases data sharing and reusability. The Plant Ontology (PO; http://www.plantontology.org/ ) describes plant anatomy, morphology, and the stages of plant development, and offers a database of plant genomics annotations associated to the PO terms. The scope of the PO has grown from its original design covering only rice, maize, and Arabidopsis, and now includes terms to describe all green plants from angiosperms to green algae.This chapter introduces how the PO and other related ontologies are constructed and organized, including languages and software used for ontology development, and provides an overview of the key features. Detailed instructions illustrate how to search and browse the PO database and access the associated annotation data. Users are encouraged to provide input on the ontology through the online term request form and contribute datasets for integration in the PO database.
A-MADMAN: Annotation-based microarray data meta-analysis tool
Bisognin, Andrea; Coppe, Alessandro; Ferrari, Francesco; Risso, Davide; Romualdi, Chiara; Bicciato, Silvio; Bortoluzzi, Stefania
2009-01-01
Background Publicly available datasets of microarray gene expression signals represent an unprecedented opportunity for extracting genomic relevant information and validating biological hypotheses. However, the exploitation of this exceptionally rich mine of information is still hampered by the lack of appropriate computational tools, able to overcome the critical issues raised by meta-analysis. Results This work presents A-MADMAN, an open source web application which allows the retrieval, annotation, organization and meta-analysis of gene expression datasets obtained from Gene Expression Omnibus. A-MADMAN addresses and resolves several open issues in the meta-analysis of gene expression data. Conclusion A-MADMAN allows i) the batch retrieval from Gene Expression Omnibus and the local organization of raw data files and of any related meta-information, ii) the re-annotation of samples to fix incomplete, or otherwise inadequate, metadata and to create user-defined batches of data, iii) the integrative analysis of data obtained from different Affymetrix platforms through custom chip definition files and meta-normalization. Software and documentation are available on-line at . PMID:19563634
SNPit: a federated data integration system for the purpose of functional SNP annotation
Shen, Terry H; Carlson, Christopher S; Tarczy-Hornoch, Peter
2009-01-01
Genome wide association studies can potentially identify the genetic causes behind the majority of human diseases. With the advent of more advanced genotyping techniques, there is now an explosion of data gathered on single nucleotide polymorphisms (SNPs). The need exists for an integrated system that can provide up-to-date functional annotation information on SNPs. We have developed the SNP Integration Tool (SNPit) system to address this need. Built upon a federated data integration system, SNPit provides current information on a comprehensive list of SNP data sources. Additional logical inference analysis was included through an inference engine plug in. The SNPit web servlet is available online for use. SNPit allows users to go to one source for up-to-date information on the functional annotation of SNPs. A tool that can help to integrate and analyze the potential functional significance of SNPs is important for understanding the results from genome wide association studies. PMID:19327864
PRAPI: post-transcriptional regulation analysis pipeline for Iso-Seq.
Gao, Yubang; Wang, Huiyuan; Zhang, Hangxiao; Wang, Yongsheng; Chen, Jinfeng; Gu, Lianfeng
2018-05-01
The single-molecule real-time (SMRT) isoform sequencing (Iso-Seq) based on Pacific Bioscience (PacBio) platform has received increasing attention for its ability to explore full-length isoforms. Thus, comprehensive tools for Iso-Seq bioinformatics analysis are extremely useful. Here, we present a one-stop solution for Iso-Seq analysis, called PRAPI to analyze alternative transcription initiation (ATI), alternative splicing (AS), alternative cleavage and polyadenylation (APA), natural antisense transcripts (NAT), and circular RNAs (circRNAs) comprehensively. PRAPI is capable of combining Iso-Seq full-length isoforms with short read data, such as RNA-Seq or polyadenylation site sequencing (PAS-seq) for differential expression analysis of NAT, AS, APA and circRNAs. Furthermore, PRAPI can annotate new genes and correct mis-annotated genes when gene annotation is available. Finally, PRAPI generates high-quality vector graphics to visualize and highlight the Iso-Seq results. The Dockerfile of PRAPI is available at http://www.bioinfor.org/tool/PRAPI. lfgu@fafu.edu.cn.
Guhlin, Joseph; Silverstein, Kevin A T; Zhou, Peng; Tiffin, Peter; Young, Nevin D
2017-08-10
Rapid generation of omics data in recent years have resulted in vast amounts of disconnected datasets without systemic integration and knowledge building, while individual groups have made customized, annotated datasets available on the web with few ways to link them to in-lab datasets. With so many research groups generating their own data, the ability to relate it to the larger genomic and comparative genomic context is becoming increasingly crucial to make full use of the data. The Omics Database Generator (ODG) allows users to create customized databases that utilize published genomics data integrated with experimental data which can be queried using a flexible graph database. When provided with omics and experimental data, ODG will create a comparative, multi-dimensional graph database. ODG can import definitions and annotations from other sources such as InterProScan, the Gene Ontology, ENZYME, UniPathway, and others. This annotation data can be especially useful for studying new or understudied species for which transcripts have only been predicted, and rapidly give additional layers of annotation to predicted genes. In better studied species, ODG can perform syntenic annotation translations or rapidly identify characteristics of a set of genes or nucleotide locations, such as hits from an association study. ODG provides a web-based user-interface for configuring the data import and for querying the database. Queries can also be run from the command-line and the database can be queried directly through programming language hooks available for most languages. ODG supports most common genomic formats as well as generic, easy to use tab-separated value format for user-provided annotations. ODG is a user-friendly database generation and query tool that adapts to the supplied data to produce a comparative genomic database or multi-layered annotation database. ODG provides rapid comparative genomic annotation and is therefore particularly useful for non-model or understudied species. For species for which more data are available, ODG can be used to conduct complex multi-omics, pattern-matching queries.
Lee, Donald W; Khavrutskii, Ilja V; Wallqvist, Anders; Bavari, Sina; Cooper, Christopher L; Chaudhury, Sidhartha
2016-01-01
The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable (V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) during B-cell development and affinity maturation. The VDJ junction of the BCR heavy chain forms the highly variable complementarity determining region 3 (CDR3), which plays a critical role in antigen specificity and binding affinity. Tracking the selection and mutation of the CDR3 can be useful in characterizing humoral responses to infection and vaccination. Although tens to hundreds of thousands of unique BCR genes within an expressed B-cell repertoire can now be resolved with high-throughput sequencing, tracking SHMs is still challenging because existing annotation methods are often limited by poor annotation coverage, inconsistent SHM identification across the VDJ junction, or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, and SHM identification. On benchmark tests against simulated human and mouse BCR repertoires, BRILIA correctly annotated germline and clonally expanded sequences with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate in the CDR3 of heavily mutated sequences; these are substantial improvements over existing methods. We used BRILIA to process BCR sequences obtained from splenic germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell lineage trees and yielded SHM patterns that are consistent across the VDJ junction and agree with known biological mechanisms of SHM. By contrast, existing BCR annotation tools, which do not account for repertoire-wide clonal relationships, systematically underestimated both the size of clonally related B-cell clusters and yielded inconsistent SHM frequencies. We demonstrate BRILIA's utility in B-cell repertoire studies related to VDJ gene usage, mechanisms for adenosine mutations, and SHM hot spot motifs. Furthermore, we show that the complete gene usage annotation and SHM identification across the entire CDR3 are essential for studying the B-cell affinity maturation process through immunosequencing methods.
Leveraging annotation-based modeling with Jump.
Bergmayr, Alexander; Grossniklaus, Michael; Wimmer, Manuel; Kappel, Gerti
2018-01-01
The capability of UML profiles to serve as annotation mechanism has been recognized in both research and industry. Today's modeling tools offer profiles specific to platforms, such as Java, as they facilitate model-based engineering approaches. However, considering the large number of possible annotations in Java, manually developing the corresponding profiles would only be achievable by huge development and maintenance efforts. Thus, leveraging annotation-based modeling requires an automated approach capable of generating platform-specific profiles from Java libraries. To address this challenge, we present the fully automated transformation chain realized by Jump, thereby continuing existing mapping efforts between Java and UML by emphasizing on annotations and profiles. The evaluation of Jump shows that it scales for large Java libraries and generates profiles of equal or even improved quality compared to profiles currently used in practice. Furthermore, we demonstrate the practical value of Jump by contributing profiles that facilitate reverse engineering and forward engineering processes for the Java platform by applying it to a modernization scenario.
Challenges and Insights in Using HIPAA Privacy Rule for Clinical Text Annotation.
Kayaalp, Mehmet; Browne, Allen C; Sagan, Pamela; McGee, Tyne; McDonald, Clement J
2015-01-01
The Privacy Rule of Health Insurance Portability and Accountability Act (HIPAA) requires that clinical documents be stripped of personally identifying information before they can be released to researchers and others. We have been manually annotating clinical text since 2008 in order to test and evaluate an algorithmic clinical text de-identification tool, NLM Scrubber, which we have been developing in parallel. Although HIPAA provides some guidance about what must be de-identified, translating those guidelines into practice is not as straightforward, especially when one deals with free text. As a result we have changed our manual annotation labels and methods six times. This paper explains why we have made those annotation choices, which have been evolved throughout seven years of practice on this field. The aim of this paper is to start a community discussion towards developing standards for clinical text annotation with the end goal of studying and comparing clinical text de-identification systems more accurately.
PathFinder: reconstruction and dynamic visualization of metabolic pathways.
Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert
2002-01-01
Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.
Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.
Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E
2016-01-04
We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Improved Genome Assembly and Annotation for the Rock Pigeon (Columba livia)
Holt, Carson; Campbell, Michael; Keays, David A.; Edelman, Nathaniel; Kapusta, Aurélie; Maclary, Emily; T. Domyan, Eric; Suh, Alexander; Warren, Wesley C.; Yandell, Mark; Gilbert, M. Thomas P.; Shapiro, Michael D.
2018-01-01
The domestic rock pigeon (Columba livia) is among the most widely distributed and phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the C. livia genome reference assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated reference assembly, along with an updated annotation set, provide improved tools for evolutionary and functional genetic studies of the pigeon, and for comparative avian genomics in general. PMID:29519939
Charlet, J; Darmoni, S J
2015-08-13
To summarize the best papers in the field of Knowledge Representation and Management (KRM). A comprehensive review of medical informatics literature was performed to select some of the most interesting papers of KRM published in 2014. Four articles were selected, two focused on annotation and information retrieval using an ontology. The two others focused mainly on ontologies, one dealing with the usage of a temporal ontology in order to analyze the content of narrative document, one describing a methodology for building multilingual ontologies. Semantic models began to show their efficiency, coupled with annotation tools.
RNA-Seq analysis and transcriptome assembly for blackberry (Rubus sp. Var. Lochness) fruit.
Garcia-Seco, Daniel; Zhang, Yang; Gutierrez-Mañero, Francisco J; Martin, Cathie; Ramos-Solano, Beatriz
2015-01-22
There is an increasing interest in berries, especially blackberries in the diet, because of recent reports of their health benefits due to their high content of flavonoids. A broad range of genomic tools are available for other Rosaceae species but these tools are still lacking in the Rubus genus, thus limiting gene discovery and the breeding of improved varieties. De novo RNA-seq of ripe blackberries grown under field conditions was performed using Illumina Hiseq 2000. Almost 9 billion nucleotide bases were sequenced in total. Following assembly, 42,062 consensus sequences were detected. For functional annotation, 33,040 (NR), 32,762 (NT), 21,932 (Swiss-Prot), 20,134 (KEGG), 13,676 (COG), 24,168 (GO) consensus sequences were annotated using different databases; in total 34,552 annotated sequences were identified. For protein prediction analysis, the number of coding DNA sequences (CDS) that mapped to the protein database was 32,540. Non redundant (NR), annotation showed that 25,418 genes (73.5%) has the highest similarity with Fragaria vesca subspecies vesca. Reanalysis was undertaken by aligning the reads with this reference genome for a deeper analysis of the transcriptome. We demonstrated that de novo assembly, using Trinity and later annotation with Blast using different databases, were complementary to alignment to the reference sequence using SOAPaligner/SOAP2. The Fragaria reference genome belongs to a species in the same family as blackberry (Rosaceae) but to a different genus. Since blackberries are tetraploids, the possibility of artefactual gene chimeras resulting from mis-assembly was tested with one of the genes sequenced by RNAseq, Chalcone Synthase (CHS). cDNAs encoding this protein were cloned and sequenced. Primers designed to the assembled sequences accurately distinguished different contigs, at least for chalcone synthase genes. We prepared and analysed transcriptome data from ripe blackberries, for which prior genomic information was limited. This new sequence information will improve the knowledge of this important and healthy fruit, providing an invaluable new tool for biological research.
FlavonoidSearch: A system for comprehensive flavonoid annotation by mass spectrometry.
Akimoto, Nayumi; Ara, Takeshi; Nakajima, Daisuke; Suda, Kunihiro; Ikeda, Chiaki; Takahashi, Shingo; Muneto, Reiko; Yamada, Manabu; Suzuki, Hideyuki; Shibata, Daisuke; Sakurai, Nozomu
2017-04-28
Currently, in mass spectrometry-based metabolomics, limited reference mass spectra are available for flavonoid identification. In the present study, a database of probable mass fragments for 6,867 known flavonoids (FsDatabase) was manually constructed based on new structure- and fragmentation-related rules using new heuristics to overcome flavonoid complexity. We developed the FlavonoidSearch system for flavonoid annotation, which consists of the FsDatabase and a computational tool (FsTool) to automatically search the FsDatabase using the mass spectra of metabolite peaks as queries. This system showed the highest identification accuracy for the flavonoid aglycone when compared to existing tools and revealed accurate discrimination between the flavonoid aglycone and other compounds. Sixteen new flavonoids were found from parsley, and the diversity of the flavonoid aglycone among different fruits and vegetables was investigated.
Hulsman, Robert L; van der Vloodt, Jane
2015-03-01
Self-evaluation and peer-feedback are important strategies within the reflective practice paradigm for the development and maintenance of professional competencies like medical communication. Characteristics of the self-evaluation and peer-feedback annotations of medical students' video recorded communication skills were analyzed. Twenty-five year 4 medical students recorded history-taking consultations with a simulated patient, uploaded the video to a web-based platform, marked and annotated positive and negative events. Peers reviewed the video and self-evaluations and provided feedback. Analyzed were the number of marked positive and negative annotations and the amount of text entered. Topics and specificity of the annotations were coded and analyzed qualitatively. Students annotated on average more negative than positive events. Additional peer-feedback was more often positive. Topics most often related to structuring the consultation. Students were most critical about their biomedical topics. Negative annotations were more specific than positive annotations. Self-evaluations were more specific than peer-feedback and both show a significant correlation. Four response patterns were detected that negatively bias specificity assessment ratings. Teaching students to be more specific in their self-evaluations may be effective for receiving more specific peer-feedback. Videofragmentrating is a convenient tool to implement reflective practice activities like self-evaluation and peer-feedback to the classroom in the teaching of clinical skills. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes.
Casimiro-Soriguer, Carlos S; Muñoz-Mérida, Antonio; Pérez-Pulido, Antonio J
2017-06-01
The current cheapening of next-generation sequencing has led to an enormous growth in the number of sequenced genomes and transcriptomes, allowing wet labs to get the sequences from their organisms of study. To make the most of these data, one of the first things that should be done is the functional annotation of the protein-coding genes. But it used to be a slow and tedious step that can involve the characterization of thousands of sequences. Sma3s is an accurate computational tool for annotating proteins in an unattended way. Now, we have developed a completely new version, which includes functionalities that will be of utility for fundamental and applied science. Currently, the results provide functional categories such as biological processes, which become useful for both characterizing particular sequence datasets and comparing results from different projects. But one of the most important implemented innovations is that it has now low computational requirements, and the complete annotation of a simple proteome or transcriptome usually takes around 24 hours in a personal computer. Sma3s has been tested with a large amount of complete proteomes and transcriptomes, and it has demonstrated its potential in health science and other specific projects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A computational model for predicting integrase catalytic domain of retrovirus.
Wu, Sijia; Han, Jiuqiang; Zhang, Xinman; Zhong, Dexing; Liu, Ruiling
2017-06-21
Integrase catalytic domain (ICD) is an essential part in the retrovirus for integration reaction, which enables its newly synthesized DNA to be incorporated into the DNA of infected cells. Owing to the crucial role of ICD for the retroviral replication and the absence of an equivalent of integrase in host cells, it is comprehensible that ICD is a promising drug target for therapeutic intervention. However, annotated ICDs in UniProtKB database have still been insufficient for a good understanding of their statistical characteristics so far. Accordingly, it is of great importance to put forward a computational ICD model in this work to annotate these domains in the retroviruses. The proposed model then discovered 11,660 new putative ICDs after scanning sequences without ICD annotations. Subsequently in order to provide much confidence in ICD prediction, it was tested under different cross-validation methods, compared with other database search tools, and verified on independent datasets. Furthermore, an evolutionary analysis performed on the annotated ICDs of retroviruses revealed a tight connection between ICD and retroviral classification. All the datasets involved in this paper and the application software tool of this model can be available for free download at https://sourceforge.net/projects/icdtool/files/?source=navbar. Copyright © 2017 Elsevier Ltd. All rights reserved.
EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries
Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P
2008-01-01
Background Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. Results We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. Conclusion EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects. PMID:18402700
EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.
Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P
2008-04-10
Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.
Analyzing gene expression data in mice with the Neuro Behavior Ontology.
Hoehndorf, Robert; Hancock, John M; Hardy, Nigel W; Mallon, Ann-Marie; Schofield, Paul N; Gkoutos, Georgios V
2014-02-01
We have applied the Neuro Behavior Ontology (NBO), an ontology for the annotation of behavioral gene functions and behavioral phenotypes, to the annotation of more than 1,000 genes in the mouse that are known to play a role in behavior. These annotations can be explored by researchers interested in genes involved in particular behaviors and used computationally to provide insights into the behavioral phenotypes resulting from differences in gene expression. We developed the OntoFUNC tool and have applied it to enrichment analyses over the NBO to provide high-level behavioral interpretations of gene expression datasets. The resulting increase in the number of gene annotations facilitates the identification of behavioral or neurologic processes by assisting the formulation of hypotheses about the relationships between gene, processes, and phenotypic manifestations resulting from behavioral observations.
Falk, Marni J; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T; Stassen, Alphons P M; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G; Brilhante, Virginia; Ralph, David; DaRe, Jeana T; Shelton, Robert; Terry, Sharon F; Zhang, Zhe; Copeland, William C; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu
2015-03-01
Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Falk, Marni J.; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T.; Stassen, Alphons P.M.; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G.; Brilhante, Virginia; Ralph, David; DaRe, Jeana T.; Shelton, Robert; Terry, Sharon; Zhang, Zhe; Copeland, William C.; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C.; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu
2014-01-01
Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The “Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium” is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1,300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial disease. PMID:25542617
BioSAVE: display of scored annotation within a sequence context.
Pollock, Richard F; Adryan, Boris
2008-03-20
Visualization of sequence annotation is a common feature in many bioinformatics tools. For many applications it is desirable to restrict the display of such annotation according to a score cutoff, as biological interpretation can be difficult in the presence of the entire data. Unfortunately, many visualisation solutions are somewhat static in the way they handle such score cutoffs. We present BioSAVE, a sequence annotation viewer with on-the-fly selection of visualisation thresholds for each feature. BioSAVE is a versatile OS X program for visual display of scored features (annotation) within a sequence context. The program reads sequence and additional supplementary annotation data (e.g., position weight matrix matches, conservation scores, structural domains) from a variety of commonly used file formats and displays them graphically. Onscreen controls then allow for live customisation of these graphics, including on-the-fly selection of visualisation thresholds for each feature. Possible applications of the program include display of transcription factor binding sites in a genomic context or the visualisation of structural domain assignments in protein sequences and many more. The dynamic visualisation of these annotations is useful, e.g., for the determination of cutoff values of predicted features to match experimental data. Program, source code and exemplary files are freely available at the BioSAVE homepage.
BioSAVE: Display of scored annotation within a sequence context
Pollock, Richard F; Adryan, Boris
2008-01-01
Background Visualization of sequence annotation is a common feature in many bioinformatics tools. For many applications it is desirable to restrict the display of such annotation according to a score cutoff, as biological interpretation can be difficult in the presence of the entire data. Unfortunately, many visualisation solutions are somewhat static in the way they handle such score cutoffs. Results We present BioSAVE, a sequence annotation viewer with on-the-fly selection of visualisation thresholds for each feature. BioSAVE is a versatile OS X program for visual display of scored features (annotation) within a sequence context. The program reads sequence and additional supplementary annotation data (e.g., position weight matrix matches, conservation scores, structural domains) from a variety of commonly used file formats and displays them graphically. Onscreen controls then allow for live customisation of these graphics, including on-the-fly selection of visualisation thresholds for each feature. Conclusion Possible applications of the program include display of transcription factor binding sites in a genomic context or the visualisation of structural domain assignments in protein sequences and many more. The dynamic visualisation of these annotations is useful, e.g., for the determination of cutoff values of predicted features to match experimental data. Program, source code and exemplary files are freely available at the BioSAVE homepage. PMID:18366701
Tellgren-Roth, Christian; Baudo, Charles D.; Kennell, John C.; Sun, Sheng; Billmyre, R. Blake; Schröder, Markus S.; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar Ram; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L.; Heitman, Joseph
2017-01-01
Abstract Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies. PMID:28100699
OntoMaton: a bioportal powered ontology widget for Google Spreadsheets.
Maguire, Eamonn; González-Beltrán, Alejandra; Whetzel, Patricia L; Sansone, Susanna-Assunta; Rocca-Serra, Philippe
2013-02-15
Data collection in spreadsheets is ubiquitous, but current solutions lack support for collaborative semantic annotation that would promote shared and interdisciplinary annotation practices, supporting geographically distributed players. OntoMaton is an open source solution that brings ontology lookup and tagging capabilities into a cloud-based collaborative editing environment, harnessing Google Spreadsheets and the NCBO Web services. It is a general purpose, format-agnostic tool that may serve as a component of the ISA software suite. OntoMaton can also be used to assist the ontology development process. OntoMaton is freely available from Google widgets under the CPAL open source license; documentation and examples at: https://github.com/ISA-tools/OntoMaton.
GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data
Jung, Sook; Staton, Margaret; Lee, Taein; Blenda, Anna; Svancara, Randall; Abbott, Albert; Main, Dorrie
2008-01-01
The Genome Database for Rosaceae (GDR) is a central repository of curated and integrated genetics and genomics data of Rosaceae, an economically important family which includes apple, cherry, peach, pear, raspberry, rose and strawberry. GDR contains annotated databases of all publicly available Rosaceae ESTs, the genetically anchored peach physical map, Rosaceae genetic maps and comprehensively annotated markers and traits. The ESTs are assembled to produce unigene sets of each genus and the entire Rosaceae. Other annotations include putative function, microsatellites, open reading frames, single nucleotide polymorphisms, gene ontology terms and anchored map position where applicable. Most of the published Rosaceae genetic maps can be viewed and compared through CMap, the comparative map viewer. The peach physical map can be viewed using WebFPC/WebChrom, and also through our integrated GDR map viewer, which serves as a portal to the combined genetic, transcriptome and physical mapping information. ESTs, BACs, markers and traits can be queried by various categories and the search result sites are linked to the mapping visualization tools. GDR also provides online analysis tools such as a batch BLAST/FASTA server for the GDR datasets, a sequence assembly server and microsatellite and primer detection tools. GDR is available at http://www.rosaceae.org. PMID:17932055
Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.
2007-01-01
The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268
Collaborative Workspaces within Distributed Virtual Environments.
1996-12-01
such as a text document, a 3D model, or a captured image using a collaborative workspace called the InPerson Whiteboard . The Whiteboard contains a...commands for editing objects drawn on the screen. Finally, when the call is completed, the Whiteboard can be saved to a file for future use . IRIS Annotator... use , and a shared whiteboard that includes a number of multimedia annotation tools. Both systems are also mindful of bandwidth limitations and can
Deburring: an annotated bibliography. Volume VI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, L.K.
1980-07-01
An annotated summary of 138 articles and publications on burrs, burr prevention and deburring is presented. Thirty-seven deburring processes are listed. Entries cited include English, Russian, French, Japanese, and German language articles. Entries are indexed by deburring processes, author, and language. Indexes also indicate which references discuss equipment and tooling, how to use a proces economics, burr properties, and how to design to minimize burr problems. Research studies are identified as are the materials deburred.
Deburring: an annotated bibliography. Volume V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, L.K.
1978-01-01
An annotated summary of 204 articles and publications on burrs, burr prevention and deburring is presented. Thirty-seven deburring processes are listed. Entries cited include English, Russian, French, Japanese and German language articles. Entries are indexed by deburring processes, author, and language. Indexes also indicate which references discuss equipment and tooling, how to use a process, economics, burr properties, and how to design to minimize burr problems. Research studies are identified as are the materials deburred.
Inferring transposons activity chronology by TRANScendence - TEs database and de-novo mining tool.
Startek, Michał Piotr; Nogły, Jakub; Gromadka, Agnieszka; Grzebelus, Dariusz; Gambin, Anna
2017-10-16
The constant progress in sequencing technology leads to ever increasing amounts of genomic data. In the light of current evidence transposable elements (TEs for short) are becoming useful tools for learning about the evolution of host genome. Therefore the software for genome-wide detection and analysis of TEs is of great interest. Here we describe the computational tool for mining, classifying and storing TEs from newly sequenced genomes. This is an online, web-based, user-friendly service, enabling users to upload their own genomic data, and perform de-novo searches for TEs. The detected TEs are automatically analyzed, compared to reference databases, annotated, clustered into families, and stored in TEs repository. Also, the genome-wide nesting structure of found elements are detected and analyzed by new method for inferring evolutionary history of TEs. We illustrate the functionality of our tool by performing a full-scale analyses of TE landscape in Medicago truncatula genome. TRANScendence is an effective tool for the de-novo annotation and classification of transposable elements in newly-acquired genomes. Its streamlined interface makes it well-suited for evolutionary studies.
MimoSA: a system for minimotif annotation
2010-01-01
Background Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature. Results We have built the MimoSA application for minimotif annotation. The application supports management of the Minimotif Miner database, literature tracking, and annotation of new minimotifs. MimoSA enables the visualization, organization, selection and editing functions of minimotifs and their attributes in the MnM database. For the literature components, Mimosa provides paper status tracking and scoring of papers for annotation through a freely available machine learning approach, which is based on word correlation. The paper scoring algorithm is also available as a separate program, TextMine. Form-driven annotation of minimotif attributes enables entry of new minimotifs into the MnM database. Several supporting features increase the efficiency of annotation. The layered architecture of MimoSA allows for extensibility by separating the functions of paper scoring, minimotif visualization, and database management. MimoSA is readily adaptable to other annotation efforts that manually curate literature into a MySQL database. Conclusions MimoSA is an extensible application that facilitates minimotif annotation and integrates with the Minimotif Miner database. We have built MimoSA as an application that integrates dynamic abstract scoring with a high performance relational model of minimotif syntax. MimoSA's TextMine, an efficient paper-scoring algorithm, can be used to dynamically rank papers with respect to context. PMID:20565705
dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts
Vincent, Jonathan; Dai, Zhanwu; Ravel, Catherine; Choulet, Frédéric; Mouzeyar, Said; Bouzidi, M. Fouad; Agier, Marie; Martre, Pierre
2013-01-01
The functional annotation of genes based on sequence homology with genes from model species genomes is time-consuming because it is necessary to mine several unrelated databases. The aim of the present work was to develop a functional annotation database for common wheat Triticum aestivum (L.). The database, named dbWFA, is based on the reference NCBI UniGene set, an expressed gene catalogue built by expressed sequence tag clustering, and on full-length coding sequences retrieved from the TriFLDB database. Information from good-quality heterogeneous sources, including annotations for model plant species Arabidopsis thaliana (L.) Heynh. and Oryza sativa L., was gathered and linked to T. aestivum sequences through BLAST-based homology searches. Even though the complexity of the transcriptome cannot yet be fully appreciated, we developed a tool to easily and promptly obtain information from multiple functional annotation systems (Gene Ontology, MapMan bin codes, MIPS Functional Categories, PlantCyc pathway reactions and TAIR gene families). The use of dbWFA is illustrated here with several query examples. We were able to assign a putative function to 45% of the UniGenes and 81% of the full-length coding sequences from TriFLDB. Moreover, comparison of the annotation of the whole T. aestivum UniGene set along with curated annotations of the two model species assessed the accuracy of the annotation provided by dbWFA. To further illustrate the use of dbWFA, genes specifically expressed during the early cell division or late storage polymer accumulation phases of T. aestivum grain development were identified using a clustering analysis and then annotated using dbWFA. The annotation of these two sets of genes was consistent with previous analyses of T. aestivum grain transcriptomes and proteomes. Database URL: urgi.versailles.inra.fr/dbWFA/ PMID:23660284
Amar, David; Frades, Itziar; Danek, Agnieszka; Goldberg, Tatyana; Sharma, Sanjeev K; Hedley, Pete E; Proux-Wera, Estelle; Andreasson, Erik; Shamir, Ron; Tzfadia, Oren; Alexandersson, Erik
2014-12-05
For most organisms, even if their genome sequence is available, little functional information about individual genes or proteins exists. Several annotation pipelines have been developed for functional analysis based on sequence, 'omics', and literature data. However, researchers encounter little guidance on how well they perform. Here, we used the recently sequenced potato genome as a case study. The potato genome was selected since its genome is newly sequenced and it is a non-model plant even if there is relatively ample information on individual potato genes, and multiple gene expression profiles are available. We show that the automatic gene annotations of potato have low accuracy when compared to a "gold standard" based on experimentally validated potato genes. Furthermore, we evaluate six state-of-the-art annotation pipelines and show that their predictions are markedly dissimilar (Jaccard similarity coefficient of 0.27 between pipelines on average). To overcome this discrepancy, we introduce a simple GO structure-based algorithm that reconciles the predictions of the different pipelines. We show that the integrated annotation covers more genes, increases by over 50% the number of highly co-expressed GO processes, and obtains much higher agreement with the gold standard. We find that different annotation pipelines produce different results, and show how to integrate them into a unified annotation that is of higher quality than each single pipeline. We offer an improved functional annotation of both PGSC and ITAG potato gene models, as well as tools that can be applied to additional pipelines and improve annotation in other organisms. This will greatly aid future functional analysis of '-omics' datasets from potato and other organisms with newly sequenced genomes. The new potato annotations are available with this paper.
Next Generation Models for Storage and Representation of Microbial Biological Annotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quest, Daniel J; Land, Miriam L; Brettin, Thomas S
2010-01-01
Background Traditional genome annotation systems were developed in a very different computing era, one where the World Wide Web was just emerging. Consequently, these systems are built as centralized black boxes focused on generating high quality annotation submissions to GenBank/EMBL supported by expert manual curation. The exponential growth of sequence data drives a growing need for increasingly higher quality and automatically generated annotation. Typical annotation pipelines utilize traditional database technologies, clustered computing resources, Perl, C, and UNIX file systems to process raw sequence data, identify genes, and predict and categorize gene function. These technologies tightly couple the annotation software systemmore » to hardware and third party software (e.g. relational database systems and schemas). This makes annotation systems hard to reproduce, inflexible to modification over time, difficult to assess, difficult to partition across multiple geographic sites, and difficult to understand for those who are not domain experts. These systems are not readily open to scrutiny and therefore not scientifically tractable. The advent of Semantic Web standards such as Resource Description Framework (RDF) and OWL Web Ontology Language (OWL) enables us to construct systems that address these challenges in a new comprehensive way. Results Here, we develop a framework for linking traditional data to OWL-based ontologies in genome annotation. We show how data standards can decouple hardware and third party software tools from annotation pipelines, thereby making annotation pipelines easier to reproduce and assess. An illustrative example shows how TURTLE (Terse RDF Triple Language) can be used as a human readable, but also semantically-aware, equivalent to GenBank/EMBL files. Conclusions The power of this approach lies in its ability to assemble annotation data from multiple databases across multiple locations into a representation that is understandable to researchers. In this way, all researchers, experimental and computational, will more easily understand the informatics processes constructing genome annotation and ultimately be able to help improve the systems that produce them.« less
OLS Client and OLS Dialog: Open Source Tools to Annotate Public Omics Datasets.
Perez-Riverol, Yasset; Ternent, Tobias; Koch, Maximilian; Barsnes, Harald; Vrousgou, Olga; Jupp, Simon; Vizcaíno, Juan Antonio
2017-10-01
The availability of user-friendly software to annotate biological datasets and experimental details is becoming essential in data management practices, both in local storage systems and in public databases. The Ontology Lookup Service (OLS, http://www.ebi.ac.uk/ols) is a popular centralized service to query, browse and navigate biomedical ontologies and controlled vocabularies. Recently, the OLS framework has been completely redeveloped (version 3.0), including enhancements in the data model, like the added support for Web Ontology Language based ontologies, among many other improvements. However, the new OLS is not backwards compatible and new software tools are needed to enable access to this widely used framework now that the previous version is no longer available. We here present the OLS Client as a free, open-source Java library to retrieve information from the new version of the OLS. It enables rapid tool creation by providing a robust, pluggable programming interface and common data model to programmatically access the OLS. The library has already been integrated and is routinely used by several bioinformatics resources and related data annotation tools. Secondly, we also introduce an updated version of the OLS Dialog (version 2.0), a Java graphical user interface that can be easily plugged into Java desktop applications to access the OLS. The software and related documentation are freely available at https://github.com/PRIDE-Utilities/ols-client and https://github.com/PRIDE-Toolsuite/ols-dialog. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BioC: a minimalist approach to interoperability for biomedical text processing
Comeau, Donald C.; Islamaj Doğan, Rezarta; Ciccarese, Paolo; Cohen, Kevin Bretonnel; Krallinger, Martin; Leitner, Florian; Lu, Zhiyong; Peng, Yifan; Rinaldi, Fabio; Torii, Manabu; Valencia, Alfonso; Verspoor, Karin; Wiegers, Thomas C.; Wu, Cathy H.; Wilbur, W. John
2013-01-01
A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information from text. This has led to vigorous research efforts to create useful tools and to create humanly labeled text corpora, which can be used to improve such tools. To encourage combining these efforts into larger, more powerful and more capable systems, a common interchange format to represent, store and exchange the data in a simple manner between different language processing systems and text mining tools is highly desirable. Here we propose a simple extensible mark-up language format to share text documents and annotations. The proposed annotation approach allows a large number of different annotations to be represented including sentences, tokens, parts of speech, named entities such as genes or diseases and relationships between named entities. In addition, we provide simple code to hold this data, read it from and write it back to extensible mark-up language files and perform some sample processing. We also describe completed as well as ongoing work to apply the approach in several directions. Code and data are available at http://bioc.sourceforge.net/. Database URL: http://bioc.sourceforge.net/ PMID:24048470
StructRNAfinder: an automated pipeline and web server for RNA families prediction.
Arias-Carrasco, Raúl; Vásquez-Morán, Yessenia; Nakaya, Helder I; Maracaja-Coutinho, Vinicius
2018-02-17
The function of many noncoding RNAs (ncRNAs) depend upon their secondary structures. Over the last decades, several methodologies have been developed to predict such structures or to use them to functionally annotate RNAs into RNA families. However, to fully perform this analysis, researchers should utilize multiple tools, which require the constant parsing and processing of several intermediate files. This makes the large-scale prediction and annotation of RNAs a daunting task even to researchers with good computational or bioinformatics skills. We present an automated pipeline named StructRNAfinder that predicts and annotates RNA families in transcript or genome sequences. This single tool not only displays the sequence/structural consensus alignments for each RNA family, according to Rfam database but also provides a taxonomic overview for each assigned functional RNA. Moreover, we implemented a user-friendly web service that allows researchers to upload their own nucleotide sequences in order to perform the whole analysis. Finally, we provided a stand-alone version of StructRNAfinder to be used in large-scale projects. The tool was developed under GNU General Public License (GPLv3) and is freely available at http://structrnafinder.integrativebioinformatics.me . The main advantage of StructRNAfinder relies on the large-scale processing and integrating the data obtained by each tool and database employed along the workflow, of which several files are generated and displayed in user-friendly reports, useful for downstream analyses and data exploration.
Culto: AN Ontology-Based Annotation Tool for Data Curation in Cultural Heritage
NASA Astrophysics Data System (ADS)
Garozzo, R.; Murabito, F.; Santagati, C.; Pino, C.; Spampinato, C.
2017-08-01
This paper proposes CulTO, a software tool relying on a computational ontology for Cultural Heritage domain modelling, with a specific focus on religious historical buildings, for supporting cultural heritage experts in their investigations. It is specifically thought to support annotation, automatic indexing, classification and curation of photographic data and text documents of historical buildings. CULTO also serves as a useful tool for Historical Building Information Modeling (H-BIM) by enabling semantic 3D data modeling and further enrichment with non-geometrical information of historical buildings through the inclusion of new concepts about historical documents, images, decay or deformation evidence as well as decorative elements into BIM platforms. CulTO is the result of a joint research effort between the Laboratory of Surveying and Architectural Photogrammetry "Luigi Andreozzi" and the PeRCeiVe Lab (Pattern Recognition and Computer Vision Lab) of the University of Catania,
Improved Genome Assembly and Annotation for the Rock Pigeon (Columba livia).
Holt, Carson; Campbell, Michael; Keays, David A; Edelman, Nathaniel; Kapusta, Aurélie; Maclary, Emily; T Domyan, Eric; Suh, Alexander; Warren, Wesley C; Yandell, Mark; Gilbert, M Thomas P; Shapiro, Michael D
2018-05-04
The domestic rock pigeon ( Columba livia ) is among the most widely distributed and phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the C. livia genome reference assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated reference assembly, along with an updated annotation set, provide improved tools for evolutionary and functional genetic studies of the pigeon, and for comparative avian genomics in general. Copyright © 2018 Holt et al.
Processing sequence annotation data using the Lua programming language.
Ueno, Yutaka; Arita, Masanori; Kumagai, Toshitaka; Asai, Kiyoshi
2003-01-01
The data processing language in a graphical software tool that manages sequence annotation data from genome databases should provide flexible functions for the tasks in molecular biology research. Among currently available languages we adopted the Lua programming language. It fulfills our requirements to perform computational tasks for sequence map layouts, i.e. the handling of data containers, symbolic reference to data, and a simple programming syntax. Upon importing a foreign file, the original data are first decomposed in the Lua language while maintaining the original data schema. The converted data are parsed by the Lua interpreter and the contents are stored in our data warehouse. Then, portions of annotations are selected and arranged into our catalog format to be depicted on the sequence map. Our sequence visualization program was successfully implemented, embedding the Lua language for processing of annotation data and layout script. The program is available at http://staff.aist.go.jp/yutaka.ueno/guppy/.
Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis.
Davidson, Nadia M; Oshlack, Alicia
2018-05-01
RNA sequencing (RNA-seq) analyses can benefit from performing a genome-guided and de novo assembly, in particular for species where the reference genome or the annotation is incomplete. However, tools for integrating an assembled transcriptome with reference annotation are lacking. Necklace is a software pipeline that runs genome-guided and de novo assembly and combines the resulting transcriptomes with reference genome annotations. Necklace constructs a compact but comprehensive superTranscriptome out of the assembled and reference data. Reads are subsequently aligned and counted in preparation for differential expression testing. Necklace allows a comprehensive transcriptome to be built from a combination of assembled and annotated transcripts, which results in a more comprehensive transcriptome for the majority of organisms. In addition RNA-seq data are mapped back to this newly created superTranscript reference to enable differential expression testing with standard methods.
DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe.
Wang, Tianmin; Mori, Hiroshi; Zhang, Chong; Kurokawa, Ken; Xing, Xin-Hui; Yamada, Takuji
2015-03-21
Computational predictions of catalytic function are vital for in-depth understanding of enzymes. Because several novel approaches performing better than the common BLAST tool are rarely applied in research, we hypothesized that there is a large gap between the number of known annotated enzymes and the actual number in the protein universe, which significantly limits our ability to extract additional biologically relevant functional information from the available sequencing data. To reliably expand the enzyme space, we developed DomSign, a highly accurate domain signature-based enzyme functional prediction tool to assign Enzyme Commission (EC) digits. DomSign is a top-down prediction engine that yields results comparable, or superior, to those from many benchmark EC number prediction tools, including BLASTP, when a homolog with an identity >30% is not available in the database. Performance tests showed that DomSign is a highly reliable enzyme EC number annotation tool. After multiple tests, the accuracy is thought to be greater than 90%. Thus, DomSign can be applied to large-scale datasets, with the goal of expanding the enzyme space with high fidelity. Using DomSign, we successfully increased the percentage of EC-tagged enzymes from 12% to 30% in UniProt-TrEMBL. In the Kyoto Encyclopedia of Genes and Genomes bacterial database, the percentage of EC-tagged enzymes for each bacterial genome could be increased from 26.0% to 33.2% on average. Metagenomic mining was also efficient, as exemplified by the application of DomSign to the Human Microbiome Project dataset, recovering nearly one million new EC-labeled enzymes. Our results offer preliminarily confirmation of the existence of the hypothesized huge number of "hidden enzymes" in the protein universe, the identification of which could substantially further our understanding of the metabolisms of diverse organisms and also facilitate bioengineering by providing a richer enzyme resource. Furthermore, our results highlight the necessity of using more advanced computational tools than BLAST in protein database annotations to extract additional biologically relevant functional information from the available biological sequences.
BiNChE: a web tool and library for chemical enrichment analysis based on the ChEBI ontology.
Moreno, Pablo; Beisken, Stephan; Harsha, Bhavana; Muthukrishnan, Venkatesh; Tudose, Ilinca; Dekker, Adriano; Dornfeldt, Stefanie; Taruttis, Franziska; Grosse, Ivo; Hastings, Janna; Neumann, Steffen; Steinbeck, Christoph
2015-02-21
Ontology-based enrichment analysis aids in the interpretation and understanding of large-scale biological data. Ontologies are hierarchies of biologically relevant groupings. Using ontology annotations, which link ontology classes to biological entities, enrichment analysis methods assess whether there is a significant over or under representation of entities for ontology classes. While many tools exist that run enrichment analysis for protein sets annotated with the Gene Ontology, there are only a few that can be used for small molecules enrichment analysis. We describe BiNChE, an enrichment analysis tool for small molecules based on the ChEBI Ontology. BiNChE displays an interactive graph that can be exported as a high-resolution image or in network formats. The tool provides plain, weighted and fragment analysis based on either the ChEBI Role Ontology or the ChEBI Structural Ontology. BiNChE aids in the exploration of large sets of small molecules produced within Metabolomics or other Systems Biology research contexts. The open-source tool provides easy and highly interactive web access to enrichment analysis with the ChEBI ontology tool and is additionally available as a standalone library.
Pilkington, Sarah M; Crowhurst, Ross; Hilario, Elena; Nardozza, Simona; Fraser, Lena; Peng, Yongyan; Gunaseelan, Kularajathevan; Simpson, Robert; Tahir, Jibran; Deroles, Simon C; Templeton, Kerry; Luo, Zhiwei; Davy, Marcus; Cheng, Canhong; McNeilage, Mark; Scaglione, Davide; Liu, Yifei; Zhang, Qiong; Datson, Paul; De Silva, Nihal; Gardiner, Susan E; Bassett, Heather; Chagné, David; McCallum, John; Dzierzon, Helge; Deng, Cecilia; Wang, Yen-Yi; Barron, Lorna; Manako, Kelvina; Bowen, Judith; Foster, Toshi M; Erridge, Zoe A; Tiffin, Heather; Waite, Chethi N; Davies, Kevin M; Grierson, Ella P; Laing, William A; Kirk, Rebecca; Chen, Xiuyin; Wood, Marion; Montefiori, Mirco; Brummell, David A; Schwinn, Kathy E; Catanach, Andrew; Fullerton, Christina; Li, Dawei; Meiyalaghan, Sathiyamoorthy; Nieuwenhuizen, Niels; Read, Nicola; Prakash, Roneel; Hunter, Don; Zhang, Huaibi; McKenzie, Marian; Knäbel, Mareike; Harris, Alastair; Allan, Andrew C; Gleave, Andrew; Chen, Angela; Janssen, Bart J; Plunkett, Blue; Ampomah-Dwamena, Charles; Voogd, Charlotte; Leif, Davin; Lafferty, Declan; Souleyre, Edwige J F; Varkonyi-Gasic, Erika; Gambi, Francesco; Hanley, Jenny; Yao, Jia-Long; Cheung, Joey; David, Karine M; Warren, Ben; Marsh, Ken; Snowden, Kimberley C; Lin-Wang, Kui; Brian, Lara; Martinez-Sanchez, Marcela; Wang, Mindy; Ileperuma, Nadeesha; Macnee, Nikolai; Campin, Robert; McAtee, Peter; Drummond, Revel S M; Espley, Richard V; Ireland, Hilary S; Wu, Rongmei; Atkinson, Ross G; Karunairetnam, Sakuntala; Bulley, Sean; Chunkath, Shayhan; Hanley, Zac; Storey, Roy; Thrimawithana, Amali H; Thomson, Susan; David, Charles; Testolin, Raffaele; Huang, Hongwen; Hellens, Roger P; Schaffer, Robert J
2018-04-16
Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.
PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes.
