Yamamoto, Naomi; Oshima, Masamitsu; Tanaka, Chie; Ogawa, Miho; Nakajima, Kei; Ishida, Kentaro; Moriyama, Keiji; Tsuji, Takashi
2015-01-01
The tooth is an ectodermal organ that arises from a tooth germ under the regulation of reciprocal epithelial-mesenchymal interactions. Tooth morphogenesis occurs in the tooth-forming field as a result of reaction-diffusion waves of specific gene expression patterns. Here, we developed a novel mechanical ligation method for splitting tooth germs to artificially regulate the molecules that control tooth morphology. The split tooth germs successfully developed into multiple correct teeth through the re-regionalisation of the tooth-forming field, which is regulated by reaction-diffusion waves in response to mechanical force. Furthermore, split teeth erupted into the oral cavity and restored physiological tooth function, including mastication, periodontal ligament function and responsiveness to noxious stimuli. Thus, this study presents a novel tooth regenerative technology based on split tooth germs and the re-regionalisation of the tooth-forming field by artificial mechanical force. PMID:26673152
Ono, Mitsuaki; Oshima, Masamitsu; Ogawa, Miho; Sonoyama, Wataru; Hara, Emilio Satoshi; Oida, Yasutaka; Shinkawa, Shigehiko; Nakajima, Ryu; Mine, Atsushi; Hayano, Satoru; Fukumoto, Satoshi; Kasugai, Shohei; Yamaguchi, Akira; Tsuji, Takashi; Kuboki, Takuo
2017-01-01
Whole-organ regeneration has great potential for the replacement of dysfunctional organs through the reconstruction of a fully functional bioengineered organ using three-dimensional cell manipulation in vitro. Recently, many basic studies of whole-tooth replacement using three-dimensional cell manipulation have been conducted in a mouse model. Further evidence of the practical application to human medicine is required to demonstrate tooth restoration by reconstructing bioengineered tooth germ using a postnatal large-animal model. Herein, we demonstrate functional tooth restoration through the autologous transplantation of bioengineered tooth germ in a postnatal canine model. The bioengineered tooth, which was reconstructed using permanent tooth germ cells, erupted into the jawbone after autologous transplantation and achieved physiological function equivalent to that of a natural tooth. This study represents a substantial advancement in whole-organ replacement therapy through the transplantation of bioengineered organ germ as a practical model for future clinical regenerative medicine. PMID:28300208
EMMPRIN (basigin/CD147) is involved in the morphogenesis of tooth germ in mouse molars.
Xie, Ming; Jiao, Ting; Chen, Yuqin; Xu, Chun; Li, Jing; Jiang, Xinquan; Zhang, Fuqiang
2010-05-01
The pattern of gene expression for extracellular matrix metalloproteinase inducer (EMMPRIN) was revealed in the tooth germ of mouse mandibular molars using quantitative real-time PCR. In situ hybridization and immunohistochemical study demonstrated the characteristic distribution of EMMPRIN in the different stages of tooth germ development. To investigate the functional role played by EMMPRIN in tooth germ development, EMMPRIN siRNA interference approach was carried out in cultured mouse mandibles at embryonic day 11.0 (E11.0). The results showed that EMMPRIN siRNA-treated explants exhibited a marked growth inhibition of tooth germ compared to the control and scrambled siRNA-treated explants. Meanwhile, a significant increase in MT1-MMP mRNA expression and a reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were observed in the mouse mandibles following EMMPRIN abrogation. The current results indicate that EMMPRIN could thus be involved in the early stage of tooth germ development and morphogenesis, possibly by regulating the expression of MMP genes.
Functional role of EMMPRIN in the formation and mineralisation of dental matrix in mouse molars.
Xie, Ming; Xing, Guofang; Hou, Liwen; Bao, Jing; Chen, Yuqing; Jiao, Ting; Zhang, Fuqiang
2015-02-01
Our previous research has shown that the extracellular matrix metalloproteinase inducer (EMMPRIN) is expressed during and may function in the early development of tooth germs. In the present study, we observed the specific expression of EMMPRIN in ameloblasts and odontoblasts during the middle and late stages of tooth germ development using immunohistochemistry. Furthermore, to extend our understanding of the function of EMMPRIN in odontogenesis, we used an anti-EMMPRIN function-blocking antibody to remove EMMPRIN activity in tooth germ culture in vitro. Both the formation and mineralisation of dental hard tissues were suppressed in the tooth germ culture after the abrogation of EMMPRIN. Meanwhile, significant reductions in VEGF, MMP-9, ALPL, ameloblastin, amelogenin and enamelin expression were observed in antibody-treated tooth germ explants compared to control and normal serum-treated explants. The current results illustrate that EMMPRIN may play a critical role in the processing and maturation of the dental matrix.
Yang, Jun; Cai, Wenping; Lu, Xi; Liu, Shangfeng; Zhao, Shouliang
2017-01-01
Tooth development depends on multiple molecular interactions between the dental epithelium and mesenchyme, which are derived from ectodermal and ectomesenchymal cells, respectively. We report on a systematic RNA sequencing analysis of transcriptional expression levels from the bud to hard tissue formation stages of rat tooth germ development. We found that GNAO1, ENO1, EFNB1, CALM1, SIAH2, ATP6V0A1, KDELR2, GTPBP1, POLR2C, SORT1, and members of the canonical transient receptor potential (TRPC) channel family are involved in tooth germ development. Furthermore, Cell Counting Kit 8 (CCK8) and Transwell migration assays were performed to explore the effects of these differentially expressed genes (DEGs) on the proliferation and migration of dental pulp stem cells. Immunostaining revealed that TRPC channels are expressed at varying levels during odontogenesis. The identified genes represent novel candidates that are likely to be vital for rat tooth germ development. Together, the results provide a valuable resource to elucidate the gene regulatory mechanisms underlying mammalian tooth germ development. PMID:28706494
Altered tooth morphogenesis after silencing the planar cell polarity core component, Vangl2.
Wu, Zhaoming; Epasinghe, Don Jeevanie; He, Jinquan; Li, Liwen; Green, David W; Lee, Min-Jung; Jung, Han-Sung
2016-12-01
Vangl2, one of the core components of the planar cell polarity (PCP) pathway, has an important role in the regulation of morphogenesis in several tissues. Although the expression of Vangl2 has been detected in the developing tooth, its role in tooth morphogenesis is not known. In this study, we show that Vangl2 is expressed in the inner dental epithelium (IDE) and in the secondary enamel knots (SEKs) of bell stage tooth germs. Inhibition of Vangl2 expression by siRNA treatment in in vitro-cultured tooth germs resulted in retarded tooth germ growth with deregulated cell proliferation and apoptosis. After kidney transplantation of Vangl2 siRNA-treated tooth germs, teeth were observed to be small and malformed. We also show that Vangl2 is required to maintain the proper pattern of cell alignment in SEKs, which maybe important for the function of SEKs as signaling centers. These results suggest that Vangl2 plays an important role in the morphogenesis of teeth.
Seabra, Mariana; Felino, António; Nogueira, Rosete; Valente, Francisco; Braga, Ana Cristina; Vaz, Paula
2015-05-12
Hypodontia is the most frequent developmental anomaly of the orofacial complex, and its detection in prenatal ultrasound may indicate the presence of congenital malformations, genetic syndromes and chromosomal abnormalities. To date, only a few studies have evaluated the histological relationship of human tooth germs identified by two-dimensional (2D) ultrasonography. In order to analyze whether two-dimensional ultrasonography of tooth germs may be successfully used for identifying genetic syndromes, prenatal ultrasound images of fetal tooth germs obtained from a Portuguese population sample were compared with histological images obtained from fetal autopsies. Observational, descriptive, transversal study. The study protocol followed the ethical principles outlined by the Helsinki Declaration and was approved by the Ethics Committee of the School of Dental Medicine, University of Porto (FMDUP, Porto, Portugal) and of the Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/EPE, Porto, Portugal) as well as by the CGC Genetics Embryofetal Pathology Laboratory. Eighty-five fetuses examined by prenatal ultrasound screening from May 2011 to August 2012 had an indication for autopsy following spontaneous fetal death or medical termination of pregnancy. Of the 85 fetuses, 37 (43.5%) were randomly selected for tooth germ evaluation by routine histopathological analysis. Fetuses who were up to 30 weeks of gestation, and whose histological pieces were not representative of all maxillary tooth germs was excluded. Twenty four fetus between the 13(th) and 30(th) weeks of gestation fulfilled the parameters to autopsy. Twenty four fetuses were submitted to histological evaluation and were determined the exact number, morphology, and mineralization of their tooth germs. All tooth germs were identifiable with ultrasonography as early as the 13(th) week of gestation. Of the fetuses autopsied, 41.7% had hypodontia (29.1% maxillary hypodontia and 20.9% mandibular hypodontia). This results indicate that prenatal ultrasound is a reliable method for detecting of hypodontia an early gestational ages. Further studies with larger samples are needed to confirm these results.
Evidence for a neural influence on tooth germ generation in a polyphyodont species.
Tuisku, F; Hildebrand, C
1994-09-01
It has been suggested that nerve endings emanating from the dental nerve plexus of the jaw might be involved in the formation of tooth germs. In the present study we examine the effect of unilateral denervation on the formation of tooth germs in the lower jaw of a polyphyodont teleost--the cichild Tilapia mariae. Repeated inspection of the lower jaw dentition in normal animals over a period of about 300 days showed that the functional time of an average individual tooth is 101 days. In operated animals, the functional time was normal on the unoperated side, but on the denervated side tooth turnover ceased about 100 days after surgery. Radiographic plates from lower jaw specimens revealed that mineralized replacement teeth were present on the unoperated side, but not on the denervated side, 300 days after denervation. Light microscopic examination of semi-thin transverse sections from decalcified plastic-embedded lower jaws showed that soft-tissue tooth primordia and nerves were lacking on the denervated side, while present within the undisturbed half-jaw. It is concluded that the local presence of mandibular nerve branches is necessary for the formation of tooth germs in the lower jaw of the cichlid T. mariae.
Modification of tooth development by heat shock protein 60
Papp, Tamas; Polyak, Angela; Papp, Krisztina; Meszar, Zoltan; Zakany, Roza; Meszar-Katona, Eva; Tünde, Palne Terdik; Ham, Chang Hwa; Felszeghy, Szabolcs
2016-01-01
Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2-deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes. PMID:27025262
Evolutionary aspects of the development of teeth and baleen in the bowhead whale.
Thewissen, J G M; Hieronymus, Tobin L; George, John C; Suydam, Robert; Stimmelmayr, Raphaela; McBurney, Denise
2017-04-01
In utero, baleen whales initiate the development of several dozens of teeth in upper and lower jaws. These tooth germs reach the bell stage and are sometimes mineralized, but toward the end of prenatal life they are resorbed and no trace remains after birth. Around the time that the germs disappear, the keratinous baleen plates start to form in the upper jaw, and these form the food-collecting mechanism. Baleen whale ancestors had two generations of teeth and never developed baleen, and the prenatal teeth of modern fetuses are usually interpreted as an evolutionary leftover. We investigated the development of teeth and baleen in bowhead whale fetuses using histological and immunohistochemical evidence. We found that upper and lower dentition initially follow similar developmental pathways. As development proceeds, upper and lower tooth germs diverge developmentally. Lower tooth germs differ along the length of the jaw, reminiscent of a heterodont dentition of cetacean ancestors, and lingual processes of the dental lamina represent initiation of tooth bud formation of replacement teeth. Upper tooth germs remain homodont and there is no evidence of a secondary dentition. After these germs disappear, the oral epithelium thickens to form the baleen plates, and the protein FGF-4 displays a signaling pattern reminiscent of baleen plates. In laboratory mammals, FGF-4 is not involved in the formation of hair or palatal rugae, but it is involved in tooth development. This leads us to propose that the signaling cascade that forms teeth in most mammals has been exapted to be involved in baleen plate ontogeny in mysticetes. © 2017 Anatomical Society.
Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Mardesic Brakus, Snjezana; Saraga-Babic, Mirna
2017-10-02
Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19 INK4d . p19 INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19 INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19 INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19 INK4d throughout the investigated period indicates that p19 INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19 INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.
Kakizawa, Yoshiko; Meenakarn, Wanpen
2003-12-01
Juveniles of the Mekong giant catfish, Pangasianodon gigas (Teleostei), have 3 sorts of tooth-upper and lower jaw teeth, palatal teeth, and pharyngeal teeth--but adults are toothless. To investigate the histogenesis and disappearance of the teeth, we made serial sections of the mouth and teeth of juvenile fish at 10 developmental stages (from ca. 8.5 to ca. 30 cm in total length) and examined them under scanning electron microscope and light microscope. Observations of teeth and surrounding tissues in the serial sections revealed the process of tooth resorption by active odontoclast-like cells. Numbers of jaw and palatal teeth decreased with age. When the fish reached ca. 14 cm in total length, the numbers of functional upper jaw teeth and successional tooth germs decreased rapidly, and the developmental rate of successional tooth germs slowed. When the fish reached ca. 24 cm, no teeth existed in the upper jaw. It is clear that tooth disappearance results from the shedding of functional teeth and the lack of replacement tooth germs.
Huysseune, Ann
2006-01-01
In order to test whether the formation of a replacement tooth bud in a continuously replacing dentition is linked to the functional state of the tooth predecessor, I examined the timing of development of replacement teeth with respect to their functional predecessors in the pharyngeal dentition of the zebrafish. Observations based on serial semithin sections of ten specimens, ranging in age from four week old juveniles to adults, indicate that (i) a replacement tooth germ develops at the distal end of an epithelial structure, called the successional dental lamina, budding off from the crypt epithelium surrounding the erupted part of a functional tooth; (ii) there appears to be a developmental link between the eruption of a tooth and the formation of a successional dental lamina and (iii) there can be a time difference between successional lamina formation and initiation of the new tooth germ, i.e., the successional dental lamina can remain quiescent for some time. The data suggest that the formation of a successional lamina and the differentiation of a replacement tooth germ from this lamina, are two distinct phases of a process and possibly under a different control. The strong spatio-temporal coincidence of eruption of a tooth and development of a successional dental lamina is seen as evidence for a local control over tooth replacement.
Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang, E-mail: Ly10160624@163.com; Han, Dong, E-mail: Donghan@bjmu.edu.cn; Wang, Lei, E-mail: wanglei_dentist@163.com
Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated withmore » epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation.« less
Mastrangelo, F; Sberna, M T; Tettamanti, L; Cantatore, G; Tagliabue, A; Gherlone, E
2016-01-01
Vascular Endothelia Growth Factor (VEGF) and Nitric Oxide Synthase (NOS) expression, were evaluated in human tooth germs at two different stages of embryogenesis, to clarify the role of angiogenesis during tooth tissue differentiation and growth. Seventy-two third molar germ specimens were selected during oral surgery. Thirty-six were in the early stage and 36 in the later stage of tooth development. The samples were evaluated with Semi-quantitative Reverse Transcription-Polymerase chain Reaction analyses (RT-PcR), Western blot analysis (WB) and immunohistochemical analysis. Western blot and immunohistochemical analysis showed a VEGF and NOS 1-2-3 positive reaction in all samples analysed. VEGF high positive decrease reaction was observed in stellate reticulum cells, ameloblast and odontoblast clusters in early stage compared to later stage of tooth germ development. Comparable VEGF expression was observed in endothelial cells of early and advanced stage growth. NOS1 and NOS3 expressions showed a high increased value in stellate reticulum cells, and ameloblast and odontoblast clusters in advanced stage compared to early stage of development. The absence or only moderate positive reaction of NOS2 was detected in all the different tissues. Positive NOS2 expression showed in advanced stage of tissue development compared to early stage. The action of VEGF and NOS molecules are important mediators of angiogenesis during dental tissue development. VEGF high positive expression in stellate reticulum cells in the early stage of tooth development compared to the later stage and the other cell types, suggests a critical role of the stellate reticulum during dental embryo-morphogenesis.
Complex patterns of tooth replacement revealed in the fruit bat (Eidolon helvum).
Popa, Elena M; Anthwal, Neal; Tucker, Abigail S
2016-12-01
How teeth are replaced during normal growth and development has long been an important question for comparative and developmental anatomy. Non-standard model animals have become increasingly popular in this field due to the fact that the canonical model laboratory mammal, the mouse, develops only one generation of teeth (monophyodonty), whereas the majority of mammals possess two generations of teeth (diphyodonty). Here we used the straw-coloured fruit bat (Eidolon helvum), an Old World megabat, which has two generations of teeth, in order to observe the development and replacement of tooth germs from initiation up to mineralization stages. Our morphological study uses 3D reconstruction of histological sections to uncover differing arrangements of the first and second-generation tooth germs during the process of tooth replacement. We show that both tooth germ generations develop as part of the dental lamina, with the first generation detaching from the lamina, leaving the free edge to give rise to a second generation. This separation was particularly marked at the third premolar locus, where the primary and replacement teeth become positioned side by side, unconnected by a lamina. The position of the replacement tooth, with respect to the primary tooth, varied within the mouth, with replacements forming posterior to or directly lingual to the primary tooth. Development of replacement teeth was arrested at some tooth positions and this appeared to be linked to the timing of tooth initiation and the subsequent rate of development. This study adds an additional species to the growing body of non-model species used in the study of tooth replacement, and offers a new insight into the development of the diphyodont condition. © 2016 Anatomical Society.
Gaete, Marcia; Tucker, Abigail S.
2013-01-01
In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes. PMID:24019968
Van der Heyden, C; Allizard, F; Sire, J-Y; Huysseune, A
2005-09-01
A technique for organotypic in vitro culture with serum-free medium was tested for its appropriateness to mimic normal odontogenesis in the cichlid fish Hemichromis bimaculatus and the zebrafish Danio rerio. Serial semithin sections were observed by light microscopy to collect data on tooth patterning and transmission electron microscopy was used to compare cellular and extracellular features of tooth germs developing in vitro with the situation in vivo. Head explants of H. bimaculatus from 120 h post-fertilization (hPF) to 8.5 days post-fertilization (dPF) and of zebrafish from 45 hPF to 79 hPF and adults kept in culture for 3, 4 or 7 days revealed that tooth germs developed in vitro from explants in which the buccal or pharyngeal epithelium was apparently undifferentiated and, when present at the time of explantation, they continued their development up to a stage of attachment. In addition, the medium allowed the morphogenesis and cytodifferentiation of the tooth germs similar to that observed in vivo and the establishment of a dental pattern (place and order of tooth appearance and of attachment) that mimicked that in vivo. Organotypic culture in serum-free conditions thus provides us with the means of studying epithelial-mesenchymal interactions during tooth development in teleost fish and of analysing the genetic control of either mandibular or pharyngeal tooth development and replacement in these polyphyodont species. Importantly, it allows heads from embryonically lethal (zebrafish) mutants or from early lethal knockdown experiments to develop beyond the point at which the embryos normally die. Such organotypic culture in serum-free conditions could therefore become a powerful tool in developmental studies and open new perspectives for craniofacial research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyaruu, D.M.; Blijleven, N.; Hoeben-Schornagel, K.
1989-09-01
The developing enamel from three-day-old hamster first maxillary (M1) molar tooth germs exposed to fluoride (F-) in vitro was analyzed for its mineral content by means of the energy-dispersive x-ray microanalysis technique. The aim of this study was to obtain semi-quantitative data on the F(-)-induced hypermineralization patterns in the enamel and to confirm that the increase in electron density observed in micrographs of F(-)-treated enamel is indeed due to an increase in mineral content in the fluorotic enamel. The tooth germs were explanted during the early stages of secretory amelogenesis and initially cultured for 24 hr in the presence ofmore » 10 ppm F- in the culture medium. The germs were then cultured for another 24 hr without F-. In order to compare the ultrastructural results directly with the microprobe data, we used the same specimens for both investigations. The net calcium counts (measurement minus background counts) in the analyses were used as a measure of the mineral content in the enamel. The aprismatic pre-exposure enamel, deposited in vivo before the onset of culture, was the most hypermineralized region in the fluorotic enamel, i.e., it contained the highest amount of calcium measured. The degree of the F(-)-induced hypermineralization gradually decreased (but was not abolished) in the more mature regions of the enamel. The unmineralized enamel matrix secreted during the initial F- treatment in vitro mineralized during the subsequent culture without F-. The calcium content in this enamel layer was in the same order of magnitude as that recorded for the newly deposited enamel in control tooth germs cultured without F-.« less
Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa; Morita, Ritsuko; Ogawa, Miho; Tsuji, Takashi
2011-02-18
Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth. Copyright © 2011 Elsevier Inc. All rights reserved.
Functional fixation of autotransplanted tooth germs by using bioresorbable membranes.
Gérard, Eric; Membre, Hervé; Gaudy, Jean-François; Mahler, Patrick; Bravetti, Pierre
2002-12-01
The purpose of this study was to evaluate the contribution of a bioresorbable membrane placement to the healing of immature teeth after autotransplantation of tooth buds. Six cases were selected: 2 transplantations of wisdom teeth, 2 for premolar agenesis, 1 for ectopia, and 1 premolar in an incisor position. The crown of each tooth germ and the marginal alveolar bone were covered with a resorbable membrane. The radicular edification was nearly complete, neither ankylosis nor inflammatory resorption was observable, the pulp vitality was preserved, and the periodontal integration was identical to that of other teeth. The membrane ensured contention and stabilization of the transplant, allowed functional stimulation, permitted protection of the coagulum and periodontal cells, and kept the epithelium at a distance. The transplantations of immature teeth were improved by the use of a resorbable membrane, which caused an optimal functional fixation of the transplanted tooth.
Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.
Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen
2016-06-01
Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues.
Yang, Jingwen; Wan, Chunyan; Nie, Shuai; Jian, Shujuan; Sun, Zheyi; Zhang, Lu; Chen, Zhi
2013-12-01
Our previous study identified the appearance of autophagy in developing tooth germs, and suggested its possible association with apoptosis in odontogenesis. Beclin1 was recently indicated to play a central role in bridging autophagy and apoptosis, and occupied a key position in the process of development. This study hypothesized that Beclin1 may be involved, and act as the molecular basis of the connection between autophagy and apoptosis in odontogenesis. Immunohistochemical analysis showed the spatiotemporal expression pattern of Beclin1 in odontogenesis from embryonic (E) day 13.5 to postnatal (P) day 5.5. At E stages, Beclin1 was mainly immunolocalized in the cytoplasm of the cells in the enamel organ. Meanwhile, the nucleus localization of Beclin1 was detected in part of the stellate reticulum, outer and inner enamel epithelium, especially at E16.5 and E18.5. At P stages, Beclin1 was detected in the cytoplasm of the odontoblasts, besides the dental epithelium cells. Triple immunofluorescence analysis showed the partial colocalization of Beclin1, autophagic marker LC3, or activated caspase-3 in the E14.5 tooth germs, especially the Beclin1(+)LC3(+)Caspase-3(+) cells in the PEK. Furthermore, western blot analysis revealed that the full-length (60 kDa) and/or cleaved (50, 37, and 35 kDa) Beclin1 in the developing tooth germs. Taken together, our findings indicate that Beclin1 is involved, and might be responsible for the crosstalk between autophagy and apoptosis in mouse odontogenesis.
Soana, S; Gnudi, G; Bertoni, G
1999-12-01
The aim of this work was to study the ontogenetic process in teeth from their early appearance in the ossifying matrix of the mandible and maxilla, in different foetuses of scalar ages. Radiographic examinations of the skull and mandible hemisections were performed and the latero-medial (LM) and dorsoventral (DV) projections for the skull and mandible were analysed. A high-definition film-screen combination was used for this study. The exposure values ranged from 35 kV/6 mAs to 58 kV/10 mAs, according to the size of the skulls and their degree of ossification. The first dental germ observed was the P3, at 138-140 days of pregnancy. At 146 days, P2 and P4 dental germs were visible. At 160-168 days, the dental germ of the first deciduous incisor tooth (I1) appeared; at 180-188 days of pregnancy the germ of the second (I2), and at 224 days the germ of the third (I3), were detectable. At 275 days the dental germ of the mandibular first molar tooth (M1) appeared, while the maxillary M1, which was not visible radiographically, was represented by a jelly-like amorphous body within its alveolar cavity.
Differential expression of decorin and biglycan genes during mouse tooth development
NASA Technical Reports Server (NTRS)
Matsuura, T.; Duarte, W. R.; Cheng, H.; Uzawa, K.; Yamauchi, M.
2001-01-01
Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.
ClC-7 Deficiency Impairs Tooth Development and Eruption
Wang, He; Pan, Meng; Ni, Jinwen; Zhang, Yanli; Zhang, Yutao; Gao, Shan; Liu, Jin; Wang, Zhe; Zhang, Rong; He, Huiming; Wu, Buling; Duan, Xiaohong
2016-01-01
CLCN7 gene encodes the voltage gated chloride channel 7 (ClC-7) in humans. The mutations in CLCN7 have been associated with osteopetrosis in connection to the abnormal osteoclasts functions. Previously, we found that some osteopetrosis patients with CLCN7 mutations suffered from impacted teeth and root dysplasia. Here we set up two in vivo models under a normal or an osteoclast-poor environment to investigate how ClC-7 affects tooth development and tooth eruption. Firstly, chitosan-Clcn7-siRNA nanoparticles were injected around the first maxillary molar germ of newborn mice and caused the delay of tooth eruption and deformed tooth with root dysplasia. Secondly, E13.5 molar germs infected with Clcn7 shRNA lentivirus were transplanted under the kidney capsule and presented the abnormal changes in dentin structure, periodontal tissue and cementum. All these teeth changes have been reported in the patients with CLCN7 mutation. In vitro studies of ameloblasts, odontoblasts and dental follicle cells (DFCs) were conducted to explore the involved mechanism. We found that Clcn7 deficiency affect the differentiation of these cells, as well as the interaction between DFCs and osteoclasts through RANKL/OPG pathway. We conclude that ClC-7 may affect tooth development by directly targeting tooth cells, and regulate tooth eruption through DFC mediated osteoclast pathway. PMID:26829236
D'Antò, Vincenzo; Cantile, Monica; D'Armiento, Maria; Schiavo, Giulia; Spagnuolo, Gianrico; Terracciano, Luigi; Vecchione, Raffaela; Cillo, Clemente
2006-03-01
Homeobox-containing genes play a crucial role in odontogenesis. After the detection of Dlx and Msx genes in overlapping domains along maxillary and mandibular processes, a homeobox odontogenic code has been proposed to explain the interaction between different homeobox genes during dental lamina patterning. No role has so far been assigned to the Hox gene network in the homeobox odontogenic code due to studies on specific Hox genes and evolutionary considerations. Despite its involvement in early patterning during embryonal development, the HOX gene network, the most repeat-poor regions of the human genome, controls the phenotype identity of adult eukaryotic cells. Here, according to our results, the HOX gene network appears to be active in human tooth germs between 18 and 24 weeks of development. The immunohistochemical localization of specific HOX proteins mostly concerns the epithelial tooth germ compartment. Furthermore, only a few genes of the network are active in embryonal retromolar tissues, as well as in ectomesenchymal dental pulp cells (DPC) grown in vitro from adult human molar. Exposure of DPCs to cAMP induces the expression of from three to nine total HOX genes of the network in parallel with phenotype modifications with traits of neuronal differentiation. Our observations suggest that: (i) by combining its component genes, the HOX gene network determines the phenotype identity of epithelial and ectomesenchymal cells interacting in the generation of human tooth germ; (ii) cAMP treatment activates the HOX network and induces, in parallel, a neuronal-like phenotype in human primary ectomesenchymal dental pulp cells. 2005 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa
2011-02-18
Research highlights: {yields} Bioengineered teeth regulated the contact area of epithelium and mesenchyme. {yields} The crown width is regulated by the contact area of the epithelium and mesenchyme. {yields} This regulation is associated with cell proliferation and Sonic hedgehog expression. {yields} The cusp number is correlated with the crown width of the bioengineered tooth. {yields} Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the numbermore » and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.« less
Bassigny, F
1990-01-01
Traumatisms on the deciduous upper incisors could induce orthodontic indirect consequences on the permanent germ, dependent on his growth level and his malleability, dependent on connection between the root of deciduous incisor and the crown of permanent germ and according to the type of traumatism. According to those various data, it should be observed on the permanent incisor: germination of two germs, multiple odontoma, crown dilaceration, severe tipping of the crown with facial angulation, retention of the permanent germ with lack of root resorption of the deciduous teeth or simple cross-bite, without speaking of enamel defect.
Yalvac, M E; Ramazanoglu, M; Rizvanov, A A; Sahin, F; Bayrak, O F; Salli, U; Palotás, A; Kose, G T
2010-04-01
A number of studies have reported in the last decade that human tooth germs contain multipotent cells that give rise to dental and peri-odontal structures. The dental pulp, third molars in particular, have been shown to be a significant stem cell source. In this study, we isolated and characterized human tooth germ stem cells (hTGSCs) from third molars and assessed the expression of developmentally important transcription factors, such as oct4, sox2, klf4, nanog and c-myc, to determine their pluri-potency. Flow-cytometry analysis revealed that hTGSCs were positive for CD73, CD90, CD105 and CD166, but negative for CD34, CD45 and CD133, suggesting that these cells are mesenchymal-like stem cells. Under specific culture conditions, hTGSCs differentiated into osteogenic, adipogenic and neurogenic cells, as well as formed tube-like structures in Matrigel assay. hTGSCs showed significant levels of expression of sox2 and c-myc messenger RNA (mRNA), and a very high level of expression of klf4 mRNA when compared with human embryonic stem cells. This study reports for the first time that hTGSCs express developmentally important transcription factors that could render hTGSCs an attractive candidate for future somatic cell re-programming studies to differentiate germs into various tissue types, such as neurons and vascular structures. In addition, these multipotential hTGSCs could be important stem cell sources for autologous transplantation.
Dact1-3 mRNAs exhibit distinct expression domains during tooth development
Kettunen, Päivi; Kivimäe, Saul; Keshari, Pankaj; Klein, Ophir D.; Cheyette, Benjamin N.R.; Luukko, Keijo
2010-01-01
Wnt signaling is essential for tooth formation. Dact proteins modulate Wnt signaling by binding to the intracellular protein Dishevelled (Dvl). Comparison of all known mouse Dact genes, Dact1-3, from the morphological initiation of mandibular first molar development after the onset of the root formation using sectional in situ hybridization showed distinct, complementary and overlapping expression patterns for the studied genes. While Dact2 expression was restricted to the dental epithelium including the enamel knot signaling centers and tooth specific preameloblasts, Dact1 and Dact3 showed developmentally regulated expression in the dental mesenchyme. Both mRNAs were first detected in the presumptive dental mesenchyme. After being downregulated from the condensed dental mesenchyme of the bud stage tooth germ, Dact1 was upregulated in the dental follicle masenchyme at the cap stage and subsequently also in the dental papilla at the bell stage where the expression persisted to the postnatal stages. In contrast, Dact3 transcripts persisted throughout the dental mesenchymal tissue components including the tooth-specific cells, preodontoblasts before transcripts were largely downregulated from the tooth germ postnatally. Collectively these results suggest that Dact1 and -3 may contribute to early tooth formation by modulation of Wnt signaling pathways in the mesenchyme, including preodontoblasts, whereas Dact2 may play important signal-modulating roles in the adjacent epithelial cells including the enamel knot signaling centers and preameloblasts. Future loss-of-function studies will help elucidate whether any of these functions are redundant, particularly for Dact1 and Dact3. PMID:20170752
An evolutionary view on tooth development and replacement in wild Atlantic salmon (Salmo salar L.).
Huysseune, A; Witten, P E
2008-01-01
To gain an insight into the evolution of tooth replacement mechanisms, we studied the development of first-generation and replacement teeth on the dentary of wild Atlantic salmon (Salmo salar L.), a protacanthopterygian teleost, using serially sectioned heads of early posthatching stages as well as adults. First-generation teeth develop within the oral epithelium. The anlage of the replacement tooth is first seen as a placode-like thickening of the outer dental epithelium of the predecessor, at its lingual and caudal side. Ongoing development of the replacement tooth germ is characterized by the elaboration of a population of epithelial cells, termed here the middle dental epithelium, apposed to the inner dental epithelium on the lingual side of the tooth germ. Before the formation of the new successor, a single-layered outer dental epithelium segregates from the middle dental epithelium. The dental organs of the predecessor and the successor remain broadly interconnected. The absence of a discrete successional dental lamina in salmon stands in sharp contrast to what is observed in other teleosts, even those that share with salmon the extraosseous formation of replacement teeth. The mode of tooth replacement in Atlantic salmon displays several characters similar to those observed in the shark Squalus acanthias. To interpret similarities in tooth replacement between Atlantic salmon and chondrichthyans as a case of convergence, or to see them as a result of a heterochronic shift, requires knowledge on the replacement process in more basal actinopterygian lineages. The possibility that the middle dental epithelium functionally substitutes for a successional lamina, and could be a source of stem cells, whose descendants subsequently contribute to the placode of the new replacement tooth, needs to be explored.
Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping
2015-04-01
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Yu, Fang; Cai, Wenping; Jiang, Beizhan; Xu, Laijun; Liu, Shangfeng; Zhao, Shouliang
2018-01-01
Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth-related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA-seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292-4293-Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA-seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene-based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high-resolution reference for treating other syndromes associated with supernumerary teeth. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Eap, Sandy; Bécavin, Thibault; Keller, Laetitia; Kökten, Tunay; Fioretti, Florence; Weickert, Jean-Luc; Deveaux, Etienne; Benkirane-Jessel, Nadia; Kuchler-Bopp, Sabine
2014-03-01
Current strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes and also reduce patient suffering. A unique nanofibrous and active implant for bone-tooth unit regeneration and also the innervation of this bioengineered tooth are demonstrated. A nanofibrous polycaprolactone membrane is functionalized with neural growth factor, along with dental germ, and tooth innervation follows. Such innervation allows complete functionality and tissue homeostasis of the tooth, such as dentinal sensitivity, odontoblast function, masticatory forces, and blood flow. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deregulated HOX genes in ameloblastomas are located in physical contiguity to keratin genes.
Schiavo, Giulia; D'Antò, Vincenzo; Cantile, Monica; Procino, Alfredo; Di Giovanni, Stefano; Valletta, Rossella; Terracciano, Luigi; Baumhoer, Daniel; Jundt, Gernot; Cillo, Clemente
2011-11-01
The expression of the HOX gene network in mid-stage human tooth development mostly concerns the epithelial tooth germ compartment and involves the C and D HOX loci. To further dissect the HOX gene implication with tooth epithelium differentiation we compared the expression of the whole HOX network in human ameloblastomas, as paradigm of epithelial odontogenic tumors, with tooth germs. We identified two ameloblastoma molecular types with respectively low and high number of active HOX C genes. The highly expressing HOX C gene ameloblastomas were characterized by a strong keratinized phenotype. Locus C HOX genes are located on chromosome 12q13-15 in physical contiguity with one of the two keratin gene clusters included in the human genome. The most posterior HOX C gene, HOX C13, is capable to interact with hair keratin genes located on the other keratin gene cluster in physical contiguity with the HOX B locus on chromosome 17q21-22. Inside the HOX C locus, a 2.2 kb ncRNA (HOTAIR) able to repress transcription, in cis, along the entire HOX C locus and, in trans, at the posterior region of the HOX D locus has recently been identified. Interestingly both loci are deregulated in ameloblastomas. Our finding support an important role of the HOX network in characterizing the epithelial tooth compartment. Furthermore, the physical contiguity between locus C HOX and keratin genes in normal tooth epithelium and their deregulation in the neoplastic counterparts suggest they may act on the same mechanism potentially involved with epithelial tumorigenesis. Copyright © 2011 Wiley Periodicals, Inc.
... and deeper over time. Cavities are also called dental caries (say: KARE-eez), and if you have a ... made up mostly of the germs that cause tooth decay. The bacteria in your mouth make acids and ...
Porntaveetus, Thantrira; Abid, Mushriq F; Theerapanon, Thanakorn; Srichomthong, Chalurmpon; Ohazama, Atsushi; Kawasaki, Katsushige; Kawasaki, Maiko; Suphapeetiporn, Kanya; Sharpe, Paul T.; Shotelersuk, Vorasuk
2018-01-01
Kabuki syndrome is a rare genetic disorder characterized by distinct dysmorphic facial features, intellectual disability, and multiple developmental abnormalities. Despite more than 350 documented cases, the oro-dental spectrum associated with kabuki syndrome and expression of KMT2D (histone-lysine N-methyltransferase 2D) or KDM6A (lysine-specific demethylase 6A) genes in tooth development have not been well defined. Here, we report seven unrelated Thai patients with Kabuki syndrome having congenital absence of teeth, malocclusion, high-arched palate, micrognathia, and deviated tooth shape and size. Exome sequencing successfully identified that six patients were heterozygous for mutations in KMT2D, and one in KDM6A. Six were novel mutations, of which five were in KMT2D and one in KDM6A. They were truncating mutations including four frameshift deletions and two nonsense mutations. The predicted non-functional KMT2D and KDM6A proteins are expected to cause disease by haploinsufficiency. Our study expands oro-dental, medical, and mutational spectra associated with Kabuki syndrome. We also demonstrate for the first time that KMT2D and KDM6A are expressed in the dental epithelium of human tooth germs. PMID:29725259
Sawada, Takashi
2015-12-01
Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.
The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.
Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo
2014-05-02
The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.
The junctional epithelium originates from the odontogenic epithelium of an erupted tooth
Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo
2014-01-01
The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period. PMID:24785116
James, Elizabeth Prabha; Johns, Dexton Antony; Johnson, Ki; Maroli, Ramesh Kumar
2014-05-01
Geminated teeth are consequences of developmental anomalies leading to joined elements, due to incomplete attempt of one tooth germ to divide into two. This case report describes successful endodontic treatment of an unaesthetic geminated permanent maxillary lateral incisor tooth and its esthetic rehabilitation using all ceramic crowns. Newer imaging technique like cone beam computed tomography was taken for the better understanding of the complicated root canal morphology.
Effect of isotretinoin on tooth germ and palate development in mouse embryos.
Balducci-Roslindo, E; Silvério, K G; Jorge, M A; Gonzaga, H F
2001-01-01
Vitamin A and its derivatives, retinoic acid, tretinoin and isotretinoin, are currently used in dermatological treatments. The administration of high doses of this vitamin provokes congenital malformations in mice: cleft palate, maxillary and mandibular hypoplasia and total or partial fusion of the maxillary incisors. This study compares the tooth germs of the first maxillary and mandibular molars of fetal mice submitted to isotretinoin during organogenesis. Twelve 60-day-old female Mus musculus were divided into two groups on the 7th day of pregnancy: treated group--1 mg isotretinoin per kg body weight, dissolved in vegetable oil, was administered from the 7th to the 13th day of pregnancy; control group--vegetable oil in equivalent volume was administered orally for the same period. On the 16th day of pregnancy, the females were sacrificed, the fetuses were removed and their heads amputated. After standard laboratory procedures, 6-micron thick serial slices were stained with hematoxylin and eosin for optical microscopy examination. The results showed that both groups had closed palates with no reminiscence of epithelial cells; however, the first molar germs of the isotretinoin-treated animals showed delayed development compared to the control animals.
Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar
Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William
2016-01-01
Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation. PMID:27494172
Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells.
Taşlı, P Neslihan; Aydın, Safa; Yalvaç, Mehmet Emir; Sahin, Fikrettin
2014-03-01
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.
Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar.
Tao, Jiang; Zhai, Yue; Park, Hyun; Han, Junli; Dong, Jianhui; Xie, Ming; Gu, Ting; Lewi, Keidren; Ji, Fang; Jia, William
2016-01-01
Rhythmic incremental growth lines and the presence of melatonin receptors were discovered in tooth enamel, suggesting possible role of circadian rhythm. We therefore hypothesized that circadian rhythm may regulate enamel formation through melatonin receptors. To test this hypothesis, we examined expression of melatonin receptors (MTs) and amelogenin (AMELX), a maker of enamel formation, during tooth germ development in mouse. Using qRT-PCR and immunocytochemistry, we found that mRNA and protein levels of both MTs and AMELX in normal mandibular first molar tooth germs increased gradually after birth, peaked at 3 or 4 day postnatal, and then decreased. Expression of MTs and AMELX by immunocytochemistry was significantly delayed in neonatal mice raised in all-dark or all-light environment as well as the enamel development. Furthermore, development of tooth enamel was also delayed showing significant immature histology in those animals, especially for newborn mice raised in all daylight condition. Interestingly, disruption in circadian rhythm in pregnant mice also resulted in delayed enamel development in their babies. Treatment with melatonin receptor antagonist 4P-PDOT in pregnant mice caused underexpression of MTs and AMELX associated with long-lasting deficiency in baby enamel tissue. Electromicroscopic evidence demonstrated increased necrosis and poor enamel mineralization in ameloblasts. The above results suggest that circadian rhythm is important for normal enamel development at both pre- and postnatal stages. Melatonin receptors were partly responsible for the regulation.
Karataş, Merve Safa; Sönmez, Işıl Şaroğlu
2013-01-01
Objective To report the effects of a primary tooth trauma on the underlying permanent tooth germ. Clinical Presentation and Intervention A 12-year-old girl was referred to our clinic with a complaint of poor aesthetic appearance. The crown of the permanent maxillary left central tooth exhibited an increased clinical crown height with an ‘enamel hyperplasia’ in the cervical third and had hypoplastic enamel with yellowish-brown discoloration extending from the middle third to the incisal edge. Radiographic examination revealed that the permanent maxillary left central tooth had abnormal root morphology with root dilaceration. The patient revealed a history of trauma at the age of 4 years. An aesthetic restoration with light-curing resin composite was performed on the vestibular surface of the maxillary left permanent central tooth. Conclusion Sequelae of a primary tooth trauma on the permanent tooth were restored. We recommend that parents should be aware of the consequences of untreated trauma to a primary tooth. Educational and preventive programmes on dental trauma are required to educate parents about emergency knowledge and sequelae of dental trauma. PMID:23689528
Endodontic treatment of a fused tooth. Report of a case.
Gallottini, L; Barbato Bellatini, R C; Migliau, G
2007-01-01
Dental fusion, a rare developmental anomaly present in 0.2% of the general population, consists of the union of two teeth originating from two different tooth germs. The irregular coronal morphology and the complex endodontic anatomy, characterized by the partial or total union of the pulp chambers, together with the peculiarity of the root canal systems, make diagnosis, therapy and rehabilitation difficult. The authors describe the endodontic treatment of a permanent lower second molar fused with a third molar and having four root canals.
In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.
Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin
2015-01-01
Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.
Mature orbital teratoma with an ectopic tooth and primary anophthalmos.
Chawla, Bhavna; Chauhan, Kanchan; Kashyap, Seema
2013-02-01
To describe the clinicopathologic features and management of an unusual case of orbital teratoma. A 7-year-old girl presented with a history of an orbital mass since birth. CT scan showed a large mass lesion involving the right orbit, with absence of the eyeball. An ectopic tooth was identified within the tumor. Lid-sparing exenteration surgery was performed. Histopathologic examination of the excised mass showed presence of elements from all three germ layers, consistent with a diagnosis of mature orbital teratoma. Normal ocular structures were not identified on histopathology. At one year follow-up, there was no tumor recurrence. We report an extremely rare and interesting case of a mature orbital teratoma, which was associated with primary anophthalmos and an ectopic tooth.
Bologna-Molina, R; Mikami, T; Pereira-Prado, V; Tapia-Repetto, G; Pires, F R; Carlos, R; Mosqueda-Taylor, A
2018-03-01
Primordial odontogenic tumor (POT) is composed of variably cellular myxoid connective tissue, surrounded by cuboidal to columnar odontogenic epithelium resembling the inner epithelium of the enamel organ, which often invaginates into the underlying connective tissue. The tumor is delimited at least partially by a thin fibrous capsule. It derives from the early stages of tooth development. Syndecan-1 is a heparan sulfate proteoglycan that has a physiological role in several cellular functions, including maintenance of the epithelial architecture, cell-to-cell adhesion and interaction of cells with extracellular matrix, and with diverse growth factors, stimulating cell proliferation. Ki-67 is considered the gold standard as a cell proliferation marker. The aim of this study was to examine the expression of Syndecan-1 and Ki-67 proliferation index in POT and normal tooth germs to better understand the biological behavior of this tumor. Results showed that Syndecan-1 was more intensely expressed in subepithelial mesenchymal areas of POT, in a pattern that resembles the early stages of tooth development. The cell proliferation index (4.1%) suggests that POT is a slow growing tumor. Syndecan-1 expression in tooth germs in late cap and early bell stages was similar to POT, showing immunopositivity in subepithelial mesenchymal condensed areas. The immunohistochemical findings showed a pattern in which the population of subepithelial mesenchymal cells exhibited greater proliferative activity than the central portion of the dental papilla. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Developmentally regulated changes in phospholipid composition in murine molar tooth.
Dunglas, C; Septier, D; Carreau, J P; Goldberg, M
1999-08-01
In order to explore the possibility that phospholipids are differently expressed during the cascade of events leading to tooth formation, we decided to carry out simultaneous biochemical, histological and electron histochemical studies. High performance thin-layer chromatography and gas-liquid chromatography were used to compare the composition of embryonic mouse first molar tooth germs at day 18 of gestation (E18) and at birth (D1), erupting teeth at day 7 (D7) and erupted molars at day 21 (D21). For the latter, non-demineralized and EDTA-demineralized lipid extracts were analysed separately. Moreover, an ultrahistochemical study was carried out using the iodoplatinate reaction which retains and visualizes phospholipids. Developmentally regulated changes occurred and were closely correlated with an increase in cell membrane phospholipids. Gradual accumulation of phospholipids was identified in the extracellular matrix, at an early stage of tooth germ development within the basement membrane and later, as predentine/dentine and enamel components participating in mineralization processes. Matrix vesicles transiently present in dentine were partly responsible for the lipids that were detected. A first group of phospholipids including phosphatidylcholine as the major membrane-associated phospholipid and phosphatidylinositol as the intracellular second messenger increased by a factor of 2.3 between E18 and D21. This increase is probably associated with cell lengthening and was relatively modest compared with the higher increase detected for a second group of phospholipids, namely phosphatidylethanolamine (x4.8), phosphatidylserine (x 5.9) and sphingomyelin (x5.4). This second group of extracellular matrix-associated phospholipids constituted 68% of the demineralized lipid extract and, therefore, contributes to the mineralization of dental tissues.
Apoptotic Signaling in Mouse Odontogenesis
Svandova, Eva; Tucker, Abigail S.
2012-01-01
Abstract Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members. PMID:22204278
Li, Tian Xia; Yuan, Jie; Chen, Yan; Pan, Li Jie; Song, Chun; Bi, Liang Jia; Jiao, Xiao Hui
2013-01-01
The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research. PMID:23762828
Taşlı, Pakize Neslihan; Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin
2013-06-01
Stem cell technology has been a great hope for the treatment of many common problems such as Parkinson's disease, Alzheimer's disease, diabetes, cancer, and tissue regeneration. Therefore, the main challenge in hard tissue engineering is to make a successful combination of stem cells and efficient inductors in the concept of stem cell differentiation into odontogenic and osteogenic cell types. Although some boron derivatives have been reported to promote bone and teeth growth in vivo, the molecular mechanism of bone formation has not been elucidated yet. Different concentrations of sodium pentaborate pentahydrate (NaB) were prepared for the analysis of cell toxicity and differentiation evaluations. The odontogenic, osteogenic differentiation and biomineralization of human tooth germ stem cells (hTGSCs) were evaluated by analyzing the mRNA expression levels, odontogenic and osteogenic protein expressions, alkaline phosphatase (ALP) activity, mineralization, and calcium deposits. The NaB-treated group displayed the highest ALP activity and expression of osteo- and odontogenic-related genes and proteins compared to the other groups and baseline. In the current study, increased in vitro odontogenic and osteogenic differentiation capacity of hTGSCs by NaB application has been shown for the first time. The study offers considerable promise for the development of new scaffold systems combined with NaB in both functional bone and tooth tissue engineering.
WNT10A mutation results in severe tooth agenesis in a family of three sisters.
Abid, M F; Simpson, M A; Barbosa, I A; Seppala, M; Irving, M; Sharpe, P T; Cobourne, M T
2018-06-21
To identify the genetic basis of severe tooth agenesis in a family of three affected sisters. A family of three sisters with severe tooth agenesis was recruited for whole-exome sequencing to identify potential genetic variation responsible for this penetrant phenotype. The unaffected father was tested for specific mutations using Sanger sequencing. Gene discovery was supplemented with in situ hybridization to localize gene expression during human tooth development. We report a nonsense heterozygous mutation in exon 2 of WNT10A c.321C>A[p.Cys107*] likely to be responsible for the severe tooth agenesis identified in this family through the creation of a premature stop codon, resulting in truncation of the amino acid sequence and therefore loss of protein function. In situ hybridization showed expression of WNT10A in odontogenic epithelium during the early and late stages of human primary tooth development. WNT10A has previously been associated with both syndromic and non-syndromic forms of tooth agenesis, and this report further expands our knowledge of genetic variation underlying non-syndromic forms of this condition. We also demonstrate expression of WNT10A in the epithelial compartment of human tooth germs during development. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Abduweli, Dawud; Baba, Otto; Tabata, Makoto J; Higuchi, Kazunori; Mitani, Hiroshi; Takano, Yoshiro
2014-04-01
The small-sized teleost fish medaka, Oryzias latipes, has as many as 1000 pharyngeal teeth undergoing continuous replacement. In this study, we sought to identify the tooth-forming units and determine its replacement cycles, and further localize odontogenic stem cell niches in the pharyngeal dentition of medaka to gain insights into the mechanisms whereby continuous tooth replacement is maintained. Three-dimensional reconstruction of pharyngeal epithelium and sequential fluorochrome labeling of pharyngeal bones and teeth indicated that the individual functional teeth and their successional teeth were organized in families, each comprising up to five generations of teeth and successional tooth germs, and that the replacement cycle of functional teeth was approximately 4 weeks. BrdU label/chase experiments confirmed the existence of clusters of label-retaining epithelial cells at the posterior end of each tooth family where the expression of pluripotency marker Sox2 was confirmed by in situ hybridization. Label-retaining cells were also identified in the mesoderm immediately adjacent to the posterior end of each tooth family. These data suggest the importance of existence of slow-cycling dental epithelial cells and Sox2 expressions at the posterior end of each tooth family to maintain continuous tooth formation and replacement in the pharyngeal dentition of medaka.
Liu, Lipei; Chen, Weiting; Li, Lefeng; Xu, Fangfang; Jiang, Beizhan
2017-12-01
Chondroitin sulfate proteoglycan (CSPG) is an important component of extracellular matrix (ECM), it is composed of a core protein and one or more chondroitin sulfate glycosaminoglycan side chains (CS-GAGs). To investigate the roles of its CS-GAGs in dentinogenesis, the mouse mandibular first molar tooth germs at early bell stage were cultivated with or without β-xyloside. As expected, the CS-GAGs were inhibited on their incorporation to CSPGs by β-xyloside, accompanied by the change of morphology of the cultured tooth germs. The histological results and the transmission electron microscopy (TEM) investigation indicated that β-xyloside exhibited obvious inhibiting effects on odontoblasts differentiation compared with the control group. Meanwhile the results of immunohistochemistry, in situ hybridization and quantitative RT-PCR for type I collagen, dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein, the products of differentiated odontoblasts, further proved that odontoblasts differentiation was inhibited. Collagen fibers detected in TEM decreased and arranged in disorder as well. Thus we conclude that the inhibition of CS-GAGs incorporation to CSPGs can affect odontoblast differentiation in cultured embryonic mouse molars.
Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei
2015-10-01
Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.
Intrusive luxation in primary teeth – Review of literature and report of a case
Gupta, Megha
2011-01-01
Luxation injuries such as intrusion are commonly seen in the primary dentition. Intrusion drives the tooth deeper into the alveolar socket, which results in damage to the pulp and peridontium. Difficulty in gaining compliance from a very young child and the risk of damaging the permanent tooth germ makes the management of these injuries challenging. Careful clinical and radiographic examination along with regular follow-up is essential. A case of intrusive luxation to the maxillary central incisor in a 3-year-old patient is reported. Spontaneous reeruption was noted 4 months after injury, but the tooth had developed an abscess and external root resorption. Hence, extraction of the tooth was done and an anterior esthetic fixed space maintainer was placed. Traumatic injuries to the primary dentition should not be ignored by the parents or by the dentist. The paper also includes a literature review of intrusive luxation in the primary dentition. PMID:23960512
Hedgehog signaling is required at multiple stages of zebrafish tooth development.
