Lausberg, Hedda; Kazzer, Philipp; Heekeren, Hauke R; Wartenburger, Isabell
2015-10-01
Neuropsychological lesion studies evidence the necessity to differentiate between various forms of tool-related actions such as real tool use, tool use demonstration with tool in hand and without physical target object, and pantomime without tool in hand. However, thus far, neuroimaging studies have primarily focused only on investigating tool use pantomimes. The present fMRI study investigates pantomime without tool in hand as compared to tool use demonstration with tool in hand in order to explore patterns of cerebral signal modulation associated with acting with imaginary tools in hand. Fifteen participants performed with either hand (i) tool use pantomime with an imaginary tool in hand in response to visual tool presentation and (ii) tool use demonstration with tool in hand in response to visual-tactile tool presentation. In both conditions, no physical target object was present. The conjunction analysis of the right and left hands executions of tool use pantomime relative to tool use demonstration yielded significant activity in the left middle and superior temporal lobe. In contrast, demonstration relative to pantomime revealed large bihemispherically distributed homologous areas of activity. Thus far, fMRI studies have demonstrated the relevance of the left middle and superior temporal gyri in viewing, naming, and matching tools and related actions and contexts. Since in our study all these factors were equally (ir)relevant both in the tool use pantomime and the tool use demonstration conditions, the present findings enhance the knowledge about the function of these brain regions in tool-related cognitive processes. The two contrasted conditions only differ regarding the fact that the pantomime condition requires the individual to act with an imaginary tool in hand. Therefore, we suggest that the left middle and superior temporal gyri are specifically involved in integrating the projected mental image of a tool in the execution of a tool-specific movement concept. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identifying factors of comfort in using hand tools.
Kuijt-Evers, L F M; Groenesteijn, L; de Looze, M P; Vink, P
2004-09-01
To design comfortable hand tools, knowledge about comfort/discomfort in using hand tools is required. We investigated which factors determine comfort/discomfort in using hand tools according to users. Therefore, descriptors of comfort/discomfort in using hand tools were collected from literature and interviews. After that, the relatedness of a selection of the descriptors to comfort in using hand tools was investigated. Six comfort factors could be distinguished (functionality, posture and muscles, irritation and pain of hand and fingers, irritation of hand surface, handle characteristics, aesthetics). These six factors can be classified into three meaningful groups: functionality, physical interaction and appearance. The main conclusions were that (1) the same descriptors were related to comfort and discomfort in using hand tools, (2) descriptors of functionality are most related to comfort in using hand tools followed by descriptors of physical interaction and (3) descriptors of appearance become secondary in comfort in using hand tools.
Helmich, Ingo; Holle, Henning; Rein, Robert; Lausberg, Hedda
2015-04-01
Divergent findings exist whether left and right hemispheric pre- and postcentral cortices contribute to the production of tool use related hand movements. In order to clarify the neural substrates of tool use demonstrations with tool in hand, tool use pantomimes without tool in hand, and body-part-as-object presentations of tool use (BPO) in a naturalistic mode of execution, we applied functional Near InfraRed Spectroscopy (fNIRS) in twenty-three right-handed participants. Functional NIRS techniques allow for the investigation of brain oxygenation during the execution of complex hand movements with an unlimited movement range. Brain oxygenation patterns were retrieved from 16 channels of measurement above pre- and postcentral cortices of each hemisphere. The results showed that tool use demonstration with tool in hand leads to increased oxygenation as compared to tool use pantomimes in the left hemispheric somatosensory gyrus. Left hand executions of the demonstration of tool use, pantomime of tool use, and BPO of tool use led to increased oxygenation in the premotor and somatosensory cortices of the left hemisphere as compared to right hand executions of either condition. The results indicate that the premotor and somatosensory cortices of the left hemisphere constitute relevant brain structures for tool related hand movement production when using the left hand, whereas the somatosensory cortex of the left hemisphere seems to provide specific mental representations when performing tool use demonstrations with the tool in hand. Copyright © 2015 Elsevier B.V. All rights reserved.
[A case with apraxia of tool use: selective inability to form a hand posture for a tool].
Hayakawa, Yuko; Fujii, Toshikatsu; Yamadori, Atsushi; Meguro, Kenichi; Suzuki, Kyoko
2015-03-01
Impaired tool use is recognized as a symptom of ideational apraxia. While many studies have focused on difficulties in producing gestures as a whole, using tools involves several steps; these include forming hand postures appropriate for the use of certain tool, selecting objects or body parts to act on, and producing gestures. In previously reported cases, both producing and recognizing hand postures were impaired. Here we report the first case showing a selective impairment of forming hand postures appropriate for tools with preserved recognition of the required hand postures. A 24-year-old, right-handed man was admitted to hospital because of sensory impairment of the right side of the body, mild aphasia, and impaired tool use due to left parietal subcortical hemorrhage. His ability to make symbolic gestures, copy finger postures, and orient his hand to pass a slit was well preserved. Semantic knowledge for tools and hand postures was also intact. He could flawlessly select the correct hand postures in recognition tasks. He only demonstrated difficulties in forming a hand posture appropriate for a tool. Once he properly grasped a tool by trial and error, he could use it without hesitation. These observations suggest that each step of tool use should be thoroughly examined in patients with ideational apraxia.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.301 Hand tools. (a) Employers shall not issue or permit the use of unsafe hand tools. (b) Wrenches, including adjustable, pipe, end...
Perini, Francesca; Caramazza, Alfonso; Peelen, Marius V.
2014-01-01
Functional neuroimaging studies have implicated the left lateral occipitotemporal cortex (LOTC) in both tool and hand perception but the functional role of this region is not fully known. Here, by using a task manipulation, we tested whether tool-/hand-selective LOTC contributes to the discrimination of tool-associated hand actions. Participants viewed briefly presented pictures of kitchen and garage tools while they performed one of two tasks: in the action task, they judged whether the tool is associated with a hand rotation action (e.g., screwdriver) or a hand squeeze action (e.g., garlic press), while in the location task they judged whether the tool is typically found in the kitchen (e.g., garlic press) or in the garage (e.g., screwdriver). Both tasks were performed on the same stimulus set and were matched for difficulty. Contrasting fMRI responses between these tasks showed stronger activity during the action task than the location task in both tool- and hand-selective LOTC regions, which closely overlapped. No differences were found in nearby object- and motion-selective control regions. Importantly, these findings were confirmed by a TMS study, which showed that effective TMS over the tool-/hand-selective LOTC region significantly slowed responses for tool action discriminations relative to tool location discriminations, with no such difference during sham TMS. We conclude that left LOTC contributes to the discrimination of tool-associated hand actions. PMID:25140142
30 CFR 57.12033 - Hand-held electric tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...
30 CFR 57.12033 - Hand-held electric tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...
30 CFR 57.12033 - Hand-held electric tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...
30 CFR 57.12033 - Hand-held electric tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...
30 CFR 57.12033 - Hand-held electric tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools... review on heavy forged hand tools, finished or unfinished, with or without handles from the People's..., 2012) (Tianjin v. United States). \\2\\ See Heavy Forged Hand Tools, Finished or Unfinished, With or...
Computer implemented method, and apparatus for controlling a hand-held tool
NASA Technical Reports Server (NTRS)
Wagner, Kenneth William (Inventor); Taylor, James Clayton (Inventor)
1999-01-01
The invention described here in is a computer-implemented method and apparatus for controlling a hand-held tool. In particular, the control of a hand held tool is for the purpose of controlling the speed of a fastener interface mechanism and the torque applied to fasteners by the fastener interface mechanism of the hand-held tool and monitoring the operating parameters of the tool. The control is embodied in intool software embedded on a processor within the tool which also communicates with remote software. An operator can run the tool, or through the interaction of both software, operate the tool from a remote location, analyze data from a performance history recorded by the tool, and select various torque and speed parameters for each fastener.
29 CFR 1910.242 - Hand and portable powered tools and equipment, general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2011-07-01 2011-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...
29 CFR 1910.242 - Hand and portable powered tools and equipment, general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2010-07-01 2010-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...
Tool for Crimping Flexible Circuit Leads
NASA Technical Reports Server (NTRS)
Hulse, Aaron; Diftler, Myron A.
2009-01-01
A hand tool has been developed for crimping leads in flexible tails that are parts of some electronic circuits -- especially some sensor circuits. The tool is used to cut the tails to desired lengths and attach solder tabs to the leads. For tailoring small numbers of circuits for special applications, this hand tool is a less expensive alternative to a commercially available automated crimping tool. The crimping tool consists of an off-the-shelf hand crimping tool plus a specialized crimping insert designed specifically for the intended application.
MARZKE, MARY W.; MARZKE, R. F.
2000-01-01
The discovery of fossil hand bones from an early human ancestor at Olduvai Gorge in 1960, at the same level as primitive stone tools, generated a debate about the role of tools in the evolution of the human hand that has raged to the present day. Could the Olduvai hand have made the tools? Did the human hand evolve as an adaptation to tool making and tool use? The debate has been fueled by anatomical studies comparing living and fossil human and nonhuman primate hands, and by experimental observations. These have assessed the relative abilities of apes and humans to manufacture the Oldowan tools, but consensus has been hampered by disagreements about how to translate experimental data from living species into quantitative models for predicting the performance of fossil hands. Such models are now beginning to take shape as new techniques are applied to the capture, management and analysis of data on kinetic and kinematic variables ranging from hand joint structure, muscle mechanics, and the distribution and density of bone to joint movements and muscle recruitment during manipulative behaviour. The systematic comparative studies are highlighting a functional complex of features in the human hand facilitating a distinctive repertoire of grips that are apparently more effective for stone tool making than grips characterising various nonhuman primate species. The new techniques are identifying skeletal variables whose form may provide clues to the potential of fossil hominid hands for one-handed firm precision grips and fine precision manoeuvering movements, both of which are essential for habitual and effective tool making and tool use. PMID:10999274
Basic Hand Tools for Bricklaying and Cement Masonry [and] Basic Hand Tools of the Carpenter.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Intended for student use, this unit discusses and illustrates the tools used in brick and masonry and carpentry. Contents of the brick and masonry section include informative materials on bricklaying tools (brick trowels, joint tools, levels, squares, line and accessories, rules, hammers and chisels, tool kits) and cement masonry tools (tampers,…
Povinelli, Daniel J; Reaux, James E; Frey, Scott H
2010-01-01
Considerable attention has been devoted to behaviors in which tools are used to perform actions in extrapersonal space by extending the reach. Evidence suggests that these behaviors result in an expansion of the body schema and peripersonal space. However, humans often use tools to perform tasks within peripersonal space that cannot be accomplished with the hands. In some of these instances (e.g., cooking), a tool is used as a substitute for the hand in order to pursue actions that would otherwise be hazardous. These behaviors suggest that even during the active use of tools, we maintain non-isomorphic representations that distinguish between our hands and handheld tools. Understanding whether such representations are a human specialization is of potentially great relevance to understand the evolutionary history of technological behaviors including the controlled use of fire. We tested six captive adult chimpanzees to determine whether they would elect to use a tool, rather than their hands, when acting in potentially hazardous vs. nonhazardous circumstances located within reach. Their behavior suggests that, like humans, chimpanzees represent the distinction between the hand vs. tool even during active use. We discuss the implications of this evidence for our understanding of tool use and its evolution.
Context and hand posture modulate the neural dynamics of tool-object perception.
Natraj, Nikhilesh; Poole, Victoria; Mizelle, J C; Flumini, Andrea; Borghi, Anna M; Wheaton, Lewis A
2013-02-01
Prior research has linked visual perception of tools with plausible motor strategies. Thus, observing a tool activates the putative action-stream, including the left posterior parietal cortex. Observing a hand functionally grasping a tool involves the inferior frontal cortex. However, tool-use movements are performed in a contextual and grasp specific manner, rather than relative isolation. Our prior behavioral data has demonstrated that the context of tool-use (by pairing the tool with different objects) and varying hand grasp postures of the tool can interact to modulate subjects' reaction times while evaluating tool-object content. Specifically, perceptual judgment was delayed in the evaluation of functional tool-object pairings (Correct context) when the tool was non-functionally (Manipulative) grasped. Here, we hypothesized that this behavioral interference seen with the Manipulative posture would be due to increased and extended left parietofrontal activity possibly underlying motor simulations when resolving action conflict due to this particular grasp at time scales relevant to the behavioral data. Further, we hypothesized that this neural effect will be restricted to the Correct tool-object context wherein action affordances are at a maximum. 64-channel electroencephalography (EEG) was recorded from 16 right-handed subjects while viewing images depicting three classes of tool-object contexts: functionally Correct (e.g. coffee pot-coffee mug), functionally Incorrect (e.g. coffee pot-marker) and Spatial (coffee pot-milk). The Spatial context pairs a tool and object that would not functionally match, but may commonly appear in the same scene. These three contexts were modified by hand interaction: No Hand, Static Hand near the tool, Functional Hand posture and Manipulative Hand posture. The Manipulative posture is convenient for relocating a tool but does not afford a functional engagement of the tool on the target object. Subjects were instructed to visually assess whether the pictures displayed correct tool-object associations. EEG data was analyzed in time-voltage and time-frequency domains. Overall, Static Hand, Functional and Manipulative postures cause early activation (100-400ms post image onset) of parietofrontal areas, to varying intensity in each context, when compared to the No Hand control condition. However, when context is Correct, only the Manipulative Posture significantly induces extended neural responses, predominantly over right parietal and right frontal areas [400-600ms post image onset]. Significant power increase was observed in the theta band [4-8Hz] over the right frontal area, [0-500ms]. In addition, when context is Spatial, Manipulative posture alone significantly induces extended neural responses, over bilateral parietofrontal and left motor areas [400-600ms]. Significant power decrease occurred primarily in beta bands [12-16, 20-25Hz] over the aforementioned brain areas [400-600ms]. Here, we demonstrate that the neural processing of tool-object perception is sensitive to several factors. While both Functional and Manipulative postures in Correct context engage predominantly an early left parietofrontal circuit, the Manipulative posture alone extends the neural response and transitions to a late right parietofrontal network. This suggests engagement of a right neural system to evaluate action affordances when hand posture does not support action (Manipulative). Additionally, when tool-use context is ambiguous (Spatial context), there is increased bilateral parietofrontal activation and, extended neural response for the Manipulative posture. These results point to the existence of other networks evaluating tool-object associations when motoric affordances are not readily apparent and underlie corresponding delayed perceptual judgment in our prior behavioral data wherein Manipulative postures had exclusively interfered in judging tool-object content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Park, George D; Reed, Catherine L
2015-10-01
Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.
Hand and power tools: A compilation
NASA Technical Reports Server (NTRS)
1976-01-01
Some hand and power tools were described. Section One describes several tools and shop techniques that may be useful in the home or commercial shop. Section Two contains descriptions of tools that are particularly applicable to industrial work, and in Section Three a number of metal working tools are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-457-A-D Third Review] Heavy Forged Hand... Heavy Forged Hand Tools From China. AGENCY: United States International Trade Commission. ACTION: Notice... the antidumping duty orders on heavy forged hand tools from China would be likely to lead to...
Tool use and the distalization of the end-effector
Bonaiuto, James B.; Jacobs, Stéphane; Frey, Scott H.
2009-01-01
We review recent neurophysiological data from macaques and humans suggesting that the use of tools extends the internal representation of the actor’s hand, and relate it to our modeling of the visual control of grasping. We introduce the idea that, in addition to extending the body schema to incorporate the tool, tool use involves distalization of the end-effector from hand to tool. Different tools extend the body schema in different ways, with a displaced visual target and a novel, task-specific processing of haptic feedback to the hand. This distalization is critical in order to exploit the unique functional capacities engendered by complex tools. PMID:19347356
Andres, Michael; Pelgrims, Barbara; Olivier, Etienne
2013-09-01
Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context. Copyright © 2012. Published by Elsevier Ltd.
Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi
2007-05-01
A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.
Decoding the neural mechanisms of human tool use
Gallivan, Jason P; McLean, D Adam; Valyear, Kenneth F; Culham, Jody C
2013-01-01
Sophisticated tool use is a defining characteristic of the primate species but how is it supported by the brain, particularly the human brain? Here we show, using functional MRI and pattern classification methods, that tool use is subserved by multiple distributed action-centred neural representations that are both shared with and distinct from those of the hand. In areas of frontoparietal cortex we found a common representation for planned hand- and tool-related actions. In contrast, in parietal and occipitotemporal regions implicated in hand actions and body perception we found that coding remained selectively linked to upcoming actions of the hand whereas in parietal and occipitotemporal regions implicated in tool-related processing the coding remained selectively linked to upcoming actions of the tool. The highly specialized and hierarchical nature of this coding suggests that hand- and tool-related actions are represented separately at earlier levels of sensorimotor processing before becoming integrated in frontoparietal cortex. DOI: http://dx.doi.org/10.7554/eLife.00425.001 PMID:23741616
Code of Federal Regulations, 2010 CFR
2010-07-01
... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.133 Hand...) Employers shall not issue or permit the use of unsafe hand tools. (b) Wrenches, including crescent, pipe...
Hand preferences in captive orangutans (Pongo pygmaeus).
O'malley, Robert C; McGrew, W C
2006-07-01
The strength of the evidence for population-level handedness in the great apes is a topic of considerable debate, yet there have been few studies of handedness in orangutans. We conducted a study of manual lateralization in a captive group of eight orangutans (Pongo pygmaeus) ranking the degrees of manual preference according to a defined framework. We analyzed five behavioral patterns: eat (one- and two-handed), make/modify tool, oral tool-use, and manual tool-use. Although some individuals showed significant manual preferences for one or more tasks, at the group-level both one-handed and two-handed eating, oral tool-use, and make/modify tool were ranked at level 1 (unlateralized). Manual tool-use was ranked at level 2, with four subjects demonstrating significant hand preferences, but no group-level bias to the right or left. Four subjects also showed hand specialization to the right or left across several tasks. These results are consistent with most previous studies of manual preference in orangutans. The emergence of manual lateralization in orangutans may relate to more complex manipulative tasks. We hypothesize that more challenging manual tasks elicit stronger hand preferences.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Hand tools. 1915.133 Section 1915.133 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.133 Hand...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools (i.e... Administration, Department of Commerce. SUMMARY: As a result of the determinations by the Department of Commerce... on heavy forged hand tools (i.e., [[Page 52314
30 CFR 56.14116 - Hand-held power tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...
30 CFR 56.14116 - Hand-held power tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...
30 CFR 56.14116 - Hand-held power tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...
30 CFR 57.14116 - Hand-held power tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...
30 CFR 56.14116 - Hand-held power tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...
30 CFR 57.14116 - Hand-held power tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...
30 CFR 57.14116 - Hand-held power tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...
30 CFR 56.14116 - Hand-held power tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...
30 CFR 57.14116 - Hand-held power tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...
30 CFR 57.14116 - Hand-held power tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...
Costs and benefits of tool-use on the perception of reachable space.
Bourgeois, Jérémy; Farnè, Alessandro; Coello, Yann
2014-05-01
Previous studies have shown that using a tool modifies in a short time-scale both near-body space perception and arm-length representation in the body schema. However, to date no research has specifically investigated the effect of tool-use on an action-related perceptual task. We report here a study assessing the effect of tool-use on the perception of reachable space for perceptual estimates made in reference to either the tool or the hand. Using the tool on distal objects resulted in an extension of perceived reachable space with the tool and reduced the variability of reachability estimates. Tool use also extended perceived reachable space with the hand, but with a concomitant increase of the variability of reachability estimates. These findings suggest that tool incorporation into the represented arm following tool-use improves the anticipation of action possibilities with the tool, while hand representation becomes less accurate. Copyright © 2014 Elsevier B.V. All rights reserved.
The recalibration of tactile perception during tool use is body-part specific
Cawley-Bennett, Andrew; Longo, Matthew R.; Saygin, Ayse P.
2018-01-01
Two decades of research have demonstrated that using a tool modulates spatial representations of the body. Whether this embodiment is specific to representations of the tool-using limb or extends to representations of other body parts has received little attention. Several studies of other perceptual phenomena have found that modulations to the primary somatosensory representation of the hand transfers to the face, due in part to their close proximity in primary somatosensory cortex. In the present study, we investigated whether tool-induced recalibration of tactile perception on the hand transfers to the cheek. Participants verbally estimated the distance between two tactile points applied to either their hand or face, before and after using a hand-shaped tool. Tool use recalibrated tactile distance perception on the hand—in line with previous findings—but left perception on the cheek unchanged. This finding provides support for the idea that embodiment is body-part specific. Furthermore, it suggests that tool-induced perceptual recalibration occurs at a level of somatosensory processing, where representations of the hand and face have become functionally disentangled. PMID:28702834
Ergonomic analysis of fastening vibration based on ISO Standard 5349 (2001).
Joshi, Akul; Leu, Ming; Murray, Susan
2012-11-01
Hand-held power tools used for fastening operations exert high dynamic forces on the operator's hand-arm, potentially causing injuries to the operator in the long run. This paper presents a study that analyzed the vibrations exerted by two hand-held power tools used for fastening operations with the operating exhibiting different postures. The two pneumatic tools, a right-angled nut-runner and an offset pistol-grip, are used to install shearing-type fasteners. A tri-axial accelerometer is used to measure the tool's vibration. The position and orientation of the transducer mounted on the tool follows the ISO-5349 Standard. The measured vibration data is used to compare the two power tools at different operating postures. The data analysis determines the number of years required to reach a 10% probability of developing finger blanching. The results indicate that the pistol-grip tool induces more vibration in the hand-arm than the right-angled nut-runner and that the vibrations exerted on the hand-arm vary for different postures. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Chung, Beom Sun; Chung, Min Suk; Shin, Byeong Seok; Kwon, Koojoo
2018-02-19
The hand anatomy, including the complicated hand muscles, can be grasped by using computer-assisted learning tools with high quality two-dimensional images and three-dimensional models. The purpose of this study was to present up-to-date software tools that promote learning of stereoscopic morphology of the hand. On the basis of horizontal sectioned images and outlined images of a male cadaver, vertical planes, volume models, and surface models were elaborated. Software to browse pairs of the sectioned and outlined images in orthogonal planes and software to peel and rotate the volume models, as well as a portable document format (PDF) file to select and rotate the surface models, were produced. All of the software tools were downloadable free of charge and usable off-line. The three types of tools for viewing multiple aspects of the hand could be adequately employed according to individual needs. These new tools involving the realistic images of a cadaver and the diverse functions are expected to improve comprehensive knowledge of the hand shape. © 2018 The Korean Academy of Medical Sciences.
2018-01-01
Background The hand anatomy, including the complicated hand muscles, can be grasped by using computer-assisted learning tools with high quality two-dimensional images and three-dimensional models. The purpose of this study was to present up-to-date software tools that promote learning of stereoscopic morphology of the hand. Methods On the basis of horizontal sectioned images and outlined images of a male cadaver, vertical planes, volume models, and surface models were elaborated. Software to browse pairs of the sectioned and outlined images in orthogonal planes and software to peel and rotate the volume models, as well as a portable document format (PDF) file to select and rotate the surface models, were produced. Results All of the software tools were downloadable free of charge and usable off-line. The three types of tools for viewing multiple aspects of the hand could be adequately employed according to individual needs. Conclusion These new tools involving the realistic images of a cadaver and the diverse functions are expected to improve comprehensive knowledge of the hand shape. PMID:29441756
Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex.
Ogawa, Kenji; Imai, Fumihito
2016-12-01
Previous neuropsychological studies of ideomotor apraxia (IMA) indicated impairments in pantomime actions for tool use for both right and left hands following lesions of parieto-premotor cortices in the left hemisphere. Using functional magnetic resonance imaging (fMRI) with multi-voxel pattern analysis (MVPA), we tested the hypothesis that the left parieto-premotor cortices are involved in the storage or retrieval of hand-independent representation of tool-use actions. In the fMRI scanner, one of three kinds of tools was displayed in pictures or letters, and the participants made pantomimes of the use of these tools using the right hand for the picture stimuli or with the left hand for the letters. We then used MVPA to classify which kind of tool the subjects were pantomiming. Whole-brain searchlight analysis revealed successful decoding using the activities largely in the contralateral primary sensorimotor region, ipsilateral cerebellum, and bilateral early visual area, which may reflect differences in low-level sensorimotor components for three types of pantomimes. Furthermore, a successful cross-classification between the right and left hands was possible using the activities of the left inferior parietal lobule (IPL) near the junction of the anterior intraparietal sulcus. Our finding indicates that the left anterior intraparietal cortex plays an important role in the production of tool-use pantomimes in a hand-independent manner, and independent of stimuli modality.
Occupational Safety. Hand Tools. Pre-Apprenticeship Phase 1 Training.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This self-paced student training module on safety when using hand tools is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to teach students the correct safety techniques for operating common hand- and arm-powered tools, including selection, maintenance, technique, and uses. The module may…
Easy Ergonomics: A Guide to Selecting Non-Powered Hand Tools
... identifying the presence or absence of basic ergonomic design features (Dababneh et al.*). The right tool will ... Cal/OSHA). Both agencies recognize the importance of design and selection of hand tools in strategies to ...
NASA Technical Reports Server (NTRS)
Chandler, Faith T. (Inventor); Arnett, Michael C. (Inventor); Garton, Harry L. (Inventor); Valentino, William D. (Inventor)
2003-01-01
A fastener starter tool includes a number of spring retention fingers for retaining a small part, or combination of parts. The tool has an inner housing, which holds the spring retention fingers, a hand grip, and an outer housing configured to slide over the inner housing and the spring retention fingers toward and away from the hand grip, exposing and opening, or respectively, covering and closing, the spring retention fingers. By sliding the outer housing toward (away from) the hand grip, a part can be released from (retained by) the tool. The tool may include replaceable inserts, for retaining parts, such as screws, and configured to limit the torque applied to the part, to prevent cross threading. The inner housing has means to transfer torque from the hand grip to the insert. The tool may include replaceable bits, the inner housing having means for transferring torque to the replaceable bit.
Chosen Striking Location and the User-Tool-Environment System
ERIC Educational Resources Information Center
Wagman, Jeffrey B.; Taylor, Kona R.
2004-01-01
Controlling a hand-held tool requires that the tool user bring the tool into contact with an environmental surface in a task-appropriate manner. This, in turn, requires applying muscular forces so as to overcome how the object resists being moved about its various axes. Perceived properties of hand-held objects tend to be constrained by inertial…
Garmer, Karin; Sperling, Lena; Forsberg, Anette
2002-01-01
A need for a hand-ergonomics training kit has been identified to increase critical thinking concerning choice of hand tools. This study deals with the design, use and evaluation of a hand-ergonomics training kit for use in ergonomics training programmes. The effects on awareness of hand ergonomics among training course participants have been evaluated by means of a questionnaire and interviews at a car production plant in Sweden. The evaluation was carried out about one and a half years after training with the hand-ergonomics training kit. The training kit consists of a guide to practical exercises, equipment for measuring hand size and strength, examples of hand tools for use in practical exercises, equipment for testing and evaluating the hand tools and checklists and judgement forms for qualitative evaluation. In addition, the kit contains relevant scientifically based reference reports on hand ergonomics. The evaluation showed that the practical exercises with the hand-ergonomic training kit had, to a remarkable extent, increased individuals' awareness of anthropometric differences and of the importance of ergonomically well-designed hand tools. After the practical exercises with the training kit, communication within the plant when choosing hand tools seems to be based on objective criteria to a higher degree, however, the results indicate that this communication could be further improved.
Proposal for the design of a zero gravity tool storage device
NASA Technical Reports Server (NTRS)
Stuckwisch, Sue; Carrion, Carlos A.; Phillips, Lee; Laughlin, Julia; Francois, Jason
1994-01-01
Astronauts frequently use a variety of hand tools during space missions, especially on repair missions. A toolbox is needed to allow storage and retrieval of tools with minimal difficulties. The toolbox must contain tools during launch, landing, and on-orbit operations. The toolbox will be used in the Shuttle Bay and therefore must withstand the hazardous space environment. The three main functions of the toolbox in space are: to protect the tools from the space environment and from damaging one another, to allow for quick, one-handed access to the tools; and to minimize the heat transfer between the astronaut's hand and the tools. This proposal explores the primary design issues associated with the design of the toolbox. Included are the customer and design specifications, global and refined function structures, possible solution principles, concept variants, and finally design recommendations.
Tool making, hand morphology and fossil hominins.
Marzke, Mary W
2013-11-19
Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features.
Tool making, hand morphology and fossil hominins
Marzke, Mary W.
2013-01-01
Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features. PMID:24101624
NASA Technical Reports Server (NTRS)
1972-01-01
A selection of new hand tools, modifications of existing tools, and techniques developed in the course of NASA research and development projects are presented. The items are presented in two sections: tools for cable and connector applications, and tools for welding applications. Safety is emphasized, together with ease of operation and use in restricted areas or hazardous environments. The discussions are directed primarily toward the technician engaged in assembly or maintenance of mechanical or electrical equipment.
Linear modeling of human hand-arm dynamics relevant to right-angle torque tool interaction.
Ay, Haluk; Sommerich, Carolyn M; Luscher, Anthony F
2013-10-01
A new protocol was evaluated for identification of stiffness, mass, and damping parameters employing a linear model for human hand-arm dynamics relevant to right-angle torque tool use. Powered torque tools are widely used to tighten fasteners in manufacturing industries. While these tools increase accuracy and efficiency of tightening processes, operators are repetitively exposed to impulsive forces, posing risk of upper extremity musculoskeletal injury. A novel testing apparatus was developed that closely mimics biomechanical exposure in torque tool operation. Forty experienced torque tool operators were tested with the apparatus to determine model parameters and validate the protocol for physical capacity assessment. A second-order hand-arm model with parameters extracted in the time domain met model accuracy criterion of 5% for time-to-peak displacement error in 93% of trials (vs. 75% for frequency domain). Average time-to-peak handle displacement and relative peak handle force errors were 0.69 ms and 0.21%, respectively. Model parameters were significantly affected by gender and working posture. Protocol and numerical calculation procedures provide an alternative method for assessing mechanical parameters relevant to right-angle torque tool use. The protocol more closely resembles tool use, and calculation procedures demonstrate better performance of parameter extraction using time domain system identification methods versus frequency domain. Potential future applications include parameter identification for in situ torque tool operation and equipment development for human hand-arm dynamics simulation under impulsive forces that could be used for assessing torque tools based on factors relevant to operator health (handle dynamics and hand-arm reaction force).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... Carolina. The workers are engaged in activities related to the production of mechanic's hand tool sets. The... production of mechanic's hand tool sets to a foreign country. Based on these findings, the Department is...
ERIC Educational Resources Information Center
Sigford, Ann; Nelson, Nancy
1998-01-01
Presents a program for elementary teachers to learn how to use hand tools and household appliances to teach the principles of physics. The lesson helps teachers become familiar with simple hand tools, combat the apprehension of mechanical devices, and develop an interest in tools and technology. Session involves disassembling appliances to…
Hopkins, William D; Meguerditchian, Adrien; Coulon, Olivier; Misiura, Maria; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J
2017-02-01
Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Hopkins, William D.; Meguerditchian, Adrien; Coulon, Olivier; Misiura, Maria; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J.
2017-01-01
Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca’s area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution. PMID:27816558
Ensuring Patient Safety in Care Transitions: An Empirical Evaluation of a Handoff Intervention Tool
Abraham, Joanna; Kannampallil, Thomas; Patel, Bela; Almoosa, Khalid; Patel, Vimla L.
2012-01-01
Successful handoffs ensure smooth, efficient and safe patient care transitions. Tools and systems designed for standardization of clinician handoffs often focuses on ensuring the communication activity during transitions, with limited support for preparatory activities such as information seeking and organization. We designed and evaluated a Handoff Intervention Tool (HAND-IT) based on a checklist-inspired, body system format allowing structured information organization, and a problem-case narrative format allowing temporal description of patient care events. Based on a pre-post prospective study using a multi-method analysis we evaluated the effectiveness of HAND-IT as a documentation tool. We found that the use of HAND-IT led to fewer transition breakdowns, greater tool resilience, and likely led to better learning outcomes for less-experienced clinicians when compared to the current tool. We discuss the implications of our results for improving patient safety with a continuity of care-based approach. PMID:23304268
Ostolaza, M; Abudarham, J; Dilascio, S; Drault-Boedo, E; Gallo, S; Garcete, A; Kramer, M; Maiaru, M; Mendelevich, A; Modica, M; Peralta, F; Sanchez-Correa, C
2017-04-01
In clinical practice it is important to be able to assess the function of the upper limb of the patient who has suffered a stroke. There is currently no systemic review that could identify assessment tools for the 'fine use of the hand' and 'use of both hand and arm'. Primary, to identify observational tools which can assess the fine use of the hand and the use of both hand and arm in patients with stroke sequels. Secondary, to analyze the bias risk in the included articles, describing and categorizing the clinical utility, validity and reliability. A search was carried in Medline, LILACS, SciELO and Open Grey, which included articles published until October 2015. Studies that validate assessing tools of the upper limb in subjects with a stroke sequel which evaluate the fine use of the hand and the use of both hand and arm were included. Eleven tools in evaluate observational haven been selected, which assess the fine use of the hand and the use of hand and arm. In every case both validity and reliability have been reported, but clinical utility has been less considered for assessment. The studies that researched these tools showed a high risk of bias in their development. ARAT-19 showed a lower bias risk, but when it has to do with applicability and the reference trial is taken into account, the level of concern is high.
Evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration.
Griffin, M J
1998-05-01
A method of evaluating the effectiveness of gloves in reducing the hazards of hand-transmitted vibration is proposed. The glove isolation effectiveness was calculated from: (a) the measured transmissibility of a glove, (b) the vibration spectrum on the handle of a specific tool (or class of tools), and (c) the frequency weighting indicating the degree to which different frequencies of vibration cause injury. With previously reported tool vibration spectra and glove transmissibilities (from 10-1000 Hz), the method was used to test 10 gloves with 20 different powered tools. The frequency weighting for hand-transmitted vibration advocated in British standard 6842 (1987) and international standard 5349 (1986) greatly influences the apparent isolation effectiveness of gloves. With the frequency weighting, the gloves had little effect on the transmission of vibration to the hand from most of the tools. Only for two or three tools (those dominated by high frequency vibration) did any glove provide useful attenuation. Without the frequency weighting, some gloves showed useful attenuation of the vibration on most powered tools. In view of the uncertain effect of the vibration frequency in the causation of disorders from hand-transmitted vibration, it is provisionally suggested that the wearing of a glove by the user of a particular vibratory tool could be encouraged if the glove reduces the transmission of vibration when it is evaluated without the frequency weighting and does not increase the vibration when it is evaluated with the frequency weighting. A current international standard for the measurement and evaluation of the vibration transmitted by gloves can classify a glove as an antivibration glove when it provides no useful attenuation of vibration, whereas a glove providing useful attenuation of vibration on a specific tool can fail the test.
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data. PMID:25698947
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data.
Anthropomorphic Telemanipulation System in Terminus Control Mode
NASA Technical Reports Server (NTRS)
Jau, Bruno M.; Lewis, M. Anthony; Bejczy, Antal K.
1994-01-01
This paper describes a prototype anthropomorphic kinesthetic telepresence system that is being developed at JPL. It utilizes dexterous terminus devices in the form of an exoskeleton force-sensing master glove worn by the operator and a replica four finger anthropomorphic slave hand. The newly developed master glove is integrated with our previously developed non-anthropomorphic six degree of freedom (DOF) universal force-reflecting hand controller (FRHC). The mechanical hand and forearm are mounted to an industrial robot (PUMA 560), replacing its standard forearm. The notion of 'terminus control mode' refers to the fact that only the terminus devices (glove and robot hand) are of anthropomorphic nature, and the master and slave arms are non-anthropomorphic. The system is currently being evaluated, focusing on tool handling and astronaut equivalent task executions. The evaluation revealed the system's potential for tool handling but it also became evident that hand tool manipulations and space operations require a dual arm robot. This paper describes the system's principal components, its control and computing architecture, discusses findings of the tool handling evaluation, and explains why common tool handling and EVA space tasks require dual arm robots.
Tools. Unit 9: A Core Curriculum of Related Instruction for Apprentices.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.
The tool handling unit is presented to assist apprentices to acquire a general knowledge on the use of various basic tools. The unit consists of seven modules: (1) introduction to hand tools and small power tools; (2) measuring tools: layout and measuring tools for woodworking; (3) measuring tools: feeler gauge, micrometer, and torque wrench; (4)…
Design and ergonomics. Methods for integrating ergonomics at hand tool design stage.
Marsot, Jacques; Claudon, Laurent
2004-01-01
As a marked increase in the number of musculoskeletal disorders was noted in many industrialized countries and more specifically in companies that require the use of hand tools, the French National Research and Safety Institute (INRS) launched in 1999 a research project on the topic of integrating ergonomics into hand tool design, and more particularly to a design of a boning knife. After a brief recall of the difficulties of integrating ergonomics at the design stage, the present paper shows how 3 design methodological tools--Functional Analysis, Quality Function Deployment and TRIZ--have been applied to the design of a boning knife. Implementation of these tools enabled us to demonstrate the extent to which they are capable of responding to the difficulties of integrating ergonomics into product design.
Unusual hand postures but not familiar tools show motor equivalence with precision grasping.
Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A
2016-06-01
A central question in sensorimotor control is whether or not actions performed with the hands and corresponding actions performed with tools share a common underlying motor plan, even though different muscles and effectors are engaged. There is certainly evidence that tools used to extend the reach of the limb can be incorporated into the body schema after training. But even so, it is not clear whether or not actions such as grasping with tools and grasping with the fingers share the same programming network, i.e. show 'motor equivalence'. Here we first show that feedback-appropriate motor programming for grasps with atypical hand postures readily transfers to stereotypical precision grasps. In stark contrast, however, we find no evidence for an analogous transfer of the programming for grasps using tools to the same stereotypical precision grasps. These findings have important implications for our understanding of body schema. Although the extension of the limb that is afforded by tool use may be incorporated into the body schema, the programming of a grasping movement made with tools appears to resist such incorporation. It could be the case that the proprioceptive signals from the limb can be easily updated to reflect the end of a tool held in the hand, but the motor programs and sensory signals associated with grasping with the thumb and finger cannot be easily adapted to control the opening and closing of a tool. Instead, new but well-practiced motor programs are put in place for tool use that do not exhibit motor equivalence with manual grasping. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal visual-haptic integration with articulated tools.
Takahashi, Chie; Watt, Simon J
2017-05-01
When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.
Agricultural Farm-Related Injuries in Bangladesh and Convenient Design of Working Hand Tools.
Parvez, M S; Shahriar, M M
2018-01-01
Injuries during cultivation of land are the significant causes of recession for an agricultural country like Bangladesh. Thousands of tools are used in agricultural farm having much probability of getting injury at their workplaces. For the injury prevention, proper hand tool designs need to be recommended with ergonomic evaluations. This paper represents the main causes of agricultural injuries among the Bangladeshi farmers. Effective interventions had been discussed in this paper to reduce the rate of injury. This study was carried out in the Panchagarh district of Bangladesh. Data on 434 agricultural injuries were collected and recorded. About 67% injuries of all incidents were due to hand tools, and the remaining 33% were due to machinery or other sources. Though most of the injuries were not serious, about 22% injuries were greater than or equal to AIS 2 (Abbreviated Injury Scale). The practical implication of this study is to design ergonomically fit agricultural hand tools for Bangladeshi farmers in order to avoid their injuries.
Human-scale interaction for virtual model displays: a clear case for real tools
NASA Astrophysics Data System (ADS)
Williams, George C.; McDowall, Ian E.; Bolas, Mark T.
1998-04-01
We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.
Fatal hand tool injuries in construction.
Trent, R B; Wyant, W D
1990-08-01
Past research on occupational hand tool injuries has generally focused on nonfatal injuries. Most such injuries occur at the point where energy is transferred to the material being worked, eg, at the edge of a saw blade or the point of a drill. Assuming that hand tool injuries that are fatal will differ from nonfatal injuries, 62 Occupation Safety and Health Administration reports were analyzed. Four patterns emerged when the type of contact with energy was used to classify incidents. Fatal injuries occurred when (1) contact was made with energy that supplies power to the hand tool, (2) energy normally transferred to the material being worked is transferred to the worker, (3) workers or materials fall, and (4) potential energy is encountered in the work environment. Analysis showed that almost all such injuries could be prevented by application of existing safe work practices.
Safety with Hand and Portable Power Tools. Module SH-14. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on safety with hand and portable power tools is one of 50 modules concerned with job safety and health. This module discusses the proper use and maintenance of tools, including the need for protective equipment for the worker. Following the introduction, 16 objectives (each keyed to a page in the text) the student is expected…
NASA Technical Reports Server (NTRS)
Casey, E. J.; Commadore, C. C.; Ingles, M. E.
1980-01-01
Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.
Improving physician's hand over among oncology staff using standardized communication tool
Alolayan, Ashwaq; Alkaiyat, Mohammad; Ali, Yosra; Alshami, Mona; Al-Surimi, Khaled; Jazieh, Abdul-Rahman
2017-01-01
Cancer patients are frequently admitted to hospital for many reasons. During their hospitalization they are handled by different physicians and other care providers. Maintaining good communication among physicians is essential to assure patient safety and the delivery of quality patient care. Several incidents of miscommunication issues have been reported due to lack of a standardized communication tool for patients' hand over among physicians at our oncology department. Hence, this improvement project aims at assessing the impact of using a standardized communication tool on improving patients' hand over and quality of patient care. A quality improvement team has been formed to address the issue of cancer patients' hand over. We adopted specific hand over tool to be used by physicians. This tool was developed based on well-known and validated communication tool called ISBAR - Identify, Situation, Background, Assessment and Recommendation, which contains pertinent information about the patient's condition. The form should be shared at a specific point in time during the handover process. We monitored the compliance of physician's with this tool over 16 weeks embedded by four ‘purposive’ and ‘sequential’ Plan-Do-Study-Act (PDSA) cycles; where each PDSA cycle was developed based on the challenges faced and lessons learned in each step and the result of the previous PDSA cycle. Physicians compliance rate of using the tool had improved significantly from 45% (baseline) to 100% after the fourth PDSA cycle. Other process measure was measuring acknowledgment of hand over receipt email at two checkpoints at 8:00 – 9:00 a.m. and 4:00 – 5:00 p.m. The project showed that using a standardized handover form as a daily communication method between physicians is a useful idea and feasible to improve cancer patients handover with positive impact on many aspects of healthcare process and outcomes. PMID:28174657
Pilot study of digital tools to support multimodal hand hygiene in a clinical setting.
Thirkell, Gary; Chambers, Joanne; Gilbart, Wayne; Thornhill, Kerrill; Arbogast, James; Lacey, Gerard
2018-03-01
Digital tools for hand hygiene do not share data, limiting their potential to support multimodal programs. The Christie NHS Foundation Trust, United Kingdom, worked with GOJO (in the United States), MEG (in Ireland), and SureWash (in Ireland) to integrate their systems and pilot their combined use in a clinical setting. A 28-bed medical oncology unit piloted the system for 5 weeks. Live data from the tools were combined to create a novel combined risk status metric that was displayed publicly and via a management Web site. The combined risk status reduced over the pilot period. However, larger and longer duration studies are required to reach statistical significance. Staff and especially patient reaction was positive in that 70% of the hand hygiene training events were by patients. The digital tools did not negatively impact clinical workflow and received positive engagement from staff and patients. The combined risk status did not change significantly over the short pilot period because there was also no specific hand hygiene improvement campaign underway at the time of the pilot study. The results indicate that integrated digital tools can provide both rich data and novel tools that both measure impact and provide feedback to support the implementation of multimodal hand hygiene campaigns, reducing the need for significant additional personnel resources. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.
ERIC Educational Resources Information Center
Bowyer, James
2015-01-01
Four components of the Kodály concept are delineated here: philosophy, objectives, essential tools, and lesson planning process. After outlining the tenets of the Kodály philosophy and objectives, the article presents the Kodály concept's essential tools, including singing, movable "do" solfège, rhythm syllables, hand signs, singing on…
Hand tools: A complization. [for industrial application
NASA Technical Reports Server (NTRS)
1974-01-01
Technical information is provided for recent developments in hand tools for assembly and disassembly application, for materials finishing, and for inspection, analysis, and testing. Photographs or diagrams accompany each description and patent information is included with several articles.