Osuna-Cruz, Cristina M; Paytuvi-Gallart, Andreu; Di Donato, Antimo; Sundesha, Vicky; Andolfo, Giuseppe; Aiese Cigliano, Riccardo; Sanseverino, Walter; Ercolano, Maria R
2018-01-04
The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected. Bulk data files and curated resistance gene annotations are made available for each plant species hosted. The new Gene Model view offers detailed information on each cloned resistance gene structure to highlight shared attributes with other genes. PRGdb 3.0 offers 153 reference resistance genes and 177 072 annotated candidate Pathogen Receptor Genes (PRGs). Compared to the previous release, the number of putative genes has been increased from 106 to 177 K from 76 sequenced Viridiplantae and algae genomes. The DRAGO 2 tool, which automatically annotates and predicts (PRGs) from DNA and amino acid with high accuracy and sensitivity, has been added. BLAST search has been implemented to offer users the opportunity to annotate and compare their own sequences. The improved section on plant diseases displays useful information linked to genes and genomes to connect complementary data and better address specific needs. Through, a revised and enlarged collection of data, the development of new tools and a renewed portal, PRGdb 3.0 engages the plant science community in developing a consensus plan to improve knowledge and strategies to fight diseases that afflict main crops and other plants. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Chavan, Shweta S; Bauer, Michael A; Peterson, Erich A; Heuck, Christoph J; Johann, Donald J
2013-01-01
Transcriptome analysis by microarrays has produced important advances in biomedicine. For instance in multiple myeloma (MM), microarray approaches led to the development of an effective disease subtyping via cluster assignment, and a 70 gene risk score. Both enabled an improved molecular understanding of MM, and have provided prognostic information for the purposes of clinical management. Many researchers are now transitioning to Next Generation Sequencing (NGS) approaches and RNA-seq in particular, due to its discovery-based nature, improved sensitivity, and dynamic range. Additionally, RNA-seq allows for the analysis of gene isoforms, splice variants, and novel gene fusions. Given the voluminous amounts of historical microarray data, there is now a need to associate and integrate microarray and RNA-seq data via advanced bioinformatic approaches. Custom software was developed following a model-view-controller (MVC) approach to integrate Affymetrix probe set-IDs, and gene annotation information from a variety of sources. The tool/approach employs an assortment of strategies to integrate, cross reference, and associate microarray and RNA-seq datasets. Output from a variety of transcriptome reconstruction and quantitation tools (e.g., Cufflinks) can be directly integrated, and/or associated with Affymetrix probe set data, as well as necessary gene identifiers and/or symbols from a diversity of sources. Strategies are employed to maximize the annotation and cross referencing process. Custom gene sets (e.g., MM 70 risk score (GEP-70)) can be specified, and the tool can be directly assimilated into an RNA-seq pipeline. A novel bioinformatic approach to aid in the facilitation of both annotation and association of historic microarray data, in conjunction with richer RNA-seq data, is now assisting with the study of MM cancer biology.
PhytoPath: an integrative resource for plant pathogen genomics.
Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian
2016-01-04
PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
ORCAN-a web-based meta-server for real-time detection and functional annotation of orthologs.
Zielezinski, Andrzej; Dziubek, Michal; Sliski, Jan; Karlowski, Wojciech M
2017-04-15
ORCAN (ORtholog sCANner) is a web-based meta-server for one-click evolutionary and functional annotation of protein sequences. The server combines information from the most popular orthology-prediction resources, including four tools and four online databases. Functional annotation utilizes five additional comparisons between the query and identified homologs, including: sequence similarity, protein domain architectures, functional motifs, Gene Ontology term assignments and a list of associated articles. Furthermore, the server uses a plurality-based rating system to evaluate the orthology relationships and to rank the reference proteins by their evolutionary and functional relevance to the query. Using a dataset of ∼1 million true yeast orthologs as a sample reference set, we show that combining multiple orthology-prediction tools in ORCAN increases the sensitivity and precision by 1-2 percent points. The service is available for free at http://www.combio.pl/orcan/ . wmk@amu.edu.pl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Pathology data integration with eXtensible Markup Language.
Berman, Jules J
2005-02-01
It is impossible to overstate the importance of XML (eXtensible Markup Language) as a data organization tool. With XML, pathologists can annotate all of their data (clinical and anatomic) in a format that can transform every pathology report into a database, without compromising narrative structure. The purpose of this manuscript is to provide an overview of XML for pathologists. Examples will demonstrate how pathologists can use XML to annotate individual data elements and to structure reports in a common format that can be merged with other XML files or queried using standard XML tools. This manuscript gives pathologists a glimpse into how XML allows pathology data to be linked to other types of biomedical data and reduces our dependence on centralized proprietary databases.
Arensburger, Peter; Piégu, Benoît; Bigot, Yves
2016-01-01
Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.
Optimizing high performance computing workflow for protein functional annotation.
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-09-10
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.
Optimizing high performance computing workflow for protein functional annotation
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-01-01
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296
Siew, Joyce Phui Yee; Khan, Asif M; Tan, Paul T J; Koh, Judice L Y; Seah, Seng Hong; Koo, Chuay Yeng; Chai, Siaw Ching; Armugam, Arunmozhiarasi; Brusic, Vladimir; Jeyaseelan, Kandiah
2004-12-12
Sequence annotations, functional and structural data on snake venom neurotoxins (svNTXs) are scattered across multiple databases and literature sources. Sequence annotations and structural data are available in the public molecular databases, while functional data are almost exclusively available in the published articles. There is a need for a specialized svNTXs database that contains NTX entries, which are organized, well annotated and classified in a systematic manner. We have systematically analyzed svNTXs and classified them using structure-function groups based on their structural, functional and phylogenetic properties. Using conserved motifs in each phylogenetic group, we built an intelligent module for the prediction of structural and functional properties of unknown NTXs. We also developed an annotation tool to aid the functional prediction of newly identified NTXs as an additional resource for the venom research community. We created a searchable online database of NTX proteins sequences (http://research.i2r.a-star.edu.sg/Templar/DB/snake_neurotoxin). This database can also be found under Swiss-Prot Toxin Annotation Project website (http://www.expasy.org/sprot/).
Zhu, Yafeng; Engström, Pär G; Tellgren-Roth, Christian; Baudo, Charles D; Kennell, John C; Sun, Sheng; Billmyre, R Blake; Schröder, Markus S; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar Ram; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L; Heitman, Joseph; Scheynius, Annika; Lehtiö, Janne
2017-03-17
Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data
Hayamizu, Terry F; Mangan, Mary; Corradi, John P; Kadin, James A; Ringwald, Martin
2005-01-01
We have developed an ontology to provide standardized nomenclature for anatomical terms in the postnatal mouse. The Adult Mouse Anatomical Dictionary is structured as a directed acyclic graph, and is organized hierarchically both spatially and functionally. The ontology will be used to annotate and integrate different types of data pertinent to anatomy, such as gene expression patterns and phenotype information, which will contribute to an integrated description of biological phenomena in the mouse. PMID:15774030
Arnold, Roland; Goldenberg, Florian; Mewes, Hans-Werner; Rattei, Thomas
2014-01-01
The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith–Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads. PMID:24165881
Samarakoon, Pubudu Saneth; Sorte, Hanne Sørmo; Stray-Pedersen, Asbjørg; Rødningen, Olaug Kristin; Rognes, Torbjørn; Lyle, Robert
2016-01-14
With advances in next generation sequencing technology and analysis methods, single nucleotide variants (SNVs) and indels can be detected with high sensitivity and specificity in exome sequencing data. Recent studies have demonstrated the ability to detect disease-causing copy number variants (CNVs) in exome sequencing data. However, exonic CNV prediction programs have shown high false positive CNV counts, which is the major limiting factor for the applicability of these programs in clinical studies. We have developed a tool (cnvScan) to improve the clinical utility of computational CNV prediction in exome data. cnvScan can accept input from any CNV prediction program. cnvScan consists of two steps: CNV screening and CNV annotation. CNV screening evaluates CNV prediction using quality scores and refines this using an in-house CNV database, which greatly reduces the false positive rate. The annotation step provides functionally and clinically relevant information using multiple source datasets. We assessed the performance of cnvScan on CNV predictions from five different prediction programs using 64 exomes from Primary Immunodeficiency (PIDD) patients, and identified PIDD-causing CNVs in three individuals from two different families. In summary, cnvScan reduces the time and effort required to detect disease-causing CNVs by reducing the false positive count and providing annotation. This improves the clinical utility of CNV detection in exome data.
Semantic-Aware Components and Services of ActiveMath
ERIC Educational Resources Information Center
Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan
2006-01-01
ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…
Learn by Yourself: The Self-Learning Tools for Qualitative Analysis Software Packages
ERIC Educational Resources Information Center
Freitas, Fábio; Ribeiro, Jaime; Brandão, Catarina; Reis, Luís Paulo; de Souza, Francislê Neri; Costa, António Pedro
2017-01-01
Computer Assisted Qualitative Data Analysis Software (CAQDAS) are tools that help researchers to develop qualitative research projects. These software packages help the users with tasks such as transcription analysis, coding and text interpretation, writing and annotation, content search and analysis, recursive abstraction, grounded theory…
The Gene Set Builder: collation, curation, and distribution of sets of genes
Yusuf, Dimas; Lim, Jonathan S; Wasserman, Wyeth W
2005-01-01
Background In bioinformatics and genomics, there are many applications designed to investigate the common properties for a set of genes. Often, these multi-gene analysis tools attempt to reveal sequential, functional, and expressional ties. However, while tremendous effort has been invested in developing tools that can analyze a set of genes, minimal effort has been invested in developing tools that can help researchers compile, store, and annotate gene sets in the first place. As a result, the process of making or accessing a set often involves tedious and time consuming steps such as finding identifiers for each individual gene. These steps are often repeated extensively to shift from one identifier type to another; or to recreate a published set. In this paper, we present a simple online tool which – with the help of the gene catalogs Ensembl and GeneLynx – can help researchers build and annotate sets of genes quickly and easily. Description The Gene Set Builder is a database-driven, web-based tool designed to help researchers compile, store, export, and share sets of genes. This application supports the 17 eukaryotic genomes found in version 32 of the Ensembl database, which includes species from yeast to human. User-created information such as sets and customized annotations are stored to facilitate easy access. Gene sets stored in the system can be "exported" in a variety of output formats – as lists of identifiers, in tables, or as sequences. In addition, gene sets can be "shared" with specific users to facilitate collaborations or fully released to provide access to published results. The application also features a Perl API (Application Programming Interface) for direct connectivity to custom analysis tools. A downloadable Quick Reference guide and an online tutorial are available to help new users learn its functionalities. Conclusion The Gene Set Builder is an Ensembl-facilitated online tool designed to help researchers compile and manage sets of genes in a user-friendly environment. The application can be accessed via . PMID:16371163
Expanded microbial genome coverage and improved protein family annotation in the COG database
Galperin, Michael Y.; Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.
2015-01-01
Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first created in 1997, has been a popular tool for functional annotation. Its success was largely based on (i) its reliance on complete microbial genomes, which allowed reliable assignment of orthologs and paralogs for most genes; (ii) orthology-based approach, which used the function(s) of the characterized member(s) of the protein family (COG) to assign function(s) to the entire set of carefully identified orthologs and describe the range of potential functions when there were more than one; and (iii) careful manual curation of the annotation of the COGs, aimed at detailed prediction of the biological function(s) for each COG while avoiding annotation errors and overprediction. Here we present an update of the COGs, the first since 2003, and a comprehensive revision of the COG annotations and expansion of the genome coverage to include representative complete genomes from all bacterial and archaeal lineages down to the genus level. This re-analysis of the COGs shows that the original COG assignments had an error rate below 0.5% and allows an assessment of the progress in functional genomics in the past 12 years. During this time, functions of many previously uncharacterized COGs have been elucidated and tentative functional assignments of many COGs have been validated, either by targeted experiments or through the use of high-throughput methods. A particularly important development is the assignment of functions to several widespread, conserved proteins many of which turned out to participate in translation, in particular rRNA maturation and tRNA modification. The new version of the COGs is expected to become an important tool for microbial genomics. PMID:25428365
Worley, K C; Wiese, B A; Smith, R F
1995-09-01
BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search-launcher/launcher.html > ).
EuroPineDB: a high-coverage web database for maritime pine transcriptome
2011-01-01
Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome. PMID:21762488
Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard
2009-05-01
The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.
Hong, Na; Li, Dingcheng; Yu, Yue; Xiu, Qiongying; Liu, Hongfang; Jiang, Guoqian
2016-10-01
Constructing standard and computable clinical diagnostic criteria is an important but challenging research field in the clinical informatics community. The Quality Data Model (QDM) is emerging as a promising information model for standardizing clinical diagnostic criteria. To develop and evaluate automated methods for converting textual clinical diagnostic criteria in a structured format using QDM. We used a clinical Natural Language Processing (NLP) tool known as cTAKES to detect sentences and annotate events in diagnostic criteria. We developed a rule-based approach for assigning the QDM datatype(s) to an individual criterion, whereas we invoked a machine learning algorithm based on the Conditional Random Fields (CRFs) for annotating attributes belonging to each particular QDM datatype. We manually developed an annotated corpus as the gold standard and used standard measures (precision, recall and f-measure) for the performance evaluation. We harvested 267 individual criteria with the datatypes of Symptom and Laboratory Test from 63 textual diagnostic criteria. We manually annotated attributes and values in 142 individual Laboratory Test criteria. The average performance of our rule-based approach was 0.84 of precision, 0.86 of recall, and 0.85 of f-measure; the performance of CRFs-based classification was 0.95 of precision, 0.88 of recall and 0.91 of f-measure. We also implemented a web-based tool that automatically translates textual Laboratory Test criteria into the QDM XML template format. The results indicated that our approaches leveraging cTAKES and CRFs are effective in facilitating diagnostic criteria annotation and classification. Our NLP-based computational framework is a feasible and useful solution in developing diagnostic criteria representation and computerization. Copyright © 2016 Elsevier Inc. All rights reserved.
Patel, Sejal; Roncaglia, Paola; Lovering, Ruth C
2015-06-06
People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets.
Foreman, K Bo; Morton, David A; Musolino, Gina Maria; Albertine, Kurt H
2005-07-01
The cadaver continues to be the primary tool to teach human gross anatomy. However, cadavers are not available to students outside of the teaching laboratory. A solution is to make course content available through computer-assisted instruction (CAI). While CAI is commonly used as an ancillary teaching tool for anatomy, use of screen space, annotations that obscure the image, and restricted interactivity have limited the utility of such teaching tools. To address these limitations, we designed a Web-based CAI tool that optimizes use of screen space, uses annotations that do not decrease the clarity of the images, and incorporates interactivity across different operating systems and browsers. To assess the design and utility of our CAI tool, we conducted a prospective evaluation of 43 graduate students enrolled in neuroanatomy taught by the Divisions of Physical and Occupational Therapy at the University of Utah, College of Health. A questionnaire addressed navigation, clarity of the images, benefit of the CAI tool, and rating of the CAI tool compared to traditional learning tools. Results showed that 88% of the respondents strongly agreed that the CAI tool was easy to navigate and overall beneficial. Eighty-four percent strongly agreed that the CAI tool was educational in structure identification and had clear images. Furthermore, 95% of the respondents thought that the CAI tool was much to somewhat better than traditional learning tools. We conclude that the design of a CAI tool, with minimal limitations, provides a useful ancillary tool for human neuroanatomy instruction. Copyright 2005 Wiley-Liss, Inc.
Goonesekere, Nalin C W; Shipely, Krysten; O'Connor, Kevin
2010-06-01
The Pfam database is an important tool in genome annotation, since it provides a collection of curated protein families. However, a subset of these families, known as domains of unknown function (DUFs), remains poorly characterized. We have related sequences from DUF404, DUF407, DUF482, DUF608, DUF810, DUF853, DUF976 and DUF1111 to homologs in PDB, within the midnight zone (9-20%) of sequence identity. These relationships were extended to provide functional annotation by sequence analysis and model building. Also described are examples of residue plasticity within enzyme active sites, and change of function within homologous sequences of a DUF. Copyright 2010 Elsevier Ltd. All rights reserved.
Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.
Letunic, Ivica; Bork, Peer
2011-07-01
Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. In addition to classical tree viewer functions, iTOL offers many novel ways of annotating trees with various additional data. Current version introduces numerous new features and greatly expands the number of supported data set types. Trees can be interactively manipulated and edited. A free personal account system is available, providing management and sharing of trees in user defined workspaces and projects. Export to various bitmap and vector graphics formats is supported. Batch access interface is available for programmatic access or inclusion of interactive trees into other web services.
SemVisM: semantic visualizer for medical image
NASA Astrophysics Data System (ADS)
Landaeta, Luis; La Cruz, Alexandra; Baranya, Alexander; Vidal, María.-Esther
2015-01-01
SemVisM is a toolbox that combines medical informatics and computer graphics tools for reducing the semantic gap between low-level features and high-level semantic concepts/terms in the images. This paper presents a novel strategy for visualizing medical data annotated semantically, combining rendering techniques, and segmentation algorithms. SemVisM comprises two main components: i) AMORE (A Modest vOlume REgister) to handle input data (RAW, DAT or DICOM) and to initially annotate the images using terms defined on medical ontologies (e.g., MesH, FMA or RadLex), and ii) VOLPROB (VOlume PRObability Builder) for generating the annotated volumetric data containing the classified voxels that belong to a particular tissue. SemVisM is built on top of the semantic visualizer ANISE.1
Rocca-Serra, Philippe; Brandizi, Marco; Maguire, Eamonn; Sklyar, Nataliya; Taylor, Chris; Begley, Kimberly; Field, Dawn; Harris, Stephen; Hide, Winston; Hofmann, Oliver; Neumann, Steffen; Sterk, Peter; Tong, Weida; Sansone, Susanna-Assunta
2010-01-01
Summary: The first open source software suite for experimentalists and curators that (i) assists in the annotation and local management of experimental metadata from high-throughput studies employing one or a combination of omics and other technologies; (ii) empowers users to uptake community-defined checklists and ontologies; and (iii) facilitates submission to international public repositories. Availability and Implementation: Software, documentation, case studies and implementations at http://www.isa-tools.org Contact: isatools@googlegroups.com PMID:20679334
PTMScout, a Web Resource for Analysis of High Throughput Post-translational Proteomics Studies*
Naegle, Kristen M.; Gymrek, Melissa; Joughin, Brian A.; Wagner, Joel P.; Welsch, Roy E.; Yaffe, Michael B.; Lauffenburger, Douglas A.; White, Forest M.
2010-01-01
The rate of discovery of post-translational modification (PTM) sites is increasing rapidly and is significantly outpacing our biological understanding of the function and regulation of those modifications. To help meet this challenge, we have created PTMScout, a web-based interface for viewing, manipulating, and analyzing high throughput experimental measurements of PTMs in an effort to facilitate biological understanding of protein modifications in signaling networks. PTMScout is constructed around a custom database of PTM experiments and contains information from external protein and post-translational resources, including gene ontology annotations, Pfam domains, and Scansite predictions of kinase and phosphopeptide binding domain interactions. PTMScout functionality comprises data set comparison tools, data set summary views, and tools for protein assignments of peptides identified by mass spectrometry. Analysis tools in PTMScout focus on informed subset selection via common criteria and on automated hypothesis generation through subset labeling derived from identification of statistically significant enrichment of other annotations in the experiment. Subset selection can be applied through the PTMScout flexible query interface available for quantitative data measurements and data annotations as well as an interface for importing data set groupings by external means, such as unsupervised learning. We exemplify the various functions of PTMScout in application to data sets that contain relative quantitative measurements as well as data sets lacking quantitative measurements, producing a set of interesting biological hypotheses. PTMScout is designed to be a widely accessible tool, enabling generation of multiple types of biological hypotheses from high throughput PTM experiments and advancing functional assignment of novel PTM sites. PTMScout is available at http://ptmscout.mit.edu. PMID:20631208
Li, Qi; Melton, Kristin; Lingren, Todd; Kirkendall, Eric S; Hall, Eric; Zhai, Haijun; Ni, Yizhao; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre
2014-01-01
Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. This paper presents two phenotyping AE and ME detection algorithms (ie, IV infiltrations, narcotic medication oversedation and dosing errors) and describes manual annotation of airway management and medication/fluid AEs from NICU EHRs. From 753 NICU patient EHRs from 2011, we developed two automatic AE/ME detection algorithms, and manually annotated 11 classes of AEs in 3263 clinical notes. Performance of the automatic AE/ME detection algorithms was compared to trigger tool and voluntary incident reporting results. AEs in clinical notes were double annotated and consensus achieved under neonatologist supervision. Sensitivity, positive predictive value (PPV), and specificity are reported. Twelve severe IV infiltrates were detected. The algorithm identified one more infiltrate than the trigger tool and eight more than incident reporting. One narcotic oversedation was detected demonstrating 100% agreement with the trigger tool. Additionally, 17 narcotic medication MEs were detected, an increase of 16 cases over voluntary incident reporting. Automated AE/ME detection algorithms provide higher sensitivity and PPV than currently used trigger tools or voluntary incident-reporting systems, including identification of potential dosing and frequency errors that current methods are unequipped to detect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Enriching the Web of Data with Educational Information Using We-Share
ERIC Educational Resources Information Center
Ruiz-Calleja, Adolfo; Asensio-Pérez, Juan I.; Vega-Gorgojo, Guillermo; Gómez-Sánchez, Eduardo; Bote-Lorenzo, Miguel L.; Alario-Hoyos, Carlos
2017-01-01
This paper presents We-Share, a social annotation application that enables educators to publish and retrieve information about educational ICT tools. As a distinctive characteristic, We-Share provides educators data about educational tools already available on the Web of Data while allowing them to enrich such data with their experience using…
ExAtlas: An interactive online tool for meta-analysis of gene expression data.
Sharov, Alexei A; Schlessinger, David; Ko, Minoru S H
2015-12-01
We have developed ExAtlas, an on-line software tool for meta-analysis and visualization of gene expression data. In contrast to existing software tools, ExAtlas compares multi-component data sets and generates results for all combinations (e.g. all gene expression profiles versus all Gene Ontology annotations). ExAtlas handles both users' own data and data extracted semi-automatically from the public repository (GEO/NCBI database). ExAtlas provides a variety of tools for meta-analyses: (1) standard meta-analysis (fixed effects, random effects, z-score, and Fisher's methods); (2) analyses of global correlations between gene expression data sets; (3) gene set enrichment; (4) gene set overlap; (5) gene association by expression profile; (6) gene specificity; and (7) statistical analysis (ANOVA, pairwise comparison, and PCA). ExAtlas produces graphical outputs, including heatmaps, scatter-plots, bar-charts, and three-dimensional images. Some of the most widely used public data sets (e.g. GNF/BioGPS, Gene Ontology, KEGG, GAD phenotypes, BrainScan, ENCODE ChIP-seq, and protein-protein interaction) are pre-loaded and can be used for functional annotations.
EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats
Ison, Jon; Kalaš, Matúš; Jonassen, Inge; Bolser, Dan; Uludag, Mahmut; McWilliam, Hamish; Malone, James; Lopez, Rodrigo; Pettifer, Steve; Rice, Peter
2013-01-01
Motivation: Advancing the search, publication and integration of bioinformatics tools and resources demands consistent machine-understandable descriptions. A comprehensive ontology allowing such descriptions is therefore required. Results: EDAM is an ontology of bioinformatics operations (tool or workflow functions), types of data and identifiers, application domains and data formats. EDAM supports semantic annotation of diverse entities such as Web services, databases, programmatic libraries, standalone tools, interactive applications, data schemas, datasets and publications within bioinformatics. EDAM applies to organizing and finding suitable tools and data and to automating their integration into complex applications or workflows. It includes over 2200 defined concepts and has successfully been used for annotations and implementations. Availability: The latest stable version of EDAM is available in OWL format from http://edamontology.org/EDAM.owl and in OBO format from http://edamontology.org/EDAM.obo. It can be viewed online at the NCBO BioPortal and the EBI Ontology Lookup Service. For documentation and license please refer to http://edamontology.org. This article describes version 1.2 available at http://edamontology.org/EDAM_1.2.owl. Contact: jison@ebi.ac.uk PMID:23479348
Neerincx, Pieter BT; Casel, Pierrot; Prickett, Dennis; Nie, Haisheng; Watson, Michael; Leunissen, Jack AM; Groenen, Martien AM; Klopp, Christophe
2009-01-01
Background Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. Results IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines. For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. Conclusion In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them. These relationships can then be used to judge the varying degrees of reliability allowing users to fine-tune the balance between reliability and coverage. This is important as it can have a significant effect on functional microarray analysis as exemplified by the lack of consensus on almost one third of the terms found with GO term enrichment analysis based on updated IMAD, OligoRAP or sigReannot annotation. PMID:19615109
An open annotation ontology for science on web 3.0
2011-01-01
Background There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Methods Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. Results This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables “stand-off” or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO’s Google Code page: http://code.google.com/p/annotation-ontology/ . Conclusions The Annotation Ontology meets critical requirements for an open, freely shareable model in OWL, of annotation metadata created against scientific documents on the Web. We believe AO can become a very useful common model for annotation metadata on Web documents, and will enable biomedical domain ontologies to be used quite widely to annotate the scientific literature. Potential collaborators and those with new relevant use cases are invited to contact the authors. PMID:21624159
An open annotation ontology for science on web 3.0.
Ciccarese, Paolo; Ocana, Marco; Garcia Castro, Leyla Jael; Das, Sudeshna; Clark, Tim
2011-05-17
There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables "stand-off" or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO's Google Code page: http://code.google.com/p/annotation-ontology/ . The Annotation Ontology meets critical requirements for an open, freely shareable model in OWL, of annotation metadata created against scientific documents on the Web. We believe AO can become a very useful common model for annotation metadata on Web documents, and will enable biomedical domain ontologies to be used quite widely to annotate the scientific literature. Potential collaborators and those with new relevant use cases are invited to contact the authors.
Neerincx, Pieter Bt; Casel, Pierrot; Prickett, Dennis; Nie, Haisheng; Watson, Michael; Leunissen, Jack Am; Groenen, Martien Am; Klopp, Christophe
2009-07-16
Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines.For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them. These relationships can then be used to judge the varying degrees of reliability allowing users to fine-tune the balance between reliability and coverage. This is important as it can have a significant effect on functional microarray analysis as exemplified by the lack of consensus on almost one third of the terms found with GO term enrichment analysis based on updated IMAD, OligoRAP or sigReannot annotation.
Manijak, Mieszko P; Nielsen, Henrik B
2011-06-11
Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.
Castrignanò, Tiziana; Canali, Alessandro; Grillo, Giorgio; Liuni, Sabino; Mignone, Flavio; Pesole, Graziano
2004-01-01
The identification and characterization of genome tracts that are highly conserved across species during evolution may contribute significantly to the functional annotation of whole-genome sequences. Indeed, such sequences are likely to correspond to known or unknown coding exons or regulatory motifs. Here, we present a web server implementing a previously developed algorithm that, by comparing user-submitted genome sequences, is able to identify statistically significant conserved blocks and assess their coding or noncoding nature through the measure of a coding potential score. The web tool, available at http://www.caspur.it/CSTminer/, is dynamically interconnected with the Ensembl genome resources and produces a graphical output showing a map of detected conserved sequences and annotated gene features. PMID:15215464
Dugas, Martin; Dugas-Breit, Susanne
2014-01-01
Design, execution and analysis of clinical studies involves several stakeholders with different professional backgrounds. Typically, principle investigators are familiar with standard office tools, data managers apply electronic data capture (EDC) systems and statisticians work with statistics software. Case report forms (CRFs) specify the data model of study subjects, evolve over time and consist of hundreds to thousands of data items per study. To avoid erroneous manual transformation work, a converting tool for different representations of study data models was designed. It can convert between office format, EDC and statistics format. In addition, it supports semantic annotations, which enable precise definitions for data items. A reference implementation is available as open source package ODMconverter at http://cran.r-project.org.
PANDA: pathway and annotation explorer for visualizing and interpreting gene-centric data.
Hart, Steven N; Moore, Raymond M; Zimmermann, Michael T; Oliver, Gavin R; Egan, Jan B; Bryce, Alan H; Kocher, Jean-Pierre A
2015-01-01
Objective. Bringing together genomics, transcriptomics, proteomics, and other -omics technologies is an important step towards developing highly personalized medicine. However, instrumentation has advances far beyond expectations and now we are able to generate data faster than it can be interpreted. Materials and Methods. We have developed PANDA (Pathway AND Annotation) Explorer, a visualization tool that integrates gene-level annotation in the context of biological pathways to help interpret complex data from disparate sources. PANDA is a web-based application that displays data in the context of well-studied pathways like KEGG, BioCarta, and PharmGKB. PANDA represents data/annotations as icons in the graph while maintaining the other data elements (i.e., other columns for the table of annotations). Custom pathways from underrepresented diseases can be imported when existing data sources are inadequate. PANDA also allows sharing annotations among collaborators. Results. In our first use case, we show how easy it is to view supplemental data from a manuscript in the context of a user's own data. Another use-case is provided describing how PANDA was leveraged to design a treatment strategy from the somatic variants found in the tumor of a patient with metastatic sarcomatoid renal cell carcinoma. Conclusion. PANDA facilitates the interpretation of gene-centric annotations by visually integrating this information with context of biological pathways. The application can be downloaded or used directly from our website: http://bioinformaticstools.mayo.edu/research/panda-viewer/.
NCBI prokaryotic genome annotation pipeline.
Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James
2016-08-19
Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
An Annotated Reading List for Concurrent Engineering
1989-07-01
The seven tools are sometimes referred to as the seven old tools.) -9- Ishikawa , Kaoru , What is Total Quality Control? The Japanese Way, Prentice-Hall...some solutions. * Ishikawa (1982) presents a practical guide (with easy to use tools) for implementing qual- ity control at the working level...study of, :-, ieering for the last two years. Is..ikawa, Kaoru , Guide to Quality Control, Kraus International Publications, White Plains, NY, 1982. The
DBATE: database of alternative transcripts expression.
Bianchi, Valerio; Colantoni, Alessio; Calderone, Alberto; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela
2013-01-01
The use of high-throughput RNA sequencing technology (RNA-seq) allows whole transcriptome analysis, providing an unbiased and unabridged view of alternative transcript expression. Coupling splicing variant-specific expression with its functional inference is still an open and difficult issue for which we created the DataBase of Alternative Transcripts Expression (DBATE), a web-based repository storing expression values and functional annotation of alternative splicing variants. We processed 13 large RNA-seq panels from human healthy tissues and in disease conditions, reporting expression levels and functional annotations gathered and integrated from different sources for each splicing variant, using a variant-specific annotation transfer pipeline. The possibility to perform complex queries by cross-referencing different functional annotations permits the retrieval of desired subsets of splicing variant expression values that can be visualized in several ways, from simple to more informative. DBATE is intended as a novel tool to help appreciate how, and possibly why, the transcriptome expression is shaped. DATABASE URL: http://bioinformatica.uniroma2.it/DBATE/.
ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases
Buza, Teresia M.; Jack, Sherman W.; Kirunda, Halid; Khaitsa, Margaret L.; Lawrence, Mark L.; Pruett, Stephen; Peterson, Daniel G.
2015-01-01
There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu PMID:26581408
Annotation analysis for testing drug safety signals using unstructured clinical notes
2012-01-01
Background The electronic surveillance for adverse drug events is largely based upon the analysis of coded data from reporting systems. Yet, the vast majority of electronic health data lies embedded within the free text of clinical notes and is not gathered into centralized repositories. With the increasing access to large volumes of electronic medical data—in particular the clinical notes—it may be possible to computationally encode and to test drug safety signals in an active manner. Results We describe the application of simple annotation tools on clinical text and the mining of the resulting annotations to compute the risk of getting a myocardial infarction for patients with rheumatoid arthritis that take Vioxx. Our analysis clearly reveals elevated risks for myocardial infarction in rheumatoid arthritis patients taking Vioxx (odds ratio 2.06) before 2005. Conclusions Our results show that it is possible to apply annotation analysis methods for testing hypotheses about drug safety using electronic medical records. PMID:22541596
Functional Annotation of Ion Channel Structures by Molecular Simulation.
Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P
2016-12-06
Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Martin, Tiphaine; Sherman, David J; Durrens, Pascal
2011-01-01
The Génolevures online database (URL: http://www.genolevures.org) stores and provides the data and results obtained by the Génolevures Consortium through several campaigns of genome annotation of the yeasts in the Saccharomycotina subphylum (hemiascomycetes). This database is dedicated to large-scale comparison of these genomes, storing not only the different chromosomal elements detected in the sequences, but also the logical relations between them. The database is divided into a public part, accessible to anyone through Internet, and a private part where the Consortium members make genome annotations with our Magus annotation system; this system is used to annotate several related genomes in parallel. The public database is widely consulted and offers structured data, organized using a REST web site architecture that allows for automated requests. The implementation of the database, as well as its associated tools and methods, is evolving to cope with the influx of genome sequences produced by Next Generation Sequencing (NGS). Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.
phyloXML: XML for evolutionary biology and comparative genomics
Han, Mira V; Zmasek, Christian M
2009-01-01
Background Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. Results We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. Conclusion PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at . PMID:19860910
miRiadne: a web tool for consistent integration of miRNA nomenclature.
Bonnal, Raoul J P; Rossi, Riccardo L; Carpi, Donatella; Ranzani, Valeria; Abrignani, Sergio; Pagani, Massimiliano
2015-07-01
The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update.
Ye, Jia; Zhang, Yong; Cui, Huihai; Liu, Jiawei; Wu, Yuqing; Cheng, Yun; Xu, Huixing; Huang, Xingxin; Li, Shengting; Zhou, An; Zhang, Xiuqing; Bolund, Lars; Chen, Qiang; Wang, Jian; Yang, Huanming; Fang, Lin; Shi, Chunmei
2018-05-18
WEGO (Web Gene Ontology Annotation Plot), created in 2006, is a simple but useful tool for visualizing, comparing and plotting GO (Gene Ontology) annotation results. Owing largely to the rapid development of high-throughput sequencing and the increasing acceptance of GO, WEGO has benefitted from outstanding performance regarding the number of users and citations in recent years, which motivated us to update to version 2.0. WEGO uses the GO annotation results as input. Based on GO's standardized DAG (Directed Acyclic Graph) structured vocabulary system, the number of genes corresponding to each GO ID is calculated and shown in a graphical format. WEGO 2.0 updates have targeted four aspects, aiming to provide a more efficient and up-to-date approach for comparative genomic analyses. First, the number of input files, previously limited to three, is now unlimited, allowing WEGO to analyze multiple datasets. Also added in this version are the reference datasets of nine model species that can be adopted as baselines in genomic comparative analyses. Furthermore, in the analyzing processes each Chi-square test is carried out for multiple datasets instead of every two samples. At last, WEGO 2.0 provides an additional output graph along with the traditional WEGO histogram, displaying the sorted P-values of GO terms and indicating their significant differences. At the same time, WEGO 2.0 features an entirely new user interface. WEGO is available for free at http://wego.genomics.org.cn.
DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures
Yin, Xu-Cheng; Yang, Chun; Pei, Wei-Yi; Man, Haixia; Zhang, Jun; Learned-Miller, Erik; Yu, Hong
2015-01-01
Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information. A high-quality ground truth standard can greatly facilitate the development of an automated system. This article describes DeTEXT: A database for evaluating text extraction from biomedical literature figures. It is the first publicly available, human-annotated, high quality, and large-scale figure-text dataset with 288 full-text articles, 500 biomedical figures, and 9308 text regions. This article describes how figures were selected from open-access full-text biomedical articles and how annotation guidelines and annotation tools were developed. We also discuss the inter-annotator agreement and the reliability of the annotations. We summarize the statistics of the DeTEXT data and make available evaluation protocols for DeTEXT. Finally we lay out challenges we observed in the automated detection and recognition of figure text and discuss research directions in this area. DeTEXT is publicly available for downloading at http://prir.ustb.edu.cn/DeTEXT/. PMID:25951377
NASA Astrophysics Data System (ADS)
Yu, Jia-Feng; Sui, Tian-Xiang; Wang, Hong-Mei; Wang, Chun-Ling; Jing, Li; Wang, Ji-Hua
2015-12-01
Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302186 and 61271378) and the Funding from the State Key Laboratory of Bioelectronics of Southeast University.
The Co-regulation Data Harvester: Automating gene annotation starting from a transcriptome database
NASA Astrophysics Data System (ADS)
Tsypin, Lev M.; Turkewitz, Aaron P.
Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing per se. Tetrahymena thermophila, a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in T. thermophila, called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the Tetrahymena transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in Tetrahymena. Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained via the CDH should be relevant, and can be explored, in many other systems.
Guidelines for the functional annotation of microRNAs using the Gene Ontology
D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna
2016-01-01
MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558
NASA Technical Reports Server (NTRS)
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.
Assessing Strength of Evidence of Appropriate Use Criteria for Diagnostic Imaging Examinations.
Lacson, Ronilda; Raja, Ali S; Osterbur, David; Ip, Ivan; Schneider, Louise; Bain, Paul; Mita, Carol; Whelan, Julia; Silveira, Patricia; Dement, David; Khorasani, Ramin
2016-05-01
For health information technology tools to fully inform evidence-based decisions, recommendations must be reliably assessed for quality and strength of evidence. We aimed to create an annotation framework for grading recommendations regarding appropriate use of diagnostic imaging examinations. The annotation framework was created by an expert panel (clinicians in three medical specialties, medical librarians, and biomedical scientists) who developed a process for achieving consensus in assessing recommendations, and evaluated by measuring agreement in grading the strength of evidence for 120 empirically selected recommendations using the Oxford Levels of Evidence. Eighty-two percent of recommendations were assigned to Level 5 (expert opinion). Inter-annotator agreement was 0.70 on initial grading (κ = 0.35, 95% CI, 0.23-0.48). After systematic discussion utilizing the annotation framework, agreement increased significantly to 0.97 (κ = 0.88, 95% CI, 0.77-0.99). A novel annotation framework was effective for grading the strength of evidence supporting appropriate use criteria for diagnostic imaging exams. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi
2013-04-10
Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.
Fuzzy measures on the Gene Ontology for gene product similarity.
Popescu, Mihail; Keller, James M; Mitchell, Joyce A
2006-01-01
One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.
Ni, Ming; Ye, Fuqiang; Zhu, Juanjuan; Li, Zongwei; Yang, Shuai; Yang, Bite; Han, Lu; Wu, Yongge; Chen, Ying; Li, Fei; Wang, Shengqi; Bo, Xiaochen
2014-12-01
Numerous public microarray datasets are valuable resources for the scientific communities. Several online tools have made great steps to use these data by querying related datasets with users' own gene signatures or expression profiles. However, dataset annotation and result exhibition still need to be improved. ExpTreeDB is a database that allows for queries on human and mouse microarray experiments from Gene Expression Omnibus with gene signatures or profiles. Compared with similar applications, ExpTreeDB pays more attention to dataset annotations and result visualization. We introduced a multiple-level annotation system to depict and organize original experiments. For example, a tamoxifen-treated cell line experiment is hierarchically annotated as 'agent→drug→estrogen receptor antagonist→tamoxifen'. Consequently, retrieved results are exhibited by an interactive tree-structured graphics, which provide an overview for related experiments and might enlighten users on key items of interest. The database is freely available at http://biotech.bmi.ac.cn/ExpTreeDB. Web site is implemented in Perl, PHP, R, MySQL and Apache. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Spencer, Jean L; Bhatia, Vivek N; Whelan, Stephen A; Costello, Catherine E; McComb, Mark E
2013-12-01
The identification of protein post-translational modifications (PTMs) is an increasingly important component of proteomics and biomarker discovery, but very few tools exist for performing fast and easy characterization of global PTM changes and differential comparison of PTMs across groups of data obtained from liquid chromatography-tandem mass spectrometry experiments. STRAP PTM (Software Tool for Rapid Annotation of Proteins: Post-Translational Modification edition) is a program that was developed to facilitate the characterization of PTMs using spectral counting and a novel scoring algorithm to accelerate the identification of differential PTMs from complex data sets. The software facilitates multi-sample comparison by collating, scoring, and ranking PTMs and by summarizing data visually. The freely available software (beta release) installs on a PC and processes data in protXML format obtained from files parsed through the Trans-Proteomic Pipeline. The easy-to-use interface allows examination of results at protein, peptide, and PTM levels, and the overall design offers tremendous flexibility that provides proteomics insight beyond simple assignment and counting.
AncestrySNPminer: A bioinformatics tool to retrieve and develop ancestry informative SNP panels
Amirisetty, Sushil; Khurana Hershey, Gurjit K.; Baye, Tesfaye M.
2012-01-01
A wealth of genomic information is available in public and private databases. However, this information is underutilized for uncovering population specific and functionally relevant markers underlying complex human traits. Given the huge amount of SNP data available from the annotation of human genetic variation, data mining is a faster and cost effective approach for investigating the number of SNPs that are informative for ancestry. In this study, we present AncestrySNPminer, the first web-based bioinformatics tool specifically designed to retrieve Ancestry Informative Markers (AIMs) from genomic data sets and link these informative markers to genes and ontological annotation classes. The tool includes an automated and simple “scripting at the click of a button” functionality that enables researchers to perform various population genomics statistical analyses methods with user friendly querying and filtering of data sets across various populations through a single web interface. AncestrySNPminer can be freely accessed at https://research.cchmc.org/mershalab/AncestrySNPminer/login.php. PMID:22584067
CHOgenome.org 2.0: Genome resources and website updates.
Kremkow, Benjamin G; Baik, Jong Youn; MacDonald, Madolyn L; Lee, Kelvin H
2015-07-01
Chinese hamster ovary (CHO) cells are a major host cell line for the production of therapeutic proteins, and CHO cell and Chinese hamster (CH) genomes have recently been sequenced using next-generation sequencing methods. CHOgenome.org was launched in 2011 (version 1.0) to serve as a database repository and to provide bioinformatics tools for the CHO community. CHOgenome.org (version 1.0) maintained GenBank CHO-K1 genome data, identified CHO-omics literature, and provided a CHO-specific BLAST service. Recent major updates to CHOgenome.org (version 2.0) include new sequence and annotation databases for both CHO and CH genomes, a more user-friendly website, and new research tools, including a proteome browser and a genome viewer. CHO cell-line specific sequences and annotations facilitate cell line development opportunities, several of which are discussed. Moving forward, CHOgenome.org will host the increasing amount of CHO-omics data and continue to make useful bioinformatics tools available to the CHO community. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ho, Daniel W H; Sze, Karen M F; Ng, Irene O L
2015-08-28
Viral integration into the human genome upon infection is an important risk factor for various human malignancies. We developed viral integration site detection tool called Virus-Clip, which makes use of information extracted from soft-clipped sequencing reads to identify exact positions of human and virus breakpoints of integration events. With initial read alignment to virus reference genome and streamlined procedures, Virus-Clip delivers a simple, fast and memory-efficient solution to viral integration site detection. Moreover, it can also automatically annotate the integration events with the corresponding affected human genes. Virus-Clip has been verified using whole-transcriptome sequencing data and its detection was validated to have satisfactory sensitivity and specificity. Marked advancement in performance was detected, compared to existing tools. It is applicable to versatile types of data including whole-genome sequencing, whole-transcriptome sequencing, and targeted sequencing. Virus-Clip is available at http://web.hku.hk/~dwhho/Virus-Clip.zip.
BUSCA: an integrative web server to predict subcellular localization of proteins.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Profiti, Giuseppe; Casadio, Rita
2018-04-30
Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
ITEP: an integrated toolkit for exploration of microbial pan-genomes.
Benedict, Matthew N; Henriksen, James R; Metcalf, William W; Whitaker, Rachel J; Price, Nathan D
2014-01-03
Comparative genomics is a powerful approach for studying variation in physiological traits as well as the evolution and ecology of microorganisms. Recent technological advances have enabled sequencing large numbers of related genomes in a single project, requiring computational tools for their integrated analysis. In particular, accurate annotations and identification of gene presence and absence are critical for understanding and modeling the cellular physiology of newly sequenced genomes. Although many tools are available to compare the gene contents of related genomes, new tools are necessary to enable close examination and curation of protein families from large numbers of closely related organisms, to integrate curation with the analysis of gain and loss, and to generate metabolic networks linking the annotations to observed phenotypes. We have developed ITEP, an Integrated Toolkit for Exploration of microbial Pan-genomes, to curate protein families, compute similarities to externally-defined domains, analyze gene gain and loss, and generate draft metabolic networks from one or more curated reference network reconstructions in groups of related microbial species among which the combination of core and variable genes constitute the their "pan-genomes". The ITEP toolkit consists of: (1) a series of modular command-line scripts for identification, comparison, curation, and analysis of protein families and their distribution across many genomes; (2) a set of Python libraries for programmatic access to the same data; and (3) pre-packaged scripts to perform common analysis workflows on a collection of genomes. ITEP's capabilities include de novo protein family prediction, ortholog detection, analysis of functional domains, identification of core and variable genes and gene regions, sequence alignments and tree generation, annotation curation, and the integration of cross-genome analysis and metabolic networks for study of metabolic network evolution. ITEP is a powerful, flexible toolkit for generation and curation of protein families. ITEP's modular design allows for straightforward extension as analysis methods and tools evolve. By integrating comparative genomics with the development of draft metabolic networks, ITEP harnesses the power of comparative genomics to build confidence in links between genotype and phenotype and helps disambiguate gene annotations when they are evaluated in both evolutionary and metabolic network contexts.