Jackman, William R; Yoo, James J; Stock, David W
2010-11-30
The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.
Noninvasive Prenatal Diagnosis of Hypohidrotic Ectodermal Dysplasia by Tooth Germ Sonography.
Wünsche, S; Jüngert, J; Faschingbauer, F; Mommsen, H; Goecke, T; Schwanitz, K; Stepan, H; Schneider, H
2015-08-01
Hypohidrotic ectodermal dysplasia, a potentially life-threatening heritable disorder, may be recognized already in utero by characteristic features such as oligodontia and mandibular hypoplasia. As therapeutic options and prognosis depend on the time point of diagnosis, early recognition was attempted during routine prenatal ultrasound examinations. Fetuses of nine pregnant women (one triplet and eight singleton pregnancies) with family histories of hypohidrotic ectodermal dysplasia were investigated by sonography between the 20th and 24th week of gestation. In 4 male and 2 female fetuses reduced amounts of tooth germs were detected, whereas 5 fetal subjects showed the normal amount. Three-dimensional ultrasound evaluation revealed mandibular hypoplasia in 5 of the 6 fetuses with oligodontia. Molecular genetic analysis and/or clinical findings after birth confirmed the prenatal sonographic diagnosis in each subject. In subjects with a family history of hypohidrotic ectodermal dysplasia, the diagnosis of this rare condition can be established noninvasively by sonography in the second trimester of pregnancy. Early recognition of the disorder may help to prevent dangerous hyperthermic episodes in infancy and may allow timely therapeutic interventions. © Georg Thieme Verlag KG Stuttgart · New York.
Wnt signaling during tooth replacement in zebrafish (Danio rerio): pitfalls and perspectives
Huysseune, Ann; Soenens, Mieke; Elderweirdt, Fien
2014-01-01
The canonical (β-catenin dependent) Wnt signaling pathway has emerged as a likely candidate for regulating tooth replacement in continuously renewing dentitions. So far, the involvement of canonical Wnt signaling has been experimentally demonstrated predominantly in amniotes. These studies tend to show stimulation of tooth formation by activation of the Wnt pathway, and inhibition of tooth formation when blocking the pathway. Here, we report a strong and dynamic expression of the soluble Wnt inhibitor dickkopf1 (dkk1) in developing zebrafish (Danio rerio) tooth germs, suggesting an active repression of Wnt signaling during morphogenesis and cytodifferentiation of a tooth, and derepression of Wnt signaling during start of replacement tooth formation. To further analyse the role of Wnt signaling, we used different gain-of-function approaches. These yielded disjunct results, yet none of them indicating enhanced tooth replacement. Thus, masterblind (mbl) mutants, defective in axin1, mimic overexpression of Wnt, but display a normally patterned dentition in which teeth are replaced at the appropriate times and positions. Activating the pathway with LiCl had variable outcomes, either resulting in the absence, or the delayed formation, of first-generation teeth, or yielding a regular dentition with normal replacement, but no supernumerary teeth or accelerated tooth replacement. The failure so far to influence tooth replacement in the zebrafish by perturbing Wnt signaling is discussed in the light of (i) potential technical pitfalls related to dose- or time-dependency, (ii) the complexity of the canonical Wnt pathway, and (iii) species-specific differences in the nature and activity of pathway components. Finally, we emphasize the importance of in-depth knowledge of the wild-type pattern for reliable interpretations. It is hoped that our analysis can be inspiring to critically assess and elucidate the role of Wnt signaling in tooth development in polyphyodonts. PMID:25339911
A Rare Occurrence of Geminated-Taloned Maxillary Lateral Incisor
Kayal, Vizhi G
2012-01-01
ABSTRACT The talon cusp is a developmental anomaly characterized by the presence of an accessory cusp like structure projecting from the cingulum area of the anterior teeth. Gemination is an anomaly caused by a single tooth germ that attempted to divide during its development. These developmental anomalies may cause clinical problems including esthetic impairment, pain, caries and tooth crowding. Co-occurrence of two anomalies in a teeth is rare. This paper presents an unusual case of talon cusp on geminated permanent lateral incisor. How to cite this article: Neeraja R, Kayal VG. A Rare Occurrence of Geminated-Taloned Maxillary Lateral Incisor. Int J Clin Pediatr Dent 2012;5(2):136-138. PMID:25206153
Analysis of expression patterns of IGF-1, caspase-3 and HSP-70 in developing human tooth germs.
Kero, Darko; Kalibovic Govorko, Danijela; Medvedec Mikic, Ivana; Vukojevic, Katarina; Cigic, Livia; Saraga-Babic, Mirna
2015-10-01
To analyze expression patterns of IGF-1, caspase-3 and HSP-70 in human incisor and canine tooth germs during the late bud, cap and bell stages of odontogenesis. Head areas or parts of jaw containing teeth from 10 human fetuses aged between 9th and 20th developmental weeks were immunohistochemically analyzed using IGF-1, active caspase-3 and HSP-70 markers. Semi-quantitative analysis of each marker's expression pattern was also performed. During the analyzed period, IGF-1 and HSP-70 were mostly expressed in enamel organ. As development progressed, expression of IGF-1 and HSP-70 became more confined to differentiating tissues in the future cusp tip area, as well as in highly proliferating cervical loops. Few apoptotic bodies highly positive to active caspase-3 were observed in enamel organ and dental papilla from the cap stage onward. However, both enamel epithelia moderately expressed active caspase-3 throughout the investigated period. Expression patterns of IGF-1, active caspase-3 and HSP-70 imply importance of these factors for early human tooth development. IGF-1 and HSP-70 have versatile functions in control of proliferation, differentiation and anti-apoptotic protection of epithelial parts of human enamel organ. Active caspase-3 is partially involved in formation and apoptotic removal of primary enamel knot, although present findings might reflect its ability to perform other non-death functions such as differentiation of hard dental tissues secreting cells and guidance of ingrowth of proliferating cervical loops. Copyright © 2015 Elsevier Ltd. All rights reserved.
Varanoid Tooth Eruption and Implantation Modes in a Late Cretaceous Mosasaur.
Liu, Min; Reed, David A; Cecchini, Giancarlo M; Lu, Xuanyu; Ganjawalla, Karan; Gonzales, Carol S; Monahan, Richard; Luan, Xianghong; Diekwisch, Thomas G H
2016-01-01
Erupting teeth are some of the oldest witnesses of developmental processes in the vertebrate fossil record and provide an important resource for vertebrate cladistics. Here, we have examined a mosasaur jaw fragment from central Texas using ultrathin ground section histology and 3D tomographic imaging to assess features critical for the cladistic placement of mosasaurs among varanoids vs. snakes: (i) the orientation of replacement teeth compared to the major tooth axis, (ii) the occurrence of resorption pits, and (iii) the mode of tooth implantation/attachment to the tooth bearing element (TBE). The replacement tooth studied here developed in an inclined position slightly distal of the deciduous parent tooth, similar to another varanoid squamate, the Gila monster Heloderma suspectum. Ground sections and tomographs also demonstrated that the replacement tooth attachment apparatus was entirely intact and that there was no evidence of mechanical deformation. Sections and tomographs further illustrated that the replacement tooth was located within a bony crypt and the inclination of the crypt matched the inclination of the replacement tooth. These preparations also revealed the presence of a resorption pit within the boundaries of the deciduous tooth that surrounded the developing replacement tooth. This finding suggests that developing mosasaur teeth developed within the walls of resorption pits similar to varanoid tooth germs and unlike developing snake teeth which are surrounded by fibrous connective tissue integuments. Finally, mosasaurs featured pseudo-thecodont tooth implantation with teeth anchored within a socket of mineralized tissue by means of a mineralized periodontal ligament. Together, these data indicate that the moderate inclination of the erupting mosasaur tooth studied here is neither a result of postmortem displacement nor a character representative of snakes, but rather a shared character between Mosasaurs and other varanoids such as Heloderma. In conjunction with the presence of resorption pits and the evidence for pseudothecodont tooth implantation, the tooth eruption and implantation characters described in the present study either place mosasaurs among the varanoids or suggest convergent evolution mechanisms between both clades, with mosasaurs evolving somewhat independently from a common varanoid ancestor.
Varanoid Tooth Eruption and Implantation Modes in a Late Cretaceous Mosasaur
Liu, Min; Reed, David A.; Cecchini, Giancarlo M.; Lu, Xuanyu; Ganjawalla, Karan; Gonzales, Carol S.; Monahan, Richard; Luan, Xianghong
2016-01-01
Erupting teeth are some of the oldest witnesses of developmental processes in the vertebrate fossil record and provide an important resource for vertebrate cladistics. Here, we have examined a mosasaur jaw fragment from central Texas using ultrathin ground section histology and 3D tomographic imaging to assess features critical for the cladistic placement of mosasaurs among varanoids vs. snakes: (i) the orientation of replacement teeth compared to the major tooth axis, (ii) the occurrence of resorption pits, and (iii) the mode of tooth implantation/attachment to the tooth bearing element (TBE). The replacement tooth studied here developed in an inclined position slightly distal of the deciduous parent tooth, similar to another varanoid squamate, the Gila monster Heloderma suspectum. Ground sections and tomographs also demonstrated that the replacement tooth attachment apparatus was entirely intact and that there was no evidence of mechanical deformation. Sections and tomographs further illustrated that the replacement tooth was located within a bony crypt and the inclination of the crypt matched the inclination of the replacement tooth. These preparations also revealed the presence of a resorption pit within the boundaries of the deciduous tooth that surrounded the developing replacement tooth. This finding suggests that developing mosasaur teeth developed within the walls of resorption pits similar to varanoid tooth germs and unlike developing snake teeth which are surrounded by fibrous connective tissue integuments. Finally, mosasaurs featured pseudo-thecodont tooth implantation with teeth anchored within a socket of mineralized tissue by means of a mineralized periodontal ligament. Together, these data indicate that the moderate inclination of the erupting mosasaur tooth studied here is neither a result of postmortem displacement nor a character representative of snakes, but rather a shared character between Mosasaurs and other varanoids such as Heloderma. In conjunction with the presence of resorption pits and the evidence for pseudothecodont tooth implantation, the tooth eruption and implantation characters described in the present study either place mosasaurs among the varanoids or suggest convergent evolution mechanisms between both clades, with mosasaurs evolving somewhat independently from a common varanoid ancestor. PMID:27242535
Ning, Huiying; Liu, Hongwei
2011-08-01
The purpose of this study was to establish an indirect co-culture system of rat apical tooth germ-conditioned medium (APTG-CM) and periodontal ligament cells (PDLCs). PDLCs were isolated and cultured through the method of enzyme-digestion. Vimentin and cytokeratin(CK) were used to demonstrate the cells' mesenchymal derivation. Co-culture system of APTG-CM and PDLCs for 28 days, osteocalcin (OCN), collagen type I (COL I) and bone sialoprotein (BSP) were detected in PDLCs by immunocytochemistry. Morphological changes were observed by inverted microscope. With building a transplant by dental tube, periodontal ligament cell sheet and ceramic biologic bone (CBB) in vitro, then, the combinations of dental tube and PDLCs incubated by APTG-CM were implanted subcutaneously into athymic mice for 8 weeks. This study demonstrated that cellular cementum-like tissue formed along the dentin surface and CBB, with fibrous tissue adjacent or inserted into CBB in vivo. PDLCs were grown better in the CBB than in dentin tubes. And the vertical fibers can't embed in the control. PDLCs, embedded within this APTG-CM, exhibite several phenotypic characteristics of cementoblast lineages. Thereby it contributes to the main processes of periodontal tissue regeneration with rat APTG-CM.
Characterization of the fibrillar layer at the epithelial-mesenchymal junction in tooth germs.
Sawada, T; Inoue, S
1994-12-01
A characteristic layer containing numerous fibrils is associated with the basement membrane of the inner enamel epithelium during the early stages of odontogenesis. However, its nature is not well understood. In this study, the layer was examined with high-resolution electron microscopy and immuno-histochemical staining. Tooth germs of monkeys (Macaca fuscata) were studied and each fibril in the layer was found to be a tubular structure, 8-9 nm in width, resembling a "basotubule", the tubular structure previously observed in various basement membranes. The space between the fibrils was filled with a network formed by irregular anastomosing strands with an average thickness of 4 nm; these strands resembled the "cords" forming the network in the lamina densa of basement membranes. After immunoperoxidase staining, fine threads immunoreactive for laminin staining were seen winding along the strands of the network, and 1.5-nm wide filaments, immunoreactive for type IV collagen, took the form of a network arrangement. The 5-nm-wide ribbon-like structures associated with the strands were identified as heparan sulfate proteoglycan by immunostaining. These results are similar to those obtained for the cord network of the lamina densa. The "fibrillar layer" therefore represents a highly specialized lamina fibroreticularis of the basement membrane of the inner enamel epithelium, and rich in basotubules.
Fgf signaling is required for zebrafish tooth development.
Jackman, William R; Draper, Bruce W; Stock, David W
2004-10-01
We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme.
Morphological study of tooth development in podoplanin-deficient mice.
Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko
2017-01-01
Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.
Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations
Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi
2016-01-01
The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418
Zahradnicek, Oldrich; Horacek, Ivan; Tucker, Abigail S
2012-01-01
This paper describes tooth development in a basal squamate, Paroedura picta. Due to its reproductive strategy, mode of development and position within the reptiles, this gecko represents an excellent model organism for the study of reptile development. Here we document the dental pattern and development of non-functional (null generation) and functional generations of teeth during embryonic development. Tooth development is followed from initiation to cytodifferentiation and ankylosis, as the tooth germs develop from bud, through cap to bell stages. The fate of the single generation of non-functional (null generation) teeth is shown to be variable, with some teeth being expelled from the oral cavity, while others are incorporated into the functional bone and teeth, or are absorbed. Fate appears to depend on the initiation site within the oral cavity, with the first null generation teeth forming before formation of the dental lamina. We show evidence for a stratum intermedium layer in the enamel epithelium of functional teeth and show that the bicuspid shape of the teeth is created by asymmetrical deposition of enamel, and not by folding of the inner dental epithelium as observed in mammals. PMID:22780101
The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development
Yuan, Guohua; Yang, Guobin; Zheng, Yuqian; Zhu, Xiaojing; Chen, Zhi; Zhang, Zunyi; Chen, YiPing
2015-01-01
BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development. PMID:25428587
Moriyama, Keita; Watanabe, Shun; Iida, Midori; Sahara, Noriyuki
2010-04-01
Sicyopterus japonicus (Teleostei, Gobiidae) possesses a unique upper jaw dentition different from that known for any other teleosts. In the adults, many (up to 30) replacement teeth, from initiation to attachment, are arranged orderly in a semicircular-like strand within a capsule of connective tissue on the labial side of each premaxillary bone. We have applied histological, ultrastructural, and three-dimensional imaging from serial sections to obtain insights into the distribution and morphological features of the dental lamina in the upper jaw dentition of adult S. japonicus. The adult fish has numerous permanent dental laminae, each of which is an infolding of the oral epithelium at the labial side of the functional tooth and forms a thin plate-like structure with a wavy contour. All replacement teeth of a semicircular-like strand are connected to the plate-like dental lamina by the outer dental epithelium and form a tooth family; neighboring tooth families are completely separated from each other. The new tooth germ directly buds off from the ventro-labial margin of the dental lamina, whereas no distinct free end of the dental lamina is present, even adjacent to this region. Cell proliferation concentrated at the ventro-labial margin of the dental lamina suggests that this region is the site for repeated tooth initiation. During tooth development, the replacement tooth migrates along a semicircular-like strand and eventually erupts through the dental lamina into the oral epithelium at the labial side of the functional tooth. This unique thin plate-like permanent dental lamina and the semicircular-like strand of replacement teeth in the upper jaw dentition of adult S. japonicus probably evolved as a dental adaptation related to the rapid replacement of teeth dictated by the specialized feeding habit of this algae-scraping fish.
Bemis, William E; Giuliano, Anne; McGuire, Betty
2005-01-01
Tooth replacement poses many questions about development, pattern formation, tooth attachment mechanisms, functional morphology and the evolution of vertebrate dentitions. Although most vertebrate species have polyphyodont dentitions, detailed knowledge of tooth structure and replacement is poor for most groups, particularly actinopterygians. We examined the oral dentition of the bluefish, Pomatomus saltatrix, a pelagic and coastal marine predator, using a sample of 50 individuals. The oral teeth are located on the dentary and premaxillary bones, and we scored each tooth locus in the dentary and premaxillary bones using a four-part functional classification: absent (A), incoming (I), functional (F=fully ankylosed) or eroding (E). The homodont oral teeth of Pomatomus are sharp, deeply socketed and firmly ankylosed to the bone of attachment. Replacement is intraosseus and occurs in alternate tooth loci with long waves of replacement passing from rear to front. The much higher percentage of functional as opposed to eroding teeth suggests that replacement rates are low but that individual teeth are quickly lost once erosion begins. Tooth number increases ontogenetically, ranging from 15-31 dentary teeth and 15-39 premaxillary teeth in the sample studied. Teeth increase in size with every replacement cycle. Remodeling of the attachment bone occurs continuously to accommodate growth. New tooth germs originate from a discontinuous dental lamina and migrate from the lingual (dentary) or labial (premaxillary) epithelium through pores in the bone of attachment into the resorption spaces beneath the existing teeth. Pomatomus shares unique aspects of tooth replacement with barracudas and other scombroids and this supports the interpretation that Pomatomus is more closely related to scombroids than to carangoids.
Arai, Chieko; Yamada, Aya; Saito, Kan; Ishikawa, Masaki; Xue, Han; Funada, Keita; Haruyama, Naoto; Yamada, Yoshihiko; Fukumoto, Satoshi; Takahashi, Ichiro
2016-01-01
Tooth morphogenesis is initiated by reciprocal interactions between the ectoderm and neural crest-derived mesenchyme, and the Wnt signaling pathway is involved in this process. We found that Plakophilin (PKP)1, which is associated with diseases such as ectodermal dysplasia/skin fragility syndrome, was highly expressed in teeth and skin, and was upregulated during tooth development. We hypothesized that PKP1 regulates Wnt signaling via its armadillo repeat domain in a manner similar to β-catenin. To determine its role in tooth development, we performed Pkp1 knockdown experiments using ex vivo organ cultures and cell cultures. Loss of Pkp1 reduced the size of tooth germs and inhibited dental epithelial cell proliferation, which was stimulated by Wnt3a. Furthermore, transfected PKP1-emerald green fluorescent protein was translocated from the plasma membrane to the nucleus upon stimulation with Wnt3a and LiCl, which required the PKP1 N terminus (amino acids 161 to 270). Localization of PKP1, which is known as an adhesion-related desmosome component, shifted to the plasma membrane during ameloblast differentiation. In addition, Pkp1 knockdown disrupted the localization of Zona occludens 1 in tight junctions and inhibited ameloblast differentiation; the two proteins were shown to directly interact by immunoprecipitation. These results implicate the participation of PKP1 in early tooth morphogenesis as an effector of canonical Wnt signaling that controls ameloblast differentiation via regulation of the cell adhesion complex. PMID:27015268
Initiation of teeth from the dental lamina in the ferret.
Jussila, Maria; Crespo Yanez, Xenia; Thesleff, Irma
2014-01-01
Mammalian tooth development is characterized by formation of primary teeth that belong to different tooth classes and are later replaced by a single set of permanent teeth. The first primary teeth are initiated from the primary dental lamina, and the replacement teeth from the successional dental lamina at the lingual side of the primary teeth. An interdental lamina connects the primary tooth germs together. Most mammalian tooth development research is done on mouse, which does not have teeth in all tooth classes, does not replace its teeth, and does not develop an interdental lamina. We have used the ferret (Mustela putorius furo) as a model animal to elucidate the morphological changes and gene expression during the development of the interdental lamina and the initiation of primary teeth. In addition we have analyzed cell-cell signaling taking place in the interdental lamina as well as in the successional lamina during tooth replacement. By 3D reconstructions of serial histological sections we observed that the morphogenesis of the interdental lamina and the primary teeth are intimately linked. Expression of Pitx2 and Foxi3 in the interdental lamina indicates that it has odontogenic identity, and there is active signaling taking place in the interdental lamina. Bmp4 is coexpressed with the stem cell factor Sox2 at its lingual aspect suggesting that the interdental lamina may retain competence for tooth initiation. We show that when tooth replacement is initiated there is Wnt pathway activity in the budding successional lamina and adjacent mesenchyme but no active Fgf or Eda signaling. Genes associated with human tooth replacement phenotypes, including Runx2 and Il11rα, are mostly expressed in the mesenchyme around the successional lamina in the ferret. Our results highlight the importance of the dental lamina in the mammalian tooth development during the initiation of both primary and replacement teeth. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis
Bardet, Claire; Ribes, Sandy; Wu, Yong; Diallo, Mamadou Tidiane; Salmon, Benjamin; Breiderhoff, Tilman; Houillier, Pascal; Müller, Dominik; Chaussain, Catherine
2017-01-01
Claudins are a family of proteins that forms paracellular barriers and pores determining tight junctions (TJ) permeability. Claudin-16 and -19 are pore forming TJ proteins allowing calcium and magnesium reabsorption in the thick ascending limb of Henle's loop (TAL). Loss-of-function mutations in the encoding genes, initially identified to cause Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis (FHHNC), were recently shown to be also involved in Amelogenesis Imperfecta (AI). In addition, both claudins were expressed in the murine tooth germ and Claudin-16 knockout (KO) mice displayed abnormal enamel formation. Claudin-3, an ubiquitous claudin expressed in epithelia including kidney, acts as a barrier-forming tight junction protein. We determined that, similarly to claudin-16 and claudin-19, claudin-3 was expressed in the tooth germ, more precisely in the TJ located at the apical end of secretory ameloblasts. The observation of Claudin-3 KO teeth revealed enamel defects associated to impaired TJ structure at the secretory ends of ameloblasts and accumulation of matrix proteins in the forming enamel. Thus, claudin-3 protein loss-of-function disturbs amelogenesis similarly to claudin-16 loss-of-function, highlighting the importance of claudin proteins for the TJ structure. These findings unravel that loss-of-function of either pore or barrier-forming TJ proteins leads to enamel defects. Hence, the major structural function of claudin proteins appears essential for amelogenesis. PMID:28596736
Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis.
Bardet, Claire; Ribes, Sandy; Wu, Yong; Diallo, Mamadou Tidiane; Salmon, Benjamin; Breiderhoff, Tilman; Houillier, Pascal; Müller, Dominik; Chaussain, Catherine
2017-01-01
Claudins are a family of proteins that forms paracellular barriers and pores determining tight junctions (TJ) permeability. Claudin-16 and -19 are pore forming TJ proteins allowing calcium and magnesium reabsorption in the thick ascending limb of Henle's loop (TAL). Loss-of-function mutations in the encoding genes, initially identified to cause Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis (FHHNC), were recently shown to be also involved in Amelogenesis Imperfecta (AI). In addition, both claudins were expressed in the murine tooth germ and Claudin-16 knockout (KO) mice displayed abnormal enamel formation. Claudin-3, an ubiquitous claudin expressed in epithelia including kidney, acts as a barrier-forming tight junction protein. We determined that, similarly to claudin-16 and claudin-19, claudin-3 was expressed in the tooth germ, more precisely in the TJ located at the apical end of secretory ameloblasts. The observation of Claudin-3 KO teeth revealed enamel defects associated to impaired TJ structure at the secretory ends of ameloblasts and accumulation of matrix proteins in the forming enamel. Thus, claudin-3 protein loss-of-function disturbs amelogenesis similarly to claudin-16 loss-of-function, highlighting the importance of claudin proteins for the TJ structure. These findings unravel that loss-of-function of either pore or barrier-forming TJ proteins leads to enamel defects. Hence, the major structural function of claudin proteins appears essential for amelogenesis.
Nagai, N; Nakano, K; Sado, Y; Naito, I; Gunduz, M; Tsujigiwa, H; Nagatsuka, H; Ninomiya, Y; Siar, C H
2001-10-01
The dental basement membrane (BM) putatively mediates epithelial-mesenchymal interactions during tooth morphogenesis and cytodifferentiation. Type IV collagen alpha chains, a major network-forming protein of the dental BM, was studied and results disclosed distinct expression patterns at different stages of mouse molar germ development. At the dental placode and bud stage, the BM of the oral epithelium expressed alpha 1, alpha 2, alpha 5 and alpha 6 chains while the gubernaculum dentis, in addition to the above four chains, also expressed a 4 chain. An asymmetrical expression for alpha 4, alpha 5 and alpha 6 chains was observed at the bud stage. At the early bell stage, the BM associated with the inner enamel epithelium (IEE) of molar germ expressed alpha 1, alpha 2 and alpha 4 chains while the BM of the outer enamel epithelium (OEE) expressed only alpha 1 and a 2 chains. With the onset of dentinogenesis, the collagen a chain profile of the IEE BM gradually disappeared. Howeverfrom the early to late bell stage, the gubernaculum dentis consistently expressed alpha 1, alpha 2, alpha 5 and a 6 chains resembling fetal oral mucosa. These findings suggest that stage- and position-specific distribution of type IV collagen alpha subunits occur during molar germ development and that these changes are essential for molar morphogenesis and cytodifferentiation.
Savriama, Yoland; Jernvall, Jukka
2018-01-01
From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time. PMID:29481561
Expression of bone morphogenetic proteins and Msx genes during root formation.
Yamashiro, T; Tummers, M; Thesleff, I
2003-03-01
Like crown development, root formation is also regulated by interactions between epithelial and mesenchymml tissues. Bone morphogenetic proteins (BMPs), together with the transcription factors Msx1 and Msx2, play important roles in these interactions during early tooth morphogenesis. To investigate the involvement of this signaling pathway in root development, we analyzed the expression patterns of Bmp2, Bmp3, Bmp4, and Bmp7 as well as Msx1 and Msx2 in the roots of mouse molars. Bmp4 was expressed in the apical mesenchyme and Msx2 in the root sheath. However, Bmps were not detected in the root sheath epithelium, and Msx transcripts were absent from the underlying mesenchyme. These findings indicate that this Bmp signaling pathway, required for tooth initiation, does not regulate root development, but we suggest that root shape may be regulated by a mechanism similar to that regulating crown shape in cap-stage tooth germs. Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium.
Bioengineered Lacrimal Gland Organ Regeneration in Vivo
Hirayama, Masatoshi; Tsubota, Kazuo; Tsuji, Takashi
2015-01-01
The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy. PMID:26264034
NASA Astrophysics Data System (ADS)
Tros, G. H. J.; Lyaruu, D. M.; Vis, R. D.
1993-10-01
A procedure was developed for analysing the effect of fluoride on mineralization in the enamel of neonatal hamster molars during amelogenesis by means of the quantitative determination of the mineral content. In this procedure the distribution of calcium and mineral concentration was determined in sections containing developing tooth enamel mineral embedded in an organic epoxy resin matrix by means of the micro-PIXE technique. This allowed the determination of the calcium content along preselected tracks with a spatial resolution of 2 μm using a microprobe PIXE setup with a 3 MeV proton beam of 10 to 50 pA with a spot size of 2 μm in the track direction. In this procedure the X-ray yield is used as a measure for the calcium content. The thickness of each sample section is determined independently by measuring the energy loss of α-particles from a calibration source upon passing through the sample. The sample is considered as consisting of two bulk materials, allowing the correction for X-ray self-absorption and the calculation of the calcium concentration. The procedure was applied for measuring the distribution of mineral concentration in 2 μm thick sections taken from tooth germs of hamsters administered with NaF. The measurements indicated that a single intraperitoneal administration of 20 mg NaF/kg body weight to 4-to-5-day-old hamsters leads within 24 h to hypermineralization of certain focal enamel surface areas containing cystic lesions under transitional and early secretory ameloblasts. The mineral concentration there is substantially increased due to the fluoride treatment (35%, instead of 5 to 10% as in the controls), indicating that the normal mineralization process has been seriously disturbed. Furthermore it is found that using this technique the mineral concentration peaks at about 70% at the dentine-enamel junction, which is comparable to that reported for human dentine using other techniques.
Exceptionally prolonged tooth formation in elasmosaurid plesiosaurians
Kear, Benjamin P.; Larsson, Dennis; Lindgren, Johan; Kundrát, Martin
2017-01-01
Elasmosaurid plesiosaurians were globally prolific marine reptiles that dominated the Mesozoic seas for over 70 million years. Their iconic body-plan incorporated an exceedingly long neck and small skull equipped with prominent intermeshing ‘fangs’. How this bizarre dental apparatus was employed in feeding is uncertain, but fossilized gut contents indicate a diverse diet of small pelagic vertebrates, cephalopods and epifaunal benthos. Here we report the first plesiosaurian tooth formation rates as a mechanism for servicing the functional dentition. Multiple dentine thin sections were taken through isolated elasmosaurid teeth from the Upper Cretaceous of Sweden. These specimens revealed an average of 950 daily incremental lines of von Ebner, and infer a remarkably protracted tooth formation cycle of about 2–3 years–other polyphyodont amniotes normally take ~1–2 years to form their teeth. Such delayed odontogenesis might reflect differences in crown length and function within an originally uneven tooth array. Indeed, slower replacement periodicity has been found to distinguish larger caniniform teeth in macrophagous pliosaurid plesiosaurians. However, the archetypal sauropterygian dental replacement system likely also imposed constraints via segregation of the developing tooth germs within discrete bony crypts; these partly resorbed to allow maturation of the replacement teeth within the primary alveoli after displacement of the functional crowns. Prolonged dental formation has otherwise been linked to tooth robustness and adaption for vigorous food processing. Conversely, elasmosaurids possessed narrow crowns with an elongate profile that denotes structural fragility. Their apparent predilection for easily subdued prey could thus have minimized this potential for damage, and was perhaps coupled with selective feeding strategies that ecologically optimized elasmosaurids towards more delicate middle trophic level aquatic predation. PMID:28241059
Comparative study of MSX-2, DLX-5, and DLX-7 gene expression during early human tooth development.
Davideau, J L; Demri, P; Hotton, D; Gu, T T; MacDougall, M; Sharpe, P; Forest, N; Berdal, A
1999-12-01
Msx and Dlx family transcription factors are key elements of craniofacial development and act in specific combinations with growth factors to control the position and shape of various skeletal structures in mice. In humans, the mutations of MSX and DLX genes are associated with specific syndromes, such as tooth agenesis, craniosynostosis, and tricho-dento-osseous syndrome. To establish some relationships between those reported human syndromes, previous experimental data in mice, and the expression patterns of MSX and DLX homeogenes in the human dentition, we investigated MSX-2, DLX-5, and DLX-7 expression patterns and compared them in orofacial tissues of 7.5- to 9-wk-old human embryos by using in situ hybridization. Our data showed that MSX-2 was strongly expressed in the progenitor cells of human orofacial skeletal structures, including mandible and maxilla bones, Meckel's cartilage, and tooth germs, as shown for DLX-5. DLX-7 expression was restricted to the vestibular lamina and, later on, to the vestibular part of dental epithelium. The comparison of MSX-2, DLX-5, and DLX-7 expression patterns during the early stages of development of different human tooth types showed the existence of spatially ordered sequences of homeogene expression along the vestibular/lingual axis of dental epithelium. The expression of MSX-2 in enamel knot, as well as the coincident expression of MSX-2, DLX-5, and DLX-7 in a restricted vestibular area of dental epithelium, suggests the existence of various organizing centers involved in the control of human tooth morphogenesis.
Khaddam, Mayssam; Huet, Eric; Vallée, Benoît; Bensidhoum, Morad; Le Denmat, Dominique; Filatova, Anna; Jimenez-Rojo, Lucia; Ribes, Sandy; Lorenz, Georg; Morawietz, Maria; Rochefort, Gael Y; Kiesow, Andreas; Mitsiadis, Thimios A; Poliard, Anne; Petzold, Matthias; Gabison, Eric E; Menashi, Suzanne; Chaussain, Catherine
2014-09-01
Tooth development is regulated by a series of reciprocal inductive signaling between the dental epithelium and mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other pathological processes and is expressed in developing teeth. Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissue formation. We report a delay in enamel deposition and formation that is clearly distinguishable in the growing incisor and associated with a significant reduction of MMP-3 and MMP-20 expression in tooth germs of KO mice. Insufficient basement membrane degradation is evidenced by a persistent laminin immunostaining, resulting in a delay of both odontoblast and ameloblast differentiation. Consequently, enamel volume and thickness are decreased in adult mutant teeth but enamel maturation and tooth morphology are normal, as shown by micro-computed tomographic (micro-CT), nanoindentation, and scanning electron microscope analyses. In addition, the dentino-enamel junction appears as a rough calcified layer of approximately 10±5μm thick (mean±SD) in both molars and growing incisors of KO adult mice. These results indicate that EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the expression of MMPs. The mild tooth phenotype observed in EMMPRIN KO mice suggests that the direct effect of EMMPRIN may be limited to a short time window, comprised between basement membrane degradation allowing direct cell contact and calcified matrix deposition. Copyright © 2014 Elsevier Inc. All rights reserved.
Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus).
Buchtová, Marcela; Zahradníček, Oldřich; Balková, Simona; Tucker, Abigail S
2013-02-01
Replacement teeth in reptiles and mammals develop from a successional dental lamina. In monophyodont (single generation) species such as the mouse, no successional lamina develops. We have selected a reptilian monophyodont species - the Veiled Chameleon (Chamaeleo calyptratus) - to investigate whether this is a common characteristic of species that do not have replacement teeth. Furthermore, we focus on the sequence of tooth initiation along the jaw, and tooth attachment to the bones. Embryos of the Veiled Chameleon were collected during the first 6 months of incubation (from the 5th to 24th week) at 7-day intervals. After five weeks of incubation, an epithelial thickening was present as a shallow protrusion into the mesenchyme. A week later, the epithelium elongated more deeply into the mesenchyme to form the dental lamina. The formation of all tooth germs along the jaw was initiated from the tip of the dental lamina. Development of a successional dental lamina was initiated during the pre-hatching period but this structure became markedly reduced during juvenile stages. MicroCT analysis showed the presence of a heterodont dentition in young chameleons with multicuspid teeth in the caudal jaw area and simpler monocuspid teeth rostrally. Unlike the pleurodont teeth of most reptilian species, chameleon teeth are acrodontly ankylosed to the bones of the jaw. Odontoblasts produced a layer of predentine that connected the dentine to the supporting bone, with both tooth and bone protruding out of the oral cavity and acting as a functional unit. Chameleons may provide new and useful information to study the molecular interaction at the tooth-bone interface in physiological as well as pathological conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fate of the Molar Dental Lamina in the Monophyodont Mouse
Dosedělová, Hana; Dumková, Jana; Lesot, Hervé; Glocová, Kristýna; Kunová, Michaela; Tucker, Abigail S.; Veselá, Iva; Krejčí, Pavel; Tichý, František; Hampl, Aleš; Buchtová, Marcela
2015-01-01
The successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth. A similar rudimentary lingual structure has been reported associated with the first molar in the monophyodont mouse, and we show that this structure is common to all murine molars. Intriguingly, a lingual lamina is also observed on the non-replacing molars of other diphyodont mammals (pig and hedgehog), initially appearing very similar to the successional dental lamina on the replacing teeth. We have analyzed the morphological as well as ultrastructural changes that occur during the development and loss of this molar lamina in the mouse, from its initiation at late embryonic stages to its disappearance at postnatal stages. We show that loss appears to be driven by a reduction in cell proliferation, down-regulation of the progenitor marker Sox2, with only a small number of cells undergoing programmed cell death. The lingual lamina was associated with the dental stalk, a short epithelial connection between the tooth germ and the oral epithelium. The dental stalk remained in contact with the oral epithelium throughout tooth development up to eruption when connective tissue and numerous capillaries progressively invaded the dental stalk. The buccal side of the dental stalk underwent keratinisation and became part of the gingival epithelium, while most of the lingual cells underwent programmed cell death and the tissue directly above the erupting tooth was shed into the oral cavity. PMID:26010446
Uprighting of severely impacted mandibular second molars: a case report.
Fujita, Tadashi; Shirakura, Maya; Hayashi, Hidetaka; Tsuka, Yuji; Fujii, Eri; Tanne, Kazuo
2012-11-01
The incidence of mandibular first and second molar impaction is increasing but still recorded as rare. Treatment methods involving uprighting, extraction, or autologous tooth transplantation have been described. The present study describes the uprighting of 3 impacted mandibular second molars presenting with eruptive disorders. The application of limited and appropriate orthodontic therapy completed treatment in 11 months, 5 months, and 2 years and 3 months, respectively. Although no absolute anchorage in the form of miniscrews was required, no significant anchorage demands were considered necessary. Although the third molar tooth germs were identified and preserved in each case, no adverse influence on the uprighting of the second molars was encountered. The favourable molar repositioning results were likely due to the youth of the 3 patients as the third molars were in early development and bone remodelling was marked. Furthermore, no problems related to anchorage or alveolar bone loss were identified after treatment. The results indicated the benefits of limited orthodontic treatment and early intervention for the uprighting of impacted mandibular second molars.
Construction of a cDNA library for miniature pig mandibular deciduous molars
2014-01-01
Background The miniature pig provides an excellent experimental model for tooth morphogenesis because its diphyodont and heterodont dentition resembles that of humans. However, little information is available on the process of tooth development or the exact molecular mechanisms controlling tooth development in miniature pigs or humans. Thus, the analysis of gene expression related to each stage of tooth development is very important. Results In our study, after serial sections were made, the development of the crown of the miniature pigs’ mandibular deciduous molar could be divided into five main phases: dental lamina stage (E33-E35), bud stage (E35-E40), cap stage (E40-E50), early bell stage (E50-E60), and late bell stage (E60-E65). Total RNA was isolated from the tooth germ of miniature pig embryos at E35, E45, E50, and E60, and a cDNA library was constructed. Then, we identified cDNA sequences on a large scale screen for cDNA profiles in the developing mandibular deciduous molars (E35, E45, E50, and E60) of miniature pigs using Illumina Solexa deep sequencing. Microarray assay was used to detect the expression of genes. Lastly, through Unigene sequence analysis and cDNA expression pattern analysis at E45 and E60, we found that 12 up-regulated and 15 down-regulated genes during the four periods are highly conserved genes homologous with known Homo sapiens genes. Furthermore, there were 6 down-regulated and 2 up-regulated genes in the miniature pig that were highly homologous to Homo sapiens genes compared with those in the mouse. Conclusion Our results not only identify the specific transcriptome and cDNA profile in developing mandibular deciduous molars of the miniature pig, but also provide useful information for investigating the molecular mechanism of tooth development in the miniature pig. PMID:24750690
Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin
2018-02-01
Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.
Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling.
Buchtová, Marcela; Handrigan, Gregory R; Tucker, Abigail S; Lozanoff, Scott; Town, Liam; Fu, Katherine; Diewert, Virginia M; Wicking, Carol; Richman, Joy M
2008-07-01
Here we take the first look at cellular dynamics and molecular signaling in the developing snake dentition. We found that tooth formation differs from rodents in several respects. The majority of snake teeth bud off of a deep, ribbon-like dental lamina rather than as separate tooth germs. Prior to and after dental lamina ingrowth, we observe asymmetries in cell proliferation and extracellular matrix distribution suggesting that localized signaling by a secreted protein is involved. We cloned Sonic hedgehog from the African rock python Python sebae and traced its expression in the species as well as in two other snakes, the closely-related Python regius and the more derived corn snake Elaphe guttata (Colubridae). We found that expression of Shh is first confined to the odontogenic band and defines the position of the future dental lamina. Shh transcripts in pythons are progressively restricted to the oral epithelium on one side of the dental lamina and remain in this position throughout the prehatching period. Shh is expressed in the inner enamel epithelium and the stellate reticulum of the tooth anlagen, but is absent from the outer enamel epithelium and its derivative, the successional lamina. This suggests that signals other than Shh are responsible for replacement tooth formation. Functional studies using cyclopamine to block Hh signaling during odontogenesis prevented initiation and extension of the dental lamina into the mesenchyme, and also affected the directionality of this process. Further, blocking Hh signaling led to disruptions of the inner enamel epithelium. To explore the role of Shh in lamina extension, we looked at its expression in the premaxillary teeth, which form closer to the oral surface than elsewhere in the mouth. Oral ectodermal Shh expression in premaxillary teeth is lost soon after the teeth form reinforcing the idea that Shh is controlling the depth of the dental lamina. In summary, we have found diverse roles for Shh in patterning the snake dentition but, have excluded the participation of this signal in replacement tooth formation.
SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine
Wu, Xiaoshan; Hu, Lei; Li, Yan; Li, Yang; Wang, Fu; Ma, Ping; Wang, Jinsong; Zhang, Chunmei; Jiang, Canhua; Wang, Songlin
2018-01-01
The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, β-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals. PMID:29511365
Vandenplas, Sam; Willems, Maxime; Witten, P Eckhard; Hansen, Tom; Fjelldal, Per Gunnar; Huysseune, Ann
2016-01-01
The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.
Vandenplas, Sam; Willems, Maxime; Witten, P. Eckhard; Hansen, Tom; Fjelldal, Per Gunnar; Huysseune, Ann
2016-01-01
The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement. PMID:27049953
Distribution of syndecan-1 protein in developing mouse teeth
Filatova, Anna; Pagella, Pierfrancesco; Mitsiadis, Thimios A.
2014-01-01
Syndecan-1 is a cell surface proteoglycan involved in the regulation of various biological processes such as proliferation, migration, condensation and differentiation of cells, intercellular communication, and morphogenesis. The extracellular domain of syndecan-1 can bind to extracellular matrix components and signaling molecules, while its intracellular domain interacts with cytoskeletal proteins, thus allowing the transfer of information about extracellular environment changes into the cell that consequently affect cellular behavior. Although previous studies have shown syndecan-1 expression during precise stages of tooth development, there is no equivalent study regrouping the expression patterns of syndecan-1 during all stages of odontogenesis. Here we examined the distribution of syndecan-1 protein in embryonic and post-natal developing mouse molars and incisors. Syndecan-1 distribution in mesenchymal tissues such as dental papilla and dental follicle was correlated with proliferating events and its expression was often linked to stem cell niche territories. Syndecan-1 was also expressed in mesenchymal cells that will differentiate into the dentin producing odontoblasts, but not in differentiated functional odontoblasts. In the epithelium, syndecan-1 was detected in all cell layers, by the exception of differentiated ameloblasts that form the enamel. Furthermore, syndecan-1 was expressed in osteoblast precursors and osteoclasts of the alveolar bone that surrounds the developing tooth germs. Taken together these results show the dynamic nature of syndecan-1 expression during odontogenesis and suggest its implication in various processes of tooth development and homeostasis. PMID:25642191
Infant oral mutilation - a child protection issue?
Girgis, S; Gollings, J; Longhurst, R; Cheng, L
2016-04-01
Infant oral mutilation (IOM) is a primitive traditional practice involving the 'gouging out' of an infant's healthy primary tooth germs. This can lead to transmission of blood-borne diseases such as HIV/ AIDS, septicaemia and death. Other complications include eradication and/ or malformation of the child's permanent dentition. IOM is usually performed by village healers in low income countries as an accepted remedy for common childhood illness. The gingival swelling of the unerupted teeth is mistakenly thought to indicate the presence of 'tooth worms'. Crude methods to remove these are employed using unsterile tools. IOM has been reported in many African countries. More recently, some immigrants living in high income countries, such as the UK, have shown signs of IOM. Our aim is to raise awareness among clinicians about the existence of IOM practice being carried out among respective African immigrant groups. We encourage clinicians, particularly those working with paediatric patients to inform parents and carers of children with a history of IOM about the risks and consequences. As part of child safeguarding policies, dental practitioners and health care professionals should intervene if they are aware of any perceived plan that IOM is to be carried out in the future.
Splicing mutation in Sbf1 causes nonsyndromic male infertility in the rat.
Liška, František; Chylíková, Blanka; Janků, Michaela; Šeda, Ondřej; Vernerová, Zdeňka; Pravenec, Michal; Křen, Vladimír
2016-09-01
In the inbred SHR/OlaIpcv rat colony, we identified males with small testicles and inability to reproduce. By selectively breeding their parents, we revealed the infertility to segregate as an autosomal recessive Mendelian character. No other phenotype was observed in males, and females were completely normal. By linkage using a backcross with Brown Norway strain, we mapped the locus to a 1.2Mbp segment on chromosome 7, harboring 35 genes. Sequencing of candidate genes revealed a G to A substitution in a canonical 'AG' splice site of intron 37 in Sbf1 (SET binding factor 1, alias myotubularin-related protein 5). This leads to either skipping exon 38 or shifting splicing one base downstream, invariantly resulting in frameshift, premature stop codon and truncation of the protein. Western blotting using two anti-Sbf1 antibodies revealed absence of the full-length protein in the mutant testis. Testicles of the mutant males were significantly smaller compared with SHR from 4weeks, peaked at 84% wild-type weight at 6weeks and declined afterward to 28%, reflecting massive germ cell loss. Histological examination revealed lower germ cell number; latest observed germ cell stage were round spermatids, resulting in the absence of sperm in the epididymis (azoospermia). SBF1 is a member of a phosphatase family lacking the catalytical activity. It probably modulates the activity of a phosphoinositol phosphatase MTMR2. Human homozygotes or compound heterozygotes for missense SBF1 mutations exhibit Charcot-Marie-Tooth disease (manifested mainly as progressive neuropathy), while a single mouse knockout reported in the literature identified male infertility as the only phenotype manifestation. © 2016 Society for Reproduction and Fertility.
Viperous fangs: development and evolution of the venom canal.
Zahradnicek, Oldrich; Horacek, Ivan; Tucker, Abigail S
2008-01-01
Fangs are specialised long teeth that contain either a superficial groove (Gila monster, Beaded lizard, some colubrid snakes), along which the venom runs, or an enclosed canal (viperid, elapid and atractaspid), down which the venom flows inside the tooth. The fangs of viperid snakes are the most effective venom-delivery structures among vertebrates and have been the focus of scientific interests for more than 200 years. Despite this interest the questions of how the canal at the centre of the fang forms remains unresolved. Two different hypotheses have been suggested. The mainstream hypothesis claims that the venom-conducting canal develops by the invagination of the epithelial wall of the developing tooth germ. The sides of this invagination make contact and finally fuse to form the enclosed canal. The second hypothesis, known as the "brick chimney", claims the venom-conducting canal develops directly by successive dentine deposition as the tooth develops. The fang is thus built up from the tip to the base, without any folding of the tooth surface. In an attempt to cast further light on this subject the early development of the fangs was followed in a pit viper, Trimeresurus albolabris, using the expression of Sonic hedgehog (Shh). We demonstrate that the canal is indeed formed by an early folding event, resulting from an invagination of epithelial cells into the dental mesenchyme. The epithelial cells proliferate to enlarge the canal and then the cells die by apoptosis, forming an empty tube through which the poison runs. The entrance and discharge orifices at either end of the canal develop by a similar invagination but the initial width of the invagination is very different from that in the middle of the tooth, and is associated with higher proliferation. The two sides of the invaginating epithelium never come into contact, leaving the orifice open. The mechanism by which the orifices form can be likened to that observed in reptiles with an open groove along their fangs, such as the boomslang. It is thus tempting to speculate that the process of orifice formation in viperids represents the ancestral pleisomorphic state, and that enclosed canals developed by a change in the shape and size of the initial invagination.
Jo, Chanwoo; Bae, Doohwan; Choi, Byungho; Kim, Jihun
2017-05-01
Supernumerary teeth need to be removed because they can cause various complications. Caution is needed because their removal can cause damage to permanent teeth or tooth germs in the local vicinity. Surgical guides have recently been used in maxillofacial surgery. Because surgical guides are designed through preoperative analysis by computer-aided design software and fabricated using a 3-dimensional printer applying computer-aided manufacturing technology, they increase the accuracy and predictability of surgery. This report describes 2 cases of removal of a mesiodens-1 from a child and 1 from an adolescent-using a surgical guide; these would have been difficult to remove with conventional surgical methods. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Orthodontic uprighting of severely impacted mandibular second molars.
Lau, Catherine K; Whang, Claudia Z Y; Bister, Dirk
2013-01-01
The prevalence of impacted second molars is low, varying from 0% to 2.3%. The etiology of an impaction can involve systemic, local, and periodontal factors, as well as a developmental disruption of the tooth germ. A number of surgical and orthodontic treatment options have been suggested in the literature, including leaving the tooth in situ, removing the impacted second molar, orthodontic uprighting, and autotransplantation. Removal of third molars has been suggested as an adjunct for space creation. This article presents the treatment of a girl with bilateral severely impacted mandibular second molars as well as an ectopic maxillary left canine and severe crowding affecting both the maxillary and mandibular arches. Her treatment was successfully completed with fixed preadjusted edgewise appliances (0.022 × 0.028-in slot size) and MBT prescription (APC precoated Gemini Brackets; 3M Unitek, St. Paul, Minn), along with the removal of 4 first premolars. The maxillary left canine and the mandibular second molars were surgically exposed. The treatment mechanics show that even severely impacted second molars can be uprighted by routine straight-wire techniques, which are easy to apply. The center of rotation of the second molar lies in the bifurcation of the roots of this tooth, and this biomechanical property was used to its full advantage. The techniques applied comprised bracket repositioning, bypass of brackets, conversion of molar tubes to brackets, thermoelastic copper-nickel-titanium archwires, and a push-coil spring. Other orthodontic treatment mechanics, which require complex sectional or segmental techniques, auxiliaries, or artistic wire bending, that have been suggested in the literature were not used here. The third molars were not removed. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Relative tooth size at birth in primates: Life history correlates.
Smith, Timothy D; Muchlinski, Magdalena N; Bucher, Wade R; Vinyard, Christopher J; Bonar, Christopher J; Evans, Sian; Williams, Lawrence E; DeLeon, Valerie B
2017-11-01
Dental eruption schedules have been closely linked to life history variables. Here we examine a sample of 50 perinatal primates (28 species) to determine whether life history traits correlate with relative tooth size at birth. Newborn primates were studied using serial histological sectioning. Volumes of deciduous premolars (dp 2 -dp 4 ), replacement teeth (if any), and permanent molars (M 1-2/3 ) of the upper jaw were measured and residuals from cranial length were calculated with least squares regressions to obtain relative dental volumes (RDVs). Relative dental volumes of deciduous or permanent teeth have an unclear relationship with relative neonatal mass in all primates. Relative palatal length (RPL), used as a proxy for midfacial size, is significantly, positively correlated with larger deciduous and permanent postcanine teeth. However, when strepsirrhines alone are examined, larger RPL is correlated with smaller RDV of permanent teeth. In the full sample, RDVs of deciduous premolars are significantly negatively correlated with relative gestation length (RGL), but have no clear relationship with relative weaning age. RDVs of molars lack a clear relationship with RGL; later weaning is associated with larger molar RDV, although correlations are not significant. When strepsirrhines alone are analyzed, clearer trends are present: longer gestations or later weaning are associated with smaller deciduous and larger permanent postcanine teeth (only gestational length correlations are significant). Our results indicate a broad trend that primates with the shortest RGLs precociously develop deciduous teeth; in strepsirrhines, the opposite trend is seen for permanent molars. Anthropoids delay growth of permanent teeth, while strepsirrhines with short RGLs are growing replacement teeth concurrently. A comparison of neonatal volumes with existing information on extent of cusp mineralization indicates that growth of tooth germs and cusp mineralization may be selected for independently. © 2017 Wiley Periodicals, Inc.
Chen, Tian; Liu, Zhi; Sun, Wenhua; Li, Jingyu; Liang, Yan; Yang, Xianrui; Xu, Yang; Yu, Mei; Tian, Weidong; Chen, Guoqing; Bai, Ding
2015-12-07
Dentinogenesis is the formation of dentin, a substance that forms the majority of teeth, and this process is performed by odontoblasts. Dental papilla cells (DPCs), as the progenitor cells of odontoblasts, undergo the odontogenic differentiation regulated by multiple cytokines and paracrine signal molecules. Ape1 is a perfect paradigm of the function complexity of a biological macromolecule with two major functional regions for DNA repair and redox regulation, respectively. To date, it remains unclear whether Ape1 can regulate the dentinogenesis in DPCs. In the present study, we firstly examed the spatio-temporal expression of Ape1 during tooth germ developmental process, and found the Ape1 expression was initially high and then gradually reduced along with the tooth development. Secondly, the osteo/odontogenic differentiation capacity of DPCs was up-regulated when treated with either Ape1-shRNA or E3330 (a specific inhibitor of the Ape1 redox function), respectively. Moreover, we found that the canonical Wnt signaling pathway was activated in this process, and E3330 reinforced-osteo/odontogenic differentiation capacity was suppressed by Dickkopf1 (DKK1), a potent antagonist of canonical Wnt signaling pathway. Taken together, we for the first time showed that inhibition of Ape1 redox regulation could promote the osteo/odontogenic differentiation capacity of DPCs via canonical Wnt signaling pathway.