Takahashi, Chie; Watt, Simon J.
2014-01-01
When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the “weight” given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots) with different “gains” between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber's law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modeled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimizing the design of visual-haptic devices. PMID:24592245
Humle, Tatyana; Matsuzawa, Tetsuro
2009-01-01
Population-level right handedness is a human universal, whose evolutionary origins are the source of considerable empirical and theoretical debate. Although our closest neighbor, the chimpanzee, shows some evidence for population-level handedness in captivity, there is little evidence from the wild. Tool-use measures of hand use in chimpanzees have yielded a great deal of variation in directionality and strength in hand preference, which still remains largely unexplored and unexplained. Data on five measures of hand use across four tool-use skills--ant-dipping, algae-scooping, pestle-pounding and nut-cracking--among the wild chimpanzees of Bossou, Guinea, West Africa, are presented here. This study aims to explore age- and sex-class effects, as well as the influence of task motor, cognitive and haptic demands, on the strength and directionality of hand preference within and across all five measures of hand use. Although there was no age- or sex-class effect on the directionality of hand preference, immature
Genetic basis in motor skill and hand preference for tool use in chimpanzees (Pan troglodytes).
Hopkins, William D; Reamer, Lisa; Mareno, Mary Catherine; Schapiro, Steven J
2015-02-07
Chimpanzees are well known for their tool using abilities. Numerous studies have documented variability in tool use among chimpanzees and the role that social learning and other factors play in their development. There are also findings on hand use in both captive and wild chimpanzees; however, less understood are the potential roles of genetic and non-genetic mechanisms in determining individual differences in tool use skill and laterality. Here, we examined heritability in tool use skill and handedness for a probing task in a sample of 243 captive chimpanzees. Quantitative genetic analysis, based on the extant pedigrees, showed that overall both tool use skill and handedness were significantly heritable. Significant heritability in motor skill was evident in two genetically distinct populations of apes, and between two cohorts that received different early social rearing experiences. We further found that motor skill decreased with age and that males were more commonly left-handed than females. Collectively, these data suggest that though non-genetic factors do influence tool use performance and handedness in chimpanzees, genetic factors also play a significant role, as has been reported in humans. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
1998-01-01
equipped with a constant- pressure switch or control: drills; tappers; fastener drivers; horizontal, vertical, and angle grinders with wheels more than...hand-held power tools must be equipped with either a positive “on-off” control switch, a constant pressure switch , or a “lock-on” control: disc sanders...percussion tools with no means of holding accessories securely, must be equipped with a constant- pressure switch that will shut off the power when the
Tools for language: patterned iconicity in sign language nouns and verbs.
Padden, Carol; Hwang, So-One; Lepic, Ryan; Seegers, Sharon
2015-01-01
When naming certain hand-held, man-made tools, American Sign Language (ASL) signers exhibit either of two iconic strategies: a handling strategy, where the hands show holding or grasping an imagined object in action, or an instrument strategy, where the hands represent the shape or a dimension of the object in a typical action. The same strategies are also observed in the gestures of hearing nonsigners identifying pictures of the same set of tools. In this paper, we compare spontaneously created gestures from hearing nonsigning participants to commonly used lexical signs in ASL. Signers and gesturers were asked to respond to pictures of tools and to video vignettes of actions involving the same tools. Nonsigning gesturers overwhelmingly prefer the handling strategy for both the Picture and Video conditions. Nevertheless, they use more instrument forms when identifying tools in pictures, and more handling forms when identifying actions with tools. We found that ASL signers generally favor the instrument strategy when naming tools, but when describing tools being used by an actor, they are significantly more likely to use more handling forms. The finding that both gesturers and signers are more likely to alternate strategies when the stimuli are pictures or video suggests a common cognitive basis for differentiating objects from actions. Furthermore, the presence of a systematic handling/instrument iconic pattern in a sign language demonstrates that a conventionalized sign language exploits the distinction for grammatical purpose, to distinguish nouns and verbs related to tool use. Copyright © 2014 Cognitive Science Society, Inc.
Analysis of Facial Injuries Caused by Power Tools.
Kim, Jiye; Choi, Jin-Hee; Hyun Kim, Oh; Won Kim, Sug
2016-06-01
The number of injuries caused by power tools is steadily increasing as more domestic woodwork is undertaken and more power tools are used recreationally. The injuries caused by the different power tools as a consequence of accidents are an issue, because they can lead to substantial costs for patients and the national insurance system. The increase in hand surgery as a consequence of the use of power tools and its economic impact, and the characteristics of the hand injuries caused by power saws have been described. In recent years, the authors have noticed that, in addition to hand injuries, facial injuries caused by power tools commonly present to the emergency room. This study aimed to review the data in relation to facial injuries caused by power saws that were gathered from patients who visited the trauma center at our hospital over the last 4 years, and to analyze the incidence and epidemiology of the facial injuries caused by power saws. The authors found that facial injuries caused by power tools have risen continually. Facial injuries caused by power tools are accidental, and they cause permanent facial disfigurements and functional disabilities. Accidents are almost inevitable in particular workplaces; however, most facial injuries could be avoided by providing sufficient operator training and by tool operators wearing suitable protective devices. The evaluation of the epidemiology and patterns of facial injuries caused by power tools in this study should provide the information required to reduce the number of accidental injuries.
Multisurface fixture permits easy grinding of tool bit angles
NASA Technical Reports Server (NTRS)
Jones, C. R.
1966-01-01
Multisurface fixture with a tool holder permits accurate grinding and finishing of right and left hand single point threading tools. All angles are ground by changing the fixture position to rest at various references angles without removing the tool from the holder.
Riolfi, A; Perbellini, L
2010-01-01
The use of nailfold capillaroscopy combined with skin thermometry in the study of microcirculation of the hands in workers exposed to hand-arm vibration is assessed. Fifty-eight subjects were studied; 40 asymptomatic forestry workers exposed to hand-arm vibration, 13 forestry workers exposed to hand-arm vibration with Raynaud-like symptoms confirmed by skin thermometry; 5 controls. Reduction of capillary density was observed in workers exposed to vibrating tools with respect to controls. Tortuosity of capillary loops was significantly more frequent in subjects exposed to vibrating tools than in controls. No statistically significant difference in capillary vessels of the hands was found between asymptomatic exposed subjects and workers affected by Raynaud-like symptoms. In our sample nailfold capillaroscopy shows good sensibilty and specificity in detecting capillary modifications secondary to exposure to hand-vibration. Weaker evidence is instead given in order to actual disturbances of hands circulation in chronic exposure to vibrating tools.
Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism.
Debats, Nienke B; Ernst, Marc O; Heuer, Herbert
2017-04-01
Humans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other. We propose that this perceptual attraction is based on the principles by which the brain integrates redundant sensory information of single objects or events, known as optimal multisensory integration. That is, 1 ) sensory information about the hand and the tool are weighted according to their relative reliability (i.e., inverse variances), and 2 ) the unisensory reliabilities sum up in the integrated estimate. We assessed whether perceptual attraction is consistent with optimal multisensory integration model predictions. We used a cursor-control tool-use task in which we manipulated the relative reliability of the unisensory hand and cursor position estimates. The perceptual biases shifted according to these relative reliabilities, with an additional bias due to contextual factors that were present in experiment 1 but not in experiment 2 The biased position judgments' variances were, however, systematically larger than the predicted optimal variances. Our findings suggest that the perceptual attraction in tool use results from a reliability-based weighting mechanism similar to optimal multisensory integration, but that certain boundary conditions for optimality might not be satisfied. NEW & NOTEWORTHY Kinematic tool use is associated with a perceptual attraction between the spatially separated hand and the effective part of the tool. We provide a formal account for this phenomenon, thereby showing that the process behind it is similar to optimal integration of sensory information relating to single objects. Copyright © 2017 the American Physiological Society.
Rossol, Nathaniel; Cheng, Irene; Rui Shen; Basu, Anup
2014-01-01
Real-time control of visual display systems via mid-air hand gestures offers many advantages over traditional interaction modalities. In medicine, for example, it allows a practitioner to adjust display values, e.g. contrast or zoom, on a medical visualization interface without the need to re-sterilize the interface. However, when users are holding a small tool (such as a pen, surgical needle, or computer stylus) the need to constantly put the tool down in order to make hand gesture interactions is not ideal. This work presents a novel interface that automatically adjusts for gesturing with hands and hand-held tools to precisely control medical displays. The novelty of our interface is that it uses a single set of gestures designed to be equally effective for fingers and hand-held tools without using markers. This type of interface was previously not feasible with low-resolution depth sensors such as Kinect, but is now achieved by using the recently released Leap Motion controller. Our interface is validated through a user study on a group of people given the task of adjusting parameters on a medical image.
Impact of design features upon perceived tool usability and safety
NASA Astrophysics Data System (ADS)
Wiker, Steven F.; Seol, Mun-Su
2005-11-01
While injuries from powered hand tools are caused by a number of factors, this study looks specifically at the impact of the tools design features on perceived tool usability and safety. The tools used in this study are circular saws, power drills and power nailers. Sixty-nine males and thirty-two females completed an anonymous web-based questionnaire that provided orthogonal view photographs of the various tools. Subjects or raters provided: 1) description of the respondents or raters, 2) description of the responses from the raters, and 3) analysis of the interrelationships among respondent ratings of tool safety and usability, physical metrics of the tool, and rater demographic information. The results of the study found that safety and usability were dependent materially upon rater history of use and experience, but not upon training in safety and usability, or quality of design features of the tools (e.g., grip diameters, trigger design, guards, etc.). Thus, positive and negative transfer of prior experience with use of powered hand tools is far more important than any expectancy that may be driven by prior safety and usability training, or from the visual cues that are provided by the engineering design of the tool.
NASA Technical Reports Server (NTRS)
1974-01-01
Space technology utilization for developing tools, adapters, and fixtures and procedures for assembling, installing, and servicing electrical components and equipment are discussed. Some of the items considered are: (1) pivotal screwdriver, (2) termination locator tool for shielded cables, (3) solder application tools, (4) insulation and shield removing tool, and (5) torque wrench adapter for cable connector engaging ring. Diagrams of the various tools and devices are provided.
The Role of Motor Learning in Spatial Adaptation near a Tool
Brown, Liana E.; Doole, Robert; Malfait, Nicole
2011-01-01
Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented. PMID:22174944
A better way of fitting clips? A comparative study with respect to physical workload.
Gaudez, Clarisse; Wild, Pascal; Aublet-Cuvelier, Agnès
2015-11-01
The clip fitting task is a frequently encountered assembly operation in the car industry. It can cause upper limb pain. During task laboratory simulations, upper limb muscular activity and external force were compared for 4 clip fitting methods: with the bare hand, with an unpowered tool commonly used at a company and with unpowered and powered prototype tools. None of the 4 fitting methods studied induced a lower overall workload than the other three. Muscle activity was lower at the dominant limb when using the unpowered tools and at the non-dominant limb with the bare hand or with the powered tool. Fitting clips with the bare hand required a higher external force than fitting with the three tools. Evaluation of physical workload was different depending on whether external force or muscle activity results were considered. Measuring external force only, as recommended in several standards, is insufficient for evaluating physical workload. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
29 CFR 1926.304 - Woodworking tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.304 Woodworking tools. (a) Disconnect switches. All fixed power driven woodworking tools shall be provided with a disconnect..., power-driven circular saws shall be equipped with guards above and below the base plate or shoe. The...
Exposure assessment in health assessments for hand-arm vibration syndrome.
Mason, H J; Poole, K; Young, C
2011-08-01
Assessing past cumulative vibration exposure is part of assessing the risk of hand-arm vibration syndrome (HAVS) in workers exposed to hand-arm vibration and invariably forms part of a medical assessment of such workers. To investigate the strength of relationships between the presence and severity of HAVS and different cumulative exposure metrics obtained from a self-reporting questionnaire. Cumulative exposure metrics were constructed from a tool-based questionnaire applied in a group of HAVS referrals and workplace field studies. These metrics included simple years of vibration exposure, cumulative total hours of all tool use and differing combinations of acceleration magnitudes for specific tools and their daily use, including the current frequency-weighting method contained in ISO 5349-1:2001. Use of simple years of exposure is a weak predictor of HAVS or its increasing severity. The calculation of cumulative hours across all vibrating tools used is a more powerful predictor. More complex calculations based on involving likely acceleration data for specific classes of tools, either frequency weighted or not, did not offer a clear further advantage in this dataset. This may be due to the uncertainty associated with workers' recall of their past tool usage or the variability between tools in the magnitude of their vibration emission. Assessing years of exposure or 'latency' in a worker should be replaced by cumulative hours of tool use. This can be readily obtained using a tool-pictogram-based self-reporting questionnaire and a simple spreadsheet calculation.
Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão
2018-05-24
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
Prieur, Jacques; Pika, Simone; Blois-Heulin, Catherine; Barbu, Stéphanie
2018-04-14
Understanding variations of apes' laterality between activities is a central issue when investigating the evolutionary origins of human hemispheric specialization of manual functions and language. We assessed laterality of 39 chimpanzees in a non-communication action similar to termite fishing that we compared with data on five frequent conspecific-directed gestures involving a tool previously exploited in the same subjects. We evaluated, first, population-level manual laterality for tool-use in non-communication actions; second, the influence of sociodemographic factors (age, sex, group, and hierarchy) on manual laterality in both non-communication actions and gestures. No significant right-hand bias at the population level was found for non-communication tool use, contrary to our previous findings for gestures involving a tool. A multifactorial analysis revealed that hierarchy and age particularly modulated manual laterality. Dominants and immatures were more right-handed when using a tool in gestures than in non-communication actions. On the contrary, subordinates, adolescents, young and mature adults as well as males were more right-handed when using a tool in non-communication actions than in gestures. Our findings support the hypothesis that some primate species may have a specific left-hemisphere processing gestures distinct from the cerebral system processing non-communication manual actions and to partly support the tool use hypothesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Dissecting children's observational learning of complex actions through selective video displays.
Flynn, Emma; Whiten, Andrew
2013-10-01
Children can learn how to use complex objects by watching others, yet the relative importance of different elements they may observe, such as the interactions of the individual parts of the apparatus, a model's movements, and desirable outcomes, remains unclear. In total, 140 3-year-olds and 140 5-year-olds participated in a study where they observed a video showing tools being used to extract a reward item from a complex puzzle box. Conditions varied according to the elements that could be seen in the video: (a) the whole display, including the model's hands, the tools, and the box; (b) the tools and the box but not the model's hands; (c) the model's hands and the tools but not the box; (d) only the end state with the box opened; and (e) no demonstration. Children's later attempts at the task were coded to establish whether they imitated the hierarchically organized sequence of the model's actions, the action details, and/or the outcome. Children's successful retrieval of the reward from the box and the replication of hierarchical sequence information were reduced in all but the whole display condition. Only once children had attempted the task and witnessed a second demonstration did the display focused on the tools and box prove to be better for hierarchical sequence information than the display focused on the tools and hands only. Copyright © 2013 Elsevier Inc. All rights reserved.
[Optimization of end-tool parameters based on robot hand-eye calibration].
Zhang, Lilong; Cao, Tong; Liu, Da
2017-04-01
A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.
ERIC Educational Resources Information Center
Magosso, Elisa; Ursino, Mauro; di Pellegrino, Giuseppe; Ladavas, Elisabetta; Serino, Andrea
2010-01-01
Visual peripersonal space (i.e., the space immediately surrounding the body) is represented by multimodal neurons integrating tactile stimuli applied on a body part with visual stimuli delivered near the same body part, e.g., the hand. Tool use may modify the boundaries of the peri-hand area, where vision and touch are integrated. The neural…
NASA Technical Reports Server (NTRS)
Charles, Steve; Williams, Roy
1989-01-01
Data describing the microsurgeon's hand dynamics was recorded and analyzed in order to provide an accurate model for the telemicrosurgery application of the Bimanual Telemicro-operation Test Bed. The model, in turn, will guide the development of algorithms for the control of robotic systems in bimanual telemicro-operation tasks. Measurements were made at the hand-tool interface and include position, acceleration and force between the tool-finger interface. Position information was captured using an orthogonal pulsed magnetic field positioning system resulting in measurements in all six degrees-of-freedom (DOF). Acceleration data at the hands was obtained using accelerometers positioned in a triaxial arrangement on the back of the hand allowing measurements in all three cartesian-coordinate axes. Force data was obtained by using miniature load cells positioned between the tool and the finger and included those forces experienced perpendicular to the tool shaft and those transferred from the tool-tissue site. Position data will provide a minimum/maximum reference frame for the robotic system's work space or envelope. Acceleration data will define the response times needed by the robotic system in order to emulate and subsequently outperform the human operator's tool movements. The force measurements will aid in designing a force-reflective, force-scaling system as well as defining the range of forces the robotic system will encounter. All analog data was acquired by a 16-channel analog-to-digital conversion system residing in a IBM PC/AT-compatible computer at the Center's laboratory. The same system was also used to analyze and present the data.
Prosthetic Hand For Holding Rods, Tools, And Handles
NASA Technical Reports Server (NTRS)
Belcher, Jewell G., Jr.; Vest, Thomas W.
1995-01-01
Prosthetic hand with quick-grip/quick-release lever broadens range of specialized functions available to lower-arm amputee by providing improved capabilities for gripping rods, tools, handles, and like. Includes two stationary lower fingers opposed by one pivoting upper finger. Lever operates in conjunction with attached bracket.
76 FR 50755 - Heavy Forged Hand Tools From China
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-457-A-D (Third Review)] Heavy Forged... heavy forged hand tools from China would be likely to lead to continuation or recurrence of material.... The views of the Commission are contained in USITC Publication 4250 (August 2011), entitled Heavy...
Combination drilling and skiving tool
Stone, William J.
1989-01-01
A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.
Magnet-wire wrapping tool for integrated circuits
NASA Technical Reports Server (NTRS)
Takahashi, T. H.
1972-01-01
Wire-dispensing tool which resembles mechanical pencil is used to wrap magnet wire around integrated circuit terminals uniformly and securely without damaging insulative coating on wire. Tool is hand-held and easily manipulated to execute wire wrapping movements.
30 CFR 56.12033 - Hand-held electric tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12033 - Hand-held electric tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12033 - Hand-held electric tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12033 - Hand-held electric tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
30 CFR 56.12033 - Hand-held electric tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...
48 CFR 218.201 - Contingency operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hours of business related courses do not apply to DoD employees or members of the armed forces who are....7002, Restrictions on food, clothing, fabrics, specialty metals, and hand or measuring tools: (1... hand or measuring tools in support of contingency operations, or for which the use of other than...
48 CFR 218.201 - Contingency operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hours of business related courses do not apply to DoD employees or members of the armed forces who are....7002, Restrictions on food, clothing, fabrics, specialty metals, and hand or measuring tools: (1... hand or measuring tools in support of contingency operations, or for which the use of other than...
Hand anthropometry survey of rural farm workers in south-eastern Nigeria.
Obi, Okey Francis
2016-04-01
The importance of hand anthropometry as it relates to design of hand tools particularly for farm workers have been established; however, anthropometric data for this group of agricultural workers have continued to remain scarce. A survey of hand anthropometry relevant in design of agricultural hand tools was carried out on 200 male and 100 female adult farm workers in south-eastern Nigeria. Comparison of the male and female data obtained showed that male dimensions were higher than that recorded for the females. The hand anthropometric data of the male and female farm workers were compared with that of other populations but no clear distinction was observed. It was however clear that the following hand dimensions, 2nd Joint to root digit 3 and width at tip digit 3 recorded for Nigerian farm workers were highest and lowest, respectively, compared to other populations. Practitioner Summary: Hand anthropometric data relevant in design of hand tools have continued to remain scarce particularly for farm workers. Hand anthropometry survey of farm workers carried out in south-eastern Nigeria revealed higher dimensions for males than females; however, no clear distinction was observed in comparison with other populations.
Standardized Curriculum for Machine Tool Operation/Machine Shop.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…
ERIC Educational Resources Information Center
Burke, Victoria; Greenberg, Daphne
2010-01-01
There are many readability tools that instructors can use to help adult learners select reading materials. We describe and compare different types of readability tools: formulas calculated by hand, tools found on the Web, tools embedded in a word processing program, and readability tools found in a commercial software program. Practitioners do not…
Easy-To-Use Connector-Assembly Tool
NASA Technical Reports Server (NTRS)
Redmon, John W., Jr.; Jankowski, Fred
1988-01-01
Tool compensates for user's loss of dexterity under awkward conditions. Has jaws that swivel over 180 degree so angle adjusts with respect to handles. Oriented and held in position most comfortable and effective for user in given situation. Jaws lined with rubber pads so they conform to irregularly shaped parts and grips firmly but gently. Once tool engages part, it locks on it so user can release handles without losing part. Ratchet mechanism in tool allows user to work handles back and forth in confined space to connect or disconnect part. Quickly positioned, locked, and released. Gives user feel of its grip on part. Frees grasping muscles from work during part of task, giving user greater freedom to move hand. Operates with only one hand, leaving user's other hand free to manipulate wiring or other parts. Also adapts to handling and positioning extremely-hot or extremely-cold fluid lines, contaminated objects, abrasive or sharp objects, fragile items, and soft objects.
Behavioral and functional strategies during tool use tasks in bonobos.
Bardo, Ameline; Borel, Antony; Meunier, Hélène; Guéry, Jean-Pascal; Pouydebat, Emmanuelle
2016-09-01
Different primate species have developed extensive capacities for grasping and manipulating objects. However, the manual abilities of primates remain poorly known from a dynamic point of view. The aim of the present study was to quantify the functional and behavioral strategies used by captive bonobos (Pan paniscus) during tool use tasks. The study was conducted on eight captive bonobos which we observed during two tool use tasks: food extraction from a large piece of wood and food recovery from a maze. We focused on grasping postures, in-hand movements, the sequences of grasp postures used that have not been studied in bonobos, and the kind of tools selected. Bonobos used a great variety of grasping postures during both tool use tasks. They were capable of in-hand movement, demonstrated complex sequences of contacts, and showed more dynamic manipulation during the maze task than during the extraction task. They arrived on the location of the task with the tool already modified and used different kinds of tools according to the task. We also observed individual manual strategies. Bonobos were thus able to develop in-hand movements similar to humans and chimpanzees, demonstrated dynamic manipulation, and they responded to task constraints by selecting and modifying tools appropriately, usually before they started the tasks. These results show the necessity to quantify object manipulation in different species to better understand their real manual specificities, which is essential to reconstruct the evolution of primate manual abilities. © 2016 Wiley Periodicals, Inc.
Development of Bio-impedance Analyzer (BIA) for Body Fat Calculation
NASA Astrophysics Data System (ADS)
Riyadi, Munawar A.; Nugraha, A.; Santoso, M. B.; Septaditya, D.; Prakoso, T.
2017-04-01
Common weight scales cannot assess body composition or determine fat mass and fat-fress mass that make up the body weight. This research propose bio-impedance analysis (BIA) tool capable to body composition assessment. This tool uses four electrodes, two of which are used for 50 kHz sine wave current flow to the body and the rest are used to measure the voltage produced by the body for impedance analysis. Parameters such as height, weight, age, and gender are provided individually. These parameters together with impedance measurements are then in the process to produce a body fat percentage. The experimental result shows impressive repeatability for successive measurements (stdev ≤ 0.25% fat mass). Moreover, result on the hand to hand node scheme reveals average absolute difference of total subjects between two analyzer tools of 0.48% (fat mass) with maximum absolute discrepancy of 1.22% (fat mass). On the other hand, the relative error normalized to Omron’s HBF-306 as comparison tool reveals less than 2% relative error. As a result, the system performance offers good evaluation tool for fat mass in the body.
Electrically powered hand tool
Myers, Kurt S.; Reed, Teddy R.
2007-01-16
An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools (i.e... Administration, International Trade Administration, Department of Commerce. SUMMARY: On January 3, 2011, the Department of Commerce (``Department'') initiated a sunset review of the antidumping duty orders on heavy...
The Use of Hand Tools in Agricultural Mechanics.
ERIC Educational Resources Information Center
Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.
This document contains a unit for teaching the use of hand tools in agricultural mechanics in Montana. It consists of an outline of the unit and seven lesson plans. The unit outline contains the following components: situation, aims and goals, list of lessons, student activities, teacher activities, special equipment needed, and references. The…
Judging and Actualizing Intrapersonal and Interpersonal Affordances
ERIC Educational Resources Information Center
Richardson, Michael J.; Marsh, Kerry L.; Baron, Reuben M.
2007-01-01
The current study investigated the perception of intrapersonal, interpersonal, and tool-based grasping possibilities. In Experiment 1, participants judged whether they would grasp planks of wood-presented in ascending, descending, and random orders of length-using one hand (1H), two hands (2H), or with a tool that extended their reach (TH). In…
Noise reduction techniques in the design of a pneumatic-driven hand held power tool
NASA Astrophysics Data System (ADS)
Skinner, Christian M.
2005-09-01
Pneumatic-driven hand-held power tools generate noise in the workplace. Current legislation in Europe and the USA aims at protecting workers against noise exposure. In the United States, the Occupational Safety and Health Administration (OSHA) requires that employers create a hearing conservation program if the noise exposure exceeds 85 dB(A). In the European Community under the Directive 2003/10/EC, employers are required to provide hearing protection if the noise exposure within the working environment exceeds 80 dB(A) and must require hearing protection to be worn if the noise exposure exceeds 85 dB(A). This paper examines the sources of noise which contribute to the overall noise from a hand-held power tool. A test plan was developed to identify these individual sources of noise and to determine if structure-borne noise or airborne noise is the dominant source relative to the overall noise level. The measurements were performed per International Standards Organization (ISO) 15744. This paper will describe the methodology used to identify the noise sources and reduce the overall noise of a hand-held power tool.
Chapter 03: Correct use of a hand lens
Alex Wiedenhoeft
2011-01-01
A hand lens is a powerful tool for the identification of wood, but like all tools it must be used correctly to take full advantage of its powers. The hand lens has two main parts, a lens that magnifies the object of interest (generally we use 10X or 14X lenses in wood identification; a 14X lens is recommended for use with this manual) and a housing to hold and protect...
NASA Technical Reports Server (NTRS)
Miller, Darcy
2000-01-01
Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.
Hand anthropometry of Indian women.
Nag, Anjali; Nag, P K; Desai, Hina
2003-06-01
Data on the physical dimension of the hand of Indian women are scanty. This information is necessary to ascertain human-machine compatibility in the design of manual systems for the bare and gloved hand, such as design and sizing of hand tools, controls, knobs and other applications in different kinds of precision and power grips. The present study was undertaken to generate hand anthropometric data of 95 women, working in informal industries (beedi, agarbatti and garment making). Fifty one hand measurements of the right hand (lengths, breadths, circumferences, depths, spreads and clearances of hand and fingers) were taken, using anthropometric sliding and spreading calipers, measuring tape and handgrip strength dynamometer. The data were statistically analyzed to determine the normality of data and the percentile values of different hand dimensions, and simple and multiple regression analysis were done to determine better predictors of hand length and grip strength. The hand breadths, circumferences and depths were approximately normally distributed, with some deviation in case of the finger lengths. Hand length was significantly correlated with the fist, wrist and finger circumferences. The fist and wrist circumferences, in combination, were better predictors of hand length. The hand lengths, breadths and depths, including finger joints of the Indian women studied were smaller than those of American, British and West Indian women. The hand circumferences of the Indian women were also smaller than the American women. Grip strengths of Indian women (20.36 +/- 3.24 kg) were less than those of American, British and West Indian women. Grip strength was found to be statistically significant with hand dimensions, such as hand height perpendicular to wrist crease (digit 5), proximal interphalangeal joint breadth (digit 3) and hand spread across wedge 1. The women who are forced to frequently use cutters, strippers and other tools, which are not optimally designed to their hand dimensions and strength range, might have higher prevalence of clinical symptoms and disorders of the hand. In view of the human hand-tool interface requirements, the present data on Indian women would be useful for ergo-design applications of hand tools and devices.
Hand tool permits shrink sizing of assembled tubing
NASA Technical Reports Server (NTRS)
Millett, A.; Odor, M.
1966-01-01
Portable tool sizes tubing ends without disassembling the tubing installation. The shrink sizing tool is clamped to the tubing and operated by a ratchet wrench. A gear train forces the tubing end against an appropriate die or mandrel to effect the sizing.
Point-cloud-to-point-cloud technique on tool calibration for dental implant surgical path tracking
NASA Astrophysics Data System (ADS)
Lorsakul, Auranuch; Suthakorn, Jackrit; Sinthanayothin, Chanjira
2008-03-01
Dental implant is one of the most popular methods of tooth root replacement used in prosthetic dentistry. Computerize navigation system on a pre-surgical plan is offered to minimize potential risk of damage to critical anatomic structures of patients. Dental tool tip calibrating is basically an important procedure of intraoperative surgery to determine the relation between the hand-piece tool tip and hand-piece's markers. With the transferring coordinates from preoperative CT data to reality, this parameter is a part of components in typical registration problem. It is a part of navigation system which will be developed for further integration. A high accuracy is required, and this relation is arranged by point-cloud-to-point-cloud rigid transformations and singular value decomposition (SVD) for minimizing rigid registration errors. In earlier studies, commercial surgical navigation systems from, such as, BrainLAB and Materialize, have flexibility problem on tool tip calibration. Their systems either require a special tool tip calibration device or are unable to change the different tool. The proposed procedure is to use the pointing device or hand-piece to touch on the pivot and the transformation matrix. This matrix is calculated every time when it moves to the new position while the tool tip stays at the same point. The experiment acquired on the information of tracking device, image acquisition and image processing algorithms. The key success is that point-to-point-cloud requires only 3 post images of tool to be able to converge to the minimum errors 0.77%, and the obtained result is correct in using the tool holder to track the path simulation line displayed in graphic animation.
Recommendations for tool-handle material choice based on finite element analysis.
Harih, Gregor; Dolšak, Bojan
2014-05-01
Huge areas of work are still done manually and require the usages of different powered and non-powered hand tools. In order to increase the user performance, satisfaction, and lower the risk of acute and cumulative trauma disorders, several researchers have investigated the sizes and shapes of tool-handles. However, only a few authors have investigated tool-handles' materials for further optimising them. Therefore, as presented in this paper, we have utilised a finite-element method for simulating human fingertip whilst grasping tool-handles. We modelled and simulated steel and ethylene propylene diene monomer (EPDM) rubber as homogeneous tool-handle materials and two composites consisting of EPDM rubber and EPDM foam, and also EPDM rubber and PU foam. The simulated finger force was set to obtain characteristic contact pressures of 20 kPa, 40 kPa, 80 kPa, and 100 kPa. Numerical tests have shown that EPDM rubber lowers the contact pressure just slightly. On the other hand, both composites showed significant reduction in contact pressure that could lower the risks of acute and cumulative trauma disorders which are pressure-dependent. Based on the results, it is also evident that a composite containing PU foam with a more evident and flat plateau deformed less at lower strain rates and deformed more when the plateau was reached, in comparison to the composite with EPDM foam. It was shown that hyper-elastic foam materials, which take into account the non-linear behaviour of fingertip soft tissue, can lower the contact pressure whilst maintaining low deformation rate of the tool-handle material for maintaining sufficient rate of stability of the hand tool in the hands. Lower contact pressure also lowers the risk of acute and cumulative trauma disorders, and increases comfort whilst maintaining performance. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Laterality of Grooming and Tool Use in a Group of Captive Bonobos (Pan paniscus).
Brand, Colin M; Marchant, Linda F; Boose, Klaree J; White, Frances J; Rood, Tabatha M; Meinelt, Audra
2017-01-01
Humans exhibit population level handedness for the right hand; however, the evolution of this behavioral phenotype is poorly understood. Here, we compared the laterality of a simple task (grooming) and a complex task (tool use) to investigate whether increasing task difficulty elicited individual hand preference among a group of captive bonobos (Pan paniscus). Subjects were 17 bonobos housed at the Columbus Zoo and Aquarium. Laterality of grooming was recorded using group scans; tool use was recorded using all-occurrence sampling. Grooming was characterized as unimanual or bimanual, and both tasks were scored as right-handed or left-handed. Most individuals did not exhibit significant hand preference for unimanual or bimanual (asymmetrical hand use) grooming, although 1 individual was lateralized for each. For the 8 subjects who engaged in termite fishing enough for statistical testing, 7 individuals exhibited significant laterality and strong individual hand preference. Four subjects preferred their left hand, 3 preferred their right, and 1 had no preference. Grooming, a simple behavior, was not lateralized in this group, yet a more complex behavior revealed a strong individual hand preference, and these results are congruent with other recent findings that demonstrate complex tasks elicit hand preference in bonobos. © 2017 S. Karger AG, Basel.
Cutting holes in fabric-faced panels
NASA Technical Reports Server (NTRS)
Peterson, S. A.
1981-01-01
Tool has 2 carbide inserts that bore clean holes through fibrous material with knifelike slicing action. Cutting edge of insert is curved, with plane inner surface at 30 degree angle to tool axis. Drill press or hand-held drill can be used to hold cutting tool.
Tremor and hand-arm vibration syndrome (HAVS) in road maintenance workers.
Bast-Pettersen, Rita; Ulvestad, Bente; Færden, Karl; Clemm, Thomas Aleksander C; Olsen, Raymond; Ellingsen, Dag Gunnar; Nordby, Karl-Christian
2017-01-01
The aim of this study was to evaluate postural and rest tremor among workers using vibrating hand tools, taking into account the possible effects of toxicants such as alcohol and tobacco. A further aim was to study workers diagnosed with hand-arm vibration syndrome (HAVS) at the time of examination. This study comprises 103 road maintenance workers, 55 exposed to vibrating hand tools (age 41.0 years; range 21-62) and 48 referents (age 38.5 years; range 19-64). They were examined with the CATSYS Tremor Pen ® . Exposure to vibrating tools and serum biomarkers of alcohol and tobacco consumption were measured. Cumulative exposure to vibrating tools was associated with increased postural (p < 0.01) and rest tremor (p < 0.05) and with a higher Center Frequency of postural tremor (p < 0.01) among smokers and users of smokeless tobacco. Rest tremor Center Frequency was higher than postural tremor frequency (p < 0.001). The main findings indicate an association between cumulative exposure to hand-held vibrating tools, tremor parameters and consumption of tobacco products. The hand position is important when testing for tremor. Rest tremor had a higher Center Frequency. Postural tremor was more strongly associated with exposure than rest tremor. The finding of increased tremor among the HAVS subjects indicated that tremor might be a part of the clinical picture of a HAVS diagnosis. As with all cross-sectional studies, inferences should be made with caution when drawing conclusions about associations between exposure and possible effects. Future research using longitudinal design is required to validate the findings of the present study.
Goldenberg, Georg
2013-08-01
In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as manifested by a lower proportion of left-handed patients with global aphasia.
When pliers become fingers in the monkey motor system
Umiltà, M. A.; Escola, L.; Intskirveli, I.; Grammont, F.; Rochat, M.; Caruana, F.; Jezzini, A.; Gallese, V.; Rizzolatti, G.
2008-01-01
The capacity to use tools is a fundamental evolutionary achievement. Its essence stands in the capacity to transfer a proximal goal (grasp a tool) to a distal goal (e.g., grasp food). Where and how does this goal transfer occur? Here, we show that, in monkeys trained to use tools, cortical motor neurons, active during hand grasping, also become active during grasping with pliers, as if the pliers were now the hand fingers. This motor embodiment occurs both for normal pliers and for “reverse pliers,” an implement that requires finger opening, instead of their closing, to grasp an object. We conclude that the capacity to use tools is based on an inherently goal-centered functional organization of primate cortical motor areas. PMID:18238904
Teaching Web Security Using Portable Virtual Labs
ERIC Educational Resources Information Center
Chen, Li-Chiou; Tao, Lixin
2012-01-01
We have developed a tool called Secure WEb dEvelopment Teaching (SWEET) to introduce security concepts and practices for web application development. This tool provides introductory tutorials, teaching modules utilizing virtualized hands-on exercises, and project ideas in web application security. In addition, the tool provides pre-configured…
The Locus of Tool-Transformation Costs
ERIC Educational Resources Information Center
Kunde, Wilfried; Pfister, Roland; Janczyk, Markus
2012-01-01
Transformations of hand movements by tools such as levers or electronic input devices can invoke performance costs compared to untransformed movements. This study investigated by means of the Psychological Refractory Period (PRP) paradigm at which stage of information processing such tool-transformation costs arise. We used an inversion…
Cluster: Carpentry. Course: Carpentry. Research Project.
ERIC Educational Resources Information Center
Sanford - Lee County Schools, NC.
The course on carpentry is divided into 14 sequential units, with several task packages within each, covering the following topics: carpentry hand tools; portable power tools; working machine tools; lumber; fasteners and adhesives; plans, specifications, and codes for houses; footings and foundations for a house; household cabinets; floor framing…
Hand-arm vibration syndrome: a common occupational hazard in industrialized countries.
Heaver, C; Goonetilleke, K S; Ferguson, H; Shiralkar, S
2011-06-01
Regular exposure to hand-transmitted vibration can result in symptoms and signs of peripheral vascular, neurological and other disorders collectively known as the hand-arm vibration syndrome (HAVS). A significant proportion of workers can suffer from HAVS after using vibrating power tools. HAVS is a chronic and progressive disorder. Early recognition and prevention is the key to managing vibrating tool exposures and health effects. This article gives a broad overview of the condition with a detailed account of its pathogenesis, identification and management.
Moro, Maria Luisa; Morsillo, Filomena; Nascetti, Simona; Parenti, Mita; Allegranzi, Benedetta; Pompa, Maria Grazia; Pittet, Didier
2017-01-01
A national hand hygiene promotion campaign based on the World Health Organization (WHO) multimodal, Clean Care is Safer Care campaign was launched in Italy in 2007. One hundred seventy-five hospitals from 14 of 20 Italian regions participated. Data were collected using methods and tools provided by the WHO campaign, translated into Italian. Hand hygiene compliance, ward infrastructure, and healthcare workers’ knowledge and perception of healthcare-associated infections and hand hygiene were evaluated before and after campaign implementation. Compliance data from the 65 hospitals returning complete data for all implementation tools were analysed using a multilevel approach. Overall, hand hygiene compliance increased in the 65 hospitals from 40% to 63% (absolute increase: 23%, 95% confidence interval: 22–24%). A wide variation in hand hygiene compliance among wards was observed; inter-ward variability significantly decreased after campaign implementation and the level of perception was the only item associated with this. Long-term sustainability in 48 of these 65 hospitals was assessed in 2014 using the WHO Hand Hygiene Self-Assessment Framework tool. Of the 48 hospitals, 44 scored in the advanced/intermediate categories of hand hygiene implementation progress. The median hand hygiene compliance achieved at the end of the 2007–2008 campaign appeared to be sustained in 2014. PMID:28661390
Mugisa, Dana J; Katimbo, Abia; Sempiira, John E; Kisaalita, William S
2016-05-01
Sub-Saharan African women on small-acreage farms carry a disproportionately higher labor burden, which is one of the main reasons they are unable to produce for both home and the market and realize higher incomes. Labor-saving interventions such as hand-tools are needed to save time and/or increase productivity in, for example, land preparation for crop and animal agriculture, post-harvest processing, and meeting daily energy and water needs. Development of such tools requires comprehensive and content-specific anthropometric data or body dimensions and existing databases based on Western women may be less relevant. We conducted measurements on 89 women to provide preliminary results toward answering two questions. First, how well existing databases are applicable in the design of hand-tools for sub-Saharan African women. Second, how universal body dimension predictive models are among ethnic groups. Our results show that, body dimensions between Bantu and Nilotic ethnolinguistic groups are different and both are different from American women. These results strongly support the need for establishing anthropometric databases for sub-Saharan African women, toward hand-tool design. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Neufuss, Johanna; Humle, Tatyana; Cremaschi, Andrea; Kivell, Tracy L
2017-02-01
There has been an enduring interest in primate tool-use and manipulative abilities, most often with the goal of providing insight into the evolution of human manual dexterity, right-hand preference, and what behaviours make humans unique. Chimpanzees (Pan troglodytes) are arguably the most well-studied tool-users amongst non-human primates, and are particularly well-known for their complex nut-cracking behaviour, which has been documented in several West African populations. However, their sister-taxon, the bonobos (Pan paniscus), rarely engage in even simple tool-use and are not known to nut-crack in the wild. Only a few studies have reported tool-use in captive bonobos, including their ability to crack nuts, but details of this complex tool-use behaviour have not been documented before. Here, we fill this gap with the first comprehensive analysis of bonobo nut-cracking in a natural environment at the Lola ya Bonobo sanctuary, Democratic Republic of the Congo. Eighteen bonobos were studied as they cracked oil palm nuts using stone hammers. Individual bonobos showed exclusive laterality for using the hammerstone and there was a significant group-level right-hand bias. The study revealed 15 hand grips for holding differently sized and weighted hammerstones, 10 of which had not been previously described in the literature. Our findings also demonstrated that bonobos select the most effective hammerstones when nut-cracking. Bonobos are efficient nut-crackers and not that different from the renowned nut-cracking chimpanzees of Bossou, Guinea, which also crack oil palm nuts using stones. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Povinelli, Daniel J.; Reaux, James E.; Frey, Scott H.
2010-01-01
Considerable attention has been devoted to behaviors in which tools are used to perform actions in extrapersonal space by extending the reach. Evidence suggests that these behaviors result in an expansion of the body schema and peripersonal space. However, humans often use tools to perform tasks within peripersonal space that cannot be…
ERIC Educational Resources Information Center
Hawkins, Ian; Phelps, Amy J.
2013-01-01
The use of virtual laboratories has become an increasing issue regarding science laboratories due to the increasing cost of hands-on laboratories, and the increase in distance education. Recent studies have looked at the use of virtual tools for laboratory to be used as supplements to the regular hands-on laboratories but many virtual tools have…
[Sustainable development finds its place in the hospital].
Fraleux, Dorothée
2012-01-01
Driven by the Committee of Sustainable Development in Healthcare, an association founded in 2006, a real momentum of sustainable development in hospitals has been instigated. Drawing on a variety of approaches, sustainable development in hospitals goes hand in hand with modernity and is based on practical tools such as the self-diagnosis tool used as an indicator of sustainable development in healthcare.
General Construction Trades. Volume 1. Teacher's Guide.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Occupational Curriculum Lab.
Ten units on the world of construction and twelve units on carpentry are presented in this teacher's guide. The construction units include the following: safety; human relations in the shop; grooming and hygiene; hand tools; measurement; portable power tools, stationary power tools; fastening devices; and job application and interview. The…
Modeling and MBL: Software Tools for Science.
ERIC Educational Resources Information Center
Tinker, Robert F.
Recent technological advances and new software packages put unprecedented power for experimenting and theory-building in the hands of students at all levels. Microcomputer-based laboratory (MBL) and model-solving tools illustrate the educational potential of the technology. These tools include modeling software and three MBL packages (which are…
Vibration syndrome in railway track maintenance workers.
Virokannas, H; Anttonen, H; Niskanen, J
1995-01-01
An inquiry was sent to all railway maintenance workers in three railway districts in Finland and hand-arm vibration was measured on the handlebars of tools used by maintenance workers. The study group included 252 (82%) subjects, whose mean age was 41 years and who had worked in track maintenance for 14 years (SD 9). In Finland there are over 600 railway maintenance workers who use vibrating tools. The frequency-weighted acceleration of hand-arm vibration was calculated according to the ISO 5349 standard. Hand-held tamping machines had caused most of the vibration exposure, and aw4h was 10.6 m/s2 measured on the handlebar of tamping machine, but many workers also used other vibrating tools. The annual vibration level was 2.5 m/s2 when the use of all vibrating tools and the exposure time was taken into account. In the questionnaire the prevalence of vibration-induced white finger (VWF) was 14% in the entire material, and the prevalence of VWF increased significantly with the total duration of the maintenance work. In addition, 39% of the subjects had suffered numbness of the hands, and the prevalence of hand numbness also increased significantly with the total duration of maintenance work. According to the measurements of vibration and the prevalence of hand symptoms the present investigation indicates vibration syndrome as being related to railway track maintenance work. In the exposure group, where tamping machines mainly were used and exposure to other vibration was small, the prevalence of VWF was also significantly higher, but the prevalence of hand numbness insignificant compared with the control group. In this study vascular and nerve hand symptoms were considered to cause serious trouble in work by 4-11% of the maintenance workers.