TSSAR: TSS annotation regime for dRNA-seq data.
Amman, Fabian; Wolfinger, Michael T; Lorenz, Ronny; Hofacker, Ivo L; Stadler, Peter F; Findeiß, Sven
2014-03-27
Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.
Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context
Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi
2007-01-01
Background Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. Results lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. Conclusion lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired. PMID:17877794
GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations
Paila, Umadevi; Chapman, Brad A.; Kirchner, Rory; Quinlan, Aaron R.
2013-01-01
Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple programming interface for custom analyses that leverage the underlying database, and both command line and graphical tools for common analyses. We demonstrate GEMINI's utility for exploring variation in personal genomes and family based genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics. PMID:23874191
PANDORA: keyword-based analysis of protein sets by integration of annotation sources.
Kaplan, Noam; Vaaknin, Avishay; Linial, Michal
2003-10-01
Recent advances in high-throughput methods and the application of computational tools for automatic classification of proteins have made it possible to carry out large-scale proteomic analyses. Biological analysis and interpretation of sets of proteins is a time-consuming undertaking carried out manually by experts. We have developed PANDORA (Protein ANnotation Diagram ORiented Analysis), a web-based tool that provides an automatic representation of the biological knowledge associated with any set of proteins. PANDORA uses a unique approach of keyword-based graphical analysis that focuses on detecting subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA currently supports SwissProt keywords, NCBI Taxonomy, InterPro entries and the hierarchical classification terms from ENZYME, SCOP and GO databases. The integrated study of several annotation sources simultaneously allows a representation of biological relations of structure, function, cellular location, taxonomy, domains and motifs. PANDORA is also integrated into the ProtoNet system, thus allowing testing thousands of automatically generated clusters. We illustrate how PANDORA enhances the biological understanding of large, non-uniform sets of proteins originating from experimental and computational sources, without the need for prior biological knowledge on individual proteins.
Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context.
Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi
2007-09-18
Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.
Galileo's Discorsi as a Tool for the Analytical Art.
Raphael, Renee Jennifer
2015-01-01
A heretofore overlooked response to Galileo's 1638 Discorsi is described by examining two extant copies of the text (one which has received little attention in the historiography, the other apparently unknown) which are heavily annotated. It is first demonstrated that these copies contain annotations made by Seth Ward and Sir Christopher Wren. This article then examines one feature of Ward's and Wren's responses to the Discorsi, namely their decision to re-write several of Galileo's geometrical demonstrations into the language of symbolic algebra. It is argued that this type of active reading of period mathematical texts may have been part of the regular scholarly and pedagogical practices of early modern British mathematicians like Ward and Wren. A set of Appendices contains a transcription and translation of the analytical solutions found in these annotated copies.
CARMA: Software for continuous affect rating and media annotation
Girard, Jeffrey M
2017-01-01
CARMA is a media annotation program that collects continuous ratings while displaying audio and video files. It is designed to be highly user-friendly and easily customizable. Based on Gottman and Levenson's affect rating dial, CARMA enables researchers and study participants to provide moment-by-moment ratings of multimedia files using a computer mouse or keyboard. The rating scale can be configured on a number of parameters including the labels for its upper and lower bounds, its numerical range, and its visual representation. Annotations can be displayed alongside the multimedia file and saved for easy import into statistical analysis software. CARMA provides a tool for researchers in affective computing, human-computer interaction, and the social sciences who need to capture the unfolding of subjective experience and observable behavior over time. PMID:29308198
Variation resources at UC Santa Cruz.
Thomas, Daryl J; Trumbower, Heather; Kern, Andrew D; Rhead, Brooke L; Kuhn, Robert M; Haussler, David; Kent, W James
2007-01-01
The variation resources within the University of California Santa Cruz Genome Browser include polymorphism data drawn from public collections and analyses of these data, along with their display in the context of other genomic annotations. Primary data from dbSNP is included for many organisms, with added information including genomic alleles and orthologous alleles for closely related organisms. Display filtering and coloring is available by variant type, functional class or other annotations. Annotation of potential errors is highlighted and a genomic alignment of the variant's flanking sequence is displayed. HapMap allele frequencies and linkage disequilibrium (LD) are available for each HapMap population, along with non-human primate alleles. The browsing and analysis tools, downloadable data files and links to documentation and other information can be found at http://genome.ucsc.edu/.
Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D
2017-01-04
The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.
Zeng, Victor; Extavour, Cassandra G
2012-01-01
The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL: asgard.rc.fas.harvard.edu.
Clark, Alex M; Bunin, Barry A; Litterman, Nadia K; Schürer, Stephan C; Visser, Ubbo
2014-01-01
Bioinformatics and computer aided drug design rely on the curation of a large number of protocols for biological assays that measure the ability of potential drugs to achieve a therapeutic effect. These assay protocols are generally published by scientists in the form of plain text, which needs to be more precisely annotated in order to be useful to software methods. We have developed a pragmatic approach to describing assays according to the semantic definitions of the BioAssay Ontology (BAO) project, using a hybrid of machine learning based on natural language processing, and a simplified user interface designed to help scientists curate their data with minimum effort. We have carried out this work based on the premise that pure machine learning is insufficiently accurate, and that expecting scientists to find the time to annotate their protocols manually is unrealistic. By combining these approaches, we have created an effective prototype for which annotation of bioassay text within the domain of the training set can be accomplished very quickly. Well-trained annotations require single-click user approval, while annotations from outside the training set domain can be identified using the search feature of a well-designed user interface, and subsequently used to improve the underlying models. By drastically reducing the time required for scientists to annotate their assays, we can realistically advocate for semantic annotation to become a standard part of the publication process. Once even a small proportion of the public body of bioassay data is marked up, bioinformatics researchers can begin to construct sophisticated and useful searching and analysis algorithms that will provide a diverse and powerful set of tools for drug discovery researchers.
Bunin, Barry A.; Litterman, Nadia K.; Schürer, Stephan C.; Visser, Ubbo
2014-01-01
Bioinformatics and computer aided drug design rely on the curation of a large number of protocols for biological assays that measure the ability of potential drugs to achieve a therapeutic effect. These assay protocols are generally published by scientists in the form of plain text, which needs to be more precisely annotated in order to be useful to software methods. We have developed a pragmatic approach to describing assays according to the semantic definitions of the BioAssay Ontology (BAO) project, using a hybrid of machine learning based on natural language processing, and a simplified user interface designed to help scientists curate their data with minimum effort. We have carried out this work based on the premise that pure machine learning is insufficiently accurate, and that expecting scientists to find the time to annotate their protocols manually is unrealistic. By combining these approaches, we have created an effective prototype for which annotation of bioassay text within the domain of the training set can be accomplished very quickly. Well-trained annotations require single-click user approval, while annotations from outside the training set domain can be identified using the search feature of a well-designed user interface, and subsequently used to improve the underlying models. By drastically reducing the time required for scientists to annotate their assays, we can realistically advocate for semantic annotation to become a standard part of the publication process. Once even a small proportion of the public body of bioassay data is marked up, bioinformatics researchers can begin to construct sophisticated and useful searching and analysis algorithms that will provide a diverse and powerful set of tools for drug discovery researchers. PMID:25165633
Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L
2016-01-04
The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhang, Jia; Yang, Ming-Kun; Zeng, Honghui; Ge, Feng
2016-11-01
Although the number of sequenced prokaryotic genomes is growing rapidly, experimentally verified annotation of prokaryotic genome remains patchy and challenging. To facilitate genome annotation efforts for prokaryotes, we developed an open source software called GAPP for genome annotation and global profiling of post-translational modifications (PTMs) in prokaryotes. With a single command, it provides a standard workflow to validate and refine predicted genetic models and discover diverse PTM events. We demonstrated the utility of GAPP using proteomic data from Helicobacter pylori, one of the major human pathogens that is responsible for many gastric diseases. Our results confirmed 84.9% of the existing predicted H. pylori proteins, identified 20 novel protein coding genes, and corrected four existing gene models with regard to translation initiation sites. In particular, GAPP revealed a large repertoire of PTMs using the same proteomic data and provided a rich resource that can be used to examine the functions of reversible modifications in this human pathogen. This software is a powerful tool for genome annotation and global discovery of PTMs and is applicable to any sequenced prokaryotic organism; we expect that it will become an integral part of ongoing genome annotation efforts for prokaryotes. GAPP is freely available at https://sourceforge.net/projects/gappproteogenomic/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Discovering gene annotations in biomedical text databases
Cakmak, Ali; Ozsoyoglu, Gultekin
2008-01-01
Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values. PMID:18325104
Discovering gene annotations in biomedical text databases.
Cakmak, Ali; Ozsoyoglu, Gultekin
2008-03-06
Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.
FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry.
Palmer, Andrew; Phapale, Prasad; Chernyavsky, Ilya; Lavigne, Regis; Fay, Dominik; Tarasov, Artem; Kovalev, Vitaly; Fuchser, Jens; Nikolenko, Sergey; Pineau, Charles; Becker, Michael; Alexandrov, Theodore
2017-01-01
High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (https://github.com/alexandrovteam/pySM). We introduce a metabolite-signal match score and a target-decoy FDR estimate for spatial metabolomics.
Annotated bibliography of Software Engineering Laboratory literature
NASA Technical Reports Server (NTRS)
Morusiewicz, Linda; Valett, Jon D.
1991-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Buhler, Melanie; Valett, Jon
1989-01-01
An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.
ERIC Educational Resources Information Center
Sullivan, Peggy
1992-01-01
Discusses the art of storytelling for librarians, focusing on programing trends, stage fright, and selecting stories. Several books and videotapes providing storytelling instruction or suggested stories are described. An annotated bibliography of eight items is included. (MES)
orthoFind Facilitates the Discovery of Homologous and Orthologous Proteins.
Mier, Pablo; Andrade-Navarro, Miguel A; Pérez-Pulido, Antonio J
2015-01-01
Finding homologous and orthologous protein sequences is often the first step in evolutionary studies, annotation projects, and experiments of functional complementation. Despite all currently available computational tools, there is a requirement for easy-to-use tools that provide functional information. Here, a new web application called orthoFind is presented, which allows a quick search for homologous and orthologous proteins given one or more query sequences, allowing a recurrent and exhaustive search against reference proteomes, and being able to include user databases. It addresses the protein multidomain problem, searching for homologs with the same domain architecture, and gives a simple functional analysis of the results to help in the annotation process. orthoFind is easy to use and has been proven to provide accurate results with different datasets. Availability: http://www.bioinfocabd.upo.es/orthofind/.
Workflow and web application for annotating NCBI BioProject transcriptome data
Vera Alvarez, Roberto; Medeiros Vidal, Newton; Garzón-Martínez, Gina A.; Barrero, Luz S.; Landsman, David
2017-01-01
Abstract The volume of transcriptome data is growing exponentially due to rapid improvement of experimental technologies. In response, large central resources such as those of the National Center for Biotechnology Information (NCBI) are continually adapting their computational infrastructure to accommodate this large influx of data. New and specialized databases, such as Transcriptome Shotgun Assembly Sequence Database (TSA) and Sequence Read Archive (SRA), have been created to aid the development and expansion of centralized repositories. Although the central resource databases are under continual development, they do not include automatic pipelines to increase annotation of newly deposited data. Therefore, third-party applications are required to achieve that aim. Here, we present an automatic workflow and web application for the annotation of transcriptome data. The workflow creates secondary data such as sequencing reads and BLAST alignments, which are available through the web application. They are based on freely available bioinformatics tools and scripts developed in-house. The interactive web application provides a search engine and several browser utilities. Graphical views of transcript alignments are available through SeqViewer, an embedded tool developed by NCBI for viewing biological sequence data. The web application is tightly integrated with other NCBI web applications and tools to extend the functionality of data processing and interconnectivity. We present a case study for the species Physalis peruviana with data generated from BioProject ID 67621. Database URL: http://www.ncbi.nlm.nih.gov/projects/physalis/ PMID:28605765
Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor.
Kohany, Oleksiy; Gentles, Andrew J; Hankus, Lukasz; Jurka, Jerzy
2006-10-25
Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s), repeat sequences found in the query, and alignments. Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter) and http://www.girinst.org/censor/index.php (Censor).
The Chinchilla Research Resource Database: resource for an otolaryngology disease model
Shimoyama, Mary; Smith, Jennifer R.; De Pons, Jeff; Tutaj, Marek; Khampang, Pawjai; Hong, Wenzhou; Erbe, Christy B.; Ehrlich, Garth D.; Bakaletz, Lauren O.; Kerschner, Joseph E.
2016-01-01
The long-tailed chinchilla (Chinchilla lanigera) is an established animal model for diseases of the inner and middle ear, among others. In particular, chinchilla is commonly used to study diseases involving viral and bacterial pathogens and polymicrobial infections of the upper respiratory tract and the ear, such as otitis media. The value of the chinchilla as a model for human diseases prompted the sequencing of its genome in 2012 and the more recent development of the Chinchilla Research Resource Database (http://crrd.mcw.edu) to provide investigators with easy access to relevant datasets and software tools to enhance their research. The Chinchilla Research Resource Database contains a complete catalog of genes for chinchilla and, for comparative purposes, human. Chinchilla genes can be viewed in the context of their genomic scaffold positions using the JBrowse genome browser. In contrast to the corresponding records at NCBI, individual gene reports at CRRD include functional annotations for Disease, Gene Ontology (GO) Biological Process, GO Molecular Function, GO Cellular Component and Pathway assigned to chinchilla genes based on annotations from the corresponding human orthologs. Data can be retrieved via keyword and gene-specific searches. Lists of genes with similar functional attributes can be assembled by leveraging the hierarchical structure of the Disease, GO and Pathway vocabularies through the Ontology Search and Browser tool. Such lists can then be further analyzed for commonalities using the Gene Annotator (GA) Tool. All data in the Chinchilla Research Resource Database is freely accessible and downloadable via the CRRD FTP site or using the download functions available in the search and analysis tools. The Chinchilla Research Resource Database is a rich resource for researchers using, or considering the use of, chinchilla as a model for human disease. Database URL: http://crrd.mcw.edu PMID:27173523
Expanded microbial genome coverage and improved protein family annotation in the COG database.
Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V
2015-01-01
Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first created in 1997, has been a popular tool for functional annotation. Its success was largely based on (i) its reliance on complete microbial genomes, which allowed reliable assignment of orthologs and paralogs for most genes; (ii) orthology-based approach, which used the function(s) of the characterized member(s) of the protein family (COG) to assign function(s) to the entire set of carefully identified orthologs and describe the range of potential functions when there were more than one; and (iii) careful manual curation of the annotation of the COGs, aimed at detailed prediction of the biological function(s) for each COG while avoiding annotation errors and overprediction. Here we present an update of the COGs, the first since 2003, and a comprehensive revision of the COG annotations and expansion of the genome coverage to include representative complete genomes from all bacterial and archaeal lineages down to the genus level. This re-analysis of the COGs shows that the original COG assignments had an error rate below 0.5% and allows an assessment of the progress in functional genomics in the past 12 years. During this time, functions of many previously uncharacterized COGs have been elucidated and tentative functional assignments of many COGs have been validated, either by targeted experiments or through the use of high-throughput methods. A particularly important development is the assignment of functions to several widespread, conserved proteins many of which turned out to participate in translation, in particular rRNA maturation and tRNA modification. The new version of the COGs is expected to become an important tool for microbial genomics. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.
OceanVideoLab: A Tool for Exploring Underwater Video
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Morton, J. J.; Wiener, C.
2016-02-01
Video imagery acquired with underwater vehicles is an essential tool for characterizing seafloor ecosystems and seafloor geology. It is a fundamental component of ocean exploration that facilitates real-time operations, augments multidisciplinary scientific research, and holds tremendous potential for public outreach and engagement. Acquiring, documenting, managing, preserving and providing access to large volumes of video acquired with underwater vehicles presents a variety of data stewardship challenges to the oceanographic community. As a result, only a fraction of underwater video content collected with research submersibles is documented, discoverable and/or viewable online. With more than 1 billion users, YouTube offers infrastructure that can be leveraged to help address some of the challenges associated with sharing underwater video with a broad global audience. Anyone can post content to YouTube, and some oceanographic organizations, such as the Schmidt Ocean Institute, have begun live-streaming video directly from underwater vehicles. OceanVideoLab (oceanvideolab.org) was developed to help improve access to underwater video through simple annotation, browse functionality, and integration with related environmental data. Any underwater video that is publicly accessible on YouTube can be registered with OceanVideoLab by simply providing a URL. It is strongly recommended that a navigational file also be supplied to enable geo-referencing of observations. Once a video is registered, it can be viewed and annotated using a simple user interface that integrates observations with vehicle navigation data if provided. This interface includes an interactive map and a list of previous annotations that allows users to jump to times of specific observations in the video. Future enhancements to OceanVideoLab will include the deployment of a search interface, the development of an application program interface (API) that will drive the search and enable querying of content by other systems/tools, the integration of related environmental data from complementary data systems (e.g. temperature, bathymetry), and the expansion of infrastructure to enable broad crowdsourcing of annotations.
SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.
Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav
2015-04-01
Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Structural and functional annotation of the porcine immunome
2013-01-01
Background The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. Results The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. Conclusions This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response. PMID:23676093
Analysis of disease-associated objects at the Rat Genome Database
Wang, Shur-Jen; Laulederkind, Stanley J. F.; Hayman, G. T.; Smith, Jennifer R.; Petri, Victoria; Lowry, Timothy F.; Nigam, Rajni; Dwinell, Melinda R.; Worthey, Elizabeth A.; Munzenmaier, Diane H.; Shimoyama, Mary; Jacob, Howard J.
2013-01-01
The Rat Genome Database (RGD) is the premier resource for genetic, genomic and phenotype data for the laboratory rat, Rattus norvegicus. In addition to organizing biological data from rats, the RGD team focuses on manual curation of gene–disease associations for rat, human and mouse. In this work, we have analyzed disease-associated strains, quantitative trait loci (QTL) and genes from rats. These disease objects form the basis for seven disease portals. Among disease portals, the cardiovascular disease and obesity/metabolic syndrome portals have the highest number of rat strains and QTL. These two portals share 398 rat QTL, and these shared QTL are highly concentrated on rat chromosomes 1 and 2. For disease-associated genes, we performed gene ontology (GO) enrichment analysis across portals using RatMine enrichment widgets. Fifteen GO terms, five from each GO aspect, were selected to profile enrichment patterns of each portal. Of the selected biological process (BP) terms, ‘regulation of programmed cell death’ was the top enriched term across all disease portals except in the obesity/metabolic syndrome portal where ‘lipid metabolic process’ was the most enriched term. ‘Cytosol’ and ‘nucleus’ were common cellular component (CC) annotations for disease genes, but only the cancer portal genes were highly enriched with ‘nucleus’ annotations. Similar enrichment patterns were observed in a parallel analysis using the DAVID functional annotation tool. The relationship between the preselected 15 GO terms and disease terms was examined reciprocally by retrieving rat genes annotated with these preselected terms. The individual GO term–annotated gene list showed enrichment in physiologically related diseases. For example, the ‘regulation of blood pressure’ genes were enriched with cardiovascular disease annotations, and the ‘lipid metabolic process’ genes with obesity annotations. Furthermore, we were able to enhance enrichment of neurological diseases by combining ‘G-protein coupled receptor binding’ annotated genes with ‘protein kinase binding’ annotated genes. Database URL: http://rgd.mcw.edu PMID:23794737
GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans.
Ceroni, Alessio; Maass, Kai; Geyer, Hildegard; Geyer, Rudolf; Dell, Anne; Haslam, Stuart M
2008-04-01
Mass spectrometry is the main analytical technique currently used to address the challenges of glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures of different glycan variations. Determination of glycan structures from analysis of MS data is a major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are of critical importance. However, all the approaches currently available have inherent restrictions to the type of glycans they can identify, and none of them have proved to be a definitive tool for glycomics. GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by matching the corresponding theoretical list of fragment masses against the list of peaks derived from the spectrum. The tool provides an easy to use graphical interface, a comprehensive and increasing set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to offer complete support for the routine interpretation of MS data. The software is available for download from: http://www.eurocarbdb.org/applications/ms-tools.
Flavitrack: an annotated database of flavivirus sequences
Misra, Milind
2009-01-01
Motivation Properly annotated sequence data for flaviviruses, which cause diseases, such as tick-borne encephalitis (TBE), dengue fever (DF), West Nile (WN) and yellow fever (YF), can aid in the design of antiviral drugs and vaccines to prevent their spread. Flavitrack was designed to help identify conserved sequence motifs, interpret mutational and structural data and track evolution of phenotypic properties. Summary Flavitrack contains over 590 complete flavivirus genome/protein sequences and information on known mutations and literature references. Each sequence has been manually annotated according to its date and place of isolation, phenotype and lethality. Internal tools are provided to rapidly determine relationships between viruses in Flavitrack and sequences provided by the user. Availability http://carnot.utmb.edu/flavitrack Contact chschein@utmb.edu Supplementary information http://carnot.utmb.edu/flavitrack/B1S1.html PMID:17660525
RefSeq microbial genomes database: new representation and annotation strategy.
Tatusova, Tatiana; Ciufo, Stacy; Fedorov, Boris; O'Neill, Kathleen; Tolstoy, Igor
2014-01-01
The source of the microbial genomic sequences in the RefSeq collection is the set of primary sequence records submitted to the International Nucleotide Sequence Database public archives. These can be accessed through the Entrez search and retrieval system at http://www.ncbi.nlm.nih.gov/genome. Next-generation sequencing has enabled researchers to perform genomic sequencing at rates that were unimaginable in the past. Microbial genomes can now be sequenced in a matter of hours, which has led to a significant increase in the number of assembled genomes deposited in the public archives. This huge increase in DNA sequence data presents new challenges for the annotation, analysis and visualization bioinformatics tools. New strategies have been developed for the annotation and representation of reference genomes and sequence variations derived from population studies and clinical outbreaks.
A large-scale evaluation of computational protein function prediction
Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo
2013-01-01
Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650
Kisand, Veljo; Lettieri, Teresa
2013-04-01
De novo genome sequencing of previously uncharacterized microorganisms has the potential to open up new frontiers in microbial genomics by providing insight into both functional capabilities and biodiversity. Until recently, Roche 454 pyrosequencing was the NGS method of choice for de novo assembly because it generates hundreds of thousands of long reads (<450 bps), which are presumed to aid in the analysis of uncharacterized genomes. The array of tools for processing NGS data are increasingly free and open source and are often adopted for both their high quality and role in promoting academic freedom. The error rate of pyrosequencing the Alcanivorax borkumensis genome was such that thousands of insertions and deletions were artificially introduced into the finished genome. Despite a high coverage (~30 fold), it did not allow the reference genome to be fully mapped. Reads from regions with errors had low quality, low coverage, or were missing. The main defect of the reference mapping was the introduction of artificial indels into contigs through lower than 100% consensus and distracting gene calling due to artificial stop codons. No assembler was able to perform de novo assembly comparable to reference mapping. Automated annotation tools performed similarly on reference mapped and de novo draft genomes, and annotated most CDSs in the de novo assembled draft genomes. Free and open source software (FOSS) tools for assembly and annotation of NGS data are being developed rapidly to provide accurate results with less computational effort. Usability is not high priority and these tools currently do not allow the data to be processed without manual intervention. Despite this, genome assemblers now readily assemble medium short reads into long contigs (>97-98% genome coverage). A notable gap in pyrosequencing technology is the quality of base pair calling and conflicting base pairs between single reads at the same nucleotide position. Regardless, using draft whole genomes that are not finished and remain fragmented into tens of contigs allows one to characterize unknown bacteria with modest effort.