Tenorio, D; Reid, A R; Katchburian, E
1990-01-01
The ultrastructural distribution and localisation of proteoglycans (PGs) of early developing rat dentine were examined using cuprolinic blue in a critical electrolyte concentration procedure. Results show that the cuprolinic blue method produces images of higher morphological quality than other cationic dyes. PGs appeared as ribbon-like electron-opaque precipitates of various sizes, ranging between 1.4 and 0.2 microns in length, distributed throughout the matrix and in close association with well preserved matrix vesicles and collagen fibrils. Matrix vesicles revealed tightly packed PG filaments which appeared to be attached to their membrane. It is possible that the close association of PG filaments with matrix vesicles and collagen indicates that PGs are related to the process of mineralisation of dentine. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2384338
Chen, Amy Yi-Ling; Chen, Kevin
2017-01-01
Incontinentia pigmenti (IP) is a uncommon gene disorder, heritage with X-linked dominant mode. IP patients have a characteristic dentition varying from marked hypodontia to delayed eruption and conical crowns on both dentitions. A 5½-year-old girl, whose mother and younger sister were also diagnosed with IP, has the whirling-like pigmented skin lesion over her trunk and four extremities. Four primary teeth and multiple permanent tooth germs were found to be congenital missing. Dental considerations of further treatment were discussed with her parents including the preservation of primary molars, possible interim prosthesis in mixed or permanent dentition, full mouth rehabilitation with orthodontic and prosthodontic combined treatment, and implant therapy in adulthood. Early and longitudinal involvement of pediatric dentist to deal with the dental complications of IP can not only solve the esthetic problem and oral function but also maintain the oral health of children with IP to adulthood. PMID:28729805
[Orthodontic and oral surgery therapy in cleidocranial dysplasia].
Balaton, Gergely; Tarján, Ildikó; Balaton, Péter; Barabási, Zoltán; Gyulai Gál, Szabolcs; Nagy, Katalin; Vajó, Zoltán
2007-02-01
A cleidocranial dysplasia is an autosomal dominant inherited condition consisting of generalized skeletal disorder. Associated dental signs are present in 93,5%; failure of tooth eruption with multiple supernumerary teeth, dilaceration of roots, crown germination, microdontia, high arched palate, midface hypoplasia, high gonion angle. The molecular- genetic analysis revealed a missense mutation in the CBFA1 gene located on chromosome 6p21, which is considered to be etiological factor for CCD. Orthodontic and oral surgery therapy of a 13 year-old child with CCD was performed due to aesthetic and functional problems. The supernumerary germs were removed and the teeth were aligned with orthodontic appliances. Temporary functional rehabilitation was solved with partial denture. The presented case and the literature data support the importance of early diagnosis of CCD. The good collaboration of the orthodontic and maxillo-facial surgery specialists help achieve the correct rehabilitation of the patient.
Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors
2017-12-07
Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma
Role of Axumin PET Scan in Germ Cell Tumor
2018-05-01
Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos
Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors
2015-06-11
Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor
Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease.
Ikeda, Etsuko; Yagi, Kiyohito; Kojima, Midori; Yagyuu, Takahiro; Ohshima, Akira; Sobajima, Satoshi; Tadokoro, Mika; Katsube, Yoshihiro; Isoda, Katsuhiro; Kondoh, Masuo; Kawase, Masaya; Go, Masahiro J; Adachi, Hisashi; Yokota, Yukiharu; Kirita, Tadaaki; Ohgushi, Hajime
2008-05-01
Adult stem cells have been reported to exist in various tissues. The isolation of high-quality human stem cells that can be used for regeneration of fatal deseases from accessible resources is an important advance in stem cell research. In the present study, we identified a novel stem cell, which we named tooth germ progenitor cells (TGPCs), from discarded third molar, commonly called as wisdom teeth. We demonstrated the characterization and distinctiveness of the TGPCs, and found that TGPCs showed high proliferation activity and capability to differentiate in vitro into cells of three germ layers including osteoblasts, neural cells, and hepatocytes. TGPCs were examined by the transplantation into a carbon tetrachloride (CCl4)-treated liver injured rat to determine whether this novel cell source might be useful for cell-based therapy to treat liver diseases. The successful engraftment of the TGPCs was demonstrated by PKH26 fluorescence in the recipient's rat as to liver at 4 weeks after transplantation. The TGPCs prevented the progression of liver fibrosis in the liver of CCl4-treated rats and contributed to the restoration of liver function, as assessed by the measurement of hepatic serum markers aspartate aminotransferase and alanine aminotransferase. Furthermore, the liver functions, observed by the levels of serum bilirubin and albumin, appeared to be improved following transplantation of TGPCs. These findings suggest that multipotent TGPCs are one of the candidates for cell-based therapy to treat liver diseases and offer unprecedented opportunities for developing therapies in treating tissue repair and regeneration.
2017-01-20
Recurrent Extragonadal Seminoma; Recurrent Malignant Extragonadal Germ Cell Tumor; Recurrent Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage III Testicular Cancer; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor
2017-11-14
Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Yolk Sac Tumor
Renault, Andrew D.; Kunwar, Prabhat S.; Lehmann, Ruth
2010-01-01
In Drosophila, germ cell survival and directionality of migration are controlled by two lipid phosphate phosphatases (LPP), wunen (wun) and wunen-2 (wun2). wun wun2 double mutant analysis reveals that the two genes, hereafter collectively called wunens, act redundantly in primordial germ cells. We find that wunens mediate germ cell-germ cell repulsion and that this repulsion is necessary for germ cell dispersal and proper transepithelial migration at the onset of migration and for the equal sorting of the germ cells between the two embryonic gonads during their migration. We propose that this dispersal function optimizes adult fecundity by assuring maximal germ cell occupancy of both gonads. Furthermore, we find that the requirement for wunens in germ cell survival can be eliminated by blocking germ cell migration. We suggest that this essential function of Wunen is needed to maintain cell integrity in actively migrating germ cells. PMID:20431117
Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells
Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; Pera, Renee A. Reijo
2007-01-01
In some species such as flies, worms, frogs, and fish the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically-distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration, that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells. PMID:16996493
2013-01-15
Ovarian Dysgerminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage II Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Testicular Seminoma
Oh, Denise; Houston, Douglas W
2017-12-15
The localization and organization of mitochondria- and ribonucleoprotein granule-rich germ plasm is essential for many aspects of germ cell development. In Xenopus, germ plasm is maternally inherited and is required for the specification of primordial germ cells (PGCs). Germ plasm is aggregated into larger patches during egg activation and cleavage and is ultimately translocated perinuclearly during gastrulation. Although microtubule dynamics and a kinesin (Kif4a) have been implicated in Xenopus germ plasm localization, little is known about how germ plasm distribution is regulated. Here, we identify a role for maternal Xenopus Syntabulin in the aggregation of germ plasm following fertilization. We show that depletion of sybu mRNA using antisense oligonucleotides injected into oocytes results in defects in the aggregation and perinuclear transport of germ plasm and subsequently in reduced PGC numbers. Using live imaging analysis, we also characterize a novel role for Sybu in the collection of germ plasm in vegetal cleavage furrows by surface contraction waves. Additionally, we show that a localized kinesin-like protein, Kif3b, is also required for germ plasm aggregation and that Sybu functionally interacts with Kif3b and Kif4a in germ plasm aggregation. Overall, these data suggest multiple coordinate roles for kinesins and adaptor proteins in controlling the localization and distribution of a cytoplasmic determinant in early development. Copyright © 2017 Elsevier Inc. All rights reserved.
Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference
Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós
2014-01-01
In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general. PMID:24896584
Implant-supported Oral Rehabilitation in Child with Ectodermal Dysplasia - 4-year Follow-up.
Cezária Triches, Thaisa; Ximenes, Marcos; Oliveira de Souza, João Gustavo; Rodrigues Lopes Pereira Neto, Armando; Cardoso, Antônio Carlos; Bolan, Michele
2017-01-01
Ectodermal dysplasia (ED) is an anomaly determined by genetic factors that alter ectodermal structures such as skin, hair, nails, glands, and teeth. Children affected by this condition require extensive, comprehensive, and multidisciplinary treatment. An 8-year-old female patient visited the Dentistry Clinic of the Federal University of Santa Catarina with the chief complaint of multiple missing teeth. The mother reported that the patient had ED. Clinical and radiographic examination revealed the congenital absence of several primary and permanent teeth and tooth germs. Subsequent oral rehabilitation comprised the application of a maxillary denture and mandibular implant-supported fixed prosthesis. The child was also supplied with a wig for further enhancement of esthetics aimed at improving her emotional wellbeing. Psychological follow-up and speech therapy were also provided. After 4 years of follow-up, implant-supported oral rehabilitation has proved to be a satisfactory treatment option, allowing restoration of masticatory, phonetic, and esthetic function, as well as an improvement in the patient's self-esteem and social wellbeing.
Germ cells in the teleost fish medaka have an inherent feminizing effect
Nishimura, Toshiya; Yamada, Kazuki; Fujimori, Chika; Kikuchi, Mariko; Kawasaki, Toshihiro; Siegfried, Kellee R.; Sakai, Noriyoshi
2018-01-01
Germ cells give rise to eggs or sperm. However, recent analyses in medaka (Oryzias latipes) showed that germ cells are also important for feminization of gonads, although this novel role of germ cells has not been characterized in detail. Here, we show that the feminizing effect is inherent to germ cells and is not affected by gametogenic stages or the sexual fate of germ cells. Three medaka mutants were generated to demonstrate this effect: figlα mutants, in which follicle formation is disrupted; meioC mutants, in which germ cells are unable to commit to gametogenesis and meiosis; and dazl mutants, in which germ cells do not develop into gonocytes. All these different stages of germ cells in XX mutants have an ability to feminize the gonads, resulting in the formation of gonads with ovarian structures. In addition to normal ovarian development, we also suggest that the increased number of gonocytes is sufficient for male to female sex reversal in XY medaka. These results may genetically demonstrate that the mechanism underlying the feminizing effect of germ cells is activated before the sexual fate decision of germ cells and meiosis, probably by the time of gonocyte formation in medaka. Author summary Germ cells are the only cells that can transfer genetic materials to the next generation via the sperm or egg. However, recent analyses in teleosts revealed another essential role of germ cells: feminizing the gonads. In our study, medaka mutants in which gametogenesis was blocked at specific stages provides the novel view that the feminizing effect of germ cells occurs in parallel with other reproductive elements, such as meiosis, the sexual fate decision of germ cells, and gametogenesis. Germ cells in medaka may have a potential to feminize gonads at the moment they have developed. PMID:29596424
AiGERM: A logic programming front end for GERM
NASA Technical Reports Server (NTRS)
Hashim, Safaa H.
1990-01-01
AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.
Identification of a putative germ plasm in the amphipod Parhyale hawaiensis
2013-01-01
Background Specification of the germ line is an essential event during the embryonic development of sexually reproducing animals, as germ line cells are uniquely capable of giving rise to the next generation. Animal germ cells arise through either inheritance of a specialized, maternally supplied cytoplasm called 'germ plasm’ or though inductive signaling by somatic cells. Our understanding of germ cell determination is based largely on a small number of model organisms. To better understand the evolution of germ cell specification, we are investigating this process in the amphipod crustacean Parhyale hawaiensis. Experimental evidence from previous studies demonstrated that Parhyale germ cells are specified through inheritance of a maternally supplied cytoplasmic determinant; however, this determinant has not been identified. Results Here we show that the one-cell stage Parhyale embryo has a distinct cytoplasmic region that can be identified by morphology as well as the localization of germ line-associated RNAs. Removal of this cytoplasmic region results in a loss of embryonic germ cells, supporting the hypothesis that it is required for specification of the germ line. Surprisingly, we found that removal of this distinct cytoplasm also results in aberrant somatic cell behaviors, as embryos fail to gastrulate. Conclusions Parhyale hawaiensis embryos have a specialized cytoplasm that is required for specification of the germ line. Our data provide the first functional evidence of a putative germ plasm in a crustacean and provide the basis for comparative functional analysis of germ plasm formation within non-insect arthropods. PMID:24314239
Convergent evolution of germ granule nucleators: A hypothesis.
Kulkarni, Arpita; Extavour, Cassandra G
2017-10-01
Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation
Kee, Kehkooi; Angeles, Vanessa T; Flores, Martha; Nguyen, Ha Nam; Pera, Renee A Reijo
2009-01-01
The leading cause of infertility in men and women is quantitative and qualitative defects in human germ cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ cell formation and differentiation due to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages1-8. Here we used a germ cell reporter to quantitate and isolate primordial germ cells derived from both male and female hESCs. Then, by silencing and overexpressing genes that encode germ cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ cell formation and developmental progression. We observed that human DAZL (Deleted in AZoospermia-Like) functions in primordial germ cell formation, whereas closely-related genes, DAZ and BOULE, promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications. PMID:19865085
PHASE II TRIAL OF THE CYCLIN-DEPEDENT KINASE INHIBITOR PD 0332991 IN PATIENTS WITH CANCER
2016-08-24
Adult Solid Tumor; Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Benign Teratoma; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Familial Testicular Germ Cell Tumor; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Ovarian Immature Teratoma; Ovarian Mature Teratoma; Ovarian Monodermal and Highly Specialized Teratoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Extragonadal Germ Cell Tumor; Recurrent Extragonadal Non-seminomatous Germ Cell Tumor; Recurrent Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Melanoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Rectal Cancer; Stage III Extragonadal Non-seminomatous Germ Cell Tumor; Stage III Extragonadal Seminoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Extragonadal Non-seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Melanoma; Stage IV Ovarian Germ Cell Tumor; Stage IV Rectal Cancer; Testicular Immature Teratoma; Testicular Mature Teratoma
2018-06-08
Germ Cell Tumor; Teratoma; Choriocarcinoma; Germinoma; Mixed Germ Cell Tumor; Yolk Sac Tumor; Childhood Teratoma; Malignant Germ Cell Neoplasm; Extragonadal Seminoma; Non-seminomatous Germ Cell Tumor; Seminoma
Primordial Germ Cell Specification and Migration
Marlow, Florence
2015-01-01
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157
Multivariate Analysis of Factors Affecting Presence and/or Agenesis of Third Molar Tooth
Alam, Mohammad Khursheed; Hamza, Muhammad Asyraf; Khafiz, Muhammad Aizuddin; Rahman, Shaifulizan Abdul; Shaari, Ramizu; Hassan, Akram
2014-01-01
To investigate the presence and/or agenesis of third molar (M3) tooth germs in orthodontics patients in Malaysian Malay and Chinese population and evaluate the relationship between presence and/or agenesis of M3 with different skeletal malocclusion patterns and sagittal maxillomandibular jaw dimensions. Pretreatment records of 300 orthodontic patients (140 males and 160 females, 219 Malaysian Malay and 81 Chinese, average age was 16.27±4.59) were used. Third-molar agenesis was calculated with respect to race, genders, number of missing teeth, jaws, skeletal malocclusion patterns and sagittal maxillomandibular jaw dimensions. The Pearson chi-square test and ANOVA was performed to determine potential differences. Associations between various factors and M3 presence/agenesis groups were assessed using logistic regression analysis. The percentages of subjects with 1 or more M3 agenesis were 30%, 33% and 31% in the Malaysian Malay, Chinese and total population, respectively. Overall prevalence of M3 agenesis in male and female was equal (P>0.05). The frequency of the agenesis of M3s is greater in maxilla as well in the right side (P>0.05). The prevalence of M3 agenesis in those with a Class III and Class II malocclusion was relatively higher in Malaysian Malay and Malaysian Chinese population respectively. Using stepwise regression analyses, significant associations were found between Mx (P<0.05) and ANB (P<0.05) and M3 agenesis. This multivariate analysis suggested that Mx and ANB were significantly correlated with the M3 presence/agenesis. PMID:24967595
Dental maturation, eruption, and gingival emergence in the upper jaw of newborn primates.
Smith, Timothy D; Muchlinski, Magdalena N; Jankord, Kathryn D; Progar, Abbigal J; Bonar, Christopher J; Evans, Sian; Williams, Lawrence; Vinyard, Christopher J; Deleon, Valerie B
2015-12-01
In this report we provide data on dental eruption and tooth germ maturation at birth in a large sample constituting the broadest array of non-human primates studied to date. Over 100 perinatal primates, obtained from natural captive deaths, were screened for characteristics indicating premature birth, and were subsequently studied using a combination of histology and micro-CT. Results reveal one probable unifying characteristic of living primates: relatively advanced maturation of deciduous teeth and M1 at birth. Beyond this, there is great diversity in the status of tooth eruption and maturation (dental stage) in the newborn primate. Contrasting strategies in producing a masticatory battery are already apparent at birth in strepsirrhines and anthropoids. Results show that dental maturation and eruption schedules are potentially independently co-opted as different strategies for attaining feeding independence. The most common strategy in strepsirrhines is accelerating eruption and the maturation of the permanent dentition, including replacement teeth. Anthropoids, with only few exceptions, accelerate mineralization of the deciduous teeth, while delaying development of all permanent teeth except M1. These results also show that no living primate resembles the altricial tree shrew (Tupaia) in dental development. Our preliminary observations suggest that ecological explanations, such as diet, provide an explanation for certain morphological variations at birth. These results confirm previous work on perinatal indriids indicating that these and other primates telegraph their feeding adaptations well before masticatory anatomy is functional. Quantitative analyses are required to decipher specific dietary and other influences on dental size and maturation in the newborn primate. © 2015 Wiley Periodicals, Inc.
Dental maturation, eruption, and gingival emergence in the upper jaw of newborn primates
Smith, Timothy D.; Muchlinksi, Magdalena N.; Jankord, Kathryn D.; Progar, Abbigal J.; Bonar, Christopher J.; Evans, Sian; Williams, Lawrence; Vinyard, Christopher J.; DeLeon, Valerie B.
2015-01-01
In this report we provide data on dental eruption and tooth germ maturation at birth in a large sample constituting the broadest array of non-human primates studied to date. Over 100 perinatal primates, obtained from natural captive deaths, were screened for characteristics indicating premature birth, and were subsequently studied using a combination of histology and micro-CT. Results reveal one probable unifying characteristic of living primates: relatively advanced maturation of deciduous teeth and M1 at birth. Beyond this, there is great diversity in the status of tooth eruption and maturation (dental stage) in the newborn primate. Contrasting strategies in producing a masticatory battery are already apparent at birth in strepsirrhines and anthropoids. Results show that dental maturation and eruption schedules are potentially independently co-opted as different strategies for attaining feeding independence. The most common strategy in strepsirrhines is accelerating eruption and the maturation of the permanent dentition, including replacement teeth. Anthropoids, with only few exceptions, accelerate mineralization of the deciduous teeth, while delaying development of all permanent teeth except M1. These results also show that no living primate resembles the altricial tree shrew (Tupaia) in dental development. Our preliminary observations suggest that ecological explanations, such as diet, provide an explanation for certain morphological variations at birth. These results confirm previous work on perinatal indriids indicating that these and other primates telegraph their feeding adaptations well before masticatory anatomy is functional. Quantitative analyses are required to decipher specific dietary and other influences on dental size and maturation in the newborn primate. PMID:26425925
Paulsen, J. E.; Capowski, E. E.; Strome, S.
1995-01-01
mes-3 is one of four maternal-effect sterile genes that encode maternal components required for normal postembryonic development of the germ line in Caenorhabditis elegans. mes-3 mutant mothers produce sterile progeny, which contain few germ cells and no gametes. This terminal phenotype reflects two problems: reduced proliferation of the germ line and germ cell death. Both the appearance of the dying germ cells and the results of genetic tests indicate that germ cells in mes-3 animals undergo a necrotic-like death, not programmed cell death. The few germ cells that appear healthy in mes-3 worms do not differentiate into gametes, even after elimination of the signaling pathway that normally maintains the undifferentiated population of germ cells. Thus, mes-3 encodes a maternally supplied product that is required both for proliferation of the germ line and for maintenance of viable germ cells that are competent to differentiate into gametes. Cloning and molecular characterization of mes-3 revealed that it is the upstream gene in an operon. The genes in the operon display parallel expression patterns; transcripts are present throughout development and are not restricted to germ-line tissue. Both mes-3 and the downstream gene in the operon encode novel proteins. PMID:8601481
Primary Culture System for Germ Cells from Caenorhabditis elegans Tumorous Germline Mutants
Vagasi, Alexandra S.; Rahman, Mohammad M.; Chaudhari, Snehal N.; Kipreos, Edward T.
2017-01-01
The Caenorhabditis elegans germ line is an important model system for the study of germ stem cells. Wild-type C. elegans germ cells are syncytial and therefore cannot be isolated in in vitro cultures. In contrast, the germ cells from tumorous mutants can be fully cellularized and isolated intact from the mutant animals. Here we describe a detailed protocol for the isolation of germ cells from tumorous mutants that allows the germ cells to be maintained for extended periods in an in vitro primary culture. This protocol has been adapted from Chaudhari et al., 2016. PMID:28868332
Slaidina, Maija; Lehmann, Ruth
2017-01-23
Germ cell death occurs in many species [1-3] and has been proposed as a mechanism by which the fittest, strongest, or least damaged germ cells are selected for transmission to the next generation. However, little is known about how the choice is made between germ cell survival and death. Here, we focus on the mechanisms that regulate germ cell survival during embryonic development in Drosophila. We find that the decision to die is a germ cell-intrinsic process linked to quantitative differences in germ plasm inheritance, such that higher germ plasm inheritance correlates with higher primordial germ cell (PGC) survival probability. We demonstrate that the maternal factor lipid phosphate phosphatase Wunen-2 (Wun2) regulates PGC survival in a dose-dependent manner. Since wun2 mRNA levels correlate with the levels of other maternal determinants at the single-cell level, we propose that Wun2 is used as a readout of the overall germ plasm quantity, such that only PGCs with the highest germ plasm quantity survive. Furthermore, we demonstrate that Wun2 and p53, another regulator of PGC survival, have opposite yet independent effects on PGC survival. Since p53 regulates cell death upon DNA damage and various cellular stresses, we hypothesize that together they ensure selection of the PGCs with highest germ plasm quantity and least cellular damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Geochemical Earth Reference Model (GERM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudigel, H.; Albarede, F.; Shaw, H.
The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals aremore » clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.« less
Models of germ cell development and their application for toxicity studies
Ferreira, Daniel W.; Allard, Patrick
2015-01-01
Germ cells are unique in their ability to transfer genetic information and traits from generation to generation. As such, the proper development of germ cells and the integrity of their genome are paramount to the health of organisms and the survival of species. Germ cells are also exquisitely sensitive to environmental influences although the testing of germ cell toxicity, especially in females, has proven particularly challenging. In this review, we first describe the remarkable odyssey of germ cells in mammals, with an emphasis on the female germline, from their initial specification during embryogenesis to the generation of mature gametes in adults. We also describe the current methods used in germ cell toxicity testing and their limitations in examining the complex features of mammalian germ cell development. To bypass these challenges, we propose the use of alternative model systems such as Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and in vitro germ cell methods that have distinct advantages over traditional toxicity models. We discuss the benefits and limitations of each approach, their application to germ cell toxicity studies, and the need for computational approaches to maximize the usefulness of these models. Together, the inclusion of these alternative germ cell toxicity models will be invaluable for the examination of stages not easily accessible in mammals as well as the large scale, high-throughput investigation of germ cell toxicity. PMID:25821157
A functional Bucky ball-GFP transgene visualizes germ plasm in living zebrafish.
Riemer, Stephan; Bontems, Franck; Krishnakumar, Pritesh; Gömann, Jasmin; Dosch, Roland
2015-01-01
In many animals, the germline is specified by maternal RNA-granules termed germ plasm. The correct localization of germ plasm during embryogenesis is therefore crucial for the specification of germ cells. In zebrafish, we previously identified Bucky ball (Buc) as a key regulator of germ plasm formation. Here, we used a Buc antibody to describe its continuous germ plasm localization. Moreover, we generated a transgenic Buc-GFP line for live imaging, which visualizes germ plasm from its assembly during oogenesis up to the larval stages. Live imaging of Buc-GFP generated stunning movies, as they highlighted the dynamic details of germ plasm movements. Moreover, we discovered that Buc was still detected in primordial germ cells 2 days after fertilization. Interestingly, the transgene rescued buc mutants demonstrating genetically that the Buc-GFP fusion protein is functional. These results show that Buc-GFP exerts all biochemical interactions essential for germline development and highlight the potential of this line to analyze the molecular regulation of germ plasm formation. Copyright © 2015 Elsevier B.V. All rights reserved.
Treatment Option Overview (Extragonadal Germ Cell Tumors)
... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...
USDA-ARS?s Scientific Manuscript database
An aqueous enzymatic method was developed to extract oil from wheat germ. The parameters that influence oil yield were investigated, including wheat germ pretreatment, comparison of various industrial enzymes, pH, ratio of wheat germ to water, reaction time and demulsification. Pretreatment at 180ºC...
The Biology of the Germ line in Echinoderms
Wessel, Gary M.; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A.; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S. Zachary; Yajima, Mamiko; Zazueta, Vanessa
2014-01-01
SUMMARY The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed. PMID:23900765
Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution.
Johnson, Andrew D; Drum, Matthew; Bachvarova, Rosemary F; Masi, Thomas; White, Mary E; Crother, Brian I
2003-01-01
The germ line is established in animal embryos with the formation of primordial germ cells (PGCs), which give rise to gametes. Therefore, the need to form PGCs can act as a developmental constraint by inhibiting the evolution of embryonic patterning mechanisms that compromise their development. Conversely, events that stabilize the PGCs may liberate these constraints. Two modes of germ cell determination exist in animal embryos: (a) either PGCs are predetermined by the inheritance of germ cell determinants (germ plasm) or (b) PGCs are formed by inducing signals secreted by embryonic tissues (i.e., regulative determination). Surprisingly, among the major extant amphibian lineages, one mechanism is found in urodeles and the other in anurans. In anuran amphibians PGCs are predetermined by germ plasm; in urodele amphibians PGCs are formed by inducing signals. To determine which mechanism is ancestral to the tetrapod lineage and to understand the pattern of inheritance in higher vertebrates, we used a phylogenetic approach to analyze basic morphological processes in both groups and correlated these with mechanisms of germ cell determination. Our results indicate that regulative germ cell determination is a property of embryos retaining ancestral embryological processes, whereas predetermined germ cells are found in embryos with derived morphological traits. These correlations suggest that regulative germ cell formation is an important developmental constraint in vertebrate embryos, acting before the highly conserved pharyngula stage. Moreover, our analysis suggests that germ plasm has evolved independently in several lineages of vertebrate embryos.
Ovarian Germ Cell Tumors Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version
Ovarian germ cell tumors form in germ (egg) cells in the ovary. Ovarian germ cell tumors usually occur in teenage girls or young women and most often affect just one ovary. They are usually cured if found and treated early. Learn about signs and symptoms, tests to diagnose, and stages of ovarian germ cell tumors.
Inserra, P I F; Leopardo, N P; Willis, M A; Freysselinard, A L; Vitullo, A D
2014-02-01
The female germ line in mammals is subjected to massive cell death that eliminates 60-85% of the germinal reserve by birth and continues from birth to adulthood until the exhaustion of the germinal pool. Germ cell demise occurs mainly through apoptosis by means of a biased expression in favour of pro-apoptotic members of the BCL2 gene family. By contrast, the South American plains vizcacha, Lagostomus maximus, exhibits sustained expression of the anti-apoptotic BCL2 gene throughout gestation and a low incidence of germ cell apoptosis. This led to the proposal that, in the absence of death mechanisms other than apoptosis, the female germ line should increase continuously from foetal life until after birth. In this study, we quantified all healthy germ cells and follicles in the ovaries of L. maximus from early foetal life to day 60 after birth using unbiased stereological methods and detected apoptosis by labelling with TUNEL assay. The healthy germ cell population increased continuously from early-developing ovary reaching a 50 times higher population number by the end of gestation. TUNEL-positive germ cells were <0.5% of the germ cell number, except at mid-gestation (3.62%). Mitotic proliferation, entrance into prophase I stage and primordial follicle formation occurred as overlapping processes from early pregnancy to birth. Germ cell number remained constant in early post-natal life, but a remnant population of non-follicular VASA- and PCNA-positive germ cells still persisted at post-natal day 60. L. maximus is the first mammal so far described in which female germ line develops in the absence of constitutive massive germ cell elimination.
Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells
Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.
2011-01-01
Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058
Kaneko, Y; Kimura, T; Nishiyama, H; Noda, Y; Fujita, J
1997-04-07
Apg-1 encodes a heat shock protein belonging to the heat shock protein 110 family, and is inducible by a 32 degrees C to 39 degrees C heat shock. Northern blot analysis of the testis from immature and adult mice, and of the purified germ cells revealed the quantitative change of the apg-1 transcripts during germ cell development. By in situ hybridization histochemistry the expressions of the apg-1 transcripts were detected in germ cells at specific stages of development including spermatocytes and spermatids. Although heat-induction of the apg-1 transcripts was observed in W/Wv mutant testis lacking germ cells, it was not detected in wild-type testis nor in the purified germ cells. Thus, the apg-1 expression is not heat-regulated but developmentally regulated in germ cells, suggesting that APG-1 plays a role in normal development of germ cells.
An in vivo proteomic analysis of the Me31B interactome in Drosophila germ granules.
DeHaan, Hunter; McCambridge, Aidan; Armstrong, Brittany; Cruse, Carlie; Solanki, Dhruv; Trinidad, Jonathan C; Arkov, Alexey L; Gao, Ming
2017-11-01
Drosophila Me31B is a conserved protein of germ granules, ribonucleoprotein complexes essential for germ cell development. Me31B post-transcriptionally regulates mRNAs by interacting with other germ granule proteins. However, a Me31B interactome is lacking. Here, we use an in vivo proteomics approach to show that the Me31B interactome contains polypeptides from four functional groups: RNA regulatory proteins, glycolytic enzymes, cytoskeleton/motor proteins, and germ plasm components. We further show that Me31B likely colocalizes with the germ plasm components Tudor (Tud), Vasa, and Aubergine in the nuage and germ plasm and provide evidence that Me31B may directly bind to Tud in a symmetrically dimethylated arginine-dependent manner. Our study supports the role of Me31B in RNA regulation and suggests its novel roles in germ granule assembly and function. © 2017 Federation of European Biochemical Societies.
Mitchell, Rod T; Camacho-Moll, Maria; Macdonald, Joni; Anderson, Richard A; Kelnar, Christopher JH; O’Donnell, Marie; Sharpe, Richard M; Smith, Lee B; Grigor, Ken M; Wallace, W Hamish B; Stoop, Hans; Wolffenbuttel, Katja P; Donat, Roland
2014-01-01
Testicular germ cell cancer develops from pre-malignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4+/ MAGEA4−) into pre-spermatogonia (OCT4−/MAGEA4+). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesised that cells expressing an immature (OCT4+/MAGEA4−) germ cell profile would exhibit an increased proliferation rate compared to those with a mature profile (OCT4+/ MAGEA4+). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with pre-invasive disease, seminoma and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4+/MAGEA4- cells showed a significantly increased rate of proliferation compared with the OCT4+/MAGEA4+ population (12.8 v 3.4%, p<0.0001) irrespective of histological tumour type, reflected in the predominance of OCT4+/MAGEA4− cells in the invasive tumour component. Surprisingly, OCT4+/MAGEA4− cells in patients with pre-invasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 v 10.2 v 7.2%, p<0.05 respectively). In conclusion, this study has demonstrated that OCT4+/MAGEA4− cells are the most frequent and most proliferative cell population in tubules containing intratubular germ cell neoplasia, which appears to be an important factor in determining invasive potential of intratubular germ cell neoplasia to seminomas. PMID:24457464
nanos function is essential for development and regeneration of planarian germ cells.
Wang, Yuying; Zayas, Ricardo M; Guo, Tingxia; Newmark, Phillip A
2007-04-03
Germ cells are required for the successful propagation of sexually reproducing species. Understanding the mechanisms by which these cells are specified and how their totipotency is established and maintained has important biomedical and evolutionary implications. Freshwater planarians serve as fascinating models for studying these questions. They can regenerate germ cells from fragments of adult tissues that lack reproductive structures, suggesting that inductive signaling is involved in planarian germ cell specification. To study the development and regeneration of planarian germ cells, we have functionally characterized an ortholog of nanos, a gene required for germ cell development in diverse organisms, from Schmidtea mediterranea. In the hermaphroditic strain of this species, Smed-nanos mRNA is detected in developing, regenerating, and mature ovaries and testes. However, it is not detected in the vast majority of newly hatched planarians or in small tissue fragments that will ultimately regenerate germ cells, consistent with an epigenetic origin of germ cells. We show that Smed-nanos RNA interference (RNAi) results in failure to develop, regenerate, or maintain gonads in sexual planarians. Unexpectedly, Smed-nanos mRNA is also detected in presumptive testes primordia of asexual individuals that reproduce strictly by fission. These presumptive germ cells are lost after Smed-nanos RNAi, suggesting that asexual planarians specify germ cells, but their differentiation is blocked downstream of Smed-nanos function. Our results reveal a conserved function of nanos in germ cell development in planarians and suggest that these animals will serve as useful models for dissecting the molecular basis of epigenetic germ cell specification.
Petrović, Jovana; Rakić, Dušan; Fišteš, Aleksandar; Pajin, Biljana; Lončarević, Ivana; Tomović, Vladimir; Zarić, Danica
2017-10-01
The introduction of agro-food industry by-products rich in bioactive compounds represents major challenge in food industry sector. The influence of wheat germ particle size (<150 µm, 150-1000 µm, and 800-2000 µm), wheat germ content (5, 10, and 15%), and dough moisture content (20, 22, and 24%) on chemical, textural, and sensory characteristics of cookies was investigated using the Box-Behnken experimental design. The substitution of wheat flour with wheat germ increased the protein, fat, mineral, and fiber content of the cookies. The particle size of wheat germ affected the textural properties of cookies. As the particle size of wheat germ increased, the hardness of cookies decreased. The color of the cookie was most influenced by the interaction of dough moisture content and wheat germ particle size. Wheat germ level up to 15% had no significant effect on the sensory characteristics of cookies. A suitable combination of defatted wheat germ level, its particle size, and dough moisture content can improve the nutritional value of cookies, without causing a negative effect on the cookies' sensory characteristics.
Capowski, E. E.; Martin, P.; Garvin, C.; Strome, S.
1991-01-01
To identify genes that encode maternal components required for development of the germ line in the nematode Caenorhabditis elegans, we have screened for mutations that confer a maternal-effect sterile or ``grandchildless'' phenotype: homozygous mutant hermaphrodites produced by heterozygous mothers are themselves fertile, but produce sterile progeny. Our screens have identified six loci, defined by 21 mutations. This paper presents genetic and phenotypic characterization of four of the loci. The majority of mutations, those in mes-2, mes-3 and mes-4, affect postembryonic germ-line development; the progeny of mutant mothers undergo apparently normal embryogenesis but develop into agametic adults with 10-1000-fold reductions in number of germ cells. In contrast, mutations in mes-1 cause defects in cytoplasmic partitioning during embryogenesis, and the resulting larvae lack germ-line progenitor cells. Mutations in all of the mes loci primarily affect the germ line, and none disrupt the structural integrity of germ granules. This is in contrast to grandchildless mutations in Drosophila melanogaster, all of which disrupt germ granules and affect abdominal as well as germ-line development. PMID:1783292
Insights into female germ cell biology: from in vivo development to in vitro derivations.
Jung, Dajung; Kee, Kehkooi
2015-01-01
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Jiang, Qian; Wang, Fei; Shi, Lili; Zhao, Xiang; Gong, Maolei; Liu, Weihua; Song, Chengyi; Li, Qihan; Chen, Yongmei; Wu, Han; Han, Daishu
2017-01-01
Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis. PMID:29072682
2018-04-11
Cognitive Side Effects of Cancer Therapy; Malignant Ovarian Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Carcinosarcoma; Ovarian Choriocarcinoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Dysgerminoma; Ovarian Embryonal Carcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Mucinous Cystadenocarcinoma; Ovarian Polyembryoma; Ovarian Sarcoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Cancer; Stage IC Ovarian Germ Cell Tumor; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cancer; Undifferentiated Ovarian Carcinoma
Methods to study maternal regulation of germ cell specification in zebrafish
Kaufman, O.H.; Marlow, F.L.
2016-01-01
The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489
Fresques, Tara; Swartz, S. Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M.
2016-01-01
Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32–128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. PMID:27402572
Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E
2010-04-01
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic. Copyright 2009 Wiley-Liss, Inc.
Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation
Lanza, Denise G.; Dawson, Emily P.; Rao, Priya; Heaney, Jason D.
2016-01-01
ABSTRACT Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis. PMID:26901436
2014-12-18
Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer
Ma, Xing; Wang, Su; Do, Trieu; Song, Xiaoqing; Inaba, Mayu; Nishimoto, Yoshiya; Liu, Lu-ping; Gao, Yuan; Mao, Ying; Li, Hui; McDowell, William; Park, Jungeun; Malanowski, Kate; Peak, Allison; Perera, Anoja; Li, Hua; Gaudenz, Karin; Haug, Jeff; Yamashita, Yukiko; Lin, Haifan; Ni, Jian-quan; Xie, Ting
2014-01-01
The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary. PMID:24658126
Extracranial Germ Cell Tumors—Health Professional Version
Extracranial germ cell tumors (GCTs) arise from primordial germ cells, which migrate during embryogenesis from the yolk sac to the gonads. Childhood extracranial GCTs can be divided into the following two types: gonadal, and extragonadal. Find evidence-based information on extracranial germ cell tumors treatment.
Identification of Potential Germ-Cell Mutagens
The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Various rodent-based germ-cell mutation assays have been developed, and ~50 germ...
Maternal dazap2 Regulates Germ Granules by Counteracting Dynein in Zebrafish Primordial Germ Cells.
Forbes, Meredyth M; Rothhämel, Sophie; Jenny, Andreas; Marlow, Florence L
2015-07-07
Primordial germ cells (PGCs) are the stem cells of the germline. Generally, germline induction occurs via zygotic factors or the inheritance of maternal determinants called germ plasm (GP). GP is packaged into ribonucleoprotein complexes within oocytes and later promotes the germline fate in embryos. Once PGCs are specified by either mechanism, GP components localize to perinuclear granular-like structures. Although components of zebrafish PGC germ granules have been studied, the maternal factors regulating their assembly and contribution to germ cell development are unknown. Here, we show that the scaffold protein Dazap2 binds to Bucky ball, an essential regulator of oocyte polarity and GP assembly, and colocalizes with the GP in oocytes and in PGCs. Mutational analysis revealed a requirement for maternal Dazap2 (MDazap2) in germ-granule maintenance. Through molecular epistasis analyses, we show that MDazap2 is epistatic to Tdrd7 and maintains germ granules in the embryonic germline by counteracting Dynein activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation.
Lerit, Dorothy A; Shebelut, Conrad W; Lawlor, Kristen J; Rusan, Nasser M; Gavis, Elizabeth R; Schedl, Paul; Deshpande, Girish
2017-01-24
The primordial germ cells (PGCs) specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT)-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl), is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Drosophila germ granules are structured and contain homotypic mRNA clusters
Trcek, Tatjana; Grosch, Markus; York, Andrew; Shroff, Hari; Lionnet, Timothée; Lehmann, Ruth
2015-01-01
Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into ‘homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules. PMID:26242323
Sakano, M; Otsu, K; Fujiwara, N; Fukumoto, S; Yamada, A; Harada, H
2013-04-01
Some clinical cases of hypoplastic tooth root are congenital. Because the formation of Hertwig's epithelial root sheath (HERS) is an important event for root development and growth, we have considered that understanding the HERS developmental mechanism contributes to elucidate the causal factors of the disease. To find integrant factors and phenomenon for HERS development and growth, we studied the proliferation and mobility of the cervical loop (CL). We observed the cell movement of CL by the DiI labeling and organ culture system. To examine cell proliferation, we carried out immunostaining of CL and HERS using anti-Ki67 antibody. Cell motility in CL was observed by tooth germ slice organ culture using green fluorescent protein mouse. We also examined the expression of paxillin associated with cell movement. Imaging using DiI labeling showed that, at the apex of CL, the epithelium elongated in tandem with the growth of outer enamel epithelium (OEE). Cell proliferation assay using Ki67 immunostaining showed that OEE divided more actively than inner enamel epithelium (IEE) at the onset of HERS formation. Live imaging suggested that mobility of the OEE and cells in the apex of CL were more active than in IEE. The expression of paxillin was observed strongly in OEE and the apex of CL. The more active growth and movement of OEE cells contributed to HERS formation after reduction of the growth of IEE. The expression pattern of paxillin was involved in the active movement of OEE and HERS. The results will contribute to understand the HERS formation mechanism and elucidate the cause of anomaly root. © 2012 John Wiley & Sons A/S.
Salmela, Eija; Lukinmaa, Pirjo-Liisa; Partanen, Anna-Maija; Sahlberg, Carin; Alaluusua, Satu
2011-08-01
Fluoride interferes with enamel matrix secretion and mineralization and dentin mineralization. The most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), also impairs dental hard tissue formation and mineralization in vitro and in vivo. Our aim was to investigate in vitro whether the combined effect of sodium fluoride (NaF) and TCDD on dental hard tissue formation is potentiative. For this purpose, mandibular first and second molar tooth germs of E18 mouse embryos were cultured for 5-12 days with NaF and TCDD alone at various concentrations (2.5, 5, 10, 12.5, 15, and 20 μM and 5, 10, 12.5, and 15 nM, respectively) to determine the highest concentrations, which alone cause no or negligible effects. Morphological changes were studied from the whole tooth photographs and histological tissue sections. The concentrations found were 15 μM for NaF and 10 nM for TCDD. While at these concentrations, the effects of NaF and TCDD alone were barely detectable, the effect of simultaneous exposure on dentin and enamel formation was overt; mineralization of predentin to dentin and enamel matrix secretion and mineralization were impaired. Immunohistochemical analysis revealed that the combined exposure modified amelogenin expression by odontoblasts. Morphology of ameloblasts and the expression of amelogenin indicated that ameloblasts were still secretory. The results show that NaF and TCDD have potentiative, harmful effects on the formation of dental hard tissues. Since children can be exposed to subclinical levels of fluoride and dioxins during early childhood, coincidently with mineralization of the first permanent teeth, this finding may have clinical significance.
FATE OF FLUORIDE-INDUCED SUBAMELOBLASTIC CYSTS IN DEVELOPING HAMSTER MOLAR TOOTH GERMS
Lyaruu, DM; Alberga, JMR; Kwee, NCH; Bervoets, TJM; Bronckers, ALJJ; DenBesten, PK
2016-01-01
White opacities and pits are developmental defects in enamel caused by high intake of fluoride (F) during amelogenesis. We tested the hypothesis that these enamel pits develop at locations where F induces the formation of sub-ameloblastic cysts. We followed the fate of these cysts during molar development over time. Mandibles from hamster pups injected with 20 mg NaF/kg at postnatal day 4 were excised from 1 h after injection till shortly after tooth eruption, 8 days later. Tissues were histologically processed and cysts located and measured. Cysts were formed at early secretory stage and transitional stage of amelogenesis and detected as early 1 h after injection. The number of cysts increased from 1 to almost 4 per molar during the first 16 h post-injection. The size of the cysts was about the same, i.e., 0.46±0.29 ×106 μm3 at 2hr and 0.50±0.35×106 μm3 at 16 h post-injection. By detachment of the ameloblasts the forming enamel surface below the cyst was cell-free the first 16 h post-injection. With time new ameloblasts repopulated and covered the enamel surface in the cystic area. Three days after injection all cysts had disappeared and the integrity of the ameloblastic layer restored. After eruption, white opaque areas with intact enamel surface were found occlusally at similar anatomical locations as late secretory stage cysts were seen pre-eruptively. We conclude that at this moderate F dose, the opaque sub-surface defects with intact surface enamel (white spots) are the consequence of the fluoride-induced cystic lesions formed earlier under the late secretory–transitional stage ameloblasts. PMID:21277565
Zilberman, Uri; Bibi, Haim
2016-01-01
Multiple sulfatase deficiency (MSD) is a rare autosomal recessive inborn error of metabolism due to reduced catalytic activity of the different sulfatase. Affected individuals show neurologic deterioration with mental retardation, skeletal anomalies, organomegaly, and skin changes as in X-linked ichthyosis. The only organ that was not examined in MSD patients is the dentition. To evaluate the effect of the metabolic error on dental development in a patient with the intermediate severe late-infantile form of MSD (S155P). Histological and chemical study were performed on three deciduous and five permanent teeth from MSD patient and pair-matched normal patients. Tooth germ size and enamel thickness were reduced in both deciduous and permanent MSD teeth, and the scalloping feature of the DEJ was missing in MSD teeth causing enamel to break off from the dentin. The mineral components in the enamel and dentin were different. The metabolic error insults the teeth in the stage of organogenesis in both the deciduous and permanent dentition. The end result is teeth with very sharp cusp tips, thin hypomineralized enamel, and exposed dentin due to the break off of enamel. These findings are different from all other types of MPS syndromes.Clinically the phenotype of intermediate severe late-infantile form of MSD appeared during the third year of life. In children of parents that are carriers, we can diagnose the disease as early as birth using X-ray radiograph of the anterior upper region or as early as 6-8 months when the first deciduous tooth erupt and consider very early treatment to ameliorate the symptoms.
In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells
Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi
2009-01-01
Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates. PMID:19399191
Extragonadal Germ Cell Tumors—Health Professional Version
Extragonadal germ cell tumors are rare and account for only a small percentage of all germ cell tumors. However, the true incidence of these tumors may be higher than originally thought because of failure to diagnose them properly. Find evidence-based information on extragonadal germ cell tumors treatment.
Extraction and characterization of corn germ proteins
USDA-ARS?s Scientific Manuscript database
Our study was conducted to develop methods to extract corn germ protein economically and characterize and identify potential applications of the recovered protein. Protein was extracted from both wet germ and finished (dried) germ using 0.1M NaCl as solvent. The method involved homogenization, sti...
Improvement of dry fractionation ethanol fermentation by partial germ supplementation
USDA-ARS?s Scientific Manuscript database
Ethanol fermentation of dry fractionated grits (corn endosperm pieces) containing different levels of germ was studied using the dry grind process. Partial removal of germ fraction allows for marketing the germ fraction and potentially more efficient fermentation. Grits obtained from a dry milling p...
From Young Children's Ideas about Germs to Ideas Shaping a Learning Environment
NASA Astrophysics Data System (ADS)
Ergazaki, Marida; Saltapida, Konstantina; Zogza, Vassiliki
2010-11-01
This paper is concerned with highlighting young children’s ideas about the nature, location and appearance of germs, as well as their reasoning strands about germs’ ontological category and biological functions. Moreover, it is concerned with exploring how all these could be taken into account for shaping a potentially fruitful learning environment. Conducting individual, semi-structured interviews with 35 preschoolers (age 4.5-5.5) of public kindergartens in the broader area of Patras, we attempted to trace their ideas about what germs are, where they may be found, whether they are good or bad and living or non-living and how they might look like in a drawing. Moreover, children were required to attribute a series of biological functions to dogs, chairs and germs, and finally to create a story with germs holding a key-role. The analysis of our qualitative data within the “NVivo” software showed that the informants make a strong association of germs with health and hygiene issues, locate germs mostly in our body and the external environment, are not familiar with the ‘good germs’-idea, and draw germs as ‘human-like’, ‘animal-like’ or ‘abstract’ entities. Moreover, they have significant difficulties not only in employing biological functions as criteria for classifying germs in the category of ‘living’, but also in just attributing such functions to germs using a warrant. Finally, the shift from our findings to a 3-part learning environment aiming at supporting preschoolers in refining their initial conceptualization of germs is thoroughly discussed in the paper.
Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M
2016-07-01
Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.
Extracranial Germ Cell Tumors—Patient Version
Extracranial germ cell tumors are tumors that develop from germ cells (fetal cells that give rise to sperm and eggs) and can form in many parts of the body. They are most common in teenagers and can often be cured. Start here to find information on extracranial germ cell tumors treatment.
DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings
2017-10-05
Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor
Saitou, Mitinori; Yamaji, Masashi
2012-01-01
Germ cell development creates totipotency through genetic as well as epigenetic regulation of the genome function. Primordial germ cells (PGCs) are the first germ cell population established during development and are immediate precursors for both the oocytes and spermatogonia. We here summarize recent findings regarding the mechanism of PGC development in mice. We focus on the transcriptional and signaling mechanism for PGC specification, potential pluripotency, and epigenetic reprogramming in PGCs and strategies for the reconstitution of germ cell development using pluripotent stem cells in culture. Continued studies on germ cell development may lead to the generation of totipotency in vitro, which should have a profound influence on biological science as well as on medicine. PMID:23125014
DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.
Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo
2012-02-01
Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.
Extraction and functional properties of non-zein proteins in corn germ from wet-milling
USDA-ARS?s Scientific Manuscript database
This study was conducted to develop methods of extracting corn germ protein and characterize and identify potential applications of the recovered protein. Protein was extracted from both wet germ and finished (dried) germ using 0.1M NaCl as solvent. The method involved homogenization, stirring, cent...
Retrotransposons Mimic Germ Plasm Determinants to Promote Transgenerational Inheritance.
Tiwari, Bhavana; Kurtz, Paula; Jones, Amanda E; Wylie, Annika; Amatruda, James F; Boggupalli, Devi Prasad; Gonsalvez, Graydon B; Abrams, John M
2017-10-09
Retrotransposons are a pervasive class of mobile elements present in the genomes of virtually all forms of life [1, 2]. In metazoans, these are preferentially active in the germline, which, in turn, mounts defenses that restrain their activity [3, 4]. Here we report that certain classes of retrotransposons ensure transgenerational inheritance by invading presumptive germ cells before they are formed. Using sensitized Drosophila and zebrafish models, we found that diverse classes of retrotransposons migrate to the germ plasm, a specialized region of the oocyte that prefigures germ cells and specifies the germline of descendants in the fertilized egg. In Drosophila, we found evidence for a "stowaway" model, whereby Tahre retroelements traffic to the germ plasm by mimicking oskar RNAs and engaging the Staufen-dependent active transport machinery. Consistent with this, germ plasm determinants attracted retroelement RNAs even when these components were ectopically positioned in bipolar oocytes. Likewise, vertebrate retrotransposons similarly migrated to the germ plasm in zebrafish oocytes. Together, these results suggest that germ plasm targeting represents a fitness strategy adopted by some retrotransposons to ensure transgenerational propagation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen
Liu, Chunfang; Ma, Zhan; Xu, Songtao; Hou, Jun; Hu, Yao; Yu, Yinglu; Liu, Ruilai; Chen, Zhihong; Lu, Yuan
2014-01-01
Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy. PMID:24998261
Generation of organized germ layers from a single mouse embryonic stem cell.
Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning
2014-05-30
Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.
The making of a germ panic, then and now.