Hermsdörfer, Joachim; Li, Yong; Randerath, Jennifer; Goldenberg, Georg; Johannsen, Leif
2012-04-01
Movement goals and task mechanics differ substantially between actual tool use and corresponding pantomimes. In addition, apraxia seems to be more severe during pantomime than during actual tool use. Comparisons of these two modes of action execution using quantitative methods of movement analyses are rare. In the present study, repetitive scooping movements with a ladle from a bowl into a plate were recorded and movement kinematics was analyzed. Brain-damaged patients using their ipsilesional hand and healthy control subjects were tested in three conditions: pantomime, demonstration with the tool only, and actual use in the normal context. Analysis of the hand trajectories during the transport component revealed clear differences between the tasks, such as slower actual use and moderate deficits in patients with left brain damage (LBD). LBD patients were particularly impaired in the scooping component: LBD patients with apraxia exhibited reduced hand rotation at the bowl and the plate. The deficit was most obvious during pantomime but actual use was also affected, and reduced hand rotation was consistent across conditions as indicated by strong pair-wise correlations between task conditions. In healthy control subjects, correlations between movement parameters were most evident between the pantomime and demonstration conditions but weak in correlation pairs involving actual use. From these findings and published neuroimaging evidence, we conclude that for a specific tool-use action, common motor schemas are activated but are adjusted and modified according to the actual task constraints and demands. An apraxic LBD individual can show a deficit across all three action conditions, but the severity can differ substantially between conditions.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF SMALL HAND TOOLS USED IN DIESEL ENGINE MAINTENANCE AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) UNDERSTANDING TORQUE AND HOW IT IS MEASURED, (2) REPAIRING AND REPLACING THREADED…
Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.
Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion
2007-06-01
This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (p<0.05). The average peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (p<0.05), whereas target torque and predicted handle displacement did not show statistically significant differences. The study concluded that quantification of handle reaction force, rather than target torque alone, is necessary for identifying stressful power hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered.
ERIC Educational Resources Information Center
Beausaert, Simon A. J.; Segers, Mien S. R.; Gijselaers, Wim H.
2011-01-01
Today, organizations are increasingly implementing assessment tools such as Personal Development Plans. Although the true power of the tool lies in supporting the employee's continuing professional development, organizations implement the tool for various different purposes, professional development purposes on the one hand and promotion/salary…
Tool-Use and the Left Hemisphere: What Is Lost in Ideomotor Apraxia?
ERIC Educational Resources Information Center
Sunderland, Alan; Wilkins, Leigh; Dineen, Rob; Dawson, Sophie E.
2013-01-01
Impaired tool related action in ideomotor apraxia is normally ascribed to loss of sensorimotor memories for habitual actions (engrams), but this account has not been tested against a hypothesis of a general deficit in representation of hand-object spatial relationships. Rapid reaching for familiar tools was compared with reaching for abstract…
Hand-rearing and sex determination tool for the Taveta golden weaver (Ploceus castaneiceps).
Breeding, Shawnlei; Ferrie, Gina M; Schutz, Paul; Leighty, Katherine A; Plassé, Chelle
2012-01-01
Improvements in the ability to hand-rear birds in captivity have aided zoological institutions in the sustainable management of these species, and have provided opportunities to examine their physical growth in varying conditions. Monitoring the weight gain and development of chicks is an important aspect of developing a hand-rearing protocol. In this paper we provide the institutional history for a colonial species of passerine, the Taveta golden weaver, at Disney's Animal Kingdom®, in order to demonstrate the methods of establishing a successful breeding program which largely incorporates hand-rearing in management of the population. We also tested if we could accurately predict sex of chicks using weights collected on Day 14 during the hand-rearing process. Using this tool, we were able to correctly determine sex before fledging in more than 83% of chicks. Early sex determination is important in captive species for genetic management and husbandry purposes. While genetic sexing can be expensive, we found that using growth curves to determine sex can be a reliable and cost-effective tool for population management of a colonial passerine. © 2012 Wiley Periodicals, Inc.
Williams-Hatala, Erin Marie; Hatala, Kevin G; Gordon, McKenzie; Key, Alastair; Kasper, Margaret; Kivell, Tracy L
2018-06-01
It is widely agreed that biomechanical stresses imposed by stone tool behaviors influenced the evolution of the human hand. Though archaeological evidence suggests that early hominins participated in a variety of tool behaviors, it is unlikely that all behaviors equally influenced modern human hand anatomy. It is more probable that a behavior's likelihood of exerting a selective pressure was a weighted function of the magnitude of stresses associated with that behavior, the benefits received from it, and the amount of time spent performing it. Based on this premise, we focused on the first part of that equation and evaluated magnitudes of stresses associated with stone tool behaviors thought to have been commonly practiced by early hominins, to determine which placed the greatest loads on the digits. Manual pressure data were gathered from 39 human subjects using a Novel Pliance ® manual pressure system while they participated in multiple Plio-Pleistocene tool behaviors: nut-cracking, marrow acquisition with a hammerstone, flake production with a hammerstone, and handaxe and flake use. Manual pressure distributions varied significantly according to behavior, though there was a tendency for regions of the hand subject to the lowest pressures (e.g., proximal phalanges) to be affected less by behavior type. Hammerstone use during marrow acquisition and flake production consistently placed the greatest loads on the digits collectively, on each digit and on each phalanx. Our results suggest that, based solely on the magnitudes of stresses, hammerstone use during marrow acquisition and flake production are the most likely of the assessed behaviors to have influenced the anatomical and functional evolution of the human hand. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marin-Webb, Victor; Jessen, Heiko; Kopp, Ute; Jessen, Arne B; Hahn, Katrin
2016-01-01
HIV-associated neurocognitive disorders (HAND) are widely present among people living with HIV. Especially its milder forms, asymptomatic neurocognitive impairment (ANI) and mild neurocognitive disorder (MND), remain highly prevalent worldwide. Diagnosing these conditions is subject to a time and resource consuming neuropsychological assessment. Selecting patients at a higher risk of cognitive impairment by using a simple but effective screening tool helps to organise access to further neuropsychological diagnosis. The International HIV Dementia Scale (IHDS) has until now been a well-established screening tool in African and American countries, however these populations' demographics defer significantly from ours, so using the same parameters could be ineffective. To calculate the prevalence of this condition among people attending an HIV outpatient clinic in Berlin and to validate the use of the IHDS as a screening tool for HAND in a German-speaking population. We screened 480 HIV-infected patients using the IHDS, 89% of them were on a stable antiretroviral treatment. Ninety of them completed a standardised neuropsychological battery of tests and a specific cognitive complaints questionnaire. The same procedure was applied to a control group of 30 HIV-negative participants. HAND diagnosis was established according to the Frascati criteria. The overall prevalence of HAND in our cohort was 43% (20% ANI, 17% MND and 6% HIV-associated dementia). The optimal cut-off on the IHDS for detecting HAND cases was set at 11 and achieved both a sensitivity and a specificity of 80%. When specifically screening for the more severe form of HAND, HIV-associated dementia, a cut-off value of 10 offered an increase in both sensitivity (94%) and specificity (86%). The Youden Index for diagnostic accuracy was 0.6 and 0.8, respectively. The prevalence of HAND was comparable to the reported by recent studies performed in countries with a similar economic development. The study confirms the IHDS to be a useful HAND screening tool in primary care settings and establishes new recommendations for its use in German-speaking countries.
Sung, Peng-Cheng
2014-01-01
This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.
Moro, Maria Luisa; Morsillo, Filomena; Nascetti, Simona; Parenti, Mita; Allegranzi, Benedetta; Pompa, Maria Grazia; Pittet, Didier
2017-06-08
A national hand hygiene promotion campaign based on the World Health Organization (WHO) multimodal, Clean Care is Safer Care campaign was launched in Italy in 2007. One hundred seventy-five hospitals from 14 of 20 Italian regions participated. Data were collected using methods and tools provided by the WHO campaign, translated into Italian. Hand hygiene compliance, ward infrastructure, and healthcare workers' knowledge and perception of healthcare-associated infections and hand hygiene were evaluated before and after campaign implementation. Compliance data from the 65 hospitals returning complete data for all implementation tools were analysed using a multilevel approach. Overall, hand hygiene compliance increased in the 65 hospitals from 40% to 63% (absolute increase: 23%, 95% confidence interval: 22-24%). A wide variation in hand hygiene compliance among wards was observed; inter-ward variability significantly decreased after campaign implementation and the level of perception was the only item associated with this. Long-term sustainability in 48 of these 65 hospitals was assessed in 2014 using the WHO Hand Hygiene Self-Assessment Framework tool. Of the 48 hospitals, 44 scored in the advanced/intermediate categories of hand hygiene implementation progress. The median hand hygiene compliance achieved at the end of the 2007-2008 campaign appeared to be sustained in 2014. This article is copyright of The Authors, 2017.
NASA Technical Reports Server (NTRS)
Saini, Subhash; Frumkin, Michael; Hribar, Michelle; Jin, Hao-Qiang; Waheed, Abdul; Yan, Jerry
1998-01-01
Porting applications to new high performance parallel and distributed computing platforms is a challenging task. Since writing parallel code by hand is extremely time consuming and costly, porting codes would ideally be automated by using some parallelization tools and compilers. In this paper, we compare the performance of the hand written NAB Parallel Benchmarks against three parallel versions generated with the help of tools and compilers: 1) CAPTools: an interactive computer aided parallelization too] that generates message passing code, 2) the Portland Group's HPF compiler and 3) using compiler directives with the native FORTAN77 compiler on the SGI Origin2000.
Modeling strength data for CREW CHIEF
NASA Technical Reports Server (NTRS)
Mcdaniel, Joe W.
1990-01-01
The Air Force has developed CREW CHIEF, a computer-aided design (CAD) tool for simulating and evaluating aircraft maintenance to determine if the required activities are feasible. CREW CHIEF gives the designer the ability to simulate maintenance activities with respect to reach, accessibility, strength, hand tool operation, and materials handling. While developing the CREW CHIEF, extensive research was performed to describe workers strength capabilities for using hand tools and manual handling of objects. More than 100,000 strength measures were collected and modeled for CREW CHIEF. These measures involved both male and female subjects in the 12 maintenance postures included in CREW CHIEF. The data collection and modeling effort are described.
What a car does to your perception: Distance evaluations differ from within and outside of a car.
Moeller, Birte; Zoppke, Hartmut; Frings, Christian
2016-06-01
Almost a century ago it was first suggested that cars can be interpreted as tools, but consequences of this assumption were never tested. Research on hand-held tools that are used to manipulate objects in the environment suggests that perception of near space is extended by using tools. Literature on environment perception finds perception of far space to be modulated by the observer's potential to act in the environment. Here we argue that a car increases the action potential and modulates perception of far space in a way similar to how hand-held tools modulate perception of near space. Five distances (4 to 20 meters) were estimated by pedestrians and drivers before and after driving/walking. Drivers underestimated all distances to a larger percentage than did pedestrians. Underestimation was even stronger after driving. We conclude that cars modulate the perception of far distances because they modulate the driver's perception, like a tool typically does, and change the perceived action potential.
Prosthetic Tool For Holding Small Ferromagnetic Parts
NASA Technical Reports Server (NTRS)
Norton, William E.; Carden, James R.; Belcher, Jewell G., Jr.; Vest, Thomas W.
1995-01-01
Tool attached to prosthetic hand or arm enables user to hold nails, screws, nuts, rivets, and other small ferromagnetic objects on small magnetic tip. Device adjusted to hold nail or screw at proper angle for hammering or for use of screwdriver, respectively. Includes base connector with threaded outer surface and lower male member inserted in standard spring-action, quick-connect/quick-disconnect wrist adapter on prosthetic hand or arm.
Evaluation of hand sensibility: a review.
Novak, C B
2001-01-01
Many assessment devices and measures have been described to evaluate sensibility, with little consensus on the optimal measurement tool. The purpose of this paper is to review the assessment methods and devices used in the evaluation of hand sensibility. Consideration is given to the characteristics of each measurement tool, the information necessary for complete patient evaluation, and the battery of valid and reliable measurements that provide the most complete and accurate patient assessment.
Trombert-Paviot, B; Rodrigues, J M; Rogers, J E; Baud, R; van der Haring, E; Rassinoux, A M; Abrial, V; Clavel, L; Idir, H
1999-01-01
GALEN has developed a new generation of terminology tools based on a language independent concept reference model using a compositional formalism allowing computer processing and multiple reuses. During the 4th framework program project Galen-In-Use we applied the modelling and the tools to the development of a new multipurpose coding system for surgical procedures (CCAM) in France. On one hand we contributed to a language independent knowledge repository for multicultural Europe. On the other hand we support the traditional process for creating a new coding system in medicine which is very much labour consuming by artificial intelligence tools using a medically oriented recursive ontology and natural language processing. We used an integrated software named CLAW to process French professional medical language rubrics produced by the national colleges of surgeons into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation on one hand we generate controlled French natural language to support the finalization of the linguistic labels in relation with the meanings of the conceptual system structure. On the other hand the classification manager of third generation proves to be very powerful to retrieve the initial professional rubrics with different categories of concepts within a semantic network.
48 CFR 225.7001 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Mooring Chain. (c) “End product” is defined in the clause at 252.225-7012, Preference for Certain Domestic Commodities. (d) Hand or measuring tools means those tools listed in Federal supply classifications 51 and 52...
48 CFR 225.7001 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Mooring Chain. (c) “End product” is defined in the clause at 252.225-7012, Preference for Certain Domestic Commodities. (d) Hand or measuring tools means those tools listed in Federal supply classifications 51 and 52...
48 CFR 225.7001 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Mooring Chain. (c) “End product” is defined in the clause at 252.225-7012, Preference for Certain Domestic Commodities. (d) Hand or measuring tools means those tools listed in Federal supply classifications 51 and 52...
48 CFR 225.7001 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Mooring Chain. (c) “End product” is defined in the clause at 252.225-7012, Preference for Certain Domestic Commodities. (d) Hand or measuring tools means those tools listed in Federal supply classifications 51 and 52...
48 CFR 225.7001 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Mooring Chain. (c) “End product” is defined in the clause at 252.225-7012, Preference for Certain Domestic Commodities. (d) Hand or measuring tools means those tools listed in Federal supply classifications 51 and 52...
Cantero-Téllez, Raquel; Naughton, Nancy; Algar, Lori; Valdes, Kristin
2018-02-28
Systematic review. Mirror therapy is a treatment used to address hand function following a stroke. Measurement of outcomes using appropriate assessment tools is crucial; however, many assessment options exist. The purpose of this study is to systematically review outcome measures that are used to assess hand function following mirror therapy after stroke and, in addition, to identify the psychometric and descriptive properties of the included measures and through the linking process determine if the outcome measures are representative of the International Classification of Functioning, Disability and Health (ICF). Following a comprehensive literature search, outcome measures used in the included studies were linked to the ICF and analyzed based on descriptive information and psychometric properties. Eleven studies met inclusion criteria and included 24 different assessment tools to measure hand or upper limb function. Most outcome measures used in the selected studies (63%) were rated by the evaluating therapist. Thirteen outcome measures (54%) linked to the ICF body function category and 10 measures (42%) linked to activities and participation. One outcome measure was linked to not defined, and all other ICF categories were not represented. A majority of outcome measures have been assessed for validity, reliability, and responsiveness, but responsiveness was the least investigated psychometric property. Current studies on mirror therapy after stroke are not consistent in the assessment tools used to determine hand function. Understanding of study outcomes requires analysis of the assessment tools. The outcome measures used in the included studies are not representative of personal and environmental factors, but tools linking to body functions and activities and participations provide important information on functional outcome. Integrating a combination of measures that are psychometrically sound and reflective of the ICF should be considered for assessment of hand function after mirror therapy after stroke. Copyright © 2018 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Pilot study of a point-of-use decision support tool for cancer clinical trials eligibility.
Breitfeld, P P; Weisburd, M; Overhage, J M; Sledge, G; Tierney, W M
1999-01-01
Many adults with cancer are not enrolled in clinical trials because caregivers do not have the time to match the patient's clinical findings with varying eligibility criteria associated with multiple trials for which the patient might be eligible. The authors developed a point-of-use portable decision support tool (DS-TRIEL) to automate this matching process. The support tool consists of a hand-held computer with a programmable relational database. A two-level hierarchic decision framework was used for the identification of eligible subjects for two open breast cancer clinical trials. The hand-held computer also provides protocol consent forms and schemas to further help the busy oncologist. This decision support tool and the decision framework on which it is based could be used for multiple trials and different cancer sites.
Pilot Study of a Point-of-use Decision Support Tool for Cancer Clinical Trials Eligibility
Breitfeld, Philip P.; Weisburd, Marina; Overhage, J. Marc; Sledge, George; Tierney, William M.
1999-01-01
Many adults with cancer are not enrolled in clinical trials because caregivers do not have the time to match the patient's clinical findings with varying eligibility criteria associated with multiple trials for which the patient might be eligible. The authors developed a point-of-use portable decision support tool (DS-TRIEL) to automate this matching process. The support tool consists of a hand-held computer with a programmable relational database. A two-level hierarchic decision framework was used for the identification of eligible subjects for two open breast cancer clinical trials. The hand-held computer also provides protocol consent forms and schemas to further help the busy oncologist. This decision support tool and the decision framework on which it is based could be used for multiple trials and different cancer sites. PMID:10579605
NASA Technical Reports Server (NTRS)
Bentz, Karl F.; Coleman, Robert D.; Dubnik, Kathy; Marshall, William S.; Mcentee, Amy; Na, Sae H.; Patton, Scott G.; West, Michael C.
1987-01-01
Tools useful for operations and maintenance tasks on the lunar surface were determined and designed. Primary constraints are the lunar environment, the astronaut's space suit and the strength limits of the astronaut on the moon. A multipurpose rotary motion tool and a collapsible tool carrier were designed. For the rotary tool, a brushless motor and controls were specified, a material for the housing was chosen, bearings and lubrication were recommended and a planetary reduction gear attachment was designed. The tool carrier was designed primarily for ease of access to the tools and fasteners. A material was selected and structural analysis was performed on the carrier. Recommendations were made about the limitations of human performance and about possible attachments to the torque driver.
Effects of Various Sketching Tools on Visual Thinking in Idea Development
ERIC Educational Resources Information Center
Chu, Po Ying; Hung, Hsiu Yen; Wu, Chih Fu; Liu, Yen Te
2017-01-01
Due to the wide application of digital tools and the improvement in interactive technologies, design thinking might change in digital world comparing to that in traditional design process. This study aims to explore the difference of design thinking between three kinds of sketching tools, i.e. hand-sketch, tablet, and pen-input display, by means…
The effect of ergonomic laparoscopic tool handle design on performance and efficiency.
Tung, Kryztopher D; Shorti, Rami M; Downey, Earl C; Bloswick, Donald S; Merryweather, Andrew S
2015-09-01
Many factors can affect a surgeon's performance in the operating room; these may include surgeon comfort, ergonomics of tool handle design, and fatigue. A laparoscopic tool handle designed with ergonomic considerations (pistol grip) was tested against a current market tool with a traditional pinch grip handle. The goal of this study is to quantify the impact ergonomic design considerations which have on surgeon performance. We hypothesized that there will be measurable differences between the efficiency while performing FLS surgical trainer tasks when using both tool handle designs in three categories: time to completion, technical skill, and subjective user ratings. The pistol grip incorporates an ergonomic interface intended to reduce contact stress points on the hand and fingers, promote a more neutral operating wrist posture, and reduce hand tremor and fatigue. The traditional pinch grip is a laparoscopic tool developed by Stryker Inc. widely used during minimal invasive surgery. Twenty-three (13 M, 10 F) participants with no existing upper extremity musculoskeletal disorders or experience performing laparoscopic procedures were selected to perform in this study. During a training session prior to testing, participants performed practice trials in a SAGES FLS trainer with both tools. During data collection, participants performed three evaluation tasks using both handle designs (order was randomized, and each trial completed three times). The tasks consisted of FLS peg transfer, cutting, and suturing tasks. Feedback from test participants indicated that they significantly preferred the ergonomic pistol grip in every category (p < 0.05); most notably, participants experienced greater degrees of discomfort in their hands after using the pinch grip tool. Furthermore, participants completed cutting and peg transfer tasks in a shorter time duration (p < 0.05) with the pistol grip than with the pinch grip design; there was no significant difference between completion times for the suturing task. Finally, there was no significant interaction between tool type and errors made during trials. There was a significant preference for as well as lower pain experienced during use of the pistol grip tool as seen from the survey feedback. Both evaluation tasks (cutting and peg transfer) were also completed significantly faster with the pistol grip tool. Finally, due to the high degree of variability in the error data, it was not possible to draw any meaningful conclusions about the effect of tool design on the number or degree of errors made.
Lehotsky, Ákos; Morvai, Júlia; Szilágyi, László; Bánsághi, Száva; Benkó, Alíz; Haidegger, Tamás
2017-07-01
Hand hygiene is probably the most effective tool of nosocomial infection prevention, however, proper feedback and control is needed to develop the individual hand hygiene practice. Assessing the efficiency of modern education tools, and digital demonstration and verification equipment during their wide-range deployment. 1269 healthcare workers took part in a training organized by our team. The training included the assessment of the participants' hand hygiene technique to identify the most often missed areas. The hand hygiene technique was examined by a digital device. 33% of the participants disinfected their hands incorrectly. The most often missed sites are the fingertips (33% on the left hand, 37% on the right hand) and the thumbs (42% on the left hand, 32% on the right hand). The feedback has a fundamental role in the development of the hand hygiene technique. With the usage of electronic devices feedback can be provided efficiently and simply. Orv Hetil. 2017; 158(29): 1143-1148.
Dong, Ren G.; Welcome, Daniel E.; Peterson, Donald R.; Xu, Xueyan S.; McDowell, Thomas W.; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony
2015-01-01
Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information on the effectiveness of the gloves when used with many tools for reducing the vibration transmitted to the palm in three directions. The results can aid in the appropriate selection and use of these gloves. PMID:26726275
Martin, Markus; Dressing, Andrea; Bormann, Tobias; Schmidt, Charlotte S M; Kümmerer, Dorothee; Beume, Lena; Saur, Dorothee; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius
2017-08-01
The study aimed to elucidate areas involved in recognizing tool-associated actions, and to characterize the relationship between recognition and active performance of tool use.We performed voxel-based lesion-symptom mapping in a prospective cohort of 98 acute left-hemisphere ischemic stroke patients (68 male, age mean ± standard deviation, 65 ± 13 years; examination 4.4 ± 2 days post-stroke). In a video-based test, patients distinguished correct tool-related actions from actions with spatio-temporal (incorrect grip, kinematics, or tool orientation) or conceptual errors (incorrect tool-recipient matching, e.g., spreading jam on toast with a paintbrush). Moreover, spatio-temporal and conceptual errors were determined during actual tool use.Deficient spatio-temporal error discrimination followed lesions within a dorsal network in which the inferior parietal lobule (IPL) and the lateral temporal cortex (sLTC) were specifically relevant for assessing functional hand postures and kinematics, respectively. Conversely, impaired recognition of conceptual errors resulted from damage to ventral stream regions including anterior temporal lobe. Furthermore, LTC and IPL lesions impacted differently on action recognition and active tool use, respectively.In summary, recognition of tool-associated actions relies on a componential network. Our study particularly highlights the dissociable roles of LTC and IPL for the recognition of action kinematics and functional hand postures, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
About the Managing and Transforming Waste Streams Tool
The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.
The Multisensory Attentional Consequences of Tool Use: A Functional Magnetic Resonance Imaging Study
Holmes, Nicholas P.; Spence, Charles; Hansen, Peter C.; Mackay, Clare E.; Calvert, Gemma A.
2008-01-01
Background Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use. PMID:18958150
Gatt, Ian; Smith-Moore, Sophie; Steggles, Charlie; Loosemore, Mike
2018-05-01
The aim of this article was to explore retrospectively the Takei dynamometer as a valid and reliable outcome measure tool for hand and wrist pathology in the Great Britain amateur boxing squad between 2010 and 2014. Longitudinal retrospective injury surveillance of the Great Britain boxing squad was performed from 2010 to 2014. The location, region affected, description, and duration of each injury were recorded by the team doctor and team physiotherapists. For each significant injury, we recorded hand grip scores using the Takei handheld dynamometer and compared the scores with baseline measures. At the hand, fractures and dislocations were highly detected with an average difference of 40.2% ( P < .05) when comparing postinjury to baseline measures. At the wrist, carpometacarpal and carpal joint injuries were highly detected with an average difference of 32.6% ( P < .05). Other injuries provided varied results. In the absence of pathology, up to 15% difference between left and right scores can be considered normal with a predominance observed below 10%. A difference of 20% can be indicative of a form of pathology, although pathologies can also be present with lower difference or no apparent changes. A difference of >20% should be highly considered for significant pathology. The Takei dynamometer is a valid and reliable outcome measure tool for hand and wrist pathologies in boxing. Our study highlights the importance of appropriate clinical tools to guide injury management in this sport.
Impact of tool wear on cross wedge rolling process stability and on product quality
NASA Astrophysics Data System (ADS)
Gutierrez, Catalina; Langlois, Laurent; Baudouin, Cyrille; Bigot, Régis; Fremeaux, Eric
2017-10-01
Cross wedge rolling (CWR) is a metal forming process used in the automotive industry. One of its applications is in the manufacturing process of connecting rods. CWR transforms a cylindrical billet into a complex axisymmetrical shape with an accurate distribution of material. This preform is forged into shape in a forging die. In order to improve CWR tool lifecycle and product quality it is essential to understand tool wear evolution and the physical phenomena that change on the CWR process due to the resulting geometry of the tool when undergoing tool wear. In order to understand CWR tool wear behavior, numerical simulations are necessary. Nevertheless, if the simulations are performed with the CAD geometry of the tool, results are limited. To solve this difficulty, two numerical simulations with FORGE® were performed using the real geometry of the tools (both up and lower roll) at two different states: (1) before starting lifecycle and (2) end of lifecycle. The tools were 3D measured with ATOS triple scan by GOM® using optical 3D measuring techniques. The result was a high-resolution point cloud of the entire geometry of the tool. Each 3D point cloud was digitalized and converted into a STL format. The geometry of the tools in a STL format was input for the 3D simulations. Both simulations were compared. Defects of products obtained in simulation were compared to main defects of products found industrially. Two main defects are: (a) surface defects on the preform that are not fixed in the die forging operation; and (b) Preform bent (no longer straight), with two possible impacts: on the one hand that the robot cannot grab it to take it to the forging stage; on the other hand, an unfilled section in the forging operation.
Motor-Iconicity of Sign Language Does Not Alter the Neural Systems Underlying Tool and Action Naming
ERIC Educational Resources Information Center
Emmorey, Karen; Grabowski, Thomas; McCullough, Stephen; Damasio, Hannah; Ponto, Laurie; Hichwa, Richard; Bellugi, Ursula
2004-01-01
Positron emission tomography was used to investigate whether the motor-iconic basis of certain forms in American Sign Language (ASL) partially alters the neural systems engaged during lexical retrieval. Most ASL nouns denoting tools and ASL verbs referring to tool-based actions are produced with a handshape representing the human hand holding a…
Bilingual Vocational Training Program. Auto Body Repair. Module 2.0: Tools and Equipment.
ERIC Educational Resources Information Center
Northern New Mexico Community Coll., El Rito.
This module on tools and equipment is the second of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students…
Coenen, Michaela; Rudolf, Klaus-Dieter; Kus, Sandra; Dereskewitz, Caroline
2018-05-24
The International Classification of Functioning, Disability and Health (ICF) provides a standardized language of almost 1500 ICF categories for coding information about functioning and contextual factors. Short lists (ICF Core Sets) are helpful tools to support the implementation of the ICF in clinical routine. In this paper we report on the implementation of ICF Core Sets in clinical routine using the "ICF Core Sets for Hand Conditions" and the "Lighthouse Project Hand" as an example. Based on the ICF categories of the "Brief ICF Core Set for Hand Conditions", the ICF-based assessment tool (ICF Hand A ) was developed aiming to guide the assessment and treatment of patients with injuries and diseases located at the hand. The ICF Hand A facilitates the standardized assessment of functioning - taking into consideration of a holistic view of the patients - along the continuum of care ranging from acute care to rehabilitation and return to work. Reference points for the assessment of the ICF Hand A are determined in treatment guidelines for selected injuries and diseases of the hand along with recommendations for acute treatment and care, procedures and interventions of subsequent treatment and rehabilitation. The assessment of the ICF Hand A according to the defined reference points can be done using electronic clinical assessment tools and allows for an automatic generation of a timely medical report of a patient's functioning. In the future, the ICF Hand A can be used to inform the coding of functioning in ICD-11.
3D Laser Scanning in Technology Education.
ERIC Educational Resources Information Center
Flowers, Jim
2000-01-01
A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)
Bolt installation tool for tightening large nuts and bolts
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Norman, R. M.
1974-01-01
Large bolts and nuts are accurately tightened to structures without damaging torque stresses. There are two models of bolt installation tool. One is rigidly mounted and one is hand held. Each model includes torque-multiplier unit.
Evaluation of hand-arm and whole-body vibrations in construction and property management.
Coggins, Marie A; Van Lente, Eric; McCallig, Margaret; Paddan, Gurmail; Moore, Ken
2010-11-01
To identify and measure the magnitude of hand-arm vibration (HAV) and whole-body vibration (WBV) sources (tools, vehicles etc.) in use within a previously unexamined sector: a construction and property management company. To evaluate the effect of factors such as age of tool, materials being worked on, number and location of tool handles, tool weight, and manufacturer brand on HAV magnitude and the effect of factors such as manufacturer machine brand, terrain, and work task on WBV magnitude. This study was carried out in a construction and property management company, employees (n = 469) working in the engineering services and maintenance departments who use vibrating equipment as part of their work were invited to participate. Two hundred and eighty-nine employees working as general operatives, excavator drivers, stone masons, carpenters, labourers, fitters, welders, and gardeners agreed to participate. A total of 20 types of hand tool (n = 264) and 11 types of vehicle (n = 158) in use within the company were selected for inclusion in the study. Five pieces of equipment had never previously been measured. Vibration measurements were carried out in accordance with ISO 5349-1 (Mechanical vibration-measurement and assessment of human exposure to hand transmitted vibration-Part 1: general guidance. 2001) (HAV) and ISO 2631-1 (Mechanical vibration and shock: evaluation of human exposure to WBV in the working environment. Part 1-general requirements. 1997) (WBV). Vibration measurements were made while workers were operating the equipment as part of their normal work activities. A wide range of vibration emission values were recorded for most tool types, e.g. orbital sanders (1.39-10.90 m s⁻²) and angle grinders (0.28-12.25 m s⁻²), and vehicle, e.g. forklifts (0.41-1.00 m s⁻²) and tractors (0.04-0.42 m s⁻²). Vibration magnitudes were largely consistent with those found in previous studies. The highest HAV magnitude was measured on a demolition hammer (13.3 m s⁻²) and the highest WBV magnitudes were measured on an excavator with a rock breaking attachment (5.81 m s⁻²). HAV magnitudes were found to be particularly strongly influenced by tool age, while WBV magnitudes varied with work activity and terrain. Within the construction and management company, few hand tools (3 of 20) exceeded the exposure action values (EAV) specified in the European Physical Agents (Vibration) Directive 2002/44/EC [On the minimum health and safety requirements regarding the exposure of works to the risks arising form physical agents (vibration)], when used for an 8-h period. HAV magnitudes were found to be very dependent on tool age, highlighting the importance of a tool maintenance programme incorporating tool work life prediction supported by regular vibration exposure measurements. Most of the vehicles (10 of 11) tested in this study exceeded the EAV specified for WBV, when operated for 8 h. WBV magnitudes were found to be dependent on the work task and thus, job rotation could be employed to control WBV exposures to acceptable levels.
2017-12-08
Goddard's Ritsko Wins 2011 SAVE Award The winner of the 2011 SAVE Award is Matthew Ritsko, a Goddard financial manager. His tool lending library would track and enable sharing of expensive space-flight tools and hardware after projects no longer need them. This set of images represents the types of tools used at NASA. To read more go to: www.nasa.gov/topics/people/features/ritsko-save.html Exploration Systems Project Manager Mike Weiss speaks about a Hubble Servicing Mission hand tool, developed at Goddard. Credit: NASA/GSFC/Debbie McCallum
SMART micro-scissors with dual motors and OCT sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yeo, Chaebeom; Jang, Seonjin; Park, Hyun-cheol; Gehlbach, Peter L.; Song, Cheol
2017-02-01
Various end-effectors of microsurgical instruments have been developed and studied. Also, many approaches to stabilize the tool-tip using robotics have been studied such as the steady hand robot system, Micron, and SMART system. In our previous study, the horizontal SMART micro-scissors with a common path swept source OCT distance and one linear piezoelectric (PZT) motor was demonstrated as a microsurgical system. Because the outer needle is connected with a mechanical handle and moved to engage the tool tip manually, the tool tip position is instantaneously changed during the engaging. The undesirable motion can make unexpected tissue damages and low surgical accuracy. In this study, we suggest a prototype horizontal SMART micro-scissors which has dual OCT sensors and two motors to improve the tremor cancellation. Dual OCT sensors provide two distance information. Front OCT sensor detects a distance from the sample surface to the tool tip. Rear OCT sensors gives current PZT motor movement, acting like a motor encoder. The PZT motor can compensate the hand tremor with a feedback loop control. The manual engaging of tool tip in previous SMART system is replaced by electrical engaging using a squiggle motor. Compared with previous study, this study showed better performance in the hand tremor reduction. From the result, the SMART with automatic engaging may become increasingly valuable in microsurgical instruments.
Mosquera, M.; Geribàs, N.; Bargalló, A.; Llorente, M.; Riba, D.
2012-01-01
Clear hand laterality patterns in humans are widely accepted. However, humans only elicit a significant hand laterality pattern when performing complementary role differentiation (CRD) tasks. Meanwhile, hand laterality in chimpanzees is weaker and controversial. Here we have reevaluated our results on hand laterality in chimpanzees housed in naturalistic environments at Fundació Mona (Spain) and Chimfunshi Wild Orphanage (Zambia). Our results show that the difference between hand laterality in humans and chimpanzees is not as great as once thought. Furthermore, we found a link between hand laterality and task complexity and also an even more interesting connection: CRD tasks elicited not only the hand laterality but also the use of tools. This paper aims to turn attention to the importance of this threefold connection in human evolution: the link between CRD tasks, hand laterality, and tool use, which has important evolutionary implications that may explain the development of complex behaviour in early hominins. PMID:22550466
Mosquera, M; Geribàs, N; Bargalló, A; Llorente, M; Riba, D
2012-01-01
Clear hand laterality patterns in humans are widely accepted. However, humans only elicit a significant hand laterality pattern when performing complementary role differentiation (CRD) tasks. Meanwhile, hand laterality in chimpanzees is weaker and controversial. Here we have reevaluated our results on hand laterality in chimpanzees housed in naturalistic environments at Fundació Mona (Spain) and Chimfunshi Wild Orphanage (Zambia). Our results show that the difference between hand laterality in humans and chimpanzees is not as great as once thought. Furthermore, we found a link between hand laterality and task complexity and also an even more interesting connection: CRD tasks elicited not only the hand laterality but also the use of tools. This paper aims to turn attention to the importance of this threefold connection in human evolution: the link between CRD tasks, hand laterality, and tool use, which has important evolutionary implications that may explain the development of complex behaviour in early hominins.
A One-Hand Nut and Bolt Assembly Tool
NASA Technical Reports Server (NTRS)
Spencer, J. M.
1984-01-01
Special wrench speeds nut and bolt assembly when insufficient room to hold nut behind bolthole with standard tool. C-clamp shaped box-andsocket-wrench assembly holds nut on blind side in alinement to receive bolt from open side.
Electromechanical hand incorporates touch sensors and trigger function
NASA Technical Reports Server (NTRS)
Dane, D. H.
1970-01-01
Electromechanical hand incorporates touch sensors, concealed fingers, and a structure that allows the hand to hold a tool on a flat surface. The hands can be mounted on most types of existing manipulators either directly or by means of modified mounting brackets.
Martí-Margarit, Anna; Manresa, Josep M; Herdman, Mike; Pujol, Ramon; Serra, Consol; Flyvholm, Mary-Ann; Giménez-Arnau, Ana M
2015-04-01
Hand eczema is an impacting cutaneous disease. Globally valid tools that help to diagnose hand and forearm eczema are required. To validate the questions to detect hand and/or forearm eczema included in the "Nordic Occupational Skin Questionnaire" (NOSQ-2002) in the Spanish language. A prospective pilot study was conducted with 80 employees of a cleaning company and a retrospective one involving 2,546 individuals. The responses were analysed for sensitivity, specificity and positive and negative predictive values. The final diagnosis according to the patients' hospital records, the specialty care records and the physical examination was taken as gold standard. The Dermatology Life Quality Index (DLQI) was also evaluated. Sensitivity and specificity, in a worst case scenario (WC) combining both questions, were 96.5% and 66.7%, respectively, and in a per protocol (PP) analysis, were 96.5% and 75.2%. The questions validated detected eczema effectively, making this tool suitable for use e.g. in multicentre epidemiological studies or clinical trials.
ERIC Educational Resources Information Center
Hafner, John C.; Hafner, Patti M.
2003-01-01
Although the rubric has emerged as one of the most popular assessment tools in progressive educational programs, there is an unfortunate dearth of information in the literature quantifying the actual effectiveness of the rubric as an assessment tool "in the hands of the students." This study focuses on the validity and reliability of the rubric as…
Handle grip span for optimising finger-specific force capability as a function of hand size.
Lee, Soo-Jin; Kong, Yong-Ku; Lowe, Brian D; Song, Seongho
2009-05-01
Five grip spans (45 to 65 mm) were tested to evaluate the effects of handle grip span and user's hand size on maximum grip strength, individual finger force and subjective ratings of comfort using a computerised digital dynamometer with independent finger force sensors. Forty-six males participated and were assigned into three hand size groups (small, medium, large) according to their hands' length. In general, results showed the 55- and 50-mm grip spans were rated as the most comfortable sizes and showed the largest grip strength (433.6 N and 430.8 N, respectively), whereas the 65-mm grip span handle was rated as the least comfortable size and the least grip strength. With regard to the interaction effect of grip span and hand size, small and medium-hand participants rated the best preference for the 50- to 55-mm grip spans and the least for the 65-mm grip span, whereas large-hand participants rated the 55- to 60-mm grip spans as the most preferred and the 45-mm grip span as the least preferred. Normalised grip span (NGS) ratios (29% and 27%) are the ratios of user's hand length to handle grip span. The NGS ratios were obtained and applied for suggesting handle grip spans in order to maximise subjective comfort as well as gripping force according to the users' hand sizes. In the analysis of individual finger force, the middle finger force showed the highest contribution (37.5%) to the total finger force, followed by the ring (28.7%), index (20.2%) and little (13.6%) finger. In addition, each finger was observed to have a different optimal grip span for exerting the maximum force, resulting in a bow-contoured shaped handle (the grip span of the handle at the centre is larger than the handle at the end) for two-handle hand tools. Thus, the grip spans for two-handle hand tools may be designed according to the users' hand/finger anthropometrics to maximise subjective ratings and performance based on this study. Results obtained in this study will provide guidelines for hand tool designers and manufacturers for designing grip spans of two-handle tools, which can maximise handle comfort and performance.
Learning Kinematic Constraints in Laparoscopic Surgery
Huang, Felix C.; Mussa-Ivaldi, Ferdinando A.; Pugh, Carla M.; Patton, James L.
2012-01-01
To better understand how kinematic variables impact learning in surgical training, we devised an interactive environment for simulated laparoscopic maneuvers, using either 1) mechanical constraints typical of a surgical “box-trainer” or 2) virtual constraints in which free hand movements control virtual tool motion. During training, the virtual tool responded to the absolute position in space (Position-Based) or the orientation (Orientation-Based) of a hand-held sensor. Volunteers were further assigned to different sequences of target distances (Near-Far-Near or Far-Near-Far). Training with the Orientation-Based constraint enabled much lower path error and shorter movement times during training, which suggests that tool motion that simply mirrors joint motion is easier to learn. When evaluated in physically constrained (physical box-trainer) conditions, each group exhibited improved performance from training. However, Position-Based training enabled greater reductions in movement error relative to Orientation-Based (mean difference: 14.0 percent; CI: 0.7, 28.6). Furthermore, the Near-Far-Near schedule allowed a greater decrease in task time relative to the Far-Near-Far sequence (mean −13:5 percent, CI: −19:5, −7:5). Training that focused on shallow tool insertion (near targets) might promote more efficient movement strategies by emphasizing the curvature of tool motion. In addition, our findings suggest that an understanding of absolute tool position is critical to coping with mechanical interactions between the tool and trocar. PMID:23293709
The Robonaut 2 Hand - Designed to do Work with Tools
NASA Technical Reports Server (NTRS)
Bridgwater, L. B.; Ihrke, C. A.; Diftler, M. A.; Abdallah, M. E.; Radford, N. A.; Rogers, J. M.; Yayathi, S.; Askew, R. S.; Linn, D. M.
2011-01-01
The second generation Robonaut hand has many advantages over its predecessor. This mechatronic device is more dexterous and has improved force control and sensing giving it the capability to grasp and actuate a wider range of tools. It can achieve higher peak forces at higher speeds than the original. Developed as part of a partnership between General Motors and NASA, the hand is designed to more closely approximate a human hand. Having a more anthropomorphic design allows the hand to attain a larger set of useful grasps for working with human interfaces. Key to the hand s improved performance is the use of lower friction drive elements and a redistribution of components from the hand to the forearm, permitting more sensing in the fingers and palm where it is most important. The following describes the design, mechanical/electrical integration, and control features of the hand. Lessons learned during the development and initial operations along with planned refinements to make it more effective are presented.
Hand-Held Electronic Gap-Measuring Tools
NASA Technical Reports Server (NTRS)
Sugg, F. E.; Thompson, F. W.; Aragon, L. A.; Harrington, D. B.
1985-01-01
Repetitive measurements simplified by tool based on LVDT operation. With fingers in open position, Gap-measuring tool rests on digital readout instrument. With fingers inserted in gap, separation alters inductance of linear variable-differential transformer in plastic handle. Originally developed for measuring gaps between surface tiles of Space Shuttle orbiter, tool reduces measurement time from 20 minutes per tile to 2 minutes. Also reduces possibility of damage to tiles during measurement. Tool has potential applications in mass production; helps ensure proper gap dimensions in assembly of refrigerator and car doors and also used to measure dimensions of components and to verify positional accuracy of components during progressive assembly operations.
Producing Fe-W-Co-Cr-C Alloy Cutting Tool Material Through Powder Metallurgy Route
NASA Astrophysics Data System (ADS)
Datta Banik, Bibhas; Dutta, Debasish; Ray, Siddhartha
2017-04-01
High speed steel tools can withstand high impact forces as they are tough in nature. But they cannot retain their hardness at elevated temperature i.e. their hot hardness is low. Therefore permissible cutting speed is low and tools wear out easily. Use of lubricants is essential for HSS cutting tools. On the other hand cemented carbide tools can withstand greater compressive force, but due to lower toughness the tool can break easily. Moreover the cost of the tool is comparatively high. To achieve a better machining economy, Fe-W-Co-Cr-C alloys are being used nowadays. Their toughness is as good as HSS tools and hardness is very near to carbide tools. Even, at moderate cutting speeds they can be safely used in old machines having vibration. Moreover it is much cheaper than carbide tools. This paper highlights the Manufacturing Technology of the alloy and studies the comparative tribological properties of the alloy and tungsten mono carbide.