A browser-based tool for conversion between Fortran NAMELIST and XML/HTML
NASA Astrophysics Data System (ADS)
Naito, O.
A browser-based tool for conversion between Fortran NAMELIST and XML/HTML is presented. It runs on an HTML5 compliant browser and generates reusable XML files to aid interoperability. It also provides a graphical interface for editing and annotating variables in NAMELIST, hence serves as a primitive code documentation environment. Although the tool is not comprehensive, it could be viewed as a test bed for integrating legacy codes into modern systems.
Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H
2014-11-19
Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.
A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies
Zlobec, Inti; Suter, Guido; Perren, Aurel; Lugli, Alessandro
2014-01-01
Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a ‘donor’ block into a ‘recipient’ block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 ‘recipient’ blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research. PMID:25285857
Armean, Irina M; Lilley, Kathryn S; Trotter, Matthew W B; Pilkington, Nicholas C V; Holden, Sean B
2018-06-01
Protein-protein interactions (PPI) play a crucial role in our understanding of protein function and biological processes. The standardization and recording of experimental findings is increasingly stored in ontologies, with the Gene Ontology (GO) being one of the most successful projects. Several PPI evaluation algorithms have been based on the application of probabilistic frameworks or machine learning algorithms to GO properties. Here, we introduce a new training set design and machine learning based approach that combines dependent heterogeneous protein annotations from the entire ontology to evaluate putative co-complex protein interactions determined by empirical studies. PPI annotations are built combinatorically using corresponding GO terms and InterPro annotation. We use a S.cerevisiae high-confidence complex dataset as a positive training set. A series of classifiers based on Maximum Entropy and support vector machines (SVMs), each with a composite counterpart algorithm, are trained on a series of training sets. These achieve a high performance area under the ROC curve of ≤0.97, outperforming go2ppi-a previously established prediction tool for protein-protein interactions (PPI) based on Gene Ontology (GO) annotations. https://github.com/ima23/maxent-ppi. sbh11@cl.cam.ac.uk. Supplementary data are available at Bioinformatics online.
Dayem Ullah, Abu Z; Oscanoa, Jorge; Wang, Jun; Nagano, Ai; Lemoine, Nicholas R; Chelala, Claude
2018-05-11
Broader functional annotation of genetic variation is a valuable means for prioritising phenotypically-important variants in further disease studies and large-scale genotyping projects. We developed SNPnexus to meet this need by assessing the potential significance of known and novel SNPs on the major transcriptome, proteome, regulatory and structural variation models. Since its previous release in 2012, we have made significant improvements to the annotation categories and updated the query and data viewing systems. The most notable changes include broader functional annotation of noncoding variants and expanding annotations to the most recent human genome assembly GRCh38/hg38. SNPnexus has now integrated rich resources from ENCODE and Roadmap Epigenomics Consortium to map and annotate the noncoding variants onto different classes of regulatory regions and noncoding RNAs as well as providing their predicted functional impact from eight popular non-coding variant scoring algorithms and computational methods. A novel functionality offered now is the support for neo-epitope predictions from leading tools to facilitate its use in immunotherapeutic applications. These updates to SNPnexus are in preparation for its future expansion towards a fully comprehensive computational workflow for disease-associated variant prioritization from sequencing data, placing its users at the forefront of translational research. SNPnexus is freely available at http://www.snp-nexus.org.
Boutet, Emmanuel; Lieberherr, Damien; Tognolli, Michael; Schneider, Michel; Bansal, Parit; Bridge, Alan J; Poux, Sylvain; Bougueleret, Lydie; Xenarios, Ioannis
2016-01-01
The Universal Protein Resource (UniProt, http://www.uniprot.org ) consortium is an initiative of the SIB Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein Information Resource (PIR) to provide the scientific community with a central resource for protein sequences and functional information. The UniProt consortium maintains the UniProt KnowledgeBase (UniProtKB), updated every 4 weeks, and several supplementary databases including the UniProt Reference Clusters (UniRef) and the UniProt Archive (UniParc).The Swiss-Prot section of the UniProt KnowledgeBase (UniProtKB/Swiss-Prot) contains publicly available expertly manually annotated protein sequences obtained from a broad spectrum of organisms. Plant protein entries are produced in the frame of the Plant Proteome Annotation Program (PPAP), with an emphasis on characterized proteins of Arabidopsis thaliana and Oryza sativa. High level annotations provided by UniProtKB/Swiss-Prot are widely used to predict annotation of newly available proteins through automatic pipelines.The purpose of this chapter is to present a guided tour of a UniProtKB/Swiss-Prot entry. We will also present some of the tools and databases that are linked to each entry.
Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics
Zhou, Tao; Zhou, Zuo-Min; Guo, Xue-Jiang
2013-01-01
Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis. PMID:23852026
ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases.
Buza, Teresia M; Jack, Sherman W; Kirunda, Halid; Khaitsa, Margaret L; Lawrence, Mark L; Pruett, Stephen; Peterson, Daniel G
2015-01-01
There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu. © The Author(s) 2015. Published by Oxford University Press.
High Precision Prediction of Functional Sites in Protein Structures
Buturovic, Ljubomir; Wong, Mike; Tang, Grace W.; Altman, Russ B.; Petkovic, Dragutin
2014-01-01
We address the problem of assigning biological function to solved protein structures. Computational tools play a critical role in identifying potential active sites and informing screening decisions for further lab analysis. A critical parameter in the practical application of computational methods is the precision, or positive predictive value. Precision measures the level of confidence the user should have in a particular computed functional assignment. Low precision annotations lead to futile laboratory investigations and waste scarce research resources. In this paper we describe an advanced version of the protein function annotation system FEATURE, which achieved 99% precision and average recall of 95% across 20 representative functional sites. The system uses a Support Vector Machine classifier operating on the microenvironment of physicochemical features around an amino acid. We also compared performance of our method with state-of-the-art sequence-level annotator Pfam in terms of precision, recall and localization. To our knowledge, no other functional site annotator has been rigorously evaluated against these key criteria. The software and predictive models are incorporated into the WebFEATURE service at http://feature.stanford.edu/wf4.0-beta. PMID:24632601
Wei, Hong-Ying; Huang, Sheng; Wang, Jiang-Yong; Gao, Fang; Jiang, Jing-Zhe
2018-03-01
The emergence and widespread use of high-throughput sequencing technologies have promoted metagenomic studies on environmental or animal samples. Library construction for metagenome sequencing and annotation of the produced sequence reads are important steps in such studies and influence the quality of metagenomic data. In this study, we collected some marine mollusk samples, such as Crassostrea hongkongensis, Chlamys farreri, and Ruditapes philippinarum, from coastal areas in South China. These samples were divided into two batches to compare two library construction methods for shellfish viral metagenome. Our analysis showed that reverse-transcribing RNA into cDNA and then amplifying it simultaneously with DNA by whole genome amplification (WGA) yielded a larger amount of DNA compared to using only WGA or WTA (whole transcriptome amplification). Moreover, higher quality libraries were obtained by agarose gel extraction rather than with AMPure bead size selection. However, the latter can also provide good results if combined with the adjustment of the filter parameters. This, together with its simplicity, makes it a viable alternative. Finally, we compared three annotation tools (BLAST, DIAMOND, and Taxonomer) and two reference databases (NCBI's NR and Uniprot's Uniref). Considering the limitations of computing resources and data transfer speed, we propose the use of DIAMOND with Uniref for annotating metagenomic short reads as its running speed can guarantee a good annotation rate. This study may serve as a useful reference for selecting methods for Shellfish viral metagenome library construction and read annotation.
Islam, Mohammad T; Garg, Gagan; Hancock, William S; Risk, Brian A; Baker, Mark S; Ranganathan, Shoba
2014-01-03
The chromosome-centric human proteome project (C-HPP) aims to define the complete set of proteins encoded in each human chromosome. The neXtProt database (September 2013) lists 20,128 proteins for the human proteome, of which 3831 human proteins (∼19%) are considered "missing" according to the standard metrics table (released September 27, 2013). In support of the C-HPP initiative, we have extended the annotation strategy developed for human chromosome 7 "missing" proteins into a semiautomated pipeline to functionally annotate the "missing" human proteome. This pipeline integrates a suite of bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology, and biochemical pathways. From sequential BLAST searches, we have primarily identified homologues from reviewed nonhuman mammalian proteins with protein evidence for 1271 (33.2%) "missing" proteins, followed by 703 (18.4%) homologues from reviewed nonhuman mammalian proteins and subsequently 564 (14.7%) homologues from reviewed human proteins. Functional annotations for 1945 (50.8%) "missing" proteins were also determined. To accelerate the identification of "missing" proteins from proteomics studies, we generated proteotypic peptides in silico. Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the 3831 "missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15 "missing" proteins. The chromosome-wise functional annotation of all "missing" proteins is freely available to the scientific community through our web server (http://biolinfo.org/protannotator).
KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes.
Koulaouzidis, Anastasios; Iakovidis, Dimitris K; Yung, Diana E; Rondonotti, Emanuele; Kopylov, Uri; Plevris, John N; Toth, Ervin; Eliakim, Abraham; Wurm Johansson, Gabrielle; Marlicz, Wojciech; Mavrogenis, Georgios; Nemeth, Artur; Thorlacius, Henrik; Tontini, Gian Eugenio
2017-06-01
Capsule endoscopy (CE) has revolutionized small-bowel (SB) investigation. Computational methods can enhance diagnostic yield (DY); however, incorporating machine learning algorithms (MLAs) into CE reading is difficult as large amounts of image annotations are required for training. Current databases lack graphic annotations of pathologies and cannot be used. A novel database, KID, aims to provide a reference for research and development of medical decision support systems (MDSS) for CE. Open-source software was used for the KID database. Clinicians contribute anonymized, annotated CE images and videos. Graphic annotations are supported by an open-access annotation tool (Ratsnake). We detail an experiment based on the KID database, examining differences in SB lesion measurement between human readers and a MLA. The Jaccard Index (JI) was used to evaluate similarity between annotations by the MLA and human readers. The MLA performed best in measuring lymphangiectasias with a JI of 81 ± 6 %. The other lesion types were: angioectasias (JI 64 ± 11 %), aphthae (JI 64 ± 8 %), chylous cysts (JI 70 ± 14 %), polypoid lesions (JI 75 ± 21 %), and ulcers (JI 56 ± 9 %). MLA can perform as well as human readers in the measurement of SB angioectasias in white light (WL). Automated lesion measurement is therefore feasible. KID is currently the only open-source CE database developed specifically to aid development of MDSS. Our experiment demonstrates this potential.
Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansong, Charles; Ortega, Corrie; Payne, Samuel H.
The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example ofmore » this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.« less
Improved maize reference genome with single-molecule technologies
USDA-ARS?s Scientific Manuscript database
Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate elucidation of biological processes and support translation of research findings into improved and sustainable agricultural technolog...
Genomic mutation consequence calculator.
Major, John E
2007-11-15
The genomic mutation consequence calculator (GMCC) is a tool that will reliably and quickly calculate the consequence of arbitrary genomic mutations. GMCC also reports supporting annotations for the specified genomic region. The particular strength of the GMCC is it works in genomic space, not simply in spliced transcript space as some similar tools do. Within gene features, GMCC can report on the effects on splice site, UTR and coding regions in all isoforms affected by the mutation. A considerable number of genomic annotations are also reported, including: genomic conservation score, known SNPs, COSMIC mutations, disease associations and others. The manual interface also offers link outs to various external databases and resources. In batch mode, GMCC returns a csv file which can easily be parsed by the end user. GMCC is intended to support the many tumor resequencing efforts, but can be useful to any study investigating genomic mutations.
PDBe: Protein Data Bank in Europe
Gutmanas, Aleksandras; Alhroub, Younes; Battle, Gary M.; Berrisford, John M.; Bochet, Estelle; Conroy, Matthew J.; Dana, Jose M.; Fernandez Montecelo, Manuel A.; van Ginkel, Glen; Gore, Swanand P.; Haslam, Pauline; Hatherley, Rowan; Hendrickx, Pieter M.S.; Hirshberg, Miriam; Lagerstedt, Ingvar; Mir, Saqib; Mukhopadhyay, Abhik; Oldfield, Thomas J.; Patwardhan, Ardan; Rinaldi, Luana; Sahni, Gaurav; Sanz-García, Eduardo; Sen, Sanchayita; Slowley, Robert A.; Velankar, Sameer; Wainwright, Michael E.; Kleywegt, Gerard J.
2014-01-01
The Protein Data Bank in Europe (pdbe.org) is a founding member of the Worldwide PDB consortium (wwPDB; wwpdb.org) and as such is actively engaged in the deposition, annotation, remediation and dissemination of macromolecular structure data through the single global archive for such data, the PDB. Similarly, PDBe is a member of the EMDataBank organisation (emdatabank.org), which manages the EMDB archive for electron microscopy data. PDBe also develops tools that help the biomedical science community to make effective use of the data in the PDB and EMDB for their research. Here we describe new or improved services, including updated SIFTS mappings to other bioinformatics resources, a new browser for the PDB archive based on Gene Ontology (GO) annotation, updates to the analysis of Nuclear Magnetic Resonance-derived structures, redesigned search and browse interfaces, and new or updated visualisation and validation tools for EMDB entries. PMID:24288376
Apollo: a community resource for genome annotation editing
Ed, Lee; Nomi, Harris; Mark, Gibson; Raymond, Chetty; Suzanna, Lewis
2009-01-01
Summary: Apollo is a genome annotation-editing tool with an easy to use graphical interface. It is a component of the GMOD project, with ongoing development driven by the community. Recent additions to the software include support for the generic feature format version 3 (GFF3), continuous transcriptome data, a full Chado database interface, integration with remote services for on-the-fly BLAST and Primer BLAST analyses, graphical interfaces for configuring user preferences and full undo of all edit operations. Apollo's user community continues to grow, including its use as an educational tool for college and high-school students. Availability: Apollo is a Java application distributed under a free and open source license. Installers for Windows, Linux, Unix, Solaris and Mac OS X are available at http://apollo.berkeleybop.org, and the source code is available from the SourceForge CVS repository at http://gmod.cvs.sourceforge.net/gmod/apollo. Contact: elee@berkeleybop.org PMID:19439563
Apollo: a community resource for genome annotation editing.
Lee, Ed; Harris, Nomi; Gibson, Mark; Chetty, Raymond; Lewis, Suzanna
2009-07-15
Apollo is a genome annotation-editing tool with an easy to use graphical interface. It is a component of the GMOD project, with ongoing development driven by the community. Recent additions to the software include support for the generic feature format version 3 (GFF3), continuous transcriptome data, a full Chado database interface, integration with remote services for on-the-fly BLAST and Primer BLAST analyses, graphical interfaces for configuring user preferences and full undo of all edit operations. Apollo's user community continues to grow, including its use as an educational tool for college and high-school students. Apollo is a Java application distributed under a free and open source license. Installers for Windows, Linux, Unix, Solaris and Mac OS X are available at http://apollo.berkeleybop.org, and the source code is available from the SourceForge CVS repository at http://gmod.cvs.sourceforge.net/gmod/apollo.
IMG/M: integrated genome and metagenome comparative data analysis system
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; ...
2016-10-13
The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less
JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures
Dong, Min; Graham, Mitchell; Yadav, Nehul
2017-01-01
Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416
IMG/M: integrated genome and metagenome comparative data analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken
The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support formore » examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review(ER) companion system (IMG/M ER: https://img.jgi.doe.gov/ mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.« less
Zhou, Jindan; Rudd, Kenneth E.
2013-01-01
EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection. PMID:23197660
Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E.; Ellisman, Mark; Grethe, Jeffrey; Wooley, John
2011-01-01
The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data. PMID:21045053
Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E; Ellisman, Mark; Grethe, Jeffrey; Wooley, John
2011-01-01
The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.
Eliciting the Functional Taxonomy from protein annotations and taxa
Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano
2016-01-01
The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules. PMID:27534507
IMG/M: integrated genome and metagenome comparative data analysis system
Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Palaniappan, Krishna; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Andersen, Evan; Huntemann, Marcel; Varghese, Neha; Hadjithomas, Michalis; Tennessen, Kristin; Nielsen, Torben; Ivanova, Natalia N.; Kyrpides, Nikos C.
2017-01-01
The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support for examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review (ER) companion system (IMG/M ER: https://img.jgi.doe.gov/mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system. PMID:27738135
Zhou, Jindan; Rudd, Kenneth E
2013-01-01
EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection.
PATRIC, the bacterial bioinformatics database and analysis resource.
Wattam, Alice R; Abraham, David; Dalay, Oral; Disz, Terry L; Driscoll, Timothy; Gabbard, Joseph L; Gillespie, Joseph J; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K; Olson, Robert; Overbeek, Ross; Pusch, Gordon D; Shukla, Maulik; Schulman, Julie; Stevens, Rick L; Sullivan, Daniel E; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J C; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W
2014-01-01
The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10,000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.
MIPS: curated databases and comprehensive secondary data resources in 2010.
Mewes, H Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F X; Stümpflen, Volker; Antonov, Alexey
2011-01-01
The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de).
MIPS: a database for genomes and protein sequences
Mewes, H. W.; Frishman, D.; Güldener, U.; Mannhaupt, G.; Mayer, K.; Mokrejs, M.; Morgenstern, B.; Münsterkötter, M.; Rudd, S.; Weil, B.
2002-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz–Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91–93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155–158; Barker et al. (2001) Nucleic Acids Res., 29, 29–32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de). PMID:11752246
MIPS: curated databases and comprehensive secondary data resources in 2010
Mewes, H. Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F.X.; Stümpflen, Volker; Antonov, Alexey
2011-01-01
The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38 000 000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de). PMID:21109531
MIPS: a database for genomes and protein sequences.
Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B
2002-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).
PATRIC, the bacterial bioinformatics database and analysis resource
Wattam, Alice R.; Abraham, David; Dalay, Oral; Disz, Terry L.; Driscoll, Timothy; Gabbard, Joseph L.; Gillespie, Joseph J.; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K.; Olson, Robert; Overbeek, Ross; Pusch, Gordon D.; Shukla, Maulik; Schulman, Julie; Stevens, Rick L.; Sullivan, Daniel E.; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J.C.; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W.
2014-01-01
The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein–protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue. PMID:24225323
2013-01-01
Background Open metadata registries are a fundamental tool for researchers in the Life Sciences trying to locate resources. While most current registries assume that resources are annotated with well-structured metadata, evidence shows that most of the resource annotations simply consists of informal free text. This reality must be taken into account in order to develop effective techniques for resource discovery in Life Sciences. Results BioUSeR is a semantic-based tool aimed at retrieving Life Sciences resources described in free text. The retrieval process is driven by the user requirements, which consist of a target task and a set of facets of interest, both expressed in free text. BioUSeR is able to effectively exploit the available textual descriptions to find relevant resources by using semantic-aware techniques. Conclusions BioUSeR overcomes the limitations of the current registries thanks to: (i) rich specification of user information needs, (ii) use of semantics to manage textual descriptions, (iii) retrieval and ranking of resources based on user requirements. PMID:23635042
Louis, Ed
2011-01-01
In the early days of the yeast genome sequencing project, gene annotation was in its infancy and suffered the problem of many false positive annotations as well as missed genes. The lack of other sequences for comparison also prevented the annotation of conserved, functional sequences that were not coding. We are now in an era of comparative genomics where many closely related as well as more distantly related genomes are available for direct sequence and synteny comparisons allowing for more probable predictions of genes and other functional sequences due to conservation. We also have a plethora of functional genomics data which helps inform gene annotation for previously uncharacterised open reading frames (ORFs)/genes. For Saccharomyces cerevisiae this has resulted in a continuous updating of the gene and functional sequence annotations in the reference genome helping it retain its position as the best characterized eukaryotic organism's genome. A single reference genome for a species does not accurately describe the species and this is quite clear in the case of S. cerevisiae where the reference strain is not ideal for brewing or baking due to missing genes. Recent surveys of numerous isolates, from a variety of sources, using a variety of technologies have revealed a great deal of variation amongst isolates with genome sequence surveys providing information on novel genes, undetectable by other means. We now have a better understanding of the extant variation in S. cerevisiae as a species as well as some idea of how much we are missing from this understanding. As with gene annotation, comparative genomics enhances the discovery and description of genome variation and is providing us with the tools for understanding genome evolution, adaptation and selection, and underlying genetics of complex traits.
Improved annotation with de novo transcriptome assembly in four social amoeba species.
Singh, Reema; Lawal, Hajara M; Schilde, Christina; Glöckner, Gernot; Barton, Geoffrey J; Schaap, Pauline; Cole, Christian
2017-01-31
Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data. Here we present de novo transcriptome assemblies generated from RNA-seq data in four Dictyostelid species: D. discoideum, P. pallidum, D. fasciculatum and D. lacteum. The assemblies were incorporated with existing gene models to determine corrections and improvement on a whole-genome scale. This is the first time this has been performed in these eukaryotic species. An initial de novo transcriptome assembly was generated by Trinity for each species and then refined with Program to Assemble Spliced Alignments (PASA). The completeness and quality were assessed with the Benchmarking Universal Single-Copy Orthologs (BUSCO) and Transrate tools at each stage of the assemblies. The final datasets of 11,315-12,849 transcripts contained 5,610-7,712 updates and corrections to >50% of existing gene models including changes to hundreds or thousands of protein products. Putative novel genes are also identified and alternative splice isoforms were observed for the first time in P. pallidum, D. lacteum and D. fasciculatum. In taking a whole transcriptome approach to genome annotation with empirical data we have been able to enrich the annotations of four existing genome sequencing projects. In doing so we have identified updates to the majority of the gene annotations across all four species under study and found putative novel genes and transcripts which could be worthy for follow-up. The new transcriptome data we present here will be a valuable resource for genome curators in the Dictyostelia and we propose this effective methodology for use in other genome annotation projects.
3D annotation and manipulation of medical anatomical structures
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim
2009-02-01
Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.
Web Apollo: a web-based genomic annotation editing platform.