Tomes, N
2000-01-01
Over the last 2 decades, a heightened interest in germs has been evident in many aspects of American popular culture, including news coverage, advertisements, and entertainment media. Although clearly a response to the AIDS epidemic and other recent disease outbreaks, current obsessions with germs have some striking parallels with a similar period of intense anxiety about disease germs that occurred between 1900 and 1940. A comparison of these 2 periods of germ "panic" suggests some of the long-term cultural trends that contributed to their making. Both germ panics reflected anxieties about societal incorporation, associated with expanding markets, transportation networks, and mass immigration. They were also shaped by new trends in public health education, journalism, advertising, and entertainment media. In comparison to the first germ panic, the current discourse about the "revenge of the superbugs" is considerably more pessimistic because of increasing worries about the environment, suspicions of governmental authority, and distrust of expert knowledge. Yet, as popular anxieties about infectious disease have increased, public health scientists have been attracting favorable coverage in their role as "medical detectives" on the trail of the "killer germ." PMID:10667179
Chromatin associated Sin3A is essential for male germ cell lineage in the mouse
Pellegrino, Jessica; Castrillon, Diego H.; David, Gregory
2012-01-01
Spermatogenesis is a complex process that requires coordinated proliferation and differentiation of male germ cells. The molecular events that dictate this process are largely unknown, but are likely to involve highly regulated transcriptional control. In this study, we investigate the contribution of chromatin associated Sin3A in mouse germ cell lineage development. Genetic inactivation of Sin3A in the male germline leads to sterility that results from the early and penetrant apoptotic death observed in Sin3A-deleted germ cells, coincident with the reentry in mitosis. Sin3A-deleted testes exhibit a Sertoli-cell only phenotype, consistent with the absolute requirement for Sin3A in germ cells’ development and/or viability. Interestingly, transcripts analysis revealed that the expression program of Sertoli cells is altered upon inactivation of Sin3A in germ cells. These studies identified a central role for the mammalian Sin3-HDAC complex in the germ cell lineage, and point to an exquisite transcriptional crosstalk between germ cells and their niche to support fertility in mammals. PMID:22820070
Chassot, Anne-Amandine; Gregoire, Elodie P.; Lavery, Rowena; Taketo, Makoto M.; de Rooij, Dirk G.; Adams, Ian R.; Chaboissier, Marie-Christine
2011-01-01
Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog gene and factors synthesized by the somatic Sertoli cells promote gonocyte differentiation. In the female, ovarian differentiation requires activation of the WNT/β-catenin signaling pathway in the somatic cells by the secreted protein RSPO1. Using mouse models, we now show that Rspo1 also activates the WNT/β-catenin signaling pathway in germ cells. In XX Rspo1−/− gonads, germ cell proliferation, expression of the early meiotic marker Stra8, and entry into meiosis are all impaired. In these gonads, impaired entry into meiosis and germ cell sex reversal occur prior to detectable Sertoli cell differentiation, suggesting that β-catenin signaling acts within the germ cells to promote oogonial differentiation and entry into meiosis. Our results demonstrate that RSPO1/β-catenin signaling is involved in meiosis in fetal germ cells and contributes to the cellular decision of germ cells to differentiate into oocyte or sperm. PMID:21991325
Cellular mechanics of germ band retraction in Drosophila.
Lynch, Holley E; Crews, Sarah M; Rosenthal, Brett; Kim, Elliott; Gish, Robert; Echiverri, Karl; Hutson, M Shane
2013-12-15
Germ band retraction involves a dramatic rearrangement of the tissues on the surface of the Drosophila embryo. As germ band retraction commences, one tissue, the germ band, wraps around another, the amnioserosa. Through retraction the two tissues move cohesively as the highly elongated cells of the amnioserosa contract and the germ band moves so it is only on one side of the embryo. To understand the mechanical drivers of this process, we designed a series of laser ablations that suggest a mechanical role for the amnioserosa. First, we find that during mid retraction, segments in the curve of the germ band are under anisotropic tension. The largest tensions are in the direction in which the amnioserosa contracts. Second, ablating one lateral flank of the amnioserosa reduces the observed force anisotropy and leads to retraction failures. The other intact flank of amnioserosa is insufficient to drive retraction, but can support some germ band cell elongation and is thus not a full phenocopy of ush mutants. Another ablation-induced failure in retraction can phenocopy mys mutants, and does so by targeting amnioserosa cells in the same region where the mutant fails to adhere to the germ band. We conclude that the amnioserosa must play a key, but assistive, mechanical role that aids uncurling of the germ band. © 2013 Elsevier Inc. All rights reserved.
Cellular Mechanics of Germ Band Retraction in Drosophila
Lynch, Holley E.; Crews, Sarah M.; Rosenthal, Brett; Kim, Elliott; Gish, Robert; Echiverri, Karl; Hutson, M. Shane
2013-01-01
Germ band retraction involves a dramatic rearrangement of the tissues on the surface of the Drosophila embryo. As germ band retraction commences, one tissue, the germ band, wraps around another, the amnioserosa. Through retraction the two tissues move cohesively as the highly elongated cells of the amnioserosa contract and the germ band moves so it is only on one side of the embryo. To understand the mechanical drivers of this process, we designed a series of laser ablations that suggest a mechanical role for the amnioserosa. First, we find that during mid retraction, segments in the curve of the germ band are under anisotropic tension. The largest tensions are in the direction in which the amnioserosa contracts. Second, ablating one lateral flank of the amnioserosa reduces the observed force anisotropy and leads to retraction failures. The other intact flank of amnioserosa is insufficient to drive retraction, but can support some germ band cell elongation and is thus not a full phenocopy of ush mutants. Another ablation-induced failure in retraction can phenocopy mys mutants, and does so by targeting amnioserosa cells in the same region where the mutant fails to adhere to the germ band. We conclude that the amnioserosa must play a key, but assistive, mechanical role that aids uncurling of the germ band. PMID:24135149
Miranda-Rodríguez, Jerónimo Roberto; Salas-Vidal, Enrique; Lomelí, Hilda; Zurita, Mario; Schnabel, Denhi
2017-01-01
Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos
2016-01-01
The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843
Germ tube-specific antigens of Candida albicans cell walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundstrom, P.R.
1986-01-01
Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specificmore » antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with /sup 125/I, or metabolically with (/sup 35/S) methionine or (/sup 3/H) mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen.« less
Black carp vasa identifies embryonic and gonadal germ cells.
Xue, Ting; Yu, Miao; Pan, Qihua; Wang, Yizhou; Fang, Jian; Li, Lingyu; Deng, Yu; Chen, Kai; Wang, Qian; Chen, Tiansheng
2017-07-01
Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.
Cytokeratin expression in mouse lacrimal gland germ epithelium.
Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo
2016-05-01
The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice
Heaney, Jason D.; Anderson, Ericka L.; Michelson, Megan V.; Zechel, Jennifer L.; Conrad, Patricia A.; Page, David C.; Nadeau, Joseph H.
2012-01-01
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19MOLF/Ei), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation. PMID:22438569
Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H
1992-01-01
Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137
Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H
1992-07-15
Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.
Origin and development of the germ line in sea stars
Wessel, Gary M.; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa
2014-01-01
This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors – vasa, nanos, piwi – and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line in how these animals can help in this research field. The review is not intended to be comprehensive – sea star reproduction has been studied over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. PMID:24648114
Autophagy and Apoptosis Act as Partners to Induce Germ Cell Death after Heat Stress in Mice
Zhang, Mianqiu; Jiang, Min; Bi, Ye; Zhu, Hui; Zhou, Zuomin; Sha, Jiahao
2012-01-01
Testicular heating suppresses spermatogenesis which is marked by germ cell loss via apoptotic pathways. Recently, it is reported that autophagy also can be induced by heat treatment in somatic cells. In this study, the status of autophagy in germ cells after heat treatment, as well as the partnership between autophagy and apoptosis in these cells was investigated. The results demonstrated that besides initiating apoptotic pathways, heat also induced autophagic pathways in germ cells. Exposure of germ cells to hyperthermia resulted in several specific features of the autophagic process, including autophagosome formation and the conversion of LC3-I to LC3-II. Furthermore, the ubiquitin-like protein conjugation system was implicated as being likely responsible for heat-induced autophagy in germ cells since all genes involving this system were found to be expressed in the testes. In addition, the upstream protein in this system, Atg7 (Autophagy-related gene 7), was found to be expressed in all types of spermatogenic cells, and its expression level was positively correlated with the level of autophagy in germ cells. As a result, Atg7 was selected as the investigative target to further analyze the role of autophagy in heat-induced germ cell death. It was shown that down expression of Atg7 protein resulted in the notable decrease in the level of autophagy in heat-treated germ cells, and this down-regulation of autophagy caused by Atg7 knockdown further reduced the apoptotic rate of germ cells. These results suggest that autophagy plays a positive role in the process of germ cell apoptosis after heat treatment. In conclusion, this study demonstrates that heat triggers autophagy and apoptosis in germ cells. These two mechanisms might act as partners, not antagonist, to induce cell death and lead to eventual destruction of spermatogenesis. PMID:22848486
Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE
Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave
2009-01-01
Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519
Ye, Huan; Li, Chuang-Ju; Yue, Hua-Mei; Du, Hao; Yang, Xiao-Ge; Yoshino, Tasuku; Hayashida, Takao; Takeuchi, Yutaka; Wei, Qi-Wei
2017-05-01
Recent progress in germ cell transplantation techniques in fish has paved the way for the conservation of endangered species. Here, we developed an intraperitoneal germ cell transplantation procedure using Chinese and Dabry's sturgeon as donor and recipient species, respectively. Histological analysis revealed that primordial germ cells migrated on the peritoneal wall at 16 days post-hatch (dph) in Dabry's sturgeon. The genital ridges of Dabry's sturgeon (recipient) first formed at 28 dph, suggesting that for successful colonization of donor germ cells in the recipient gonads, the transplantation should be performed earlier than this age. Sexual dimorphism of gonadal structure was first observed at 78 dph. Gonadal germ cell proliferation was not seen in either sex during this period. Immunohistochemistry using the anti-Vasa antibody found that donor testes from 2-year-old Dabry's sturgeon mainly consisted of single- or paired-type A spermatogonia, while donor ovaries from 11.5-year-old Chinese sturgeon had perinucleolus stage oocytes and clusters of oogonia. Donor cells isolated from Dabry's sturgeon testes or Chinese sturgeon ovary labeled with PKH26 fluorescent dye were transplanted into the peritoneal cavity of the 7- or 8-dph Dabry's sturgeon larvae. More than 90% and 70% of transplanted larvae survived after 2 days post-transplantation (dpt) and 51 dpt, respectively. At 51 dpt, PKH26-labeled cells exhibiting germ cell-specific nuclear morphology and diameter were observed in excised recipient gonads by fluorescent and confocal microscopy. The colonization rate of allogeneic testicular germ cell transplantation (Group 1) was 70%, while that of two batches of xenogeneic ovarian germ cell transplantation (Group 2 and Group 3) were 6.7% and 40%, respectively. The ratio of colonized germ cells to endogenous germ cells was 11.96%, 5.35% and 3.56% for Group 1, Group 2 and Group 3, respectively. Thus, we established a germ cell transplantation technique for the critically endangered Chinese sturgeon using the most closely related species as a recipient and demonstrated the successful preparation of transplantable female germ cells from aged adult Chinese sturgeon. Copyright © 2017 Elsevier Inc. All rights reserved.
Although numerous germ-cell mutagens have been identified in animal model systems, to date, no human germ-cell mutagens have been confirmed. Because the genomic integrity of our germ cells is essential for the continuation of the human species, a resolution of this enduring conu...
Molecular biological features of male germ cell differentiation
HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE
2007-01-01
Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260
A new glycosylated dihydrophaseic acid from cacao germs (Theobroma cacao L.).
Sannohe, Yumiko; Gomi, Shuichi; Murata, Takashi; Ohyama, Makoto; Yonekura, Kumiko; Kanegae, Minoru; Koga, Jinichiro
2011-01-01
Cacao beans are composed of cacao nibs and germs. Although numerous chemical and physiological studies on cacao nib compounds have been reported, there is little information on cacao germ compounds. We therefore analyzed an extract from the cacao germ, and found two compounds that were specific to the germ. One of these two compounds was identified as the new glycosylated abscisic acid metabolite, dihydrophaseic acid-4'-O-6″-(β-ribofuranosyl)-β-glucopyranoside, and the other as the known compound, dihydrophaseic acid-4'-O-β-D-glucopyranoside.
Distribution of Cytokinin-active Ribonucleosides in Wheat Germ tRNA Species 1
Struxness, Leslie A.; Armstrong, Donald J.; Gillam, Ian; Tener, Gordon M.; Burrows, William J.; Skoog, Folke
1979-01-01
The distribution of cytokinin activity in wheat (Triticum aestivum) germ tRNA fractionated by BD-cellulose and RPC-5 chromatography has been examined. As in other organisms, the cytokinin moieties in wheat germ tRNA appear to be restricted to tRNA species that would be expected to respond to codons beginning with U. Only a few of the wheat germ tRNA species in this coding group actually contain cytokinin modifications. Cytokinin activity was associated with isoaccepting tRNASer species and with a minor tRNALeu species from wheat germ. All other wheat germ tRNA species corresponding to codons beginning with U were devoid of cytokinin activity in the tobacco callus bioassay. PMID:16660688
Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E
2010-04-01
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation. Copyright 2009 Wiley-Liss, Inc.
Selvaratnam, Johanna; Paul, Catriona; Robaire, Bernard
2015-01-01
For decades male germ cells were considered unaffected by aging, due to the fact that males continue to generate sperm into old age; however, evidence indicates that germ cells from aged males are of lower quality than those of young males. The current study examines the effects of aging on pachytene spermatocytes and round spermatids, and is the first study to culture these cells in isolation for an extended period. Our objective is to determine the cell-specific responses germ cells have to aging and oxidative insult. Culturing isolated germ cells from young and aged Brown Norway rats revealed that germ cells from aged males displayed an earlier decline in viability, elevated levels of reactive oxygen species (ROS), and increased spermatocyte DNA damage, compared to young males. Furthermore, oxidative insult by prooxidant 3-morpholinosydnonimine provides insight into how spermatocytes and spermatids manage excess ROS. Genome-wide microarray analyses revealed that several transcripts for antioxidants, Sod1, Cat, and Prdxs, were up-regulated in response to ROS in germ cells from young males while being expressed at lower levels in the aged. In contrast, the expression of DNA damage repair genes Rad50 and Atm were increased in the germ cells from aged animals. Our data indicate that as germ cells undergo spermatogenesis, they adapt and respond to oxidative stress differently, depending on their phase of development, and the process of aging results in redox dysfunction. Thus, even at early stages of spermatogenesis, germ cells from aged males are unable to mount an appropriate response to manage oxidative stress. PMID:26224006
Light and electron microscopic analyses of Vasa expression in adult germ cells of the fish medaka.
Yuan, Yongming; Li, Mingyou; Hong, Yunhan
2014-07-15
Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development. Copyright © 2014 Elsevier B.V. All rights reserved.
Niepielko, Matthew G; Eagle, Whitby V I; Gavis, Elizabeth R
2018-06-18
The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold. Copyright © 2018 Elsevier Ltd. All rights reserved.
Germ cell transplantation in an azoospermic Klinefelter bull.
Joerg, Hannes; Janett, Fredi; Schlatt, Stefan; Mueller, Simone; Graphodatskaya, Daria; Suwattana, Duangsmorn; Asai, Mika; Stranzinger, Gerald
2003-12-01
Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.
Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K
2017-09-19
Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.
Pang, Shujie; Zhang, Lin; Shi, Yiquan; Liu, Yixin
2014-01-01
Unclassified mixed germ cell-sex cord-stromal tumor composed of germ cells and sex cord derivatives is a rare neoplasm. Approximately 10% of such tumors have malignant germ cell components. We report the case of a 28 year-old female with a right adnexal mass measuring 8 cm in greatest dimension, containing areas with both germ cell and sex cord components. The germ cell portion contained multiple growth patterns with a malignant appearance, while the sex cord element consisted mainly of annular tubules. Within the malignant germ cell elements was a dysgerminoma that accounted for approximately 75% of the tumor volume. Other malignant germ cell elements included yolk sac tumor, embryonal carcinoma, and choriocarcinoma, which comprised about 15% of the tumor volume. The annular tubule structures comprised about 10% of the total tumor volume. To our knowledge, this is the first case reported in the literature of an unclassified mixed germ cell-sex cord-stromal tumor associated with embryonal carcinoma components. The patient had a 46XX karyotype, regular menstrual periods, and no evidence of gross abnormalities in the contralateral ovary. The patient remained clinically well and disease-free 2 years after surgery. In addition to a thorough case description, the literature concerning this entity is reviewed and discussed.
Handberg-Thorsager, Mette; Saló, Emili
2007-05-01
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians.
Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version
Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.
Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle
Atwell, Kathryn; Qin, Zhao; Gavaghan, David; Kugler, Hillel; Hubbard, E. Jane Albert; Osborne, James M.
2015-01-01
The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems. PMID:26428008
Lin28a regulates germ cell pool size and fertility
Shinoda, Gen; de Soysa, T. Yvanka; Seligson, Marc T.; Yabuuchi, Akiko; Fujiwara, Yuko; Huang, Pei Yi; Hagan, John P.; Gregory, Richard I.; Moss, Eric G.; Daley, George Q.
2013-01-01
Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage. PMID:23378032
Isolation and purification of wheat germ agglutinin and analysis of its properties
NASA Astrophysics Data System (ADS)
Wang, Han
2017-12-01
In this paper, the wheat germ agglutinin was isolated and purified by affinity chromatography of chicken ovomucoid as ligand. The physicochemical properties were analyzed. The chicken ovomucoid was isolated from egg white and conjugated to affinity chromatography column agarose gel to prepare affinity adsorbent. The crude extract of wheat germ was freezedried by affinity chromatography. The physicochemical properties were analyzed by SDSpolyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. And the relative molecular mass and isoelectric point of wheat germ agglutinin were obtained, and the high efficiency of purification of wheat germ agglutinin was proved by affinity chromatography.
Extragonadal Germ Cell Cancer (EGC)
The Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell tumors. That is, the tumors originate in the sperm forming cells in the testicles ( ...
Childhood Extracranial Germ Cell Tumors Treatment (PDQ®)—Patient Version
Childhood extracranial germ cell tumors treatment options include surgery, observation, and chemotherapy. Learn more about newly diagnosed and recurrent extracranial germ cell tumors in this expert-reviewed summary.
Germ Plasm Biogenesis--An Oskar-Centric Perspective.
Lehmann, Ruth
2016-01-01
Germ granules are the hallmark of all germ cells. These membrane-less, electron-dense structures were first observed over 100 years ago. Today, their role in regulating and processing transcripts critical for the establishment, maintenance, and protection of germ cells is well established, and pathways outlining the biochemical mechanisms and physical properties associated with their biogenesis are emerging. © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rua, Melissa Jo
The present study examined the understandings held by 5th, 8th, and 11th-grade students, their teachers and medical professionals about germs. Specifically, this study describes the content and structure of students' and adults' conceptions in the areas of germ contraction, transmission, and treatment of infectious and non-infectious diseases caused by microorganisms. Naturalistic and empirical research methods were used to investigate participants' conceptions. Between and within group similarities were found using data from concept maps on the topic "flu," drawings of germs, a 20 word card sort related to germs and illness, and a semi-structured interview. Concept maps were coded according to techniques by Novak and Gowan (1984). Drawings of germs were coded into four main categories (bacteria, viruses, animal cell, other) and five subcategories (disease, caricature, insect, protozoa, unclassified). Cluster patterns for the card sorts of each group were found using multidimensional scaling techniques. Six coding categories emerged from the interview transcripts: (a) transmission, (b) treatment, (c) effect of weather on illness, (d) immune response, (e) location of germs, and (f) similarities and differences between bacteria and viruses. The findings showed students, teachers and medical professionals have different understandings about bacteria and viruses and the structures of those understandings vary. Gaps or holes in the participants knowledge were found in areas such as: (a) how germs are transmitted, (b) where germs are found, (c) how the body transports and uses medicine, (d) how the immune system functions, (e) the difference between vaccines and non-prescription medicines, (f) differences that exist between bacteria and viruses, and (g) bacterial resistance to medication. The youngest students relied heavily upon personal experiences with germs rather than formal instruction when explaining their conceptions. As a result, the influence of media was evident in the students' understandings and images of microbes. Students also viewed germs as a human problem rather than seeing microorganisms as an independent member of the ecosystem. Teachers' explanations about germs varied in explicitness based on the grade level they taught while medical professionals based their understandings on formal knowledge and tended to use explicit technical language in their explanations of the phenomena.
Miettinen, Markku; Wang, Zengfeng; Mc. Cue, Peter A.; Sarlomo-Rikala, Maarit; Rys, Janusz; Biernat, Wojciech; Lasota, Jerzy; Lee, Yi-Shan
2014-01-01
SALL4 transcription factor is associated with embryonic cell pluripotency and has been shown as a useful immunohistochemical marker for germ cell tumors. However, information of SALL4 distribution in normal human tissues and non germ-cell tumors is limited. In this study we examined normal human tissues and 3215 tumors for SALL4 expression using a monoclonal antibody 6E3 and automated immunohistochemistry. In a 10th week embryo, SALL4 was expressed in ovocytes, intestine, kidney, and some hepatocytes. In adult tissues, it was only detected in germ cells. SALL4 was consistently expressed in all germ cell tumors except some trophoblastic tumors and mature components of teratomas, where it was selectively expressed in intestinal-like and some squamous epithelia. In non germ-cell carcinomas, SALL4 was detected in 20% of cases or more of serous carcinoma of ovary, urothelial high-grade carcinoma, and gastric adenocarcinoma (especially the intestinal type). SALL4 was only rarely (≤5%) expressed in mammary, colorectal, prostatic, and squamous cell carcinomas. Many SALL4 positive carcinomas showed poorly differentiated patterns and some showed positivity in most tumor cells mimicking the expression in germ cell tumors. SALL4 was commonly expressed in rhabdoid tumors of kidney and extrarenal sites, and in Wilms tumor. Expression of SALL4 was rare in other mesenchymal and neuroendocrine tumors but was occasionally detected in melanoma, desmoplastic small round cell tumor, epithelioid sarcoma, and rhabdomyosarcoma. All hematopoietic tumors were negative. SALL4 is an excellent marker of non-teratomatous germ cell tumors, but it is also expressed in other tumors, sometimes extensively. Such expression may reflect stem-cell like differentiation and must be considered when using SALL4 as a marker for germ cell tumors. Observed lack of other pluripotency factors, OCT4 and NANOG, in SALL4-positive non-germ cell tumors can also be diagnostically helpful. PMID:24525512
2013-06-20
Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Head and Neck Cancer; Kidney Cancer; Liver Cancer; Lymphoma; Neuroblastoma; Ovarian Cancer; Retinoblastoma; Sarcoma; Testicular Germ Cell Tumor
Ovarian Germ Cell Tumors Treatment (PDQ®)—Health Professional Version
Ovarian germ cell tumors treatment options include surgery, chemotherapy, and radiation therapy. Get detailed treatment information for newly diagnosed or recurrent germ cell tumors in this summary for clinicians.
Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L
2015-10-15
Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.
Ramasamy, Srinivas; Wang, Hui; Quach, Helen Ngoc Bao; Sampath, Karuna
2006-04-15
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.
Ovarian Germ Cell Tumors Treatment
... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...
Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads
Maatouk, Danielle M.; Mork, Lindsey; Hinson, Ashley; Kobayashi, Akio; McMahon, Andrew P.; Capel, Blanche
2012-01-01
The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells. PMID:23091613
Immature germ cells in semen - correlation with total sperm count and sperm motility.
Patil, Priya S; Humbarwadi, Rajendra S; Patil, Ashalata D; Gune, Anita R
2013-07-01
Current data regarding infertility suggests that male factor contributes up to 30% of the total cases of infertility. Semen analysis reveals the presence of spermatozoa as well as a number of non-sperm cells, presently being mentioned in routine semen report as "round cells" without further differentiating them into leucocytes or immature germ cells. The aim of this work was to study a simple, cost-effective, and convenient method for differentiating the round cells in semen into immature germ cells and leucocytes and correlating them with total sperm counts and motility. Semen samples from 120 males, who had come for investigation for infertility, were collected, semen parameters recorded, and stained smears studied for different round cells. Statistical analysis of the data was done to correlate total sperm counts and sperm motility with the occurrence of immature germ cells and leucocytes. The average shedding of immature germ cells in different groups with normal and low sperm counts was compared. The clinical significance of "round cells" in semen and their differentiation into leucocytes and immature germ cells are discussed. Round cells in semen can be differentiated into immature germ cells and leucocytes using simple staining methods. The differential counts mentioned in a semen report give valuable and clinically relevant information. In this study, we observed a negative correlation between total count and immature germ cells, as well as sperm motility and shedding of immature germ cells. The latter was statistically significant with a P value 0.000.
Juliano, Celina E; Voronina, Ekaterina; Stack, Christie; Aldrich, Maryanna; Cameron, Andrew R; Wessel, Gary M
2006-12-01
Two distinct modes of germ line determination are used throughout the animal kingdom: conditional-an inductive mechanism, and autonomous-an inheritance of maternal factors in early development. This study identifies homologs of germ line determinants in the sea urchin Strongylocentrotus purpuratus to examine its mechanism of germ line determination. A list of conserved germ-line associated genes from diverse organisms was assembled to search the S. purpuratus genome for homologs, and the expression patterns of these genes were examined during embryogenesis by whole mount in situ RNA hybridization and QPCR. Of the 14 genes tested, all transcripts accumulate uniformly during oogenesis and Sp-pumilio, Sp-tudor, Sp-MSY, and Sp-CPEB1 transcripts are also uniformly distributed during embryonic development. Sp-nanos2, Sp-seawi, and Sp-ovo transcripts, however, are enriched in the vegetal plate of the mesenchyme blastula stage and Sp-vasa, Sp-nanos2, Sp-seawi, and Sp-SoxE transcripts are localized in small micromere descendents at the tip of the archenteron during gastrulation and are then enriched in the left coelomic pouch of larvae. The results of this screen suggest that sea urchins conditionally specify their germ line, and support the hypothesis that this mechanism is the basal mode of germ line determination amongst deuterostomes. Furthermore, accumulation of germ line determinants selectively in small micromere descendents supports the hypothesis that these cells contribute to the germ line.
Hohoff, Ariane; Joos, Ulrich; Meyer, Ulrich; Ehmer, Ulrike; Stamm, Thomas
2007-01-01
In the PubMed accessible literature, information on the characteristics of interdisciplinary orthodontic and surgical treatment of patients with Apert syndrome is rare. The aim of the present article is threefold: (1) to show the spectrum of the phenotype, in order (2) to elucidate the scope of hindrances to orthodontic treatment, and (3) to demonstrate the problems of surgery and interdisciplinary approach. Children and adolescents who were born in 1985 or later, who were diagnosed with Apert syndrome, and who sought consultation or treatment at the Departments of Orthodontics or Craniomaxillofacial Surgery at the Dental School of the University Hospital of Münster (n = 22; 9 male, 13 female) were screened. Exemplarily, three of these patients (2 male, 1 female), seeking interdisciplinary (both orthodontic and surgical treatment) are presented. Orthodontic treatment before surgery was performed by one experienced orthodontist (AH), and orthognathic surgery was performed by one experienced surgeon (UJ), who diagnosed the syndrome according to the criteria listed in OMIM™. In the sagittal plane, the patients suffered from a mild to a very severe Angle Class III malocclusion, which was sometimes compensated by the inclination of the lower incisors; in the vertical dimension from an open bite; and transversally from a single tooth in crossbite to a circular crossbite. All patients showed dentitio tarda, some impaction, partial eruption, idopathic root resorption, transposition or other aberrations in the position of the tooth germs, and severe crowding, with sometimes parallel molar tooth buds in each quarter of the upper jaw. Because of the severity of malocclusion, orthodontic treatment needed to be performed with fixed appliances, and mainly with superelastic wires. The therapy was hampered with respect to positioning of bands and brackets because of incomplete tooth eruption, dense gingiva, and mucopolysaccharide ridges. Some teeth did not move, or moved insufficiently (especially with respect to rotations and torque) irrespective of surgical procedures or orthodontic mechanics and materials applied, and without prognostic factors indicating these problems. Establishing occlusal contact of all teeth was difficult. Tooth movement was generally retarded, increasing the duration of orthodontic treatment. Planning of extractions was different from that of patients without this syndrome. In one patient, the sole surgical procedure after orthodontic treatment with fixed appliances in the maxilla and mandible was a genioplasty. Most patients needed two- jaw surgery (bilateral sagittal split osteotomy [BSSO] with mandibular setback and distraction in the maxilla). During the period of distraction, the orthodontist guided the maxilla into final position by means of bite planes and intermaxillary elastics. To our knowledge, this is the first article in the PubMed accessible literature describing the problems with respect to interdisciplinary orthodontic and surgical procedures. Although the treatment results are not perfect, patients undergoing these procedures benefit esthetically to a high degree. Patients need to be informed with respect to the different kinds of extractions that need to be performed, the increased treatment time, and the results, which may be reached using realistic expectations. PMID:17286873
Lim, Shu Ly; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C.; Ormandy, Christopher J.; Wong, Lee; Mann, Jeff; Scott, Hamish S.; Jamsai, Duangporn; Adelson, David L.
2015-01-01
piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356
Thomas, K; Vandana, K L; Reddy, V Ramesh
2002-01-01
The purpose of this study is to compose between hand scaling with abd without the calculus solvent gel (sofscale) and ultrasonic instrumentation at clinical and SEM level. 30 patients belonging to the age group of 17-50 year were selected. Patients selected were subjected to three different scaling modalities namely hand scaling (control), hand scaling using sofscale (Experimental quadrant A) and ultrasonic scaling (Experimental quadrant B), in three different quadrants. Case report forms were used to document the tooth sensitivity, soft tissue pain after scaling, patient preference of instrumentation, ease of calculus removal, patient comfort, soft tissue irritation, time taken for scaling, Bleeding while scaling, pre and post operative sulcus bleeding index. In addition to the clinical criteria, the teeth treated were extracted and evaluated using the scanning electron microscope to show potential effects on cemntal surfaces. No difference in tooth sensitivity was appreciated between control and experimental quadrant A. There was a higher degree of tooth sensitivity when treated with ultrasonic. Patients in control group appreciated a higher degree of soft tissue pain. Hand scaling using softscale produced a lesser amount of pain and treatment with ultrasoincs was the least painful. Most of the patients preferred ultrasonic scaling (70%) Calculus removal was easier. Hand scaling using sofscale gel results in more patient comfort when compared to hand scaling alone. There was no significant difference in patient comfort between handscaling using sofscale and ultrasonic scaling. The percentage of reduction of sulcus bleeding index showed no difference between the 3 scaling modalities SEM evaluation revealed that there was no significant difference the 3 scaling modalities in relation to residual calculus, cleaning efficiency and damage to the root surface. This study concluded that treatment with sofscale gel appears to be safe and effective method for removal calculus as this did not damage cemental surfaces, nor did it cause any damage to soft tissue. "Your tratar is your calcified hate. Not only the microflora in your oral cavity but also your muddled thoughts, your obstinate squinting backward, the way you regree when you mean to progress, in other words, the tendency of your diseased gums to form germ catching pockets, all that, the sum of dental picture and psyche, betrays you, it is stored up violence, full of murdero us designs" Gunter Grass.
General Information about Extragonadal Germ Cell Tumors
... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...
General Information about Childhood Extracranial Germ Cell Tumors
... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Extracranial Germ Cell Tumors Go to ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...
Treatment Option Overview (Ovarian Germ Cell Tumors)
... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...
Treatment Options By Stage (Ovarian Germ Cell Tumors)
... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...
Development without germ cells: the role of the germ line in zebrafish sex differentiation.
Slanchev, Krasimir; Stebler, Jürg; de la Cueva-Méndez, Guillermo; Raz, Erez
2005-03-15
The progenitors of the gametes, the primordial germ cells (PGCs) are typically specified early in the development in positions, which are distinct from the gonad. These cells then migrate toward the gonad where they differentiate into sperms and eggs. Here, we study the role of the germ cells in somatic development and particularly the role of the germ line in the sex differentiation in zebrafish. To this end, we ablated the germ cells using two independent methods and followed the development of the experimental fish. First, PGCs were ablated by knocking down the function of dead end, a gene important for the survival of this lineage. Second, a method to eliminate the PGCs using the toxin-antitoxin components of the parD bacterial genetic system was used. Specifically, we expressed a bacterial toxin Kid preferentially in the PGCs and at the same time protected somatic cells by uniformly expressing the specific antidote Kis. Our results demonstrate an unexpected role for the germ line in promoting female development because PGC-ablated fish invariably developed as males.
Development without germ cells: The role of the germ line in zebrafish sex differentiation
Slanchev, Krasimir; Stebler, Jürg; de la Cueva-Méndez, Guillermo; Raz, Erez
2005-01-01
The progenitors of the gametes, the primordial germ cells (PGCs) are typically specified early in the development in positions, which are distinct from the gonad. These cells then migrate toward the gonad where they differentiate into sperms and eggs. Here, we study the role of the germ cells in somatic development and particularly the role of the germ line in the sex differentiation in zebrafish. To this end, we ablated the germ cells using two independent methods and followed the development of the experimental fish. First, PGCs were ablated by knocking down the function of dead end, a gene important for the survival of this lineage. Second, a method to eliminate the PGCs using the toxin–antitoxin components of the parD bacterial genetic system was used. Specifically, we expressed a bacterial toxin Kid preferentially in the PGCs and at the same time protected somatic cells by uniformly expressing the specific antidote Kis. Our results demonstrate an unexpected role for the germ line in promoting female development because PGC-ablated fish invariably developed as males. PMID:15728735
Use of Stirred Suspension Bioreactors for Male Germ Cell Enrichment.
Sakib, Sadman; Dores, Camila; Rancourt, Derrick; Dobrinski, Ina
2016-01-01
Spermatogenesis is a stem cell based system. Both therapeutic and biomedical research applications of spermatogonial stem cells require a large number of cells. However, there are only few germ line stem cells in the testis, contained in the fraction of undifferentiated spermatogonia. The lack of specific markers makes it difficult to isolate these cells. The long term maintenance and proliferation of nonrodent germ cells in culture has so far been met with limited success, partially due to the lack of highly enriched starting populations. Differential plating, which depends on the differential adhesion properties of testicular somatic and germ cells to tissue culture dishes, has been the method of choice for germ cell enrichment, especially for nonrodent germ cells. However, for large animals, this process becomes labor intensive and increases variability due to the need for extensive handling. Here, we describe the use of stirred suspension bioreactors, as a novel system for enriching undifferentiated germ cells from 1-week-old pigs. This method capitalizes on the adherent properties of somatic cells within a controlled environment, thus promoting the enrichment of progenitor cells with minimal handling and variability.
Tenenhaus, Christina; Subramaniam, Kuppuswamy; Dunn, Melanie A.; Seydoux, Geraldine
2001-01-01
The CCCH zinc finger protein PIE-1 is an essential regulator of germ cell fate that segregates with the germ lineage during the first cleavages of the Caenorhabditis elegans embryo. We have shown previously that one function of PIE-1 is to inhibit mRNA transcription. Here we show that PIE-1 has a second function in germ cells; it is required for efficient expression of the maternally encoded Nanos homolog NOS-2. This second function is genetically separable from PIE-1's inhibitory effect on transcription. A mutation in PIE-1's second CCCH finger reduces NOS-2 expression without affecting transcriptional repression and causes primordial germ cells to stray away from the somatic gonad, occasionally exiting the embryo entirely. Our results indicate that PIE-1 promotes germ cell fate by two independent mechanisms as follows: (1) inhibition of transcription, which blocks zygotic programs that drive somatic development, and (2) activation of protein expression from nos-2 and possibly other maternal RNAs, which promotes primordial germ cell development. PMID:11316796
In vitro gamete derivation from pluripotent stem cells: progress and perspective.
Nagano, Makoto C
2007-04-01
Germ cells constitute a highly specialized cell population that is indispensable for the continuation and evolution of the species. Recently, several research groups have shown that these unique cells can be produced in vitro from pluripotent stem cells. Furthermore, live births of offspring using induced germ cells have been reported in one study. These results suggest that it may be possible to investigate germ cell development ex vivo and to establish novel reproductive technologies. To this end, it is critical to assess if gamete induction processes in vitro faithfully recapitulate normal germ cell development in vivo. Here, this issue is discussed with a focus on the germ line specification and the sex-specific development of pre- and postnatal germ cells. The aim of this paper is to concisely summarize the past progress and to present some future issues for the investigation into in vitro gamete production from pluripotent stem cells.
Forces directing germ-band extension in Drosophila embryos.
Kong, Deqing; Wolf, Fred; Großhans, Jörg
2017-04-01
Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Production of maternal-zygotic mutant zebrafish by germ-line replacement.
Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F
2002-11-12
We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies.
Production of maternal-zygotic mutant zebrafish by germ-line replacement
Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F.
2002-01-01
We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies. PMID:12397179
Mammalian X Chromosome Dosage Compensation: Perspectives From the Germ Line.
Sangrithi, Mahesh N; Turner, James M A
2018-06-01
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy. © 2018 The Authors. BioEssays Published by Periodicals, Inc.
2014-01-01
Background Germline specification in some animals is driven by the maternally inherited germ plasm during early embryogenesis (inheritance mode), whereas in others it is induced by signals from neighboring cells in mid or late development (induction mode). In the Metazoa, the induction mode appears as a more prevalent and ancestral condition; the inheritance mode is therefore derived. However, regarding germline specification in organisms with asexual and sexual reproduction it has not been clear whether both strategies are used, one for each reproductive phase, or if just one strategy is used for both phases. Previously we have demonstrated that specification of germ cells in the asexual viviparous pea aphid depends on a preformed germ plasm. In this study, we extended this work to investigate how germ cells were specified in the sexual oviparous embryos, aiming to understand whether or not developmental plasticity of germline specification exists in the pea aphid. Results We employed Apvas1, a Drosophila vasa ortholog in the pea aphid, as a germline marker to examine whether germ plasm is preformed during oviparous development, as has already been seen in the viviparous embryos. During oogenesis, Apvas1 mRNA and ApVas1 protein were both evenly distributed. After fertilization, uniform expression of Apvas1 remained in the egg but posterior localization of ApVas1 occurred from the fifth nuclear cycle onward. Posterior co-localization of Apvas1/ApVas1 was first identified in the syncytial blastoderm undergoing cellularization, and later we could detect specific expression of Apvas1/ApVas1 in the morphologically identifiable germ cells of mature embryos. This suggests that Apvas1/ApVas1-positive cells are primordial germ cells and posterior localization of ApVas1 prior to cellularization positions the preformed germ plasm. Conclusions We conclude that both asexual and sexual pea aphids rely on the preformed germ plasm to specify germ cells and that developmental plasticity of germline specification, unlike axis patterning, occurs in neither of the two aphid reproductive phases. Consequently, the maternal inheritance mode implicated by a preformed germ plasm in the oviparous pea aphid becomes a non-canonical case in the Hemimetabola, where so far the zygotic induction mode prevails in most other studied insects. PMID:24855557
Germ cells are not the primary factor for sexual fate determination in goldfish.
Goto, Rie; Saito, Taiju; Takeda, Takahiro; Fujimoto, Takafumi; Takagi, Misae; Arai, Katsutoshi; Yamaha, Etsuto
2012-10-01
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Specifying and protecting germ cell fate
Strome, Susan; Updike, Dustin
2015-01-01
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied ‘germ plasm’, inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells. PMID:26122616
2013-06-04
Childhood Central Nervous System Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Hepatoblastoma; Childhood Hepatocellular Carcinoma; Childhood High-grade Cerebral Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Recurrent Adrenocortical Carcinoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Liver Cancer; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Colon Cancer; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Nasopharyngeal Cancer; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer
Chick stem cells: Current progress and future prospects
Intarapat, Sittipon; Stern, Claudio D.
2013-01-01
Chick embryonic stem cells (cESCs) can be derived from cells obtained from stage X embryos (blastoderm stage); these have the ability to contribute to all somatic lineages in chimaeras, but not to the germ line. However, lines of stem cells that are able to contribute to the germ line can be established from chick primordial germ cells (cPGCs) and embryonic germ cells (cEGCs). This review provides information on avian stem cells, emphasizing different sources of cells and current methods for derivation and culture of pluripotent cells from chick embryos. We also review technologies for isolation and derivation of chicken germ cells and the production of transgenic birds. PMID:24103496
NASA Astrophysics Data System (ADS)
Wang, Szu-Chieh; Hsu, Hao-Jen; Lin, Gee-Way; Wang, Ting-Fang; Chang, Chun-Che; Lin, Ming-Der
2015-09-01
Formation of the germ plasm drives germline specification in Drosophila and some other insects such as aphids. Identification of the DEAD-box protein Vasa (Vas) as a conserved germline marker in flies and aphids suggests that they share common components for assembling the germ plasm. However, to which extent the assembly order is conserved and the correlation between functions and sequences of Vas remain unclear. Ectopic expression of the pea aphid Vas (ApVas1) in Drosophila did not drive its localisation to the germ plasm, but ApVas1 with a replaced C-terminal domain (HELICc) of Drosophila Vas (DmVas) became germ-plasm restricted. We found that HELICc itself, through the interaction with Oskar (Osk), was sufficient for germ-plasm localisation. Similarly, HELICc of the grasshopper Vas could be recruited to the germ plasm in Drosophila. Nonetheless, germ-plasm localisation was not seen in the Drosophila oocytes expressing HELICcs of Vas orthologues from aphids, crickets, and mice. We further identified that glutamine (Gln) 527 within HELICc of DmVas was critical for localisation, and its corresponding residue could also be detected in grasshopper Vas yet missing in the other three species. This suggests that Gln527 is a direct target of Osk or critical to the maintenance of HELICc conformation.
Skinner, Michael K.; Haque, Carlos Guerrero-Bosagna M.; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R.
2013-01-01
A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided. PMID:23869203
Generation of male differentiated germ cells from various types of stem cells.
Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping
2014-06-01
Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.
Lim, Jung Jin; Shim, Myung Sun; Lee, Jeoung Eun; Lee, Dong Ryul
2014-01-01
The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells. PMID:24690677
Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun
2015-08-01
We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.
2018-02-09
Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Kidney Cancer; Liver Cancer; Lymphoma; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E
1999-12-01
In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in zebrafish at the early stages tested, the vasa-expressing cells are committed to the germ cell lineage.
Development, differentiation and manipulation of chicken germ cells.
Nakamura, Yoshiaki; Kagami, Hiroshi; Tagami, Takahiro
2013-01-01
Germ cells are the only cell type capable of transmitting genetic information to the next generation. During development, they are set aside from all somatic cells of the embryo. In many species, germ cells form at the fringe of the embryo proper and then traverse through several developing somatic tissues on their migration to the emerging gonads. Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. Unlike other species, in avian embryos, PGCs use blood circulation for transport to the future gonadal region. This unique accessibility of avian PGCs during early development provides an opportunity to collect and transplant PGCs. The recent development of methods for production of germline chimeras by transfer of PGCs, and long-term cultivation methods of chicken PGCs without losing their germline transmission ability have provided important breakthroughs for the preservation of germplasm , for the production of transgenic birds and study the germ cell system. This review will describe the development, migration, differentiation and manipulation of germ cells, and discuss the prospects that germ cell technologies offer for agriculture, biotechnology and academic research. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Germ stem cells are active in postnatal mouse ovary under physiological conditions
Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping
2016-01-01
STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously support the presence of active germ stem cells in postnatal ovaries and their function in replenishing primordial follicle pool under physiological conditions. Moreover, we pointed out that Oct4+ deleted in azoospermia-like (Dazl)− but not Oct4+Dazl+ or Oct4+ DEAD (Asp–Glu–Ala–Asp) Box Polypeptide 4 (Ddx4)+ cells contain a population of germ stem cells in mouse ovary. LIMITATIONS, REASONS FOR CAUTION This study was conducted in mice. Whether or not the results are applicable to human remain unclear. The future work should aim at identifying the specific ovarian germ stem cell marker and evaluating the significance of these stem cells to normal ovarian function. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the existence of active germ stem cells and their functional significance in postnatal mammalian ovaries could provide new insights in understanding the mechanism of ovarian aging and failure. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Basic Research Program of China (grant number 2012CBA01300) and the National Natural Science Foundation of China to P.Z. (31571484). No competing interests are reported. PMID:26916381
Study of Small Ligands Which Bind Specifically to Breast Cancer Cells
1997-09-01
Sepharose conjugated to three different lectins: ConA, wheat germ and lentil,. Each lectin bound many proteins in both the ECD-AP sup and the control 3T3 sup...control Lanes 13-14: Wheat germ ECD-AP Lanes 15-16: Wheat germ 3T3 control Odd lanes were eluted with a low sugar concentration; even lanes were...ECD-AP post incubation with lentil-Sepharose Lane 6: Protein remaining in pp ECD-AP post incubation with wheat germ -Sepharose Lane 8: Protein
Peripheral calcifying cystic odontogenic tumour of the maxillary gingiva.
de Lima, Ana Paula; Kitakawa, Dárcio; Almeida, Janete Dias; Brandão, Adriana Aigotti Haberbeck; Anbinder, Ana Lia
2012-08-23
Odontogenic tumors are lesions that are derived from remnants of the components of the developing tooth germ. The calcifying cystic odontogenic tumor or calcifying odontogenic cyst is a benign cystic neoplasm of odontogenic origin that is characterized by an ameloblastoma-like epithelium and ghost cells. Calcifying cystic odontogenic tumor may be centrally or peripherally located, and its ghost cells may exhibit calcification, as first described by Gorlin in 1962. Most peripheral calcifying cystic odontogenic tumors are located in the anterior gingiva of the mandible or maxilla. Authors report a rare case of a peripheral calcifying cystic odontogenic tumor of the maxillary gingiva. A 39-year-old male patient presented with a fibrous mass on the attached buccal gingiva of the upper left cuspid teeth. It was 0.7-cm-diameter, painless and it was clinically diagnosed as a peripheral ossifying fibroma. After an excisional biopsy, the diagnosis was peripheric calcifying cystic odontogenic tumor. The patient was monitored for five years following the excision, and no recurrence was detected. All biopsy material must be sent for histological examination. If the histological examination of gingival lesions with innocuous appearance is not performed, the frequency of peripheral calcifying cystic odontogenic tumor and other peripheral odontogenic tumors may be underestimated.
Psychosexual Intervention in Patients With Stage I-III Gynecologic or Breast Cancer
2018-05-25
Ovarian Sarcoma; Ovarian Stromal Cancer; Stage I Uterine Sarcoma; Stage I Vaginal Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IA Endometrial Carcinoma; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Epithelial Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IA Primary Peritoneal Cavity Cancer; Stage IB Cervical Cancer; Stage IB Endometrial Carcinoma; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Epithelial Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IB Primary Peritoneal Cavity Cancer; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Epithelial Cancer; Stage IC Ovarian Germ Cell Tumor; Stage IC Primary Peritoneal Cavity Cancer; Stage II Endometrial Carcinoma; Stage II Gestational Trophoblastic Tumor; Stage II Uterine Sarcoma; Stage II Vaginal Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIA Primary Peritoneal Cavity Cancer; Stage IIB Cervical Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIB Primary Peritoneal Cavity Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIC Primary Peritoneal Cavity Cancer; Stage III Gestational Trophoblastic Tumor; Stage III Uterine Sarcoma; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Cervical Cancer; Stage IIIA Endometrial Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Cervical Cancer; Stage IIIB Endometrial Carcinoma; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Endometrial Carcinoma; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Breast Cancer
Lin, Qiaohong; Mei, Jie; Li, Zhi; Zhang, Xuemei; Zhou, Li; Gui, Jian-Fang
2017-11-01
Spermatogenesis is a fundamental process in male reproductive biology and depends on precise balance between self-renewal and differentiation of male germ cells. However, the regulative factors for controlling the balance are poorly understood. In this study, we examined the roles of amh and dmrt1 in male germ cell development by generating their mutants with Crispr/Cas9 technology in zebrafish. Amh mutant zebrafish displayed a female-biased sex ratio, and both male and female amh mutants developed hypertrophic gonads due to uncontrolled proliferation and impaired differentiation of germ cells. A large number of proliferating spermatogonium-like cells were observed within testicular lobules of the amh -mutated testes, and they were demonstrated to be both Vasa- and PH3-positive. Moreover, the average number of Sycp3- and Vasa-positive cells in the amh mutants was significantly lower than in wild-type testes, suggesting a severely impaired differentiation of male germ cells. Conversely, all the dmrt1 -mutated testes displayed severe testicular developmental defects and gradual loss of all Vasa-positive germ cells by inhibiting their self-renewal and inducing apoptosis. In addition, several germ cell and Sertoli cell marker genes were significantly downregulated, whereas a prominent increase of Insl3-positive Leydig cells was revealed by immunohistochemical analysis in the disorganized dmrt1 -mutated testes. Our data suggest that amh might act as a guardian to control the balance between proliferation and differentiation of male germ cells, whereas dmrt1 might be required for the maintenance, self-renewal, and differentiation of male germ cells. Significantly, this study unravels novel functions of amh gene in fish. Copyright © 2017 by the Genetics Society of America.
Stringer, Jessica M.; van den Bergen, Jocelyn A.; Wilhelm, Dagmar; Sinclair, Andrew H.; Western, Patrick S.
2013-01-01
The developing testis provides an environment that nurtures germ cell development, ultimately ensuring spermatogenesis and fertility. Impacts on this environment are considered to underlie aberrant germ cell development and formation of germ cell tumour precursors. The signaling events involved in testis formation and male fetal germ cell development remain largely unknown. Analysis of knockout mice lacking single Tgfβ family members has indicated that Tgfβ's are not required for sex determination. However, due to functional redundancy, it is possible that additional functions for these ligands in gonad development remain to be discovered. Using FACS purified gonadal cells, in this study we show that the genes encoding Activin's, TGFβ's, Nodal and their respective receptors, are expressed in sex and cell type specific patterns suggesting particular roles in testis and germ cell development. Inhibition of signaling through the receptors ALK4, ALK5 and ALK7, and ALK5 alone, demonstrated that TGFβ signaling is required for testis cord formation during the critical testis-determining period. We also show that signaling through the Activin/NODAL receptors, ALK4 and ALK7 is required for promoting differentiation of male germ cells and their entry into mitotic arrest. Finally, our data demonstrate that Nodal is specifically expressed in male germ cells and expression of the key pluripotency gene, Nanog was significantly reduced when signaling through ALK4/5/7 was blocked. Our strategy of inhibiting multiple Activin/NODAL/TGFβ receptors reduces the functional redundancy between these signaling pathways, thereby revealing new and essential roles for TGFβ and Activin signaling during testis formation and male germ cell development. PMID:23342175
Li, Wei; Zhang, Piaoyi; Wu, Xuling; Zhu, Xinping; Xu, Hongyan
2017-05-01
vasa gene encodes a highly conserved DEAD-box RNA helicase, required for germ cell development across animal kingdom. Vasa mutations cause male infertility in mammals. It has been widely used as a biomarker for studying animal fertility or manipulating germ cells in organisms. However, in reptilians, the functions of vasa gene involved in germ cell differentiation are largely unclear; this hampers the development of biological techniques and the improvement of the productivity in these species. Here a vasa cDNA was isolated in Chinese soft-shell turtle and it predicts a protein of 691 amino acid residues, which is 72%, 69%, 58%, 59%, and 54-56% identical to its homolog from mouse, platypus, frog, chicken, and fish, respectively, and named as PsVasa. The Psvasa mRNA was detected exclusively in the gonads of both sexes by RT-PCR. Chromogenic RNA in situ hybridization revealed that the Psvasa mRNA was restricted to germ cells in the testis: The psvasa mRNA is undetectable in resting spermatogonia, appears in proliferating spermatogonia, and becomes abundant in spermatocytes and detectable in spermatozoa. Immunofluorescence staining demonstrated that the PsVasa in the testis is also restricted to the germ cells, rich in spermatocytes and elongated spermatids but hardly detectable in spermatogonia and spermatozoa. Taken together, Psvasa is potentially a reliable germ cell marker in the Chinese soft-shell turtle; its RNA expression could distinguish the different spermatogenic stages of germ cells. These findings shed new insights into understanding the evolutionary conservations and divergences of vasa gene's functions in male germ cell differentiation in metazoans. © 2017 Wiley Periodicals, Inc.
Is Tobacco Smoke a Germ-Cell Mutagen?
Although no international organization exists to declare whether an agent is a germ-cell mutagen, tobacco smoke may be a human germ-cell mutagen. In the mouse, tobacco smoke induces a significant increase in the mutation frequency at an expanded simple tandem repeat (ESTR) locus....
Jeske, Mandy; Bordi, Matteo; Glatt, Sebastian; Müller, Sandra; Rybin, Vladimir; Müller, Christoph W; Ephrussi, Anne
2015-07-28
In many animals, the germ plasm segregates germline from soma during early development. Oskar protein is known for its ability to induce germ plasm formation and germ cells in Drosophila. However, the molecular basis of germ plasm formation remains unclear. Here, we show that Oskar is an RNA-binding protein in vivo, crosslinking to nanos, polar granule component, and germ cell-less mRNAs, each of which has a role in germline formation. Furthermore, we present high-resolution crystal structures of the two Oskar domains. RNA-binding maps in vitro to the C-terminal domain, which shows structural similarity to SGNH hydrolases. The highly conserved N-terminal LOTUS domain forms dimers and mediates Oskar interaction with the germline-specific RNA helicase Vasa in vitro. Our findings suggest a dual function of Oskar in RNA and Vasa binding, providing molecular clues to its germ plasm function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Aspergillus flavus Infection and Aflatoxin Production in Corn: Influence of Trace Elements
Lillehoj, E. B.; Garcia, W. J.; Lambrow, M.