A computer controlled power tool for the servicing of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Richards, Paul W.; Konkel, Carl; Smith, Chris; Brown, Lee; Wagner, Ken
1996-01-01
The Hubble Space Telescope (HST) Pistol Grip Tool (PGT) is a self-contained, microprocessor controlled, battery-powered, 3/8-inch-drive hand-held tool. The PGT is also a non-powered ratchet wrench. This tool will be used by astronauts during Extravehicular Activity (EVA) to apply torque to the HST and HST Servicing Support Equipment mechanical interfaces and fasteners. Numerous torque, speed, and turn or angle limits are programmed into the PGT for use during various missions. Batteries are replaceable during ground operations, Intravehicular Activities, and EVA's.
2014-11-07
tools; • FSG 52 – measuring tools; • FSG 83 – textiles, leather, furs, apparel , and shoes; • FSG 84 – clothing , individual equipment and insignia; and...include: FSG 51 (Hand tools), 52 (Measuring tools), 83 (Textiles, leather, furs, apparel , and shoes), 84 ( Clothing , individual equipment and insignia...No. DODIG-2015-026 N O V E M B E R 7 , 2 0 1 4 Army Personnel Complied With the Berry Amendment But Can Improve Compliance With the Buy American
Digging up food: excavation stone tool use by wild capuchin monkeys.
Falótico, Tiago; Siqueira, José O; Ottoni, Eduardo B
2017-07-24
Capuchin monkeys at Serra da Capivara National Park (SCNP) usually forage on the ground for roots and fossorial arthropods, digging primarily with their hands but also using stone tools to loosen the soil and aid the digging process. Here we describe the stone tools used for digging by two groups of capuchins on SCNP. Both groups used tools while digging three main food resources: Thiloa glaucocarpa tubers, Ocotea sp roots, and trapdoor spiders. One explanation for the occurrence of tool use in primates is the "necessity hypothesis", which states that the main function of tool use is to obtain fallback food. We tested for this, but only found a positive correlation between plant food availability and the frequency of stone tools' use. Thus, our data do not support the fallback food hypothesis for the use of tools to access burrowed resources.
Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A
2013-01-01
Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.
Implicit and Explicit Representations of Hand Position in Tool Use
Rand, Miya K.; Heuer, Herbert
2013-01-01
Understanding the interactions of visual and proprioceptive information in tool use is important as it is the basis for learning of the tool's kinematic transformation and thus skilled performance. This study investigated how the CNS combines seen cursor positions and felt hand positions under a visuo-motor rotation paradigm. Young and older adult participants performed aiming movements on a digitizer while looking at rotated visual feedback on a monitor. After each movement, they judged either the proprioceptively sensed hand direction or the visually sensed cursor direction. We identified asymmetric mutual biases with a strong visual dominance. Furthermore, we found a number of differences between explicit and implicit judgments of hand directions. The explicit judgments had considerably larger variability than the implicit judgments. The bias toward the cursor direction for the explicit judgments was about twice as strong as for the implicit judgments. The individual biases of explicit and implicit judgments were uncorrelated. Biases of these judgments exhibited opposite sequential effects. Moreover, age-related changes were also different between these judgments. The judgment variability was decreased and the bias toward the cursor direction was increased with increasing age only for the explicit judgments. These results indicate distinct explicit and implicit neural representations of hand direction, similar to the notion of distinct visual systems. PMID:23894307
Rosen, Jacob; Brown, Jeffrey D; Barreca, Marco; Chang, Lily; Hannaford, Blake; Sinanan, Mika
2002-01-01
Minimally invasive surgeiy (MIS) involves a multi-dimensional series of tasks requiring a synthesis between visual information and the kinematics and dynamics of the surgical tools. Analysis of these sources of information is a key step in mastering MIS surgery but may also be used to define objective criteria for characterizing surgical performance. The BIueDRAGON is a new system for acquiring the kinematics and the dynamics of two endoscopic tools along with the visual view of the surgical scene. It includes two four-bar mechanisms equipped with position and force torque sensors for measuring the positions and the orientations (P/O) of two endoscopic tools along with the forces and torques applied by the surgeons hands. The methodology of decomposing the surgical task is based on a fully connected, finite-states (28 states) Markov model where each states corresponded to a fundamental tool/tissue interaction based on the tool kinematics and associated with unique F/T signatures. The experimental protocol included seven MIS tasks performed on an animal model (pig) by 30 surgeons at different levels of their residency training. Preliminary analysis of these data showed that major differences between residents at different skill levels were: (i) the types of tool/tissue interactions being used, (ii) the transitions between tool/tissue interactions being applied by each hand, (iii) time spent while perfonning each tool/tissue interaction, (iv) the overall completion time, and (v) the variable F/T magnitudes being applied by the subjects through the endoscopic tools. Systems like surgical robots or virtual reality simulators that inherently measure the kinematics and the dynamics of the surgical tool may benefit from inclusion of the proposed methodology for analysis of efficacy and objective evaluation of surgical skills during training.
DOT National Transportation Integrated Search
2001-04-01
Air quality has become one of the important factors to be considered in making transportation improvement : decisions. Thus, tools are expected to help such decision-makings. On the other hand, MOBILE5 model, which : has been widely used in evaluatin...
Curriculum Directions for the Next Millennium.
ERIC Educational Resources Information Center
Hashway, Robert M.; And Others
This paper reviews and uses current research to present guidelines for curriculum development and delivery. The presenters demonstrate why manipulatives, laboratories and other "hands on" approaches are not appropriate introductory learning tools for adults. They argue that laboratory and similar strategies are the tools of an…
NASA Astrophysics Data System (ADS)
Guillet, S.; Gosmain, A.; Ducoux, W.; Ponçon, M.; Fontaine, G.; Desseix, P.; Perraud, P.
2012-05-01
The increasing use of composite materials in aircrafts primary structures has led to different problematics in the field of safety of flight in lightning conditions. The consequences of this technological mutation, which occurs in a parallel context of extension of electrified critical functions, are addressed by aircraft manufacturers through the enhancement of their available assessment means of lightning transient. On the one hand, simulation tools, provided an accurate description of aircraft design, are today valuable assessment tools, in both predictive and operative terms. On the other hand, in-house test means allow confirmation and consolidation of design office hardening solutions. The combined use of predictive simulation tools and in- house test means offers an efficient and reliable support for all aircraft developments in their various life-time stages. The present paper provides PREFACE research project results that illustrate the above introduced strategy on the de-icing system of the NH90 composite main rotor blade.
Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.
Kahrs, Björn A; Jung, Wendy P; Lockman, Jeffrey J
2013-01-01
The current study examines the developmental trajectory of banging movements and its implications for tool use development. Twenty (6- to 15-month-old) infants wore reflective markers while banging a handled cube; movements were recorded at 240 Hz. Results indicated that through the second half-year, banging movements undergo developmental changes making them ideally suited for instrumental hammering and pounding. Younger infants were inefficient and variable when banging the object: Their hands followed circuitous paths of great lengths at high velocities. By 1 year, infants showed consistent and efficient straight up-down hand trajectories of smaller magnitude and velocity, allowing for precise aiming and delivering dependable levels of force. The findings suggest that tool use develops gradually from infants' existing manual behaviors. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.
Hakkers, C S; Beunders, A J M; Ensing, M H M; Barth, R E; Boelema, S; Devillé, W L J; Tempelman, H A; Coutinho, R A; Hoepelman, A I M; Arends, J E; van Zandvoort, M J E
2018-02-01
HIV-associated neurocognitive disorders (HAND) are frequently occurring comorbidities in HIV-positive patients, diagnosed by means of a neuropsychological assessment (NPA). Due to the magnitude of the HIV-positive population in Sub-Saharan Africa, easy-to-use cognitive screening tools are essential. This was a cross-sectional clinical trial involving 44 HIV-positive patients (on stable cART) and 73 HIV-negative controls completing an NPA, the International HIV Dementia Scale (IHDS), and a culturally appropriate cognitive screening tool, the Montreal Cognitive Assessment-Basic (MoCA-B). HAND were diagnosed by calculating Z-scores using internationally published normative data on NPA, as well as by using data from the HIV-negative group to validate the MoCA-B. One hundred and seventeen patients were included (25% male, median age 35 years, median 11 years of education). A moderate correlation was found between the MoCA-B and NPA total Z-score (Pearson's r=0.36, p=0.02). Area under the curve (AUC) values for MoCA-B and IHDS were 0.59 and 0.70, respectively. The prevalence of HAND in HIV-positive patients was 66% when calculating Z-scores using published normative data versus 48% when using the data from the present HIV-negative cohort. The MoCA-B appeared not to be a valid screening tool for HAND in this setting. The prevalence of HAND in this setting is high, but appeared overestimated when using published norms. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jesensek Papez, B; Palfy, M; Mertik, M; Turk, Z
2009-01-01
This study further evaluated a computer-based infrared thermography (IRT) system, which employs artificial neural networks for the diagnosis of carpal tunnel syndrome (CTS) using a large database of 502 thermal images of the dorsal and palmar side of 132 healthy and 119 pathological hands. It confirmed the hypothesis that the dorsal side of the hand is of greater importance than the palmar side when diagnosing CTS thermographically. Using this method it was possible correctly to classify 72.2% of all hands (healthy and pathological) based on dorsal images and > 80% of hands when only severely affected and healthy hands were considered. Compared with the gold standard electromyographic diagnosis of CTS, IRT cannot be recommended as an adequate diagnostic tool when exact severity level diagnosis is required, however we conclude that IRT could be used as a screening tool for severe cases in populations with high ergonomic risk factors of CTS.
[Health impact assessment methodology for urban planning projects in Andalusia (Spain)].
Moya-Ruano, Luis A; Candau-Bejarano, Ana; Rodríguez-Rasero, Francisco J; Ruiz-Fernández, Josefa; Vela-Ríos, José
To describe the tool developed in Andalusia (Spain) to conduct an analysis and prospective assessment of health impacts from urban planning projects as well as the process followed to design it. On the one hand, direct and indirect relationships between urban setting and health were identified in light of the best scientific evidence available; and, on the other hand, methods and tools in impact assessment were reviewed. After the design of the tool, it was tested via both internal and external validation processes (meetings, workshops and interviews with key informants). The tool consists of seven phases, structured in two stages. A first descriptive stage shows how to obtain information about goals, objectives and general points pertaining the project and also to characterise the potentially affected population. The second one indicates, in several phases, how to identify and sort out potential impacts from the project using different supporting tools. Both in the testing phase and through its implementation since the entry into force of Andalusian Decree 169/2014 (16 June 2015) and forced all urban planning projects to be subjected to an Health Impact Assessment, this methodology has proved responsive, identifying major potential health impacts from the measures included in those projects. However, the tool has been shaped as a living tool and will be adapted in line with the experience acquired in its use. Copyright © 2017. Publicado por Elsevier España, S.L.U.
Rallis, Austin; Fercho, Kelene A; Bosch, Taylor J; Baugh, Lee A
2018-01-31
Tool use is associated with three visual streams-dorso-dorsal, ventro-dorsal, and ventral visual streams. These streams are involved in processing online motor planning, action semantics, and tool semantics features, respectively. Little is known about the way in which the brain represents virtual tools. To directly assess this question, a virtual tool paradigm was created that provided the ability to manipulate tool components in isolation of one another. During functional magnetic resonance imaging (fMRI), adult participants performed a series of virtual tool manipulation tasks in which vision and movement kinematics of the tool were manipulated. Reaction time and hand movement direction were monitored while the tasks were performed. Functional imaging revealed that activity within all three visual streams was present, in a similar pattern to what would be expected with physical tool use. However, a previously unreported network of right-hemisphere activity was found including right inferior parietal lobule, middle and superior temporal gyri and supramarginal gyrus - regions well known to be associated with tool processing within the left hemisphere. These results provide evidence that both virtual and physical tools are processed within the same brain regions, though virtual tools recruit bilateral tool processing regions to a greater extent than physical tools. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heavy Equipment Mechanic. Instructor Edition.
ERIC Educational Resources Information Center
Hendrix, Laborn J.; And Others
This manual is intended to assist heavy equipment instructors in teaching the latest concepts and functions of heavy equipment. It includes 7 sections and 27 instructional units. Sections (and units) are: orientation (shop safety and first aid, hand tools and miscellaneous tools, measuring, basic rigging and hoisting), engines (basic engine…
Drawings of the Modular Equipment Transporter and Hand Tool Carrier
1970-10-12
S70-50762 (November 1970) --- A line drawing illustrating layout view of the modular equipment transporter (MET) and its equipment. A MET (or Rickshaw, as it has been nicknamed) will be used on the lunar surface for the first time during the Apollo 14 lunar landing mission. The Rickshaw will serve as a portable workbench with a place for the Apollo lunar hand tools (ALHT) and their carrier, three cameras, two sample container bags, a special environment sample container (SESC), a lunar portable magnetometer (LPM) and spare film magazines.
Kong, Yong-Ku; Kim, Dae-Min
2015-01-01
The design and shape of hand tool handles are critical factors for preventing musculoskeletal disorders (MSDs) caused by the use of hand tools. We explored how these factors are related to total force and individual finger force in males and females with various hand anthropometrics. Using the MFFM system, we assessed four indices of anthropometry, and measured total force and individual finger force on various handle designs and shapes. Both total force and individual finger force were significant according to gender and handle shape. Total grip strength to the handle shape indicated the greatest strength with D shape and the least with A shape. From the regression analysis of hand anthropometric indices, the value of R was respectably high at 0.608-0.696. The current study examined the gender and handle shape factors affecting grip strength based on the force measurements from various handle types, in terms of influence on different hand anthropometric indices.
ERIC Educational Resources Information Center
Miles, Barbara
This paper examines the importance of hands for the person who is deafblind, reviews hand development, and identifies specific teaching skills that facilitate hand development and expressiveness in persons who are deafblind. It notes that the hands of a deafblind individual serve not only as tools but also as sense organs (to compensate for their…
Agriculture Education. Agriculture Structures.
ERIC Educational Resources Information Center
Stuttgart Public Schools, AR.
This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agriculture structures. The guide presents units of study in the following areas: (1) shop safety, (2) identification and general use of hand tools, (3) power tools, (4) carpentry, (5) blueprint…
Millwright Apprenticeship. Related Training Modules. 1.1-1.8 Safety.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains eight modules covering safety. The modules provide information on the following topics: general safety, hand tool safety, power tool safety, fire safety, hygiene, safety and electricity, types of fire and fire prevention, and…
Computer Controlled Optical Surfacing With Orbital Tool Motion
NASA Astrophysics Data System (ADS)
Jones, Robert A.
1985-11-01
Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by hand grinding and polishing, using small laps with orbital tool motion. However, this is a time consuming process unsuitable for large optical elements.
Basic Engineer Equipment Mechanic.
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…
Using Technology to Teach Equivalence
ERIC Educational Resources Information Center
Kaplan, Rochelle Goldberg; Alon, Sandra
2013-01-01
Technology has the potential to make complex and abstract mathematical ideas more accessible to students, especially to those who have difficulties with challenging curricular concepts (NCTM 2000, NCTM 2008). What one sometimes forgets is that technology is a tool and, like any tool, can be used productively only in the hands of a skilled…
Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2016-01-01
BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for better effectiveness for protecting the fingers. PMID:27867313
The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.
McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G
2016-04-01
Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank orders. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2015.
The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions
McDowell, Thomas W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; Dong, Ren G.
2016-01-01
Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank orders. PMID:26628522
Workplace screening for hand dermatitis: a pilot study.
Nichol, K; Copes, R; Spielmann, S; Kersey, K; Eriksson, J; Holness, D L
2016-01-01
Health care workers (HCWs) are at increased risk for developing occupational skin disease (OSD) such as dermatitis primarily due to exposure to wet work. Identification of risk factors and workplace screening can help early detection of OSD to avoid the condition becoming chronic. To determine risk factors and clinical findings for hand dermatitis using a workplace screening tool. Employees at a large teaching hospital in Toronto, Canada, were invited to complete a two-part hand dermatitis screening tool. Part 1 inquired about hand hygiene practices and Part 2 comprised a visual assessment of participants' hands by a health professional and classification as (i) normal, (ii) mild dermatitis or (iii) moderate/severe dermatitis. Risk factors were determined using chi-square and Cochran-Armitage analysis on a dichotomous variable, where Yes represented either a mild or moderate/severe disease classification. There were 183 participants out of 643 eligible employees; response rate 28%. Mild or moderate/severe dermatitis was present in 72% of participants. These employees were more likely to work directly with patients, have worked longer in a health care setting, wash hands and change gloves more frequently, wear gloves for more hours per day, have a history of eczema or dermatitis and report a current rash on the hands or rash in the past 12 months. There was a high percentage of HCWs with dermatitis and risk factors for dermatitis. These findings argue for increased attention to prevention and early identification of hand dermatitis and support further testing of the workplace screening tool. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hand function in workers with hand-arm vibration syndrome.
Cederlund, R; Isacsson, A; Lundborg, G
1999-01-01
Hand-arm vibration syndrome has been specially addressed in the Scandinavian countries in recent years, but the syndrome is still not sufficiently recognized in many countries. The object of this preliminary study was to describe the nature and character of vibration-induced impairment in the hands of exposed workers. Twenty symptomatic male workers (aged 28 to 65 years) subjected to vibration by hand-held tools were interviewed about subjective symptoms and activities of daily living and were assessed with a battery of objective tests for sensibility, dexterity, grip function, and grip strength. The test results were compared with normative data. The majority of patients complained of cold intolerance, numbness, pain, sensory impairment, and difficulties in handling manual tools and in handwriting. The various objective tests showed considerable variation in indications of pathologic outcome, revealing differences in sensitivity to detect impaired hand function. Semmes-Weinstein monofilament testing for perception of light touch-deep pressure sensation, the small-object shape identification test, and moving two-point discrimination testing for functional sensibility provided the most indications of pathologic outcomes. The authors conclude that vibration-exposed patients present considerable impairment in hand function.
Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.
Zhang, Jiang; Yuan, Zhen; Huang, Jin; Yang, Qin; Chen, Huafu
2014-12-01
Motor imagery is an experimental paradigm implemented in cognitive neuroscience and cognitive psychology. To investigate the asymmetry of the strength of cortical functional activity due to different single-hand motor imageries, functional magnetic resonance imaging (fMRI) data from right handed normal subjects were recorded and analyzed during both left-hand and right-hand motor imagery processes. Then the average power of blood oxygenation level-dependent (BOLD) signals in temporal domain was calculated using the developed tool that combines Welch power spectrum and the integral of power spectrum approach of BOLD signal changes during motor imagery. Power change analysis results indicated that cortical activity exhibited a stronger power in the precentral gyrus and medial frontal gyrus with left-hand motor imagery tasks compared with that from right-hand motor imagery tasks. These observations suggest that right handed normal subjects mobilize more cortical nerve cells for left-hand motor imagery. Our findings also suggest that the approach based on power differences of BOLD signals is a suitable quantitative analysis tool for quantification of asymmetry of brain activity intensity during motor imagery tasks. Copyright © 2014 Elsevier Inc. All rights reserved.
Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot.
Kiguchi, Kazuo; Hayashi, Yoshiaki
2013-01-01
A tremor which is one of the involuntary motions is somewhat rhythmic motion that may occur in various body parts. Although there are several kinds of the tremor, an essential tremor is the most common tremor disorder of the arm. The essential tremor is a disorder of unknown cause, and it is common in the elderly. The essential tremor interferes with a patient's daily living activity, because it may occur during a voluntary motion. If a patient of an essential tremor uses an EMG-based controlled power-assist robot, the robot might misunderstand the user's motion intention because of the effect of the essential tremor. In that case, upper-limb power-assist robots must carry out tremor suppression as well as power-assist, since a person performs various precise tasks with certain tools by the upper-limb in daily living. Therefore, it is important to suppress the tremor at the hand and grasped tool. However, in the case of the tremor suppression control method which suppressed the vibrations of the hand and the tip of the tool, vibration of other part such as elbow might occur. In this paper, the tremor suppression control method for upper-limb power-assist robot is proposed. In the proposed method, the vibration of the elbow is suppressed in addition to the hand and the tip of the tool. The validity of the proposed method was verified by the experiments.
Development of a Video-Based Evaluation Tool in Rett Syndrome
ERIC Educational Resources Information Center
Fyfe, S.; Downs, J.; McIlroy, O.; Burford, B.; Lister, J.; Reilly, S.; Laurvick, C. L.; Philippe, C.; Msall, M.; Kaufmann, W. E.; Ellaway, C.; Leonard, H.
2007-01-01
This paper describes the development of a video-based evaluation tool for use in Rett syndrome (RTT). Components include a parent-report checklist, and video filming and coding protocols that contain items on eating, drinking, communication, hand function and movements, personal care and mobility. Ninety-seven of the 169 families who initially…
Help Teachers Engage Students: Action Tools for Administrators
ERIC Educational Resources Information Center
Brinkman, Annette; Forlini, Gary; Williams, Ellen
2009-01-01
This unique, hands-on reference for school administrators offers guidelines for effective student engagement as well as reproducible action tools that will enable you to: (1) Identify and share "The Big Eight Student Engagement Strategies" with your teachers; (2) Promote teacher growth and provide support for new and/or struggling teachers; (3)…
Instructional Support System--Occupational Education. Building Industries Occupations.
ERIC Educational Resources Information Center
Abramson, Theodore; And Others
The modules which make up the bulk of this report are the result of a two-week workshop at which thirteen building industries occupations teachers worked toward the development of a student outcome oriented curriculum. These modules are divided into the following occupational units: (1) carpentry (containing hand tools; portable power tools;…
Bricklaying Curriculum: Principles of Bricklaying. Instructional Materials. Revised.
ERIC Educational Resources Information Center
Turcotte, Raymond J.; Hendrix, Laborn J.
This volume is the second in a two-volume core curriculum designed for use in teaching a course in bricklaying. Covered in the first four units are hand tools, power tools, miscellaneous equipment, and builder's levels. The second section of the guide comprises units on the following building materials: mortars, masonry units, and anchors and…
Software Tools: A One-Semester Secondary School Computer Course.
ERIC Educational Resources Information Center
Bromley, John; Lakatos, John
1985-01-01
Provides a course outline, describes equipment and teacher requirements, discusses student evaluation and course outcomes, and details the computer programs used in a high school course. The course is designed to teach students use of the microcomputer as a tool through hands-on experience with a variety of commercial software programs. (MBR)
29 CFR 1926.302 - Power-operated hand tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the source of supply or branch line to reduce pressure in case of hose failure. (8) Airless spray guns... the open barrel end. (6) Loaded tools shall not be left unattended. (7) Fasteners shall not be driven...-hardened steel, glass block, live rock, face brick, or hollow tile. (8) Driving into materials easily...
29 CFR 1926.302 - Power-operated hand tools.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the source of supply or branch line to reduce pressure in case of hose failure. (8) Airless spray guns... the open barrel end. (6) Loaded tools shall not be left unattended. (7) Fasteners shall not be driven...-hardened steel, glass block, live rock, face brick, or hollow tile. (8) Driving into materials easily...
29 CFR 1926.302 - Power-operated hand tools.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the source of supply or branch line to reduce pressure in case of hose failure. (8) Airless spray guns... the open barrel end. (6) Loaded tools shall not be left unattended. (7) Fasteners shall not be driven...-hardened steel, glass block, live rock, face brick, or hollow tile. (8) Driving into materials easily...
29 CFR 1926.302 - Power-operated hand tools.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the source of supply or branch line to reduce pressure in case of hose failure. (8) Airless spray guns... the open barrel end. (6) Loaded tools shall not be left unattended. (7) Fasteners shall not be driven...-hardened steel, glass block, live rock, face brick, or hollow tile. (8) Driving into materials easily...
29 CFR 1926.302 - Power-operated hand tools.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the source of supply or branch line to reduce pressure in case of hose failure. (8) Airless spray guns... the open barrel end. (6) Loaded tools shall not be left unattended. (7) Fasteners shall not be driven...-hardened steel, glass block, live rock, face brick, or hollow tile. (8) Driving into materials easily...
Teach CAD and Measuring Skills through Reverse Engineering
ERIC Educational Resources Information Center
Board, Keith
2012-01-01
This article describes a reverse engineering activity that gives students hands-on, minds-on experience with measuring tools, machine parts, and CAD. The author developed this activity to give students an abundance of practical experience with measuring tools. Equally important, it provides a good interface between the virtual world of CAD 3D…
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2016-07-01
The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.
Making appropriation 'stick': stabilizing politics in an 'inherently feminist' tool.
Hasson, Katie Ann
2012-10-01
This article examines how feminist politics are made to 'stick' to appropriated technologies in the context of a contemporary feminist women's health clinic in the US. Feminist clinics such as 'FemHealth', founded as part of 1970s women's health movements, put medical tools and knowledge into lay women's hands, making the appropriation of medical technologies a centerpiece of their political project. In the process, they rejected the authority of physicians and gave new politicized meanings to the tools they claimed as their own. As lay healthworkers at FemHealth continued the project of appropriation, they also continued to negotiate their dependence on physicians to perform tasks that required a medical license. Drawing on participant observation and interviews with healthworkers, I argue that struggles over the role and authority of physicians in this clinic play out through debates over two similar and competing tools used in the abortion procedure: the single-tooth tenaculum and the cervical stabilizer. Many healthworkers invested in the stabilizer as 'inherently feminist' in hopes that it would maintain its politics even when passed into physicians' hands. While appropriation depends on the ability of users to alter a technology's meanings, actors may feel invested in the new politics taken on by appropriated tools and work towards making those meanings persist, or 'stick'.
Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study.
Wadsworth, Heather M; Kana, Rajesh K
2011-06-01
The ability to conceptualize and manipulate tools in a complex manner is a distinguishing characteristic of humans, and forms a promising milestone in human evolution. While using tools is a motor act, proposals for executing such acts may be evoked by the mere perception of a tool. Imagining an action using a tool may invoke mental readjustment of body posture, planning motor movements, and matching such plans with the model action. This fMRI study examined the brain response in 32 healthy adults when they either viewed a tool or imagined using it. While both viewing and imagining tasks recruited similar regions, imagined tool use showed greater activation in motor areas, and in areas around the bilateral temporoparietal junction. Viewing tools, on the other hand, produced robust activation in the inferior frontal, occipital, parietal, and ventral temporal areas. Analysis of gender differences indicated males recruiting medial prefrontal and anterior cingulate cortices and females, left supramarginal gyrus and left anterior insula. While tool viewing seems to generate prehensions about using them, the imagined action using a tool mirrored brain responses underlying functional use of it. The findings of this study may suggest that perception and imagination of tools may form precursors to overt actions. Published by Elsevier Ltd.
Design and fabrication of an end effector
NASA Technical Reports Server (NTRS)
Crossley, F. R. E.; Umholtz, F. G.
1975-01-01
The construction is described of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. A model was tested and found capable of both these operations.
Adeleye, Adedoyin Abiodun; Akanbi, Olusegun Gabriel
2015-01-01
Cutting scissors are important working tools for Nigerian custom tailors (CTs) but its usage apparently does not meet the ergonomics need of these artisans. A survey was carried out amongst CTs using questionnaires to obtain their background social-occupational demographics and observation methods to study their work performance, use of scissors and any cumulative trauma disorder (CTD) in their hands. Thicknesses of various fabrics were measured and comparison between Western world's custom tailoring job and the Nigerian type was done. The results showed some CTD risk factors with finger contusions on the 71 CTs evaluated. The right-hand contusions were traced to the constant usage of unpadded manual scissors with ungloved hands. Disparity between Western and Nigerian tailoring practice may account for the high occurrence of disorders in Nigerian CTs. Since hand dimensions are crucial in the design of hand tools, it is therefore concluded that hand anthropometry of Nigerian CTs and soft padding of manual scissors may mitigate CTD burdens on CTs' hands. Cumulative trauma disorders on the hands of low-income Nigerian CTs needed investigation. This was done via self-assessment and observational methods of the artisans’ work system. Frequent usage of unpadded manual scissors with un-gloved hands cause and exacerbate the problem. Hand anthropometry of users is crucial in scissors manufacturing.
Development of Hand-Held Thermographic Inspection Technologies
DOT National Transportation Integrated Search
2009-09-01
This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detectin...
Development of hand-held thermographic inspection technologies.
DOT National Transportation Integrated Search
2009-09-01
This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete : bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detect...
Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.
Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N
2016-06-23
Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.
Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture
Williams-Hatala, E. M.; Hatala, K. G.; Hiles, S.; Rabey, K. N.
2016-01-01
Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses. PMID:27334440
Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot.
Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai
2014-01-01
Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods.
Vibration and impulsivity analysis of hand held olive beaters.
Deboli, Roberto; Calvo, Angela; Preti, Christian
2016-07-01
To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Design and thermal analysis of a mold used in the injection of elastomers
NASA Astrophysics Data System (ADS)
Fekiri, Nasser; Canto, Cécile; Madec, Yannick; Mousseau, Pierre; Plot, Christophe; Sarda, Alain
2017-10-01
In the process of injection molding of elastomers, improving the energy efficiency of the tools is a current challenge for industry in terms of energy consumption, productivity and product quality. In the rubber industry, 20% of the energy consumed by capital goods comes from heating processes; more than 50% of heat losses are linked to insufficient control and thermal insulation of Molds. The design of the tooling evolves in particular towards the reduction of the heated mass and the thermal insulation of the molds. In this paper, we present a complex tool composed, on one hand, of a multi-cavity mold designed by reducing the heated mass and equipped with independent control zones placed closest to each molding cavity and, on the other hand, of a regulated channel block (RCB) which makes it possible to limit the waste of rubber during the injection. The originality of this tool lies in thermally isolating the regulated channel block from the mold and the cavities between them in order to better control the temperature field in the material which is transformed. We present the design and the instrumentation of the experimental set-up. Experimental measurements allow us to understand the thermal of the tool and to show the thermal heterogeneities on the surface of the mold and in the various cavities. Tests of injection molding of the rubber and a thermal balance on the energy consumption of the tool are carried out.
NASA Astrophysics Data System (ADS)
Field, T.
2014-12-01
Spectroscopy is a key tool used in modern astronomical research. But, it's always been a difficult topic to teach or practice because the expense and complexity of the available tools. Over the past few years, there's been somewhat of a revolution in this field as new technologies have applied. In this presentation we'll review some new spectroscopy tools that enable educators, students and citizen scientists to do exciting spectroscopic work. With the addition of a simple, inexpensive grating, it's now possible to capture scientifically significant spectra of astronomical objects with small (6") telescopes and even just a DSLR. See the tools that citizen scientists are using to contribute data to pro-am collaborations around the world. We'll also examine a simple, surprisingly inexpensive, tripod-mounted spectrometer that can be used in the classroom for demonstrations and hands-on labs with gas tubes and other light sources. Both of the above instruments use a software program named RSpec, which is state of the art software suite that is easy to learn and easy to use. In this presentation we'll see these devices in operation and discuss how they can be used by educators to dramatically improve their teaching of this topic. You'll see how these tools can eliminate the frustration of hand-held rainbow foil and plastic spectrometers. And we'll review some exciting examples of astronomical spectra being collected by amateurs and educators.
NASA Astrophysics Data System (ADS)
Khidhir, Basim A.; Mohamed, Bashir
2011-02-01
Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.
Energy evaluation of protection effectiveness of anti-vibration gloves.
Hermann, Tomasz; Dobry, Marian Witalis
2017-09-01
This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.
Tsang, Michael P; Kikuchi-Uehara, Emi; Sonnemann, Guido W; Aymonier, Cyril; Hirao, Masahiko
2017-08-04
It has been some 15 years since the topics of sustainability and nanotechnologies first appeared together in the scientific literature and became a focus of organizations' research and policy developments. On the one hand, this focus is directed towards approaches and tools for risk assessment and management and on the other hand towards life-cycle thinking and assessment. Comparable to their application for regular chemicals, each tool is seen to serve separate objectives as it relates to evaluating nanotechnologies' safety or resource efficiency, respectively. While nanomaterials may provide resource efficient production and consumption, this must balance any potential hazards they pose across their life-cycles. This Perspective advocates for integrating these two tools at the methodological level for achieving this objective, and it explains what advantages and challenges this offers decision-makers while highlighting what research is needed to further enhance integration.
An ergonomic approach to design hand tool for agricultural production.
Khidiya, Mahendra Singh; Bhardwaj, Awadhesh
2012-01-01
Hand tool mechanisms designed to reduce the risk factors have rarely been studied. In this paper it is analyze trowel firstly designing in CATIA and then its Finite Element Analysis has been carried out by ABAQUS. The main emphasis is on finding stresses by using this software, then removing them by suitable mechanical working on tool & ergonomic change in the design of handle to make it more comfortable. Body part discomfort score and overall discomfort rating experienced by the subjects had also been estimated. During the muscular activity workers physiological responses i.e. energy expenditure rate, oxygen consumption rate and heart rate increases. This increase in physiological responses is related to the type, intensity and duration of work and thus sets limits to the performance of heavy work. In this paper oxygen consumption rate and heart rate was used for physiological cost estimation. These parameters were measured by Computerized Ambulatory Metabolic Measurement System K4b2.
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E
1987-03-01
The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.
Perceptual impairment and psychomotor control in virtual laparoscopic surgery.
Wilson, Mark R; McGrath, John S; Vine, Samuel J; Brewer, James; Defriend, David; Masters, Richard S W
2011-07-01
It is recognised that one of the major difficulties in performing laparoscopic surgery is the translation of two-dimensional video image information to a three-dimensional working area. However, research has tended to ignore the gaze and eye-hand coordination strategies employed by laparoscopic surgeons as they attempt to overcome these perceptual constraints. This study sought to examine if measures related to tool movements, gaze strategy, and eye-hand coordination (the quiet eye) differentiate between experienced and novice operators performing a two-handed manoeuvres task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Twenty-five right-handed surgeons were categorised as being either experienced (having led more than 60 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The 10 experienced and 15 novice surgeons completed the "two-hand manoeuvres" task from the LAP Mentor basic skills learning environment while wearing a gaze registration system. Performance, movement, gaze, and eye-hand coordination parameters were recorded and compared between groups. The experienced surgeons completed the task significantly more quickly than the novices, used significantly fewer movements, and displayed shorter tool paths. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. A more detailed analysis of a difficult subcomponent of the task revealed that experienced operators used a significantly longer aiming fixation (the quiet eye period) to guide precision grasping movements and hence needed fewer grasp attempts. The findings of the study provide further support for the utility of examining strategic gaze behaviour and eye-hand coordination measures to help further our understanding of how experienced surgeons attempt to overcome the perceptual difficulties inherent in the laparoscopic environment.
Can hand laterality be identified through lithic technology?
Bargalló, Amèlia; Mosquera, Marina
2014-01-01
In this paper we present a new method for inferring handedness from lithic evidence. The study was conducted by means of an experimental programme in stone-knapping, after which the resulting lithic products (tools) were analysed. These lithic tools were produced by 15 inexpert knappers (8 right-handed and 7 left-handed), because we were not able to find a statistically significant number of left-handed expert knappers. We considered inexpert knappers to include individuals who had never struck two pebbles together, as well as individuals who were quite familiar with prehistoric tools and had had some degree of practice. The Mann-Whitney U test proved that all of them produced flakes with the same technical features, so within this sample expertise was not a factor that affected the presence or absence of the technical features analysed to determine hand laterality. The results of the experiment indicate that no single variable can be used to determine the laterality of the knapper, but rather the evidence of handedness lies in the combination of several variables. Furthermore, not all the flakes display the entire set of significant features. Therefore this study concludes that it is not possible to determine the handedness of a knapper through a single variable present on his or her flakes, but it may be possible to determine laterality by examining a combination of technical variables on a number of his or her pieces. Archaeologically, only well-preserved knapping events with numerous refitting products can be assigned to a left- or a right-handed knapper.
Data are from Mars, Tools are from Venus
NASA Technical Reports Server (NTRS)
Lee, H. Joe
2017-01-01
Although during the data production phase, the data producers will usually ensure the products to be easily used by the specific power users the products serve. However, most data products are also posted for general public to use. It is not straightforward for data producers to anticipate what tools that these general end-data users are likely to use. In this talk, we will try to help fill in the gap by going over various tools related to Earth Science and how they work with the existing NASA HDF (Hierarchical Data Format) data products and the reasons why some products cannot be visualized or analyzed by existing tools. One goal is for to give insights for data producers on how to make their data product more interoperable. On the other hand, we also provide some hints for end users on how to make tools work with existing HDF data products. (tool category list: check the comments) HDF-EOS tools: HDFView HDF-EOS Plugin, HEG, h4tonccf, hdf-eos2 dumper, NCL, MATLAB, IDL, etc.net; CDF-Java tools: Panoply, IDV, toosUI, NcML, etc.net; CDF-C tools: ArcGIS Desktop, GrADS, NCL, NCO, etc.; GDAL tools: ArcGIS Desktop, QGIS, Google Earth, etc.; CSV tools: ArcGIS Online, MS Excel, Tableau, etc.
Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience
ERIC Educational Resources Information Center
Seif, Mujan; Beck, Matthew
2018-01-01
Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…
Production rates for crews using hand tools on firelines
Lisa Haven; T. Parkin Hunter; Theodore G. Storey
1982-01-01
Reported rates at which hand crews construct firelines can vary widely because of differences in fuels, fire and measurement conditions, and fuel resistance-to-control classification schemes. Real-time fire dispatching and fire simulation planning models, however, require accurate estimates of hand crew productivity. Errors in estimating rate of fireline production...
29 CFR 780.312 - “Hand harvest laborer” defined.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Employees who hand pick small undesirable fruit prior to harvesting in order to insure a better crop would..., such as a “blueberry picking tool.” “Hand-harvesting” refers only to soil-grown crops and does not... almost simultaneously with the picking and before transportation to the concentration point on the farm...
29 CFR 780.312 - “Hand harvest laborer” defined.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Employees who hand pick small undesirable fruit prior to harvesting in order to insure a better crop would..., such as a “blueberry picking tool.” “Hand-harvesting” refers only to soil-grown crops and does not... almost simultaneously with the picking and before transportation to the concentration point on the farm...
"Digit Anatomy": A New Technique for Learning Anatomy Using Motor Memory
ERIC Educational Resources Information Center
Oh, Chang-Seok; Won, Hyung-Sun; Kim, Kyong-Jee; Jang, Dong-Su
2011-01-01
Gestural motions of the hands and fingers are powerful tools for expressing meanings and concepts, and the nervous system has the capacity to retain multiple long-term motor memories, especially including movements of the hands. We developed many sets of successive movements of both hands, referred to as "digit anatomy," and made…
Machine Learning-Based App for Self-Evaluation of Teacher-Specific Instructional Style and Tools
ERIC Educational Resources Information Center
Duzhin, Fedor; Gustafsson, Anders
2018-01-01
Course instructors need to assess the efficacy of their teaching methods, but experiments in education are seldom politically, administratively, or ethically feasible. Quasi-experimental tools, on the other hand, are often problematic, as they are typically too complicated to be of widespread use to educators and may suffer from selection bias…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, adapted from military curriculum materials for use in vocational and technical education, teaches students to perform a complete engine tune-up using appropriate hand tools, special tools, and testing equipment. Students completing the course will be able to diagnose gasoline-engine performance and perform corrective measures to…
When Does Tool Use Become Distinctively Human? Hammering in Young Children
ERIC Educational Resources Information Center
Kahrs, Björn Alexander; Jung, Wendy P.; Lockman, Jeffrey J.
2014-01-01
This study examines the development of hammering within an ontogenetic and evolutionary framework using motion-capture technology. Twenty-four right-handed toddlers (19-35 months) wore reflective markers while hammering a peg into a peg-board. The study focuses on the motor characteristics that make tool use uniquely human: wrist involvement,…
Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity
ERIC Educational Resources Information Center
Dinov, Ivo D.; Christou, Nicolas
2011-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…
Trombert-Paviot, B; Rodrigues, J M; Rogers, J E; Baud, R; van der Haring, E; Rassinoux, A M; Abrial, V; Clavel, L; Idir, H
2000-09-01
Generalised architecture for languages, encyclopedia and nomenclatures in medicine (GALEN) has developed a new generation of terminology tools based on a language independent model describing the semantics and allowing computer processing and multiple reuses as well as natural language understanding systems applications to facilitate the sharing and maintaining of consistent medical knowledge. During the European Union 4 Th. framework program project GALEN-IN-USE and later on within two contracts with the national health authorities we applied the modelling and the tools to the development of a new multipurpose coding system for surgical procedures named CCAM in a minority language country, France. On one hand, we contributed to a language independent knowledge repository and multilingual semantic dictionaries for multicultural Europe. On the other hand, we support the traditional process for creating a new coding system in medicine which is very much labour consuming by artificial intelligence tools using a medically oriented recursive ontology and natural language processing. We used an integrated software named CLAW (for classification workbench) to process French professional medical language rubrics produced by the national colleges of surgeons domain experts into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation, on one hand, we generate with the LNAT natural language generator controlled French natural language to support the finalization of the linguistic labels (first generation) in relation with the meanings of the conceptual system structure. On the other hand, the Claw classification manager proves to be very powerful to retrieve the initial domain experts rubrics list with different categories of concepts (second generation) within a semantic structured representation (third generation) bridge to the electronic patient record detailed terminology.
When does tool use become distinctively human?: Hammering in young children
Kahrs, Björn; Lockman, Jeffrey J.; Jung, Wendy
2013-01-01
This study examines the development of hammering within an ontogenetic and evolutionary framework using motion-capture technology. Twenty-four right-handed toddlers (19–35 months) wore reflective markers while hammering a peg into a peg-board. The study focuses on the motor characteristics that make tool use uniquely human: wrist involvement, lateralization, and handle use. Older children showed more distally controlled movements, characterized by relatively more reliance on the wrist, but only when hammering with their right hand. Greater age, use of the right hand, and more wrist involvement were associated with higher accuracy; handle use did not systematically change with age. Collectively, the results provide new insights about the emergence of hammering in young children and when hammering begins to manifest distinctively human characteristics. PMID:24128178
Laboratory and Workplace Assessments of Rivet Bucking Bar Vibration Emissions
McDowell, Thomas W.; Warren, Christopher; Xu, Xueyan S.; Welcome, Daniel E.; Dong, Ren G.
2016-01-01
Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool weight, comfort, worker acceptance, and initial cost can be used to make informed bucking bar selections. PMID:25381185
Laboratory and workplace assessments of rivet bucking bar vibration emissions.
McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G
2015-04-01
Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool weight, comfort, worker acceptance, and initial cost can be used to make informed bucking bar selections. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.
The use of power tools in the insertion of cortical bone screws.
Elliott, D
1992-01-01
Cortical bone screws are commonly used in fracture surgery, most patterns are non-self-tapping and require a thread to be pre-cut. This is traditionally performed using hand tools rather than their powered counterparts. Reasons given usually imply that power tools are more dangerous and cut a less precise thread, but there is no evidence to support this supposition. A series of experiments has been performed which show that the thread pattern cut with either method is identical and that over-penetration with the powered tap is easy to control. The conclusion reached is that both methods produce consistently reliable results but use of power tools is much faster.
NASA Astrophysics Data System (ADS)
Suaste-Gomez, Ernesto; Leybon, Jaime I.; Rodriguez, D.
1998-07-01
Visual scanpath has been an important work applied in neuro- ophthalmic and psychological studies. This is because it has been working like a tool to validate some pathologies such as visual perception in color or black/white images; color blindness; etc. On the other hand, this tool has reached a big field of applications such as marketing. The scanpath over a specific picture, shows the observer interest in color, shapes, letter size, etc.; even tough the picture be among a group of images, this tool has demonstrated to be helpful to catch people interest over a specific advertisement.
Monocular tool control, eye dominance, and laterality in New Caledonian crows.