Lee, Eduardo; Helt, Gregg A; Reese, Justin T; Munoz-Torres, Monica C; Childers, Chris P; Buels, Robert M; Stein, Lincoln; Holmes, Ian H; Elsik, Christine G; Lewis, Suzanna E
2013-08-30
Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world.
Lavallée-Adam, Mathieu
2017-01-01
PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. PMID:27010334
Annotated bibliography of Software Engineering Laboratory literature
NASA Technical Reports Server (NTRS)
1985-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 100 publications are summarized. These publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials are grouped into five general subject areas for easy reference: (1) the software engineering laboratory; (2) software tools; (3) models and measures; (4) technology evaluations; and (5) data collection. An index further classifies these documents by specific topic.
An ontology-based framework for bioinformatics workflows.
Digiampietri, Luciano A; Perez-Alcazar, Jose de J; Medeiros, Claudia Bauzer
2007-01-01
The proliferation of bioinformatics activities brings new challenges - how to understand and organise these resources, how to exchange and reuse successful experimental procedures, and to provide interoperability among data and tools. This paper describes an effort toward these directions. It is based on combining research on ontology management, AI and scientific workflows to design, reuse and annotate bioinformatics experiments. The resulting framework supports automatic or interactive composition of tasks based on AI planning techniques and takes advantage of ontologies to support the specification and annotation of bioinformatics workflows. We validate our proposal with a prototype running on real data.
Web Apollo: a web-based genomic annotation editing platform
2013-01-01
Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world. PMID:24000942
ERIC Educational Resources Information Center
Su, Addison Y. S.; Yang, Stephen J. H.; Hwang, Wu-Yuin; Huang, Chester S. J.; Tern, Ming-Yu
2014-01-01
For more than 2 years, Scratch programming has been taught in Taiwanese elementary schools. However, past studies have shown that it is difficult to find appropriate learning methods or tools to boost students' Scratch programming performance. This inability to readily identify tutoring tools has become one of the primary challenges addressed in…
Automatic Tool for Local Assembly Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whole community shotgun sequencing of total DNA (i.e. metagenomics) and total RNA (i.e. metatranscriptomics) has provided a wealth of information in the microbial community structure, predicted functions, metabolic networks, and is even able to reconstruct complete genomes directly. Here we present ATLAS (Automatic Tool for Local Assembly Structures) a comprehensive pipeline for assembly, annotation, genomic binning of metagenomic and metatranscriptomic data with an integrated framework for Multi-Omics. This will provide an open source tool for the Multi-Omic community at large.
Storck, Michael; Krumm, Rainer; Dugas, Martin
2016-01-01
Medical documentation is applied in various settings including patient care and clinical research. Since procedures of medical documentation are heterogeneous and developed further, secondary use of medical data is complicated. Development of medical forms, merging of data from different sources and meta-analyses of different data sets are currently a predominantly manual process and therefore difficult and cumbersome. Available applications to automate these processes are limited. In particular, tools to compare multiple documentation forms are missing. The objective of this work is to design, implement and evaluate the new system ODMSummary for comparison of multiple forms with a high number of semantically annotated data elements and a high level of usability. System requirements are the capability to summarize and compare a set of forms, enable to estimate the documentation effort, track changes in different versions of forms and find comparable items in different forms. Forms are provided in Operational Data Model format with semantic annotations from the Unified Medical Language System. 12 medical experts were invited to participate in a 3-phase evaluation of the tool regarding usability. ODMSummary (available at https://odmtoolbox.uni-muenster.de/summary/summary.html) provides a structured overview of multiple forms and their documentation fields. This comparison enables medical experts to assess multiple forms or whole datasets for secondary use. System usability was optimized based on expert feedback. The evaluation demonstrates that feedback from domain experts is needed to identify usability issues. In conclusion, this work shows that automatic comparison of multiple forms is feasible and the results are usable for medical experts.
Workflow and web application for annotating NCBI BioProject transcriptome data.
Vera Alvarez, Roberto; Medeiros Vidal, Newton; Garzón-Martínez, Gina A; Barrero, Luz S; Landsman, David; Mariño-Ramírez, Leonardo
2017-01-01
The volume of transcriptome data is growing exponentially due to rapid improvement of experimental technologies. In response, large central resources such as those of the National Center for Biotechnology Information (NCBI) are continually adapting their computational infrastructure to accommodate this large influx of data. New and specialized databases, such as Transcriptome Shotgun Assembly Sequence Database (TSA) and Sequence Read Archive (SRA), have been created to aid the development and expansion of centralized repositories. Although the central resource databases are under continual development, they do not include automatic pipelines to increase annotation of newly deposited data. Therefore, third-party applications are required to achieve that aim. Here, we present an automatic workflow and web application for the annotation of transcriptome data. The workflow creates secondary data such as sequencing reads and BLAST alignments, which are available through the web application. They are based on freely available bioinformatics tools and scripts developed in-house. The interactive web application provides a search engine and several browser utilities. Graphical views of transcript alignments are available through SeqViewer, an embedded tool developed by NCBI for viewing biological sequence data. The web application is tightly integrated with other NCBI web applications and tools to extend the functionality of data processing and interconnectivity. We present a case study for the species Physalis peruviana with data generated from BioProject ID 67621. URL: http://www.ncbi.nlm.nih.gov/projects/physalis/. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.
GarlicESTdb: an online database and mining tool for garlic EST sequences.
Kim, Dae-Won; Jung, Tae-Sung; Nam, Seong-Hyeuk; Kwon, Hyuk-Ryul; Kim, Aeri; Chae, Sung-Hwa; Choi, Sang-Haeng; Kim, Dong-Wook; Kim, Ryong Nam; Park, Hong-Seog
2009-05-18
Allium sativum., commonly known as garlic, is a species in the onion genus (Allium), which is a large and diverse one containing over 1,250 species. Its close relatives include chives, onion, leek and shallot. Garlic has been used throughout recorded history for culinary, medicinal use and health benefits. Currently, the interest in garlic is highly increasing due to nutritional and pharmaceutical value including high blood pressure and cholesterol, atherosclerosis and cancer. For all that, there are no comprehensive databases available for Expressed Sequence Tags(EST) of garlic for gene discovery and future efforts of genome annotation. That is why we developed a new garlic database and applications to enable comprehensive analysis of garlic gene expression. GarlicESTdb is an integrated database and mining tool for large-scale garlic (Allium sativum) EST sequencing. A total of 21,595 ESTs collected from an in-house cDNA library were used to construct the database. The analysis pipeline is an automated system written in JAVA and consists of the following components: automatic preprocessing of EST reads, assembly of raw sequences, annotation of the assembled sequences, storage of the analyzed information into MySQL databases, and graphic display of all processed data. A web application was implemented with the latest J2EE (Java 2 Platform Enterprise Edition) software technology (JSP/EJB/JavaServlet) for browsing and querying the database, for creation of dynamic web pages on the client side, and for mapping annotated enzymes to KEGG pathways, the AJAX framework was also used partially. The online resources, such as putative annotation, single nucleotide polymorphisms (SNP) and tandem repeat data sets, can be searched by text, explored on the website, searched using BLAST, and downloaded. To archive more significant BLAST results, a curation system was introduced with which biologists can easily edit best-hit annotation information for others to view. The GarlicESTdb web application is freely available at http://garlicdb.kribb.re.kr. GarlicESTdb is the first incorporated online information database of EST sequences isolated from garlic that can be freely accessed and downloaded. It has many useful features for interactive mining of EST contigs and datasets from each library, including curation of annotated information, expression profiling, information retrieval, and summary of statistics of functional annotation. Consequently, the development of GarlicESTdb will provide a crucial contribution to biologists for data-mining and more efficient experimental studies.
L'archivage a long terme de la maquette numerique trois-dimensionnelle annotee
NASA Astrophysics Data System (ADS)
Kheddouci, Fawzi
The use of engineering drawings in the development of mechanical products, including the exchange of engineering data as well as for archiving, is common industry practice. Traditionally, paper has been the mean to deliver those needs. However, these practices have evolved in favour of computerized tools and methods for the creation, diffusion and preservation of data involved in the process of developing aeronautical products characterized by life cycles that can exceed 70 years. Therefore, it is necessary to redefine how to maintain this data in a context whereby engineering drawings are being replaced by the 3D annotated digital mock-up. This thesis addresses the issue of long-term archiving of 3D annotated digital mock-ups, which includes geometric and dimensional tolerances, as well as other notes and specifications, in compliance with the requirements formulated by the aviation industry including regulatory and legal requirements. First, we review the requirements imposed by the aviation industry in the context of long-term archiving of 3D annotated digital mock-ups. We then consider alternative solutions. We begin by identifying the theoretical approach behind the choice of a conceptual model for digital long-term archiving. Then we evaluate, among the proposed alternatives, an archiving format that will guarantee the preservation of the integrity of the 3D annotated model (geometry, tolerances and other metadata) and its sustainability. The evaluation of 3D PDF PRC as a potential archiving format is carried out on a sample of 185 3D CATIA V5 models (parts and assemblies) provided by industrial partners. This evaluation is guided by a set of criteria including the transfer of geometry, 3D annotations, views, captures and parts positioning in assembly. The results indicate that maintaining the exact geometry is done successfully when transferring CATIA V5 models to 3D PDF PRC. Concerning the transfer of 3D annotations, we observed degradation associated with their display on the 3D model. This problem can, however, be solved by performing the conversion of the native model to STEP first, and then to 3D PDF PRC. In view of current tools, PDF 3D PRC is considered as a potential solution for long-term archiving of 3D annotated models for individual parts. However, this solution is currently not deemed adequate for archiving assemblies. The practice of 2D drawing will thus remain, in the short term, for assemblies.
The WEIZMASS spectral library for high-confidence metabolite identification
NASA Astrophysics Data System (ADS)
Shahaf, Nir; Rogachev, Ilana; Heinig, Uwe; Meir, Sagit; Malitsky, Sergey; Battat, Maor; Wyner, Hilary; Zheng, Shuning; Wehrens, Ron; Aharoni, Asaph
2016-08-01
Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.
Knowledge Annotations in Scientific Workflows: An Implementation in Kepler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandara, Aida G.; Chin, George; Pinheiro Da Silva, Paulo
2011-07-20
Abstract. Scientic research products are the result of long-term collaborations between teams. Scientic workfows are capable of helping scientists in many ways including the collection of information as to howresearch was conducted, e.g. scientic workfow tools often collect and manage information about datasets used and data transformations. However,knowledge about why data was collected is rarely documented in scientic workflows. In this paper we describe a prototype system built to support the collection of scientic expertise that infuences scientic analysis. Through evaluating a scientic research eort underway at Pacific Northwest National Laboratory, we identied features that would most benefit PNNL scientistsmore » in documenting how and why they conduct their research making this information available to the entire team. The prototype system was built by enhancing the Kepler Scientic Work-flow System to create knowledge-annotated scientic workfows and topublish them as semantic annotations.« less
STINGRAY: system for integrated genomic resources and analysis.
Wagner, Glauber; Jardim, Rodrigo; Tschoeke, Diogo A; Loureiro, Daniel R; Ocaña, Kary A C S; Ribeiro, Antonio C B; Emmel, Vanessa E; Probst, Christian M; Pitaluga, André N; Grisard, Edmundo C; Cavalcanti, Maria C; Campos, Maria L M; Mattoso, Marta; Dávila, Alberto M R
2014-03-07
The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/.
STINGRAY: system for integrated genomic resources and analysis
2014-01-01
Background The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. Findings STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. Conclusion STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/. PMID:24606808
Construction of an annotated corpus to support biomedical information extraction
Thompson, Paul; Iqbal, Syed A; McNaught, John; Ananiadou, Sophia
2009-01-01
Background Information Extraction (IE) is a component of text mining that facilitates knowledge discovery by automatically locating instances of interesting biomedical events from huge document collections. As events are usually centred on verbs and nominalised verbs, understanding the syntactic and semantic behaviour of these words is highly important. Corpora annotated with information concerning this behaviour can constitute a valuable resource in the training of IE components and resources. Results We have defined a new scheme for annotating sentence-bound gene regulation events, centred on both verbs and nominalised verbs. For each event instance, all participants (arguments) in the same sentence are identified and assigned a semantic role from a rich set of 13 roles tailored to biomedical research articles, together with a biological concept type linked to the Gene Regulation Ontology. To our knowledge, our scheme is unique within the biomedical field in terms of the range of event arguments identified. Using the scheme, we have created the Gene Regulation Event Corpus (GREC), consisting of 240 MEDLINE abstracts, in which events relating to gene regulation and expression have been annotated by biologists. A novel method of evaluating various different facets of the annotation task showed that average inter-annotator agreement rates fall within the range of 66% - 90%. Conclusion The GREC is a unique resource within the biomedical field, in that it annotates not only core relationships between entities, but also a range of other important details about these relationships, e.g., location, temporal, manner and environmental conditions. As such, it is specifically designed to support bio-specific tool and resource development. It has already been used to acquire semantic frames for inclusion within the BioLexicon (a lexical, terminological resource to aid biomedical text mining). Initial experiments have also shown that the corpus may viably be used to train IE components, such as semantic role labellers. The corpus and annotation guidelines are freely available for academic purposes. PMID:19852798
A survey of tools for variant analysis of next-generation genome sequencing data
Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes
2014-01-01
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494
Jordan, Alan; Rees, Tony; Gowlett-Holmes, Karen
2015-01-01
Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use. PMID:26509918
VitisExpDB: a database resource for grape functional genomics.
Doddapaneni, Harshavardhan; Lin, Hong; Walker, M Andrew; Yao, Jiqiang; Civerolo, Edwin L
2008-02-28
The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores approximately 320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match) details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of approximately 20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website http://cropdisease.ars.usda.gov/vitis_at/main-page.htm.
VASP-E: Specificity Annotation with a Volumetric Analysis of Electrostatic Isopotentials
Chen, Brian Y.
2014-01-01
Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins. PMID:25166865
The Gene Ontology of eukaryotic cilia and flagella.
Roncaglia, Paola; van Dam, Teunis J P; Christie, Karen R; Nacheva, Lora; Toedt, Grischa; Huynen, Martijn A; Huntley, Rachael P; Gibson, Toby J; Lomax, Jane
2017-01-01
Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO.
VitisExpDB: A database resource for grape functional genomics
Doddapaneni, Harshavardhan; Lin, Hong; Walker, M Andrew; Yao, Jiqiang; Civerolo, Edwin L
2008-01-01
Background The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. Description VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores ~320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match) details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of ~20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. Conclusion The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website . PMID:18307813
Maringer, Kevin; Yousuf, Amjad; Heesom, Kate J; Fan, Jun; Lee, David; Fernandez-Sesma, Ana; Bessant, Conrad; Matthews, David A; Davidson, Andrew D
2017-01-19
Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.
A domain-centric solution to functional genomics via dcGO Predictor
2013-01-01
Background Computational/manual annotations of protein functions are one of the first routes to making sense of a newly sequenced genome. Protein domain predictions form an essential part of this annotation process. This is due to the natural modularity of proteins with domains as structural, evolutionary and functional units. Sometimes two, three, or more adjacent domains (called supra-domains) are the operational unit responsible for a function, e.g. via a binding site at the interface. These supra-domains have contributed to functional diversification in higher organisms. Traditionally functional ontologies have been applied to individual proteins, rather than families of related domains and supra-domains. We expect, however, to some extent functional signals can be carried by protein domains and supra-domains, and consequently used in function prediction and functional genomics. Results Here we present a domain-centric Gene Ontology (dcGO) perspective. We generalize a framework for automatically inferring ontological terms associated with domains and supra-domains from full-length sequence annotations. This general framework has been applied specifically to primary protein-level annotations from UniProtKB-GOA, generating GO term associations with SCOP domains and supra-domains. The resulting 'dcGO Predictor', can be used to provide functional annotation to protein sequences. The functional annotation of sequences in the Critical Assessment of Function Annotation (CAFA) has been used as a valuable opportunity to validate our method and to be assessed by the community. The functional annotation of all completely sequenced genomes has demonstrated the potential for domain-centric GO enrichment analysis to yield functional insights into newly sequenced or yet-to-be-annotated genomes. This generalized framework we have presented has also been applied to other domain classifications such as InterPro and Pfam, and other ontologies such as mammalian phenotype and disease ontology. The dcGO and its predictor are available at http://supfam.org/SUPERFAMILY/dcGO including an enrichment analysis tool. Conclusions As functional units, domains offer a unique perspective on function prediction regardless of whether proteins are multi-domain or single-domain. The 'dcGO Predictor' holds great promise for contributing to a domain-centric functional understanding of genomes in the next generation sequencing era. PMID:23514627
Integrative Genomics Viewer (IGV) | Informatics Technology for Cancer Research (ITCR)
The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.
Flowgen: Flowchart-based documentation for C + + codes
NASA Astrophysics Data System (ADS)
Kosower, David A.; Lopez-Villarejo, J. J.
2015-11-01
We present the Flowgen tool, which generates flowcharts from annotated C + + source code. The tool generates a set of interconnected high-level UML activity diagrams, one for each function or method in the C + + sources. It provides a simple and visual overview of complex implementations of numerical algorithms. Flowgen is complementary to the widely-used Doxygen documentation tool. The ultimate aim is to render complex C + + computer codes accessible, and to enhance collaboration between programmers and algorithm or science specialists. We describe the tool and a proof-of-concept application to the VINCIA plug-in for simulating collisions at CERN's Large Hadron Collider.
Tikkanen, Tuomas; Leroy, Bernard; Fournier, Jean Louis; Risques, Rosa Ana; Malcikova, Jitka; Soussi, Thierry
2018-07-01
Accurate annotation of genomic variants in human diseases is essential to allow personalized medicine. Assessment of somatic and germline TP53 alterations has now reached the clinic and is required in several circumstances such as the identification of the most effective cancer therapy for patients with chronic lymphocytic leukemia (CLL). Here, we present Seshat, a Web service for annotating TP53 information derived from sequencing data. A flexible framework allows the use of standard file formats such as Mutation Annotation Format (MAF) or Variant Call Format (VCF), as well as common TXT files. Seshat performs accurate variant annotations using the Human Genome Variation Society (HGVS) nomenclature and the stable TP53 genomic reference provided by the Locus Reference Genomic (LRG). In addition, using the 2017 release of the UMD_TP53 database, Seshat provides multiple statistical information for each TP53 variant including database frequency, functional activity, or pathogenicity. The information is delivered in standardized output tables that minimize errors and facilitate comparison of mutational data across studies. Seshat is a beneficial tool to interpret the ever-growing TP53 sequencing data generated by multiple sequencing platforms and it is freely available via the TP53 Website, http://p53.fr or directly at http://vps338341.ovh.net/. © 2018 Wiley Periodicals, Inc.
Crowd-assisted polyp annotation of virtual colonoscopy videos
NASA Astrophysics Data System (ADS)
Park, Ji Hwan; Nadeem, Saad; Marino, Joseph; Baker, Kevin; Barish, Matthew; Kaufman, Arie
2018-03-01
Virtual colonoscopy (VC) allows a radiologist to navigate through a 3D colon model reconstructed from a computed tomography scan of the abdomen, looking for polyps, the precursors of colon cancer. Polyps are seen as protrusions on the colon wall and haustral folds, visible in the VC y-through videos. A complete review of the colon surface requires full navigation from the rectum to the cecum in antegrade and retrograde directions, which is a tedious task that takes an average of 30 minutes. Crowdsourcing is a technique for non-expert users to perform certain tasks, such as image or video annotation. In this work, we use crowdsourcing for the examination of complete VC y-through videos for polyp annotation by non-experts. The motivation for this is to potentially help the radiologist reach a diagnosis in a shorter period of time, and provide a stronger confirmation of the eventual diagnosis. The crowdsourcing interface includes an interactive tool for the crowd to annotate suspected polyps in the video with an enclosing box. Using our work flow, we achieve an overall polyps-per-patient sensitivity of 87.88% (95.65% for polyps >=5mm and 70% for polyps <5mm). We also demonstrate the efficacy and effectiveness of a non-expert user in detecting and annotating polyps and discuss their possibility in aiding radiologists in VC examinations.
Neurocarta: aggregating and sharing disease-gene relations for the neurosciences.
Portales-Casamar, Elodie; Ch'ng, Carolyn; Lui, Frances; St-Georges, Nicolas; Zoubarev, Anton; Lai, Artemis Y; Lee, Mark; Kwok, Cathy; Kwok, Willie; Tseng, Luchia; Pavlidis, Paul
2013-02-26
Understanding the genetic basis of diseases is key to the development of better diagnoses and treatments. Unfortunately, only a small fraction of the existing data linking genes to phenotypes is available through online public resources and, when available, it is scattered across multiple access tools. Neurocarta is a knowledgebase that consolidates information on genes and phenotypes across multiple resources and allows tracking and exploring of the associations. The system enables automatic and manual curation of evidence supporting each association, as well as user-enabled entry of their own annotations. Phenotypes are recorded using controlled vocabularies such as the Disease Ontology to facilitate computational inference and linking to external data sources. The gene-to-phenotype associations are filtered by stringent criteria to focus on the annotations most likely to be relevant. Neurocarta is constantly growing and currently holds more than 30,000 lines of evidence linking over 7,000 genes to 2,000 different phenotypes. Neurocarta is a one-stop shop for researchers looking for candidate genes for any disorder of interest. In Neurocarta, they can review the evidence linking genes to phenotypes and filter out the evidence they're not interested in. In addition, researchers can enter their own annotations from their experiments and analyze them in the context of existing public annotations. Neurocarta's in-depth annotation of neurodevelopmental disorders makes it a unique resource for neuroscientists working on brain development.
Mata, Christian; Walker, Paul M; Oliver, Arnau; Brunotte, François; Martí, Joan; Lalande, Alain
2016-01-01
In this paper, we present ProstateAnalyzer, a new web-based medical tool for prostate cancer diagnosis. ProstateAnalyzer allows the visualization and analysis of magnetic resonance images (MRI) in a single framework. ProstateAnalyzer recovers the data from a PACS server and displays all the associated MRI images in the same framework, usually consisting of 3D T2-weighted imaging for anatomy, dynamic contrast-enhanced MRI for perfusion, diffusion-weighted imaging in the form of an apparent diffusion coefficient (ADC) map and MR Spectroscopy. ProstateAnalyzer allows annotating regions of interest in a sequence and propagates them to the others. From a representative case, the results using the four visualization platforms are fully detailed, showing the interaction among them. The tool has been implemented as a Java-based applet application to facilitate the portability of the tool to the different computer architectures and software and allowing the possibility to work remotely via the web. ProstateAnalyzer enables experts to manage prostate cancer patient data set more efficiently. The tool allows delineating annotations by experts and displays all the required information for use in diagnosis. According to the current European Society of Urogenital Radiology guidelines, it also includes the PI-RADS structured reporting scheme.
Mining Large Scale Tandem Mass Spectrometry Data for Protein Modifications Using Spectral Libraries.