1974-01-01
Distribution of trace element levels in corn germ fractions from kernels naturally infected with Aspergillus flavus and from kernels free of the fungus demonstrated an association between the presence of A. flavus and higher levels of metals. A. flavus production of aflatoxin on various autoclaved corn media showed that ground, whole corn was an excellent substrate; similar high levels of toxin were observed on full-fat corn germ but endosperm and defatted corn germ supported reduced yields. The influence of trace elements and their availability in defatted corn germ to A. flavus-mediated aflatoxin biosynthesis were measured. Enrichment of the substrate with 5 to 10 μg of manganese, copper, cadmium, or chromium per g of germ increased toxin yields. Addition of lead or zinc (50 to 250 μg/g) also enhanced toxin accumulation. Aflatoxin elaboration was reduced by the addition of 25 μg of cadmium per g or 500 μg of copper per g of germ. PMID:4216287
Physicochemical properties of nixtamalized corn flours with and without germ.
Vega Rojas, Lineth J; Rojas Molina, Isela; Gutiérrez Cortez, Elsa; Rincón Londoño, Natalia; Acosta Osorio, Andrés A; Del Real López, Alicia; Rodríguez García, Mario E
2017-04-01
This research studied the influence of the germ components on the physicochemical properties of cooked corn and nixtamalized corn flours as a function of the calcium hydroxide content (from 0 to 2.1 w/w) and steeping time (between 0 and 9h). A linear relationship was found between calcium content in germ and steeping time used during nixtamalization process. X-ray diffraction analysis showed that calcium carbonate is formed into the germ structure to 2.1 w/w of calcium hydroxide and 9h steeping time. The presence of the germ improves the development of peak viscosity in flours, and it is related to the increases in calcium concentration in germ and the formation of amylose-lipid complexes. No significant changes were observed in palmitic, stearic, oleic and linoleic acids of corn oil. The levels of further corn oil deterioration were 2.1 w/w of calcium hydroxide concentration and 9h of steeping time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sadri, Navid; Surrey, Lea F; Fraker, Douglas L; Zhang, Paul J
2014-04-01
Germ line mutations in genes that encode proteins involved in the DNA damage response predispose patients to a variety of tumors. Checkpoint kinase 2, encoded by the CHEK2 gene, is important in transducing the DNA damage response. Germ line CHEK2 mutations are seen in a subset of patients with a familial breast cancer and sarcoma phenotype. We report a case of retroperitoneal dedifferentiated liposarcoma in a 61-year-old female with germ line CHEK2 mutation. MDM2 gene amplification normally present and used to aid in the diagnosis of retroperitoneal dedifferentiated liposarcoma was absent in this case. Lack of MDM2 overexpression has similarly been reported in liposarcomas arising in patients with germ line TP53 mutations. We propose this case may highlight a nonamplified MDM2 phenotype in well- and dedifferentiated liposarcomas arising in patients with germ line mutations of genes involved in p53-associated DNA damage response pathways.
Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.
Lei, Lei; Spradling, Allan C
2013-05-21
Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.
Matare, Tapiwa; Nziramasanga, Pasipanodya; Gwanzura, Lovemore; Robertson, Valerie
2017-01-01
The potential of NaHCO 3 versus human serum to induce germ tube formation in Candida albicans was investigated. A total of 100 isolates were obtained from oral swabs of patients presenting with thrush. Approval for the study was granted by the Joint Research Ethics Committee (JREC/23/08). Confirmed C. albicans isolates by routine methods were tested for germ tube induction using 5 different concentrations of Tris-maleate buffered NaHCO 3 and Tris-maleate buffer control. Standard control strains included were C. albicans (ATCC 10231) and C. krusei (ATCC 6258). Microculture was done in 20 μ L inoculums on microscope slides for 3 hours at 37°C. The rate of germ tube formation at 10-minute intervals was determined on 100 isolates using the optimum 20 mM Tris-maleate buffered NaHCO 3 concentration. Parallel germ tube formation using human serum was done in test tubes. The optimum concentration of NaHCO 3 in Tris-maleate buffer for germ tube induction was 20 mM for 67% of isolates. Only 21% of isolates formed germ tubes in Tris-maleate buffer control. There was no significant difference in induction between human serum and Tris-maleate buffered NaHCO 3 . Tris-maleate buffered NaHCO 3 induced germ tube formation in C. albicans isolates at rates similar to human serum.
Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori
2017-03-15
The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantification of vitamin E and gamma-oryzanol components in rice germ and bran.
Yu, Shanggong; Nehus, Zachary T; Badger, Thomas M; Fang, Nianbai
2007-09-05
Rice bran is a rich natural source of vitamin E and gamma-oryzanol, which have been extensively studied and reported to possess important health-promoting properties. However, commercial rice bran is a mixture of rice bran and germ, and profiles of vitamin E and gamma-oryzanol components in these two different materials are less well-studied. In the current study, vitamin E and gamma-oryzanol components in rice bran and germ were analyzed by liquid chromatography/mass spectrometry/mass spectrometry. The components were identified by electrospray ionization mass spectrometry (ESI-MS) with both positive- and negative-ion modes. Both deprotonated molecular ion [M - H](-) and protonated molecular ion [M + H](+) found as the base peaks in spectra of vitamin E components made ESI-MS a valuable analytic method in detecting vitamin E compounds, especially when they were at very low levels in samples. Ultraviolet absorption was used for quantification of vitamin E and gamma-oryzanol components. While the level of vitamin E in rice germ was 5 times greater than in rice bran, the level of gamma-oryzanol in rice germ was 5 times lower than in rice bran. Also, the major vitamin E component was alpha-tocopherol in rice germ and gamma-tocotrienol in rice bran. These data suggest that rice bran and germ have significantly different profiles of vitamin E and gamma-oryzanol components. The method enables rapid and direct on-line identification and quantification of the vitamin E and gamma-oryzanol components in rice bran and germ.
Kleppe, Lene; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Andersson, Eva; Juanchich, Amélie; Wargelius, Anna
2017-01-01
Atlantic salmon is a valuable commercial aquaculture species that would benefit economically and environmentally by controlling precocious puberty and preventing escapees from reproducing with wild populations. One solution to both these challenges is the production of sterile individuals by inhibiting the formation of germ cells, but achieving this requires more information on the specific factors that control germ cell formation. Here, we identified and characterized novel factors that are preferentially expressed in Atlantic salmon germ cells by screening for gonad-specific genes using available adult multi-tissue transcriptomes. We excluded genes with expression in tissues other than gonads based on quantity of reads, and then a subset of genes was selected for verification in a multi-tissue PCR screen. Four gonad-specific genes (bmp15l, figla, smc1bl, and larp6l) were chosen for further characterization, namely: germ cell specificity, investigated by comparing mRNA abundance in wild-type and germ cell-free gonads by quantitative real-time PCR, and cellular location, visualized by in situ hybridization. All four genes were expressed in both testis and ovary, and preferentially within the germ cells of both sexes. These genes may be essential players in salmon germ cell development, and could be important for future studies aiming to understand and control reproduction. Mol. Reprod. Dev. 84: 76-87, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wermann, Hendrik; Stoop, Hans; Gillis, Ad J M; Honecker, Friedemann; van Gurp, Ruud J H L M; Ammerpohl, Ole; Richter, Julia; Oosterhuis, J Wolter; Bokemeyer, Carsten; Looijenga, Leendert H J
2010-08-01
Differences in the global methylation pattern, ie hyper- as well as hypo-methylation, are observed in cancers including germ cell tumours (GCTs). Related to their precursor cells, GCT methylation status differs according to histology. We investigated the methylation pattern of normal fetal, infantile, and adult germ cells (n = 103) and GCTs (n = 251) by immunohistochemical staining for 5-(m)cytidine. The global methylation pattern of male germ cells changes from hypomethylation to hypermethylation, whereas female germ cells remain unmethylated at all stages. Undifferentiated GCTs (seminomas, intratubular germ cell neoplasia unclassified, and gonadoblastomas) are hypomethylated, whereas more differentiated GCTs (teratomas, yolk sac tumours, and choriocarcinomas) show a higher degree of methylation. Embryonal carcinomas show an intermediate pattern. Resistance to cisplatin was assessed in the seminomatous cell line TCam-2 before and after demethylation using 5-azacytidine. Exposure to 5-azacytidine resulted in decreased resistance to cisplatin. Furthermore, after demethylation, the stem cell markers NANOG and POU5F1 (OCT3/4), as well as the germ cell-specific marker VASA, showed increased expression. Following treatment with 5-azacytidine, TCam-2 cells were analysed using a high-throughput methylation screen for changes in the methylation sites of 14,000 genes. Among the genes revealing changes, interesting targets were identified: ie demethylation of KLF11, a putative tumour suppressor gene, and hypermethylation of CFLAR, a gene previously described in treatment resistance in GCTs.
Editorial Introduction [to Female Germ Cells: Biology and Genetic Risk
This is an editorial introduction to the special issue of utation Research, titled, emale Germ Cells: Biology and Genetic isk, which is an attempt to present a collection of papers that emphasize the distinct properties of female germ cells and their characteristic response to mu...
Are There Human Germ-Cell Mutagens? We May Know Soon
The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Since then, various rodent-based assays have been used to identify ~50 germ-cell...
Treatment of Ovarian Germ Cell Tumors (PDQ®)—Patient Version
Surgery is the most common treatment of ovarian germ cell tumor. Types of surgery include hysterectomy and removal of one or both ovaries and fallopian tubes (bilateral salpingo-oophorectomy). Treatment may also include chemotherapy or radiation therapy. Learn about treatment options for ovarian germ cell tumors.
2013-08-09
Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Gastrointestinal Complications; Infertility; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Ovarian Cancer; Pulmonary Complications; Sexual Dysfunction; Urinary Complications
The Formation of Germ Cell for Organizational Learning
ERIC Educational Resources Information Center
Ivaldi, Silvia; Scaratti, Giuseppe
2016-01-01
Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…
Germ cell tumors: Insights from the Drosophila ovary and the mouse testis
Salz, Helen K.; Dawson, Emily P.; Heaney, Jason D.
2017-01-01
SUMMARY Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which the evidence supports common underlying mechanisms such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. PMID:28079292
Germ-Line Recombination Activity of the Widely Used hGFAP-Cre and Nestin-Cre Transgenes
Zhang, Jiong; Dublin, Pavel; Griemsmann, Stephanie; Klein, Alexandra; Brehm, Ralph; Bedner, Peter; Fleischmann, Bernd K.; Steinhäuser, Christian; Theis, Martin
2013-01-01
Herein we demonstrate with PCR, immunodetection and reporter gene approaches that the widely used human Glial Fibrillary Acidic Protein (hGFAP)-Cre transgene exhibits spontaneous germ-line recombination activity in leading to deletion in brain, heart and tail tissue with high frequency. The ectopic activity of hGFAP-Cre requires a rigorous control. We likewise observed that a second widely used nestin-Cre transgene shows germ-line deletion. Here we describe procedures to identify mice with germ-line recombination mediated by the hGFAP-Cre and nestin-Cre transgenes. Such control is essential to avoid pleiotropic effects due to germ-line deletion of loxP-flanked target genes and to maintain the CNS-restricted deletion status in transgenic mouse colonies. PMID:24349371
Epigenome regulation during germ cell specification and development from pluripotent stem cells.
Kurimoto, Kazuki; Saitou, Mitinori
2018-06-13
Germ cells undergo epigenome reprogramming for proper development of the next generation. The realization of germ cell derivation from human and mouse pluripotent stem cells offers unprecedented opportunity for investigation of germline development. Primordial germ cells reconstituted in vitro (PGC-like cells [PGCLCs]) show progressive dilution of genomic DNA methylation, tightly linked with chromatin remodeling, during their specification. PGCLCs can be further expanded by plane culture, allowing maintenance of the gene-expression profiles of early PGCs and continuance of the DNA methylation erasure, thereby establishing an epigenetic `blank slate'. PGCLCs undergo further epigenome regulation to acquire the male or female fates. These findings will provide a foundation for basic germ cell biology and for in-depth evaluations of in vitro gametogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sex determination in mammalian germ cells
Spiller, Cassy M; Bowles, Josephine
2015-01-01
Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model. PMID:25791730
Impact of gut microbiota on the fly's germ line.
Elgart, Michael; Stern, Shay; Salton, Orit; Gnainsky, Yulia; Heifetz, Yael; Soen, Yoav
2016-04-15
Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation.
Berney, Daniel M; Looijenga, Leendert H J; Idrees, Muhammad; Oosterhuis, J Wolter; Rajpert-De Meyts, Ewa; Ulbright, Thomas M; Skakkebaek, Niels E
2016-07-01
The pre-invasive lesion associated with post-pubertal malignant germ cell tumours of the testis was first recognized in the early 1970s and confirmed by a number of observational and follow-up studies. Until this year, this scientific story has been confused by resistance to the entity and disagreement on its name. Initially termed 'carcinoma in situ' (CIS), it has also been known as 'intratubular germ cell neoplasia, unclassified' (IGCNU) and 'testicular intraepithelial neoplasia' (TIN). In this paper, we review the history of discovery and controversy concerning these names and introduce the reasoning for uniting behind a new name, endorsed unanimously at the World Health Organization (WHO) consensus classification 2016: germ cell neoplasia in situ (GCNIS). © 2016 John Wiley & Sons Ltd.
Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko
2016-01-01
The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421
Fujita, Kazutoshi; Ohta, Hiroshi; Tsujimura, Akira; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Matsumiya, Kiyomi; Wakayama, Teruhiko; Okuyama, Akihiko
2005-01-01
More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia. PMID:15965502
Kanto, Satoru; Hiramatsu, Masayoshi; Suzuki, Kenichi; Ishidoya, Shigeto; Saito, Hideo; Yamada, Shigeyuki; Satoh, Makoto; Saito, Seiichi; Fukuzaki, Atsushi; Arai, Yoichi
2004-08-01
A retrospective study was conducted to examine the host factors of 240 testicular germ cell tumor patients. This study was performed to address a new theory proposed by Skakkebaek called testicular dysgenesis syndrome which claims that cryptorchism, hypospadias, poor semen quality and testicular germ cell tumors are symptoms of an underlying testicular dysgenesis in uterus. The past health histories and familial episodes of 240 testicular germ cell tumor patients were examined. The past health histories included cryptorchism, hypospadias, infertility, atrophic testis and inguinal hernia. Of the 240 patients, 13 (5.4%) had a history of cryptorchism or orchidopexy. Two (0.8%) showed existence of hypospadias or had experienced urethroplasty. Among 129 married couples, 104 (80.6%) couples were fertile. Three (1.3%) patients developed testicular tumors after they were diagnosed as infertile or came to the hospital with the complaints of infertility. Four (1.7%) had contralateral atrophic testis. 19 (7.9%) had experienced inguinal herniorrhaphy before age 15. Three (1.3%) had testicular germ cell tumor patients among their family or relatives. The testicular germ cell tumor patients showed a considerable incidence of complications such as cryptorchism, hypospadias and incomplete closure of processus vaginalis. Cryptorchism, perinatal factors and familial factors could be risks for developing testicular germ cell tumors.
[Acute myeloid leukemia possibly originating from the same clone of testicular germ cell tumor].
Suyama, Takuya; Obara, Naoshi; Kawai, Koji; Yamada, Kenji; Kusakabe, Manabu; Kurita, Naoki; Nishikii, Hidekazu; Yokoyama, Yasuhisa; Suzukawa, Kazumi; Hasegawa, Yuichi; Noguchi, Masayuki; Chiba, Shigeru
2013-08-01
This report describes a 30-year-old man with a testicular germ cell tumor, which later developed into acute myeloid leukemia (AML) with a common chromosomal abnormality. Testicular germ cell tumors had developed at the age of 26. He was successfully treated with surgery followed by chemotherapy.Four years after the onset of the germ cell tumor, he developed pancytopenia with elevated serum LDH. More than 95% of the bone marrow was occupied by blastic cells. These cells were CD13+, CD34+ but CD45- and MPO-. Amplification of the short arm of chromosome 12 was recognized by fluorescence in situ hybridization using the blastic cells in the bone marrow and the previous testicular tumor specimen. Because testicular germ cell tumor recurrence and other malignant tumors could be ruled out pathologically, he was diagnosed as having AML.Allogeneic stem cell transplantation from a HLA-matched sibling donor was performed after chemotherapy. As of 19 months after the transplantation, recurrence of neither AML nor testicular tumors has been observed. Because the same genetic abnormality was observed in the testicular germ cell tumor and AML in this case, the possibility of AML having a common origin with the testicular germ cell tumor is indicated.
TAp73 is essential for germ cell adhesion and maturation in testis
Holembowski, Lena; Kramer, Daniela; Riedel, Dietmar; Sordella, Raffaella; Nemajerova, Alice; Dobbelstein, Matthias
2014-01-01
A core evolutionary function of the p53 family is to protect the genomic integrity of gametes. However, the role of p73 in the male germ line is unknown. Here, we reveal that TAp73 unexpectedly functions as an adhesion and maturation factor of the seminiferous epithelium orchestrating spermiogenesis. TAp73 knockout (TAp73KO) and p73KO mice, but not ΔNp73KO mice, display a “near-empty seminiferous tubule” phenotype due to massive premature loss of immature germ cells. The cellular basis of this phenotype is defective cell–cell adhesions of developing germ cells to Sertoli nurse cells, with likely secondary degeneration of Sertoli cells, including the blood–testis barrier, which leads to disruption of the adhesive integrity and maturation of the germ epithelium. At the molecular level, TAp73, which is produced in germ cells, controls a coordinated transcriptional program of adhesion- and migration-related proteins including peptidase inhibitors, proteases, receptors, and integrins required for germ–Sertoli cell adhesion and dynamic junctional restructuring. Thus, we propose the testis as a unique organ with strict division of labor among all family members: p63 and p53 safeguard germ line fidelity, whereas TAp73 ensures fertility by enabling sperm maturation. PMID:24662569
Malignant mixed germ cell tumour of ovary--an unusual combination and review of literature.
Goyal, Lajya Devi; Kaur, Sharanjit; Kawatra, Kanwardeep
2014-11-04
Mixed germ cell tumours of the ovary are malignant neoplasms of the ovary comprising of two or more types of germ cell components. Most of the malignant mixed germ cell tumours consists of dysgerminoma accompanied by endodermal sinus tumours, immature teratoma or choriocarcinoma. There are only few case reports of mixed germ cell tumours with different combinations of malignant components. We report a very rare case of mixed germ cell tumours consisted of malignant components of endodermal sinus tumour, emryonal carcinoma, and benign component of teratomatuos and trophoblastic differentiation. This is the first case report in the literature with both benign and malignant component of type described to best of our knowledge. Patient was an 18 year old girl, who presented with pain abdomen, abdominal mass and irregular bleeding. Ultrasound and CT scan showed a huge mass with solid and cystic component. Tumour markers i.e alpha feto- protein (AFP), human chorionic gonadotropin (hCG), lactate dehydrogenate (LDH) and Ca-125 were raised. We performed fertility sparing surgery by preserving one ovary, tube and uterus. Conclusion: Malingnant mixed germ cell tumours of ovary are highly aggressive neoplasm and early intervention and fertility sparing surgery is required for any adolescent girl presenting with rapidly enlarging pelvic mass.
Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko
2016-09-01
The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.
Generation of germ cells in vitro in the era of induced pluripotent stem cells.
Imamura, Masanori; Hikabe, Orie; Lin, Zachary Yu-Ching; Okano, Hideyuki
2014-01-01
Induced pluripotent stem cells (iPSCs) are stem cells that can be artificially generated via "cellular reprogramming" using gene transduction in somatic cells. iPSCs have enormous potential in stem-cell biology as they can give rise to numerous cell lineages, including the three germ layers. An evaluation of germ-line competency by blastocyst injection or tetraploid complementation, however, is critical for determining the developmental potential of mouse iPSCs towards germ cells. Recent studies have demonstrated that primordial germ cells obtained by the in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring. These findings illustrate not only that iPSCs are developmentally similar to embryonic stem cells (ESCs), but also that somatic cells from adult tissues can produce gametes in vitro, that is, if they are reprogrammed into iPSCs. In this review, we discuss past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells, with an emphasis on ESCs and iPSCs. While this field of research is still at a stage of infancy, it holds great promises for investigating the mechanisms of germ-cell development, especially in humans, and for advancing reproductive and developmental engineering technologies in the future. © 2013 Wiley Periodicals, Inc.
Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro
2014-01-01
Background Recent studies suggest that ovarian germ line stem cells replenish oocyte-pool in adult stage, and challenge the central doctrine of ‘fixed germ cell pool’ in mammalian reproductive biology. Two distinct populations of spherical stem cells with high nucleo-cytoplasmic ratio have been recently identified in the adult mammalian ovary surface epithelium (OSE) including nuclear OCT-4A positive very small embryonic-like (VSELs) and cytoplasmic OCT-4 expressing ovarian germ stem cells (OGSCs). Three weeks culture of scraped OSE cells results in spontaneous differentiation of the stem cells into oocyte-like, parthenote-like, embryoid body-like structures and also embryonic stem cell-like colonies whereas epithelial cells attach and transform into a bed of mesenchymal cells. Present study was undertaken, to further characterize ovarian stem cells and to comprehend better the process of spontaneous differentiation of ovarian stem cells into oocyte-like structures in vitro. Methods Ovarian stem cells were enriched by immunomagnetic sorting using SSEA-4 as a cell surface marker and were further characterized. Stem cells and clusters of OGSCs (reminiscent of germ cell nests in fetal ovaries), were characterized by immuno-localization for stem and germ cell specific markers and spontaneous differentiation in OSE cultures was studied by live cell imaging. Results Differential expression of markers specific for pluripotent VSELs (nuclear OCT-4A, SSEA-4, CD133), OGSCs (cytoplasmic OCT-4) primordial germ cells (FRAGILIS, STELLA, VASA) and germ cells (DAZL, GDF-9, SCP-3) were studied. Within one week of culture, stem cells became bigger in size, developed abundant cytoplasm, differentiated into germ cells, revealed presence of Balbiani body-like structure (mitochondrial cloud) and exhibited characteristic cytoplasmic streaming. Conclusions Presence of germ cell nests, Balbiani body-like structures and cytoplasmic streaming extensively described during fetal ovary development, are indeed well recapitulated during in vitro oogenesis in adult OSE cultures along with characteristic expression of stem/germ cell/oocyte markers. Further studies are required to assess the genetic integrity of in vitro derived oocytes before harnessing their clinical potential. Advance in our knowledge about germ cell differentiation from stem cells will enable researchers to design better in vitro strategies which in turn may have relevance to reproductive biology and regenerative medicine. PMID:24568237
Germ cell control of testin production is inverse to that of other Sertoli cell products.
Jégou, B; Pineau, C; Velez de la Calle, J F; Touzalin, A M; Bardin, C W; Cheng, C Y
1993-06-01
Recent studies have shown that germ cells can regulate testins, two newly identified Sertoli cell proteins that are associated with junctional complexes. To investigate this possibility, several parameters of Sertoli cell function were investigated over 2-120 days post exposure of the rat testes to x-rays (3 Grays). The irradiation-induced loss of spermatogonia resulted in a maturation-depletion process progressively affecting all germ cell classes. Testis weight began to decrease when the most numerous germ cell type (spermatids) began to decline. A complete or near complete recovery of spermatogenesis and of the testis weight had occurred by day 120 post irradiation. There was no significant change in FSH, epididymal androgen-binding protein, and tubule fluid levels during the first weeks after irradiation, when the seminiferious epithelium was depleted of spermatogonia and germ cells up to early spermatids. In contrast, when the number of the more mature forms of spermatids declined (between day 21 and 54), FSH rose and androgen-binding protein as well as fluid production declined. The subsequent recovery of these parameters was also highly correlated with the number of late spermatids. By contrast, testicular testin contents reacted to the depletion of germ cells with a biphasic increase; a doubling occurred when spermatogonia, spermatocytes, and early spermatids were absent (days 4-28), and a 7-fold rise occurred by day 37 when the number of late spermatids had decreased by 50%. By day 54, when the sperm counts had reached a nadir, testin contents had returned to levels corresponding to about four times the control levels; they progressively recovered thereafter. These observations support the postulate that germ cells negatively regulate testins. This possibility was investigated with in vitro experiments showing that addition of germ cell-conditioned medium to Sertoli cell monolayers inhibited testin secretion in a dose-dependent manner. In conclusion this study; 1) highlights the complex interplay between the various germ cell classes in the control of the Sertoli cell function in the adult testis; 2) establishes that germ cell effects may be opposite on different Sertoli cell products; 3) demonstrates that several classes of germ cells negatively control testicular testin contents; and 4) emphasizes the particular role of late spermatids in Sertoli cell regulation.
Collecting Tumor Samples From Patients With Gynecological Tumors
2016-10-26
Borderline Ovarian Clear Cell Tumor; Borderline Ovarian Serous Tumor; Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Childhood Embryonal Rhabdomyosarcoma; Childhood Malignant Ovarian Germ Cell Tumor; Endometrioid Stromal Sarcoma; Gestational Trophoblastic Tumor; Malignant Mesothelioma; Malignant Ovarian Epithelial Tumor; Melanoma; Neoplasm of Uncertain Malignant Potential; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Paget Disease of the Vulva; Recurrent Cervical Carcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Recurrent Vaginal Carcinoma; Recurrent Vulvar Carcinoma; Stage I Ovarian Cancer; Stage I Uterine Corpus Cancer; Stage I Vaginal Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IB Cervical Cancer; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Cancer; Stage IC Ovarian Germ Cell Tumor; Stage II Ovarian Cancer; Stage II Uterine Corpus Cancer; Stage II Vaginal Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Cervical Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage III Borderline Ovarian Surface Epithelial-Stromal Tumor; Stage III Cervical Cancer; Stage III Uterine Corpus Cancer; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cancer; Stage IV Borderline Ovarian Surface Epithelial-Stromal Tumor; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Stage IV Uterine Corpus Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar Cancer; Uterine Corpus Cancer; Uterine Corpus Leiomyosarcoma; Vulvar Squamous Cell Carcinoma
General and craniofacial development are complex adaptive processes influenced by diversity.
Brook, A H; O'Donnell, M Brook; Hone, A; Hart, E; Hughes, T E; Smith, R N; Townsend, G C
2014-06-01
Complex systems are present in such diverse areas as social systems, economies, ecosystems and biology and, therefore, are highly relevant to dental research, education and practice. A Complex Adaptive System in biological development is a dynamic process in which, from interacting components at a lower level, higher level phenomena and structures emerge. Diversity makes substantial contributions to the performance of complex adaptive systems. It enhances the robustness of the process, allowing multiple responses to external stimuli as well as internal changes. From diversity comes variation in outcome and the possibility of major change; outliers in the distribution enhance the tipping points. The development of the dentition is a valuable, accessible model with extensive and reliable databases for investigating the role of complex adaptive systems in craniofacial and general development. The general characteristics of such systems are seen during tooth development: self-organization; bottom-up emergence; multitasking; self-adaptation; variation; tipping points; critical phases; and robustness. Dental findings are compatible with the Random Network Model, the Threshold Model and also with the Scale Free Network Model which has a Power Law distribution. In addition, dental development shows the characteristics of Modularity and Clustering to form Hierarchical Networks. The interactions between the genes (nodes) demonstrate Small World phenomena, Subgraph Motifs and Gene Regulatory Networks. Genetic mechanisms are involved in the creation and evolution of variation during development. The genetic factors interact with epigenetic and environmental factors at the molecular level and form complex networks within the cells. From these interactions emerge the higher level tissues, tooth germs and mineralized teeth. Approaching development in this way allows investigation of why there can be variations in phenotypes from identical genotypes; the phenotype is the outcome of perturbations in the cellular systems and networks, as well as of the genotype. Understanding and applying complexity theory will bring about substantial advances not only in dental research and education but also in the organization and delivery of oral health care. © 2014 Australian Dental Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula
2007-05-15
Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrusmore » cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore because they are animal and time consuming. Nevertheless, information is needed to place genetic risk extrapolations on more solid grounds and thereby to prevent an increased genetic burden to future generations. It is pointed out that modern molecular methodologies are available now to experimentally address the open questions.« less
Etoposide damages female germ cells in the developing ovary.
Stefansdottir, Agnes; Johnston, Zoe C; Powles-Glover, Nicola; Anderson, Richard A; Adams, Ian R; Spears, Norah
2016-08-11
As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet enclosed within ovarian follicles, a process that starts at approximately 17 weeks gestation and is only complete towards the end of pregnancy.
Christensen, Jesper F; Bandak, Mikkel; Campbell, Anna; Jones, Lee W.; Højman, Pernille
2016-01-01
Background Treatment of testicular germ cell cancer constitutes a major success story in modern oncology. Today, the vast majority of patients are cured by a therapeutic strategy using one or more highly effective components including surgery (orchiectomy), radiotherapy and/or chemotherapy. However, the excellent cancer specific survival comes at considerable costs, as individuals with a history of germ cell cancer experience serious long-term complications, including markedly increased risk of cardiovascular morbidities and premature cardiovascular death. The factors responsible, as well as their mode of action, are not fully understood and there is a lack of knowledge concerning optimal evidence-based long-term follow-up strategies. Results Here, we present the growing body of evidence suggesting that germ cell cancer patients as a consequence of the different treatment components, are subjected to toxicities, which individually, and synergistically, can cause physiological impairments leading to sub-clinical or clinical cardiovascular disorders the ‘multiple-hit hypothesis’). Furthermore, we discuss the efficacy and utility of structured exercise training to ameliorate treatment-induced cardiovascular dysfunction to prevent premature onset of clinical cardiovascular disease in germ cell cancer survivors, with a view towards highlighting future directions of exercise-based survivorship research in the germ cell cancer setting. Conclusion Since exercise training may have the potential to ameliorate and/or reverse long-term cardiovascular disease sequelae in germ cell cancer survivors, a strong rationale exists for the promotion of exercise-oncology research in this setting, in order to provide exercise-recommendations for optimal germ cell cancer survivorship. PMID:25751759
Biphasic adaptation to osmotic stress in the C. elegans germ line.
Davis, Michael; Montalbano, Andrea; Wood, Megan P; Schisa, Jennifer A
2017-06-01
Cells respond to environmental stress in multiple ways. In the germ line, heat shock and nutritive stress trigger the assembly of large ribonucleoprotein (RNP) granules via liquid-liquid phase separation (LLPS). The RNP granules are hypothesized to maintain the quality of oocytes during stress. The goal of this study was to investigate the cellular response to glucose in the germ line and determine if it is an osmotic stress response. We found that exposure to 500 mM glucose induces the assembly of RNP granules in the germ line within 1 h. Interestingly, the RNP granules are maintained for up to 3 h; however, they dissociate after longer periods of stress. The RNP granules include processing body and stress granule proteins, suggesting shared functions. Based on several lines of evidence, the germ line response to glucose largely appears to be an osmotic stress response, thus identifying osmotic stress as a trigger of LLPS. Although RNP granules are not maintained beyond 3 h of osmotic stress, the quality of oocytes does not appear to decrease after longer periods of stress, suggesting a secondary adaptation in the germ line. We used an indirect marker of glycerol and observed high levels after 5 and 20 h of glucose exposure. Moreover, in gpdh-1;gpdh-2 germ lines, glycerol levels are reduced concomitant with RNP granules being maintained for an extended period. We speculate that increased glycerol levels may function as a secondary osmoregulatory adaptive response in the germ line, following a primary response of RNP granule assembly. Copyright © 2017 the American Physiological Society.
Christensen, Jesper F; Bandak, Mikkel; Campbell, Anna; Jones, Lee W; Højman, Pernille
2015-05-01
Treatment of testicular germ cell cancer constitutes a major success story in modern oncology. Today, the vast majority of patients are cured by a therapeutic strategy using one or more highly effective components including surgery (orchiectomy), radiotherapy and/or chemotherapy. However, the excellent cancer-specific survival comes at considerable costs, as individuals with a history of germ cell cancer experience serious long-term complications, including markedly increased risk of cardiovascular morbidities and premature cardiovascular death. The factors responsible, as well as their mode of action, are not fully understood and there is a lack of knowledge concerning optimal evidence-based long-term follow-up strategies. Here, we present the growing body of evidence suggesting that germ cell cancer patients as a consequence of the different treatment components, are subjected to toxicities, which individually, and synergistically, can cause physiological impairments leading to sub-clinical or clinical cardiovascular disorders (i.e. the 'multiple-hit hypothesis'). Furthermore, we discuss the efficacy and utility of structured exercise training to ameliorate treatment-induced cardiovascular dysfunction to prevent premature onset of clinical cardiovascular disease in germ cell cancer survivors, with a view towards highlighting future directions of exercise-based survivorship research in the germ cell cancer setting. As exercise training may have the potential to ameliorate and/or reverse long-term cardiovascular disease sequelae in germ cell cancer survivors, a strong rationale exists for the promotion of exercise oncology research in this setting, in order to provide exercise recommendations for optimal germ cell cancer survivorship.
Snir, Olivia L; DeJoseph, Maura; Wong, Serena; Buza, Natalia; Hui, Pei
2017-10-01
Although homozygosity is well documented in mature teratomas, the genetic zygosity of ovarian immature teratomas and mixed germ cell tumors is less well studied. Ten cases of mature cystic teratomas, eleven cases of grade 2 or 3 immature teratomas, and seven cases of mixed germ cell tumors with an immature teratoma component were investigated by short tandem repeat genotyping to interrogate their genetic zygosity. DNA genotyping was informative in eight mature teratomas, seven immature teratomas and six cases of mixed germ cell tumors. Out of the eight mature teratomas, five cases showed partial or complete homozygosity (63%) with two cases demonstrating complete homozygosity (25%). Of the immature teratomas, six cases showed partial or complete homozygosity (86%) with two cases demonstrating complete homozygosity (29%). For the mixed germ cell tumors, two cases showed partial homozygosity (33%) and none displayed complete homozygosity. Long-term clinical follow-up was available for five immature teratomas (mean follow-up 110 months) and five mixed germ cell tumors (mean follow-up 66 months). None of the five patients with pure immature teratoma had a recurrence; in contrast, four out of five mixed ovarian germ cell tumors recurred between 4 months to 8 years (P=0.048). In conclusion, both immature and mature teratomas harbor frequent genetic homozygosity suggesting a common cellular origin involving germ cells at the same developmental stage. The difference in the rate of homozygosity and tumor recurrence between pure immature teratomas and mixed germ cell tumors suggests that the two entities may involve different pathogenetic pathways and likely pursue different biological behaviors.
Evolution of high tooth replacement rates in sauropod dinosaurs.
D'Emic, Michael D; Whitlock, John A; Smith, Kathlyn M; Fisher, Daniel C; Wilson, Jeffrey A
2013-01-01
Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs.
Evolution of High Tooth Replacement Rates in Sauropod Dinosaurs
Smith, Kathlyn M.; Fisher, Daniel C.; Wilson, Jeffrey A.
2013-01-01
Background Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. Methodology/Principal Findings We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Conclusions/Significance Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs. PMID:23874921
From Young Children's Ideas about Germs to Ideas Shaping a Learning Environment
ERIC Educational Resources Information Center
Ergazaki, Marida; Saltapida, Konstantina; Zogza, Vassiliki
2010-01-01
This paper is concerned with highlighting young children's ideas about the nature, location and appearance of germs, as well as their reasoning strands about germs' ontological category and biological functions. Moreover, it is concerned with exploring how all these could be taken into account for shaping a potentially fruitful learning…
Extragonadal Germ Cell Tumors—Patient Version
Extragonadal germ cell tumors form in parts of the body outside the gonads. They may begin to grow anywhere in the body, but usually form in the pineal gland in the brain, the chest, the lower part of the spine, or the abdomen. Start here to find information on extragonadal germ cell tumors treatment.
Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Health Professional Version
CNS germ cell tumors can be diagnosed and classified based on histology, tumor markers, or a combination of both. Get detailed information about newly diagnosed and recurrent childhood CNS germ cell tumors including molecular features and clinical features, diagnostic and staging evaluation, and treatment in this summary for clinicians.
Germline stem cells are critical for sexual fate decision of germ cells
2016-01-01
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary. PMID:27699806
Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice
Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young
2015-01-01
γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826
Key apoptotic pathways for heat-induced programmed germ cell death in the testis.
Hikim, Amiya P Sinha; Lue, Yanhe; Yamamoto, Cindy M; Vera, Yanira; Rodriguez, Susana; Yen, Pauline H; Soeng, Kevin; Wang, Christina; Swerdloff, Ronald S
2003-07-01
Short-term exposure (43 C for 15 min) of the rat testis to mild heat results within 6 h in stage- and cell-specific activation of germ cell apoptosis. Initiation of apoptosis was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. Here we show that the relocation of Bax is accompanied by cytosolic translocation of cytochrome c and is associated with activation of the initiator caspase 9 and the executioner caspases 3, 6, and 7 and cleavage of poly(ADP) ribose polymerase. Furthermore, early in apoptosis, a significant amount of Bax also accumulates in endoplasmic reticulum, as assessed by Western blot analyses of fractionated testicular lysates. In additional studies using the FasL-defective gld mice, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system may be dispensable for heat-induced germ cell apoptosis in the testis. Taken together, these results demonstrate that the mitochondria- and possibly also endoplasmic reticulum-dependent pathways are the key apoptotic pathways for heat-induced germ cell death in the testis.
The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline.
Yang, Jing; Aguero, Tristan; King, Mary Lou
2015-01-01
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription. © 2015 Elsevier Inc. All rights reserved.
Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee
2017-07-10
Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.
Establishment of the Vertebrate Germ Layers.
Tseng, Wei-Chia; Munisha, Mumingjiang; Gutierrez, Juan B; Dougan, Scott T
2017-01-01
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers?
Rios-Rojas, Clarissa; Bowles, Josephine; Koopman, Peter
2015-04-01
In addition to their role as endocrine organs, the gonads nurture and protect germ cells, and regulate the formation of gametes competent to convey the genome to the following generation. After sex determination, gonadal somatic cells use several known signalling pathways to direct germ cell development. However, the extent to which germ cells communicate back to the soma, the molecular signals they use to do so and the significance of any such signalling remain as open questions. Herein, we review findings arising from the study of gonadal development and function in the absence of germ cells in a range of organisms. Most published studies support the view that germ cells are unimportant for foetal gonadal development in mammals, but later become critical for stabilisation of gonadal function and somatic cell phenotype. However, the lack of consistency in the data, and clear differences between mammals and other vertebrates and invertebrates, suggests that the story may not be so simple and would benefit from more careful analysis using contemporary molecular, cell biology and imaging tools. © 2015 Society for Reproduction and Fertility.
The ethics of germ line gene manipulation--a five dimensional debate.
Carter, Lucy
2002-10-01
Contributors to the debate surrounding the ethics of germ line gene manipulation have by and large concentrated their efforts on discussions of the potential risks that are associated with the use of this technology. Many international advisory committees have ruled out the acceptability of germ line gene manipulation at least for the time being. The purpose of this work is to generate much needed discussion on the many other ethical issues concerning the implementation of not only germ line gene manipulation but also other related biotechnologies. In this paper I systematically investigate and analyse the most salient issues put forward by proponents and opponents alike. I argue that if germ line manipulation proves to be a safe and effective procedure, then the principle of beneficence imposes on the medical profession a moral duty to pursue the technology.
2018-04-17
Brenner Tumor; Malignant Ascites; Malignant Pleural Effusion; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cavity Cancer
Lancaster, Kelsey; Trauth, Stanley E; Gribbins, Kevin M
2014-01-01
The testicular histology and cytology of spermatogenesis in Graptemys pseudogeographica kohnii were examined using specimens collected between July 1996 and May 2004 from counties in northeastern Arkansas. A histological examination of the testes and germ cell cytology indicates a postnuptial testicular cycle of spermatogenesis and a major fall spermiation event. The majority of the germ cell populations in May and June specimens are represented by resting spermatogonia, type A spermatogonia, type B spermatogonia, pre-leptotene spermatocytes, and numerous Sertoli cell nuclei near the basement membrane. The start of proliferation is evident as spermatogonia in metaphase are present near the basal lamina and many of these germ cells have entered meiosis in June seminiferous tubules. Major spermatogenic events occur in the June and July specimens and result in an increased height of the seminiferous epithelium and increased diameter of the seminiferous tubules. The germ cell population during this time is represented by spermatogonia (type A, B, and resting), hypertrophic cells, large populations of early primary spermatocytes, and early round spermatids. By September, the major germ cell population has progressed past meiosis with abundant round and early elongating spermatids dominating the seminiferous epithelium. October seminiferous epithelia are marked by a decreas in height and mature spermatozoa fill the luminal space. Round and elongating spermatids constitute the largest portion of the germ cell population. Following the spermiation event, the testes enter a period of quiescence that lasts till the next spermatogenic cycle, which begins in the subsequent spring. Based on the cytological development of the seminiferous tubules revealed by our study, Graptemys pseudogeographica kohnii demonstrates a temporal germ cell development strategy similar to other temperate reptiles. A single major generation of germ cells progresses through spermatogenesis each year resulting in a single spermiation event with sperm stored within the epididymis until the next spring mating season.
Lancaster, Kelsey; Trauth, Stanley E; Gribbins, Kevin M
2014-01-01
The testicular histology and cytology of spermatogenesis in Graptemys pseudogeographica kohnii were examined using specimens collected between July 1996 and May 2004 from counties in northeastern Arkansas. A histological examination of the testes and germ cell cytology indicates a postnuptial testicular cycle of spermatogenesis and a major fall spermiation event. The majority of the germ cell populations in May and June specimens are represented by resting spermatogonia, type A spermatogonia, type B spermatogonia, pre-leptotene spermatocytes, and numerous Sertoli cell nuclei near the basement membrane. The start of proliferation is evident as spermatogonia in metaphase are present near the basal lamina and many of these germ cells have entered meiosis in June seminiferous tubules. Major spermatogenic events occur in the June and July specimens and result in an increased height of the seminiferous epithelium and increased diameter of the seminiferous tubules. The germ cell population during this time is represented by spermatogonia (type A, B, and resting), hypertrophic cells, large populations of early primary spermatocytes, and early round spermatids. By September, the major germ cell population has progressed past meiosis with abundant round and early elongating spermatids dominating the seminiferous epithelium. October seminiferous epithelia are marked by a decreas in height and mature spermatozoa fill the luminal space. Round and elongating spermatids constitute the largest portion of the germ cell population. Following the spermiation event, the testes enter a period of quiescence that lasts till the next spermatogenic cycle, which begins in the subsequent spring. Based on the cytological development of the seminiferous tubules revealed by our study, Graptemys pseudogeographica kohnii demonstrates a temporal germ cell development strategy similar to other temperate reptiles. A single major generation of germ cells progresses through spermatogenesis each year resulting in a single spermiation event with sperm stored within the epididymis until the next spring mating season. PMID:26413408
NASA Astrophysics Data System (ADS)
Shikina, Shinya; Chung, Yi-Jou; Wang, Hsiang-Ming; Chiu, Yi-Ling; Shao, Zih-Fang; Lee, Yan-Horn; Chang, Ching-Fong
2015-06-01
Most corals exhibit annual or multiple gametogenic cycles. Thus far, coral gametogenesis has been studied in many species and locations during the past three decades; however, currently, only a few papers exist that describe the origin of germ cells, such as germline stem cells (GSCs), which support the continuous production of gametes in every reproductive cycle. To address this issue, in this study, we focused on and identified piwi gene, which has been used as a marker of germline cells, including GSCs, in various metazoans, in a scleractinian coral, Euphyllia ancora. Reverse-transcription PCR and Western blotting analyses revealed that E. ancora piwi-like ( Eapiwi) is expressed in mesentery tissues where the sites of gametogenesis are located for both sexes. Immunohistochemistry with a specific antibody against Eapiwi revealed strong immunoreactivity in the spermatogonia in males and in the oogonia and early oocytes in females, demonstrating that Eapiwi could be used as an early germ cell marker in E. ancora. Subsequent immunohistochemical analyses regarding the spatial and temporal distribution patterns of early germ cells in mesentery tissues revealed that early germ cells were present throughout the year in the mesentery tissue we examined, regardless of the sexual reproductive cycle. In particular, small numbers of early germ cells were observed in specific sites of mesentery tissues with fully matured gonads in both sexes. These early germ cells were not released together with mature gametes during the spawning period and remained in the mesentery tissues. These results suggested that these early germ cells most likely serve as a reservoir of germline cells and that some of these cells would produce differentiated germ cells for the upcoming sexual reproduction period; hence, these cells would function as GSCs. Our data provide new information for understanding continuous gamete production in corals.
Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries.
Villano, J Lee; Propp, Jennifer M; Porter, Kimberly R; Stewart, Andrew K; Valyi-Nagy, Tibor; Li, Xinyu; Engelhard, Herbert H; McCarthy, Bridget J
2008-04-01
The exact incidence of pineal germ-cell tumors is largely unknown. The tumors are rare, and the number of patients with these tumors, as reported in clinical series, has been limited. The goal of this study was to describe pineal germ-cell tumors in a large number of patients, using data from available brain tumor databases. Three different databases were used: Surveillance, Epidemiology, and End Results (SEER) database (1973-2001); Central Brain Tumor Registry of the United States (CBTRUS; 1997-2001); and National Cancer Data Base (NCDB; 1985-2003). Tumors were identified using the International Classification of Diseases for Oncology, third edition (ICD-O-3), site code C75.3, and categorized according to histology codes 9060-9085. Data were analyzed using SAS/STAT release 8.2, SEER*Stat version 5.2, and SPSS version 13.0 software. A total of 1,467 cases of malignant pineal germ-cell tumors were identified: 1,159 from NCDB, 196 from SEER, and 112 from CBTRUS. All three databases showed a male predominance for pineal germ-cell tumors (>90%), and >72% of patients were Caucasian. The peak number of cases occurred in the 10- to 14-year age group in the CBTRUS data and in the 15- to 19-year age group in the SEER and NCDB data, and declined significantly thereafter. The majority of tumors (73%-86%) were germinomas, and patients with germinomas had the highest survival rate (>79% at 5 years). Most patients were treated with surgical resection and radiation therapy or with radiation therapy alone. The number of patients included in this study exceeds that of any study published to date. The proportions of malignant pineal germ-cell tumors and intracranial germ-cell tumors are in range with previous studies. Survival rates for malignant pineal germ-cell tumors are lower than results from recent treatment trials for intracranial germ-cell tumors, and patients that received radiation therapy in the treatment plan either with surgery or alone survived the longest.
Cook, Matthew S.; Munger, Steven C.; Nadeau, Joseph H.; Capel, Blanche
2011-01-01
Human germ cell tumors show a strong sensitivity to genetic background similar to Dnd1Ter/Ter mutant mice, where testicular teratomas arise only on the 129/SvJ genetic background. The introduction of the Bax mutation onto mixed background Dnd1Ter/Ter mutants, where teratomas do not typically develop, resulted in a high incidence of teratomas. However, when Dnd1Ter/Ter; Bax–/– double mutants were backcrossed to C57BL/6J, no tumors arose. Dnd1Ter/Ter germ cells show a strong downregulation of male differentiation genes including Nanos2. In susceptible strains, where teratomas initiate around E15.5-E17.5, many mutant germ cells fail to enter mitotic arrest in G0 and do not downregulate the pluripotency markers NANOG, SOX2 and OCT4. We show that DND1 directly binds a group of transcripts that encode negative regulators of the cell cycle, including p27Kip1 and p21Cip1. P27Kip1 and P21Cip1 protein are both significantly decreased in Dnd1Ter/Ter germ cells on all strain backgrounds tested, strongly suggesting that DND1 regulates mitotic arrest in male germ cells through translational regulation of cell cycle genes. Nonetheless, in C57BL/6J mutants, germ cells arrest prior to M-phase of the cell cycle and downregulate NANOG, SOX2 and OCT4. Consistent with their ability to rescue cell cycle arrest, C57BL/6J germ cells overexpress negative regulators of the cell cycle relative to 129/SvJ. This work suggests that reprogramming of pluripotency in germ cells and prevention of tumor formation requires cell cycle arrest, and that differences in the balance of cell cycle regulators between 129/SvJ and C57BL/6 might underlie differences in tumor susceptibility. PMID:21115610
Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi
2013-01-01
Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily) PMID:24639722
Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells.
Durcova-Hills, Gabriela; Surani, Azim
2008-04-01
In this unit we describe the derivation of pluripotent embryonic germ (EG) cells from mouse primordial germ cells (PGCs) isolated from both 8.5- and 11.5-days post-coitum (dpc) embryos. Once EG cells are derived we explain how to propagate and characterize the cell lines. We introduce readers to PGCs and explain differences between PGCs and their in vitro derivatives EG cells. Finally, we also compare mouse EG cells with ES cells. This unit will be of great interest to anyone interested in PGCs or studying the behavior of cultured PGCs or the derivation of new EG cell lines.
[New possibilities will open up in human gene therapy].
Portin, Petter
2016-01-01
Gene therapy is divided into somatic and germ line therapy. The latter involves reproductive cells or their stem cells, and its results are heritable. The effects of somatic gene therapy are generally restricted to a single tissue of the patient in question. Until now, all gene therapies in the world have belonged to the regime of somatic therapy, germ line therapy having been a theoretical possibility only. Very recently, however, a method has been developed which is applicable to germ line therapy as well. In addition to technical challenges, severe ethical problems are associated with germ line therapy, demanding opinion statement.
Acute Leukemia and Concurrent Mediastinal Germ Cell Tumor: Case Report and Literature Review.
Maese, Luke; Li, K David; Xu, Xinjie; Afify, Zeinab; Paxton, Christian N; Putnam, Angelica
2017-04-01
There is a known association of primary nonseminomatous mediastinal germ cell tumors (NSMGCT) and hematologic malignancy in younger males not linked to treatment. When combined these two rare entities convey a very poor prognosis. Here we report a 16-year-old male with an anterior mediastinal mass diagnosed as a malignant germ cell tumor based on elevation of serologic markers. He was found to have acute leukemia with megakaryocytic differentiation several days later. We focus our report on the pathologic findings, including a review of the literature, and a novel molecular analysis of the germ cell tumor.
2018-05-02
Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified
Zhang, Yani; Wang, Yingjie; Zuo, Qisheng; Li, Dong; Zhang, Wenhui; Lian, Chao; Tang, Beibei; Xiao, Tianrong; Wang, Man; Wang, Kehua
2016-01-01
Abstract The objectives of the present study were to screen for key gene and signaling pathways involved in the production of male germ cells in poultry and to investigate the effects of the transforming growth factor beta (TGF-β) signaling pathway on the differentiation of chicken embryonic stem cells (ESCs) into male germ cells. The ESCs, primordial germ cells, and spermatogonial stem cells (SSCs) were sorted using flow cytometry for RNA sequencing (RNA-seq) technology. Male chicken ESCs were induced using 40 ng/mL of bone morphogenetic protein 4 (BMP4). The effects of the TGF-β signaling pathway on the production of chicken SSCs were confirmed by morphology, quantitative real-time polymerase chain reaction, and immunocytochemistry. One hundred seventy-three key genes relevant to development, differentiation, and metabolism and 20 signaling pathways involved in cell reproduction, differentiation, and signal transduction were identified by RNA-seq. The germ cells formed agglomerates and increased in number 14 days after induction by BMP4. During the induction process, the ESCs, Nanog, and Sox2 marker gene expression levels decreased, whereas expression of the germ cell-specific genes Stra8, Dazl, integrin-α6, and c-kit increased. The results indicated that the TGF-β signaling pathway participated in the differentiation of chicken ESCs into male germ cells. PMID:27906584
Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice
Wang, Changjun; Zaheer, Mahira; Bian, Fang; Quach, Darin; Swennes, Alton G.; Britton, Robert A.; Pflugfelder, Stephen C.