Martinho, Antone; Burns, Zackory T; von Bayern, Auguste M P; Kacelnik, Alex
2014-12-15
Tool use, though rare, is taxonomically widespread, but morphological adaptations for tool use are virtually unknown. We focus on the New Caledonian crow (NCC, Corvus moneduloides), which displays some of the most innovative tool-related behavior among nonhumans. One of their major food sources is larvae extracted from burrows with sticks held diagonally in the bill, oriented with individual, but not species-wide, laterality. Among possible behavioral and anatomical adaptations for tool use, NCCs possess unusually wide binocular visual fields (up to 60°), suggesting that extreme binocular vision may facilitate tool use. Here, we establish that during natural extractions, tool tips can only be viewed by the contralateral eye. Thus, maintaining binocular view of tool tips is unlikely to have selected for wide binocular fields; the selective factor is more likely to have been to allow each eye to see far enough across the midsagittal line to view the tool's tip monocularly. Consequently, we tested the hypothesis that tool side preference follows eye preference and found that eye dominance does predict tool laterality across individuals. This contrasts with humans' species-wide motor laterality and uncorrelated motor-visual laterality, possibly because bill-held tools are viewed monocularly and move in concert with eyes, whereas hand-held tools are visible to both eyes and allow independent combinations of eye preference and handedness. This difference may affect other models of coordination between vision and mechanical control, not necessarily involving tools. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lessons Learned from Pit Viper System Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalan, Michael A.; Alzheimer, James M.; Valdez, Patrick LJ
2002-04-11
Tele-operated and robotic systems operated in unstructured field environments pose unique challenges for tool design. Since field tasks are not always well defined and the robot work area usually cannot be designed for ease of operation, the tools must be versatile. It's important to carefully consider the orientation of the grip the robot takes on the tool, as it's not easily changed in the field. The stiffness of the robot and the possibility of robot positioning errors encourages the use of non-contact or minimal-contact tooling. While normal hand tools can usually be modified for use by the robot, this ismore » not always the most effective approach. It's desirable to have tooling that is relatively independent of the robot; in this case, the robot places the tool near the desired work location and the tool performs its task relatively independently. Here we consider the adaptation of a number of tools for cleanup of a radioactively contaminated piping junction and valve pit. The tasks to be considered are debris removal (small nuts and bolts and pipe up to 100 mm in diameter), size reduction, surface cleaning, and support of past practice crane-based methods for working in the pits.« less
Saluja, Kiran; Rawal, Tina; Bassi, Shalini; Bhaumik, Soumyadeep; Singh, Ankur; Park, Min Hae; Kinra, Sanjay; Arora, Monika
2018-06-01
We aimed to identify, describe and analyse school environment assessment (SEA) tools that address behavioural risk factors (unhealthy diet, physical inactivity, tobacco and alcohol consumption) for non-communicable diseases (NCD). We searched in MEDLINE and Web of Science, hand-searched reference lists and contacted experts. Basic characteristics, measures assessed and measurement properties (validity, reliability, usability) of identified tools were extracted. We narratively synthesized the data and used content analysis to develop a list of measures used in the SEA tools. Twenty-four SEA tools were identified, mostly from developed countries. Out of these, 15 were questionnaire based, 8 were checklists or observation based tools and one tool used a combined checklist/observation based and telephonic questionnaire approach. Only 1 SEA tool had components related to all the four NCD risk factors, 2 SEA tools has assessed three NCD risk factors (diet/nutrition, physical activity, tobacco), 10 SEA tools has assessed two NCD risk factors (diet/nutrition and physical activity) and 11 SEA tools has assessed only one of the NCD risk factor. Several measures were used in the tools to assess the four NCD risk factors, but tobacco and alcohol was sparingly included. Measurement properties were reported for 14 tools. The review provides a comprehensive list of measures used in SEA tools which could be a valuable resource to guide future development of such tools. A valid and reliable SEA tool which could simultaneously evaluate all NCD risk factors, that has been tested in different settings with varying resource availability is needed.
Pierpont, Yvonne N.; Pappas-Politis, Effie; Naidu, Deepak K.; Salas, R. Emerick; Johnson, Erika L.; Payne, Wyatt G.
2008-01-01
Background: The nail gun is a commonly utilized tool in carpentry and construction. When used properly with appropriate safety precautions, it can facilitate production and boost efficiency; however, this powerful tool also has the potential to cause serious injury. The most common site of nail-gun injuries in both industrial and nonoccupational settings is the hand. Materials and Methods: We report on two patients with nail-gun injuries to the hand. A review of the literature and discussion of clinical evaluation and treatment of nail-gun injuries to the hand are presented. Results: Two patients present with soft tissue injuries to the hand with the nail embedded and intact at the injury site. Operative removal of the nail and wound care resulted in successful treatment in both cases. Nail-gun injuries to the hand vary in severity on the basis of the extent of structural damage. Treatment is based on the severity of injury and the presence and location of barbs on the penetrating nail. Conclusion: Healthcare providers must understand and educate patients on the prevention mechanics of nail-gun injuries. Nail-gun injuries to the hand necessitate appropriate evaluation techniques, understanding of surgical management versus nonsurgical management, and awareness of potential pitfalls in treatment. PMID:19079574
The adaptive value of tool-aided defense against wild animal attacks.
Crabb, Peter B; Elizaga, Andrew
2008-01-01
Throughout history humans have faced the persistent threat of attacks by wild animals, and how humans respond to this problem can make the difference between survival and death. In theory, the use of tools to fend off animal attacks would be more effective than resisting bare-handed, yet evidence for the advantage of tool-aided defense is scarce and equivocal. Two studies of news accounts of wild animal attacks against humans were conducted to test the hypothesis that tool-aided defense is indeed associated with reductions in injuries and deaths. Results of both Study 1 (N=172) and Study 2 (N=370) supported the hypothesis. The observed survival advantage of tool-aided defense for modern humans suggests that this tactic also would have worked for human ancestors who lived more closely to dangerous wild animals. 2008 Wiley-Liss, Inc.
Optimizing the ASC WAN: evaluating network performance tools for comparing transport protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydick, Christopher L.
2007-07-01
The Advanced Simulation & Computing Wide Area Network (ASC WAN), which is a high delay-bandwidth network connection between US Department of Energy National Laboratories, is constantly being examined and evaluated for efficiency. One of the current transport-layer protocols which is used, TCP, was developed for traffic demands which are different from that on the ASC WAN. The Stream Control Transport Protocol (SCTP), on the other hand, has shown characteristics which make it more appealing to networks such as these. Most important, before considering a replacement for TCP on any network, a testing tool that performs well against certain criteria needsmore » to be found. In order to try to find such a tool, two popular networking tools (Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) were tested. These tools implement both TCP and SCTP and were evaluated using four metrics: (1) How effectively can the tool reach a throughput near the bandwidth? (2) How much of the CPU does the tool utilize during operation? (3) Is the tool freely and widely available? And, (4) Is the tool actively developed? Following the analysis of those tools, this paper goes further into explaining some recommendations and ideas for future work.« less
Abraham, Joanna; Kannampallil, Thomas G; Almoosa, Khalid F; Patel, Bela; Patel, Vimla L
2014-04-01
Handoffs vary in their structure and content, raising concerns regarding standardization. We conducted a comparative evaluation of the nature and patterns of communication on 2 functionally similar but conceptually different handoff tools: Subjective, Objective, Assessment and Plan, based on a patient problem-based format, and Handoff Intervention Tool (HAND-IT), based on a body system-based format. A nonrandomized pre-post prospective intervention study supported by audio recordings and observations of 82 resident handoffs was conducted in a medical intensive care unit. Qualitative analysis was complemented with exploratory sequential pattern analysis techniques to capture the characteristics and types of communication events (CEs) and breakdowns. Use of HAND-IT led to fewer communication breakdowns (F1,80 = 45.66: P < .0001), greater number of CEs (t40 = 4.56; P < .001), with more ideal CEs than Subjective, Objective, Assessment and Plan (t40 = 9.27; P < .001). In addition, the use of HAND-IT was characterized by more request-response CE transitions. The HAND-IT's body system-based structure afforded physicians the ability to better organize and comprehend patient information and led to an interactive and streamlined communication, with limited external input. Our results also emphasize the importance of information organization using a medical knowledge hierarchical format for fostering effective communication. Copyright © 2014 Elsevier Inc. All rights reserved.
Dianat, Iman; Rahimi, Soleyman; Nedaei, Moein; Asghari Jafarabadi, Mohammad; Oskouei, Ali E
2017-03-01
The effects of tool handle dimension (three modified designs of wrenches with 30-50 mm diameter cylindrical handles and traditional design with rectangular cross-sectional (5 mm × 25 mm) handle), workpiece orientation (vertical/horizontal) and workpiece size (small/large) as well as user's hand size on wrist ulnar/radial (U/R) torque strength, usability and discomfort, and also the relationship between these variables were evaluated in a maximum torque task using wrenches. The highest and lowest levels of maximal wrist U/R torque strength were recorded for the 30 mm diameter handle and traditional wrench design, respectively. The prototype handle with 30 mm diameter, together with 40 mm diameter handle, was also better than other designs as they received higher usability ratings and caused less discomfort. The mean wrist torque strength exerted on a vertically oriented workpiece (in the sagittal plane) was 23.8% higher than that exerted on a horizontally oriented one (in the transverse plane). The user's hand size had no effect on torque exertions. The wrist torque strength and usability were negatively correlated with hand and finger discomfort ratings. The results are also discussed in terms of their implications for hand tool and workstation configuration in torque tasks involving wrenches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ergonomic evaluation of conventional and improved methods of aonla pricking with women workers.
Rai, Arpana; Gandhi, Sudesh; Sharma, D K
2012-01-01
Conventional and improved methods of aonla pricking were evaluated ergonomically on an experiment conducted for 20 minute with women workers. The working heart rate, energy expenditure rate, total cardiac cost of work and physiological cost of work with conventional tools varied from 93-102 beats.min-1, 6-7.5 kJ.min-1, 285-470 beats, 14 -23 beats.min-1 while with machine varied from 96-105 beats.min-1, 6.5-8 kJ.min-1 , 336-540 beats, 16-27 beats.min-1 respectively. OWAS score for conventional method was 2 indicating corrective measures in near future while with machine was 1 indicating no corrective measures. Result of Nordic Musculoskeletal Questionnaire revealed that subjects complaint of pain in back, neck, right shoulder and right hand due to unnatural body posture and repetitive movement with hand tool. Moreover pricking was carried out in improper lighting conditions (200-300 lux) resulting into finger injuries from sharp edges of hand tool, whereas with machine no such problems were observed. Output with machine increased thrice than hand pricking in a given time. Machine was found useful in terms of saving time, increased productivity, enhanced safety and comfort as involved improved posture, was easy to handle and operate, thus increasing efficiency of the worker leading to better quality of life.
Melorheostosis of the hand in a 7-year-old girl.
Sommer, Andrea; Voelker, Thomas; Scheer, Ianina; Roth, Johannes; Keitzer, Rolf; Amthauer, Holger; Stöver, Brigitte
2005-12-01
Melorheostosis of the hand is rare. We report a 7-year-old girl who presented with a contracture of the left hand. Diagnosis was made by conventional radiography and bone scintigraphy. MRI proved to be a very useful tool to visualize the soft-tissue changes. This is especially important when surgical repair is considered.
Maritime Standards for Compliance Safety and Health Officers (Instructor Manual). Volume 3
1981-03-01
and striking tools "o Hamers "o Sledge hsmers "o Riveting hamners. 7. Hazards and health effects associated with the use of hand tools o Loss of eyes...lettered starting at the keel, A-B-C, etc. Strakes are classified inner skin, outer or cover, clinker or in and out, forefoot , shoe, boss, sheer, and
Evaluating Gaze-Based Interface Tools to Facilitate Point-and-Select Tasks with Small Targets
ERIC Educational Resources Information Center
Skovsgaard, Henrik; Mateo, Julio C.; Hansen, John Paulin
2011-01-01
Gaze interaction affords hands-free control of computers. Pointing to and selecting small targets using gaze alone is difficult because of the limited accuracy of gaze pointing. This is the first experimental comparison of gaze-based interface tools for small-target (e.g. less than 12 x 12 pixels) point-and-select tasks. We conducted two…
ERIC Educational Resources Information Center
Bell, Justine C.
2014-01-01
To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…
Galindo, F; de Aluja, A; Cagigas, R; Huerta, L A; Tadich, T A
2018-01-01
Equids are still used for diverse chores in Mexico and are essential for the livelihoods of numerous families. Appropriate health and behavior are prerequisites for performing work without affecting welfare. This study aimed to assess the welfare of working equids in Tuliman, applying the hands-on donkey tool. This tool evaluates five dimensions (behavior, body condition score [BCS], wounds, lameness, and other health issues) and was applied to 438 working equids (horses, mules, and donkeys). The Kruskall-Wallis test was applied to investigate differences between species and sex. Donkeys were more common; they also presented more positive behaviors and less lameness (p < 0.05). No differences were found for BCS among species on a scale ranging from 1 to 5 (mean BCS for donkeys = 1.9; mules = 2; and horses = 1.8). Mares had significantly lower BCS (mean = 1.5) than stallions (p < 0.05) and geldings (mean = 1.9). Overall mules had better welfare evaluations. The tool allowed detection of welfare issues in working equids; a practical outcome would be implementing local welfare strategies according to its results.
The ideomotor recycling theory for tool use, language, and foresight.
Badets, Arnaud; Osiurak, François
2017-02-01
The present theoretical framework highlights a common action-perception mechanism for tool use, spoken language, and foresight capacity. On the one hand, it has been suggested that human language and the capacity to envision the future (i.e. foresight) have, from an evolutionary viewpoint, developed mutually along with the pressure of tool use. This co-evolution has afforded humans an evident survival advantage in the animal kingdom because language can help to refine the representation of future scenarios, which in turn can help to encourage or discourage engagement in appropriate and efficient behaviours. On the other hand, recent assumptions regarding the evolution of the brain have capitalized on the concept of "neuronal recycling". In the domain of cognitive neuroscience, neuronal recycling means that during evolution, some neuronal areas and cognitive functions have been recycled to manage new environmental and social constraints. In the present article, we propose that the co-evolution of tool use, language, and foresight represents a suitable example of such functional recycling throughout a well-defined common action-perception mechanism, i.e. the ideomotor mechanism. This ideomotor account is discussed in light of different future ontogenetic and phylogenetic perspectives.
NASA Astrophysics Data System (ADS)
Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.
2013-01-01
Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.
Flight Telerobotic Servicer prototype simulator
NASA Astrophysics Data System (ADS)
Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob
A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.
Wilson, Mark; McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard
2010-10-01
Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed.
McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard
2010-01-01
Background Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. Methods A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. Results The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. Conclusion The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed. PMID:20333405
The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo
Tocheri, Matthew W; Orr, Caley M; Jacofsky, Marc C; Marzke, Mary W
2008-01-01
Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan–Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species. PMID:18380869
Flex Sensor Based Biofeedback Monitoring for Post-Stroke Fingers Myopathy Patients
NASA Astrophysics Data System (ADS)
Garda, Y. R.; Caesarendra, W.; Tjahjowidodo, T.; Turnip, A.; Wahyudati, S.; Nurhasanah, L.; Sutopo, D.
2018-04-01
Hands are one of the crucial parts of the human body in carrying out daily activities. Accidents on the hands decreasing in motor skills of the hand so that therapy is necessary to restore motor function of the hand. In addition to accidents, hand disabilities can be caused by certain diseases, e.g. stroke. Stroke is a partial destruction of the brain. It occurs if the arteries that drain blood to the brain are blocked, or if torn or leak. The purpose of this study to make biofeedback monitoring equipment for post-stroke hands myopathy patients. Biofeedback is an alternative method of treatment that involves measuring body functions measured subjects such as skin temperature, sweat activity, blood pressure, heart rate and hand paralysis due to stroke. In this study, the sensor used for biofeedback monitoring tool is flex sensor. Flex sensor is a passive resistive device that changes its resistance as the sensor is bent. Flex sensor converts the magnitude of the bend into electrical resistance, the greater the bend the greater the resistance value. The monitoring used in this biofeedback monitoring tool uses Graphical User Interface (GUI) in C# programming language. The motivation of the study is to monitor and record the progressive improvement of the hand therapy. Patients who experienced post-stroke can see the therapy progress quantitatively.
Evaluation of a hand hygiene campaign in outpatient health care clinics.
Kukanich, Kate Stenske; Kaur, Ramandeep; Freeman, Lisa C; Powell, Douglas A
2013-03-01
To improve hand hygiene in two outpatient health care clinics through the introduction of a gel sanitizer and an informational poster. In this interventional study, health care workers at two outpatient clinics were observed for frequency of hand hygiene (attempts versus opportunities). Gel sanitizer and informational posters were introduced together as an intervention. Direct observation of the frequency of hand hygiene was performed during baseline, intervention, and follow-up. A poststudy survey of health care workers was also distributed and collected. In both clinics, the frequency of hand hygiene was poor at baseline (11% and 21%) but improved significantly after intervention (36% and 54%) and was maintained through the follow-up period (32% and 51%). Throughout the study, postcontact hand hygiene was observed significantly more often than precontact hand hygiene. In both clinics, health care workers reported a preference for soap and water; yet observations showed that when the intervention made gel sanitizer available, sanitizer use predominated. Fifty percent of the surveyed health care workers considered the introduction of gel sanitizer to be an effective motivating tool for improving hand hygiene. Hand hygiene performance by health care workers in outpatient clinics may be improved through promoting the use of gel sanitizer and using informational posters. Compared with surveys, direct observation by trained observers may provide more accurate information about worker preferences for hand hygiene tools.
GIS-MODFLOW: Ein kleines OpenSource-Werkzeug zur Anbindung von GIS-Daten an MODFLOW
NASA Astrophysics Data System (ADS)
Gossel, Wolfgang
2013-06-01
The numerical model MODFLOW (Harbaugh 2005) is an efficient and up-to-date tool for groundwater flow modelling. On the other hand, Geo-Information-Systems (GIS) provide useful tools for data preparation and visualization that can also be incorporated in numerical groundwater modelling. An interface between both would therefore be useful for many hydrogeological investigations. To date, several integrated stand-alone tools have been developed that rely on MODFLOW, MODPATH and transport modelling tools. Simultaneously, several open source-GIS codes were developed to improve functionality and ease of use. These GIS tools can be used as pre- and post-processors of the numerical model MODFLOW via a suitable interface. Here we present GIS-MODFLOW as an open-source tool that provides a new universal interface by using the ESRI ASCII GRID data format that can be converted into MODFLOW input data. This tool can also treat MODFLOW results. Such a combination of MODFLOW and open-source GIS opens new possibilities to render groundwater flow modelling, and simulation results, available to larger circles of hydrogeologists.
Do chimpanzees use weight to select hammer tools?
Schrauf, Cornelia; Call, Josep; Fuwa, Koki; Hirata, Satoshi
2012-01-01
The extent to which tool-using animals take into account relevant task parameters is poorly understood. Nut cracking is one of the most complex forms of tool use, the choice of an adequate hammer being a critical aspect in success. Several properties make a hammer suitable for nut cracking, with weight being a key factor in determining the impact of a strike; in general, the greater the weight the fewer strikes required. This study experimentally investigated whether chimpanzees are able to encode the relevance of weight as a property of hammers to crack open nuts. By presenting chimpanzees with three hammers that differed solely in weight, we assessed their ability to relate the weight of the different tools with their effectiveness and thus select the most effective one(s). Our results show that chimpanzees use weight alone in selecting tools to crack open nuts and that experience clearly affects the subjects' attentiveness to the tool properties that are relevant for the task at hand. Chimpanzees can encode the requirements that a nut-cracking tool should meet (in terms of weight) to be effective.
Mechanized fluid connector and assembly tool system with ball detents
NASA Technical Reports Server (NTRS)
Zentner, Ronald C. (Inventor); Smith, Steven A. (Inventor)
1991-01-01
A fluid connector system is disclosed which includes a modified plumbing union having a rotatable member for drawing said union into a fluid tight condition. A drive tool is electric motor actuated and includes a reduction gear train providing an output gear engaging an integral peripheral spur gear on the rotatable member. Coaxial alignment means are attached to both the connector assembly and the drive tool. A hand lever actuated latching system includes a plurality of circumferentially spaced latching balls selectively wedged against the alignment means attached to the connector assembly or to secure the drive tool with its output gear in mesh with the integral peripheral spur gear. The drive motor is torque, speed, and direction controllable.
Mukherjee, Joydeep; Llewellyn, Lyndon E; Evans-Illidge, Elizabeth A
2008-01-01
Microbial marine biodiscovery is a recent scientific endeavour developing at a time when information and other technologies are also undergoing great technical strides. Global visualisation of datasets is now becoming available to the world through powerful and readily available software such as Worldwind™, ArcGIS Explorer™ and Google Earth™. Overlaying custom information upon these tools is within the hands of every scientist and more and more scientific organisations are making data available that can also be integrated into these global visualisation tools. The integrated global view that these tools enable provides a powerful desktop exploration tool. Here we demonstrate the value of this approach to marine microbial biodiscovery by developing a geobibliography that incorporates citations on tropical and near-tropical marine microbial natural products research with Google Earth™ and additional ancillary global data sets. The tools and software used are all readily available and the reader is able to use and install the material described in this article. PMID:19172194
McAteer, J; Stone, S; Fuller, C; Charlett, A; Cookson, B; Slade, R; Michie, S
2008-03-01
Previous observational measures of healthcare worker (HCW) hand-hygiene behaviour (HHB) fail to provide adequate standard operating procedures (SOPs), accounts of inter-rater agreement testing or evidence of sensitivity to change. This study reports the development of an observational tool in a way that addresses these deficiencies. Observational categories were developed systematically, guided by a clinical guideline, previous measures and pilot hand-hygiene behaviour observations (HHOs). The measure, a simpler version of the Geneva tool, consists of HHOs (before and after low-risk, high-risk or unobserved contact), HHBs (soap, alcohol hand rub, no action, unknown), and type of HCW. Inter-observer agreement for each category was assessed by observation of 298 HHOs and HHBs by two independent observers on acute elderly and intensive care units. Raw agreement (%) and Kappa were 77% and 0.68 for HHB; 83% and 0.77 for HHO; and 90% and 0.77 for HCW. Inter-observer agreement for overall compliance of a group of HCWs was assessed by observation of 1191 HHOs and HHBs by two pairs of independent observers. Overall agreement was good (intraclass correlation coefficient = 0.79). Sensitivity to change was examined by autoregressive time-series modelling of longitudinal observations for 8 months on the intensive therapy unit during an Acinetobacter baumannii outbreak and subsequent strengthening of infection control measures. Sensitivity to change was demonstrated by a rise in compliance from 80 to 98% with an odds ratio of increased compliance of 7.00 (95% confidence interval: 4.02-12.2) P < 0.001.
Development of a Pre-Prototype Power Assisted Glove End Effector for Extravehicular Activity
NASA Technical Reports Server (NTRS)
1986-01-01
The purpose of this program was to develop an EVA power tool which is capable of performing a variety of functions while at the same time increasing the EVA crewmember's effectiveness by reducing hand fatigue associated with gripping tools through a pressurized EMU glove. The Power Assisted Glove End Effector (PAGE) preprototype hardware met or exceeded all of its technical requirements and has incorporated acoustic feedback to allow the EVA crewmember to monitor motor loading and speed. If this tool is to be developed for flight use, several issues need to be addressed. These issues are listed.
Development of an Optimum Rescue Tool, Detailed Prototype Concept Design.
1981-06-01
vAll Ai24 108 0VLOOKIN Of A1 OPTIU.M *t$CUI VOOL OITAILEO /D ..010 ",:N COAC IPT DES III AMETIc/01fI SANTA SAROARA CA IT A Ot SIN IT aL. -~ JUaI A...penetrate hardened metal structures of aircraft. A large number of tools are transported to the scene of a crashed air- craft. Valuable time is lost deciding...carrying system is necessary for transport of the tool to allow the operator free use of his hands. Such a system would be a shoulder sling assembly
Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut
NASA Technical Reports Server (NTRS)
Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.
2004-01-01
Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.
The Performance of Left-Handed Participants on a Preferential Reaching Test
ERIC Educational Resources Information Center
Mamolo, Carla M.; Roy, Eric A.; Bryden, Pamela J.; Rohr, Linda E.
2005-01-01
Previous research in our laboratory has examined the distribution of preferred hand (PH) reaches in working space with right-handed participants. In one study, we examined the effects of tool position and task demands on the frequency of PH reaches with right-handers (Mamolo, Roy, Bryden, & Rohr, 2004). We found that PH reaches were at a maximum…
ERIC Educational Resources Information Center
Ranscombe, Charlie; Bissett-Johnson, Katherine
2017-01-01
Literature on the use of design tools in educational settings notes an uneasy relationship between student use of traditional hand sketching and digital modelling tools (CAD) during the industrial design process. This is often manifested in the transition from sketching to CAD and exacerbated by a preference of current students to use CAD. In this…
NASA Astrophysics Data System (ADS)
Supalo, Cary Alan
2010-11-01
Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all of the participating students, but each of the types of data sets provided evidence of benefit for varying subgroups of participants. It is the expectation of the ILAB team that continuing to implement adaptive/assistive technologies for BLV students in science laboratory classrooms will foster enhanced opportunities in science classes and professions.
VISIT-TS: A multimedia tool for population studies on tic disorders.
Vachon, M Jonathan; Striley, Catherine W; Gordon, Mollie R; Schroeder, Miriam L; Bihun, Emily C; Koller, Jonathan M; Black, Kevin J
2016-01-01
Population-based assessment of Tourette syndrome (TS) and other tic disorders produces a paradox. On one hand, ideally diagnosis of tic disorders requires expert observation. In fact, diagnostic criteria for TS explicitly require expert assessment of tics for a definite diagnosis. On the other hand, large-scale population surveys with expert assessment of every subject are impracticable. True, several published studies have successfully used expert assessment to find tic prevalence in a representative population (e.g. all students in a school district). However, extending these studies to larger populations is daunting. We created a multimedia tool to demonstrate tics to a lay audience, discuss their defining and common attributes, and address features that differentiate tics from other movements and vocalizations. A first version was modified to improve clarity and to include a more diverse group in terms of age and ethnicity. The result is a tool intended for epidemiological research. It may also provide additional benefits, such as more representative minority recruitment for other TS studies and increased community awareness of TS.
Hand-arm vibration syndrome from exposure to high-pressure hoses.
Cooke, R; House, R; Lawson, I J; Pelmear, P L; Wills, M
2001-09-01
Hand-arm vibration syndrome has been reported in the literature to occur following exposure to vibration from the use of many tools, but to date there have been no case reports of its occurrence in workers who have used high-pressure hoses, alone or with other tools. To remedy this, the case histories of nine subjects (two without mixed exposure) examined in the UK and Canada are presented, together with their severity classified according to the Stockholm scales. Attention is drawn to the need to use multiple diagnostic tests to establish the diagnosis and the need to implement vibration isolation and damping methodologies, as and when feasible, with respect to hose nozzles in order to minimize the hazard. The ultimate goal for tool manufacturers, hygienists and engineers should be to reduce workplace vibration levels to meet national and international guidelines and legislation, including UK Health & Safety Executive guidelines and European Economic Community directives. The respective risk levels are presented, together with vibration measurements on hoses used by some of the cases.
Lausberg, Hedda; Sloetjes, Han
2016-09-01
As visual media spread to all domains of public and scientific life, nonverbal behavior is taking its place as an important form of communication alongside the written and spoken word. An objective and reliable method of analysis for hand movement behavior and gesture is therefore currently required in various scientific disciplines, including psychology, medicine, linguistics, anthropology, sociology, and computer science. However, no adequate common methodological standards have been developed thus far. Many behavioral gesture-coding systems lack objectivity and reliability, and automated methods that register specific movement parameters often fail to show validity with regard to psychological and social functions. To address these deficits, we have combined two methods, an elaborated behavioral coding system and an annotation tool for video and audio data. The NEUROGES-ELAN system is an effective and user-friendly research tool for the analysis of hand movement behavior, including gesture, self-touch, shifts, and actions. Since its first publication in 2009 in Behavior Research Methods, the tool has been used in interdisciplinary research projects to analyze a total of 467 individuals from different cultures, including subjects with mental disease and brain damage. Partly on the basis of new insights from these studies, the system has been revised methodologically and conceptually. The article presents the revised version of the system, including a detailed study of reliability. The improved reproducibility of the revised version makes NEUROGES-ELAN a suitable system for basic empirical research into the relation between hand movement behavior and gesture and cognitive, emotional, and interactive processes and for the development of automated movement behavior recognition methods.
Spatial Representations in Older Adults are Not Modified by Action: Evidence from Tool Use
Costello, Matthew C.; Bloesch, Emily K.; Davoli, Christopher C.; Panting, Nicholas D.; Abrams, Richard A.; Brockmole, James R.
2015-01-01
Theories of embodied perception hold that the visual system is calibrated by both the body schema and the action system, allowing for adaptive action-perception responses. One example of embodied perception involves the effects of tool-use on distance perception, in which wielding a tool with the intention to act upon a target appears to bring that object closer. This tool-based spatial compression (i.e., tool-use effect) has been studied exclusively with younger adults, but it is unknown whether the phenomenon exists with older adults. In this study, we examined the effects of tool use on distance perception in younger and older adults in two experiments. In Experiment 1, younger and older adults estimated the distances of targets just beyond peripersonal space while either wielding a tool or pointing with the hand. Younger adults, but not older adults, estimated targets to be closer after reaching with a tool. In Experiment 2, younger and older adults estimated the distance to remote targets while using either a baton or laser pointer. Younger adults displayed spatial compression with the laser pointer compared to the baton, although older adults did not. Taken together, these findings indicate a generalized absence of the tool-use effect in older adults during distance estimation suggesting that the visuomotor system of older adults does not remap from peripersonal to extrapersonal spatial representations during tool use. PMID:26052886
Relationship between Systems-Level Factors and Hand Hygiene Adherence
Dunn-Navarra, Ann-Margaret; Cohen, Bevin; Stone, Patricia W.; Pogorzelska, Monika; Jordan, Sarah; Larson, Elaine
2010-01-01
This study was a cross sectional descriptive survey of acute care hospitals in California to describe staff hand hygiene compliance and related predictors, and explore the relationship between hand hygiene adherence to health care-associated infections. Although there was a relatively small sample size, institutions with morning huddles reported a significantly higher proportion of ≥95% hand hygiene compliance. Huddles are an organizational tool to improve teamwork and communication and may offer promise to influence hand hygiene adherence. PMID:20489659
Routine hand hygiene audit by direct observation: has nemesis arrived?
Gould, D J; Drey, N S; Creedon, S
2011-04-01
Infection prevention and control experts have expended valuable health service time developing and implementing tools to audit health workers' hand hygiene compliance by direct observation. Although described as the 'gold standard' approach to hand hygiene audit, this method is labour intensive and may be inaccurate unless performed by trained personnel who are regularly monitored to ensure quality control. New technological devices have been developed to generate 'real time' data, but the cost of installing them and using them during routine patient care has not been evaluated. Moreover, they do not provide as much information about the hand hygiene episode or the context in which hand hygiene has been performed as direct observation. Uptake of hand hygiene products offers an inexpensive alternative to direct observation. Although product uptake would not provide detailed information about the hand hygiene episode or local barriers to compliance, it could be used as a continuous monitoring tool. Regular inspection of the data by infection prevention and control teams and clinical staff would indicate when and where direct investigation of practice by direct observation and questioning of staff should be targeted by highly trained personnel to identify local problems and improve practice. Copyright © 2011 the Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Micro-computed tomography of false starts produced on bone by different hand-saws.
Pelletti, Guido; Viel, Guido; Fais, Paolo; Viero, Alessia; Visentin, Sindi; Miotto, Diego; Montisci, Massimo; Cecchetto, Giovanni; Giraudo, Chiara
2017-05-01
The analysis of macro- and microscopic characteristics of saw marks on bones can provide useful information about the class of the tool utilized to produce the injury. The aim of the present study was to test micro-computed tomography (micro-CT) for the analysis of false starts experimentally produced on 32 human bone sections using 4 different hand-saws in order to verify the potential utility of micro-CT for distinguishing false starts produced by different saws and to correlate the morphology of the tool with that of the bone mark. Each sample was analysed through stereomicroscopy and micro-CT. Stereomicroscopic analysis allowed the identification of the false starts and the detection of the number of tool marks left by each saw. Micro-CT scans, through the integration of 3D renders and multiplanar reconstructions (MPR), allowed the identification of the shape of each false start correlating it to the injuring tool. Our results suggest that micro-CT could be a useful technique for assessing false starts produced by different classes of saws, providing accurate morphological profiles of the bone marks with all the advantages of high resolution 3D imaging (e.g., high accuracy, non-destructive analysis, preservation and documentation of evidence). However, further studies are necessary to integrate qualitative data with quantitative metrical analysis in order to further characterize the false start and the related injuring tool. Copyright © 2017 Elsevier B.V. All rights reserved.
Anatomical analysis of thumb opponency movement in the capuchin monkey (Sapajus sp).
Aversi-Ferreira, Roqueline A G M F; Souto Maior, Rafael; Aziz, Ashraf; Ziermann, Janine M; Nishijo, Hisao; Tomaz, Carlos; Tavares, Maria Clotilde H; Aversi-Ferreira, Tales Alexandre
2014-01-01
Capuchin monkeys present a wide variety of manipulatory skills and make routine use of tools both in captivity and in the wild. Efficient handling of objects in this genus has led several investigators to assume near-human thumb movements despite the lack of anatomical studies. Here we perform an anatomical analysis of muscles and bones in the capuchin hand. Trapezo-metacarpal joint surfaces observed in capuchins indicate that medial rotation of metacarpal I is either absent or very limited. Overall, bone structural arrangement and thumb position relative to the other digits and the hand's palm suggest that capuchins are unable to perform any kind of thumb opponency, but rather a 'lateral pinch' movement. Although the capuchin hand apparatus bears other features necessary for complex tool use, the lack thumb opposition movements suggests that a developed cognitive and motor nervous system may be even more important for high manipulatory skills than traditionally held.
Milosevic, Matija; McConville, Kristiina M Valter
2012-01-01
Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.
Which benefits in the use of a modeling platform : The VSoil example.
NASA Astrophysics Data System (ADS)
Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Maron, Pierre-Alain; Moitrier, Nicolas; Nouguier, Cedric; Moitrier, Nathalie; Beudez, Nicolas
2015-04-01
In the environmental community the need for coupling the models and the associated knowledges emerged recently. The development of a coupling tool or of a modeling platform is mainly driven by the necessity to create models accounting for multiple processes and to take into account the feed back between these processes. Models focusing on a restricted number of processes exist and thus the coupling of these numerical tools appeared as an efficient and rapid mean to fill up the identified gaps. Several tools have been proposed : OMS3 (David et al. 2013) ; CSDMS framework (Peckham et al. 2013) ; the Open MI project developed within the frame of European Community (Open MI, 2011). However, what we should expect from a modeling platform could be more ambitious than only coupling existing numerical codes. We believe that we need to share easily not only our numerical representations but also the attached knowledges. We need to rapidly and easily develop complex models to have tools to bring responses to current issues on soil functioning and soil evolution within the frame of global change. We also need to share in a common frame our visions of soil functioning at various scales, one the one hand to strengthen our collaborations, and, on the other hand, to make them visible by the other communities working on environmental issues. The presentation will briefly present the VSoil platform. The platform is able to manipulate concepts and numerical representations of these processes. The tool helps in assembling modules to create a model and automatically generates an executable code and a GUI. Potentialities of the tool will be illustrated on few selected cases.
McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G
2013-01-01
Motorized vibrating manure forks were used in beach-cleaning operations following the massive Deepwater Horizon oil spill in the Gulf of Mexico during the summer of 2010. The objectives of this study were to characterize the vibration emissions of these motorized forks and to provide a first approximation of hand-transmitted vibration exposures to workers using these forks for beach cleaning. Eight operators were recruited to operate the motorized forks during this laboratory study. Four fork configurations were used in the study; two motor speeds and two fork basket options were evaluated. Accelerations were measured near each hand as the operators completed the simulated beach-cleaning task. The dominant vibration frequency for these tools was identified to be around 20 Hz. Because acceleration was found to increase with motor speed, workers should consider operating these tools with just enough speed to get the job done. These forks exhibited considerable acceleration magnitudes when unloaded. The study results suggest that the motor should not be operated with the fork in the unloaded state. Anti-vibration gloves are not effective at attenuating the vibration frequencies produced by these forks, and they may even amplify the transmitted vibration and increase hand/arm fatigue. While regular work gloves are suitable, vibration-reducing gloves may not be appropriate for use with these tools. These considerations may also be generally applicable for the use of motorized forks in other workplace environments.
Assessing hand hygiene resources and practices at a large african teaching hospital.
Owusu-Ofori, Alex; Jennings, Rebecca; Burgess, Jennifer; Prasad, Priya A; Acheampong, Faustina; Coffin, Susan E
2010-08-01
To gather baseline data on hand hygiene (HH) practices in an African hospital with a newly established infection prevention and control team. Cross-sectional, observational study. Setting. Komfo Anokye Teaching Hospital, a large teaching hospital in Ghana with approximately 1,000 beds. All hospital staff with patient contact were eligible for assessment of HH practices. HH observations were conducted using a standardized data collection tool and method based on the World Health Organization's "5 Moments of Hand Hygiene." Small-group interviews were conducted to gather additional information on perceptions of HH and barriers to its use. HH resource needs were also assessed using a standardized tool. HH was attempted in 12% of the opportunities and was performed appropriately in 4% of the opportunities. Most main wards (89%) had at least 1 functional HH station. The most commonly identified barriers to HH were limited resources and lack of knowledge on appropriate times to perform HH. We developed and applied tools to evaluate HH resources and practices in a large African hospital. These assessments were undertaken to guide future efforts to improve HH at this hospital but can also serve as a model of the way to perform a systematic assessment at acute care hospitals in developing countries.
Biodynamic response at the palm of the human hand subjected to a random vibration.
Dong, Ren G; McDowell, Thomas W; Welcome, Daniel E
2005-01-01
This study investigated the biodynamic response (BR) distributed at the palm of the hand subjected to a random vibration. Twelve male subjects were used in the experiment. Each subject applied three coupling actions (grip-only, push-only, and combined grip and push) on a simulated tool handle at three different levels (50, 75, and 100 N) of palm force. This study found that the hand-arm system resonated mostly in the frequency range of 20 to 50 Hz, depending on the specific test treatment and individual characteristics. The maximum vibration power transmission through the palm occurred at the resonant frequency. Increasing the effective palm force generally increased the BR magnitude and resonant frequency. The apparent stiffness measured at the middle frequencies (80-100 Hz) is correlated to the BR in almost the entire frequency range (20-1,000 Hz). Under the same palm force, the push-only action corresponded to the highest BR values while the grip-only action generally produced the lowest values. Since the resonant frequency range matches the dominant vibration frequency range of many percussive tools, it is anticipated that the palm BR and vibration power transmission may have an association with vibration-induced injuries or disorders in the wrist-arm system among the workers using these tools.
Disentangling representations of shape and action components in the tool network.
Wang, Xiaoying; Zhuang, Tonghe; Shen, Jiasi; Bi, Yanchao
2018-05-30
Shape and how they should be used are two key components of our knowledge about tools. Viewing tools preferentially activated a frontoparietal and occipitotemporal network, with dorsal regions implicated in computation of tool-related actions and ventral areas in shape representation. As shape and manners of manipulation are highly correlated for daily tools, whether they are independently represented in different regions remains inconclusive. In the current study, we collected fMRI data when participants viewed blocks of pictures of four daily tools (i.e., paintbrush, corkscrew, screwdriver, razor) where shape and action (manner of manipulation for functional use) were orthogonally manipulated, to tease apart these two dimensions. Behavioral similarity judgments tapping on object shape and finer aspects of actions (i.e., manners of motion, magnitude of arm movement, configuration of hand) were also collected to further disentangle the representation of object shape and different action components. Information analysis and representational similarity analysis were conducted on regional neural activation patterns of the tool-preferring network. In both analyses, the bilateral lateral occipitotemporal cortex showed robust shape representations but could not effectively distinguish between tool-use actions. The frontal and precentral regions represented kinematic action components, whereas the left parietal region (in information analyses) exhibited coding of both shape and tool-use action. By teasing apart shape and action components, we found both dissociation and association of them within the tool network. Taken together, our study disentangles representations for object shape from finer tool-use action components in the tool network, revealing the potential dissociable roles different tool-preferring regions play in tool processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tummons, John D.; Langley, G. Curtis; Reed, Jeff J.; Paul, Emily E.
2017-01-01
Agricultural mechanics is a top career choice among secondary students enrolled in agricultural programs. Secondary agricultural mechanics teachers provide hands-on skill instruction with shielded metal arc welders, oxyfuel torches, and various hand tools in their agricultural mechanics laboratories. Preservice agriculture teachers have reported…
Woods. Industrial Arts. Performance Objectives. Junior High School.
ERIC Educational Resources Information Center
Bunch, Edwood; And Others
Several intermediate performance objectives and corresponding criterion measures are listed for a woodworking course for seventh, eighth, and ninth grade students. The seventh grade section includes seven terminal objectives for a 9-week basic hand woodworking course which includes planning and layout, skill in the use of hand tools, construction…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1803] Approval for Manufacturing Authority; Foreign-Trade Zone 26; Makita Corporation of America; (Hand-Held/Stationary Power Tool and Gasoline/Electric-Powered Lawn and Garden Product Manufacturing); Buford, GA Pursuant to its authority...
Initiating a Programmatic Assessment Report
ERIC Educational Resources Information Center
Berkaliev, Zaur; Devi, Shavila; Fasshauer, Gregory E.; Hickernell, Fred J.; Kartal, Ozgul; Li, Xiaofan; McCray, Patrick; Whitney, Stephanie; Zawojewski, Judith S.
2014-01-01
In the context of a department of applied mathematics, a program assessment was conducted to assess the departmental goal of enabling undergraduate students to recognize, appreciate, and apply the power of computational tools in solving mathematical problems that cannot be solved by hand, or would require extensive and tedious hand computation. A…
NASA Technical Reports Server (NTRS)
Canada, C. N.
1987-01-01
Special tool enables one worker to do two-worker job. Wrench holds two nuts in place while third nut, coaxial with others, turned. Developed for tightening delicate couplings on gas-supply panel. Single operator restrains coupling pressure cap and connector body nut with one hand. Other hand free to tighten coupling nut with torque wrench.
NASA Technical Reports Server (NTRS)
Mcsmith, D. D.; Richardson, J. I. (Inventor)
1984-01-01
A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.
Influx: A Tool and Framework for Reasoning under Uncertainty
2015-09-01
Interfaces to external programs Not all types of problems are naturally suited to being entirely modelled and implemented within Influx1. In general... development pertaining to the implementation of the reasoning tool and specific applications are not included in this document. RELEASE LIMITATION...which case a probability is supposed to reflect the subjective belief of an agent for the problem at hand ( based on its experience and/or current state
MATOBA, Tsunetaka
2015-01-01
The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud’s phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools. PMID:26460379
Matoba, Tsunetaka
2015-01-01
The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud's phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools.
Gold, J E; Punnett, L; Cherniack, M; Wegman, D H
2005-01-01
Upper extremity musculoskeletal disorders (UEMSDs) comprise a large proportion of work-related illnesses in the USA. Physical risk factors including manual force and segmental vibration have been associated with UEMSDs. Reduced sensitivity to vibration in the fingertips (a function of nerve integrity) has been found in those exposed to segmental vibration, to hand force, and in office workers. The objective of this study was to determine whether an association exists between digital vibration thresholds (VTs) and exposure to ergonomic stressors in automobile manufacturing. Interviews and physical examinations were conducted in a cross-sectional survey of workers (n = 1174). In multivariable robust regression modelling, associations with workers' estimates of ergonomic stressors stratified on tool use were determined. VTs were separately associated with hand force, vibration as felt through the floor (whole body vibration), and with an index of multiple exposures in both tool users and non-tool users. Additional associations with contact stress and awkward upper extremity postures were found in tool users. Segmental vibration was not associated with VTs. Further epidemiologic and laboratory studies are needed to confirm the associations found. The association with self-reported whole body vibration exposure suggests a possible sympathetic nervous system effect, which remains to be explored.