Horlacher, Oliver; Lisacek, Frederique; Müller, Markus
2016-03-04
Experimental improvements in post-translational modification (PTM) detection by tandem mass spectrometry (MS/MS) has allowed the identification of vast numbers of PTMs. Open modification searches (OMSs) of MS/MS data, which do not require prior knowledge of the modifications present in the sample, further increased the diversity of detected PTMs. Despite much effort, there is still a lack of functional annotation of PTMs. One possibility to narrow the annotation gap is to mine MS/MS data deposited in public repositories and to correlate the PTM presence with biological meta-information attached to the data. Since the data volume can be quite substantial and contain tens of millions of MS/MS spectra, the data mining tools must be able to cope with big data. Here, we present two tools, Liberator and MzMod, which are built using the MzJava class library and the Apache Spark large scale computing framework. Liberator builds large MS/MS spectrum libraries, and MzMod searches them in an OMS mode. We applied these tools to a recently published set of 25 million spectra from 30 human tissues and present tissue specific PTMs. We also compared the results to the ones obtained with the OMS tool MODa and the search engine X!Tandem.
KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes
Koulaouzidis, Anastasios; Iakovidis, Dimitris K.; Yung, Diana E.; Rondonotti, Emanuele; Kopylov, Uri; Plevris, John N.; Toth, Ervin; Eliakim, Abraham; Wurm Johansson, Gabrielle; Marlicz, Wojciech; Mavrogenis, Georgios; Nemeth, Artur; Thorlacius, Henrik; Tontini, Gian Eugenio
2017-01-01
Background and aims Capsule endoscopy (CE) has revolutionized small-bowel (SB) investigation. Computational methods can enhance diagnostic yield (DY); however, incorporating machine learning algorithms (MLAs) into CE reading is difficult as large amounts of image annotations are required for training. Current databases lack graphic annotations of pathologies and cannot be used. A novel database, KID, aims to provide a reference for research and development of medical decision support systems (MDSS) for CE. Methods Open-source software was used for the KID database. Clinicians contribute anonymized, annotated CE images and videos. Graphic annotations are supported by an open-access annotation tool (Ratsnake). We detail an experiment based on the KID database, examining differences in SB lesion measurement between human readers and a MLA. The Jaccard Index (JI) was used to evaluate similarity between annotations by the MLA and human readers. Results The MLA performed best in measuring lymphangiectasias with a JI of 81 ± 6 %. The other lesion types were: angioectasias (JI 64 ± 11 %), aphthae (JI 64 ± 8 %), chylous cysts (JI 70 ± 14 %), polypoid lesions (JI 75 ± 21 %), and ulcers (JI 56 ± 9 %). Conclusion MLA can perform as well as human readers in the measurement of SB angioectasias in white light (WL). Automated lesion measurement is therefore feasible. KID is currently the only open-source CE database developed specifically to aid development of MDSS. Our experiment demonstrates this potential. PMID:28580415
Accurate and consistent automatic seismocardiogram annotation without concurrent ECG.
Laurin, A; Khosrow-Khavar, F; Blaber, A P; Tavakolian, Kouhyar
2016-09-01
Seismocardiography (SCG) is the measurement of vibrations in the sternum caused by the beating of the heart. Precise cardiac mechanical timings that are easily obtained from SCG are critically dependent on accurate identification of fiducial points. So far, SCG annotation has relied on concurrent ECG measurements. An algorithm capable of annotating SCG without the use any other concurrent measurement was designed. We subjected 18 participants to graded lower body negative pressure. We collected ECG and SCG, obtained R peaks from the former, and annotated the latter by hand, using these identified peaks. We also annotated the SCG automatically. We compared the isovolumic moment timings obtained by hand to those obtained using our algorithm. Mean ± confidence interval of the percentage of accurately annotated cardiac cycles were [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for levels of negative pressure 0, -20, -30, -40, and -50 mmHg. LF/HF ratios, the relative power of low-frequency variations to high-frequency variations in heart beat intervals, obtained from isovolumic moments were also compared to those obtained from R peaks. The mean differences ± confidence interval were [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for increasing levels of negative pressure. The accuracy and consistency of the algorithm enables the use of SCG as a stand-alone heart monitoring tool in healthy individuals at rest, and could serve as a basis for an eventual application in pathological cases.
Roehner, Nicholas; Myers, Chris J
2014-02-21
Recently, we have begun to witness the potential of synthetic biology, noted here in the form of bacteria and yeast that have been genetically engineered to produce biofuels, manufacture drug precursors, and even invade tumor cells. The success of these projects, however, has often failed in translation and application to new projects, a problem exacerbated by a lack of engineering standards that combine descriptions of the structure and function of DNA. To address this need, this paper describes a methodology to connect the systems biology markup language (SBML) to the synthetic biology open language (SBOL), existing standards that describe biochemical models and DNA components, respectively. Our methodology involves first annotating SBML model elements such as species and reactions with SBOL DNA components. A graph is then constructed from the model, with vertices corresponding to elements within the model and edges corresponding to the cause-and-effect relationships between these elements. Lastly, the graph is traversed to assemble the annotating DNA components into a composite DNA component, which is used to annotate the model itself and can be referenced by other composite models and DNA components. In this way, our methodology can be used to build up a hierarchical library of models annotated with DNA components. Such a library is a useful input to any future genetic technology mapping algorithm that would automate the process of composing DNA components to satisfy a behavioral specification. Our methodology for SBML-to-SBOL annotation is implemented in the latest version of our genetic design automation (GDA) software tool, iBioSim.
Linking Disparate Datasets of the Earth Sciences with the SemantEco Annotator
NASA Astrophysics Data System (ADS)
Seyed, P.; Chastain, K.; McGuinness, D. L.
2013-12-01
Use of Semantic Web technologies for data management in the Earth sciences (and beyond) has great potential but is still in its early stages, since the challenges of translating data into a more explicit or semantic form for immediate use within applications has not been fully addressed. In this abstract we help address this challenge by introducing the SemantEco Annotator, which enables anyone, regardless of expertise, to semantically annotate tabular Earth Science data and translate it into linked data format, while applying the logic inherent in community-standard vocabularies to guide the process. The Annotator was conceived under a desire to unify dataset content from a variety of sources under common vocabularies, for use in semantically-enabled web applications. Our current use case employs linked data generated by the Annotator for use in the SemantEco environment, which utilizes semantics to help users explore, search, and visualize water or air quality measurement and species occurrence data through a map-based interface. The generated data can also be used immediately to facilitate discovery and search capabilities within 'big data' environments. The Annotator provides a method for taking information about a dataset, that may only be known to its maintainers, and making it explicit, in a uniform and machine-readable fashion, such that a person or information system can more easily interpret the underlying structure and meaning. Its primary mechanism is to enable a user to formally describe how columns of a tabular dataset relate and/or describe entities. For example, if a user identifies columns for latitude and longitude coordinates, we can infer the data refers to a point that can be plotted on a map. Further, it can be made explicit that measurements of 'nitrate' and 'NO3-' are of the same entity through vocabulary assignments, thus more easily utilizing data sets that use different nomenclatures. The Annotator provides an extensive and searchable library of vocabularies to assist the user in locating terms to describe observed entities, their properties, and relationships. The Annotator leverages vocabulary definitions of these concepts to guide the user in describing data in a logically consistent manner. The vocabularies made available through the Annotator are open, as is the Annotator itself. We have taken a step towards making semantic annotation/translation of data more accessible. Our vision for the Annotator is as a tool that can be integrated into a semantic data 'workbench' environment, which would allow semantic annotation of a variety of data formats, using standard vocabularies. These vocabularies involved enable search for similar datasets, and integration with any semantically-enabled applications for analysis and visualization.
Cohen, K Bretonnel; Lanfranchi, Arrick; Choi, Miji Joo-Young; Bada, Michael; Baumgartner, William A; Panteleyeva, Natalya; Verspoor, Karin; Palmer, Martha; Hunter, Lawrence E
2017-08-17
Coreference resolution is the task of finding strings in text that have the same referent as other strings. Failures of coreference resolution are a common cause of false negatives in information extraction from the scientific literature. In order to better understand the nature of the phenomenon of coreference in biomedical publications and to increase performance on the task, we annotated the Colorado Richly Annotated Full Text (CRAFT) corpus with coreference relations. The corpus was manually annotated with coreference relations, including identity and appositives for all coreferring base noun phrases. The OntoNotes annotation guidelines, with minor adaptations, were used. Interannotator agreement ranges from 0.480 (entity-based CEAF) to 0.858 (Class-B3), depending on the metric that is used to assess it. The resulting corpus adds nearly 30,000 annotations to the previous release of the CRAFT corpus. Differences from related projects include a much broader definition of markables, connection to extensive annotation of several domain-relevant semantic classes, and connection to complete syntactic annotation. Tool performance was benchmarked on the data. A publicly available out-of-the-box, general-domain coreference resolution system achieved an F-measure of 0.14 (B3), while a simple domain-adapted rule-based system achieved an F-measure of 0.42. An ensemble of the two reached F of 0.46. Following the IDENTITY chains in the data would add 106,263 additional named entities in the full 97-paper corpus, for an increase of 76% percent in the semantic classes of the eight ontologies that have been annotated in earlier versions of the CRAFT corpus. The project produced a large data set for further investigation of coreference and coreference resolution in the scientific literature. The work raised issues in the phenomenon of reference in this domain and genre, and the paper proposes that many mentions that would be considered generic in the general domain are not generic in the biomedical domain due to their referents to specific classes in domain-specific ontologies. The comparison of the performance of a publicly available and well-understood coreference resolution system with a domain-adapted system produced results that are consistent with the notion that the requirements for successful coreference resolution in this genre are quite different from those of the general domain, and also suggest that the baseline performance difference is quite large.
Testa, Alison C; Hane, James K; Ellwood, Simon R; Oliver, Richard P
2015-03-11
The impact of gene annotation quality on functional and comparative genomics makes gene prediction an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers. While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates this study. CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including those caused by overlap between the transcripts of adjacent gene loci. Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against whole genome Sc. pombe and S. cerevisiae annotations further substantiate a 4-5% improvement in the number of correctly predicted genes. We demonstrate the success of a novel method of incorporating RNA-seq data into GHMM fungal gene prediction. This shows that a high quality annotation can be achieved without relying on protein homology or a training set of genes. CodingQuarry is freely available ( https://sourceforge.net/projects/codingquarry/ ), and suitable for incorporation into genome annotation pipelines.
Bhatia, Vivek N.; Perlman, David H.; Costello, Catherine E.; McComb, Mark E.
2009-01-01
In order that biological meaning may be derived and testable hypotheses may be built from proteomics experiments, assignments of proteins identified by mass spectrometry or other techniques must be supplemented with additional notation, such as information on known protein functions, protein-protein interactions, or biological pathway associations. Collecting, organizing, and interpreting this data often requires the input of experts in the biological field of study, in addition to the time-consuming search for and compilation of information from online protein databases. Furthermore, visualizing this bulk of information can be challenging due to the limited availability of easy-to-use and freely available tools for this process. In response to these constraints, we have undertaken the design of software to automate annotation and visualization of proteomics data in order to accelerate the pace of research. Here we present the Software Tool for Researching Annotations of Proteins (STRAP) – a user-friendly, open-source C# application. STRAP automatically obtains gene ontology (GO) terms associated with proteins in a proteomics results ID list using the freely accessible UniProtKB and EBI GOA databases. Summarized in an easy-to-navigate tabular format, STRAP includes meta-information on the protein in addition to complimentary GO terminology. Additionally, this information can be edited by the user so that in-house expertise on particular proteins may be integrated into the larger dataset. STRAP provides a sortable tabular view for all terms, as well as graphical representations of GO-term association data in pie (biological process, cellular component and molecular function) and bar charts (cross comparison of sample sets) to aid in the interpretation of large datasets and differential analyses experiments. Furthermore, proteins of interest may be exported as a unique FASTA-formatted file to allow for customizable re-searching of mass spectrometry data, and gene names corresponding to the proteins in the lists may be encoded in the Gaggle microformat for further characterization, including pathway analysis. STRAP, a tutorial, and the C# source code are freely available from http://cpctools.sourceforge.net. PMID:19839595
Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome
Milacic, Marija; Haw, Robin; Rothfels, Karen; Wu, Guanming; Croft, David; Hermjakob, Henning; D’Eustachio, Peter; Stein, Lincoln
2012-01-01
Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics. PMID:24213504
Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark
2012-09-01
The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.
GenomeRNAi: a database for cell-based RNAi phenotypes.
Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael
2007-01-01
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.
GenomeRNAi: a database for cell-based RNAi phenotypes
Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael
2007-01-01
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at PMID:17135194
Protein Information Resource: a community resource for expert annotation of protein data
Barker, Winona C.; Garavelli, John S.; Hou, Zhenglin; Huang, Hongzhan; Ledley, Robert S.; McGarvey, Peter B.; Mewes, Hans-Werner; Orcutt, Bruce C.; Pfeiffer, Friedhelm; Tsugita, Akira; Vinayaka, C. R.; Xiao, Chunlin; Yeh, Lai-Su L.; Wu, Cathy
2001-01-01
The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200 000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-International databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP. PMID:11125041
Semantic annotation of Web data applied to risk in food.
Hignette, Gaëlle; Buche, Patrice; Couvert, Olivier; Dibie-Barthélemy, Juliette; Doussot, David; Haemmerlé, Ollivier; Mettler, Eric; Soler, Lydie
2008-11-30
A preliminary step to risk in food assessment is the gathering of experimental data. In the framework of the Sym'Previus project (http://www.symprevius.org), a complete data integration system has been designed, grouping data provided by industrial partners and data extracted from papers published in the main scientific journals of the domain. Those data have been classified by means of a predefined vocabulary, called ontology. Our aim is to complement the database with data extracted from the Web. In the framework of the WebContent project (www.webcontent.fr), we have designed a semi-automatic acquisition tool, called @WEB, which retrieves scientific documents from the Web. During the @WEB process, data tables are extracted from the documents and then annotated with the ontology. We focus on the data tables as they contain, in general, a synthesis of data published in the documents. In this paper, we explain how the columns of the data tables are automatically annotated with data types of the ontology and how the relations represented by the table are recognised. We also give the results of our experimentation to assess the quality of such an annotation.
Functional Analysis of Metabolomics Data.
Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio
2016-01-01
Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.
CAMBerVis: visualization software to support comparative analysis of multiple bacterial strains.
Woźniak, Michał; Wong, Limsoon; Tiuryn, Jerzy
2011-12-01
A number of inconsistencies in genome annotations are documented among bacterial strains. Visualization of the differences may help biologists to make correct decisions in spurious cases. We have developed a visualization tool, CAMBerVis, to support comparative analysis of multiple bacterial strains. The software manages simultaneous visualization of multiple bacterial genomes, enabling visual analysis focused on genome structure annotations. The CAMBerVis software is freely available at the project website: http://bioputer.mimuw.edu.pl/camber. Input datasets for Mycobacterium tuberculosis and Staphylocacus aureus are integrated with the software as examples. m.wozniak@mimuw.edu.pl Supplementary data are available at Bioinformatics online.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Groves, Paula; Valett, Jon
1990-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.
Annotated bibliography of Software Engineering Laboratory literature
NASA Technical Reports Server (NTRS)
Morusiewicz, Linda; Valett, Jon
1993-01-01
This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.
VectorBase: a data resource for invertebrate vector genomics
Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.
2009-01-01
VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744
PathJam: a new service for integrating biological pathway information.
Glez-Peña, Daniel; Reboiro-Jato, Miguel; Domínguez, Rubén; Gómez-López, Gonzalo; Pisano, David G; Fdez-Riverola, Florentino
2010-10-28
Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i) being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii) giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.
Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.
ERIC Educational Resources Information Center
Mu, Xiangming; Marchionini, Gary
2003-01-01
Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…
Netbook User’s Guide and Installation Manual.
1997-01-31
The general purpose of Netbook is to add value to the information available online, by developing a collaborative environment within which that...information can be effectively accessed, stored, annotated, and structured. Netbook is a prototype tool that provides users with the capacity for
Semantic markup of sensor capabilities: how simple it too simple?
NASA Astrophysics Data System (ADS)
Rueda-Velasquez, C. A.; Janowicz, K.; Fredericks, J.
2016-12-01
Semantics plays a key role for the publication, retrieval, integration, and reuse of observational data across the geosciences. In most cases, one can safely assume that the providers of such data, e.g., individual scientists, understand the observation context in which their data are collected,e.g., the used observation procedure, the sampling strategy, the feature of interest being studied, and so forth. However, can we expect that the same is true for the technical details of the used sensors and especially the nuanced changes that can impact observations in often unpredictable ways? Should the burden of annotating the sensor capabilities, firmware, operation ranges, and so forth be really part of a scientist's responsibility? Ideally, semantic annotations should be provided by the parties that understand these details and have a vested interest in maintaining these data. With manufactures providing semantically-enabled metadata for their sensors and instruments, observations could more easily be annotated and thereby enriched using this information. Unfortunately, today's sensor ontologies and tool chains developed for the Semantic Web community require expertise beyond the knowledge and interest of most manufacturers. Consequently, knowledge engineers need to better understand the sweet spot between simple ontologies/vocabularies and sufficient expressivity as well as the tools required to enable manufacturers to share data about their sensors. Here, we report on the current results of EarthCube's X-Domes project that aims to address the questions outlined above.
m6ASNP: a tool for annotating genetic variants by m6A function.
Jiang, Shuai; Xie, Yubin; He, Zhihao; Zhang, Ya; Zhao, Yuli; Chen, Li; Zheng, Yueyuan; Miao, Yanyan; Zuo, Zhixiang; Ren, Jian
2018-05-01
Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases. In this study, we present a user-friendly web server called "m6ASNP" that is dedicated to the identification of genetic variants that target m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of an m6A site is altered by the variants that surround the site. In m6ASNP, genetic variants in a standard variant call format (VCF) are accepted as the input data, and the output includes an interactive table that contains the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and to annotate the genetic variants. We believe that m6ASNP is a very convenient tool that can be used to boost further functional studies investigating genetic variants. The web server "m6ASNP" is implemented in JAVA and PHP and is freely available at [60].
Krumm, Rainer; Dugas, Martin
2016-01-01
Introduction Medical documentation is applied in various settings including patient care and clinical research. Since procedures of medical documentation are heterogeneous and developed further, secondary use of medical data is complicated. Development of medical forms, merging of data from different sources and meta-analyses of different data sets are currently a predominantly manual process and therefore difficult and cumbersome. Available applications to automate these processes are limited. In particular, tools to compare multiple documentation forms are missing. The objective of this work is to design, implement and evaluate the new system ODMSummary for comparison of multiple forms with a high number of semantically annotated data elements and a high level of usability. Methods System requirements are the capability to summarize and compare a set of forms, enable to estimate the documentation effort, track changes in different versions of forms and find comparable items in different forms. Forms are provided in Operational Data Model format with semantic annotations from the Unified Medical Language System. 12 medical experts were invited to participate in a 3-phase evaluation of the tool regarding usability. Results ODMSummary (available at https://odmtoolbox.uni-muenster.de/summary/summary.html) provides a structured overview of multiple forms and their documentation fields. This comparison enables medical experts to assess multiple forms or whole datasets for secondary use. System usability was optimized based on expert feedback. Discussion The evaluation demonstrates that feedback from domain experts is needed to identify usability issues. In conclusion, this work shows that automatic comparison of multiple forms is feasible and the results are usable for medical experts. PMID:27736972
GenColors: annotation and comparative genomics of prokaryotes made easy.
Romualdi, Alessandro; Felder, Marius; Rose, Dominic; Gausmann, Ulrike; Schilhabel, Markus; Glöckner, Gernot; Platzer, Matthias; Sühnel, Jürgen
2007-01-01
GenColors (gencolors.fli-leibniz.de) is a new web-based software/database system aimed at an improved and accelerated annotation of prokaryotic genomes considering information on related genomes and making extensive use of genome comparison. It offers a seamless integration of data from ongoing sequencing projects and annotated genomic sequences obtained from GenBank. A variety of export/import filters manages an effective data flow from sequence assembly and manipulation programs (e.g., GAP4) to GenColors and back as well as to standard GenBank file(s). The genome comparison tools include best bidirectional hits, gene conservation, syntenies, and gene core sets. Precomputed UniProt matches allow annotation and analysis in an effective manner. In addition to these analysis options, base-specific quality data (coverage and confidence) can also be handled if available. The GenColors system can be used both for annotation purposes in ongoing genome projects and as an analysis tool for finished genomes. GenColors comes in two types, as dedicated genome browsers and as the Jena Prokaryotic Genome Viewer (JPGV). Dedicated genome browsers contain genomic information on a set of related genomes and offer a large number of options for genome comparison. The system has been efficiently used in the genomic sequencing of Borrelia garinii and is currently applied to various ongoing genome projects on Borrelia, Legionella, Escherichia, and Pseudomonas genomes. One of these dedicated browsers, the Spirochetes Genome Browser (sgb.fli-leibniz.de) with Borrelia, Leptospira, and Treponema genomes, is freely accessible. The others will be released after finalization of the corresponding genome projects. JPGV (jpgv.fli-leibniz.de) offers information on almost all finished bacterial genomes, as compared to the dedicated browsers with reduced genome comparison functionality, however. As of January 2006, this viewer includes 632 genomic elements (e.g., chromosomes and plasmids) of 293 species. The system provides versatile quick and advanced search options for all currently known prokaryotic genomes and generates circular and linear genome plots. Gene information sheets contain basic gene information, database search options, and links to external databases. GenColors is also available on request for local installation.
RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes.
Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa
2017-08-29
Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/.
BiOSS: A system for biomedical ontology selection.
Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro
2014-04-01
In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Big data analytics in immunology: a knowledge-based approach.
Zhang, Guang Lan; Sun, Jing; Chitkushev, Lou; Brusic, Vladimir
2014-01-01
With the vast amount of immunological data available, immunology research is entering the big data era. These data vary in granularity, quality, and complexity and are stored in various formats, including publications, technical reports, and databases. The challenge is to make the transition from data to actionable knowledge and wisdom and bridge the knowledge gap and application gap. We report a knowledge-based approach based on a framework called KB-builder that facilitates data mining by enabling fast development and deployment of web-accessible immunological data knowledge warehouses. Immunological knowledge discovery relies heavily on both the availability of accurate, up-to-date, and well-organized data and the proper analytics tools. We propose the use of knowledge-based approaches by developing knowledgebases combining well-annotated data with specialized analytical tools and integrating them into analytical workflow. A set of well-defined workflow types with rich summarization and visualization capacity facilitates the transformation from data to critical information and knowledge. By using KB-builder, we enabled streamlining of normally time-consuming processes of database development. The knowledgebases built using KB-builder will speed up rational vaccine design by providing accurate and well-annotated data coupled with tailored computational analysis tools and workflow.