2018-01-01
Commensal bacteria play an important role in the formation of the immune system but their role in the maintenance of immune homeostasis at the ocular surface and lacrimal gland remains poorly understood. This study investigated the eye and lacrimal gland phenotype in germ-free and conventional C57BL/6J mice. Our results showed that germ-free mice had significantly greater corneal barrier disruption, greater goblet cell loss, and greater total inflammatory cell and CD4+ T cell infiltration within the lacrimal gland compared to the conventionally housed group. A greater frequency of CD4+IFN-γ+ cells was observed in germ-free lacrimal glands. Females exhibited a more severe phenotype compared to males. Adoptive transfer of CD4+ T cells isolated from female germ-free mice into RAG1KO mice transferred Sjögren-like lacrimal keratoconjunctivitis. Fecal microbiota transplant from conventional mice reverted dry eye phenotype in germ-free mice and decreased CD4+IFN-γ+ cells to levels similar to conventional C57BL/6J mice. These findings indicate that germ-free mice have a spontaneous lacrimal keratoconjunctivitis similar to that observed in Sjögren syndrome patients and demonstrate that commensal bacteria function in maintaining immune homeostasis on the ocular surface. Thus, manipulation of intestinal commensal bacteria has the potential to become a novel therapeutic approach to treat Sjögren Syndrome. PMID:29438346
Kobayashi, Toru; Honryo, Tomoki; Agawa, Yasuo; Sawada, Yoshifumi; Tapia, Ileana; Macìas, Karla A; Cano, Amado; Scholey, Vernon P; Margulies, Daniel; Yagishita, Naoki
2015-06-01
To develop techniques for seedling production of yellowfin tuna, the behavior of primordial germ cells (PGCs) and gonadogenesis were examined at 1-30 days post hatching (dph) using morphometric analysis, histological examination, and in situ hybridization. Immediately after hatching, PGCs were located on the dorsal side of the posterior end of the rectum under the peritoneum of the larvae, and at 3 dph they came into contact with stromal cells. PGCs and stromal cells gradually moved forward from the anus prior to 5 dph. At 7-10 dph, germ cells were surrounded by stromal cells and the gonadal primordia were formed. In individuals collected at 12 dph, PGCs were detected by in situ hybridization using a vasa mRNA probe that is a germ-cell-specific detection marker. The proliferation of germ cells in the gonadal primordia began at 7-10 dph. We observed double the number of germ cells at 30 dph (22 ± 3.2 cells), compared to that at 1 dph (11 ± 2.1 cells). Therefore, based on our data and previous reports, the initial germ cell proliferation of yellowfin tuna is relatively slower than that of other fish species. Copyright © 2015 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models
González, Raquel; Dobrinski, Ina
2015-01-01
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701
A role for Lin28 in primordial germ cell development and germ cell malignancy
West, Jason A.; Viswanathan, Srinivas R.; Yabuuchi, Akiko; Cunniff, Kerianne; Takeuchi, Ayumu; Park, In-Hyun; Sero, Julia E.; Zhu, Hao; Perez-Atayde, Antonio; Frazier, A. Lindsay; Surani, M. Azim; Daley, George Q.
2009-01-01
The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwarts efforts to investigate molecular mechanisms of germ cell specification. Stella marks the minute founder population of the germ lineage1,2. Here we differentiate mouse embryonic stem cells (ESCs) carrying a Stella transgenic reporter into putative PGCs in vitro. The Stella+ cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella+ cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing3-6, is essential for proper PGC development. We further show that Blimp1, a let-7 target and a master regulator of PGC specification7-9, can rescue the effect of Lin28-deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Over-expression of Lin28 promotes formation of Stella+ cells in vitro and PGCs in chimeric embryos, and is associated with human germ cell tumours. The differentiation of putative PGCs from ESCs in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ cell development and malignancy. PMID:19578360
Petkova, Rumena; Arabadjiev, Borislav; Chakarov, Stoyan; Pankov, Roumen
2014-01-01
The concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc. Germ-like male and female rodent cells have been successfully produced in vitro from ESC and induced pluripotent stem cells. The attempts to derive primate primordial germ cells (PGC) and germ cells in vitro from pluripotent stem cells, however, still have a low success rate, especially with the female germline. The paper reviews the properties of rodent and primate ESC with regard to their capacity for differentiation in vitro to germ-like cells, outlining the possible caveats to derivation of PGC and germ cells from primate and human pluripotent cells. PMID:26019504
Kwon, Jun Tae; Ham, Sera; Jeon, Suyeon; Kim, Youil; Oh, Seungmin; Cho, Chunghee
2017-01-01
The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.
Use of guar by-products in high-production laying hen diets.
Gutierrez, O; Zhang, C; Cartwright, A L; Carey, J B; Bailey, C A
2007-06-01
A 5x5 Latin square experiment was conducted to evaluate the effect of feeding low concentrations of guar germ or a combination of guar germ and hull (guar meal) in high-production laying hen diets. A total of 125 Lohmann laying hens (21 wk old) of similar BW were randomly assigned to 5 blocks. Each block was divided into 5 experimental units, consisting of 5 hens per unit. Hens were fed either a nonguar control diet, or 1 of 4 diets containing either 2.5 or 5% guar germ, or 2.5 or 5% guar meal over a 20-wk trial period (five 4-wk periods). No significant differences were observed when feeding either 2.5 or 5% guar germ or meal (P>0.05) on hen-day egg production or feed consumption. Significant differences in egg weight, total egg mass per hen, and feed conversion ratio were detected in hens fed 2.5% guar meal, whereas they remained unchanged for diets containing either level of guar germ or 5% guar meal. Feeding either level of guar germ or guar meal did not affect shell quality (shell thickness, egg breaking force, and specific gravity), Haugh units, or egg yolk color (L*, a*, b*). The results showed that both guar germ and guar meal can be fed to high-production laying hens at up to 5% without adverse effects on laying hen performance.
Li, Zili; Zhao, Qian; Li, Honggang; Xiong, Chengliang
2018-01-01
Abstract Recently, significant progress has been made in ART for the treatment of male infertility. However, current ART has failed to help infertile patients with non-obstructive azoospermia, unless donor sperm is used. In fact, most couples wish to have their own genetically related child. Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells and in vitro derivation of functional germ cells from patient-specific iPSCs may provide new therapeutic strategies for infertile couples. The overall developmental dynamics of human primordial germ cells are similar to that in mice, but accumulating evidence suggests that there are crucial differences between human and mouse PGC specification. Unlike mouse iPSCs (miPSCs) in naive state, hiPSCs exhibit a primed pluripotency which possess less potential for the germ cell fate. Based on research in mice, male germ cells at different stages have been derived from hiPSCs with different protocols, including spontaneous differentiation, overexpression of germ cell regulators, addition of cytokines, co-culture with gonadal cells in vitro and xeno-transplantation. The aim of this review is to summarize the current advances in derivation of male germ cells from hiPSCs and raise the perspectives of hiPSCs in medical application for male infertility, as well as in basic research for male germ cell development. PMID:29315416
Staying on Track with TB Medicine
... medicines. If you have TB disease , you must remember that TB germs die very slowly. Even if you feel better after a few weeks on the TB medicines, it does not mean all the TB germs are dead. Treating TB takes months. Staying on your medicine the ... points to remember: • Anyone can breathe in TB germs and get ...
HMGA2 expression distinguishes between different types of postpubertal testicular germ cell tumour.
Kloth, Lars; Gottlieb, Andrea; Helmke, Burkhard; Wosniok, Werner; Löning, Thomas; Burchardt, Käte; Belge, Gazanfer; Günther, Kathrin; Bullerdiek, Jörn
2015-10-01
The group of postpubertal testicular germ cell tumours encompasses lesions with highly diverse differentiation - seminomas, embryonal carcinomas, yolk sac tumours, teratomas and choriocarcinomas. Heterogeneous differentiation is often present within individual tumours and the correct identification of the components is of clinical relevance. HMGA2 re-expression has been reported in many tumours, including testicular germ cell tumours. This is the first study investigating HMGA2 expression in a representative group of testicular germ cell tumours with the highly sensitive method of quantitative real-time PCR as well as with immunohistochemistry. The expression of HMGA2 and HPRT was measured using quantitative real-time PCR in 59 postpubertal testicular germ cell tumours. Thirty specimens contained only one type of tumour and 29 were mixed neoplasms. With the exception of choriocarcinomas, at least two pure specimens from each subgroup of testicular germ cell tumour were included. In order to validate the quantitative real-time PCR data and gather information about the localisation of the protein, additional immunohistochemical analysis with an antibody specific for HMGA2 was performed in 23 cases. Expression of HMGA2 in testicular germ cell tumours depended on the histological differentiation. Seminomas and embryonal carcinomas showed no or very little expression, whereas yolk sac tumours strongly expressed HMGA2 at the transcriptome as well as the protein level. In teratomas, the expression varied and in choriocarcinomas the expression was moderate. In part, these results contradict data from previous studies but HMGA2 seems to represent a novel marker to assist pathological subtyping of testicular germ cell tumours. The results indicate a critical role in yolk sac tumours and some forms of teratoma.
Roth, Lawrence M; Cheng, Liang
2016-05-01
The origin of mixed germ cell-sex cord stromal tumor (MGC-SCST) of the testis is uncertain, and a controversy exists as to whether the germ cells in these tumors are neoplastic. Although intratubular components of the common and several uncommon forms of testicular germ cell tumors have been described, to our knowledge, intratubular MGC-SCST has not previously been reported in detail. In a study of 13 cases of testicular MGC-SCST, we observed entrapped seminiferous tubules in 7 cases and an intratubular component in 2, both of which were associated with extensive entrapped tubules. Intratubular MGC-SCST is distinguished from entrapped tubules by the occurrence of germ cells resembling spermatogonia in the adluminal compartment and the absence of tubular lumens. By way of contrast, the adluminal compartment of entrapped tubules is composed entirely of immature Sertoli cells, and lumen formation is observed in favorably oriented tubules. Although the germ cells in our cases of MGC-SCST do not show histologic features of malignancy, the observation of spermatogonia-like cells in the adluminal compartment of the tubule, sometimes with concomitant germ cell proliferation, and the infiltrative pattern of the germ cells in the extratubular component support their neoplastic nature. The intratubular component tends to be more centrally located than the adjacent entrapped seminiferous tubules suggesting that it originates from the latter. The tubules of intratubular MGC-SCST are not expanded except in the advanced stage and are approximately the same size as entrapped seminiferous tubules but are considerably smaller than those of the uninvolved testis that shows active spermatogenesis. Copyright © 2015. Published by Elsevier Inc.
Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert
2005-01-01
We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263
Nakano, Takako; Hotokezaka, Hitoshi; Hashimoto, Megumi; Sirisoontorn, Irin; Arita, Kotaro; Kurohama, Takeshi; Darendeliler, M Ali; Yoshida, Noriaki
2014-11-01
To investigate differences in the amount of tooth movement and root resorption that occurred after tipping and bodily movement of the maxillary first molar in rats. Ten-week-old female Wistar rats were divided into two groups according to type of tooth movement and subdivided into four subgroups according to the magnitude of applied force. Nickel-titanium closed-coil springs exerting forces of 10, 25, 50, or 100 g were applied to the maxillary left first molars to induce mesial tooth movement. We designed a novel orthodontic appliance for bodily tooth movement. Tooth movement distance and root resorption were measured using microcomputed tomography and scanning electron and scanning laser microscopy. The amount of tooth movement in the bodily tooth movement group was less than half that in the tipping tooth movement group. The greatest amount of tooth movement occurred in the 10-g tipping and 50-g bodily tooth movement subgroups, and the amount of tooth movement decreased with the application of an excessive magnitude of force. Conversely, root resorption increased when the heavier orthodontic force was applied in both groups. Root resorption in the tipping tooth movement group was approximately twice that in the bodily tooth movement group. Root resorption in the tipping tooth movement group was more pronounced than that in the bodily tooth movement group. Although the amount of tooth movement decreased when extremely heavy forces were applied, root resorption increased in both the tipping and bodily tooth movement groups in rats.
Martinchuk, A N; E En Gyn; Safronova, A M; Peskova, E V
1991-01-01
Intake of wheat upholstery meal by growing rats was attended by a sharp decrease in the content and activity of xenobiotic metabolism enzymes in the hepatic microsomes, that was caused by the low biological value of the meal proteins. Hepatic microsomes of the rats that were fed with wheat germ flakes showed increased specific content of cytochromes P-450 and b5, but the total blood protein content per 100 g of body mass was lower than during casein consumption. No significant changes were detected in hydroxylation rate of benz(a)pyrene, aniline and ethylmorphine. During consumption of wheat germ flakes induction of UDP-glucuronide-transferase was detected in hepatic microsomes. Wheat germ flakes induced a 5-fold increase of Se-dependent glutathione peroxidase activity. Wheat germ flakes produced no significant effect on glutathione-S-aryltransferase and glutathione reductase activity.
Cancer treatment in childhood and testicular function: the importance of the somatic environment.
Stukenborg, Jan-Bernd; Jahnukainen, Kirsi; Hutka, Marsida; Mitchell, Rod T
2018-02-01
Testicular function and future fertility may be affected by cancer treatment during childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential for fertility in these patients, the somatic cell populations also play a crucial role in providing a suitable environment to support germ cell maintenance and subsequent development. Regulation of the spermatogonial germ-stem cell niche involves many signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal axis. In this review, we describe the somatic cell populations that comprise the testicular germ-stem cell niche in humans and how they may be affected by cancer treatment during childhood. We also discuss the experimental models that may be utilized to manipulate the somatic environment and report the results of studies that investigate the potential role of somatic cells in the protection of the germ cells in the testis from cancer treatment. © 2018 The authors.
Galli, Uwe M; Sauter, Marlies; Lecher, Bernd; Maurer, Simone; Herbst, Hermann; Roemer, Klaus; Mueller-Lantzsch, Nikolaus
2005-04-28
Germ cell tumors (GCTs) are among the most common malignancies in young men. We have previously documented that patients with GCT frequently produce serum antibodies directed against proteins encoded by human endogenous retrovirus (HERV) type K sequences. Transcripts originating from the env gene of HERV-K, including the rec-relative of human immunodeficiency virus rev, are highly expressed in GCTs. We report here that mice that inducibly express HERV-K rec show a disturbed germ cell development and may exhibit, by 19 months of age, changes reminiscent of carcinoma in situ, the predecessor lesion of classic seminoma in humans. This provides the first direct evidence that the expression of a human endogenous retroviral gene previously established as a marker in human germ cell tumors may contribute to organ-specific tumorigenesis in a transgenic mouse model.
Alu repeated DNAs are differentially methylated in primate germ cells.
Rubin, C M; VandeVoort, C A; Teplitz, R L; Schmid, C W
1994-01-01
A significant fraction of Alu repeats in human sperm DNA, previously found to be unmethylated, is nearly completely methylated in DNA from many somatic tissues. A similar fraction of unmethylated Alus is observed here in sperm DNA from rhesus monkey. However, Alus are almost completely methylated at the restriction sites tested in monkey follicular oocyte DNA. The Alu methylation patterns in mature male and female monkey germ cells are consistent with Alu methylation in human germ cell tumors. Alu sequences are hypomethylated in seminoma DNAs and more methylated in a human ovarian dysgerminoma. These results contrast with methylation patterns reported for germ cell single-copy, CpG island, satellite, and L1 sequences. The function of Alu repeats is not known, but differential methylation of Alu repeats in the male and female germ lines suggests that they may serve as markers for genomic imprinting or in maintaining differences in male and female meiosis. Images PMID:7800508
Cancer treatment in childhood and testicular function: the importance of the somatic environment
Stukenborg, Jan-Bernd; Jahnukainen, Kirsi; Hutka, Marsida
2018-01-01
Testicular function and future fertility may be affected by cancer treatment during childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential for fertility in these patients, the somatic cell populations also play a crucial role in providing a suitable environment to support germ cell maintenance and subsequent development. Regulation of the spermatogonial germ-stem cell niche involves many signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal axis. In this review, we describe the somatic cell populations that comprise the testicular germ-stem cell niche in humans and how they may be affected by cancer treatment during childhood. We also discuss the experimental models that may be utilized to manipulate the somatic environment and report the results of studies that investigate the potential role of somatic cells in the protection of the germ cells in the testis from cancer treatment. PMID:29351905
[Current progress and future direction in the biology of ovarian germ stem cells in mammals].
Li, Chao-Hui; Guo, Kun; Zheng, Ping
2012-12-01
Whether or not oogenesis continues after birth in mammalian ovaries remains controversial. Since the 1950's, it has been generally accepted that oogenesis takes place during embryogenesis in mammals and ceases at birth. At birth, germ cells in mammalian ovaries have progressed to the diplotene stage of meiotic prophase and have formed primordial follicles with surrounding somatic cells. These primordial follicles represent follicle reserves of the reproductive life. However, this view has been recently challenged by a growing body of evidence showing the isolation and propagation of germ stem cells from mouse and human ovaries. These ovarian germ stem cells are capable of regenerating functional oocytes when transplanted back into recipient ovaries. Despite the discovery of the potential germ stem cells in mammalian ovaries, it remains uncertain whether these cells exist and function in ovaries under physiological conditions. Herein we review the current progress and future direction in this infant area.
Germ Tube Growth Inhibitor from Cronartium comandrae Aeciospores
Eppstein, Deborah A.; Tainter, F. H.
1979-01-01
Two compounds showing self-inhibitory action during germination of aeciospores of the comandra blister rust fungus (Cronartium comandrae Pk.) were extracted from these aeciospores by shaking with 0.2 M NH4HCO3 (pH 7.8) for 4 h. One of these, the germination self inhibitor (D. A. Eppstein and F. H. Tainter, Phytopathology 66:1395-1397, 1976), was removed from the ammonium bicarbonate buffer by using chloroform. The water layer which remained contained a substance which, at ca. 10−4 M concentration, had no apparent effect on germ tube emergence but which inhibited normal germ tube growth. Linear germ tube growth ceased or a dendritic or vesicular pattern of growth resulted, depending on the concentration of inhibitor added to extracted germinating spores. The germ tube growth inhibitor appears to be a peptide with a molecular weight of ca. 2,000. Images PMID:16345335
Biomaterial Selection for Tooth Regeneration
Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong
2011-01-01
Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433
USDA-ARS?s Scientific Manuscript database
In previous aqueous enzymatic extraction experiments we reported an oil yield of 67 grams from 800 grams of dry fractionated corn germ. In the current experiments, a dispersion of 10% cooked, dry-fractionated germ in water and was treated with amylases and a cellulase complex. A foam fraction was s...
Germ cell tumors: Insights from the Drosophila ovary and the mouse testis.
Salz, Helen K; Dawson, Emily P; Heaney, Jason D
2017-03-01
Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which evidence supports common underlying mechanisms, such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. Mol. Reprod. Dev. 84: 200-211, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-05-13
Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Human testis and testis cancer specimens from orchidectomies were cultured in 'hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche.
Ovarian mixed germ cell tumor with yolk sac and teratomatous components in a dog.
Robinson, Nicholas A; Manivel, J Carlos; Olson, Erik J
2013-05-01
Mixed germ cell tumors of the ovary have rarely been reported in veterinary species. A 3-year-old intact female Labrador Retriever dog was presented for lethargy, abdominal distention, and a midabdominal mass. An exploratory laparotomy revealed a large (23 cm in diameter) left ovarian tumor and multiple small (2-3 cm in diameter) pale tan masses on the peritoneum and abdominal surface of the diaphragm. Histological examination of the left ovary revealed a mixed germ cell tumor with a yolk sac component with rare Schiller-Duval bodies and a teratomatous component comprised primarily of neural differentiation. The abdominal metastases were solely comprised of the yolk sac component. The yolk sac component was diffusely immunopositive for cytokeratin with scattered cells reactive for α-fetoprotein and placental alkaline phosphatase. Within the teratomatous component, the neuropil was diffusely immunopositive for S100, neuron-specific enolase, and neurofilaments with a few glial fibrillary acidic protein immunopositive cells. Ovarian germ cell tumors may be pure and consist of only 1 germ cell element or may be mixed and include more than 1 germ cell element, such as teratoma and yolk sac tumor.
Mixed Germ Cell Tumour in an Infertile Male Having Unilateral Cryptorchidism: A Rare Case Report.
Singla, Anand; Kaur, Navneet; Sandhu, Gunjeet; Nagori, Rupesh
2016-02-01
Mixed germ cell tumours with multiple components occur more frequently than the pure varieties of germ cell tumours. Embryonal carcinoma and teratoma together form the most common components of the mixed germ cell tumour but the yolk sac tumour is usually seen as a minor component in patients presenting with mixed germ cell tumour. We report a rare case of 27-year-old Hepatitis C positive male presenting with pain in left lower abdomen with associated history of same sided undescended testis and infertility. Right sided testis lying in scrotal sac appeared normal on ultrasonography but patient was azoospermic. He had raised levels of serum markers, alpha feto protein and beta HCG. Examination showed a large mass in left lower abdomen involving the sigmoid colon with the absence of left testis in left scrotum which was confirmed on CT scan. Excision of the mass was done and histopathology examination revealed it as a malignant mixed germ cell tumour composed predominantly of a yolk sac tumour, with minor component as seminoma and embryonal carcinoma in an undescended testis. Following this, the level of serum markers came down. The patient is now undergoing adjuvant chemotherapy and is doing well.
NASA Astrophysics Data System (ADS)
Yamaha, Etsuro; Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi
2007-07-01
This review introduces surrogate production as a new technique for fish-seed production in aquaculture. Surrogate production in fish is a technique used to obtain the gametes of a certain genotype through the gonad of another genotype. It is achieved by inducing germ-line chimerism between different species during early development. Primordial germ cells (PGCs) are the key material of this technique to induce germ-line chimera. In several species, it has been reported that PGCs differentiated from the blastomeres inherited some maternally supplied mRNA located in the terminal regions of the early cleavage furrows. PGCs from donor species (or strains) are isolated and transplanted into host species to induce the germ-line chimera. Four methods for inducing germ-line chimera are described: blastomere transplantation, blastoderm-graft transplantation, transplantation of PGC from the genital ridge, and transplantation visualised PGC with GFP fluorescence. Several problems preventing the successful induction of germ-line chimera in various fish species are discussed. Surrogate production, however, opens the possibility of efficient fish-seed production and effective breeding and transfer of biodiversity to an aquaculture strain. Conservation and efficient utilisation of genetic resources will be achieved through surrogate production combined with the cryopreservation of PGCs.
Bar, Ido; Cummins, Scott; Elizur, Abigail
2016-03-10
Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
Dissecting Germ Cell Metabolism through Network Modeling.
Whitmore, Leanne S; Ye, Ping
2015-01-01
Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.
Aguero, Tristan; Zhou, Yi; Kloc, Malgorzata; Chang, Patrick; Houliston, Evelyn; King, Mary Lou
2016-03-01
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1 , localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos -3'UTR. Importantly, Hermes/Rbpms specifically binds nanos , but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1 . One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA .
Aguero, Tristan; Zhou, Yi; Kloc, Malgorzata; Chang, Patrick; Houliston, Evelyn; King, Mary Lou
2016-01-01
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos-3′UTR. Importantly, Hermes/Rbpms specifically binds nanos, but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1. One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA. PMID:26998427
Würgler, F E
1991-01-01
Genotoxic agents can induce mutations as well as recombination in the genetic material. The fruit fly Drosophila melanogaster was one of the first assay systems to test physical and chemical agents for recombinogenic effects. Such effects can be observed in cells of the germ line as well as in somatic cells. At present information is available on 54 agents, among them 48 chemicals that have been tested in cells of the germ line of males and/or females. Effects on meiotic recombination in female germ cells cannot simply be classified as positive or negative since for a number of agents, depending on the chromosome region studied, recombination frequencies may be increased, unaffected or decreased. The male germ line of D. melanogaster represents a unique situation because meiotic recombination does not occur. Among 25 agents tested in male germ cells 24 did induce male recombination, among them alkylating, intercalating and cross-linking agents, direct-acting ones as well as compounds needing metabolic activation. With several compounds the frequency of induced recombination is highest in the heterochromatic regions near the centromeres. In brood pattern analyses, e.g., after exposure of adult males to ionizing radiation, the first appearance of crossover progeny is indicative of the sampling of exposed spermatocytes. In premeiotic cells of the male and the female germ line mitotic recombination can occur. Upon clonal expansion of the recombinant cells, clusters of identical crossovers can be observed.
Perspectives on testicular germ cell neoplasms.
Cheng, Liang; Lyu, Bingjian; Roth, Lawrence M
2017-01-01
Our knowledge of testicular germ cell neoplasms has progressed in the last few decades due to the description of germ cell neoplasia in situ (GCNIS) and a variety of specific forms of intratubular germ cell neoplasia, the discovery of isochromosome 12p and its importance in the development of invasiveness in germ cell tumors (GCTs), the identification of specific transcription factors for GCTs, and the recognition that a teratomatous component in mixed GCT represents terminal differentiation. Isochromosome 12p and 12p overrepresentation, collectively referred to as 12p amplification, are fundamental abnormalities that account for many types of malignant GCTs of the testis. Embryonal carcinoma is common in the testis but rare in the ovary, whereas the converse is true for mature cystic teratoma. Spermatocytic tumor occurs only in the testis; it has not been described in the ovary or extragonadal sites. The origin of ovarian mature cystic teratoma is similar to that of prepubertal-type testicular teratoma and dermoid cyst at any age in that it arises from a nontransformed germ cell, whereas postpubertal-type testicular teratoma arises from a malignant germ cell, most commonly through the intermediary of GCNIS. Somatic neoplasms, often referred to as monodermal teratomas, arise not infrequently from mature cystic teratoma of the ovary, whereas such neoplasms are rare in testicular teratoma with the exception of carcinoid. Integration of classical morphologic observations and emerging novel molecular studies will result in better understanding of the pathogenesis of GCTs and will optimize patient therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro
2008-01-01
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.
Germ-line induction of the Caenorhabditis elegans vulva
Thompson, Beth E.; Lamont, Liana B.; Kimble, Judith
2006-01-01
Development of the Caenorhabditis elegans vulva serves as a paradigm for intercellular signaling during animal development. In wild-type animals, the somatic gonadal anchor cell generates the LIN-3/EGF ligand to induce vulval fates in the underlying hypodermis, whereas FBF, FOG-1, and FOG-3 control germ-line development. Here we report that FBF functions redundantly with FOG-1 and FOG-3 to control vulval induction: animals lacking FBF and either FOG-1 or FOG-3 have multiple vulvae, the Muv phenotype. The fog; fbf Muv phenotype is generated by aberrant induction of vulval precursor cells (VPCs): in wild-type animals, three VPCs are induced to form a single vulva, but, in fog; fbf mutants, four or five VPCs are typically induced, resulting in ectopic vulvae. Laser ablation experiments and mosaic analyses demonstrate that the germ line is critical for the fog; fbf Muv phenotype. Consistent with that site of action, we detect FBF and FOG-1 in the germ line but not in the VPCs. The simplest interpretation is that FOG-1, FOG-3, and FBF act in the germ line to influence vulval fates. The LIN-3/EGF ligand may be the germ-line signal to the VPCs: the fog; fbf Muv phenotype depends on LIN-3 activity, and the lin-3 3′ UTR possesses an FBF binding element. Our findings reveal new insights into germ line-to-soma signals and the role of PUF proteins in animal development. PMID:16407099
Updike, Dustin L.; Strome, Susan
2009-01-01
P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells. PMID:19805813
Liu, Wei; Li, Shi-Zhu; Li, Zhi; Wang, Yang; Li, Xi-Yin; Zhong, Jian-Xiang; Zhang, Xiao-Juan; Zhang, Jun; Zhou, Li; Gui, Jian-Fang
2015-11-18
Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence.
Xiao, J; Zhou, X D; Zhu, W C; Zhang, B; Li, J Y; Xu, X
2007-05-01
To determine the prevalence of tooth discolouration, self-satisfaction with tooth colour, and correlation with socio-demographic-behavioural factors in adults and teenagers in Chengdu, China. A cross-sectional survey. 405 Chinese urban adults and teenagers from a multistage random probability sample. Tooth colour was measured on the maxillary central incisors using a colorimeter. Tooth discolouration was determined according to the discolouration level figure and evaluation criteria. Self-satisfaction with tooth colour was assessed on a five-point qualitative scale. Data were coded and analyzed using SPSS software. The mean values for L*, a* and b* were 70.67 (s.d. 1.91), 4.29 (s.d. 2.05) and 17.51 (s.d. 4.13), respectively. Age and sex were the most important factors associated with tooth colour (P < 0.05). About half of the study population (48.9%) suffered from some tooth discolouration, and 52.6% were dissatisfied with their tooth colour. Education and smoking were significant factors affecting self-satisfaction with tooth colour (P < 0.05). Tooth discolouration is common among the Chinese, and many Chinese are dissatisfied with their tooth colour. Self-satisfaction with tooth colour decreased with increasing severity of discolouration. Further research is needed to determine types of tooth discolouration among broader regions in China.
[Effect of a tooth-brushing education program on oral health of preschool children].
Kang, Bok-Hee; Park, Sun-Nam; Sohng, Kyeong-Yae; Moon, Jung-Soon
2008-12-01
To examine the effect of tooth-brushing education on the oral health of preschoolers. A quasi-experimental design with a non-equivalent control group was used. Two kindergartens were selected and 39 preschoolers from one kindergarten were assigned to the experimental group with tooth-brushing education and 39 from the other kindergarten to the control group. The tooth-brushing education program included 1 session on oral health education, individual tooth-brushing instruction for 1 week and supervised tooth-brushing after lunch for 4 weeks. Oral health behavior including use of tooth paste, tooth-brushing time and method of tooth-brushing, plague, streptococcus mutans, lactobacillus and dental caries were measured before and after the education. Fisher's exact test, t-test and paired t-test with the Window SAS 9.1 program were used to analyze the data. A significant increase in the use of tooth paste, tooth-brushing time and the practice of correct tooth-brushing and a decrease in plague and development of dental caries were observed in the experimental group. This tooth-brushing education was partially effective in improving oral health of preschoolers.
Paediatric germ cell tumours and congenital abnormalities: a Children's Oncology Group study
Johnson, K J; Ross, J A; Poynter, J N; Linabery, A M; Robison, L L; Shu, X O
2009-01-01
Methods: Maternally reported congenital abnormalities (CAs) were examined in a case–control study of 278 cases of paediatric germ cell tumours (GCTs) and 423 controls. Results and conclusions Germ cell tumours were significantly associated with cryptorchidism in males (OR=10.8, 95% CI: 2.1–55.1), but not with any other specific CA in either sex. PMID:19603020
Mixed malignant germ cell tumour of third ventricle with hydrocephalus: a rare case with recurrence.
Kishore, Manjari; Monappa, Vidya; Rao, Lakshmi; Kudva, Ranjini
2014-11-01
Malignant Germ Cell Tumours (GCTs) are rare, accounting for 3% of intracranial tumours and just like their extracranial counterparts represent a wide array of disease. Combination of Germinoma with Teratoma is very rare. Here in, we describe a case of Mixed Malignant Germ cell tumor of third ventricle with recurrence with emphasis on histopathological and radiological findings.
Kim, E J; Amezcua, C Martinez; Utterback, P L; Parsons, C M
2008-04-01
There is currently much ongoing research and interest for developing new processing technologies to produce corn distillers dried grains with solubles (DDGS). The current study evaluated a high protein (HP) distillers dried grains (DDG) and a dehydrated corn germ, which are products that can be produced by a modified dry milling process. Two chick experiments were conducted to determine the P bioavailability based on tibia ash. In addition, precision-fed rooster assays were conducted to determine TME(n) and amino acid digestibility. In the first chick assay, a P-deficient cornstarch-dextrose-soybean meal basal diet containing 0.10 to 0.13% nonphytate P was supplemented with 0.0, 0.05, and 0.10% P from KH(2)PO(4) or 7 and 14% conventional DDGS, HP DDG, and corn germ. In the second experiment, the P-deficient basal was supplemented with 7 and 14% conventional DDGS and 12.5 and 25% HP DDG. New Hampshire x Columbian female chicks were fed the experimental diets from 9 to 22 d posthatch, and bioavailability of P was estimated using the slope-ratio method where tibia ash was regressed on P intake. The total P content (90% DM basis) of the conventional DDGS, HP DDG, and corn germ were 0.76, 0.33, and 1.29%, respectively. Bioavailabilities of the P in conventional DDGS, HP DDG, and corn germ relative to KH(2)PO(4) were found to be 60, 56, and 25%, respectively. The TME(n) in conventional roosters was found to be significantly reduced for HP DDG and increased for the corn germ when compared with the conventional DDGS. The protein content (90% DM basis) of the HP DDG and corn germ was 33 and 14%, respectively, and the total lysine as a % of CP was approximately 2 times greater for the corn germ than for the HP DDG. Amino acid digestibilities in cecectomized roosters were consistently higher for the corn germ than for the HP DDG, which was similar to conventional DDGS.
Levy, M; Hall, D; Sud, A; Law, P; Litchfield, K; Dudakia, D; Haugen, T B; Karlsson, R; Reid, A; Huddart, R A; Grotmol, T; Wiklund, F; Houlston, R S; Turnbull, C
2017-09-01
Observational studies have suggested anthropometric traits, particularly increased height are associated with an elevated risk of testicular cancer (testicular germ cell tumour). However, there is an inconsistency between study findings, suggesting the possibility of the influence of confounding factors. To examine the association between anthropometric traits and testicular germ cell tumour using an unbiased approach, we performed a Mendelian randomisation study. We used genotype data from genome wide association studies of testicular germ cell tumour totalling 5518 cases and 19,055 controls. Externally weighted polygenic risk scores were created and used to evaluate associations with testicular germ cell tumour risk per one standard deviation (s.d) increase in genetically-defined adult height, adult BMI, adult waist hip ratio adjusted for BMI (WHRadjBMI), adult hip circumference adjusted for BMI (HIPadjBMI), adult waist circumference adjusted for BMI (WCadjBMI), birth weight (BW) and childhood obesity. Mendelian randomisation analysis did not demonstrate an association between any anthropometric trait and testicular germ cell tumour risk. In particular, despite good power, there was no global evidence for association between height and testicular germ cell tumour. However, three SNPs for adult height individually showed association with testicular germ cell tumour (rs4624820: OR = 1.47, 95% CI: 1.41-1.55, p = 2.7 × 10 -57 ; rs12228415: OR = 1.17, 95% CI: 1.11-1.22, p = 3.1 × 10 -10 ; rs7568069: OR = 1.13, 95% CI: 1.07-1.18, p = 1.1 × 10 -6 ). This Mendelian randomisation analysis, based on the largest testicular germ cell tumour genome wide association dataset to date, does not support a causal etiological association between anthropometric traits and testicular germ cell tumour aetiology. Our findings are more compatible with confounding by shared environmental factors, possibly related to prenatal growth with exposure to these risk factors occurring in utero. © 2017 American Society of Andrology and European Academy of Andrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrobek, Andrew J.; Mulvihill, John J.; Wassom, John S.
Although numerous germ-cell mutagens have been identified inanimal model systems, to date, no human germ-cell mutagens have beenconfirmed. Because the genomic integrity of our germ cells is essentialfor the continuation of the human species, a resolution of this enduringconundrum is needed. To facilitate such a resolution, we organized aworkshop at The Jackson Laboratory in Bar Harbor, Maine on September28-30, 2004. This interactive workshop brought together scientists from awide range of disciplines to assess the applicability of emergingmolecular methods for genomic analysis to the field of human germ-cellmutagenesis. Participants recommended that focused, coordinated humangerm-cell mutation studies be conducted in relation tomore » important societalexposures. Because cancer survivors represent a unique cohort withwell-defined exposures, there was a consensus that studies should bedesigned to assess the mutational impact on children born to parents whohad received certain types of mutagenic cancer chemotherapy prior toconceiving their children. Within this high-risk cohort, parents andchildren could be evaluated for inherited changes in (a) gene sequencesand chromosomal structure, (b) repeat sequences and minisatelliteregions, and (c) global gene expression and chromatin. Participants alsorecommended studies to examine trans-generational effects in humansinvolving mechanisms such as changes in imprinting and methylationpatterns, expansion of nucleotide repeats, or induction of mitochondrialDNA mutations. Workshop participants advocated establishment of abio-bank of human tissue samples that could be used to conduct amultiple-endpoint, comprehensive, and collaborative effort to detectexposure-induced heritable alterations in the human genome. Appropriateanimal models of human germ-cell mutagenes is should be used in parallelwith human studies to provide insights into the mechanisms of mammaliangerm-cell mutagenesis. Finally, participants recommended that scientificspecialty groups be convened to address specific questions regarding thepotential germ-cell mutagenicity of environmental, occupational, andlifestyle exposures. Strong support from relevant funding agencies andengagement of scientists outside the fields of genomics and germ-cellmutagenesis will be required to launch a full-scale assault on some ofthe most pressing and enduring questions in environmental mutagenesis: Dohuman germ-cell mutagens exist, what risk do they pose to futuregenerations, and are some parents at higher risk than others foracquiring and transmitting germ-cell mutations?« less
An extreme bias in the germ line of XY C57BL/6<->XY FVB/N chimaeric mice
MacGregor, G. R.
2011-01-01
Chimaeric analysis is a powerful method to address questions about the cell-autonomous nature of defects in spermatogenesis. Symplastic spermatids (sys) mice have a recessive mutation that causes male sterility due to an arrest in germ-cell development during spermiogenesis. Chimaeric mice were generated by aggregation of eight-cell embryos from sys (FVB/N genetic background) and wild-type C57BL/6 (B6) mice to determine whether the male germ-cell defect is cell-autonomous. The resulting FVB/N<->B6 chimaeras (<-> denotes fusion of embryos) were mated with FVB/N mice and coat colour of offspring was used to identify transmission of FVB/N or B6 gametes. Regardless of the relative contribution of B6 to somatic tissues of the chimaeras, almost all (282 of 284; 99.3%) offspring of B6 XY<->XY FVB/N (+/+ or sys/+) males (n = 9) received a FVB/N-derived paternal gamete. After mating of female B6<->FVB/N chimaeras, 51 of 73 (69.9%) offspring received an FVB-derived maternal gamete. Southern blot analysis of different tissues from chimaeric males indicated that, despite the presence of balanced chimaerism in somatic tissues, the germ line in B6 XY<->XY FVB/N mice was essentially FVB/N in composition. Thus there is a strong selective advantage for FVB/N male germ cells over B6 male germ cells in B6<->FVB/N-aggregation chimaeras at some stage during development of the male germ line. Each of three male chimaeras that were either B6 XY<->XY FVB/N (sys/sys) or B6 XX<->XY FVB/N (sys/sys) in composition was sterile, and testis histology was essentially sys mutant. This finding indicates that the function of the gene(s) affected in the sys mutation may be required in the testis, although whether expression is required in germ cells, somatic cells or both remains unknown. The extreme bias in transmission of male gametes has implications for experimental design in studies that use chimaeric analysis to address questions regarding the cell-autonomous nature of germ-cell defects in mice. PMID:12201811
Bioengineered Tooth Buds Exhibit Features of Natural Tooth Buds.
Smith, E E; Angstadt, S; Monteiro, N; Zhang, W; Khademhosseini, A; Yelick, P C
2018-06-01
Tooth loss is a significant health issue currently affecting millions of people worldwide. Artificial dental implants, the current gold standard tooth replacement therapy, do not exhibit many properties of natural teeth and can be associated with complications leading to implant failure. Here we propose bioengineered tooth buds as a superior alternative tooth replacement therapy. We describe improved methods to create highly cellularized bioengineered tooth bud constructs that formed hallmark features that resemble natural tooth buds such as the dental epithelial stem cell niche, enamel knot signaling centers, transient amplifying cells, and mineralized dental tissue formation. These constructs were composed of postnatal dental cells encapsulated within a hydrogel material that were implanted subcutaneously into immunocompromised rats. To our knowledge, this is the first report describing the use of postnatal dental cells to create bioengineered tooth buds that exhibit evidence of these features of natural tooth development. We propose future bioengineered tooth buds as a promising, clinically relevant tooth replacement therapy.
Kirk, Robert G. W.
2012-01-01
Summary: This article examines a specific technology, the germ-free "isolator," tracing its development across three sites: (1) the laboratory for the production of standard laboratory animals, (2) agriculture for the efficient production of farm animals, and (3) the hospital for the control and prevention of cross-infection and the protection of individuals from infection. Germ-free technology traveled across the laboratory sciences, clinical and veterinary medicine, and industry, yet failed to become institutionalized outside the laboratory. That germ-free technology worked was not at issue. Working, however, was not enough. Examining the history of a technology that failed to find widespread application reveals the labor involved in aligning cultural, societal, and material factors necessary for successful medical innovation. PMID:23000838
[Tooth wear, a proposal for an evaluation system].
Wetselaar, P; van der Zaag, J; Lobbezoo, F
2011-06-01
The present-day terminology and definitions of tooth wear are not unambiguous. For diagnosing tooth wear, however, it is essential that they are unambiguous. In this article a proposal is presented for a tooth wear evaluation system with simplified definitions. This system consists ofa number of modules and can be used for various aspects of the diagnostic procedure. It can be used for the quantification of tooth wear, both for periodic screening and for the monitoring of tooth wear in individual patients. The scoring of occlusal/incisal tooth wear as well as of non-occlusal/non-incisal tooth wear is possible. The evaluative system is also suitable for determining which type of tooth wear, such as attrition, abrasion and erosion, is most likely to have caused any observed loss of hard tooth tissue.
Anchoring Junctions As Drug Targets: Role in Contraceptive Development
Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan
2010-01-01
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential “druggable” targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis. PMID:18483144
Cuykendall, Tawny N.; Houston, Douglas W.
2011-01-01
RNA localization is a common mechanism for regulating cell structure and function. Localized RNAs in Xenopus oocytes are critical for early development, including germline specification by the germ plasm. Despite the importance of these localized RNAs, only approximately 25 have been identified and fewer are functionally characterized. Using microarrays, we identified a large set of localized RNAs from the vegetal cortex. Overall, our results indicate a minimum of 275 localized RNAs in oocytes, or 2–3% of maternal transcripts, which are in general agreement with previous findings. We further validated vegetal localization for 24 candidates and further characterized three genes expressed in the germ plasm. We identified novel germ plasm expression for reticulon 3.1, exd2 (a novel exonuclease-domain encoding gene), and a putative noncoding RNA. Further analysis of these and other localized RNAs will likely identify new functions of germ plasm and facilitate the identification of cis-acting RNA localization elements. PMID:20503379
2017-06-02
Adult Germ Cell Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Germ Cell Tumor; Extragonadal Embryonal Carcinoma; Grade 2 Immature Ovarian Teratoma; Grade 3 Immature Ovarian Teratoma; Malignant Germ Cell Tumor; Stage I Ovarian Choriocarcinoma; Stage I Ovarian Embryonal Carcinoma; Stage I Ovarian Teratoma; Stage I Ovarian Yolk Sac Tumor; Stage I Testicular Choriocarcinoma; Stage I Testicular Embryonal Carcinoma; Stage I Testicular Yolk Sac Tumor; Stage II Ovarian Choriocarcinoma; Stage II Ovarian Embryonal Carcinoma; Stage II Ovarian Yolk Sac Tumor; Stage II Testicular Choriocarcinoma; Stage II Testicular Embryonal Carcinoma; Stage II Testicular Yolk Sac Tumor; Stage III Ovarian Choriocarcinoma; Stage III Ovarian Embryonal Carcinoma; Stage III Ovarian Yolk Sac Tumor; Stage III Testicular Choriocarcinoma; Stage III Testicular Embryonal Carcinoma; Stage III Testicular Yolk Sac Tumor; Stage IV Ovarian Choriocarcinoma; Stage IV Ovarian Embryonal Carcinoma; Stage IV Ovarian Yolk Sac Tumor; Testicular Mixed Choriocarcinoma and Embryonal Carcinoma; Testicular Mixed Choriocarcinoma and Teratoma; Testicular Mixed Choriocarcinoma and Yolk Sac Tumor
Preliminary Study on Testicular Germ Cell Transplantation of Endemic Species Oryzias celebensis
NASA Astrophysics Data System (ADS)
Andriani, I.; Agustiani, F.; Hassan, M.; Parenrengi, A.; Inoue, K.
2018-03-01
The research has been conducted to study some technical steps for male germ-plasm from endemic fish species such as some species of Oryzias fish in Indonesia to preserve and propagate through germ cell transplantation technology. For preliminary research, the study was started with germ cell characterization of testes, cryopreservation of TGC and the transplantation of Oryzias celebensis as candidates for surrogate broodstock of Oryzias fish male germ plasm. The data analized included the potential number of TGC as donor, the viability of cryopreserved TGC in two types of cryoprotectans and the survival rate of O.celebensis larvae as recipient after transplantation. The result showed that the average amount of TGC yielded after dissociation was 131000 ± 31349 with 74.2 % viability of TGC each. Cryoprotectan10% DMSO +glucose yielded higher viable of TGC. More than 80 % of O.celebensis larvae survived after transplantation. In conclusion, these preliminary data of O.celebensis as surrogate broodstock candidate will support the application of TGC transplantation technology in Oryzias endemic species.
Peripheral calcifying cystic odontogenic tumour of the maxillary gingiva
2012-01-01
Background Odontogenic tumors are lesions that are derived from remnants of the components of the developing tooth germ. The calcifying cystic odontogenic tumor or calcifying odontogenic cyst is a benign cystic neoplasm of odontogenic origin that is characterized by an ameloblastoma-like epithelium and ghost cells. Calcifying cystic odontogenic tumor may be centrally or peripherally located, and its ghost cells may exhibit calcification, as first described by Gorlin in 1962. Most peripheral calcifying cystic odontogenic tumors are located in the anterior gingiva of the mandible or maxilla. Case presentation Authors report a rare case of a peripheral calcifying cystic odontogenic tumor of the maxillary gingiva. A 39-year-old male patient presented with a fibrous mass on the attached buccal gingiva of the upper left cuspid teeth. It was 0.7-cm-diameter, painless and it was clinically diagnosed as a peripheral ossifying fibroma. After an excisional biopsy, the diagnosis was peripheric calcifying cystic odontogenic tumor. The patient was monitored for five years following the excision, and no recurrence was detected. Conclusions All biopsy material must be sent for histological examination. If the histological examination of gingival lesions with innocuous appearance is not performed, the frequency of peripheral calcifying cystic odontogenic tumor and other peripheral odontogenic tumors may be underestimated. PMID:22917449
Odontogenic infections. Complications. Systemic manifestations.
Jiménez, Yolanda; Bagán, José Vicente; Murillo, Judith; Poveda, Rafael
2004-01-01
The term, odontogenic infection refers to an infection that originates in the tooth proper or in the tissues that closely surround it; said infection then progresses along the periodontia down to the apex, involving periapical bone and from this area, it then spreads through the bone and periosteum towards near-by or more distant structures. The relevance of this type of infection lies in that it can cause infections that compromise more distant structures (via direct spread and distant spread), for example, intracraneal, retropharyngeal and pulmonary pleural infections. Dissemination by means of the bloodstream can lead to rheumatic problems and deposits on the valves of the heart (endocarditis), etc. The conditions or factors that influence the spread of infection are dependent on the balance between patient-related conditions and microorganism-related conditions. The virulence of the affecting germs is dependent upon their quality and quantity and is one of the microbiological conditions that influences the infection. It is this virulence that promotes infectious invasion and the deleterious effects the microbe will have on the host. Patient-related conditions include certain systemic factors that determine host resistance, which may be impaired in situations such as immunodeficiency syndrome or in brittle diabetes, as well as local factors that will also exert their impact on the spread of the infection.
[Mediastinal teratoma with malignant transformation of the somatic component. Clinical report].
Gerardo, Rita; Morgado, Carolina; Calvo, Dolores; Pinto, Eugénia; Bravio, Ivan; Castelão, Nelson; Martelo, Fernando
2009-01-01
Mediastinal germ cell tumours (M-GCT) are rare forms of neoplasms compared with other tumours of the same location. They are classified in seminomas, malignant non-seminomatous GCT and teratomas. The malignant transformation of the somatic component of the teratoma, with sarcomatous or carcinomatous degeneration, is even more uncommon. We report the clinical case of a 32 year old man who presented with severe chest pain on the right hemithorax. The image exams revealed the existence of a large heterogeneous lesion with a diameter of 7.7 cm, with areas of lipomatous density and a calcic image with the appearance of a tooth, in the right projection of the anterior mediastinum, in the vicinity of the large vessels, compatible with teratoma. The transthoracic biopsy (CT guided) showed morphologic aspects of sarcoma. The patient was operated on with the en bloc resection of the mediastinal mass, right lung, a segment of the pericardium and the thymus. The pathological studies showed a teratoma with malignant transformation of the mesenquimatous component, with muscular differentiation into leiomiosarcoma and rabdomiosarcoma. After surgery, the patient was treated with a scheme of doxorubicin and ifosfamide. The most prominent concepts related to this clinical entity, as well as its treatment, are debated in this article, based on the most recent publications dedicated to the subject.
Wang, Y; Wang, J; Gao, Y
2001-07-01
To observe and compare the expression pattern of Msx-1, Msx-2 mRNA during the different stages of hard tissue formation in the first mandibular molar of mouse and investigate the relationship between the two genes. First mandibular molar germs from 1, 3, 7 and 14-days old mouse were separated and reverse transcription-polymerase chain reaction was performed on the total RNA of them using Msx-1, Msx-2 specific primers separately. Expression of both genes were detected during the different stages of hard tissue formation in the mouse first mandibular molars, but there was some interesting differences in the quantitiy between the two genes. Msx-1 transcripts appeared at the 1 day postnatally, and increase through 3 day, 7 day, then maximally expressed at 14 days postnatally; while Msx-2 mRNA was seen and expressed maximally at the 3 days postnatally, then there was a gradual reduction at 7 days, and 14 days postnatally. The homeobox gene Msx-1, Msx-2 may play a role in the events of the hard tissue formation. The complementary expression pattern of them during the specific stage of hard tissue formation indicates that there may be some functional redundancy between them during the biomineralization.
Germ tube and chlamydospore formation by Candida albicans on a new medium.
Beheshti, F; Smith, A G; Krause, G W
1975-10-01
A new medium composed of "cream of rice" infusion, oxgall, Tween 80, and agar is described for the sequential development of germ tubes and chlamydospores by Candida albicans. The procedure used (Dalmau's technique) is an improvement over the fluid substrate procedures previously advocated for germ tube formation. That the same preparation is then used for chlamydospore production is of practical importance for the clinical mycology laboratory.
2017-05-25
Advanced Malignant Mesothelioma; Carcinoma of the Appendix; Ovarian Sarcoma; Ovarian Stromal Cancer; Pseudomyxoma Peritonei; Recurrent Colon Cancer; Recurrent Malignant Mesothelioma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage III Colon Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IV Colon Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
When the GERM Hosts the Antidote: The Surprising New Birth of Israel's Anti-GERM Pre-K Policy
ERIC Educational Resources Information Center
Bialik, Gadi; Shefi, Noa
2017-01-01
Since the 1970s, Israel's educational policy has been undergoing a change generated by the neo-liberal agenda. In this light, it is not surprising that since the 1990s, Israel's education system has adopted the main characteristics of the Global Education Reform Movement (GERM). In light of this, the current research will focus on a newly born…
Topology of the germ plasm and development of primordial germ cells in inverted amphibian eggs
NASA Technical Reports Server (NTRS)
Wakahara, M.; Neff, A. W.; Malacinski, G. M.
1984-01-01
Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemisphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses. Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4 degrees C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displacement of the germ plasm away from its original vegetal pole location.
Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Wang, Yang; Gui, Jian-Fang
2017-06-01
Dead end (dnd), vertebrate-specific germ cell marker, had been demonstrated to be essential for primordial germ cell (PGC) migration and survival, and the link between PGC number and sex change had been revealed in some teleost species, but little is known about dnd in hermaphroditic vertebrates. In the present study, a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides) dnd homologue (Ecdnd) was identified and characterized. Quantitative real-time PCR and in situ hybridization analysis revealed a dynamic and sexually dimorphic expression pattern in PGCs and germ cells of gonads. During sex changing, the Ecdnd transcript sharply increased in early transitional gonad, reached the highest level at late transitional gonad stage, and decreased after testis maturation. Visualization of zebrafish PGCs by injecting with RFP-Ecdnd-3'UTR RNA and GFP-zfnanos3-3'UTR RNA confirmed importance of Ecdnd 3'UTR for the PGC distribution. In addition, knockdown of EcDnd by using antisense morpholinos (MO) caused the ablation of PGCs in orange-spotted grouper. Therefore, the current data indicate that Ecdnd is essential for PGCs survival and may serve as a useful germ cell marker during gametogenesis in hermaphroditic grouper. Copyright © 2017 Elsevier Inc. All rights reserved.
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-01-01
Background: Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Methods: Human testis and testis cancer specimens from orchidectomies were cultured in ‘hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Results: Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Conclusions: Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche. PMID:24781282
Fertility-sparing surgery in advanced stage malignant ovarian germ cell tumor: a case report.