Areeckal, A S; Jayasheelan, N; Kamath, J; Zawadynski, S; Kocher, M; David S, S
2018-03-01
We propose an automated low cost tool for early diagnosis of onset of osteoporosis using cortical radiogrammetry and cancellous texture analysis from hand and wrist radiographs. The trained classifier model gives a good performance accuracy in classifying between healthy and low bone mass subjects. We propose a low cost automated diagnostic tool for early diagnosis of reduction in bone mass using cortical radiogrammetry and cancellous texture analysis of hand and wrist radiographs. Reduction in bone mass could lead to osteoporosis, a disease observed to be increasingly occurring at a younger age in recent times. Dual X-ray absorptiometry (DXA), currently used in clinical practice, is expensive and available only in urban areas in India. Therefore, there is a need to develop a low cost diagnostic tool in order to facilitate large-scale screening of people for early diagnosis of osteoporosis at primary health centers. Cortical radiogrammetry from third metacarpal bone shaft and cancellous texture analysis from distal radius are used to detect low bone mass. Cortical bone indices and cancellous features using Gray Level Run Length Matrices and Laws' masks are extracted. A neural network classifier is trained using these features to classify healthy subjects and subjects having low bone mass. In our pilot study, the proposed segmentation method shows 89.9 and 93.5% accuracy in detecting third metacarpal bone shaft and distal radius ROI, respectively. The trained classifier shows training accuracy of 94.3% and test accuracy of 88.5%. An automated diagnostic technique for early diagnosis of onset of osteoporosis is developed using cortical radiogrammetric measurements and cancellous texture analysis of hand and wrist radiographs. The work shows that a combination of cortical and cancellous features improves the diagnostic ability and is a promising low cost tool for early diagnosis of increased risk of osteoporosis.
Thermographic Evaluation of the Hands of Pig Slaughterhouse Workers Exposed to Cold Temperatures.
Tirloni, Adriana Seára; Reis, Diogo Cunha Dos; Ramos, Eliane; Moro, Antônio Renato Pereira
2017-07-26
Brazil was rated the fourth leading producer and exporter of pork meat in the world. The aim of this study was to evaluate the temperature of the hands of pig slaughterhouse workers and its relation to the thermal sensation of the hands and the use of a cutting tool. The study included 106 workers in a pig slaughterhouse. An infrared camera FlirThermaCAM E320 (Flir Systems, Wilsonville, OR, USA) was used to collect the images of the dorsal and palmar surfaces of both hands. A numerical scale was used to obtain the thermal sensation. Chi-square test, Pearson correlation and Student's t test or Wilcoxon were used ( p ≤ 0.05). The majority of workers felt cold in the hands (66%) and workers who used the knife felt the coldest. There was an association between the thermal sensation and the use of knife ( p = 0.001). Workers who used the tool showed correlation between the thermal sensation and the temperatures of the left fingers, with a difference between the temperatures of the right and left hands of those who used the knife ( p ≤ 0.05). The hands (left) that manipulated the products presented the lowest temperatures. Findings indicate that employers of pig slaughterhouses should provide gloves with adequate thermal insulation to preserve the health of workers' hands.
Thermographic Evaluation of the Hands of Pig Slaughterhouse Workers Exposed to Cold Temperatures
Ramos, Eliane
2017-01-01
Brazil was rated the fourth leading producer and exporter of pork meat in the world. The aim of this study was to evaluate the temperature of the hands of pig slaughterhouse workers and its relation to the thermal sensation of the hands and the use of a cutting tool. The study included 106 workers in a pig slaughterhouse. An infrared camera FlirThermaCAM E320 (Flir Systems, Wilsonville, OR, USA) was used to collect the images of the dorsal and palmar surfaces of both hands. A numerical scale was used to obtain the thermal sensation. Chi-square test, Pearson correlation and Student’s t test or Wilcoxon were used (p ≤ 0.05). The majority of workers felt cold in the hands (66%) and workers who used the knife felt the coldest. There was an association between the thermal sensation and the use of knife (p = 0.001). Workers who used the tool showed correlation between the thermal sensation and the temperatures of the left fingers, with a difference between the temperatures of the right and left hands of those who used the knife (p ≤ 0.05). The hands (left) that manipulated the products presented the lowest temperatures. Findings indicate that employers of pig slaughterhouses should provide gloves with adequate thermal insulation to preserve the health of workers’ hands. PMID:28933764
Spec Tool; an online education and research resource
NASA Astrophysics Data System (ADS)
Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.
2016-06-01
Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.
Open source tools for ATR development and performance evaluation
NASA Astrophysics Data System (ADS)
Baumann, James M.; Dilsavor, Ronald L.; Stubbles, James; Mossing, John C.
2002-07-01
Early in almost every engineering project, a decision must be made about tools; should I buy off-the-shelf tools or should I develop my own. Either choice can involve significant cost and risk. Off-the-shelf tools may be readily available, but they can be expensive to purchase and to maintain licenses, and may not be flexible enough to satisfy all project requirements. On the other hand, developing new tools permits great flexibility, but it can be time- (and budget-) consuming, and the end product still may not work as intended. Open source software has the advantages of both approaches without many of the pitfalls. This paper examines the concept of open source software, including its history, unique culture, and informal yet closely followed conventions. These characteristics influence the quality and quantity of software available, and ultimately its suitability for serious ATR development work. We give an example where Python, an open source scripting language, and OpenEV, a viewing and analysis tool for geospatial data, have been incorporated into ATR performance evaluation projects. While this case highlights the successful use of open source tools, we also offer important insight into risks associated with this approach.
Tognon, Ilaria Desirée
2012-01-01
The aim of the work has been to evaluate the risk of injuries connected to the use of machinery and work tools in the footwear industry. The analysis of the data related to injuries in the footwear industry, deduced from the registers of injuries collected in the investigated factories, shows that most accidents arise from the contact of the operator's hands with tools and machinery parts during their use. Risk factors generally include the inherent specific danger of some work tools and machines, the lack or inadequacy of safety devices, the obsolescence of the equipment, the imprudence and underestimation of risk.
Measurements by A LEAP-Based Virtual Glove for the Hand Rehabilitation
Cinque, Luigi; Polsinelli, Matteo; Spezialetti, Matteo
2018-01-01
Hand rehabilitation is fundamental after stroke or surgery. Traditional rehabilitation requires a therapist and implies high costs, stress for the patient, and subjective evaluation of the therapy effectiveness. Alternative approaches, based on mechanical and tracking-based gloves, can be really effective when used in virtual reality (VR) environments. Mechanical devices are often expensive, cumbersome, patient specific and hand specific, while tracking-based devices are not affected by these limitations but, especially if based on a single tracking sensor, could suffer from occlusions. In this paper, the implementation of a multi-sensors approach, the Virtual Glove (VG), based on the simultaneous use of two orthogonal LEAP motion controllers, is described. The VG is calibrated and static positioning measurements are compared with those collected with an accurate spatial positioning system. The positioning error is lower than 6 mm in a cylindrical region of interest of radius 10 cm and height 21 cm. Real-time hand tracking measurements are also performed, analysed and reported. Hand tracking measurements show that VG operated in real-time (60 fps), reduced occlusions, and managed two LEAP sensors correctly, without any temporal and spatial discontinuity when skipping from one sensor to the other. A video demonstrating the good performance of VG is also collected and presented in the Supplementary Materials. Results are promising but further work must be done to allow the calculation of the forces exerted by each finger when constrained by mechanical tools (e.g., peg-boards) and for reducing occlusions when grasping these tools. Although the VG is proposed for rehabilitation purposes, it could also be used for tele-operation of tools and robots, and for other VR applications. PMID:29534448
Measurements by A LEAP-Based Virtual Glove for the Hand Rehabilitation.
Placidi, Giuseppe; Cinque, Luigi; Polsinelli, Matteo; Spezialetti, Matteo
2018-03-10
Hand rehabilitation is fundamental after stroke or surgery. Traditional rehabilitation requires a therapist and implies high costs, stress for the patient, and subjective evaluation of the therapy effectiveness. Alternative approaches, based on mechanical and tracking-based gloves, can be really effective when used in virtual reality (VR) environments. Mechanical devices are often expensive, cumbersome, patient specific and hand specific, while tracking-based devices are not affected by these limitations but, especially if based on a single tracking sensor, could suffer from occlusions. In this paper, the implementation of a multi-sensors approach, the Virtual Glove (VG), based on the simultaneous use of two orthogonal LEAP motion controllers, is described. The VG is calibrated and static positioning measurements are compared with those collected with an accurate spatial positioning system. The positioning error is lower than 6 mm in a cylindrical region of interest of radius 10 cm and height 21 cm. Real-time hand tracking measurements are also performed, analysed and reported. Hand tracking measurements show that VG operated in real-time (60 fps), reduced occlusions, and managed two LEAP sensors correctly, without any temporal and spatial discontinuity when skipping from one sensor to the other. A video demonstrating the good performance of VG is also collected and presented in the Supplementary Materials. Results are promising but further work must be done to allow the calculation of the forces exerted by each finger when constrained by mechanical tools (e.g., peg-boards) and for reducing occlusions when grasping these tools. Although the VG is proposed for rehabilitation purposes, it could also be used for tele-operation of tools and robots, and for other VR applications.
Neyens, Jacques C L; Dijcks, Béatrice P J; van Haastregt, Jolanda C M; de Witte, Luc P; van den Heuvel, Wim J A; Crebolder, Harry F J M; Schols, Jos M G A
2006-03-21
Demented nursing home patients are at high risk for falls. Falls and associated injuries can have a considerable influence on the autonomy and quality of life of patients. The prevention of falls among demented patients is therefore an important issue. In order to intervene in an efficient way in this group of patients, it is important to systematically evaluate the fall risk profile of each individual patient so that for each patient tailor-made preventive measures can be taken. Therefore, the objective of the present study is to develop a feasible and evidence based multidisciplinary fall risk evaluation tool to be used for tailoring preventive interventions to the needs of individual demented patients. To develop this multidisciplinary fall risk evaluation tool we have chosen to combine scientific evidence on the one hand and experts' opinions on the other hand. Firstly, relevant risk factors for falling in elderly persons were gathered from the literature. Secondly, a group of Dutch experts in the field of falls and fall prevention in the elderly were consulted to judge the suitability of these risk factors for use in a multidisciplinary fall risk evaluation tool for demented nursing home patients. Thirdly, in order to generate a compact list of the most relevant risk factors for falling in demented elderly, all risk factors had to fulfill a set of criteria indicating their relevance for this specific target population. Lastly the final list of risk factors resulting from the above mentioned procedure was presented to the expert group. The members were also asked to give their opinion about the practical use of the tool. The multidisciplinary fall risk evaluation tool we developed includes the following items: previous falls, use of medication, locomotor functions, and (correct) choice and use of assistive and protective devices. The tool is developed for the multidisciplinary teams of the nursing homes. This evidence and practice based multidisciplinary fall risk evaluation tool targets the preventive interventions aimed to prevent falls and their negative consequences in demented nursing home patients.
Thermal modelling of cooling tool cutting when milling by electrical analogy
NASA Astrophysics Data System (ADS)
Benabid, F.; Arrouf, M.; Assas, M.; Benmoussa, H.
2010-06-01
Measurement temperatures by (some devises) are applied immediately after shut-down and may be corrected for the temperature drop that occurs in the interval between shut-down and measurement. This paper presents a new procedure for thermal modelling of the tool cutting used just after machining; when the tool is out off the chip in order to extrapolate the cutting temperature from the temperature measured when the tool is at stand still. A fin approximation is made in enhancing heat loss (by conduction and convection) to air stream is used. In the modelling we introduce an equivalent thermal network to estimate the cutting temperature as a function of specific energy. In another hand, a local modified element lumped conduction equation is used to predict the temperature gradient with time when the tool is being cooled, with initial and boundary conditions. These predictions provide a detailed view of the global heat transfer coefficient as a function of cutting speed because the heat loss for the tool in air stream is an order of magnitude larger than in normal environment. Finally we deduct the cutting temperature by inverse method.
Dong, Ren G; Dong, Jennie H; Wu, John Z; Rakheja, Subhash
2007-01-01
The objective of this study is to develop analytical models for simulating driving-point biodynamic responses distributed at the fingers and palm of the hand under vibration along the forearm direction (z(h)-axis). Two different clamp-like model structures are formulated to analyze the distributed responses at the fingers-handle and palm-handle interfaces, as opposed to the single driving point invariably considered in the reported models. The parameters of the proposed four- and five degrees-of-freedom models are identified through minimization of an rms error function of the model and measured responses under different hand actions, namely, fingers pull, push only, grip only, and combined push and grip. The results show that the responses predicted from both models agree reasonably well with the measured data in terms of distributed as well total impedance magnitude and phase. The variations in the identified model parameters under different hand actions are further discussed in view of the biological system behavior. The proposed models are considered to serve as useful tools for design and assessment of vibration isolation methods, and for developing a hand-arm simulator for vibration analysis of power tools.
NASA Astrophysics Data System (ADS)
Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.
2013-03-01
A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.
The Hand Burn Severity (HABS) score: A simple tool for stratifying severity of hand burns.
Bache, Sarah E; Fitzgerald O'Connor, Edmund; Theodorakopoulou, Evgenia; Frew, Quentin; Philp, Bruce; Dziewulski, Peter
2017-02-01
Hand burns represent a unique challenge to the burns team due to the intricate structure and unrivalled functional importance of the hand. The initial assessment and prognosis relies on consideration of the specific site involved as well as depth of the burn. We created a simple severity score that could be used by referring non-specialists and researchers alike. The Hand Burn Severity (HABS) score stratifies hand burns according to severity with a numerical value of between 0 (no burn) and 18 (most severe) per hand. Three independent assessors scored the photographs of 121 burned hands of 106 adult and paediatric patients, demonstrating excellent inter-rater reliability (r=0.91, p<0.0001 on testing with Lin's correlation coefficient). A significant relationship was shown between the HABS score and a reliable binary outcome of the requirement for surgical excision on Mann-Whitney U testing (U=152; Z=9.8; p=0.0001). A receiver operator characteristic (ROC) curve analysis found a cut off score of 5.5, indicating that those with a HABS score below 6 did not require an operation, whereas those with a score above 6 did. The HABS score was shown to be more sensitive and specific that assessment of burn depth alone. The HABS score is a simple to use tool to stratify severity at initial presentation of hand burns which will be useful when referring, and when reporting outcomes. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Push-To-Lock, Push-To-Release Mechanism
NASA Technical Reports Server (NTRS)
Lozano, Anselmo, Jr.
1991-01-01
Latch locked or unlocked with single motion of hand. No tools needed to operate it, and user easily opens or closes it with heavily gloved hand. When unlocked, stem free of main body. In locked state, dowel pins in main body hold stem. Latch equipped with lock and key so only authorized users operate it.
Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach
ERIC Educational Resources Information Center
Stock, Naomi L.
2017-01-01
High-resolution mass spectrometry (HRMS) features both high resolution and high mass accuracy and is a powerful tool for the analysis and quantitation of compounds, determination of elemental compositions, and identification of unknowns. A hands-on laboratory experiment for upper-level undergraduate and graduate students to investigate HRMS is…
Technology in the College Classroom.
ERIC Educational Resources Information Center
Earl, Archie W., Sr.
An analysis was made of the use of computing tools at the graduate and undergraduate levels in colleges and universities in the United States. Topics ranged from hand-held calculators to the use of main-frame computers and the assessment of the SPSSX, SPSS, LINDO, and MINITAB computer software packages. Hand-held calculators are being increasingly…
Support for Conference Entitled The Fifth PHANTOM Users Group Workshop
2001-02-01
amplified by using extended A collection of functional test environments were assembled hand tools like a hammer, pipe wrench, or tennis racket. The to...view their hand, were seated at a desk, Surfaces were presented at a range of orientations, resting their right elbow on its surface, and used a in
Apollo 13 Astronaut James Lovel during lunar surface simulation training
1970-01-16
S70-28229 (16 Jan. 1970) --- Astronaut James A. Lovell Jr., commander of the Apollo 13 lunar landing mission, participates in lunar surface simulation training at the Manned Spacecraft Center. Lovell is attached to a Six Degrees of Freedom Simulator. He is carrying an Apollo Lunar Hand Tools carrier in his right hand.
Handedness and Motor Programming Effects of Manual Control and Movement
1992-09-01
the Upper Paleolithic (about 35,000 B.C. to 4 8,000 B.C.) also show patterns of wear consistent with right-handed use (Semenov, 1964). Similarly...tools from an even earlier period (Lower Paleolithic ---50,000 to 100,000 year ago) exhibited wear patterns corresponding to use by the right hand. Even
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara
2014-05-01
A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.
Web-based tools for modelling and analysis of multivariate data: California ozone pollution activity
Dinov, Ivo D.; Christou, Nicolas
2014-01-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges. PMID:24465054
Dinov, Ivo D; Christou, Nicolas
2011-09-01
This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting and statistical inference on these data are presented. All components of this case study (data, tools, activity) are freely available online at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_MotionCharts_CAOzoneData. Several types of exploratory (motion charts, box-and-whisker plots, spider charts) and quantitative (inference, regression, analysis of variance (ANOVA)) data analyses tools are demonstrated. Two specific human health related questions (temporal and geographic effects of ozone pollution) are discussed as motivational challenges.
Tool for cutting insulation from electrical cables
Harless, Charles E.; Taylor, Ward G.
1978-01-01
This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-01-01
Background Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software. PMID:19852806
SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.
Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari
2009-10-23
Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.
Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel
NASA Astrophysics Data System (ADS)
Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.
2018-02-01
The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.
Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel
NASA Astrophysics Data System (ADS)
Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.
2017-12-01
The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.
Applications of colored petri net and genetic algorithms to cluster tool scheduling
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng
2005-12-01
In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.
Vanbellingen, Tim; Schumacher, Rahel; Eggenberger, Noëmi; Hopfner, Simone; Cazzoli, Dario; Preisig, Basil C; Bertschi, Manuel; Nyffeler, Thomas; Gutbrod, Klemens; Bassetti, Claudio L; Bohlhalter, Stephan; Müri, René M
2015-05-01
According to the direct matching hypothesis, perceived movements automatically activate existing motor components through matching of the perceived gesture and its execution. The aim of the present study was to test the direct matching hypothesis by assessing whether visual exploration behavior correlate with deficits in gestural imitation in left hemisphere damaged (LHD) patients. Eighteen LHD patients and twenty healthy control subjects took part in the study. Gesture imitation performance was measured by the test for upper limb apraxia (TULIA). Visual exploration behavior was measured by an infrared eye-tracking system. Short videos including forty gestures (20 meaningless and 20 communicative gestures) were presented. Cumulative fixation duration was measured in different regions of interest (ROIs), namely the face, the gesturing hand, the body, and the surrounding environment. Compared to healthy subjects, patients fixated significantly less the ROIs comprising the face and the gesturing hand during the exploration of emblematic and tool-related gestures. Moreover, visual exploration of tool-related gestures significantly correlated with tool-related imitation as measured by TULIA in LHD patients. Patients and controls did not differ in the visual exploration of meaningless gestures, and no significant relationships were found between visual exploration behavior and the imitation of emblematic and meaningless gestures in TULIA. The present study thus suggests that altered visual exploration may lead to disturbed imitation of tool related gestures, however not of emblematic and meaningless gestures. Consequently, our findings partially support the direct matching hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Caron, Alexandre; Chazard, Emmanuel; Muller, Joris; Perichon, Renaud; Ferret, Laurie; Koutkias, Vassilis; Beuscart, Régis; Beuscart, Jean-Baptiste; Ficheur, Grégoire
2017-03-01
The significant risk of adverse events following medical procedures supports a clinical epidemiological approach based on the analyses of collections of electronic medical records. Data analytical tools might help clinical epidemiologists develop more appropriate case-crossover designs for monitoring patient safety. To develop and assess the methodological quality of an interactive tool for use by clinical epidemiologists to systematically design case-crossover analyses of large electronic medical records databases. We developed IT-CARES, an analytical tool implementing case-crossover design, to explore the association between exposures and outcomes. The exposures and outcomes are defined by clinical epidemiologists via lists of codes entered via a user interface screen. We tested IT-CARES on data from the French national inpatient stay database, which documents diagnoses and medical procedures for 170 million inpatient stays between 2007 and 2013. We compared the results of our analysis with reference data from the literature on thromboembolic risk after delivery and bleeding risk after total hip replacement. IT-CARES provides a user interface with 3 columns: (i) the outcome criteria in the left-hand column, (ii) the exposure criteria in the right-hand column, and (iii) the estimated risk (odds ratios, presented in both graphical and tabular formats) in the middle column. The estimated odds ratios were consistent with the reference literature data. IT-CARES may enhance patient safety by facilitating clinical epidemiological studies of adverse events following medical procedures. The tool's usability must be evaluated and improved in further research. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
The neural basis of human tool use
Orban, Guy A.; Caruana, Fausto
2014-01-01
In this review, we propose that the neural basis for the spontaneous, diversified human tool use is an area devoted to the execution and observation of tool actions, located in the left anterior supramarginal gyrus (aSMG). The aSMG activation elicited by observing tool use is typical of human subjects, as macaques show no similar activation, even after an extensive training to use tools. The execution of tool actions, as well as their observation, requires the convergence upon aSMG of inputs from different parts of the dorsal and ventral visual streams. Non-semantic features of the target object may be provided by the posterior parietal cortex (PPC) for tool-object interaction, paralleling the well-known PPC input to anterior intraparietal (AIP) for hand-object interaction. Semantic information regarding tool identity, and knowledge of the typical manner of handling the tool, could be provided by inferior and middle regions of the temporal lobe. Somatosensory feedback and technical reasoning, as well as motor and intentional constraints also play roles during the planning of tool actions and consequently their signals likewise converge upon aSMG. We further propose that aSMG may have arisen though duplication of monkey AIP and invasion of the duplicate area by afferents from PPC providing distinct signals depending on the kinematics of the manipulative action. This duplication may have occurred when Homo Habilis or Homo Erectus emerged, generating the Oldowan or Acheulean Industrial complexes respectively. Hence tool use may have emerged during hominid evolution between bipedalism and language. We conclude that humans have two parietal systems involved in tool behavior: a biological circuit for grasping objects, including tools, and an artifactual system devoted specifically to tool use. Only the latter allows humans to understand the causal relationship between tool use and obtaining the goal, and is likely to be the basis of all technological developments. PMID:24782809
Sengül, Ali; van Elk, Michiel; Rognini, Giulio; Aspell, Jane Elizabeth; Bleuler, Hannes; Blanke, Olaf
2012-01-01
The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field of cognitive neuroscience. PMID:23227142
Sengül, Ali; van Elk, Michiel; Rognini, Giulio; Aspell, Jane Elizabeth; Bleuler, Hannes; Blanke, Olaf
2012-01-01
The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field of cognitive neuroscience.
Evaluation of a telerobotic system to assist surgeons in microsurgery
NASA Technical Reports Server (NTRS)
Das, H.; Zak, H.; Johnson, J.; Crouch, J.; Frambach, D.
1999-01-01
A tool was developed that assists surgeons in manipulating surgical instruments more precisely than is possible manually. The tool is a telemanipulator that scales down the surgeon's hand motion and filters tremor in the motion. The signals measured from the surgeon's hand are transformed and used to drive a six-degrees-of-freedom robot to position the surgical instrument mounted on its tip. A pilot study comparing the performance of the telemanipulator system against manual instrument positioning was conducted at the University of Southern California School of Medicine. The results show that a telerobotic tool can improve the performance of a microsurgeon by increasing the precision with which he can position surgical instruments, but this is achieved at the cost of increased time in performing the task. We believe that this technology will extend the capabilities of microsurgeons and allow more surgeons to perform highly skilled procedures currently performed only by the best surgeons. It will also enable performance of new surgical procedures that are beyond the capabilities of even the most skilled surgeons. Copyright 1999 Wiley-Liss, Inc.
Air and smear sample calculational tool for Fluor Hanford Radiological control
DOE Office of Scientific and Technical Information (OSTI.GOV)
BAUMANN, B.L.
2003-07-11
A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, ''Analyzing Air and Smear Samples''. This document reports on the design and testing of the calculation tool. Radiological Control Technicians (RCTs) will save time and reduce hand written and calculation errors by using an electronic form for documenting and calculating work place air samples. Current expectations are RCTs will perform an air sample and collect the filter or perform a smear for surface contamination. RCTs will then survey the filter for gross alphamore » and beta/gamma radioactivity and with the gross counts utilize either hand calculation method or a calculator to determine activity on the filter. The electronic form will allow the RCT with a few key strokes to document the individual's name, payroll, gross counts, instrument identifiers; produce an error free record. This productivity gain is realized by the enhanced ability to perform mathematical calculations electronically (reducing errors) and at the same time, documenting the air sample.« less
Abd El Basset Bakr, Ashraf Mohamed; Hasaneen, Bothina Mohamed; AbdelRasoul Helal Bassiouni, Dina
2018-05-03
Muscle status assessment is crucial for diagnosis of protein energy wasting PEW/cachexia in chronic kidney disease (CKD) population. Hand grip strength (HGS) has been used in muscle power assessment in adult CKD. However, no data is available about its usefulness in children with CKD. Hence, we aimed to study the reliability of HGS in reflecting the muscle power and thus, nutritional status in children with CKD. In this Observational cross sectional study we enrolled 73 CKD children; 45 had end stage kidney disease (ESKD) on hemodialysis (HD) and 28 had CKD but not on dialysis yet. Assessment of children's nutritional status was done through biochemical variables (serum albumin and serum cholesterol) and anthropometric measures (height and BMI). Body composition monitor (BCM) device was used for lean tissue mass (LTM) assessment whilst muscle power was tested by HGS tool. The study showed that 69.8% of CKD patients had HGS values below 10th percentile for age and sex. Moreover, HGS was observed to be more affected in CRI patients and those with non - glomerular causes. HGS was also found to be positively correlated to height but not to lean tissue mass or serum albumin. HGS tool can be used as a reliable bedside tool for nutritional assessment in children with CKD. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Pruetz, J D; Bertolani, P; Ontl, K Boyer; Lindshield, S; Shelley, M; Wessling, E G
2015-04-01
For anthropologists, meat eating by primates like chimpanzees (Pan troglodytes) warrants examination given the emphasis on hunting in human evolutionary history. As referential models, apes provide insight into the evolution of hominin hunting, given their phylogenetic relatedness and challenges reconstructing extinct hominin behaviour from palaeoanthropological evidence. Among chimpanzees, adult males are usually the main hunters, capturing vertebrate prey by hand. Savannah chimpanzees (P. t. verus) at Fongoli, Sénégal are the only known non-human population that systematically hunts vertebrate prey with tools, making them an important source for hypotheses of early hominin behaviour based on analogy. Here, we test the hypothesis that sex and age patterns in tool-assisted hunting (n=308 cases) at Fongoli occur and differ from chimpanzees elsewhere, and we compare tool-assisted hunting to the overall hunting pattern. Males accounted for 70% of all captures but hunted with tools less than expected based on their representation on hunting days. Females accounted for most tool-assisted hunting. We propose that social tolerance at Fongoli, along with the tool-assisted hunting method, permits individuals other than adult males to capture and retain control of prey, which is uncommon for chimpanzees. We assert that tool-assisted hunting could have similarly been important for early hominins.
Vingerhoets, Guy; Vandekerckhove, Elisabeth; Honoré, Pieterjan; Vandemaele, Pieter; Achten, Eric
2011-06-01
This study aims to reveal the neural correlates of planning and executing tool use pantomimes and explores the brain's response to pantomiming the use of unfamiliar tools. Sixteen right-handed volunteers planned and executed pantomimes of equally graspable familiar and unfamiliar tools while undergoing fMRI. During the planning of these pantomimes, we found bilateral temporo-occipital and predominantly left hemispheric frontal and parietal activation. The execution of the pantomimes produced additional activation in frontal and sensorimotor regions. In the left posterior parietal region both familiar and unfamiliar tool pantomimes elicit peak activity in the anterior portion of the lateral bank of the intraparietal sulcus--A region associated with the representation of action goals. The cerebral activation during these pantomimes is remarkably similar for familiar and unfamiliar tools, and direct comparisons revealed only few differences. First, the left cuneus is significantly active during the planning of pantomimes of unfamiliar tools, reflecting increased visual processing of the novel objects. Second, executing (but not planning) familiar tool pantomimes showed significant activation on the convex portion of the inferior parietal lobule, a region believed to serve as a repository for skilled object-related gestures. Given the striking similarity in brain activation while pantomiming familiar and unfamiliar tools, we argue that normal subjects use both action semantics and function from structure inferences simultaneously and interactively to give rise to flexible object-to-goal directed behavior. Copyright © 2010 Wiley-Liss, Inc.
Perspectives on Wellness Self-Monitoring Tools for Older Adults
Huh, Jina; Le, Thai; Reeder, Blaine; Thompson, Hilaire J.; Demiris, George
2013-01-01
Purpose Our purpose was to understand different stakeholder perceptions about the use of self-monitoring tools, specifically in the area of older adults’ personal wellness. In conjunction with the advent of personal health records, tracking personal health using self-monitoring technologies shows promising patient support opportunities. While clinicians’ tools for monitoring of older adults have been explored, we know little about how older adults may self-monitor their wellness and health and how their health care providers would perceive such use. Methods We conducted three focus groups with health care providers (n=10) and four focus groups with community-dwelling older adults (n=31). Results Older adult participants’ found the concept of self-monitoring unfamiliar and this influenced a narrowed interest in the use of wellness self-monitoring tools. On the other hand, health care provider participants showed open attitudes towards wellness monitoring tools for older adults and brainstormed about various stakeholders’ use cases. The two participant groups showed diverging perceptions in terms of: perceived uses, stakeholder interests, information ownership and control, and sharing of wellness monitoring tools. Conclusions Our paper provides implications and solutions for how older adults’ wellness self-monitoring tools can enhance patient-health care provider interaction, patient education, and improvement in overall wellness. PMID:24041452
Loads produced by a suited subject performing tool tasks without the use of foot restraints
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Poliner, Jeffrey; Klute, Glenn K.
1993-01-01
With an increase in the frequency of extravehicular activities (EVA's) aboard the Space Shuttle, NASA is interested in determining the capabilities of suited astronauts while performing manual tasks during an EVA, in particular the situations in which portable foot restraints are not used to stabilize the astronauts. Efforts were made to document the forces that are transmitted to spacecraft while pushing and pulling an object as well as while operating a standard wrench and an automatic power tool. The six subjects studied aboard the KC-135 reduced gravity aircraft were asked to exert a maximum torque and to maintain a constant level of torque with a wrench, to push and pull an EVA handrail, and to operate a Hubble Space Telescope (HST) power tool. The results give an estimate of the forces and moments that an operator will transmit to the handrail as well as to the supporting structure. In general, it was more effective to use the tool inwardly toward the body rather than away from the body. There were no differences in terms of strength capabilities between right and left hands. The power tool was difficult to use. It is suggested that ergonomic redesigning of the power tool may increase the efficiency of power tool use.
Perspectives on wellness self-monitoring tools for older adults.
Huh, Jina; Le, Thai; Reeder, Blaine; Thompson, Hilaire J; Demiris, George
2013-11-01
Our purpose was to understand different stakeholder perceptions about the use of self-monitoring tools, specifically in the area of older adults' personal wellness. In conjunction with the advent of personal health records, tracking personal health using self-monitoring technologies shows promising patient support opportunities. While clinicians' tools for monitoring of older adults have been explored, we know little about how older adults may self-monitor their wellness and health and how their health care providers would perceive such use. We conducted three focus groups with health care providers (n=10) and four focus groups with community-dwelling older adults (n=31). Older adult participants' found the concept of self-monitoring unfamiliar and this influenced a narrowed interest in the use of wellness self-monitoring tools. On the other hand, health care provider participants showed open attitudes toward wellness monitoring tools for older adults and brainstormed about various stakeholders' use cases. The two participant groups showed diverging perceptions in terms of: perceived uses, stakeholder interests, information ownership and control, and sharing of wellness monitoring tools. Our paper provides implications and solutions for how older adults' wellness self-monitoring tools can enhance patient-health care provider interaction, patient education, and improvement in overall wellness. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Teaching Web 2.0 technologies using Web 2.0 technologies.
Rethlefsen, Melissa L; Piorun, Mary; Prince, J Dale
2009-10-01
The research evaluated participant satisfaction with the content and format of the "Web 2.0 101: Introduction to Second Generation Web Tools" course and measured the impact of the course on participants' self-evaluated knowledge of Web 2.0 tools. The "Web 2.0 101" online course was based loosely on the Learning 2.0 model. Content was provided through a course blog and covered a wide range of Web 2.0 tools. All Medical Library Association members were invited to participate. Participants were asked to complete a post-course survey. Respondents who completed the entire course or who completed part of the course self-evaluated their knowledge of nine social software tools and concepts prior to and after the course using a Likert scale. Additional qualitative information about course strengths and weaknesses was also gathered. Respondents' self-ratings showed a significant change in perceived knowledge for each tool, using a matched pair Wilcoxon signed rank analysis (P<0.0001 for each tool/concept). Overall satisfaction with the course appeared high. Hands-on exercises were the most frequently identified strength of the course; the length and time-consuming nature of the course were considered weaknesses by some. Learning 2.0-style courses, though demanding time and self-motivation from participants, can increase knowledge of Web 2.0 tools.
Functional brain areas associated with manipulation of a prehensile tool: a PET study.
Tsuda, Hayato; Aoki, Tomoko; Oku, Naohiko; Kimura, Yasuyuki; Hatazawa, Jun; Kinoshita, Hiroshi
2009-09-01
Using PET, brain areas representing the use of a well-learned tool (chopsticks) were investigated in 10 normal common users. The experimental task was to hold the tool in their right hand and use it to pick up and transport a small pin from a table. Data for the same task performed using only the fingers were also obtained as a control. The results showed an extensive overlap in activated areas with and without the use of the tool. The tool-use prehension, compared to the finger prehension, was associated with higher activities in the caudal-ventral premotor, dorsal premotor, superior parietal, posterior intraparietal, middle temporal gyrus, and primary sensory, occipital cortices, and the cerebellum. These are thus considered to be the human cortical and subcortical substrates representing the use of the tool studied. The activity of the posterior intraparietal area was negatively correlated with the number of drops of the pin, whereas occipital activity was positively correlated with the same error parameter. The caudal-ventral premotor and posterior intraparietal areas are together known to be involved in tool use-related modulation in peripersonal space. The correlation results suggest that this modulation depends on the level of performance. The coactivated left middle temporal gyrus further suggests that familiarity with a tool as well as the knowledge about its usage plays a role in peripersonal space modulation. Superior parietal activation, along with occipital activation, indicates the involvement of visual-spatial attention in the tool use, possibly reflecting the effect of interaction between the prehension (task) and the tool. 2009 Wiley-Liss, Inc.
Tool use and affordance: Manipulation-based versus reasoning-based approaches.
Osiurak, François; Badets, Arnaud
2016-10-01
Tool use is a defining feature of human species. Therefore, a fundamental issue is to understand the cognitive bases of human tool use. Given that people cannot use tools without manipulating them, proponents of the manipulation-based approach have argued that tool use might be supported by the simulation of past sensorimotor experiences, also sometimes called affordances. However, in the meanwhile, evidence has been accumulated demonstrating the critical role of mechanical knowledge in tool use (i.e., the reasoning-based approach). The major goal of the present article is to examine the validity of the assumptions derived from the manipulation-based versus the reasoning-based approach. To do so, we identified 3 key issues on which the 2 approaches differ, namely, (a) the reference frame issue, (b) the intention issue, and (c) the action domain issue. These different issues will be addressed in light of studies in experimental psychology and neuropsychology that have provided valuable contributions to the topic (i.e., tool-use interaction, orientation effect, object-size effect, utilization behavior and anarchic hand, tool use and perception, apraxia of tool use, transport vs. use actions). To anticipate our conclusions, the reasoning-based approach seems to be promising for understanding the current literature, even if it is not fully satisfactory because of a certain number of findings easier to interpret with regard to the manipulation-based approach. A new avenue for future research might be to develop a framework accommodating both approaches, thereby shedding a new light on the cognitive bases of human tool use and affordances. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Abdel-Salam, Tarek; Kauffman, Paul J.; Crossman, Gary
2006-01-01
Educators question whether performing a laboratory experiment as an observer (non-hands-on), such as conducted in a distance education context, can be as effective a learning tool as personally performing the experiment in a laboratory environment. The present paper investigates this issue by comparing the performance of distance education…
Chapter 04: Bloodless wood specimen preparation for hand lens observation
Alex Wiedenhoeft
2011-01-01
The single most difficult physical skill involved in wood identification is producing a smoothly prepared surface for observing anatomical features. This skill must be practiced patiently; it takes time to become proficient at this task. Producing a cleanly cut surface is also the only appreciably dangerous aspect of wood identification with a hand lens; the tools used...
Handing a Tool to Someone Can Take More Time than Using It
ERIC Educational Resources Information Center
Osiurak, Francois; Roche, Kevin; Ramone, Jennifer; Chainay, Hanna
2013-01-01
Jax and Buxbaum [Jax and Buxbaum (2010). Response interference between functional and structural actions linked to the same familiar object. "Cognition, 115", 350-355] demonstrated that grasp-to-transport actions (handing an object to someone, i.e., a receiver) are initiated more quickly than grasp-to-use actions. A possible interpretation of…
Synthesis: Ecological Impacts of Forest Vegetation Management
Jerry L. Michael; M. Hermy
2002-01-01
Ecological impacts of forest vegetation management are highly complex with many interactions. Interactions are bounded on the one hand by hierarchical levels from genes to species to ecosystems and on the other hand by the tools used and the intensity of management applied to each level of possible interactions. Some impacts are easy to measure, but impacts become more...
Brushstrokes: Styles and Techniques of Chinese Painting. A Teacher Workshop.
ERIC Educational Resources Information Center
Asian Art Museum of San Francisco, CA.
Brushwork is the essential characteristic of Chinese painting. Ink and brushwork provide the foundation of Chinese pictures, even when color also is used. In the quality of the brushwork the artist captures the spirit resonance, the raison d'etre of a painting. In China, painting and writing developed hand in hand, sharing the same tools and…
Hand-Held Calculators in the Classroom: A Review of the Research.
ERIC Educational Resources Information Center
Parkhurst, Scott
This report surveys many of the recent investigations on calculators and their use in mathematics education. The review notes that the widespread availability of hand-held calculators and their affordability has led to their consideration as a viable tool to aid in mathematics instruction. The studies reviewed suggest that many questions are still…
Pi in the Sky: Hands-on Mathematical Activities for Teaching Astronomy.
ERIC Educational Resources Information Center
Pethoud, Robert
This book of activities was designed to provide students with the opportunity to create mental models of concepts in astronomy while using simple, homemade tools. In addition, these sequential, hands-on activities are to help students see how scientific knowledge is obtained. The introduction describes the rationale for the book and describes the…
Methodological quality and reporting of systematic reviews in hand and wrist pathology.
Wasiak, J; Shen, A Y; Ware, R; O'Donohoe, T J; Faggion, C M
2017-10-01
The objective of this study was to assess methodological and reporting quality of systematic reviews in hand and wrist pathology. MEDLINE, EMBASE and Cochrane Library were searched from inception to November 2016 for relevant studies. Reporting quality was evaluated using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and methodological quality using a measurement tool to assess systematic reviews, the Assessment of Multiple Systematic Reviews (AMSTAR). Descriptive statistics and linear regression were used to identify features associated with improved methodological quality. A total of 91 studies were included in the analysis. Most reviews inadequately reported PRISMA items regarding study protocol, search strategy and bias and AMSTAR items regarding protocol, publication bias and funding. Systematic reviews published in a plastics journal, or which included more authors, were associated with higher AMSTAR scores. A large proportion of systematic reviews within hand and wrist pathology literature score poorly with validated methodological assessment tools, which may affect the reliability of their conclusions. I.
Feix, Thomas; Kivell, Tracy L.; Pouydebat, Emmanuelle; Dollar, Aaron M.
2015-01-01
Primates, and particularly humans, are characterized by superior manual dexterity compared with other mammals. However, drawing the biomechanical link between hand morphology/behaviour and functional capabilities in non-human primates and fossil taxa has been challenging. We present a kinematic model of thumb–index precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. The model reveals that both joint mobility and digit proportions (scaled to hand size) are critical for determining precision grip and manipulation potential, but that having either a long thumb or great joint mobility alone does not necessarily yield high precision manipulation. The results suggest even the oldest available fossil hominins may have shared comparable precision grip manipulation with modern humans. In particular, the predicted human-like precision manipulation of Australopithecus afarensis, approximately one million years before the first stone tools, supports controversial archaeological evidence of tool-use in this taxon. PMID:25878134
Feix, Thomas; Kivell, Tracy L; Pouydebat, Emmanuelle; Dollar, Aaron M
2015-05-06
Primates, and particularly humans, are characterized by superior manual dexterity compared with other mammals. However, drawing the biomechanical link between hand morphology/behaviour and functional capabilities in non-human primates and fossil taxa has been challenging. We present a kinematic model of thumb-index precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. The model reveals that both joint mobility and digit proportions (scaled to hand size) are critical for determining precision grip and manipulation potential, but that having either a long thumb or great joint mobility alone does not necessarily yield high precision manipulation. The results suggest even the oldest available fossil hominins may have shared comparable precision grip manipulation with modern humans. In particular, the predicted human-like precision manipulation of Australopithecus afarensis, approximately one million years before the first stone tools, supports controversial archaeological evidence of tool-use in this taxon. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
[Ergonomic analysis of the handle of manual instruments for dental hygiene].
Migliario, Mario; Franchignoni, Marco; Soldati, Libero; Melle, Andrea; Carcieri, Paola; Ferriero, Giorgio
2012-01-01
Work-related musculoskeletal disorders of upper limbs are very common among dental hygienists. To minimize the risk of their occurrence, it is essential that attention be paid to proper ergonomics in the workplace, including the selection of instrumentation. At present there are no specific guidelines but only some indications for the selection of the different hand tools. The main purpose of this study was to make a comparative analysis of different types of handles of hand tools used for root planing (Gracey curettes). Nine dental hygienists were interviewed with a questionnaire aimed to assess three different types of curette handle. The results showed that lightness, being of solid steel, having a cylindrical non-uniform shape with full enlarged cross-section, and being silicon coated with non-slip ends are the preferred characteristics for a curette handle. These considerations may assist both manufacturers in designing new hand instruments and clinicians in selecting the most ergonomic ones to buy.
Higher-order automatic differentiation of mathematical functions
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Dal Cappello, Claude
2015-04-01
Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.
Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico
2005-01-01
Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298
Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.
2015-12-01
Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov
An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces
NASA Technical Reports Server (NTRS)
Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik
2001-01-01
This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.
Bartnicka, Joanna; Zietkiewicz, Agnieszka A; Kowalski, Grzegorz J
2018-03-19
With reference to four different minimally invasive surgery (MIS) cholecystectomy the aims were: to recognize the factors influencing dominant wrist postures manifested by the surgeon; to detect risk factors involved in maintaining deviated wrist postures; to compare the wrist postures of surgeons while using laparoscopic tools. Video films were recorded during live surgeries. The films were synchronized with wrist joint angles obtained from wireless electrogoniometers placed on the surgeon's hand. The analysis was conducted for five different laparoscopic tools used during all surgical techniques. The most common wrist posture was extension. In the case of one laparoscopic tool, the mean values defining extended wrist posture were distinct in all four surgical techniques. For one type of surgical technique, considered to be the most beneficial for patients, more extreme postures were noticed regarding all laparoscopic tools. We recognized a new factor, apart from the tool's handle design, that influences extreme and deviated wrist postures. It involves three areas of task specification including the type of action, type of motion patterns and motion dynamism. The outcomes proved that the surgical technique which is most beneficial for the patient imposes the greatest strain on the surgeon's wrist.