Ghalleb, Montassar; Bouzaiene, Hatem; Slim, Skander; Hadiji, Achraf; Hechiche, Monia; Ben Hassouna, Jamel; Rahal, Khaled
2017-12-17
Malignant ovarian germ cell tumor is a rare type of disease, which generally has a good prognosis due to the high chemosensitivity of this type of tumor. Fertility preservation is an important issue because malignant ovarian germ cell tumor commonly affects young women. Although conservation is the standard for early stage, it becomes more debatable as the disease progresses to more advanced stages. Report the case of a patient with an International Federation of Gynecology and Obstetrics Stage IIIc malignant ovarian germ cell tumor, who had conservative surgery and chemotherapy with a good fertility outcome. A 23-year-old North African woman with a left malignant ovarian germ cell tumor stage IIIc was treated by left adnexectomy and omentectomy followed by chemotherapy. A 15-year follow-up showed no signs of relapse, and she completed three full-term natural pregnancies. Malignant ovarian germ cell tumor is a rare ovarian tumor with a good prognosis. It is usually associated with a good fertility outcome in early stages. However, due to the rarity of the disease in advanced stages, the fertility outcome for this group of patients is not clear. This lack of data surrounding advanced stages points to the need for a meta-analysis of all published cases.
Composition and molecular weight distribution of carob germ protein fractions.
Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi
2010-07-14
Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.
Mechanisms and chemical induction of aneuploidy in rodent germ cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mailhes, J B; Marchetti, F
The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be inidentified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) canmore » induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.« less
Consensus on the management of intracranial germ-cell tumours.
Murray, Matthew J; Bartels, Ute; Nishikawa, Ryo; Fangusaro, Jason; Matsutani, Masao; Nicholson, James C
2015-09-01
The management of intracranial germ-cell tumours is complex because of varied clinical presentations, tumour sites, treatments and outcomes, and the need for multidisciplinary input. Participants of the 2013 Third International CNS Germ Cell Tumour Symposium (Cambridge, UK) agreed to undertake a multidisciplinary Delphi process to identify consensus in the clinical management of intracranial germ-cell tumours. 77 delegates from the symposium were selected as suitable experts in the field and were invited to participate in the Delphi survey, of which 64 (83%) responded to the invitation. Invited participants represented multiple disciplines from Asia, Australasia, Europe, and the Americas. 38 consensus statements encompassing aspects of intracranial germ-cell tumour work-up, staging, treatment, and follow-up were prepared. To achieve consensus, statements required at least 70% agreement from at least 60% of respondents. Overall, 34 (89%) of 38 statements met consensus criteria. This international Delphi approach has defined key areas of consensus that will help guide and streamline clinical management of patients with intracranial germ-cell tumours. Additionally, the Delphi approach identified areas of different understanding and clinical practice internationally in the management of these tumours, areas which should be the focus of future collaborative studies. Such efforts should translate into improved patient outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mohamed, H R H; Hamad, S R
2017-08-30
Aspirin (acetyl salicylic acid) is used worldwide to treat various inflammatory conditions and prevent cardiovascular disease, along with reducing the risk of cancer. However, administration of aspirin causes toxic effects, especially in the stomach and liver. Thus, our study examined the protective effect of wheat germ oil on aspirin-induced toxicity in the stomach and liver tissues of Swiss albino mice. Administration of wheat germ oil before aspirin has restored normal hepatic and gastric tissue architecture and DNA integrity has become better than that of a negative health control group compared with the aspirin only treated group. The elevated gastric nitric oxide content in the aspirin only treated group was significantly decreased by wheat germ oil prior administration as a result of reduced the expression of inducible nitric synthase and increased the expression of endothelial nitric oxide synthase compared to their expression in the aspirin administered group. Wheat germ oil pre-administration significantly reduced the level of malondialdehyde, increased the level of glutathione and catalase and superoxide dismutase activities compared with those in aspirin only treated group. We conclude that wheat germ oil has a potential protective effect against aspirin induced gastro- and hepato-toxicity because of its free radical scavenging ability.
DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810
Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang
2013-03-01
Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.
Biotechnological approaches to the treatment of aspermatogenic men
Aponte, Pedro Manuel; Schlatt, Stefan; de Franca, Luiz Renato
2013-01-01
Aspermatogenesis is a severe impairment of spermatogenesis in which germ cells are completely lacking or present in an immature form, which results in sterility in approximately 25% of patients. Because assisted reproduction techniques require mature germ cells, biotechnology is a valuable tool for rescuing fertility while maintaining biological fatherhood. However, this process involves, for instance, the differentiation of preexisting immature germ cells or the production/derivation of sperm from somatic cells. This review critically addresses four potential techniques: sperm derivation in vitro, germ stem cell transplantation, xenologous systems, and haploidization. Sperm derivation in vitro is already feasible in fish and mammals through organ culture or 3D systems, and it is very useful in conditions of germ cell arrest or in type II Sertoli-cell-only syndrome. Patients afflicted by type I Sertoli-cell-only syndrome could also benefit from gamete derivation from induced pluripotent stem cells of somatic origin, and human haploid-like cells have already been obtained by using this novel methodology. In the absence of alternative strategies to generate sperm in vitro, in germ cells transplantation fertility is restored by placing donor cells in the recipient germ-cell-free seminiferous epithelium, which has proven effective in conditions of spermatogonial arrest. Grafting also provides an approach for ex-vivo generation of mature sperm, particularly using prepubertal testis tissue. Although less feasible, haploidization is an option for creating gametes based on biological cloning technology. In conclusion, the aforementioned promising techniques remain largely experimental and still require extensive research, which should address, among other concerns, ethical and biosafety issues, such as gamete epigenetic status, ploidy, and chromatin integrity. PMID:23503966
Roth, Lawrence M; Cheng, Liang
2015-11-01
In this study, we compare the expression of OCT4, SALL4, and TSPYL1 in mixed germ cell-sex cord stromal tumor (MGC-SCST) of either gonad to that of normal adult testis, classic and spermatocytic seminoma, intratubular germ cell neoplasia, unclassified, gonadoblastoma, and dysgerminoma to determine the entity or entities that most closely resemble MGC-SCST by immunohistochemistry of germ cells. The most useful transcription factor was OCT4. In addition, to its already described value in distinguishing germinoma and embryonal carcinoma from yolk sac tumor and in differentiating classic from spermatocytic seminoma, we found that OCT4 is useful in confirming or ruling out potential malignancy in MGC-SCST of either gonad. Expression of OCT4 in most ovarian MGC-SCSTs resembles that of dysgerminoma, whereas most testicular examples resemble that of spermatocytic seminoma and normal adult testis. Thus, most MGC-SCSTs of the ovary are potentially malignant, and corresponding tumors of the testis are mostly benign; however, exceptions likely can be detected by the use of OCT4, potentially leading to more appropriate clinical management in some cases. SALL4 is an underutilized transcription factor that is useful in distinguishing testicular MGC-SCST from sex cord stromal tumor, unclassified in those neoplasms where the germ cells are sparse or unevenly distributed. Compared with other transcription factors studied, TSPY and its congener TSPYL1 have little value in the assessment of germ cell tumors because of their relatively wide range of expression in normal adult testis and in germ cell tumors.
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.
[Microflora of the upper part of the small bowel in healthy Peruvian subjects].
Vidal-Neira, L; Yi-Chu, A; León Barúa, R
1983-01-01
In 20 healthy Peruvians aerobic cultures were done of upper small bowel contents, obtained following the method of the string capsule or Enterotest, and of faringeal material, obtained doing gargles with sterilized water. In 15 (75%) of the 20 subjects cultures of small bowel contents either were sterile (in 5 subjects, or 25% of the total) or revealed only diverse aerobic germs (in 10 subjects, or 50% of the total), the germs more frequently found being: negative coagulase staphylococcus albus (in 7 subjects, or 35% of the total), alpha hemolytic streptococcus (in 4 subjects, or 20% of the total) and Neisseria catarrhalis (in 4 subjects, or 20% of the total). In 5 (25%) of the 20 subjects, coliform bacteria were found in the upper small bowel (Klebsiella pneumonia in 2, and Escherichia coli in the remaining 3). Of those 5 subjects, only 2 (10% or the total of 20) had the microorganisms exclusively in the bowel, and in both the concentration of germs was 10(4)/ml. On the contrary, the 3 remaining subjects (15% of the total) had coliforms also in the pharynx; in 2 of the 3 subjects the concentration of germs found in the bowel was 10(3)/ml, and, in the remaining one, 10/ml; only one of the 3 subjects presented germs in the pharynx in a greater concentration than in the bowel, while another presented germs in the same concentration in both localizations, and the remaining one presented germs in the bowel in a concentration lower than in the pharynx.(ABSTRACT TRUNCATED AT 250 WORDS)
Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang
2013-01-01
Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg−1). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes. PMID:23353715
Lee, J T; Bailey, C A; Cartwright, A L
2003-10-01
High concentrations of guar meal in poultry diets deleteriously affect growth, feed intake, and digesta viscosity. These effects are attributed to residual gum in the meal. A 2 x 5 factorial experiment investigated the impacts of two guar meal fractions (germ and hull) at five inclusion levels (0, 2.5, 5.0, 7.5, and 10.0%) on intestinal viscosity, measures of growth, and feed conversion in broiler chickens fed to 20 d of age. Growth and feed conversion ratio were not affected by inclusion of as much as 7.5% of the germ fraction into poultry diets, while inclusion of the hull fraction reduced growth at all concentrations. The hull fraction increased intestinal viscosity at all inclusion levels fed, although feed conversion was not affected until the inclusion rate exceeded 5.0%. The germ fraction significantly increased intestinal viscosity at 7.5 and 10% inclusion rates. When germ fraction was fed, relative organ weights remained constant through all concentrations except for the ventriculus and duodenum at 7.5 and 10% inclusion levels. Relative pancreas weight was significantly increased at the 10% level of the hull fraction. Increases in intestinal viscosity corresponded with growth depression. These results suggest that residual gum was responsible for some deleterious effects seen when guar meal was fed. The germ fraction was a superior ingredient when compared with the hull fraction. The guar meal germ fraction constituting as much as 7.5% of the diet supported growth and feed conversion measures similar to those observed with a typical corn-soybean poultry ration.
McCue, Andrea D; Cresti, Mauro; Feijó, José A; Slotkin, R Keith
2011-03-01
The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.
Barisone, Gustavo A.; O’Donnell, Robert T.; Ma, Yunpeng; Abuhay, Mastewal W.; Lundeberg, Kathleen; Gowda, Sonia
2018-01-01
Non-Hodgkin lymphoma (NHL) affects over 400,000 people in the United States; its incidence increases with age. Treatment options are numerous and expanding, yet efficacy is often limited by toxicity, particularly in the elderly. Nearly 70% patients eventually die of the disease. Many patients explore less toxic alternative therapeutics proposed to boost anti-tumor immunity, despite a paucity of rigorous scientific data. Here we evaluate the lymphomacidal and immunomodulatory activities of a protein fraction isolated from fermented wheat germ. Fermented wheat germ extract was produced by fermenting wheat germ with Saccharomyces cerevisiae. A protein fraction was tested for lymphomacidal activity in vitro using NHL cell lines and in vivo using mouse xenografts. Mechanisms of action were explored in vitro by evaluating apoptosis and cell cycle and in vivo by immunophenotyping and measurement of NK cell activity. Potent lymphomacidal activity was observed in a panel of NHL cell lines and mice bearing NHL xenografts. This activity was not dependent on wheat germ agglutinin or benzoquinones. Fermented wheat germ proteins induced apoptosis in NHL cells, and augmented immune effector mechanisms, as measured by NK cell killing activity, degranulation and production of IFNγ. Fermented wheat germ extract can be easily produced and is efficacious in a human lymphoma xenograft model. The protein fraction is quantifiable and more potent, shows direct pro-apoptotic properties, and enhances immune-mediated tumor eradication. The results presented herein support the novel concept that proteins in fermented wheat germ have direct pro-apoptotic activity on lymphoma cells and augment host immune effector mechanisms. PMID:29304125
Beyer, J; Albers, P; Altena, R; Aparicio, J; Bokemeyer, C; Busch, J; Cathomas, R; Cavallin-Stahl, E; Clarke, N W; Claßen, J; Cohn-Cedermark, G; Dahl, A A; Daugaard, G; De Giorgi, U; De Santis, M; De Wit, M; De Wit, R; Dieckmann, K P; Fenner, M; Fizazi, K; Flechon, A; Fossa, S D; Germá Lluch, J R; Gietema, J A; Gillessen, S; Giwercman, A; Hartmann, J T; Heidenreich, A; Hentrich, M; Honecker, F; Horwich, A; Huddart, R A; Kliesch, S; Kollmannsberger, C; Krege, S; Laguna, M P; Looijenga, L H J; Lorch, A; Lotz, J P; Mayer, F; Necchi, A; Nicolai, N; Nuver, J; Oechsle, K; Oldenburg, J; Oosterhuis, J W; Powles, T; Rajpert-De Meyts, E; Rick, O; Rosti, G; Salvioni, R; Schrader, M; Schweyer, S; Sedlmayer, F; Sohaib, A; Souchon, R; Tandstad, T; Winter, C; Wittekind, C
2013-04-01
In November 2011, the Third European Consensus Conference on Diagnosis and Treatment of Germ-Cell Cancer (GCC) was held in Berlin, Germany. This third conference followed similar meetings in 2003 (Essen, Germany) and 2006 (Amsterdam, The Netherlands) [Schmoll H-J, Souchon R, Krege S et al. European consensus on diagnosis and treatment of germ-cell cancer: a report of the European Germ-Cell Cancer Consensus Group (EGCCCG). Ann Oncol 2004; 15: 1377-1399; Krege S, Beyer J, Souchon R et al. European consensus conference on diagnosis and treatment of germ-cell cancer: a report of the second meeting of the European Germ-Cell Cancer Consensus group (EGCCCG): part I. Eur Urol 2008; 53: 478-496; Krege S, Beyer J, Souchon R et al. European consensus conference on diagnosis and treatment of germ-cell cancer: a report of the second meeting of the European Germ-Cell Cancer Consensus group (EGCCCG): part II. Eur Urol 2008; 53: 497-513]. A panel of 56 of 60 invited GCC experts from all across Europe discussed all aspects on diagnosis and treatment of GCC, with a particular focus on acute and late toxic effects as well as on survivorship issues. The panel consisted of oncologists, urologic surgeons, radiooncologists, pathologists and basic scientists, who are all actively involved in care of GCC patients. Panelists were chosen based on the publication activity in recent years. Before the meeting, panelists were asked to review the literature published since 2006 in 20 major areas concerning all aspects of diagnosis, treatment and follow-up of GCC patients, and to prepare an updated version of the previous recommendations to be discussed at the conference. In addition, ∼50 E-vote questions were drafted and presented at the conference to address the most controversial areas for a poll of expert opinions. Here, we present the main recommendations and controversies of this meeting. The votes of the panelists are added as online supplements.
Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina
2015-04-01
Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.
Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina
2015-01-01
Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707
Moreno, Ricardo D.
2014-01-01
Germ cell apoptosis regulation is pivotal in order to maintain proper daily sperm production. Several reports have shown that endocrine disruptors such as Bisphenol-A (BPA) and Nonylphenol (NP) induce germ cell apoptosis along with a decrease in sperm production. Given their ubiquitous distribution in plastic products used by humans it is important to clarify their mechanism of action. TACE/ADAM17 is a widely distributed extracellular metalloprotease and participates in the physiological apoptosis of germ cells during spermatogenesis. The aims of this work were: 1) to determine whether BPA and NP induce ADAM17 activation; and 2) to study whether ADAM17 and/or ADAM10 are involved in germ cell apoptosis induced by BPA and NP in the pubertal rat testis. A single dose of BPA or NP (50 mg/kg) induces germ cell apoptosis in 21-day-old male rats, which was prevented by a pharmacological inhibitor of ADAM17, but not by an inhibitor of ADAM10. In vitro, we showed that BPA and NP, at similar concentrations to those found in human samples, induce the shedding of exogenous and endogenous (TNF-α) ADAM17 substrates in primary rat Sertoli cell cultures and TM4 cell line. In addition, pharmacological inhibitors of metalloproteases and genetic silencing of ADAM17 prevent the shedding induced in vitro by BPA and NP. Finally, we showed that in vivo BPA and NP induced early activation (phosphorylation) of p38 MAPK and translocation of ADAM17 to the cell surface. Interestingly, the inhibition of p38 MAPK prevents germ cell apoptosis and translocation of ADAM17 to the cell surface. These results show for the first time that xenoestrogens can induce activation of ADAM17 at concentrations similar to those found in human samples, suggesting a mechanism by which they could imbalance para/juxtacrine cell-to-cell-communication and induce germ cell apoptosis. PMID:25474107
Thorup, Jorgen; Clasen-Linde, Erik; Cortes, Dina
2017-08-01
Introduction Intratubular germ cell neoplasia (ITGCN) is a precursor to testicular germ cell cancer. Adult germ cell cancer immunohistochemical markers may fail to detect ITGCN in prepubertal boys with congenital cryptorchidism, because positive immunohistochemistry is commonly seen in boys younger than the age of 2 years, where most orchiopexies are performed. The aim of the study was to evaluate the diagnostic challenge to differentiate between a histological pattern of ITGCN and a histological pattern with some atypical germ cells and all positive cancer immunohistochemical markers, but no increased risk of malignancy. Materials and Methods Histology sections from 373 testicular biopsies from 289 boys aged 1 month to 2 years operated for cryptorchidism were incubated with primary antibodies including anti-placental-like-alkaline phosphatase, antiOct-3/4, anti-C-kit, anti-D2-40, and in case of repeat biopsy with anti-stem cell factor (SCF) receptor. Results The prevalence of Oct-3/4 and D2-40-positive staining of germ cells in testicular biopsies were in age groups less than 6 months, 100% and 50%; 6-12 months, 60% and 17%; and 1-2 years, 12% and 4%. A 1 year, 1-month-old boy with Prader-Willi syndrome treated with growth hormone had ITGCN in both cryptorchid testes. In another three bilateral nonsyndromic cases, 8 months, 8 months and 1-year-old, a histological pattern in accordance with ITGCN was found. These three boys had a repeat biopsy from both testes performed at the age of 3 years, 4 months, 3.5 years, and 3 years, 10months, respectively. In all cases, the Oct-3/4 and D2-40 positive germ cells turned negative and the histological pattern normalized completely. The primary biopsies had SCF negative germ cells. Conclusion This study is valuable in identifying the age-related change in Oct-3/4 or D2-40 immunopositive germ cells in seminiferous tubules. An ITGCN-like histological pattern in nonsyndromic cryptorchidism will vanish after the age of 3 years. Even when immunohistochemistry is applied, prepubertal ITGCN is so rarely demonstrated in cryptorchid testes, that it is not plausible that ITGCN generally originates during fetal development in cryptorchidism. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Fang, Suping; Wang, Leijie; Liu, Shiqiao; Komori, Masaharu; Kubo, Aizoh
2011-05-01
In measuring form deviation of gear tooth flanks by laser interferometry, the collected interference fringe pattern (IFP) is badly distorted, in the case of shape, relative to the actual tooth flank. Meanwhile, a clear and definite mapping relationship between the collected IFP and the actual tooth flank is indispensable for both transforming phase differences into deviation values and positioning the measurement result on the actual tooth flank. In order to solve these problems, this paper proposes a method using the simulation tooth image as a bridge connecting the actual tooth flank and the collected IFP. The mapping relationship between the simulation tooth image and the actual tooth flank has been obtained by ray tracing methods [Fang et al., Appl. Opt. 49(33), 6409-6415 (2010)]. This paper mainly discusses how to build the relationship between the simulation tooth image and the collected IFP by using a matching algorithm of two characteristic point sets. With the combination of the two above-mentioned assistant mapping relationships, the mapping relationship between the collected IFP and the actual tooth flank can be built; the collected IFP can be positioned on the actual tooth flank. Finally, the proposed method is employed in a measurement of the form deviation of a gear tooth flank and the result proves the feasibility of the proposed method.
Satisfaction with appearance and the desired treatment to improve aesthetics.
Al-Zarea, Bader K
2013-01-01
Objective. To identify participants' satisfaction with appearance and the desired treatment to improve aesthetics. Materials and Methods. 220 participants (127 males and 93 females, mean age = 21.4 ± 1.5 years) were recruited into the study. A structured questionnaire was used to assess patients' satisfaction with appearance and what treatment they desire to improve aesthetics. Participants scored the level of satisfaction with appearance using visual analogue scale. Results. The VAS mean score of satisfaction with general appearance was 6.8 ± 2.3. Half participants were dissatisfied with tooth appearance and 65.9% were dissatisfied with tooth colour. Higher VAS scores were associated with higher desire for all treatments that improve tooth appearance (P < .05). Dissatisfaction with tooth appearance increased with increased dissatisfaction with teeth colour, feeling of poor tooth alignment, presence of fractured anterior teeth, and increased desire for orthodontic, crowns, and dentures treatments (P < .05). Dissatisfaction with tooth colour was associated with increased desire for tooth whitening and tooth coloured fillings (P < .05). Conclusions. Participants had high levels of dissatisfaction with tooth appearance and tooth colour. Dissatisfaction with tooth colour contributed to the increased dissatisfaction with tooth appearance. Dissatisfaction with tooth appearance, colour, alignment, and condition was significantly related to high desire for aesthetic treatments.
A numerical algorithm of tooth profile of non-circular cylindrical gear
NASA Astrophysics Data System (ADS)
Wang, Xuan
2017-08-01
Non-circular cylindrical gear (NCCG) is a common form of non-circular gear. Different from the circular gear, the tooth profile equation of NCCG cannot be obtained. So it is necessary to use a numerical algorithm to calculate the tooth profile of NCCG. For this reason, this paper presents a simple and highly efficient numerical algorithm to obtain the tooth profile of NCCG. Firstly, the mathematical model of tooth profile envelope of NCCG is established based on the principle of gear shaping, and the tooth profile envelope of NCCG is obtained. Secondly, the polar radius and polar angle of shaper cutter tooth profile are chosen as the criterions, by which the points of NCCG tooth cogging can be screened out. Finally, the boundary of tooth cogging points is extracted by a distance criterion and correspondingly the tooth profile of NCCG is obtained.
... may carry the bacterium that causes Lyme disease. Food contamination Another way disease-causing germs can infect you is through contaminated food and water. This mechanism of transmission allows germs ...
Germ tube and chlamydospore formation by Candida albicans on a new medium.
Beheshti, F; Smith, A G; Krause, G W
1975-01-01
A new medium composed of "cream of rice" infusion, oxgall, Tween 80, and agar is described for the sequential development of germ tubes and chlamydospores by Candida albicans. The procedure used (Dalmau's technique) is an improvement over the fluid substrate procedures previously advocated for germ tube formation. That the same preparation is then used for chlamydospore production is of practical importance for the clinical mycology laboratory. Images PMID:1102561
Eblen, Abby C; Nakajima, Steve T
2003-02-01
This is the first published case report of pregnancy in a women with 45, X/47, XXX mosaicism in both blood and germ cell lines. The patient conceived, and analysis of ovarian tissue confirmed a karyotype of 45, X/47, XXX. Women with a 45, X/47, XXX karyotype in the germ cell line can conceive, as this case demonstrates.
Balbiani body, nuage and sponge bodies--term plasm pathway players.
Kloc, Malgorzata; Jedrzejowska, Izabela; Tworzydlo, Waclaw; Bilinski, Szczepan M
2014-07-01
In many animal species, germ cells are specified by maternally provided, often asymmetrically localized germ cell determinant, termed the germ plasm. It has been shown that in model organisms such as Xenopus laevis, Danio rerio and Drosophila melanogaster germ plasm components (various proteins, mRNAs and mitochondria) are delivered to the proper position within the egg cell by germline specific organelles, i.e. Balbiani bodies, nuage accumulations and/or sponge bodies. In the present article, we review the current knowledge on morphology, molecular composition and functioning of these organelles in main lineages of arthropods and different ovary types on the backdrop of data derived from the studies of the model vertebrate species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metachronous Testicular Cancer After Orchiectomy: A Rare Case.
Arda, Ersan; Cakiroglu, Basri; Cetin, Gizem; Yuksel, Ilkan
2017-11-09
Testicular cancer represents approximately 1% of all cancers diagnosed in males. The prevalence of bilateral testicular germ cell tumor cases varies from 1% to 5%. Intratubular germ cell neoplasia (ITGCN) is a precursor for almost all testicular germ cell tumors (TGCT) and is one of the highest risks of developing contralateral testicular cancer. The radical orchiectomy is still preferred for the treatment of testicular cancer. However, in some cases like solitary testis, bilateral cancer or if the tumor size is under 30% percent of the testicular extent, organ-sparing surgery can be an option. There are just a few published reports of metachronous contralateral testicular cancer, developed after orchiectomy with the histopathology of the intratubular germ cell neoplasia.
Sukhotnik, Igor; Voskoboinik, Katya; Lurie, Michael; Bejar, Yakov; Coran, Arnold G; Mogilner, Jorge G
2009-10-01
The objective of this study was to examine the relationship between time of reperfusion and bax/bcl-2-dependent germ cell apoptosis after testicular ischemia-reperfusion injury in the rat. In ischemic testis, bax/bcl-2 ratio did not change significantly, and the elevation of germ cell apoptosis was not marked; in the contralateral testis, germ cell apoptosis increased after 6 hours of reperfusion, achieved statistical significance after 24 hours, and decreased after 72 hours of reperfusion and was initiated by decreased bcl-2 messenger RNA levels and elevated bax/bcl-2 ratio within the first 6 hours of reperfusion.
[Germ cell membrane lipids in spermatogenesis].
Wang, Ting; Shi, Xiao; Quan, Song
2016-05-01
Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.
Tooth-meshing-harmonic static-transmission-error amplitudes of helical gears
NASA Astrophysics Data System (ADS)
Mark, William D.
2018-01-01
The static transmission errors of meshing gear pairs arise from deviations of loaded tooth working surfaces from equispaced perfect involute surfaces. Such deviations consist of tooth-pair elastic deformations and geometric deviations (modifications) of tooth working surfaces. To a very good approximation, the static-transmission-error tooth-meshing-harmonic amplitudes of helical gears are herein expressed by superposition of Fourier transforms of the quantities: (1) the combination of tooth-pair elastic deformations and geometric tooth-pair modifications and (2) fractional mesh-stiffness fluctuations, each quantity (1) and (2) expressed as a function of involute "roll distance." Normalization of the total roll-distance single-tooth contact span to unity allows tooth-meshing-harmonic amplitudes to be computed for different shapes of the above-described quantities (1) and (2). Tooth-meshing harmonics p = 1, 2, … are shown to occur at Fourier-transform harmonic values of Qp, p = 1, 2, …, where Q is the actual (total) contact ratio, thereby verifying its importance in minimizing transmission-error tooth-meshing-harmonic amplitudes. Two individual shapes and two series of shapes of the quantities (1) and (2) are chosen to illustrate a wide variety of shapes. In most cases representative of helical gears, tooth-meshing-harmonic values p = 1, 2, … are shown to occur in Fourier-transform harmonic regions governed by discontinuities arising from tooth-pair-contact initiation and termination, thereby showing the importance of minimizing such discontinuities. Plots and analytical expressions for all such Fourier transforms are presented, thereby illustrating the effects of various types of tooth-working-surface modifications and tooth-pair stiffnesses on transmission-error generation.
Social ranking effects on tooth-brushing behaviour.
Maltby, John; Paterson, Kevin; Day, Liz; Jones, Ceri; Kinnear, Hayley; Buchanan, Heather
2016-05-01
A tooth-brushing social rank hypothesis is tested suggesting tooth-brushing duration is influenced when individuals position their behaviour in a rank when comparing their behaviour with other individuals. Study 1 used a correlation design, Study 2 used a semi-experimental design, and Study 3 used a randomized intervention design to examine the tooth-brushing social rank hypothesis in terms of self-reported attitudes, cognitions, and behaviour towards tooth-brushing duration. Study 1 surveyed participants to examine whether the perceived health benefits of tooth-brushing duration could be predicted from the ranking of each person's tooth-brushing duration. Study 2 tested whether manipulating the rank position of the tooth-brushing duration influenced participant-perceived health benefits of tooth-brushing duration. Study 3 used a longitudinal intervention method to examine whether messages relating to the rank positions of tooth-brushing durations causally influenced the self-report tooth-brushing duration. Study 1 demonstrates that perceptions of the health benefits from tooth-brushing duration are predicted by the perceptions of how that behaviour ranks in comparison to other people's behaviour. Study 2 demonstrates that the perceptions of the health benefits of tooth-brushing duration can be manipulated experimentally by changing the ranked position of a person's tooth-brushing duration. Study 3 experimentally demonstrates the possibility of increasing the length of time for which individuals clean their teeth by focusing on how they rank among their peers in terms of tooth-brushing duration. The effectiveness of interventions using social-ranking methods relative to those that emphasize comparisons made against group averages or normative guidelines are discussed. What is already known on this subject? Individual make judgements based on social rank information. Social rank information has been shown to influence positive health behaviours such as exercise. What does this study add? The health benefits of tooth-brushing are predicted by how tooth-brushing duration ranks within a distribution. Focussing on how teeth-cleaning duration ranks among others produces longer teeth-cleaning durations. © 2015 The British Psychological Society.
A numerical simulation of tooth movement by wire bending.
Kojima, Yukio; Fukui, Hisao
2006-10-01
In orthodontic treatment, wires are bent and attached to teeth to move them via elastic recovery. To predict how a tooth will move, the initial force system produced from the wire is calculated. However, the initial force system changes as the tooth moves and may not be used to predict the final tooth position. The purpose of this study was to develop a comprehensive mechanical, 3-dimensional, numerical model for predicting tooth movement. Tooth movements produced by wire bending were simulated numerically. The teeth moved as a result of bone remodeling, which occurs in proportion to stress in the periodontal ligament. With an off-center bend, a tooth near the bending position was subjected to a large moment and tipped more noticeably than the other teeth. Also, a tooth far from the bending position moved slightly in the mesial or the distal direction. With the center V-bend, when the second molar was added as an anchor tooth, the tipping angle and the intrusion of the canine increased, and movement of the first molar was prevented. When a wire with an inverse curve of Spee was placed in the mandibular arch, the calculated tendency of vertical tooth movements was the same as the measured result. In these tooth movements, the initial force system changed as the teeth moved. Tooth movement was influenced by the size of the root surface area. Tooth movements produced by wire bending could be estimated. It was difficult to predict final tooth positions from the initial force system.
Retinoic Acid Signalling and the Control of Meiotic Entry in the Human Fetal Gonad
Kinnell, Hazel L.; Anderson, Richard A.; Saunders, Philippa T. K.
2011-01-01
The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis. PMID:21674038
Molecular Genetics of Supernumerary Tooth Formation
Wang, Xiu-Ping; Fan, Jiabing
2011-01-01
Summary Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering. PMID:21309064
... remembers" the germ and can fight it again. Vaccines contain germs that have been killed or weakened. When given to a healthy person, the vaccine triggers the immune system to respond and thus ...
Notch Signaling Regulates Ovarian Follicle Formation and Coordinates Follicular Growth
Vanorny, Dallas A.; Prasasya, Rexxi D.; Chalpe, Abha J.; Kilen, Signe M.
2014-01-01
Ovarian follicles form through a process in which somatic pregranulosa cells encapsulate individual germ cells from germ cell syncytia. Complementary expression of the Notch ligand, Jagged1, in germ cells and the Notch receptor, Notch2, in pregranulosa cells suggests a role for Notch signaling in mediating cellular interactions during follicle assembly. Using a Notch reporter mouse, we demonstrate that Notch signaling is active within somatic cells of the embryonic ovary, and these cells undergo dramatic reorganization during follicle histogenesis. This coincides with a significant increase in the expression of the ligands, Jagged1 and Jagged2; the receptor, Notch2; and the target genes, Hes1 and Hey2. Histological examination of ovaries from mice with conditional deletion of Jagged1 within germ cells (J1 knockout [J1KO]) or Notch2 within granulosa cells (N2 knockout [N2KO]) reveals changes in follicle dynamics, including perturbations in the primordial follicle pool and antral follicle development. J1KO and N2KO ovaries also contain multi-oocytic follicles, which represent a failure to resolve germ cell syncytia, and follicles with enlarged oocytes but lacking somatic cell growth, signifying a potential role of Notch signaling in follicle activation and the coordination of follicle development. We also observed decreased cell proliferation and increased apoptosis in the somatic cells of both conditional knockout lines. As a consequence of these defects, J1KO female mice are subfertile; however, N2KO female mice remain fertile. This study demonstrates important functions for Jagged1 and Notch2 in the resolution of germ cell syncytia and the coordination of somatic and germ cell growth within follicles of the mouse ovary. PMID:24552588
McKinnell, Chris; Mitchell, Rod T.; Walker, Marion; Morris, Keith; Kelnar, Chris J.H.; Wallace, W. Hamish; Sharpe, Richard M.
2009-01-01
BACKGROUND Fetal exposure of male rats to some phthalates induces reproductive abnormalities, raising concerns for similar effects in humans. In order to address this in a more appropriate animal model, the aim of the present studies was to investigate the effect of fetal/neonatal exposure to monobutyl phthalate (MBP) in a non-human primate, the marmoset. In particular, to determine if exposure resulted in effects at birth, or in adulthood, similar to those in male rats, and whether there was evidence for induction of carcinoma-in-situ (CIS) or testicular germ cell tumours (TGCT). METHODS Pregnant female marmosets were dosed from ∼7–15 weeks gestation with 500 mg/kg/day MBP and male offspring studied at birth (1–5 days; n = 6) or in adulthood (n = 5). In another study, newborn males (n = 5 co-twins) were dosed with 500 mg/kg/day MBP for 14 days, commencing at ∼4 days of age. RESULTS Fetal exposure of marmosets to MBP did not affect gross testicular morphology, reproductive tract development or testosterone levels at birth, nor were germ cell number and proliferation, Sertoli cell number or germ:Sertoli cell ratio affected. In two of six MBP-exposed animals, unusual clusters of undifferentiated germ cells were found, but their significance is unclear. Neonatal MBP treatment did not affect germ cell numbers or differentiation. Fetal exposure to MBP did not affect testis size/morphology, germ cell numbers or fertility in adulthood. There was no evidence for CIS or TGCT. CONCLUSIONS Fetal exposure of marmosets to MBP does not measurably affect testis development/function or cause testicular dysgenesis, and no effects emerge by adulthood. Some effects on germ cell development were found, but these were inconsistent and of uncertain significance. PMID:19491204
The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis.
Silva-García, Carlos Giovanni; Estela Navarro, Rosa
2013-10-01
In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions. Copyright © 2013 Wiley Periodicals, Inc.
Jung, Heejun; Kim, Namyoung; Yoon, Minjung
2016-10-01
The main objective of this study was to evaluate the efficacy of an additional cryoprotectant in 10% dimethyl sulfoxide (DMSO) on cryopreserving germ cells from stallions at different reproductive stages. Testicular samples were obtained from pre-pubertal (1-1.5 yr, n=6) and post-pubertal (3-7 yr, n=5) stallions. Germ cells were isolated using a two-enzyme digestion procedure and cryopreserved in minimal essential medium alpha containing 10% fetal bovine serum and 10% DMSO with or without addition of trehalose (50, 100, or 200mM) or polyethylene glycol (PEG, 2.5, 5, or 10%). Viability, cell population, and viable population were assessed after 1 and 3 months of cryopreservation. The viable UTF1-positive population of pre-pubertal stallion germ cells was also measured using immunocytochemistry after 1 and 3 months of cryopreservation. As expected, the viability, cell population, and viable cell population were significantly reduced after 1 and 3 months of cryopreservation. At the pre-pubertal stage, the addition of trehalose or PEG to 10% DMSO did not show any effect on the viability, cell population, viable cell population, or viable UTF1-positive germ cells at either 1 or 3 months after cryopreservation. However, at the post-pubertal stage, the viable population was significantly higher in germ cells that were cryopreserved with 5% or 10% PEG, than in the cells cryopreserved with 10% DMSO only. In conclusion, PEG at 5% or 10% added to 10% DMSO serves as an optimal cryoprotectant agent for the cryopreservation of germ cells from post-pubertal stallions. Copyright © 2016 Elsevier B.V. All rights reserved.
Chevalier, Nicolas; Vega, Aurélie; Bouskine, Adil; Siddeek, Bénazir; Michiels, Jean-François; Chevallier, Daniel; Fénichel, Patrick
2012-01-01
Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas.
Schwager, Evelyn E; Meng, Yue; Extavour, Cassandra G
2015-06-15
Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.
Zeh, Nina; Wild, Peter J; Bode, Peter K; Kristiansen, Glen; Moch, Holger; Sulser, Tullio; Hermanns, Thomas
2013-02-12
Malignant transformation describes the phenomenon in which a somatic component of a germ cell teratoma undergoes malignant differentiation. A variety of different types of sarcoma and carcinoma, all non-germ cell, have been described as a result of malignant transformation. A 33-year-old man presented with a left testicular mass and elevated tumour markers. Staging investigations revealed retroperitoneal lymphadenopathy with obstruction of the left ureter and distant metastases. Histopathology from the left radical orchiectomy showed a mixed germ cell tumour (Stage III, poor prognosis). The ureter was stented and four cycles of cisplatin, etoposide and bleomycin chemotherapy administered. After initial remission, the patient recurred four years later with a large retroperitoneal mass involving the renal vessels and the left ureter. Left retroperitoneal lymph node dissection with en-bloc resection of the left kidney was performed.Histopathology revealed a germ cell tumour metastasis consisting mainly of mature teratoma. Additionally, within the teratoma a papillary renal cell carcinoma was found. The diagnosis was supported by immunohistochemistry showing positivity for AMACR, CD10 and focal expression of RCC and CK7. There was no radiological or histo-pathological evidence of a primary renal cell cancer. To the best of our knowledge, malignant transformation into a papillary renal cell carcinoma has not been reported in a testicular germ cell tumour metastasis following platinum-based chemotherapy. This histological diagnosis might have implications for potential future therapies. In the case of disease recurrence, renal cell cancer as origin of the recurrent tumour has to be excluded because renal cell carcinoma metastases would not respond well to the classical germ cell tumour chemotherapy regimens.
Mixed germ cells tumour primarily located in the thyroid -- a case report.
Wierzbicka-Chmiel, Joanna; Chrószcz, Małgorzata; Słomian, Grzegorz; Kajdaniuk, Dariusz; Zajęcki, Wojciech; Borgiel-Marek, Halina; Marek, Bogdan
2012-01-01
Germ cells tumours most frequently occur in the gonads. Extragonadal localisation is rare and concerns mainly the mediastinum, retroperitoneum and pineal. We present the first description of a patient with a mixed germ cells tumour located primarily in the thyroid. A 35-year-old man in a good clinical condition was admitted to diagnose metastasis revealed in an X-ray of his lungs. Abnormal laboratory tests showed high concentrations of beta-HCG and LDH. Ultrasound examination revealed: hypoechogenic area 8 × 4 × 5 mm in the left testicle, and enlarged left thyroid lobe with echogenically heterogenous mass. In cytological examination of the thyroid, carcinomatous cells were found, which suggested metastasis. A diagnosis of cancerous spread of testicular cancer to the lungs and thyroid was made. The left testicle, with spermatic cord, was removed, yet in the histopathological examination no carcinomatous cells were found. Rescue chemotherapy, according to the BEP scheme (bleomycin, etoposide, cisplatin) was started, but during its course the patient died. Histopathology disclosed primary mixed germ cells tumour in the thyroid, predominantly with carcinoma embryonale and focuses of choriocarcinoma. Extragonadal germ cells tumours rarely occur in the thyroid. In medical literature, some cases of teratomas and a single case of yolk sac tumour in the thyroid have been described. The presence of choriocarcinoma was responsible for the high serum concentration of beta-HCG. Surgery of germ cells tumours proves insufficient. The conventional chemotherapy is based on cisplatin. In conclusion, extragonadal germ cells tumours are rare, but should be considered while co-existing with elevated markers such as: AFP, beta-HCG and lack of abnormalities in the gonads.
On the histogenesis of mixed germ cell-sex cord stromal tumour of the gonads.
Roth, Lawrence M; Cheng, Liang
2017-03-01
The origin of testicular mixed germ cell-sex cord stromal tumour (MGC-SCST) is uncertain, and the nature of this neoplasm is controversial. It has not been established whether the germ cells in testicular MGC-SCST are neoplastic or whether they are merely entrapped within an unclassified sex cord stromal tumour or related testicular neoplasm. In this investigation, we present additional evidence regarding the nature of the germ cells in testicular MGC-SCST. We obtained 25 cases of MGC-SCST, 13 of which involved the testis and 12 occurred in the ovary for histological examination. Although the majority of the cases studied were archival, materials were available for immunocytochemical examination in 10 instances. We found that 10 of 13 testicular MGC-SCSTs studied had a sex cord component resembling unclassified sex cord stromal tumour. In two MGC-SCSTs that had prominent entrapped tubules, an intratubular component was identified. A total of 12 ovarian MGC-SCSTs were examined, and these neoplasms were more diverse in their histological appearance than the testicular examples. The germ cells often resembled those of dysgerminoma. Formation of imperfect follicular-like structures was a frequent feature in ovarian cases. In this investigation, we provide further evidence that the germ cells in testicular MGC-SCSTs are neoplastic; however, in the great majority of tumours, these cells are low-grade. Some testicular MGC-SCSTs arise from an intratubular component. We believe that the majority of ovarian and some testicular MGC-SCSTs arise more directly from simultaneous transformation of germ cells and sex cord derivatives. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Shaikh, Ambreen; Anand, Sandhya; Kapoor, Sona; Ganguly, Ranita; Bhartiya, Deepa
2017-04-01
Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.
Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis.
Dores, C; Rancourt, D; Dobrinski, I
2015-05-01
To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density, or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here, we report the use of stirred suspension bioreactors (SSB) to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: SSB followed by differential plating. After 66 h of culture, germ cell enrichment in SSBs provided 7.3 ± 1.0-fold (n = 9), differential plating 9.8 ± 2.4-fold (n = 6) and combination of both methods resulted in 9.1 ± 0.3-fold enrichment of germ cells from the initial germ cell population (n = 3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the SSB allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability owing to handling. © 2015 American Society of Andrology and European Academy of Andrology.
Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis
Dores, Camila; Rancourt, Derrick; Dobrinski, Ina
2015-01-01
To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here we report the use of stirred suspension bioreactors to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: stirred suspension bioreactor followed by differential plating. After 66 hours of culture, germ cell enrichment in stirred suspension bioreactors provided 7.3±1.0 fold (n=9), differential plating 9.8±2.4 fold (n=6) and combination of both methods resulted in 9.1±0.3 fold enrichment of germ cells from the initial germ cell population (n=3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the stirred suspension bioreactor allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability due to handling. PMID:25877677
Didier, D A; Stahl, B J; Zangerl, R
1994-10-01
The chimaeroid holocephalian fishes are distinguished among extant chondrichthyans by the possession of three pairs of tooth plates, evergrowing and partially hypermineralized, that are not shed and replaced like the teeth of living elasmobranchs. Although derivation of the chimaeroid tooth plate from the fusion of members of a plesiomorphic chondrichthyan tooth family has been proposed, evidence for this hypothesis has been lacking. A new analysis of the development and structure of the tooth plates in Callorhinchus milii (Holocephali, Chimaeriformes) reveals the compound nature of the tooth plates in a chimaeroid fish. Each tooth plate consists of an oral and aboral territory that form independently in the embryo and maintain separate growth surfaces through life. The descending lamina on the aboral surface of the tooth plate demarcates the growth surface of the aboral territory. Comparison with the tooth plates of Chimaera monstrosa indicates that compound tooth plates may be a feature of all chimaeroids in which a descending lamina is present. The tooth plates in these fishes represent the fusion of two members of a reduced tooth family. The condition of the tooth plates in C. milii is plesiomorphic for chimaeroids and is of evolutionary significance in that it provides further evidence to support a lyodont dentition in chimaeroid fishes similar to that found in other chondrichthyans. © 1994 Wiley-Liss, Inc. Copyright © 1994 Wiley-Liss, Inc.
Cheng, C Yan; Mruk, Dolores D
2002-10-01
Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.
Cartier-Michaud, Amandine; Bailly, Anne-Laure; Betzi, Stéphane; Shi, Xiaoli; Lissitzky, Jean-Claude; Zarubica, Ana; Sergé, Arnauld; Roche, Philippe; Lugari, Adrien; Hamon, Véronique; Bardin, Florence; Derviaux, Carine; Lembo, Frédérique; Audebert, Stéphane; Marchetto, Sylvie; Durand, Bénédicte; Borg, Jean-Paul; Shi, Ning; Morelli, Xavier; Aurrand-Lions, Michel
2017-06-01
Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.
Tilgner, Katarzyna; Atkinson, Stuart P; Yung, Sun; Golebiewska, Anna; Stojkovic, Miodrag; Moreno, Ruben; Lako, Majlinda; Armstrong, Lyle
2010-01-01
The isolation of significant numbers of human primordial germ cells at several developmental stages is important for investigations of the mechanisms by which they are able to undergo epigenetic reprogramming. Only small numbers of these cells can be obtained from embryos of appropriate developmental stages, so the differentiation of human embryonic stem cells is essential to obtain sufficient numbers of primordial germ cells to permit epigenetic examination. Despite progress in the enrichment of human primordial germ cells using fluorescence-activated cell sorting (FACS), there is still no definitive marker of the germ cell phenotype. Expression of the widely conserved RNA helicase VASA is restricted to germline cells, but in contrast to species such as Mus musculus in which reporter constructs expressing green fluorescent protein (GFP) under the control of a Vasa promoter have been developed, such reporter systems are lacking in human in vitro models. We report here the generation and characterization of human embryonic stem cell lines stably carrying a VASA-pEGFP-1 reporter construct that expresses GFP in a population of differentiating human embryonic stem cells that show expression of characteristic markers of primordial germ cells. This population shows a different pattern of chromatin modifications to those obtained by FACS enrichment of Stage Specific Antigen one expressing cells in our previous publication.
Jiang, Xiao; Zhang, Ning; Yin, Li; Zhang, Wen-Long; Han, Fei; Liu, Wen-Bin; Chen, Hong-Qiang; Cao, Jia; Liu, Jin-Yi
2018-06-14
Roundup® is extensively used for weed control worldwide. Residues of this compound may lead to side effects of the male reproductive system. However, the toxic effects and mechanisms of Roundup® of male germ cells remain unclear. We aimed to investigate the apoptosis-inducing effects of Roundup® on mouse male germ cells and explore the role of a novel tumor suppressor XAF1 (X-linked inhibitor of apoptosis-associated factor 1) involved in this process. We demonstrated that Roundup® can impair spermatogenesis, decrease sperm motility and concentration, and increase the sperm deformity rate in mice. In addition, excessive apoptosis of germ cells accompanied by the overexpression of XAF1 occurred after Roundup® exposure both in vitro and in vivo. Furthermore, the low expression of XIAP (X-linked inhibitor of apoptosis) induced by Roundup® was inversely correlated with XAF1. Moreover, the knockdown of XAF1 attenuated germ cell apoptosis, improved XIAP expression and inhibited the activation of its downstream target proteins, caspase-3 and PARP, after Roundup® exposure. Taken together, our data indicated that XAF1 plays an important role in Roundup®-induced male germ cell apoptosis. The present study suggested that Roundup® exposure has potential negative implications on male reproductive health in mammals. Copyright © 2018. Published by Elsevier B.V.
Bu, Tong-liang; Jia, Yu-dong; Lin, Jin-xing; Mi, Yu-ling; Zhang, Cai-qiao
2012-01-01
As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, the alleviative effect of a common antioxidant flavonoid quercetin on mouse germ cells intoxicated by PNMC was investigated. Results showed that a single intraperitoneal injection of PNMC at 100 mg/kg induced severe testicular damage after one week. PNMC-treated mice showed a significant loss of germ cells (approximate 40% loss of round germ cells). PNMC caused an increase of hydroxyl radical and hydrogen peroxide production and lipid peroxidation, as well as a decrease in glutathione level, superoxide dismutase and glutathione peroxidase activities. Furthermore, treatment of PNMC increased expression of the pro-apoptotic protein Bax and decreased expression of the anti-apoptotic protein Bcl-XL in germ cells. In addition, testicular caspase-3 activity was significantly up-regulated and germ cell apoptosis was significantly increased in the PNMC-treated mice. In contrast, combined administration of quercetin at 75 mg/kg significantly attenuated PNMC-induced testicular toxicity. These results indicate that the antioxidant quercetin displays a remarkable protective effect on PNMC-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity by environmental toxicants to ensure healthy sperm production. PMID:22467373
Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel
2016-01-01
Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670
Study of the kinematic and load sharing properties of wormgearing with non-symmetric tooth profiles
NASA Technical Reports Server (NTRS)
Sun, D. C.; Yuan, Qin
1995-01-01
The geometry of non-symmetric tooth profiles, i.e. tooth profiles with different pressure angles on the two sides of the tooth, is studied. A feasible non-symmetric tooth profile for application in helicopter transmissions is laid out as the best compromise among several conflicting factors. The non-symmetric tooth profile is then compared with the symmetric tooth profile studied previously. Based on the detailed comparisons it is concluded that the use of the non-symmetric tooth profile would severely limit the face width of the worm, consequently reduce the number of meshing teeth and cause much higher normal load on the individual gear teeth.
Aloe vera extract reduces both growth and germ tube formation by Candida albicans.
Bernardes, Ivy; Felipe Rodrigues, Monalisa Poliana; Bacelli, Gabrielle Klug; Munin, Egberto; Alves, Leandro Procópio; Costa, Maricilia Silva
2012-05-01
Due to the increased number of immunocompromised patients, the infections associated with the pathogen of the genus Candida have significantly increased in recent years. To grow, Candida albicans may form a germ tube extension from the cells, which is essential for virulence. In this work, we studied the effect of crude glycolic extract of Aloe vera fresh leaves (20% w/v) on growth and germ tube formation by C. albicans. The C. albicans growth was determined in the presence of different concentrations of A. vera extracts in Sabouraud dextrose broth medium. In the presence of A. vera extract (10% v/v), the pronounced inhibition in the C. albicans growth (90-100%) was observed. This inhibition occurred parallel to the decrease in the germ tube formation induced by goat serum. Our results demonstrated that A. vera fresh leaves plant extract can inhibit both the growth and the germ tube formation by C. albicans. Our results suggest the possibility that A. vera extract may be used as a promising novel antifungal treatment. © 2011 Blackwell Verlag GmbH.
DNA Methylation Errors in Cloned Mouse Sperm by Germ Line Barrier Evasion.
Koike, Tasuku; Wakai, Takuya; Jincho, Yuko; Sakashita, Akihiko; Kobayashi, Hisato; Mizutani, Eiji; Wakayama, Sayaka; Miura, Fumihito; Ito, Takashi; Kono, Tomohiro
2016-06-01
The germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm. The sperm genomes of two somatic cell-cloned mice (CL1 and CL7) contained significantly higher numbers of differentially methylated CpG sites (P = 0.0045 and P = 0.0116). As a result, they had higher numbers of differentially methylated CpG islands. However, there was no evidence that these sites were transmitted to the sperm genome of offspring. These results suggest that DNA methylation errors resulting from embryo cloning are transmitted to the sperm genome by evading the germ line reprogramming barrier. © 2016 by the Society for the Study of Reproduction, Inc.
Käser-Pébernard, Stéphanie; Müller, Fritz; Wicky, Chantal
2014-04-08
Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, "sensitization" of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis.
Käser-Pébernard, Stéphanie; Müller, Fritz; Wicky, Chantal
2014-01-01
Summary Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, “sensitization” of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis. PMID:24749077
Kunwar, Prabhat S.; Sano, Hiroko; Renault, Andrew D.; Barbosa, Vitor; Fuse, Naoyuki; Lehmann, Ruth
2008-01-01
Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion. PMID:18824569
Setchell, Kenneth D R; Nardi, Elisabetta; Battezzati, Pier-Maria; Asciutti, Stefania; Castellani, Danilo; Perriello, Gabriele; Clerici, Carlo
2013-11-01
To determine the effect of soy germ pasta enriched in biologically active isoflavone aglycons on gastric emptying in type 2 diabetic patients with gastroparesis. This randomized double-blind, placebo-controlled study compared soy germ pasta with conventional pasta for effects on gastric emptying. Patients (n = 10) with delayed gastric emptying consumed one serving per day of each pasta for 8 weeks, with a 4-week washout. Gastric emptying time (t1/2) was measured using the [(13)C]octanoic acid breath test at baseline and after each period, and blood glucose and insulin concentrations were determined after oral glucose load. Soy germ pasta significantly accelerated the t1/2 in these patients (161.2 ± 17.5 min at baseline vs. 112.6 ± 11.2 min after treatment, P = 0.009). Such change differed significantly (P = 0.009) from that for conventional pasta (153.6 ± 24.2 vs. 156.2 ± 27.4 min), without affecting glucose or insulin concentrations. These findings suggest that soy germ pasta may offer a simple dietary approach to managing diabetic gastropathy.
H3K4 demethylase activities repress proliferative and postmitotic aging
Alvares, Stacy M; Mayberry, Gaea A; Joyner, Ebony Y; Lakowski, Bernard; Ahmed, Shawn
2014-01-01
Homeostasis of postmitotic and proliferating cells is maintained by pathways that repress stress. We found that the Caenorhabditis elegans histone 3 lysine 4 (H3K4) demethylases RBR-2 and SPR-5 promoted postmitotic longevity of stress-resistant daf-2 adults, altered pools of methylated H3K4, and promoted silencing of some daf-2 target genes. In addition, RBR-2 and SPR-5 were required for germ cell immortality at a high temperature. Transgenerational proliferative aging was enhanced for spr-5; rbr-2 double mutants, suggesting that these histone demethylases may function sequentially to promote germ cell immortality by targeting distinct H3K4 methyl marks. RBR-2 did not play a comparable role in the maintenance of quiescent germ cells in dauer larvae, implying that it represses stress that occurs as a consequence of germ cell proliferation, rather than stress that accumulates in nondividing cells. We propose that H3K4 demethylase activities promote the maintenance of chromatin states during stressful growth conditions, thereby repressing postmitotic aging of somatic cells as well as proliferative aging of germ cells. PMID:24134677
Discoloration Potential of Endodontic Sealers: A Brief Review
Tour Savadkouhi, Sohrab; Fazlyab, Mahta
2016-01-01
Tooth discoloration induced by endodontic sealers, is a common finding that impairs aesthetic outcome of endodontic treatment. The aim of the present mini literature review, was to summarize the existing data on discoloration potential of different endodontic sealers. The research covered the article published in PubMed and Google Scholar from 2000 to 2015. The searched keywords included ‘tooth discoloration AND endodontic’, ‘tooth discoloration AND sealer, ‘tooth discoloration AND zinc-oxide eugenol sealer’, ‘tooth discoloration AND Calcium Hydroxide Sealer’, ‘tooth discoloration AND Glass Ionomer Sealer’, ‘tooth discoloration AND epoxy-resin Sealer’, ‘tooth discoloration AND Silicon Based Sealer’, ‘tooth discoloration AND Bioceramic Sealer’ and ‘Spectrophotometry’. Conclusion: A total number of 44 articles were gained which reduced to 11 after excluding the repetitive items. The available evidence for discoloration potential of endodontic sealers currently available on the market is scarce. However, it can be concluded that all endodontic sealers can potentially stain the tooth structure to different degrees. PMID:27790251
Tooth colour change with Ozicure Oxygen Activator: a comparative in vitro tooth bleaching study.
Grundlingh, A A; Grossman, E S; Witcomb, M J
2012-08-01
This in vitro study compared a new tooth bleaching product, Ozicure Oxygen Activator (O3, RSA) with Opalescence Quick (Ultradent, USA) using a randomised block design to assess tooth colour change. Colour change, stability and relapse in canine, incisor and premolar teeth was assessed following three bleach treatments and subsequent tooth colour assessment. Ninety nine teeth (canines, incisors and premolars), which were caries free, had no surface defects and were within the colour range 1M2 and 5M3 were selected. Teeth were randomly divided into the three experimental groups: Opalescence Quick, Ozicure Oxygen Activator and control. The three experimental groups received three treatments of one hour each over three consecutive days. Tooth colour was assessed using the Vitapan 3D Master Tooth Guide (VITA, Germany). A General Linear Models test for analysis of variance for a fractional design with significance set at P < 0.05 was used to test for significance. Both bleaching methods significantly lightened the teeth (P < 0.0001). Tooth colour change was mainly after the first hour of tooth bleaching. The tooth type was significant in tooth colour change (P = 0.0416). Tooth colour relapse and resistance to colour change were observed. Ozicure Oxygen Activator bleached teeth in a manner and to an extent similar to Opalescence Quick.
Inhibitory effect of interferon-γ on experimental tooth movement in mice.
Kohara, Haruka; Kitaura, Hideki; Yoshimatsu, Masako; Fujimura, Yuji; Morita, Yukiko; Eguchi, Toshiko; Yoshida, Noriaki
2012-09-01
The aim of this study was to investigate the effects of interferon (IFN)-γ on experimental tooth movement in mice using a murine experimental tooth movement model. An Ni-Ti closed-coil spring was inserted between the upper-anterior alveolar bones and the upper-left first molars in mice. We evaluated the relationship between local Ifn-γ mRNA levels and orthodontic tooth movement. In other experiments, IFN-γ was injected adjacent to each first molar every other day during tooth movement. After 12 days, the amount of tooth movement was measured. Tartrate-resistant acid phosphatase (TRAP)-positive cells at the pressure side of each experimental tooth were counted as osteoclasts. Local Ifn-γ mRNA expression increased with orthodontic tooth movement. The number of TRAP-positive cells increased on the pressure side of the first molar. In contrast, the degree of tooth movement and the number of TRAP-positive cells on the pressure side in IFN-γ-injected mice were less than those of control mice. IFN-γ was induced in experimental tooth movement, and could inhibit mechanical force-loaded osteoclastogenesis and tooth movement. These results suggest that IFN-γ might be useful in controlling orthodontic tooth movement because of its inhibitory action on excessive osteoclastogenesis during this movement.
Schierz, Oliver; Dommel, Sandra; Hirsch, Christian; Reissmann, Daniel R
2014-09-01
Tooth wear is an increasing problem in a society where people are living longer. The purpose of this study was to assess the effect of age, sex, and location of teeth on the severity of tooth wear and to determine the prevalence of dentin exposure in the general population of Germany. Tooth wear was measured in casts of both jaws of 836 persons with a 6-point (0-5) ordinal rating scale. Linear random-intercept regression models with the covariates of age, sex, jaw, and tooth group (with the participant as a grouping variable) were computed to determine the association of these covariates with tooth wear of a single tooth. The mean tooth wear score across all age groups, both sexes, and all teeth was 2.9 (standard deviation, 0.8), and the prevalence of teeth with exposed dentin was 23.4%. The participants' age was correlated with the mean tooth wear scores (r=0.51). The tooth wear level among women was on average 0.15 units lower than among men, and tooth wear was on average 0.59 units higher for anterior teeth than for posterior teeth. Increased tooth wear in anterior teeth may be due to the initially predominant guidance by anterior teeth, with age-related linear progress in tooth wear. Occlusal tooth wear scores and dentin exposure increase with age. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Tooth bleaching and young adults in Nigeria: knowledge, experiences and intention.
Azodo, C C; Ogbomo, A C; Agbor, M A
2012-12-01
To assess the knowledge, experiences and intention to have tooth bleaching among young adults studying in a Nigerian University. A cross-section of part-time undergraduate students of University of Benin, Benin City, Nigeria were studied in 2010 using a self-administered questionnaire. About three-quarters 289 (72.4%) of the respondents reported awareness of at least one cause of tooth discoloration. A total of 143 (35.8%) of the respondents have heard of tooth bleaching with main sources of information being friends/relatives, dentists and the internet. One-third 132 (33.1%) of the respondents correctly identified that the aim of tooth bleaching was to make the teeth whiter. The respondents that had correct knowledge about mechanism, duration and complications of tooth bleaching were 51 (12.8%), 25 (6.3%) and 35 (8.8%) respectively. The major perceived benefits of tooth bleaching reported by the respondents were self confidence boost 152 (38.1%) and improvement of one's beauty 107 (26.8%). Out of the 68 (17.0%) respondents that have attempted tooth bleaching, 36 (52.9%) used tooth whitening toothpaste. Out of the 151 (37.8%) respondents that expressed intention of having tooth bleaching procedure, 32 (21.2%) would pursue the course, no matter the cost. In the studied population, knowledge of tooth discoloration was high, awareness and experiences of tooth bleaching were low but significant number expressed intention of having tooth bleaching. It is important that dentists increase oral health information particularly tooth bleaching information accessibility to the young adult population to improve the knowledge and prevent adverse effects.
Tooth quality in dental fluorosis genetic and environmental factors.
Vieira, A P G F; Hanocock, R; Eggertsson, H; Everett, E T; Grynpas, M D
2005-01-01
Dental fluorosis (DF) affects the appearance and structure of tooth enamel and can occur following ingestion of excess fluoride during critical periods of amelogenesis. This tooth malformation may, depending on its severity, influence enamel and dentin microhardness and dentin mineralization. Poor correlation between tooth fluoride (F) concentration and DF severity was shown in some studies, but even when a correlation was present, tooth fluoride concentration explained very little of DF severity. This fact calls into question the generally accepted hypothesis that the main factor responsible for DF severity is tooth fluoride concentration. It has been shown previously that genetic factors (susceptibility to DF) play an important role in DF severity although DF severity relates to individual susceptibility to fluoride exposure (genetics), tooth fluoride concentration relates to fluoride ingestion (environmental). The objective of this study was to investigate the correlation between tooth fluoride concentration, DF severity, and tooth mechanical and materials properties. Three strains of mice (previously shown to have different susceptibility to DF) at weaning were treated with four different levels of F in their water (0, 25, 50, and 100 ppm) for 6 weeks. Mice teeth were tested for fluoride by instrumental neutron activation analysis (INAA), DF severity determined by quantitative light-induced fluorescence [QLF], and tooth quality (enamel and dentin microhardness and dentin mineralization). Tooth fluoride concentration (environment factor) correlated positively with DF severity (QLF) (rs=0.608), fluoride treatment group (rs=0.952). However, tooth fluoride concentration correlated negatively with enamel microhardness (rs=-0.587), dentin microhardness (rs=-0.268) and dentin mineralization (rs=-0.245). Dental fluorosis (genetic factor) severity (QLF) correlated positively with fluoride treatment (rs=0.608) and tooth fluoride concentration (rs=0.583). DF severity correlated negatively with enamel microhardness (rs=-0.564) and dentin microhardness (rs=-0.356). Genetic factors (DF severity) and the environmental factor (fluoride concentration in tooth structure) have similar influence on tooth biomechanical properties, whereas only the environmental factor has an influence on tooth material property (mineralization).
In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.
Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V
2018-02-01
Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.
When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome?
Van Saen, D; Vloeberghs, V; Gies, I; Mateizel, I; Sermon, K; De Schepper, Jean; Tournaye, H; Goossens, E
2018-06-01
When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome (KS)? In KS, germ cell loss is not observed in testicular tissue from fetuses in the second semester of pregnancy but present at a prepubertal age when the testicular architecture is still normal, while fibrosis is highly present at an adolescent age. Most KS patients are azoospermic at adult age because of a massive germ cell loss. However, the timing when this germ cell loss starts is not known. It is assumed that germ cell loss increases at puberty. Therefore, testicular sperm extraction (TESE) at an adolescent age has been suggested to increase the chances of sperm retrieval at onset of spermatogenesis. However, recent data indicate that testicular biopsies from peripubertal KS patients contain only a few germ cells. In this study, we give an update on fertility preservation in adolescent KS patients and evaluate whether fertility preservation would be beneficial at prepubertal age. The possibility of retrieving testicular spermatozoa by TESE was evaluated in adolescent and adult KS men. The presence of spermatogonia and the degree of fibrosis were also analysed in testicular biopsies from KS patients at different ages. The patients were divided into four age groups: foetal (n = 5), prepubertal (aged 4-7 years; n = 4), peripubertal (aged 12-16 years; n = 20) and adult (aged 18-41 years; n = 27) KS patients. In peripubertal and adult KS patients, retrieval of spermatozoa was attempted by semen analysis after masturbation, vibrostimulation, electroejaculation or by TESE. MAGE-A4 immunohistochemistry was performed to evaluate the presence of germ cells in testicular biopsies from foetal, prepubertal, peripubertal and adult KS patients. Tissue morphology was evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Testicular spermatozoa were collected by TESE in 48.1% of the adult KS patients, while spermatozoa were recovered after TESE in only one peripubertal patient (5.0%). Germ cells were detectable in testicular biopsies from 21% of adult men for whom no spermatozoa could be retrieved by TESE and in 31.5% of peripubertal KS boys. Very small numbers of spermatogonia (0.03-0.06 spermatogonia/tubule) were detected in three out of four (75%) prepubertal patients. At a foetal age, the number of germ cells was similar for KS and control samples. Increased signs of fibrosis were not present at foetal and prepubertal ages, but peripubertal and adult KS patients showed high levels of fibrosis. N/A. Only four prepubertal biopsies were included in this study, but they all showed a very low germ cell number. A high variability in the number of spermatogonia per mm2 was observed in the limited (n = 5) number of foetal biopsies. However, testicular biopsies from prepubertal and foetal Klinefelter patients are difficult to obtain. Testicular tissue banking at a prepubertal age has been suggested as a potential method for fertility preservation in early diagnosed KS boys. However, our results show that a reduction in germ cell number has already taken place in childhood. Therefore, offering testicular tissue banking in young KS boys to prevent subsequent sterility might be a questionable strategy. However, this should be confirmed in a larger study population. This project was funded by the scientific Fund Willy Gepts from the UZ Brussel (D.V.S., J.D.S.), grants from the Vrije Universiteit Brussel (E.G.) and a Methusalem grant (K.S.). D.V.S is a post-doctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO; 12M2815N). No conflict of interest is declared.
Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...
Revisiting the human seminiferous epithelium cycle.
Nihi, F; Gomes, M L M; Carvalho, F A R; Reis, A B; Martello, R; Melo, R C N; Almeida, F R C L; Chiarini-Garcia, H
2017-06-01
Can all types of testicular germ cells be accurately identified by microscopy techniques and unambiguously distributed in stages of the human seminiferous epithelium cycle (SEC)? By using a high-resolution light microscopy (HRLM) method, which enables an improved visualization of germ cell morphological features, we identified all testicular germ cells in the seminiferous epithelium and precisely grouped them in six well-delimitated SEC stages, thus providing a reliable reference source for staging in man. Morphological characterization of germ cells in human has been done decades ago with the use of conventional histological methods (formaldehyde-based fixative -Zenker-formal- and paraffin embedding). These early studies proposed a classification of the SEC in six stages. However, the use of stages as baseline for morphofunctional evaluations of testicular parenchyma has been difficult because of incomplete morphological identification of germ cells and their random distribution in the human SEC. Testicular tissue from adult and elderly donors with normal spermatogenesis according to Levin's, Johnsen's and Bergmann's scores were used to evaluate germ cell morphology and validate their distribution and frequency in stages throughout human spermatogenesis. Testicular tissue from patients diagnosed with congenital bilateral agenesis of vas deferens (n = 3 adults) or prostate cancer (n = 3 elderly) were fixed in glutaraldehyde and embedded in araldite epoxy resin. Morphological analyses were performed by both light and transmission electron microscopy. HRLM method enabled a reliable morphological identification of all germ cells (spermatogonia, spermatocytes and spermatids) based on high-resolution aspects of euchromatin, heterochromatin and nucleolus. Moreover, acrosomal development of spermatids was clearly revealed. Altogether, our data redefined the limits of each stage leading to a more reliable determination of the SEC in man. Occasionally, germ cells can be absent in some tubular sections. In this situation, it has to be taken into account the germ cell association proposed in the present study to classify the stages. Our findings bring a new focus on the morphology and development of germ cells during the SEC in human. Application of HRLM may be a valuable tool for research studies and clinical andrology helping to understand some testicular diseases and infertility conditions which remain unsolved. Experiments were partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors declare that there are no conflicts of interest. Not applicable. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
... like fevers, sniffles, rashes, coughing, vomiting, and diarrhea. How do doctors figure out what germs are doing? They take a closer look. By looking at samples of blood, urine, and other fluids under a ...
Prevalence of Tooth Shade and its Correlation with Skin Colour - A Cross-sectional Study.
Vadavadagi, Suneel V; Kumari, K V Halini; Choudhury, Gopal Krishna; Vilekar, Abhishek Madhukar; Das, Sitansu Sekhar; Jena, Debkant; Kataraki, Bharat; B L, Bhavana
2016-02-01
Aesthetics has become an important issue in modern society. Tooth shade is one of the factors in determining aesthetics. Studies have revealed that tooth shade is influenced by age, gender, eye colour, skin colour and other factors. The present study was aimed to assess the prevalence of tooth shade and its correlation with skin colour. A total of 300 subjects aged 18-20 years were evaluated for tooth shade using Vitapan - 3D shade guide. Anterior teeth were checked under natural light and facial skin colour by Lakme liquid foundation make up as a shade guide. Data was analysed using chi square test and spearman's correlation. Out of 300 students, 114 (38.00%) had A2 tooth shade; the least prevalent tooth shade among Chitradurga population was C1 (4.00%). There was a positive correlation between tooth shade and skin colour which was found to be statistically significant (p <0.05). The most prevalent tooth shade among Chitradurga population was A2 and least was C1. There was a significant correlation between tooth shade and skin colour with lighter skin tone subjects having lighter tooth shade hence skin colour can be used as a guide for shade selection.
Application of tooth brushing behavior to active rest.
Sadachi, Hidetoshi; Murakami, Yoshinori; Tonomura, Manabu; Yada, Yukihiro; Simoyama, Ichiro
2010-01-01
We evaluated the usefulness of tooth brushing with toothpaste as active rest using the flicker value as a physiological parameter and a subjective questionnaire as a psychological parameter. Seventeen healthy, right-handed subjects (12 males and 5 females) aged 22.5 +/- 1.5 yr (mean +/- standard deviation) were randomly divided into tooth brushing with toothpaste (N=9) and non-tooth brushing groups (N=8). The subjects performed a serial calculation task for 20 min using personal computers. Subsequently, the tooth brushing group brushed their teeth, and the flicker value and mood were compared before and after the tooth brushing. The flicker value significantly increased in the tooth brushing group compared with the non-tooth brushing group (p<0.05). Concerning the mood, in the tooth brushing group, the incidence of a "feeling of being refreshed" significantly increased (p<0.05), that of "concentration power" or a "feeling of clear-headedness" tended to increase (p<0.1), and that of "lassitude" or "sleepiness" significantly decreased (p<0.01). Somatosensory stimulation and intraoral tactile stimulation during tooth brushing activated cerebral activity, producing refreshing effects. These results suggest the applicability of tooth brushing to active rest.
Automatic classification of fish germ cells through optimum-path forest.
Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A
2011-01-01
The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.
Germ-line gene therapy and the medical imperative.
Munson, Ronald; Davis, Lawrence H
1992-06-01
Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.
Stem Cell Information: Glossary
... germ cells (those that would become sperm and eggs). Embryonic germ cells are thought to have properties ... the male gamete (sperm) and the female gamete (egg). Fetus - In humans, the developing human from approximately ...
ABT-751 in Treating Young Patients With Refractory Solid Tumors
2012-03-14
Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Kidney Cancer; Liver Cancer; Neuroblastoma; Ovarian Cancer; Sarcoma; Unspecified Childhood Solid Tumor, Protocol Specific
Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function.
Lochab, Amaneet K; Extavour, Cassandra G
2017-07-15
In multicellular organisms, the specification, maintenance, and transmission of the germ cell lineage to subsequent generations are critical processes that ensure species survival. A number of studies suggest that the Bone Morphogenetic Protein (BMP) pathway plays multiple roles in this cell lineage. We wished to use a comparative framework to examine the role of BMP signaling in regulating these processes, to determine if patterns would emerge that might shed light on the evolution of molecular mechanisms that may play germ cell-specific or other reproductive roles across species. To this end, here we review evidence to date from the literature supporting a role for BMP signaling in reproductive processes across Metazoa. We focus on germ line-specific processes, and separately consider somatic reproductive processes. We find that from primordial germ cell (PGC) induction to maintenance of PGC identity and gametogenesis, BMP signaling regulates these processes throughout embryonic development and adult life in multiple deuterostome and protostome clades. In well-studied model organisms, functional genetic evidence suggests that BMP signaling is required in the germ line across all life stages, with the exception of PGC specification in species that do not use inductive signaling to induce germ cell formation. The current evidence is consistent with the hypothesis that BMP signaling is ancestral in bilaterian inductive PGC specification. While BMP4 appears to be the most broadly employed ligand for the reproductive processes considered herein, we also noted evidence for sex-specific usage of different BMP ligands. In gametogenesis, BMP6 and BMP15 seem to have roles restricted to oogenesis, while BMP8 is restricted to spermatogenesis. We hypothesize that a BMP-based mechanism may have been recruited early in metazoan evolution to specify the germ line, and was subsequently co-opted for use in other germ line-specific and somatic reproductive processes. We suggest that if future studies assessing the function of the BMP pathway across extant species were to include a reproductive focus, that we would be likely to find continued evidence in favor of an ancient association between BMP signaling and the reproductive cell lineage in animals. Copyright © 2017 Elsevier Inc. All rights reserved.
Leão, Ricardo; van Agthoven, Ton; Figueiredo, Arnaldo; Jewett, Michael A S; Fadaak, Kamel; Sweet, Joan; Ahmad, Ardalan E; Anson-Cartwright, Lynn; Chung, Peter; Hansen, Aaron; Warde, Padraig; Castelo-Branco, Pedro; O'Malley, Martin; Bedard, Philippe L; Looijenga, Leendert H J; Hamilton, Robert J
2018-02-21
Retroperitoneal lymph node dissection is recommended for residual masses greater than 1 cm after chemotherapy of nonseminomatous germ cell tumors. Currently to our knowledge there is no reliable predictor of post-chemotherapy retroperitoneal lymph node dissection histology. Up to 50% of patients harbor necrosis/fibrosis only so that a potentially morbid surgery has limited therapeutic value. In this study we evaluated the ability of defined serum miRNAs to predict residual viable nonseminomatous germ cell tumors after chemotherapy. Levels of serum miRNA, including miR-371a-3p, miR-373-3p and miR-367-3p, were measured using the ampTSmiR (amplification targeted serum miRNA) test in 82 patients, including 39 in cohort 1 and 43 in cohort 2, who were treated with orchiectomy, chemotherapy and post-chemotherapy retroperitoneal lymph node dissection. miRNA levels were compared to clinical characteristics and serum tumor markers. They correlated with the presence of a viable germ cell tumor vs fibrosis/necrosis and teratoma. ROC analysis was done to determine miRNA discriminative capacity. miRNA levels were significantly associated with disease extent at chemotherapy and they decreased significantly after chemotherapy. Conventional serum tumor maker levels were uninformative after chemotherapy. However, after chemotherapy miRNA levels remained elevated in post-chemotherapy retroperitoneal lymph node dissection specimens of patients harboring viable germ cell tumors. miR-371a-3p demonstrated the highest discriminative capacity for viable germ cell tumors (AUC 0.874, 95% CI 0.774-0.974, p <0.0001). Using an adapted hypothetical cutoff of 3 cm or less for surgical intervention miR-371a-3p correctly stratified all patients with viable residual retroperitoneal germ cell tumors with 100% sensitivity (p = 0.02). To our knowledge our study demonstrates for the first time the potential value of miR-371a-3p to predict viable germ cell tumors in residual masses after chemotherapy. Prospective studies are required to confirm clinical usefulness. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Overview of the Graphical User Interface for the GERM Code (GCR Event-Based Risk Model
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2010-01-01
The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERM code calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERM code also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERM code accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERM code for application to thick target experiments. The GERM code provides scientists participating in NSRL experiments with the data needed for the interpretation of their experiments, including the ability to model the beam line, the shielding of samples and sample holders, and the estimates of basic physical and biological outputs of the designed experiments. We present an overview of the GERM code GUI, as well as providing training applications.
[Assessment of tooth bleaching efficacy with spectrophotometer].
Zhu, Wenhao; Liu, Chang; Pan, Jie
2014-06-01
To analyze the changes in CIE L*, a*, and b* at cervical, body, and incisal sites after tooth bleaching by using a spectrophotometer. Sixty-seven intact and healthy maxillary central incisors were in-vestigated. These incisors were darker than A3 according to the Vita Classical shade guide. The CIE tooth shade parameters L*, a*, and b* were simultaneously recorded at three tooth areas (cervical, body, and incisal) with a spectrophotometer before and after tooth bleaching (35%H2O2 coordinating with Beyond whitening accelerator irradiating). The shade dif-ferential (DeltaE) was calculated. ANOVA, paired t-test, and Pearson correlation analysis were used for data analysis. The efficacy rates of tooth bleaching were satisfactory, with 86.6%, 86.6%, and 85.1% in the cervical, body, and incisal sites, respectively. The average values of DeltaE were 5.09, 4.44, and 4.40 in the cervical, body, and incisal sites. Tooth bleaching significantly increased L* and significantly decreased a* and b* in all tooth areas (P < 0.01). The decreasing range of Deltab* was more than the increasing range of DeltaL* at the cervical site; opposite results were observed at the incisal site. A positive correlation was detected between baseline b* and DeltaE. The spectrophotometer could objectively evaluate the whitening effect of tooth bleaching at the different tooth sites. The tooth bleaching system (35%H202 coordinating with Beyond whitening accelerator irradiating) exerts powerful bleaching actions in most of the tooth areas investigated. The order of tooth bleaching effectiveness is cervicalbody>incisal. Yellow coloration is decreased mainly at the cervical site, and brightness was increased mostly at theincisal site. The effectiveness of tooth bleaching increases as the baseline b* value increases.
Distinct developmental genetic mechanisms underlie convergently evolved tooth gain in sticklebacks
Ellis, Nicholas A.; Glazer, Andrew M.; Donde, Nikunj N.; Cleves, Phillip A.; Agoglia, Rachel M.; Miller, Craig T.
2015-01-01
Teeth are a classic model system of organogenesis, as repeated and reciprocal epithelial and mesenchymal interactions pattern placode formation and outgrowth. Less is known about the developmental and genetic bases of tooth formation and replacement in polyphyodonts, which are vertebrates with continual tooth replacement. Here, we leverage natural variation in the threespine stickleback fish Gasterosteus aculeatus to investigate the genetic basis of tooth development and replacement. We find that two derived freshwater stickleback populations have both convergently evolved more ventral pharyngeal teeth through heritable genetic changes. In both populations, evolved tooth gain manifests late in development. Using pulse-chase vital dye labeling to mark newly forming teeth in adult fish, we find that both high-toothed freshwater populations have accelerated tooth replacement rates relative to low-toothed ancestral marine fish. Despite the similar evolved phenotype of more teeth and an accelerated adult replacement rate, the timing of tooth number divergence and the spatial patterns of newly formed adult teeth are different in the two populations, suggesting distinct developmental mechanisms. Using genome-wide linkage mapping in marine-freshwater F2 genetic crosses, we find that the genetic basis of evolved tooth gain in the two freshwater populations is largely distinct. Together, our results support a model whereby increased tooth number and an accelerated tooth replacement rate have evolved convergently in two independently derived freshwater stickleback populations using largely distinct developmental and genetic mechanisms. PMID:26062935
Factors associated with tooth loss and prosthodontic status among Sudanese adults.
Khalifa, Nadia; Allen, Patrick F; Abu-bakr, Neamat H; Abdel-Rahman, Manar E
2012-01-01
A study was conducted to determine the degree of tooth loss, factors influencing tooth loss, and the extent of prosthodontic rehabilitation in Sudanese adults (≥ 16 years old) attending outpatient clinics in Khartoum State. Pearson and multivariate analyses were used to examine the relationships between tooth loss and specific characteristics determined through interviews and clinical examinations. The mean number of missing teeth was 3.6 (SD, 4.9) and the prevalence of edentulism was 0.1%. The prevalence of tooth loss (missing at least one tooth) was 78%; 66.9% of tooth loss was due to caries, and 11.2% was attributable to other reasons. Prosthetic replacement of missing teeth was evident in 3%, whereas a need for prosthetic replacement was evident in 57%. Having < 20 teeth was associated with age, gender, and socioeconomic status; tooth loss due to caries was associated with age, tribe, frequency of tooth-brushing, and a low rate of dental consultation. Tooth loss due to other reasons was associated with age, tribe, education, periodontal pocketing, tobacco use, tooth wear, and prosthetic status. The results of the present study indicated that the major cause of tooth loss was dental caries, thus emphasizing the importance of a public prevention-based healthcare program. Replacement of missing teeth was uncommon in the study subjects, which may reflect lack of access to this type of oral healthcare.
Influence of tooth profile on the noncircular gear tooth contact
NASA Astrophysics Data System (ADS)
Cristescu, A.; Andrei, L.; Cristescu, B.
2017-02-01
With noncircular gears, the continuous modification of the tooth meshing, in terms of variation of the tooth profiles and the line of action position and inclination, makes difficult the implementation of a general standard procedure for the analysis of the noncircular gears tooth contact. In this paper, the authors present a graphical approach that enables the tooth contact static pattern to be produced and evaluated in case of a noncircular gear with complex geometry of the pitch curve. The study is virtually developed, in AutoCAD environment, by animating and investigating the gear solid models in mesh. The tooth static contact analysis enables the path of contact area and distribution to be evaluated in correlation with the following variable initial data: gear pitch curve geometry, tooth profile geometry, as a consequence of different generating procedures, and the gear pressure angle. It was found out that the noncircular gear tooth contact could be improved by choosing different procedures for the tooth flank generation in concave and convex zones and by increasing the gear pressure angle.
The prevalence, aetiology and clinical appearance of tooth wear: the Nigerian experience.
Oginni, O; Olusile, A O
2002-08-01
To establish the prevalence and severity of tooth wear among Nigerians and to compare the pattern and aetiology with findings of earlier studies in Western populations. Clinical examinations for tooth wear using the tooth wear index (TWI). The Federal Republic of Nigeria. Patients attending the Dental Hospital, Obafemi Awolowo University Teaching Hospital's Complex Ile-Ife. Attrition, abrasion and erosion. Of the 126 patients with tooth wear 81 had attrition, 20 had abrasion, 9 had erosion and 16 had attrition and abrasion combined. A total of 15,480 tooth surfaces were examined. 2,229 (14.4%) surfaces had tooth wear out of which 1,007 (6.5%) were pathologically worn down. The frequency of tooth wear increased with the age of patients. Most of the pathologically worn surfaces were just one point above maximum acceptable value. The aetiological factors associated with tooth wear are not different from those encountered in Western cultures but the pattern of wear differs. Pathological tooth wear presents as an age related phenomenon and is probably more severe in Nigerians.
Temozolomide and O6-benzylguanine in Treating Children With Solid Tumors
2015-04-28
Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Kidney Cancer; Liver Cancer; Neuroblastoma; Ovarian Cancer; Sarcoma; Unspecified Childhood Solid Tumor, Protocol Specific
Juneja, Manjushree; Juneja, Saurabh; Rakesh, Nagaraju; Bhoomareddy Kantharaj, Yashoda Devi
2016-01-01
Introduction: Forensic odontology is a branch that is evolving over time and has opened newer avenues that may help in the identification of individuals. Tooth prints are the enamel rod end patterns on tooth surface and they are considered as a hard tissue analog to fingerprints. Teeth have the highest resistance to most environmental effects like fire, desiccation, and decomposition, and may be used as a forensic evidence. Aims and Objectives: The aim of the study was to evaluate if the tooth prints could be used for an individual's identification and reproducibility and permanency of these tooth prints after exposing the teeth to acid and various degrees of temperature. Materials and Methods: 90 tooth prints from 20 freshly extracted maxillary premolar teeth were obtained. Cellophane tape technique was used to record enamel rod end patterns on tooth surface. Ten teeth (one from each patient) were immersed in 36.46% hydrochloric acid and the tooth prints were obtained at various intervals (5 min, 10 min, and 20 min). The other 10 teeth (one from each patient) were incinerated and impression was made at various intervals (80° C, 400° C, 600° C, and 750° C). Tooth prints obtained from different teeth (total of 90 tooth prints) were analyzed using Verifinger® standard SDK version 5.0 software. Results: All the 20 original tooth prints were distinct from each other and no inter-individual or intra-individual similarity was found. The tooth prints from the same tooth after it was exposed to acid or heat were reproducible and showed high to very high similarity with the original tooth print of that particular tooth stored in the database. Conclusion: Tooth prints may be used as an effective aid in person identification even in adverse conditions such as burn and acid attack injuries. PMID:27051220
Associations between smoking and tooth loss according to reason for tooth loss
Mai, Xiaodan; Wactawski-Wende, Jean; Hovey, Kathleen M.; LaMonte, Michael J.; Chen, Chaoru; Tezal, Mine; Genco, Robert J.
2013-01-01
Background Smoking is associated with tooth loss. However, smoking's relationship to the specific reason for tooth loss in postmenopausal women is unknown. Methods Postmenopausal women (n = 1,106) who joined a Women's Health Initiative ancillary study (The Buffalo OsteoPerio Study) underwent oral examinations for assessment of the number of missing teeth, as well as the self-reported reasons for tooth loss. The authors obtained information about smoking status via a self-administered questionnaire. The authors calculated odds ratios (ORs) and 95 percent confidence intervals (CIs) by means of logistic regression to assess smoking's association with overall tooth loss, as well as with tooth loss due to periodontal disease (PD) and with tooth loss due to caries. Results After adjusting for age, education, income, body mass index (BMI), history of diabetes diagnosis, calcium supplement use and dental visit frequency, the authors found that heavy smokers (≥ 26 pack-years) were significantly more likely to report having experienced tooth loss compared with never smokers (OR = 1.82; 95 percent CI, 1.10-3.00). Smoking status, packs smoked per day, years of smoking, pack-years and years since quitting smoking were significantly associated with tooth loss due to PD. For pack-years, the association for heavy smokers compared with that for never smokers was OR = 6.83 (95 percent CI, 3.40-13.72). The study results showed no significant associations between smoking and tooth loss due to caries. Conclusions and Practical Implications Smoking may be a major factor in tooth loss due to PD. However, smoking appears to be a less important factor in tooth loss due to caries. Further study is needed to explore the etiologies by which smoking is associated with different types of tooth loss. Dentists should counsel their patients about the impact of smoking on oral health, including the risk of tooth loss due to PD. PMID:23449901
Chen, G; Fan, W; Mishra, S; El-Atem, A; Schuetz, M A; Xiao, Y
2012-10-01
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
CDC Vital Signs: Making Health Care Safer
... safety efforts happening across the state. Health care facility CEOs/administrators can: Implement systems to alert receiving ... Germs spread between patients and across health care facilities. Antibiotic resistance is a threat. Nightmare germs called ...
Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ
Hirayama, Masatoshi; Ogawa, Miho; Oshima, Masamitsu; Sekine, Yurie; Ishida, Kentaro; Yamashita, Kentaro; Ikeda, Kazutaka; Shimmura, Shigeto; Kawakita, Tetsuya; Tsubota, Kazuo; Tsuji, Takashi
2013-01-01
The lacrimal gland has a multifaceted role in maintaining a homeostatic microenvironment for a healthy ocular surface via tear secretion. Dry-eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye diseases that cause corneal epithelial damage and results in significant loss of vision and a reduction in the quality of life. Here we demonstrate orthotopic transplantation of bioengineered lacrimal gland germs into adult mice with an extra-orbital lacrimal gland defect, a mouse model that mimics the corneal epithelial damage caused by lacrimal gland dysfunction. The bioengineered lacrimal gland germs and harderian gland germs both develop in vivo and achieve sufficient physiological functionality, including tear production in response to nervous stimulation and ocular surface protection. This study demonstrates the potential for bioengineered organ replacement to functionally restore the lacrimal gland. PMID:24084941
Differentiation of female Oct4-GFP embryonic stem cells into germ lineage cells.
Ma, Xin; Li, Peng; Sun, Xiang; Sun, Yifeng; Hu, Rong; Yuan, Ping
2018-04-01
Due to high infertility ratio nowadays, it is essential to explore efficient ways of enhancing mammalian reproductivity, in particular female reproductivity. Using female Oct4-GFP embryonic stem cells, we mimic the in vivo development procedure to induce ES cells into epiblast cell-like cells (EpiLCs) and then primordial germ cell-like cells (PGCLCs). GFP positive PGCLCs that showed typical PGC markers and epigenetic modification were efficiently obtained. Further transplantation of the GFP positive PGCLC and native ovary cell mixture into ovary of infertile mice revealed that both MVH and GFP positive cells could be developed in ovary, but no later developmental stage germ cells were observed. This study suggested that Oct4-GFP ES cells may be only suitable for tracing early germ cell development. © 2018 International Federation for Cell Biology.
Simioni, Carmen; Rover, Ticiane; Schmidt, Éder C; de L Felix, Marthiellen R; Polo, Luz Karime; Santos, Rodrigo Dos; Costa, Giulia Burle; Kreusch, Marianne; Pereira, Debora T; Ouriques, Luciane C; Bouzon, Zenilda L
2014-06-01
Gelidium floridanum W.R. Taylor tetraspores are units of dispersal and are responsible for substrate attachment. This study aimed to examine evidence of direct interaction between germ tube formation and Golgi activity during tetraspore germination of G. floridanum. After release, the tetraspores were incubated with brefeldin A (BFA) in concentrations of 4 and 8 μM over a 6 h period. The controls and treatments were analyzed with light, fluorescence (FM4-64 dye) and transmission electron microscopy. In the control samples, the Golgi bodies were responsible for germ tube formation. In contrast, BFA-treated samples were observed to inhibit spore adhesion and germ tube formation. These tetraspores also showed an increase in volume (≥30 μm width). BFA treatment also resulted in the disassembly of Golgi cisternae and the formation of vesiculated areas of the cytoplasm, blocking the secretion of protein and amorphous matrix polysaccharides. When stained with FM4-64, the control samples showed fluorescence in the apical region of the germ tube, but the treated samples showed an intense fluorescence throughout the cytoplasm. From these results, we can conclude that the germ tube is formed by the incorporation of vesicles derived from Golgi. Thus, vesicle secretion and Golgi organization are basic processes and essential in adhesion and tube formation. By blocking the secretion of protein and amorphous matrix polysaccharides, BFA treatment precluded tetraspore germination. © 2014 Phycological Society of America.
Yamamoto, Junkoh; Takahashi, Mayu; Nakano, Yoshiteru; Saito, Takeshi; Kitagawa, Takehiro; Ueta, Kunihiro; Miyaoka, Ryo; Nakamura, Eiichiro; Nishizawa, Shigeru
2013-10-01
Germ cell tumors are known to arise in the central nervous system, usually in the intracranial regions. However, primary spinal mixed germ cell tumors are extremely rare. This is the first reported case of intratumoral hemorrhage because of a primary spinal mixed germ cell tumor consisting of germinoma and immature teratoma in the conus medullaris of an adult patient that presented with rapid changes on magnetic resonance image (MRI). We report this rare case and discuss the clinical manifestations of an intramedullary spinal mixed germ cell tumor in adult. A case report. A 42-year-old woman experienced buttock numbness, and a spinal cord tumor was observed on the conus medullaris on MRI. The patient was scheduled for an operation in 1 month, but she developed sudden-onset neurologic deterioration. Rapid progression of the tumor was observed on follow-up MRI. The tumor was removed by emergency surgery and was identified as a primary mixed germinoma and immature teratoma. The patient received adjuvant chemotherapy and radiotherapy after gross total resection. The neurologic deficit of the patient was relieved, and recurrence of the tumor was not observed 26 months after the surgery. We present this rare case and emphasize the necessity of precise diagnosis and early treatment of primary spinal germ cell tumor. Close observation on MRI is required after surgery, and adjuvant chemotherapy and radiotherapy should be considered according to the pathologic features. Copyright © 2013 Elsevier Inc. All rights reserved.
Aneja, Amandeep; Bhattacharyya, Siddharth; Mydlo, Jack; Inniss, Susan
2014-01-01
Testicular tumors are a heterogeneous group of neoplasms exhibiting diverse histopathology and can be classified as seminomatous and non-seminomatous germ cell tumor types. Mixed germ cell tumors contain more than one germ cell component and various combinations have been reported. Here, we present a rare case of a mixed germ cell tumor composed of seminoma, choriocarcinoma and teratoma with a secondary somatic malignancy. A 31-year-old Caucasian man presented with splenic rupture to our hospital. A right-sided testicular swelling had been present for 6 months and his alpha-fetoprotein, beta-human chorionic gonadotropin, and lactose dehydrogenase were increased. An ultrasound of his scrotum revealed an enlarged right testis with heterogeneous echogenicity. Multiple hypervascular lesions were noted in his liver and spleen. He underwent transcatheter embolization therapy of his splenic artery followed by splenectomy and right-sided orchiectomy. A computed tomography scan also showed metastasis to both lungs. During his last follow up after four cycles of cisplatin-based chemotherapy, the level of tumor markers had decreased, decreases in the size of his liver and pulmonary lesions were noted but new sclerotic lesions were evident in his thoracolumbar region raising concern for bony metastasis. Prognosis of testicular tumor depends mainly on the clinical stage, but emergence of a sarcomatous component presents a challenge in the treatment of germ cell tumors and the histological subtype of this component can be used as a guide to specific chemotherapy in these patients.
García-López, Jesús; Alonso, Lola; Cárdenas, David B.; Artaza-Alvarez, Haydeé; Hourcade, Juan de Dios; Martínez, Sergio; Brieño-Enríquez, Miguel A.; del Mazo, Jesús
2015-01-01
The small noncoding RNAs (sncRNAs) are considered as post-transcriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs, or rRNAs processing may also play important regulatory roles in spermatogenesis. By next-generation sequencing (NGS), we characterized the sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs), pubertal spermatogonia cells, and mature spermatozoa. To assess their potential transmission through the spermatozoa during fertilization, the sncRNAs of mouse oocytes and zygotes were also analyzed. Both, microRNAs and snoRNA-derived small RNAs are abundantly expressed in PGCs but transiently replaced by piRNAs in spermatozoa and endo-siRNAs in oocytes and zygotes. Exhaustive analysis of miRNA sequence variants also shows an increment of noncanonical microRNA forms along male germ cell differentiation. RNAs-derived from tRNAs and rRNAs interacting with PIWI proteins are not generated by the ping-pong pathway and could be a source of primary piRNAs. Moreover, our results strongly suggest that the small RNAs-derived from tRNAs and rRNAs are interacting with PIWI proteins, and specifically with MILI. Finally, computational analysis revealed their potential involvement in post-transcriptional regulation of mRNA transcripts suggesting functional convergence among different small RNA classes in germ cells and zygotes. PMID:25805854
Ahn, Youngwook; Sanderson, Brian W; Klein, Ophir D; Krumlauf, Robb
2010-10-01
Mice carrying mutations in Wise (Sostdc1) display defects in many aspects of tooth development, including tooth number, size and cusp pattern. To understand the basis of these defects, we have investigated the pathways modulated by Wise in tooth development. We present evidence that, in tooth development, Wise suppresses survival of the diastema or incisor vestigial buds by serving as an inhibitor of Lrp5- and Lrp6-dependent Wnt signaling. Reducing the dosage of the Wnt co-receptor genes Lrp5 and Lrp6 rescues the Wise-null tooth phenotypes. Inactivation of Wise leads to elevated Wnt signaling and, as a consequence, vestigial tooth buds in the normally toothless diastema region display increased proliferation and continuous development to form supernumerary teeth. Conversely, gain-of-function studies show that ectopic Wise reduces Wnt signaling and tooth number. Our analyses demonstrate that the Fgf and Shh pathways are major downstream targets of Wise-regulated Wnt signaling. Furthermore, our experiments revealed that Shh acts as a negative-feedback regulator of Wnt signaling and thus determines the fate of the vestigial buds and later tooth patterning. These data provide insight into the mechanisms that control Wnt signaling in tooth development and into how crosstalk among signaling pathways controls tooth number and morphogenesis.
Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com; Dezfoulian, Omid; Alirezaei, Masoud
Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivomore » quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact, ghrelin balanced Bax/Bcl-2 ratio toward at increase of Bax level in the spermatocytes and therefore may stimulate apoptosis in these germ cells. In contrast, ghrelin administration significantly suppressed proliferation-associated peptide PCNA in the spermatocytes as well as spermatogonia (P < 0.05). Whereas, caspase-3 activity did not show any marked alteration during the experiment in both groups (P > 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.« less
Widmer, M R; McGinnis, L M; Wulf, D M; Stein, H H
2008-08-01
An experiment was conducted to investigate pig performance, carcass quality, and palatability of pork from pigs fed distillers dried grains with solubles (DDGS), high-protein distillers dried grains (HPDDG), and corn germ. Eighty-four pigs (initial BW, 22 +/- 1.7 kg) were allotted to 7 dietary treatments with 6 replicates per treatment and 2 pigs per pen. Diets were fed for 114 d in a 3-phase program. The control treatment was based on corn and soybean meal. Two treatments were formulated using 10 or 20% DDGS in each phase. Two additional treatments contained HP-DDG in amounts sufficient to substitute for either 50 or 100% of the soybean meal used in the control treatment. An additional 2 treatments contained 5 or 10% corn germ, which was calculated to provide the same amount of fat as 10 or 20% DDGS. Results showed that for the entire experiment, pig performance was not affected by DDGS or HP-DDG, but final BW increased (linear, P < 0.05) as corn germ was included in the diets. Carcass composition and muscle quality were not affected by DDGS, but LM area and LM depth decreased (linear, P < 0.05) as HP-DDG was added to the diets. Lean meat percentage increased and drip loss decreased as corn germ was included in the diets (quadratic, P < 0.05). There was no effect of DDGS on fat quality except that belly firmness decreased (linear, P < 0.05) as dietary DDGS concentration increased. Including HP-DDG or corn germ in the diets did not affect fat quality, except that the iodine value increased (linear, P < 0.05) in pigs fed HP-DDG diets and decreased (linear, P < 0.05) in pigs fed corn germ diets. Cooking loss, shear force, and bacon distortion score were not affected by the inclusion of DDGS, HP-DDG, or corn germ in the diets, and the overall palatability of the bacon and pork chops was not affected by dietary treatment. In conclusion, feeding 20% DDGS or high levels of HP-DDG to growing-finishing pigs did not negatively affect overall pig performance, carcass composition, muscle quality, or palatability but may decrease fat quality. Feeding up to 10% corn germ did not negatively affect pig performance, carcass composition, carcass quality, or pork palatability but increased final BW of the pigs and reduced the iodine value of belly fat.
Rodionova, N S; Isaev, V A; Vishnyakov, A B; Popov, E S; Safonova, N V; Srorublyovtsev, S A
2016-01-01
The results of investigation of alimentary correction of lipid metabolism under the administration of processed products from wheat germ - oil (with the content of policosanol at least 1.5-8.0 mg/100 g, vitamin E - 180-200 mg/100 g, PUFA - 60-65%) and cake flour (with the content of protein - 30-35%, oil with analogue composition -5-7%, digestible carbohydrates - 45-47%, fiber - 18-26%, vitamins B1, B3, B6, B9, E, PP, minerals and trace elements - Zn, Mn, K, Fe, Se, P) are presented. Volunteers among teachers and students of the university aged 16 to 65 years daily consumed wheat germ oil obtained by cold pressing in an amount of 3.5 g, regardless of the meal within 30 days. Then a part of them (30 persons) consumed daily 50 g of oil cake obtained after pressing oil, which provided the intake of the same amount of oil (3.5 g). Lipid metabolism parameters were monitored in experiment participants before receiving the processed products of wheat germ, after germ meal intake and beyond 30 and 60 days after consumption of wheat germ. Data analysis was carried out on three age groups: 16-24, 25-44 and 45- 65 years. All participants of the experiment showed a reduction in total cholesterol level by 6-8%, increasing the concentration of HDL cholesterol by 3-24%, lowering LDL cholesterol concentrations by 4-21%, reduction of triglyceride concentration by 12-24%, a positive correction of atherogenic factor values by for 10-25%. Prolonged action of the investigated foods was established: lipid metabolism parameters in the tested group were better than in the control group after 30 days of intake discontinuation of oil or wheat germ flour, the positive adjustment effect disappeared 60 days after consuming the products. The findings demonstrate a positive effect on the normalization of lipid metabolism when cake flour of wheat germ was administered in daily food ration, similar to the effect of oil intake, which is important for the prevention of cardiovascular diseases and atherosclerosis. Given the significant production of cake flour of wheat germ (up to 90-95% of the raw material) and its not high cost as a secondary biological resource, this product can be recommended to the introduction in the diet of organized groups, including socially vulnerable groups.
Zhang, Yong-de; Jiang, Jin-gang; Liang, Ting; Hu, Wei-ping
2011-12-01
Artificial teeth are very complicated in shape, and not easy to be grasped and manipulated accurately by a single robot. The method of tooth-arrangement by multi-manipulator for complete denture manufacturing proposed in this paper. A novel complete denture manufacturing mechanism is designed based on multi-manipulator and dental arch generator. Kinematics model of the multi-manipulator tooth-arrangement robot is built by analytical method based on tooth-arrangement principle for full denture. Preliminary experiments on tooth-arrangement are performed using the multi-manipulator tooth-arrangement robot prototype system. The multi-manipulator tooth-arrangement robot prototype system can automatically design and manufacture a set of complete denture that is suitable for a patient according to the jaw arch parameters. The experimental results verified the validity of kinematics model of the multi-manipulator tooth-arrangement robot and the feasibility of the manufacture strategy of complete denture fulfilled by multi-manipulator tooth-arrangement robot.
Orthodontic Tooth Movement: A Historic Prospective.
Will, Leslie A
2016-01-01
The earliest report on orthodontic tooth movement in the English literature was published in 1911. Oppenheim carried out studies on baboons to determine what histologic changes occurred during tooth movement. Reitan and many others carried out research into the nature of tooth movement. The pressure-tension model of tooth movement developed from these studies, whereby the two sides of the tooth responded to forces as if in isolation. A second theory, proposed by Stuteville in 1938, was the hydraulic theory of tooth movement. In this theory, fluid from the vasculature, lymphatic system and intercellular spaces responds to the forces of tooth movement, damping the force and limiting movement. Bien and Baumrind expanded on this theory with their own studies in the 1960s. It is clear that both the pressure-tension and fluid flow concepts have merit, but considerable work needs to be done to ascertain the details so that tooth movement can be managed and controlled. © 2016 S. Karger AG, Basel.
2013-01-01
Root development and tooth eruption are very important topics in dentistry. However, they remain among the less-studied and -understood subjects. Root development accompanies rapid tooth eruption, but roots are required for the movement of teeth into the oral cavity. It has been shown that the dental follicle and bone remodeling are essential for tooth eruption. So far, only limited genes have been associated with root formation and tooth eruption. This may be due to the difficulties in studying late stages of tooth development and tooth movement and the lack of good model systems. Transgenic mice with eruption problems and short or no roots can be used as a powerful model for further deciphering of the cellular, molecular, and genetic mechanisms underlying root formation and tooth eruption. Better understanding of these processes can provide hints on delivering more efficient dental therapies in the future. PMID:23345536
Pluripotent stem cells and reprogrammed cells in farm animals.
Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner
2011-08-01
Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.
Novel Soy Germ Pasta Enriched in Isoflavones Ameliorates Gastroparesis in Type 2 Diabetes
Setchell, Kenneth D.R.; Nardi, Elisabetta; Battezzati, Pier-Maria; Asciutti, Stefania; Castellani, Danilo; Perriello, Gabriele; Clerici, Carlo
2013-01-01
OBJECTIVE To determine the effect of soy germ pasta enriched in biologically active isoflavone aglycons on gastric emptying in type 2 diabetic patients with gastroparesis. RESEARCH DESIGN AND METHODS This randomized double-blind, placebo-controlled study compared soy germ pasta with conventional pasta for effects on gastric emptying. Patients (n = 10) with delayed gastric emptying consumed one serving per day of each pasta for 8 weeks, with a 4-week washout. Gastric emptying time (t1/2) was measured using the [13C]octanoic acid breath test at baseline and after each period, and blood glucose and insulin concentrations were determined after oral glucose load. RESULTS Soy germ pasta significantly accelerated the t1/2 in these patients (161.2 ± 17.5 min at baseline vs. 112.6 ± 11.2 min after treatment, P = 0.009). Such change differed significantly (P = 0.009) from that for conventional pasta (153.6 ± 24.2 vs. 156.2 ± 27.4 min), without affecting glucose or insulin concentrations. CONCLUSIONS These findings suggest that soy germ pasta may offer a simple dietary approach to managing diabetic gastropathy. PMID:23835688
Barber, Ruth; Plumb, Mark A.; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E.
2002-01-01
Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans. PMID:11997464