A large-scale benchmark of gene prioritization methods.
Guala, Dimitri; Sonnhammer, Erik L L
2017-04-21
In order to maximize the use of results from high-throughput experimental studies, e.g. GWAS, for identification and diagnostics of new disease-associated genes, it is important to have properly analyzed and benchmarked gene prioritization tools. While prospective benchmarks are underpowered to provide statistically significant results in their attempt to differentiate the performance of gene prioritization tools, a strategy for retrospective benchmarking has been missing, and new tools usually only provide internal validations. The Gene Ontology(GO) contains genes clustered around annotation terms. This intrinsic property of GO can be utilized in construction of robust benchmarks, objective to the problem domain. We demonstrate how this can be achieved for network-based gene prioritization tools, utilizing the FunCoup network. We use cross-validation and a set of appropriate performance measures to compare state-of-the-art gene prioritization algorithms: three based on network diffusion, NetRank and two implementations of Random Walk with Restart, and MaxLink that utilizes network neighborhood. Our benchmark suite provides a systematic and objective way to compare the multitude of available and future gene prioritization tools, enabling researchers to select the best gene prioritization tool for the task at hand, and helping to guide the development of more accurate methods.
Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures
Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas
2015-01-01
Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture. These results demonstrate that different gestures used in ‘common’ prehistoric tasks can be distinguished quantitatively based on their dynamic parameters. Future research needs to assess our ability to reconstruct these parameters from observed use-wear patterns. PMID:26284785
Wood Dust in Joineries and Furniture Manufacturing: An Exposure Determinant and Intervention Study.
Douwes, Jeroen; Cheung, Kerry; Prezant, Bradley; Sharp, Mark; Corbin, Marine; McLean, Dave; 't Mannetje, Andrea; Schlunssen, Vivi; Sigsgaard, Torben; Kromhout, Hans; LaMontagne, Anthony D; Pearce, Neil; McGlothlin, James D
2017-05-01
To assess wood dust exposures and determinants in joineries and furniture manufacturing and to evaluate the efficacy of specific interventions on dust emissions under laboratory conditions. Also, in a subsequent follow-up study in a small sample of joinery workshops, we aimed to develop, implement, and evaluate a cost-effective and practicable intervention to reduce dust exposures. Personal inhalable dust (n = 201) was measured in 99 workers from 10 joineries and 3 furniture-making factories. To assess exposure determinants, full-shift video exposure monitoring (VEM) was conducted in 19 workers and task-based VEM in 32 workers (in 7 joineries and 3 furniture factories). We assessed the efficacy of vacuum extraction on hand tools and the use of vacuum cleaners instead of sweeping and dry wiping under laboratory conditions. These measures were subsequently implemented in three joinery workshops with 'high' (>4 mg m-3) and one with 'low' (<2 mg m-3) baseline exposures. We also included two control workshops (one 'low' and one 'high' exposure workshop) in which no interventions were implemented. Exposures were measured 4 months prior and 4 months following the intervention. Average (geometric means) exposures in joinery and furniture making were 2.5 mg m-3 [geometric standard deviations (GSD) 2.5] and 0.6 mg m-3 (GSD 2.3), respectively. In joinery workers cleaning was associated with a 3.0-fold higher (P < 0.001) dust concentration compared to low exposure tasks (e.g. gluing), while the use of hand tools showed 3.0- to 11.0-fold higher (P < 0.001) exposures. In furniture makers, we found a 5.4-fold higher exposure (P < 0.001) with using a table/circular saw. Laboratory efficiency experiments showed a 10-fold decrease in exposure (P < 0.001) when using a vacuum cleaner. Vacuum extraction on hand tools combined with a downdraft table reduced exposures by 42.5% for routing (P < 0.1) and 85.5% for orbital sanding (P < 0.001). Following intervention measures in joineries, a borderline statistically significant (P < 0.10) reduction in exposure of 30% was found in workshops with 'high' baseline exposures, but no reduction was shown in the workshop with 'low' baseline exposures. Wood dust exposure is high in joinery workers and (to a lesser extent) furniture makers with frequent use of hand tools and cleaning being key drivers of exposure. Vacuum extraction on hand tools and alternative cleaning methods reduced workplace exposures substantially, but may be insufficient to achieve compliance with current occupational exposure limits. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Elhoseeny, Taghareed A; Mourad, Juidan K
2014-08-01
The Safe Injection Global Network (SIGN) developed an intervention strategy for reducing overuse of injections and promoting the administration of safe injections. Tool C--Revised is designed to assess the safety of the most common procedures that puncture the skin within health services. The aim of the study was to assess injection safety within the primary healthcare facilities in Alexandria using Tool C--Revised. A total of 45 family health units and centers in Alexandria were selected by proportional allocation from the eight regions of Alexandria. The Tool C--Revised of the WHO was used for observation of the entire facility, injection practices and injection-related procedures, and sterilization practices. Interview of different health providers and immediate supervisor of injections was carried out. Indicators that reflect risk included: deficiency of alcohol-based hand rub for cleansing hands (13.3%), compliance with hand wash before preparing a procedure (56.9% before injection practices, 61.3% before phlebotomy, and 67.6% before lancet puncture), and wearing a new pair of gloves before new procedures (48.6% before injection practices, 9.7% for phlebotomy, 11.8% for lancet puncture, and 80% for both intravenous injections and infusions). Enough disposable equipment in all facilities for at least 2 weeks dependent on the statement of the average numbers of procedures per week was shown. Only 38% of the providers had received training regarding injection safety in the last 2 years and 62.5% had completed their three doses of hepatitis B vaccine. Only 42.2% of staffs who handled healthcare waste had access to heavy gloves. Indicators related to injection and injection-related practices that reflect risk to patients include deficiency of alcohol-based hand rub tools, nonadherence to hand hygiene before preparing an injection, and inadequate adherence to using a clean barrier when opening a glass ampule and use of gloves. Indicators that may reflect risk to patients and providers include inadequate injection safety training and incomplete hepatitis B vaccination of healthcare providers. Indicators that may reflect risk to providers include nonadherence to safety precautions related to injection practices, such as inadequate access to heavy gloves by staff handling healthcare waste.
Srigley, J A; Corace, K; Hargadon, D P; Yu, D; MacDonald, T; Fabrigar, L; Garber, G
2015-11-01
Despite the importance of hand hygiene in preventing transmission of healthcare-associated infections, compliance rates are suboptimal. Hand hygiene is a complex behaviour and psychological frameworks are promising tools to influence healthcare worker (HCW) behaviour. (i) To review the effectiveness of interventions based on psychological theories of behaviour change to improve HCW hand hygiene compliance; (ii) to determine which frameworks have been used to predict HCW hand hygiene compliance. Multiple databases and reference lists of included studies were searched for studies that applied psychological theories to improve and/or predict HCW hand hygiene. All steps in selection, data extraction, and quality assessment were performed independently by two reviewers. The search yielded 918 citations; seven met eligibility criteria. Four studies evaluated hand hygiene interventions based on psychological frameworks. Interventions were informed by goal setting, control theory, operant learning, positive reinforcement, change theory, the theory of planned behaviour, and the transtheoretical model. Three predictive studies employed the theory of planned behaviour, the transtheoretical model, and the theoretical domains framework. Interventions to improve hand hygiene adherence demonstrated efficacy but studies were at moderate to high risk of bias. For many studies, it was unclear how theories of behaviour change were used to inform the interventions. Predictive studies had mixed results. Behaviour change theory is a promising tool for improving hand hygiene; however, these theories have not been extensively examined. Our review reveals a significant gap in the literature and indicates possible avenues for novel research. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Jennie H.; Dong, Ren G.; Rakheja, Subhash; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2008-04-01
In this study it was hypothesized that the vibration-induced injuries or disorders in a substructure of human hand-arm system are primarily associated with the vibration power absorption distributed in that substructure. As the first step to test this hypothesis, the major objective of this study is to develop a method for analyzing the vibration power flow and the distribution of vibration power absorptions in the major substructures (fingers, palm-hand-wrist, forearm and upper arm, and shoulder) of the system exposed to hand-transmitted vibration. A five-degrees-of-freedom model of the system incorporating finger- as well as palm-side driving points was applied for the analysis. The mechanical impedance data measured at the two driving points under four different hand actions involving 50 N grip-only, 15 N grip and 35 N push, 30 N grip and 45 N push, and 50 N grip and 50 N push, were used to identify the model parameters. The vibration power absorption distributed in the substructures were evaluated using vibration spectra measured on many tools. The frequency weightings of the distributed vibration power absorptions were derived and compared with the weighting defined in ISO 5349-1 (2001). This study found that vibration power absorption is primarily distributed in the arm and shoulder when operating low-frequency tools such as rammers, while a high concentration of vibration power absorption in the fingers and hand is observed when operating high-frequency tools, such as grinders. The vibration power absorption distributed in palm-wrist and arm is well correlated with the ISO-weighted acceleration, while the finger vibration power absorption is highly correlated with unweighted acceleration. The finger vibration power absorption-based frequency weighting suggested that exposure to vibration in the frequency range of 16-500 Hz could pose higher risks of developing finger disorders. The results support the use of the frequency weighting specified in the current standard for assessing risks of developing disorders in the palm-wrist-arm substructures. The standardized weighting, however, could overestimate low-frequency effects but greatly underestimate high-frequency effects on the development of finger disorders. The results are further discussed to show that the trends observed in the vibration power absorptions distributed in the substructures are consistent with some major findings of various physiological and epidemiological studies, which provides a support to the hypothesis of this study.
Chinnah, Tudor I; de Bere, Sam Regan; Collett, Tracey
2011-01-01
Modern medical education teaching and learning approaches now lay emphasis on students acquiring knowledge, skills and attitudes relevant to medical practice. To explore students' perceived impacts of using hands-on approaches involving peer/life model physical examination and palpation in teaching and learning living human anatomy on their practice of physical examination of real patients. This study used exploratory focus groups and a questionnaire survey of years 3-5 medical students. The focus group discussions revealed new insights into the positive impacts of the hands-on approaches on students' clinical skills and professional attitudes when dealing with patients. Students' exposure to the hands-on approaches helped them to feel comfortable with therapeutically touching unclothed patients' bodies and physically examining them in the clinical environment. At least 60% of the questionnaire survey respondents agreed with the focus group participants on this view. Over 75% also agreed that the hands-on experiences helped them develop good professional attitudes in their encounter with patients. This study highlights the perceived educational value of the hands-on approaches as a pedagogic tool with a positive impact on students' clinical skills and professional attitudes that helps in easing their transition into clinical practice.
Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system
NASA Technical Reports Server (NTRS)
Mclauchlan, Robert A.
1987-01-01
Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.
[Occupational exposure to hand-transmitted vibration in Poland].
Harazin, Barbara; Zieliński, Grzegorz
2004-01-01
Occupational exposure to hand transmitted vibration may cause disorders in upper extremities known as hand-arm vibration syndrome. Therefore it is essential to know the sources of vibration, occupational groups exposed to vibration and the number of exposed workers. The aim of the study was to estimate the number of men and women exposed to hand-transmitted vibration in Poland. The completed questionnaires were obtained from 265 (80%) sanitary inspection stations. They included questions on: the name of workplaces, the name and the type of vibration sources, workers' gender, the number of workers exposed to vibration, indicating the extent of exposure measured against the three threshold limit values (< 0.5 TLV; 0.5 < TLV < 1 and > 1 TLV), and the number of workers exposed to hand-transmitted vibration not documented by measurements in a particular workplaces, indicating one of the three possible kinds of exposure (occasional, periodical and constant). The questionnaire data were based on measurements and analyses performed in 1997-2000. The results of the study showed that vibrating tools used by grinders, fitters, locksmiths, rammers, road workers, carpenters and smiths proved to be the most frequent sources of hand-transmitted vibration. It was revealed that 78.6% of operators of these tools were exposed to vibration exceeding 1 TLV. The study also indicated that 17,000 workers, including 1700 women, were exposed to vibration exceeding the threshold limit values.
The prehistory of handedness: archaeological data and comparative ethology.
Uomini, Natalie T
2009-10-01
Homo sapiens sapiens displays a species wide lateralised hand preference, with 85% of individuals in all populations being right-handed for most manual actions. In contrast, no other great ape species shows such strong and consistent population level biases, indicating that extremes of both direction and strength of manual laterality (i.e., species-wide right-handedness) may have emerged after divergence from the last common ancestor. To reconstruct the hand use patterns of early hominins, laterality is assessed in prehistoric artefacts. Group right side biases are well established from the Neanderthals onward, while patchy evidence from older fossils and artefacts indicates a preponderance of right-handed individuals. Individual hand preferences and group level biases can occur in chimpanzees and other apes for skilled tool use and food processing. Comparing these findings with human ethological data on spontaneous hand use reveals that the great ape clade (including humans) probably has a common effect at the individual level, such that a person can vary from ambidextrous to completely lateralised depending on the action. However, there is currently no theoretical model to explain this result. The degree of task complexity and bimanual complementarity have been proposed as factors affecting lateralisation strength. When primatology meets palaeoanthropology, the evidence suggests species-level right-handedness may have emerged through the social transmission of increasingly complex, bimanually differentiated, tool using activities.
The wheelchair as a full-body tool extending the peripersonal space
Galli, Giulia; Noel, Jean Paul; Canzoneri, Elisa; Blanke, Olaf; Serino, Andrea
2015-01-01
Dedicated multisensory mechanisms in the brain represent peripersonal space (PPS), a limited portion of space immediately surrounding the body. Previous studies have illustrated the malleability of PPS representation through hand-object interaction, showing that tool use extends the limits of the hand-centered PPS. In the present study we investigated the effects of a special tool, the wheelchair, in extending the action possibilities of the whole body. We used a behavioral measure to quantify the extension of the PPS around the body before and after Active (Experiment 1) and Passive (Experiment 2) training with a wheelchair and when participants were blindfolded (Experiment 3). Results suggest that a wheelchair-mediated passive exploration of far space extended PPS representation. This effect was specifically related to the possibility of receiving information from the environment through vision, since no extension effect was found when participants were blindfolded. Surprisingly, the active motor training did not induce any modification in PPS representation, probably because the wheelchair maneuver was demanding for non-expert users and thus they may have prioritized processing of information from close to the wheelchair rather than at far spatial locations. Our results suggest that plasticity in PPS representation after tool use seems not to strictly depend on active use of the tool itself, but is triggered by simultaneous processing of information from the body and the space where the body acts in the environment, which is more extended in the case of wheelchair use. These results contribute to our understanding of the mechanisms underlying body–environment interaction for developing and improving applications of assistive technological devices in different clinical populations. PMID:26042069
Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools
Vingerhoets, Guy
2014-01-01
Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement. PMID:24634664
Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools.
Vingerhoets, Guy
2014-01-01
Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement.
46 CFR 197.420 - Operations manual.
Code of Federal Regulations, 2010 CFR
2010-10-01
... dive team. (b) The operations manual must be modified in writing when adaptation is required because of...) Hand-held power tools; (ii) Welding and burning equipment; and (iii) Explosives. specific diving mode...
The Truth with Some Stretchers.
ERIC Educational Resources Information Center
Girard, Linda W.
1988-01-01
Discusses the biographies of Jean Fritz, demonstrating that in the hands of an artist, biography benefits from the use of the conjectural tools of fiction, such as created dialogue or interior monologue. (ARH)
Muhumuza, Christine; Gomersall, Judith Streak; Fredrick, Makumbi E; Atuyambe, Lynn; Okiira, Christopher; Mukose, Aggrey; Ssempebwa, John
2015-03-01
The hands of a health care worker are a common vehicle of pathogen transmission in hospital settings. Health care worker hand hygiene is therefore critical for patients' well being. Whilst failure of health care workers to comply with the best hand hygiene practice is a problem in all health care settings, issues of lack of access to adequate cleaning equipment and in some cases even running water make practicing good hand hygiene particularly difficult in low-resource developing country settings. This study reports an audit and feedback project that focused on the hand hygiene of the health care worker in the pediatric special care unit of the Mulago National Referral Hospital, which is a low-resource setting in Uganda. To improve hand hygiene among health care workers in the pediatric special care unit and thereby contribute to reducing transmission of health care worker-associated pathogens. The Joanna Briggs Institute three-phase Practical Application of Clinical Evidence System audit and feedback tool for promoting evidence utilization and change in health care was used. In phase one of the project, stakeholders were engaged and seven evidence-based audit criteria were developed. A baseline audit was then conducted. In phase two, barriers underpinning areas of noncompliance found in the baseline audit were identified and three strategies - education, reminders and provision of hand cleaning equipment - were implemented to overcome them. In phase three, a follow-up audit was conducted. Compliance with best practice hygiene was found to be poor in the baseline audit for all but one of the audit criteria. Following the implementation of the strategies, hand hygiene improved. The compliance rate increased substantially across all criteria. Staff education achieved 100%, whilst criterion 4 increased to 70%. However, use of alcohol-based hand-rub for hand hygiene only improved to 66%, and for six of the seven audit criteria, compliance remained below 74%. The project provides another example of how audit can be used as a tool to improve health practice, even in a low-resource setting. At the same time, it showed how difficult it is to achieve compliance with best hand hygiene practice in a low-resource hospital. The project highlights the importance of continued education/awareness raising on the importance of good hand hygiene practice as well as investment in infrastructure and cleaning supplies for achieving and sustaining good hand hygiene among workers in a low-resource hospital setting. A key contribution of the project was the legacy it left in the form of knowledge about how to use audit and feedback as a tool to promote the best practice. A similar project has been implemented in the maternity ward at the hospital and further audits are planned.
Validation of hand and foot anatomical feature measurements from smartphone images
NASA Astrophysics Data System (ADS)
Amini, Mohammad; Vasefi, Fartash; MacKinnon, Nicholas
2018-02-01
A smartphone mobile medical application, previously presented as a tool for individuals with hand arthritis to assess and monitor the progress of their disease, has been modified and expanded to include extraction of anatomical features from the hand (joint/finger width, and angulation) and foot (length, width, big toe angle, and arch height index) from smartphone camera images. Image processing algorithms and automated measurements were validated by performing tests on digital hand models, rigid plastic hand models, and real human hands and feet to determine accuracy and reproducibility compared to conventional measurement tools such as calipers, rulers, and goniometers. The mobile application was able to provide finger joint width measurements with accuracy better than 0.34 (+/-0.25) millimeters. Joint angulation measurement accuracy was better than 0.50 (+/-0.45) degrees. The automatically calculated foot length accuracy was 1.20 (+/-1.27) millimeters and the foot width accuracy was 1.93 (+/-1.92) millimeters. Hallux valgus angle (used in assessing bunions) accuracy was 1.30 (+/-1.29) degrees. Arch height index (AHI) measurements had an accuracy of 0.02 (+/-0.01). Combined with in-app documentation of symptoms, treatment, and lifestyle factors, the anatomical feature measurements can be used by both healthcare professionals and manufacturers. Applications include: diagnosing hand osteoarthritis; providing custom finger splint measurements; providing compression glove measurements for burn and lymphedema patients; determining foot dimensions for custom shoe sizing, insoles, orthotics, or foot splints; and assessing arch height index and bunion treatment effectiveness.
Wiemken, Timothy L; Furmanek, Stephen P; Mattingly, William A; Haas, Janet; Ramirez, Julio A; Carrico, Ruth M
2018-06-01
Hand hygiene is one of the most important interventions in the quest to eliminate healthcare-associated infections, and rates in healthcare facilities are markedly low. Since hand hygiene observation and feedback are critical to improve adherence, we created an easy-to-use, platform-independent hand hygiene data collection process and an automated, on-demand reporting engine. A 3-step approach was used for this project: 1) creation of a data collection form using Google Forms, 2) transfer of data from the form to a spreadsheet using Google Spreadsheets, and 3) creation of an automated, cloud-based analytics platform for report generation using R and RStudio Shiny software. A video tutorial of all steps in the creation and use of this free tool can be found on our YouTube channel: https://www.youtube.com/watch?v=uFatMR1rXqU&t. The on-demand reporting tool can be accessed at: https://crsp.louisville.edu/shiny/handhygiene. This data collection and automated analytics engine provides an easy-to-use environment for evaluating hand hygiene data; it also provides rapid feedback to healthcare workers. By reducing some of the data management workload required of the infection preventionist, more focused interventions may be instituted to increase global hand hygiene rates and reduce infection. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Touch, tools, and telepresence: embodiment in mediated environments
NASA Astrophysics Data System (ADS)
IJsselsteijn, Wijnand A.; Haans, Antal
2008-02-01
We tend to think of our body image as fixed. However, human brains appear to support highly negotiable body images. As a result, our brains show a remarkable flexibility in incorporating non-biological elements (tools and technologies) into the body image, provided reliable, real-time intersensory correlations can be established, and artifacts can be plausibly mapped onto an already existing body image representation. A particularly interesting and relevant phenomenon in this respect is a recently reported crossmodal perceptual illusion known as the rubber-hand illusion (RHI). When a person is watching a fake hand being stroked and tapped in precise synchrony with his or her own unseen hand, the person will, within a few minutes of stimulation, start experiencing the fake hand as an actual part of his or her own body. In this paper, we will review recent work on the RHI and argue that such experimental transformation of the intimate ties between body morphology, proprioception and self-perception enhances our fundamental understanding of the phenomenal experience of self. Moreover, it will enable us to significantly improve the design of interactive media, including the design of avatars in virtual environments and digital games, as well as a range of human-like telerobotic devices.
Grasping with mechanical intelligence. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ulrich, Nathan Thatcher
1988-01-01
Many robotic hands have been designed and a number have been built. Because of the difficulty of controlling and using complex hands, which usually have nine or more degrees of freedom, the simple one- or two-degree-of-freedom gripper is still the most common robotic end effector. A new category of device is presented: a medium-complexity end effector. With three to five degrees of freedom, such a tool is much easier to control and use, as well as more economical, compact and lightweight than complex hands. In order to increase the versatility, it was necessary to identify grasping primitives and to implement them in the mechanism. In addition, power and enveloping grasps are stressed over fingertip and precision grasps. The design is based upon analysis of object apprehension types, requisite characteristics for active sensing, and a determination of necessary environmental interactions. Contained are the general concepts necessary to the design of a medium-complexity end effector, an analysis of typical performance, and a computer simulation of a grasp planning algorithm specific to this type of mechanism. Finally, some details concerning the UPenn Hand-a tool designed for the research laboratory-are presented.
NASA Astrophysics Data System (ADS)
Van Gordon, M.; Van Gordon, S.; Min, A.; Sullivan, J.; Weiner, Z.; Tappan, G. G.
2017-12-01
Using support vector machine (SVM) learning and high-accuracy hand-classified maps, we have developed a publicly available land cover classification tool for the West African Sahel. Our classifier produces high-resolution and regionally calibrated land cover maps for the Sahel, representing a significant contribution to the data available for this region. Global land cover products are unreliable for the Sahel, and accurate land cover data for the region are sparse. To address this gap, the U.S. Geological Survey and the Regional Center for Agriculture, Hydrology and Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region via hand-classification of Landsat images. This method produces highly accurate maps, but the time and labor required constrain the spatial and temporal resolution of the data products. By using these hand-classified maps alongside SVM techniques, we successfully increase the resolution of the land cover maps by 1-2 orders of magnitude, from 2km-decadal resolution to 30m-annual resolution. These high-resolution regionally calibrated land cover datasets, along with the classifier we developed to produce them, lay the foundation for major advances in studies of land surface processes in the region. These datasets will provide more accurate inputs for food security modeling, hydrologic modeling, analyses of land cover change and climate change adaptation efforts. The land cover classification tool we have developed will be publicly available for use in creating additional West Africa land cover datasets with future remote sensing data and can be adapted for use in other parts of the world.
Gentilli, Sergio; Morgandoa, Andrea; Velardocchia, Mauro; Pessione, Silvia; Pizzorno, Chiara
2007-01-01
The authors present their prototype of a system for electrical conduction in direct contact with laparoscopic tools, devised, designed and produced by them at the Politecnico di Torino Department of Mechanical Engineering. The system consists of a two-sided plate, one side being a non-conducting adhesive surface to stick to the surgical glove and the other a thin, flexible conductor shell. The authors used the instrument with surgical tools with metal handles during 4 laparoscopic procedures. Nowadays the method commonly used to electrify laparoscopic tools is by using a wire plugged to a fixed conducting point on the instrument. The prototype described here was devised and produced to avoid some of the awkwardness encountered during the numerous manoeuvres required to connect and disconnect the wire at the time of surgical intervention. This device permits the direct transfer (by contact) of electrical energy from the wire to surgical tools. The advantage is greater rapidity in changing surgical tools, with the possibility of immediately obtaining an electrified instrument in the surgeon's hand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, G.
1984-09-01
Two classifications of fishing jobs are discussed: open hole and cased hole. When there is no casing in the area of the fish, it is called open hole fishing. When the fish is inside the casing, it is called cased hole fishing. The article lists various things that can become a fish-stuck drill pipe, including: broken drill pipe, drill collars, bit, bit cones, hand tools dropped in the well, sanded up or mud stuck tubing, packers become stuck, and much more. It is suggested that on a fishing job, all parties involved should cooperate with each other, and that fishingmore » tool people obtain all the information concerning the well. That way they can select the right tools and methods to clean out the well as quickly as possible.« less
Interactive 3D Models and Simulations for Nuclear Security Education, Training, and Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, David K.; Dickens, Brian Scott; Heimer, Donovan J.
By providing examples of products that have been produced in the past, it is the hopes of the authors that the audience will have a more thorough understanding of 3D modeling tools, potential applications, and capabilities that they can provide. Truly the applications and capabilities of these types of tools are only limited by one’s imagination. The future of three-dimensional models lies in the expansion into the world of virtual reality where one will experience a fully immersive first-person environment. The use of headsets and hand tools will allow students and instructors to have a more thorough spatial understanding ofmore » facilities and scenarios that they will encounter in the real world.« less
Persistence of touch DNA on burglary-related tools.
Pfeifer, Céline M; Wiegand, Peter
2017-07-01
Experts are increasingly concerned by issues regarding the activity level of DNA stains. A case from our burglary-related casework pointed out the need for experiments regarding the persistence of DNA when more than one person touched a tool handle. We performed short tandem repeat (STR) analyses for three groups of tools: (1) personal and mock owned tools; (2) tools, which were first "owned" by a first user and then handled in a burglary action by a second user; and (3) tools, which were first owned by a first user and then handled in a moderate action. At least three types of tool handles were included in each of the groups. Every second user handled the tool with and without gloves. In total, 234 samples were analyzed regarding profile completeness of first and second user as well as properties like detectable major profile or mixture attributes. When second users simulated a burglary by using a tool bare handed, we could not detect the first user as major component on their handles but attribute him to the stain in 1/40 cases. When second users broke up the burglary setup using gloves, the first user matched the DNA handle profile in 37% of the cases. Moderate use of mock borrowed tools demonstrated a material-dependent persistence. In total, we observed that the outcome depends mainly on the nature of contact, the handle material, and the user-specific characteristics. This study intends to supplement present knowledge about persistence of touch DNA with a special emphasis on burglary-related cases with two consecutive users and to act as experimental data for an evaluation of the relevance of alleged hypotheses, when such is needed in a court hearing.
A survey on annotation tools for the biomedical literature.
Neves, Mariana; Leser, Ulf
2014-03-01
New approaches to biomedical text mining crucially depend on the existence of comprehensive annotated corpora. Such corpora, commonly called gold standards, are important for learning patterns or models during the training phase, for evaluating and comparing the performance of algorithms and also for better understanding the information sought for by means of examples. Gold standards depend on human understanding and manual annotation of natural language text. This process is very time-consuming and expensive because it requires high intellectual effort from domain experts. Accordingly, the lack of gold standards is considered as one of the main bottlenecks for developing novel text mining methods. This situation led the development of tools that support humans in annotating texts. Such tools should be intuitive to use, should support a range of different input formats, should include visualization of annotated texts and should generate an easy-to-parse output format. Today, a range of tools which implement some of these functionalities are available. In this survey, we present a comprehensive survey of tools for supporting annotation of biomedical texts. Altogether, we considered almost 30 tools, 13 of which were selected for an in-depth comparison. The comparison was performed using predefined criteria and was accompanied by hands-on experiences whenever possible. Our survey shows that current tools can support many of the tasks in biomedical text annotation in a satisfying manner, but also that no tool can be considered as a true comprehensive solution.
Humle, Tatyana
2016-07-01
The Japanese approach to science has permitted theoretical leaps in our understanding of culture in non-human animals and challenged human uniqueness, as it is not embedded in the Western traditional dualisms of human/animal and nature/culture. This paper highlights the value of an interdisciplinary approach and combining methodological approaches in exploring putative cultural variation among chimpanzees. I focus particularly on driver ants (Dorylus sp.) and oil palm (Elaeis guineensis) consumption among the Bossou and Nimba chimpanzees, in south-eastern Guinea at the border with Côte d'Ivoire and Liberia, and hand use across different tool use tasks commonly witnessed at Bossou, i.e. ant-dipping, nut-cracking, pestle-pounding, and algae-scooping. Observed variation in resource use was addressed across differing scales exploring both within- and between-community differences. Our findings have highlighted a tight interplay between ecology, social dynamics and culture, and between social and individual learning and maternal contribution to tool-use acquisition. Exploration of hand use by chimpanzees revealed no evidence for individual-level hand or community-level task specialisation. However, more complex types of tool use such as nut-cracking showed distinct lateralization, while the equivalent of a haptic manual action revealed a strong right hand bias. The data also suggest an overall population tendency for a right hand preference. As well as describing these sites' key contributions to our understanding of chimpanzees and to challenging our perceptions of human uniqueness, this paper also highlights the critical condition and high levels of threats facing this emblematic chimpanzee population, and several questions that remain to be addressed. In the spirit of the Japanese approach to science, I recommend that an interdisciplinary and collaborative research approach can best help us to challenge perceptions of human uniqueness and to further our understanding of chimpanzee behavioural and social flexibility in the face of local social, ecological and anthropogenic changes and threats to their survival.
NASA Astrophysics Data System (ADS)
Thébault, Cédric; Doyen, Didier; Routhier, Pierre; Borel, Thierry
2013-03-01
To ensure an immersive, yet comfortable experience, significant work is required during post-production to adapt the stereoscopic 3D (S3D) content to the targeted display and its environment. On the one hand, the content needs to be reconverged using horizontal image translation (HIT) so as to harmonize the depth across the shots. On the other hand, to prevent edge violation, specific re-convergence is required and depending on the viewing conditions floating windows need to be positioned. In order to simplify this time-consuming work we propose a depth grading tool that automatically adapts S3D content to digital cinema or home viewing environments. Based on a disparity map, a stereo point of interest in each shot is automatically evaluated. This point of interest is used for depth matching, i.e. to position the objects of interest of consecutive shots in a same plane so as to reduce visual fatigue. The tool adapts the re-convergence to avoid edge-violation, hyper-convergence and hyper-divergence. Floating windows are also automatically positioned. The method has been tested on various types of S3D content, and the results have been validated by a stereographer.
Zielinski, Ingar Marie; Steenbergen, Bert; Schmidt, Anna; Klingels, Katrijn; Simon Martinez, Cristina; de Water, Pascal; Hoare, Brian
2018-03-23
To introduce the Windmill-task, a new objective assessment tool to quantify the presence of mirror movements (MMs) in children with unilateral cerebral palsy (UCP), which are typically assessed with the observation-based Woods and Teuber scale (W&T). Prospective, observational, cohort pilot study. Children's hospital. Prospective cohort of children (N=23) with UCP (age range, 6-15y, mean age, 10.5±2.7y). Not applicable. The concurrent validity of the Windmill-task is assessed, and the sensitivity and specificity for MM detection are compared between both assessments. To assess the concurrent validity, Windmill-task data are compared with W&T data using Spearman rank correlations (ρ) for 2 conditions: affected hand moving vs less affected hand moving. Sensitivity and specificity are compared by measuring the mean percentage of children being assessed inconsistently across both assessments. Outcomes of both assessments correlated significantly (affected hand moving: ρ=.520; P=.005; less affected hand moving: ρ=.488; P=.009). However, many children displayed MMs on the Windmill-task, but not on the W&T (sensitivity: affected hand moving: 27.5%; less affected hand moving: 40.6%). Only 2 children displayed MMs on the W&T, but not on the Windmill-task (specificity: affected hand moving: 2.9%; less affected hand moving: 1.4%). The Windmill-task seems to be a valid tool to assess MMs in children with UCP and has an additional advantage of sensitivity to detect MMs. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
van de Ven-Stevens, Lucelle A W; Graff, Maud J L; Peters, Marlijn A M; van der Linde, Harmen; Geurts, Alexander C H
2015-05-01
In patient-centered practice, instruments need to assess outcomes that are meaningful to patients with hand conditions. It is unclear which assessment tools address these subjective perspectives best. The aim of this study was to establish the construct validity of the Canadian Occupational Performance Measure (COPM) in relation to the Disabilities of Arm, Shoulder, and Hand (DASH) questionnaire and the Michigan Hand Outcomes Questionnaire (MHQ) in people with hand conditions. It was hypothesized that COPM scores would correlate with DASH and MHQ total scores only to a moderate degree and that the COPM, DASH questionnaire, and MHQ would all correlate weakly with measures of hand impairments. This was a validation study. The COPM, DASH questionnaire, and MHQ were scored, and then hand impairments were measured (pain [numerical rating scale], active range of motion [goniometer], grip strength [dynamometer], and pinch grip strength [pinch meter]). People who had received postsurgery rehabilitation for flexor tendon injuries, extensor tendon injuries, or Dupuytren disease were eligible. Seventy-two participants were included. For all diagnosis groups, the Pearson coefficient of correlation between the DASH questionnaire and the MHQ was higher than .60, whereas the correlation between the performance scale of the COPM and either the DASH questionnaire or the MHQ was lower than .51. Correlations of these assessment tools with measures of hand impairments were lower than .46. The small sample sizes may limit the generalization of the results. The results supported the hypotheses and, thus, the construct validity of the COPM after surgery in people with hand conditions. © 2015 American Physical Therapy Association.
American Society for Surgery of the Hand
... Member Benefits Member News Member Listservs Job Listings Ethics & Professionalism Get Involved Volunteer Engagement Platform Local Journal ... Metrics News ICD-10 Tools Newsletters from ASSH Ethics & Professionalism Product Vendor List Educational Resources Courses 2018 ...
Teacher Evaluation and the 'Hand of History.'
ERIC Educational Resources Information Center
Wood, Carolyn J.; Pohland, Paul A.
1983-01-01
Analysis of teacher evaluation instruments from 65 New Mexico school districts, concurring with nationwide studies, suggests that teacher evaluation is meant more as a tool for administrative decisions than for improving teaching. (JW)
From Evidence Based Medicine to Medicine Based Evidence.
Horwitz, Ralph I; Hayes-Conroy, Allison; Caricchio, Roberto; Singer, Burton H
2017-11-01
Evidence based medicine, using randomized controlled trials and meta-analyses as the major tools and sources of evidence about average results for heterogeneous groups of patients, developed as a reaction against poorly designed observational treatment research and physician reliance on personal experience with other patients as a guide to decision-making about a patient at hand. However, these tools do not answer the clinician's question: "Will a given therapeutic regimen help my patient at a given point in her/his clinical course?" We introduce fine-grained profiling of the patient at hand, accompanied by comparative evidence of responses from approximate matches to this patient on whom a contemplated treatment has/has not been administered. This represents medicine based evidence that is tuned to decision-making for the particular patient. Copyright © 2017 Elsevier Inc. All rights reserved.
New tools in cybertherapy: the VEPSY web site.
Castelnuovo, Gianluca; Buselli, Claudio; De Ferrari, Roberta; Gaggioli, Andrea; Mantovani, Fabrizia; Molinari, Enrico; Villamira, Marco; Riva, Giuseppe
2004-01-01
In the last years the rapid development of the Internet and new communication technologies has had a great impact on psychology and psychotherapy. Psychotherapists seem to rely with more and more interest on the new technological tools such as videophone, audio and video chat, e-mail, SMS and the new Instant Messaging Tools (IMs). All these technologies outline a stimulating as well as complex scenario: in order to effectively exploit their potential, it is important to study which is the possible role played by the Internet-based tools inside a psychotherapeutic iter. Could the technology substitute the health care practitioners or are these tools only a resource in addition to the traditional ones in the therapist's hand? The major aim of this chapter is to provide a framework for the integration of old and new tools in mental health care. Different theoretical positions about the possible role played by e-therapy are reported showing the possible changes that psychotherapy will necessarily face in a cyber setting. The VEPSY website, an integration of different Internet-based tools developed within the VEPSY UPDATED Project, is described as an example of clinical application matching between old (and functional) practices with new (and promising) media for the treatment of different mental disorders. A rationale about the possible scenarios for the use of the VEPSY website in the clinical process is provided.
NASA Astrophysics Data System (ADS)
Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.
2013-10-01
The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.
NASA Astrophysics Data System (ADS)
Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.
2014-11-01
The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.
Ambrosini, Ettore; Costantini, Marcello
2017-02-01
Viewed objects have been shown to afford suitable actions, even in the absence of any intention to act. However, little is known as to whether gaze behavior (i.e., the way we simply look at objects) is sensitive to action afforded by the seen object and how our actual motor possibilities affect this behavior. We recorded participants' eye movements during the observation of tools, graspable and ungraspable objects, while their hands were either freely resting on the table or tied behind their back. The effects of the observed object and hand posture on gaze behavior were measured by comparing the actual fixation distribution with that predicted by 2 widely supported models of visual attention, namely the Graph-Based Visual Saliency and the Adaptive Whitening Salience models. Results showed that saliency models did not accurately predict participants' fixation distributions for tools. Indeed, participants mostly fixated the action-related, functional part of the tools, regardless of its visual saliency. Critically, the restriction of the participants' action possibility led to a significant reduction of this effect and significantly improved the model prediction of the participants' gaze behavior. We suggest, first, that action-relevant object information at least in part guides gaze behavior. Second, postural information interacts with visual information to the generation of priority maps of fixation behavior. We support the view that the kind of information we access from the environment is constrained by our readiness to act. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Tool for analyzing the vulnerability of buildings to flooding: the case of Switzerland
NASA Astrophysics Data System (ADS)
Choffet, Marc; Bianchi, Renzo; Jaboyedoff, Michel; Kölz, Ehrfried; Lateltin, Olivier; Leroi, Eric; Mayis, Arnaud
2010-05-01
Whatever the way used to protect property exposed to flood, there exists a residual risk. That is what feedbacks of past flooding show. This residual risk is on one hand linked with the possibility that the protection measures may fail or may not work as intended. The residual risk is on the other hand linked with the possibility that the flood exceeds the chosen level of protection.In many European countries, governments and insurance companies are thinking in terms of vulnerability reduction. This publication will present a new tool to evaluate the vulnerability of buildings in a context of flooding. This tool is developed by the project "Analysis of the vulnerability of buildings to flooding" which is funded by the Foundation for Prevention of Cantonal insurances, Switzerland. It is composed by three modules and it aims to provide a method for reducing the vulnerability of buildings to flooding. The first two modules allow identifying all the elements composing the building and listing it. The third module is dedicated to the choice of efficient risk reducing measures on the basis of cost-benefit analyses. The diagnostic tool for different parts of the building is being developed to allow real estate appraisers, insurance companies and homeowners rapidly assess the vulnerability of buildings in flood prone areas. The tool works with by several databases that have been selected from the collection and analysis of data, information, standards and feedback from risk management, hydrology, architecture, construction, materials engineering, insurance, or economy of construction. A method for determining the local hazard is also proposed, to determine the height of potential floods threatening a building, based on a back analysis of Swiss hazard maps. To calibrate the model, seven cantonal insurance institutions participate in the study by providing data, such as the the amount of damage in flooded areas. The poster will present some results from the development of the tool, such as the amount of damages to buildings and the possibility of analysis offered by the tool. Furthermore, analysis of data from the insurance company led to the emergence of trends in costs of damage due to flooding. Some graphics will be presented in the poster to illustrate the tool design. It will be shown that the tool allow for a census of buildings and the awareness of its vulnerability to flooding. A database development explanation concerning the remediation cost measures and the damage costs are also proposed. Simple and innovative remedial measures could be shown in the poster. By the help of some examples it is shown that the tool allows for an investigation of some interesting perspectives in the development of insurance strategies for building stocks in flood prone areas.
Pineo, Helen; Glonti, Ketevan; Rutter, Harry; Zimmermann, Nicole; Wilkinson, Paul; Davies, Michael
2017-01-13
There is wide agreement that there is a lack of attention to health in municipal environmental policy-making, such as urban planning and regeneration. Explanations for this include differing professional norms between health and urban environment professionals, system complexity and limited evidence for causality between attributes of the built environment and health outcomes. Data from urban health indicator (UHI) tools are potentially a valuable form of evidence for local government policy and decision-makers. Although many UHI tools have been specifically developed to inform policy, there is poor understanding of how they are used. This study aims to identify the nature and characteristics of UHI tools and their use by municipal built environment policy and decision-makers. Health and social sciences databases (ASSIA, Campbell Library, EMBASE, MEDLINE, Scopus, Social Policy and Practice and Web of Science Core Collection) will be searched for studies using UHI tools alongside hand-searching of key journals and citation searches of included studies. Advanced searches of practitioner websites and Google will also be used to find grey literature. Search results will be screened for UHI tools, and for studies which report on or evaluate the use of such tools. Data about UHI tools will be extracted to compile a census and taxonomy of existing tools based on their specific characteristics and purpose. In addition, qualitative and quantitative studies about the use of these tools will be appraised using quality appraisal tools produced by the UK National Institute for Health and Care Excellence (NICE) and synthesised in order to gain insight into the perceptions, value and use of UHI tools in the municipal built environment policy and decision-making process. This review is not registered with PROSPERO. This systematic review focuses specifically on UHI tools that assess the physical environment's impact on health (such as transport, housing, air quality and greenspace). This study will help indicator producers understand whether this form of evidence is of value to built environment policy and decision-makers and how such tools should be tailored for this audience. N/A.
Chapter 08: Comments on, and additional information for, wood identification
Alex C. Wiedenhoeft
2011-01-01
This manual has described the theory of identification (Chapter 1), the botanical basis of wood structure (Chapter 2), the use of a hand lens (Chapter 3), how to use cutting tools to prepare wood for observation with a lens (Chapter 4), and the characters used in hand lens wood identification (Chapter 5) before leading you through an identification key (Chapter 6) and...
ERIC Educational Resources Information Center
Wallace, Carolyn S.
2004-01-01
A previous study (Wallace, Yang, Hand, & Hohenshell, 2001) indicated that seventh-grade life science students using a learning tool known as the Science Writing Heuristic (SWH) performed significantly better on conceptual test questions than did a control group. In the present study, the researcher studied more deeply how students utilized a…
ERIC Educational Resources Information Center
World Education, Inc., New York, NY.
This curriculum handbook uses a hands-on approach to teaching basic skills and language for the U.S. workplace to students who are not familiar with many common tools and procedures. Although designed for Southeast Asian refugees, the curriculum can be adapted for use with other groups, including older adults or young people. The handbook consists…
ERIC Educational Resources Information Center
Powell, Loreen M.; Wimmer, Hayden
2015-01-01
Computer programming is challenging to teach and difficult for students to learn. Instructors have searched for ways to improve student learning in programming courses. In an attempt to foster hands-on learning and to increase student learning outcomes in a programming course, the authors conducted an exploratory study to examine student created…
Evaluating an immersive virtual environment prototyping and simulation system
NASA Astrophysics Data System (ADS)
Nemire, Kenneth
1997-05-01
An immersive virtual environment (IVE) modeling and simulation tool is being developed for designing advanced weapon and training systems. One unique feature of the tool is that the design, and not just visualization of the design is accomplished with the IVE tool. Acceptance of IVE tools requires comparisons with current commercial applications. In this pilot study, expert users of a popular desktop 3D graphics application performed identical modeling and simulation tasks using both the desktop and IVE applications. The IVE tool consisted of a head-mounted display, 3D spatialized sound, spatial trackers on head and hands, instrumented gloves, and a simulated speech recognition system. The results are preliminary because performance from only four users has been examined. When using the IVE system, users completed the tasks to criteria in less time than when using the desktop application. Subjective ratings of the visual displays in each system were similar. Ratings for the desktop controls were higher than for the IVE controls. Ratings of immersion and user enjoyment were higher for the IVE than for the desktop application. These results are particular remarkable because participants had used the desktop application regularly for three to five years and the prototype IVE tool for only three to six hours.
Adamovich, S.V.; August, K.; Merians, A.; Tunik, E.
2017-01-01
Purpose Emerging evidence shows that interactive virtual environments (VEs) may be a promising tool for studying sensorimotor processes and for rehabilitation. However, the potential of VEs to recruit action observation-execution neural networks is largely unknown. For the first time, a functional MRI-compatible virtual reality system (VR) has been developed to provide a window into studying brain-behavior interactions. This system is capable of measuring the complex span of hand-finger movements and simultaneously streaming this kinematic data to control the motion of representations of human hands in virtual reality. Methods In a blocked fMRI design, thirteen healthy subjects observed, with the intent to imitate (OTI), finger sequences performed by the virtual hand avatar seen in 1st person perspective and animated by pre-recorded kinematic data. Following this, subjects imitated the observed sequence while viewing the virtual hand avatar animated by their own movement in real-time. These blocks were interleaved with rest periods during which subjects viewed static virtual hand avatars and control trials in which the avatars were replaced with moving non-anthropomorphic objects. Results We show three main findings. First, both observation with intent to imitate and imitation with real-time virtual avatar feedback, were associated with activation in a distributed frontoparietal network typically recruited for observation and execution of real-world actions. Second, we noted a time-variant increase in activation in the left insular cortex for observation with intent to imitate actions performed by the virtual avatar. Third, imitation with virtual avatar feedback (relative to the control condition) was associated with a localized recruitment of the angular gyrus, precuneus, and extrastriate body area, regions which are (along with insular cortex) associated with the sense of agency. Conclusions Our data suggest that the virtual hand avatars may have served as disembodied training tools in the observation condition and as embodied “extensions” of the subject’s own body (pseudo-tools) in the imitation. These data advance our understanding of the brain-behavior interactions when performing actions in VE and have implications in the development of observation- and imitation-based VR rehabilitation paradigms. PMID:19531876
EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
..., tubes, pipes, hoses, tires, rods, containers, handles, belts), pallets, wood packing boxes, cases, other..., wrenches, hand tools, flexible tubing, engines, parts of engines, water boilers, control panels, control...
ERIC Educational Resources Information Center
Sarquis, Jerry L.; Sarquis, Arlyne M.
2005-01-01
A number of chemical concepts can be easily illustrated in a more friendly way to children by using toys as teaching tools in the classroom. Some of the examples illustrated are shrinking toys, drinking birds and hand boiler.
Transforming Lessons with Technology
ERIC Educational Resources Information Center
Currie, Brad
2016-01-01
Using a fictitious learning environment, the author demonstrates a variety of technological tools that teachers can infuse into their classrooms. Come away with some innovative, practical methods to help students show what they know about the topic at hand.
WE-AB-206-00: Diagnostic QA/QC Hands-On Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Somatic and movement inductions phantom limb in non-amputees
NASA Astrophysics Data System (ADS)
Casas, D. M.; Gentiletti, G. G.; Braidot, A. A.
2016-04-01
The illusion of the mirror box is a tool for phantom limb pain treatment; this article proposes the induction of phantom limb syndrome on non-amputees upper limb, with a neurological trick of the mirror box. With two study situations: a) Somatic Induction is a test of the literature reports qualitatively, and novel proposal b) Motor Induction, which is an objective report by recording surface EEG. There are 3 cases proposed for Motor illusion, for which grasped movement is used: 1) Control: movement is made, 2) illusion: the mirror box is used, and 3) Imagination: no movement is executed; the subject only imagines its execution. Three different tasks are registered for each one of them (left hand, right hand, and both of them). In 64% of the subjects for somatic experience, a clear response to the illusion was observed. In the experience of motor illusion, cortical activation is detected in both hemispheres of the primary motor cortex during the illusion, where the hidden hand remains motionless. These preliminary findings in phantom limb on non-amputees can be a tool for neuro-rehabilitation and neuro-prosthesis control training.
DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D.; Coughlin, Jeffrey
2009-05-05
The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manuallymore » or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. Extensive testing of tooling operation was performed in the DWPF manipulator repair shop. This testing allowed the operators to gain confidence before the equipment was exposed to radioactive contamination. The testing also led to multiple design improvements. On July 17 and 29, 2008 the Remote Gasket Replacement Tooling was successfully demonstrated in the REDC at the DWPF of The Savannah River Site.« less
Advanced surface design for logistics analysis
NASA Astrophysics Data System (ADS)
Brown, Tim R.; Hansen, Scott D.
The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.
Maintenance manager's manual for small transit agencies. Special report 1985-1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, W.
1988-03-01
This publication contains information to assist operators of transit agencies providing public transportation in rural and smaller urban areas to better manage their vehicle maintenance programs. The report includes discussions of maintenance management, maintenance programs preventive maintenance, recordkeeping, selection of type of maintenance operation, in-house maintenance, and maintenance practices. Also included are appendixes giving supplementary information about tire loads; lubrication oil; mechanic hand tools; shop tools; mechanic aptitude tests; technical training resources; maintenance management training resources; and lists of manufacturers of air-conditioning systems, wheelchair lifts and wheelchair ramps.
Garbarini, Francesca; Fossataro, Carlotta; Berti, Anna; Gindri, Patrizia; Romano, Daniele; Pia, Lorenzo; della Gatta, Francesco; Maravita, Angelo; Neppi-Modona, Marco
2015-04-01
Previous evidence has shown that active tool-use can reshape one's own body schema, extend peripersonal space and modulate the representation of related body parts. Here we investigate the effect of tool-use training on length representation of the contralesional forearm in brain-damaged hemiplegic patients who manifested a pathological embodiment of other people body parts. Four patients and 20 aged-matched healthy-controls were asked to estimate the mid-point of their contralesional forearm before and after 15 min of tool-use training (i.e. retrieving targets with a garbage plier). In the case of patients, training was always performed by the examiner's (alien) arm acting in two different positions, aligned (where the pathological embodiment occurs; E+ condition) or misaligned (where the pathological embodiment does not occur; E- condition) relative to the patients' shoulder. Healthy controls performed tool-use training either with their own arm (action condition) or observing the examiner's arm performing the task (observation condition), handling (observation with-tool condition) or not (observation without-tool condition) a similar tool. Crucially, in the E+ condition, when patients were convinced to perform the tool-use training with their own paralyzed arm, a significant overestimation effect was found (as in the Action condition with normal subjects): patients mislocated their forearm midpoint more proximally to the hand in the post- than in the pre-training phase. Conversely, in the E- condition, they did not show any overestimation effect, similarly to healthy subjects in the observation condition (neither in the with-tool nor in the without-tool condition significant overestimation effects were found). These findings show the existence of a tight link between spatial, motor and bodily representations and provide strong evidence that a pathological sense of body ownership can extend to intentional motor processes and modulate the sensory map of action-related body parts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Web-based applications for building, managing and analysing kinetic models of biological systems.
Lee, Dong-Yup; Saha, Rajib; Yusufi, Faraaz Noor Khan; Park, Wonjun; Karimi, Iftekhar A
2009-01-01
Mathematical modelling and computational analysis play an essential role in improving our capability to elucidate the functions and characteristics of complex biological systems such as metabolic, regulatory and cell signalling pathways. The modelling and concomitant simulation render it possible to predict the cellular behaviour of systems under various genetically and/or environmentally perturbed conditions. This motivates systems biologists/bioengineers/bioinformaticians to develop new tools and applications, allowing non-experts to easily conduct such modelling and analysis. However, among a multitude of systems biology tools developed to date, only a handful of projects have adopted a web-based approach to kinetic modelling. In this report, we evaluate the capabilities and characteristics of current web-based tools in systems biology and identify desirable features, limitations and bottlenecks for further improvements in terms of usability and functionality. A short discussion on software architecture issues involved in web-based applications and the approaches taken by existing tools is included for those interested in developing their own simulation applications.
Smartphones and the plastic surgeon.
Al-Hadithy, Nada; Ghosh, Sudip
2013-06-01
Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Can Wireless Technology Enable New Diabetes Management Tools?
Hedtke, Paul A.
2008-01-01
Mobile computing and communications technology embodied in the modern cell phone device can be employed to improve the lives of diabetes patients by giving them better tools for self-management. Several companies are working on the development of diabetes management tools that leverage the ubiquitous cell phone to bring self-management tools to the hand of the diabetes patient. Integration of blood glucose monitoring (BGM) technology with the cell phone platform adds a level of convenience for the person with diabetes, but, more importantly, allows BGM data to be automatically captured, logged, and processed in near real time in order to provide the diabetes patient with assistance in managing their blood glucose levels. Other automatic measurements can estimate physical activity, and information regarding medication events and food intake can be captured and analyzed in order to provide the diabetes patient with continual assistance in managing their therapy and behaviors in order to improve glycemic control. The path to realization of such solutions is not, however, without obstacles. PMID:19885187
Can wireless technology enable new diabetes management tools?
Hedtke, Paul A
2008-01-01
Mobile computing and communications technology embodied in the modern cell phone device can be employed to improve the lives of diabetes patients by giving them better tools for self-management. Several companies are working on the development of diabetes management tools that leverage the ubiquitous cell phone to bring self-management tools to the hand of the diabetes patient. Integration of blood glucose monitoring (BGM) technology with the cell phone platform adds a level of convenience for the person with diabetes, but, more importantly, allows BGM data to be automatically captured, logged, and processed in near real time in order to provide the diabetes patient with assistance in managing their blood glucose levels. Other automatic measurements can estimate physical activity, and information regarding medication events and food intake can be captured and analyzed in order to provide the diabetes patient with continual assistance in managing their therapy and behaviors in order to improve glycemic control. The path to realization of such solutions is not, however, without obstacles.
Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.
2013-01-01
The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392
Using a formal requirements management tool for system engineering: first results at ESO
NASA Astrophysics Data System (ADS)
Zamparelli, Michele
2006-06-01
The attention to proper requirement analysis and maintenance is growing in modern astronomical undertakings. The increasing degree of complexity that current and future generations of projects have reached requires substantial system engineering efforts and the usage of all available technology to keep project development under control. One such technology is a tool which helps managing relationships between deliverables at various development stages, and across functional subsystems and disciplines as different as software, mechanics, optics and electronics. The immediate benefits are traceability and the possibility to do impact analysis. An industrially proven tool for requirements management is presented together with the first results across some projects at ESO and a cost/benefit analysis of its usage. Experience gathered so far shows that the extensibility and configurability of the tool from one hand, and integration with common documentation formats and standards on the other, make it appear as a promising solution for even small scale system development.
Computer Controlled Optical Surfacing With Orbital Tool Motion
NASA Astrophysics Data System (ADS)
Jones, Robert A.
1985-10-01
Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by grinding and polishing, using small laps with orbital tool motion. However, hand correction is a time consuming process unsuitable for large optical elements. Itek has developed Computer Controlled Optical Surfacing (CCOS) for fabricating such aspheric optics. Automated equipment moves a nonrotating orbiting tool slowly over the workpiece surface. The process corrects low frequency surface errors by figuring. The velocity of the tool assembly over the workpiece surface is purposely varied. Since the amount of material removal is proportional to the polishing or grinding time, accurate control over material removal is achieved. The removal of middle and high frequency surface errors is accomplished by pad smoothing. For a soft pad material, the pad will compress to fit the workpiece surface producing greater pressure and more removal at the surface high areas. A harder pad will ride on only the high regions resulting in removal only for those locations.
Education and Outreach with the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Eisenhamer, B.; Raddick, M. J.; Mattson, B. J.; Harris, J.
2012-01-01
The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. Many future missions will also be incorporated into the VAO tools when they launch. The Education and Public Outreach (E/PO) program for the VAO is led by the Space Telescope Science Institute in collaboration with the HEASARC E/PO program and Johns Hopkins University. VAO E/PO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public, formal education, and informal education communities. Our E/PO efforts will be structured to provide uniform access to VAO information, enabling educational opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that many VO programs have built powerful tools for E/PO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. We are building partnerships with Microsoft, Zooniverse, and NASA's Night Sky Network to leverage the communities and tools that already exist to meet the needs of our audiences. Our formal education program is standards-based and aims to give teachers the tools to use real astronomical data to teach the STEM subjects. To determine which tools the VAO will incorporate into the formal education program, needs assessments will be conducted with educators across the U.S.
Critical brain regions for tool-related and imitative actions: a componential analysis
Shapiro, Allison D.; Coslett, H. Branch
2014-01-01
Numerous functional neuroimaging studies suggest that widespread bilateral parietal, temporal, and frontal regions are involved in tool-related and pantomimed gesture performance, but the role of these regions in specific aspects of gestural tasks remains unclear. In the largest prospective study of apraxia-related lesions to date, we performed voxel-based lesion–symptom mapping with data from 71 left hemisphere stroke participants to assess the critical neural substrates of three types of actions: gestures produced in response to viewed tools, imitation of tool-specific gestures demonstrated by the examiner, and imitation of meaningless gestures. Thus, two of the three gesture types were tool-related, and two of the three were imitative, enabling pairwise comparisons designed to highlight commonalities and differences. Gestures were scored separately for postural (hand/arm positioning) and kinematic (amplitude/timing) accuracy. Lesioned voxels in the left posterior temporal gyrus were significantly associated with lower scores on the posture component for both of the tool-related gesture tasks. Poor performance on the kinematic component of all three gesture tasks was significantly associated with lesions in left inferior parietal and frontal regions. These data enable us to propose a componential neuroanatomic model of action that delineates the specific components required for different gestural action tasks. Thus, visual posture information and kinematic capacities are differentially critical to the three types of actions studied here: the kinematic aspect is particularly critical for imitation of meaningless movement, capacity for tool-action posture representations are particularly necessary for pantomimed gestures to the sight of tools, and both capacities inform imitation of tool-related movements. These distinctions enable us to advance traditional accounts of apraxia. PMID:24776969
Critical brain regions for tool-related and imitative actions: a componential analysis.
Buxbaum, Laurel J; Shapiro, Allison D; Coslett, H Branch
2014-07-01
Numerous functional neuroimaging studies suggest that widespread bilateral parietal, temporal, and frontal regions are involved in tool-related and pantomimed gesture performance, but the role of these regions in specific aspects of gestural tasks remains unclear. In the largest prospective study of apraxia-related lesions to date, we performed voxel-based lesion-symptom mapping with data from 71 left hemisphere stroke participants to assess the critical neural substrates of three types of actions: gestures produced in response to viewed tools, imitation of tool-specific gestures demonstrated by the examiner, and imitation of meaningless gestures. Thus, two of the three gesture types were tool-related, and two of the three were imitative, enabling pairwise comparisons designed to highlight commonalities and differences. Gestures were scored separately for postural (hand/arm positioning) and kinematic (amplitude/timing) accuracy. Lesioned voxels in the left posterior temporal gyrus were significantly associated with lower scores on the posture component for both of the tool-related gesture tasks. Poor performance on the kinematic component of all three gesture tasks was significantly associated with lesions in left inferior parietal and frontal regions. These data enable us to propose a componential neuroanatomic model of action that delineates the specific components required for different gestural action tasks. Thus, visual posture information and kinematic capacities are differentially critical to the three types of actions studied here: the kinematic aspect is particularly critical for imitation of meaningless movement, capacity for tool-action posture representations are particularly necessary for pantomimed gestures to the sight of tools, and both capacities inform imitation of tool-related movements. These distinctions enable us to advance traditional accounts of apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mancarella, Luana; Addimanda, Olga; Cavallari, Carlotta; Meliconi, Riccardo
2017-01-01
Ultrasound is one of the most promising candidates for the detection of inflammation and structural damage in hand osteoarthritis. To evaluate new advances of US as a diagnostic and prognostic tool in hand osteoarthritis assessment. We conducted a Medline on PubMed search for articles about "ultrasonography" and "hand OA" published between January 2012 and 15th April 2016, limiting our search to articles on human adults in English, excluding those involving systemic inflammatory diseases, visualization of joints other than hands, ultrasound guided injections and surgical procedures. Reviews, case reports, letters, position statements and ex vivo studies were excluded. Concordance between ultrasound and conventional radiography and magnetic resonance imaging was evaluated. Total 46 records were identified, and 16 articles were selected: four showed only ultrasound structural damage (osteophytes, cartilage pathology), six only ultrasound inflammatory variables (synovial thickness, effusion and power Doppler signal), six should considered both ultrasound structural and inflammatory features as well as erosions and two were epidemiological studies. Ultrasound synovitis and power Doppler signal were more frequent in erosive hand osteoarthritis. Followup studies found that ultrasound inflammatory features at baseline are independently associated with radiographic progression; power Doppler signal was the strongest predictor of structural damage. Ultrasound is a reliable tool for cartilage and osteophyte assessment (when performed with static images) and shows a good concordance with magnetic resonance imaging for osteophytes, erosions and synovitis. Ultrasound detected inflammation may predict radiographic progression and may be used in prospective clinical trials of hand osteoarthritis and in everyday clinical practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bringing the Virtual Astronomical Observatory to the Education Community
NASA Astrophysics Data System (ADS)
Lawton, B.; Eisenhamer, B.; Mattson, B. J.; Raddick, M. J.
2012-08-01
The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. The Education and Public Outreach (EPO) program for the VAO will be led by the Space Telescope Science Institute in collaboration with the High Energy Astrophysics Science Archive Research Center (HEASARC) EPO program and Johns Hopkins University. VAO EPO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public and education community. Our EPO efforts will be structured to provide uniform access to VAO information, enabling educational and research opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that the VO has already built many tools for EPO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. However, it is not enough to simply provide tools. Tools must meet the needs of the education community and address national education standards in order to be broadly utilized. To determine which tools the VAO will incorporate into the EPO program, needs assessments will be conducted with educators across the U.S.
A Comprehensive Look at Polypharmacy and Medication Screening Tools for the Older Cancer Patient
DeGregory, Kathlene A.; Morris, Amy L.; Ramsdale, Erika E.
2016-01-01
Inappropriate medication use and polypharmacy are extremely common among older adults. Numerous studies have discussed the importance of a comprehensive medication assessment in the general geriatric population. However, only a handful of studies have evaluated inappropriate medication use in the geriatric oncology patient. Almost a dozen medication screening tools exist for the older adult. Each available tool has the potential to improve aspects of the care of older cancer patients, but no single tool has been developed for this population. We extensively reviewed the literature (MEDLINE, PubMed) to evaluate and summarize the most relevant medication screening tools for older patients with cancer. Findings of this review support the use of several screening tools concurrently for the elderly patient with cancer. A deprescribing tool should be developed and included in a comprehensive geriatric oncology assessment. Finally, prospective studies are needed to evaluate such a tool to determine its feasibility and impact in older patients with cancer. Implications for Practice: The prevalence of polypharmacy increases with advancing age. Older adults are more susceptible to adverse effects of medications. “Prescribing cascades” are common, whereas “deprescribing” remains uncommon; thus, older patients tend to accumulate medications over time. Older patients with cancer are at high risk for adverse drug events, in part because of the complexity and intensity of cancer treatment. Additionally, a cancer diagnosis often alters assessments of life expectancy, clinical status, and competing risk. Screening for polypharmacy and potentially inappropriate medications could reduce the risk for adverse drug events, enhance quality of life, and reduce health care spending for older cancer patients. PMID:27151653
WISE Design for Knowledge Integration.
ERIC Educational Resources Information Center
Linn, Marcia C.; Clark, Douglas; Slotta, James D.
2003-01-01
Examines the implementation of Web-based Inquiry Science Environment (WISE), which can incorporate modeling tools and hand-held devices. Describes WISE design team practices, features of the WISE learning environment, and patterns of feature use in WISE library projects. (SOE)
Investigation of computational aeroacoustic tools for noise predictions of wind turbine aerofoils
NASA Astrophysics Data System (ADS)
Humpf, A.; Ferrer, E.; Munduate, X.
2007-07-01
In this work trailing edge noise levels of a research aerofoil have been computed and compared to aeroacoustic measurements using two different approaches. On the other hand, aerodynamic and aeroacoustic calculations were performed with the full Navier-Stokes CFD code Fluent [Fluent Inc 2005 Fluent 6.2 Users Guide, Lebanon, NH, USA] on the basis of a steady RANS simulation. Aerodynamic characteristics were computed by the aid of various turbulence models. By the combined usage of implemented broadband noise source models, it was tried to isolate and determine the trailing edge noise level. Throughout this work two methods of different computational cost have been tested and quantitative and qualitative results obtained. On the one hand, the semi-empirical noise prediction tool NAFNoise [Moriarty P 2005 NAFNoise User's Guide. Golden, Colorado, July. http://wind.nrel.gov/designcodes/ simulators/NAFNoise] was used to directly predict trailing edge noise by taking into consideration the nature of the experiments.
Kolar, Katja; Wischhusen, Hanna M; Müller, Konrad; Karlsson, Maria; Weber, Wilfried; Zurbriggen, Matias D
2015-12-30
Multicellular organisms depend on the exchange of information between specialized cells. This communication is often difficult to decipher in its native context, but synthetic biology provides tools to engineer well-defined systems that allow the convenient study and manipulation of intercellular communication networks. Here, we present the first mammalian synthetic network for reciprocal cell-cell communication to compute the border between a sender/receiver and a processing cell population. The two populations communicate via L-tryptophan and interleukin-4 to highlight the population border by the production of a fluorescent protein. The sharpness of that visualized edge can be adjusted by modulating key parameters of the network. We anticipate that this network will on the one hand be a useful tool to gain deeper insights into the mechanisms of tissue formation in nature and will on the other hand contribute to our ability to engineer artificial tissues.
Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R
2009-01-01
We report on the real-time creation of an application for hands-on neurophysiology in an advanced undergraduate teaching laboratory. Enabled by the rapid software development tools included in the Matlab technical computing environment (The Mathworks, Natick, MA), a team, consisting of a neurophysiology educator and a biophysicist trained as an electrical engineer, interfaced to a course of approximately 15 students from engineering and biology backgrounds. The result is the powerful freeware data acquisition and analysis environment, "g-PRIME." The software was developed from week to week in response to curriculum demands, and student feedback. The program evolved from a simple software oscilloscope, enabling RC circuit analysis, to a suite of tools supporting analysis of neuronal excitability and synaptic transmission analysis in invertebrate model systems. The program has subsequently expanded in application to university courses, research, and high school projects in the US and abroad as free courseware.
User-oriented evaluation of mechanical single-channel axial pipettes.
Sormunen, Erja; Nevala, Nina
2013-09-01
Hand tools should be designed so that they are comfortable to use, fit the hand and are user-oriented. Six different manual, single-channel axial pipettes were evaluated for such objective outcomes as muscular activity, wrist postures and efficiency, as well as for subjective outcomes concerning self-assessed features of pipette usability and musculoskeletal strain. Ten experienced laboratory employees volunteered for the study. The results showed that light and short pipettes with better tool comfort resulted in reduced muscular activity and perceived musculoskeletal strain when they were compared with a long and heavy pipette. There were no differences in the efficiency between the different pipettes. Combining both the objective and subjective measures enabled a broader evaluation of product usability. The results of this study can be used both in product development and as information on which to base the purchase of new pipettes for laboratory work. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head.
Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W; Wu, John Z
2017-12-01
Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods.
Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head
Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.
2016-01-01
Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7–12 Hz, the shoulder resonance was 7–9 Hz, and the back and neck resonances were 6–7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Relevance to industry Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods. PMID:29123326
Cerebral lateralization of praxis in right- and left-handedness: same pattern, different strength.
Vingerhoets, Guy; Acke, Frederic; Alderweireldt, Ann-Sofie; Nys, Jo; Vandemaele, Pieter; Achten, Eric
2012-04-01
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Copyright © 2011 Wiley Periodicals, Inc.
Doherty, S; Oram, S; Siriwardhana, C; Abas, M
2016-05-01
Trafficking is a global human rights violation with multiple and complex mental health consequences. Valid and reliable mental health assessment tools are needed to inform health-care provision. We reviewed mental health assessment tools used in research with men and women trafficked for sexual and labour exploitation. We searched nine electronic databases (PsycINFO, Ovid Medline, PubMed, Embase, Assia, the Web of Science, Global Health, Google Scholar, and Open Grey) and hand-searched the reference lists of relevant identified studies. Seven studies were included in this Review. Six of the studies screened for post-traumatic stress disorder, depression, and anxiety; one study screened for harmful use or abuse of alcohol and used a diagnostic tool to assess post-traumatic stress disorder, depression, and anxiety. Two studies included men in their sample population. Although the reported prevalence of mental health problems was high, little information was provided about the validity, reliability, and cultural appropriateness of assessment tools. Further research is needed to determine which assessment tools are culturally appropriate, valid, and reliable for trafficked people. Copyright © 2016 Elsevier Ltd. All rights reserved.
Collision detection and modeling of rigid and deformable objects in laparoscopic simulator
NASA Astrophysics Data System (ADS)
Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru
2015-03-01
Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.
Gagnier, Joel J; Derosier, Joseph M; Maratt, Joseph D; Hake, Mark E; Bagian, James P
2016-06-01
To develop, implement and test the effect of a handoff tool for orthopaedic trauma residents that reduces adverse events associated with the omission of critical information and the transfer of erroneous information. Components of this project included a literature review, resident surveys and observations, checklist development and refinement, implementation and evaluation of impact on adverse events through a chart review of a prospective cohort compared with a historical control group. Large teaching hospital. Findings of a literature review were presented to orthopaedic residents, epidemiologists, orthopaedic surgeons and patient safety experts in face-to-face meetings, during which we developed and refined the contents of a resident handoff tool. The tool was tested in an orthopaedic trauma service and its impact on adverse events was evaluated through a chart review. The handoff tool was developed and refined during the face-to-face meetings and a pilot implementation. Adverse event data were collected on 127 patients (n = 67 baseline period; n = 60 test period). A handoff tool for use by orthopaedic residents. Adverse events in patients handed off by orthopaedic trauma residents. After controlling for age, gender and comorbidities, testing resulted in fewer events per person (25-27% reduction; P < 0.10). Preliminary evidence suggests that our resident handoff tool may contribute to a decrease in adverse events in orthopaedic patients. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Guerra, Maria F L; Teixeira, Rodrigo H F; Ribeiro, Vanessa L; Cunha, Marcos P V; Oliveira, Maria G X; Davies, Yamê M; Silva, Ketrin C; Silva, Ana P S; Lincopan, Nilton; Moreno, Andrea M; Knöbl, Terezinha
2016-02-01
This report describes an outbreak of suppurative peritonitis caused by Klebsiella pneumoniae in an adult female of captive golden-handed tamarin (Saguinus midas midas). Two virulent and multidrug-resistant strains were isolated and classified through MLST as ST60 and ST1263. The microbiological diagnosis works as a support tool for preventive measures. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Kunde
2016-01-01
Technical and vocational education emphasizes the development and training of hand motor skills. However, some problems exist in the current career and aptitude tests in that they do not truly measure the hand motor skills. This study used the Nintendo Wii Remote Controller as the testing device in developing a set of computerized testing tools to…
Examining the Usefulness of ISO 10819 Anti-Vibration Glove Certification.
Budd, Diandra; House, Ron
2017-03-01
Anti-vibration gloves are commonly worn to reduce hand-arm vibration exposure from work with hand-held vibrating tools when higher priority and more effective controls are unavailable. For gloves to be marketed as 'anti-vibration' they must meet the vibration transmissibility criteria described in the International Organization for Standardization (ISO) standard 10819 (2013). Several issues exist with respect to the methodology used for glove testing as well as the requirements for glove design and composition in ISO 10819 (2013). The true usefulness of anti-vibration gloves at preventing hand-arm vibration syndrome (HAVS) is controversial, given that their performance is dependent on tool vibration characteristics and the anthropometrics of workers in real working conditions. The major risk associated with the use of anti-vibration gloves is that it will give employees and employers a false sense of protection against the negative effects of hand-transmitted vibration. This commentary examines the limitations of the current international standards for anti-vibration glove testing and certification, thereby calling into question the degree of protection that anti-vibration gloves provide against HAVS, and cautioning users to consider both their benefits and potential drawbacks on a case-by-case basis. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Leclère, Franck Marie; Schoofs, Michel; Vogt, Peter; Casoli, Vincent; Mordon, Serge
2015-05-01
Based on previous observations, the 1950-nm diode laser seems to be an ideal wavelength for laser microvascular anastomoses. The data presented here, part of a larger ongoing study, assess its use in emergency hand surgery. Between 2011 and 2014, 11 patients were operated on for hand trauma with laser-assisted microanastomoses (LAMA) and prospectively analysed. LAMA was performed with a 1950-nm diode laser after placement of equidistant stitches. For vessel size <1.5 mm, the following laser parameters were used: spot size 400 μm, five spots for each wall, power 125 mW, and arterial/venous fluence 100/90 J/cm(2) (spot duration 1/0.9 s). Mean operating time for arterial and venous microanastomoses was 7.3 ± 1.4 and 8.7 ± 1.0 min, respectively. Three anastomoses required a secondary laser application. Arterial and venous patency rates were 100 % at the time of surgery. The success rate for the 11 procedures assessed clinically and with the Doppler was 100 %. The technique is compared to the current literature. The 1950-nm LAMA is a reliable tool with excellent results in emergency hand surgery. The system is very compact and transportable for utilization in the emergency operating room.
Cultural Influences in Women-Friendly Labor-Saving Hand Tool Designs: The Milk Churner Case.
Kisaalita, William S; Katimbo, Abia; Sempiira, Edison J; Mugisa, Dana J
2016-02-01
The aim of this study was to highlight the importance of culture in sustainable, labor-saving solutions design for women in low-resource settings. One of the reasons behind the gender asset gap among Sub-Saharan African women is the higher labor burden these women face, making it difficult for them to produce for the home and markets. Hand tools are the simplest form and therefore the best first step to address this problem. But designing women-friendly (sustainable) hand tools calls for better understanding of the low-resource settings where these women reside. A milk churner was redesigned using a human-centered (participatory) approach with groups of women from two dominant ethnolinguistic groups of Bantu and Nilotic of Uganda, and its usability was tested. The churner reduced labor up to eightfold and has potential to expand the range of uses to include children and husbands due to its simplicity. Also, the churner significantly reduced undesirable health effects, like pain in knee joints. Based on the experience with the churner, a six-item "survival guide" is proposed to complement human-centered design guiding principles for facilitating the generation of solutions in low-resource settings. By paying great attention to culture in relation to human factors, a labor-reducing churner has been successfully introduced among Ugandan women. The ultimate goal is to make the churner available to female smallholder dairy-farming households throughout Sub-Saharan Africa. This study provides a survival guide for generating solutions to problems from low-resource settings. © 2016, Human Factors and Ergonomics Society.
Cultural Influences in Women-Friendly Labor-Saving Hand Tool Designs
Kisaalita, William S.; Katimbo, Abia; Sempiira, Edison J.; Mugisa, Dana J.
2016-01-01
Objective: The aim of this study was to highlight the importance of culture in sustainable, labor-saving solutions design for women in low-resource settings. Background: One of the reasons behind the gender asset gap among Sub-Saharan African women is the higher labor burden these women face, making it difficult for them to produce for the home and markets. Hand tools are the simplest form and therefore the best first step to address this problem. But designing women-friendly (sustainable) hand tools calls for better understanding of the low-resource settings where these women reside. Method: A milk churner was redesigned using a human-centered (participatory) approach with groups of women from two dominant ethnolinguistic groups of Bantu and Nilotic of Uganda, and its usability was tested. Results: The churner reduced labor up to eightfold and has potential to expand the range of uses to include children and husbands due to its simplicity. Also, the churner significantly reduced undesirable health effects, like pain in knee joints. Based on the experience with the churner, a six-item “survival guide” is proposed to complement human-centered design guiding principles for facilitating the generation of solutions in low-resource settings. Conclusion: By paying great attention to culture in relation to human factors, a labor-reducing churner has been successfully introduced among Ugandan women. The ultimate goal is to make the churner available to female smallholder dairy-farming households throughout Sub-Saharan Africa. Applications: This study provides a survival guide for generating solutions to problems from low-resource settings. PMID:26764373
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, J.R.; Ahrens, J.S.; Lowe, D.L.
Throughout the years, Sandia National Laboratories (SNL) has performed various laboratory evaluations of entry control devices, including biometric identity verifiers. The reports which resulted from this testing have been very well received by the physical security community. This same community now requires equally informative field study data. To meet this need we have conducted a field study in an effort to develop the tools and methods which our customers can use to translate laboratory data into operational field performance. The field testing described in this report was based on the Recognition Systems Inc.`s (RSI) model ID3D HandKey biometric verifier. Thismore » device was selected because it is referenced in DOE documents such as the Guide for Implementation of the DOE Standard Badge and is the de facto biometric standard for the DOE. The ID3D HandKey is currently being used at several DOE sites such as Hanford, Rocky Flats, Pantex, Savannah River, and Idaho Nuclear Engineering Laboratory. The ID3D HandKey was laboratory tested at SNL. It performed very well during this test, exhibiting an equal error point of 0.2 percent. The goals of the field test were to identify operational characteristics and design guidelines to help system engineers translate laboratory data into field performance. A secondary goal was to develop tools which could be used by others to evaluate system effectiveness or improve the performance of their systems. Operational characteristics were determined by installing a working system and studying its operation over a five month period. Throughout this test we developed tools which could be used by others to similarly gauge system effectiveness.« less
New Educational Video Series From AGU
NASA Astrophysics Data System (ADS)
Adamec, Bethany Holm; Sollosi, Derek
2013-04-01
A new video series entitled Live Education Activity Resource Network (LEARN) With AGU was recently launched. This series of short Earth and space science-related videos is designed to give K-12 formal and informal educators the tools they need to try new hands-on activities with their students. Research indicates that hands-on learning and problem solving are important ways for students to learn, but educators do not always know where to begin or think that they need a lot of materials to do a hands-on activity (which often is not the case).
Rastogi, Anshu; Pospísil, Pavel
2010-08-01
All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.
The image-interpretation-workstation of the future: lessons learned
NASA Astrophysics Data System (ADS)
Maier, S.; van de Camp, F.; Hafermann, J.; Wagner, B.; Peinsipp-Byma, E.; Beyerer, J.
2017-05-01
In recent years, professionally used workstations got increasingly complex and multi-monitor systems are more and more common. Novel interaction techniques like gesture recognition were developed but used mostly for entertainment and gaming purposes. These human computer interfaces are not yet widely used in professional environments where they could greatly improve the user experience. To approach this problem, we combined existing tools in our imageinterpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a special task in the image interpreting process: a geo-information system to geo-reference the images and provide a spatial reference for the user, an interactive recognition support tool, an annotation tool and a reporting tool. To further support the complex task of image interpreting, self-developed interaction systems for head-pose estimation and hand tracking were used in addition to more common technologies like touchscreens, face identification and speech recognition. A set of experiments were conducted to evaluate the usability of the different interaction systems. Two typical extensive tasks of image interpreting were devised and approved by military personal. They were then tested with a current setup of an image interpreting workstation using only keyboard and mouse against our image-interpretationworkstation of the future. To get a more detailed look at the usefulness of the interaction techniques in a multi-monitorsetup, the hand tracking, head pose estimation and the face recognition were further evaluated using tests inspired by everyday tasks. The results of the evaluation and the discussion are presented in this paper.
Mazzone, P; Arena, P; Cantelli, L; Spampinato, G; Sposato, S; Cozzolino, S; Demarinis, P; Muscato, G
2016-07-01
The use of robotics in neurosurgery and, particularly, in stereotactic neurosurgery, is becoming more and more adopted because of the great advantages that it offers. Robotic manipulators easily allow to achieve great precision, reliability, and rapidity in the positioning of surgical instruments or devices in the brain. The aim of this work was to experimentally verify a fully automatic "no hands" surgical procedure. The integration of neuroimaging to data for planning the surgery, followed by application of new specific surgical tools, permitted the realization of a fully automated robotic implantation of leads in brain targets. An anthropomorphic commercial manipulator was utilized. In a preliminary phase, a software to plan surgery was developed, and the surgical tools were tested first during a simulation and then on a skull mock-up. In such a way, several tools were developed and tested, and the basis for an innovative surgical procedure arose. The final experimentation was carried out on anesthetized "large white" pigs. The determination of stereotactic parameters for the correct planning to reach the intended target was performed with the same technique currently employed in human stereotactic neurosurgery, and the robotic system revealed to be reliable and precise in reaching the target. The results of this work strengthen the possibility that a neurosurgeon may be substituted by a machine, and may represent the beginning of a new approach in the current clinical practice. Moreover, this possibility may have a great impact not only on stereotactic functional procedures but also on the entire domain of neurosurgery.
Analysis tools for the interplay between genome layout and regulation.
Bouyioukos, Costas; Elati, Mohamed; Képès, François
2016-06-06
Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.
Tools for Observing our Universe
NASA Technical Reports Server (NTRS)
Wollack, Ed
2008-01-01
A selection of hands on demonstrations related to the detection of light will be presented to middle students. The primary emphasis of the talk will be on conveying how scientists use light to remotely observe and understand the properties of astrophysical systems.
29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and... of slippage of the metal cap of the jack, a wood block shall be placed between the cap and the load...
The Quest for Less: Activities and Resources for Teaching K-8
The Quest for Less provides hands-on lessons and activities, enrichment ideas, journal writing assignments, and other educational tools related to preventing and reusing waste. This document includes factsheets, activities, and teaching notes for 6-8
Technology Education and the Elementary School.
ERIC Educational Resources Information Center
Thode, Terry
1996-01-01
In the technology education program at Hemingway School in Ketchum, Idaho, students are involved in hands-on activities that encourage the use of critical thinking skills, tools, and high-tech equipment to solve problems related to real world situations. (Author)
Laboratory and field measurements and evaluations of vibration at the handles of riveting hammers
McDOWELL, THOMAS W.; WARREN, CHRISTOPHER; WELCOME, DANIEL E.; DONG, REN G.
2015-01-01
The use of riveting hammers can expose workers to harmful levels of hand-transmitted vibration (HTV). As a part of efforts to reduce HTV exposures through tool selection, the primary objective of this study was to evaluate the applicability of a standardized laboratory-based riveting hammer assessment protocol for screening riveting hammers. The second objective was to characterize the vibration emissions of reduced vibration riveting hammers and to make approximations of the HTV exposures of workers operating these tools in actual work tasks. Eight pneumatic riveting hammers were selected for the study. They were first assessed in a laboratory using the standardized method for measuring vibration emissions at the tool handle. The tools were then further assessed under actual working conditions during three aircraft sheet metal riveting tasks. Although the average vibration magnitudes of the riveting hammers measured in the laboratory test were considerably different from those measured in the field study, the rank orders of the tools determined via these tests were fairly consistent, especially for the lower vibration tools. This study identified four tools that consistently exhibited lower frequency-weighted and unweighted accelerations in both the laboratory and workplace evaluations. These observations suggest that the standardized riveting hammer test is acceptable for identifying tools that could be expected to exhibit lower vibrations in workplace environments. However, the large differences between the accelerations measured in the laboratory and field suggest that the standardized laboratory-based tool assessment is not suitable for estimating workplace riveting hammer HTV exposures. Based on the frequency-weighted accelerations measured at the tool handles during the three work tasks, the sheet metal mechanics assigned to these tasks at the studied workplace are unlikely to exceed the daily vibration exposure action value (2.5 m s−2) using any of the evaluated riveting hammers. PMID:22539561
keep your models up-to-date: connecting community mapping data to complex urban flood modelling
NASA Astrophysics Data System (ADS)
Winsemius, Hessel; Eilander, Dirk; Ward, Philip; Diaz Loaiza, Andres; Iliffe, Mark; Mawanda, Shaban; Luo, Tianyi; Kimacha, Nyambiri; Chen, Jorik
2017-04-01
The world is urbanizing rapidly. According to the United Nation's World Urbanization Prospect, 50% of the global population already lives in urban areas today. This number is expected to grow to 66% by 2050. The rapid changes in these urban environments go hand in hand with rapid changes in natural hazard risks, in particular in informal unplanned neighbourhoods. In Dar Es Salaam - Tanzania, flood risk dominates and given the rapid changes in the city, continuous updates of detailed street level hazard and risk mapping are needed to adequately support decision making for urban planning, infrastructure design and disaster response. Over the past years, the Ramani Huria and Zuia Mafuriko projects have mapped the most flood prone neighbourhoods, including roads, buildings, drainage and land use and contributed data to the open-source OpenStreetMap database. In this contribution, we will demonstrate how we mobilize these contributed data to establish dynamic flood models for Dar Es Salaam and keep these up-to-date by making a direct link between the data, and model schematization. The tools automatically establish a sound 1D drainage network as well as a high resolution terrain dataset, by fusing the OpenStreetMap data with existing lower resolution terrain data such as the globally available satellite based SRTM 30. It then translates these fully automatically into the inputs required for the D-HYDRO modeling suite. Our tools are built such that community and stakeholder knowledge can be included in the model details through workshops with the tools so that missing essential information about the city's details can be augmented on-the-fly. This process creates a continuous dialogue between members of the community that collect data, and stakeholders requiring data for flood models. Moreover, used taxonomy and data filtering can be configured to conditions in other cities, making the tools generic and scalable. The tools are made available open-source.
Tuszynski, Tobias; Rullmann, Michael; Luthardt, Julia; Butzke, Daniel; Tiepolt, Solveig; Gertz, Hermann-Josef; Hesse, Swen; Seese, Anita; Lobsien, Donald; Sabri, Osama; Barthel, Henryk
2016-06-01
For regional quantification of nuclear brain imaging data, defining volumes of interest (VOIs) by hand is still the gold standard. As this procedure is time-consuming and operator-dependent, a variety of software tools for automated identification of neuroanatomical structures were developed. As the quality and performance of those tools are poorly investigated so far in analyzing amyloid PET data, we compared in this project four algorithms for automated VOI definition (HERMES Brass, two PMOD approaches, and FreeSurfer) against the conventional method. We systematically analyzed florbetaben brain PET and MRI data of ten patients with probable Alzheimer's dementia (AD) and ten age-matched healthy controls (HCs) collected in a previous clinical study. VOIs were manually defined on the data as well as through the four automated workflows. Standardized uptake value ratios (SUVRs) with the cerebellar cortex as a reference region were obtained for each VOI. SUVR comparisons between ADs and HCs were carried out using Mann-Whitney-U tests, and effect sizes (Cohen's d) were calculated. SUVRs of automatically generated VOIs were correlated with SUVRs of conventionally derived VOIs (Pearson's tests). The composite neocortex SUVRs obtained by manually defined VOIs were significantly higher for ADs vs. HCs (p=0.010, d=1.53). This was also the case for the four tested automated approaches which achieved effect sizes of d=1.38 to d=1.62. SUVRs of automatically generated VOIs correlated significantly with those of the hand-drawn VOIs in a number of brain regions, with regional differences in the degree of these correlations. Best overall correlation was observed in the lateral temporal VOI for all tested software tools (r=0.82 to r=0.95, p<0.001). Automated VOI definition by the software tools tested has a great potential to substitute for the current standard procedure to manually define VOIs in β-amyloid PET data analysis.
NASA Astrophysics Data System (ADS)
Glasscoe, Margaret T.; Wang, Jun; Pierce, Marlon E.; Yoder, Mark R.; Parker, Jay W.; Burl, Michael C.; Stough, Timothy M.; Granat, Robert A.; Donnellan, Andrea; Rundle, John B.; Ma, Yu; Bawden, Gerald W.; Yuen, Karen
2015-08-01
Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing new capabilities for decision making utilizing remote sensing data and modeling software to provide decision support for earthquake disaster management and response. E-DECIDER incorporates the earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools allows us to provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). This in turn is delivered through standards-compliant web services for desktop and hand-held devices.