Xue, S; Zhao, Q L; Wei, L L; Ma, X P; Tie, M
2013-01-01
The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm.
Sinkkonen, Aki; Kauppi, Sari; Simpanen, Suvi; Rantalainen, Anna-Lea; Strömmer, Rauni; Romantschuk, Martin
2013-03-01
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g(-1), or moderate, ca. 20 μg g(-1)) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.
Should precipitation influence dust emission in global dust models?
NASA Astrophysics Data System (ADS)
Okin, Gregory
2016-04-01
Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokisch, J.; Gyori, Z.; Kovacs, B.
The chromium cycle in soil was studied with speciation of chromium. The aim was to look for the possibilities the mobilization of chromium(III) and to measure the rate of chromate reduction in nature and pot and field experiments in Hungarian soils. The authors developed a sensitive and simple method for chromium speciation with a microcolumn connected an inductively coupled plasma atomic emission spectrometer. Detection limits are convenient to measure chromium forms in a 0.01 M CaCl{sub 2} extract of a contaminated soil, but it is not enough to measure that of the uncontaminated soils. CR(VI) as chromate anion is notmore » adsorbed on pH dependent temporary charges of clays but in strongly acidic soil. Therefore CR(VI) can be leached out easily from the top layer of soil and can be transported into the ground water. Chromate ion can be reduced to CR(III) by organic matter of soil in acidic medium. CR(VI) is more stable at higher pH and lower humus content. Thus the reduction much quicker in the upper, weakly acidic top layer. CR(VI) oxidizes the organic matter of soil. The rate of this reaction depends on pH values, the humus content of the soil and temperature. CR(III) leaching in different uncontaminated soils was studied too. There are 3 pathways of mobilization of Cr(III). When pH decreases in soil the CR(III) becomes more soluble, similarly to the aluminium(III) ion. When the soil contains large quantity of water soluble organic ligands, Cr makes complexes with them and complexes formed can be leached out from the top layer. The third possibility is the oxidation of CR(III) to Cr(VI). It could happen on surface of manganese dioxide in the well-aired top layer.« less
Issues in the inverse modeling of a soil infiltration process
NASA Astrophysics Data System (ADS)
Kuraz, Michal; Jacka, Lukas; Leps, Matej
2017-04-01
This contribution addresses issues in evaluation of the soil hydraulic parameters (SHP) from the Richards equation based inverse model. The inverse model was representing single ring infiltration experiment on mountainous podzolic soil profile, and was searching for the SHP parameters of the top soil layer. Since the thickness of the top soil layer is often much lower than the depth required to embed the single ring or Guelph permeameter device, the SHPs for the top soil layer are very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the single ring infiltration process, where, especially, the initial unsteady part of the experiment is expected to provide very useful data for evaluating the retention curve parameters (excluding the residual water content) and the saturated hydraulic conductivity. The main issue, which is addressed in this contribution, is the uniqueness of the Richards equation inverse model. We tried to answer the question whether is it possible to characterize the unsteady infiltration experiment with a unique set of SHPs values, and whether are all SHP parameters vulnerable with the non-uniqueness. Which is an important issue, since we could further conclude whether the popular gradient methods are appropriate here. Further the issues in assigning the initial and boundary condition setup, the influence of spatial and temporal discretization on the values of the identified SHPs, and the convergence issues with the Richards equation nonlinear operator during automatic calibration procedure are also covered here.
Predicting Soil Strength in Terms of Cone Index and California Bearing Ratio for Trafficability
2016-03-01
conditions, however, soil strength will be a key factor. The Wet- Slippery conditions are considered when the top layer has reached a point of...the soil . Modeling moisture content of a soil in a layered system can be conducted using a finite difference water budget model illustrated in...Figure 2 (Sellers et al. 1986). Figure 2 shows how flow Q through the soil layer ij is modeled. In general, saturation of layer Qi due to rainfall is
Uddin, Shihab; Löw, Markus; Parvin, Shahnaj; Fitzgerald, Glenn J; Tausz-Posch, Sabine; Armstrong, Roger; O'Leary, Garry; Tausz, Michael
2018-01-01
Through stimulation of root growth, increasing atmospheric CO2 concentration ([CO2]) may facilitate access of crops to sub-soil water, which could potentially prolong physiological activity in dryland environments, particularly because crops are more water use efficient under elevated [CO2] (e[CO2]). This study investigated the effect of drought in shallow soil versus sub-soil on agronomic and physiological responses of wheat to e[CO2] in a glasshouse experiment. Wheat (Triticum aestivum L. cv. Yitpi) was grown in split-columns with the top (0-30 cm) and bottom (31-60 cm; 'sub-soil') soil layer hydraulically separated by a wax-coated, root-penetrable layer under ambient [CO2] (a[CO2], ∼400 μmol mol-1) or e[CO2] (∼700 μmol mol-1) [CO2]. Drought was imposed from stem-elongation in either the top or bottom soil layer or both by withholding 33% of the irrigation, resulting in four water treatments (WW, WD, DW, DD; D = drought, W = well-watered, letters denote water treatment in top and bottom soil layer, respectively). Leaf gas exchange was measured weekly from stem-elongation until anthesis. Above-and belowground biomass, grain yield and yield components were evaluated at three developmental stages (stem-elongation, anthesis and maturity). Compared with a[CO2], net assimilation rate was higher and stomatal conductance was lower under e[CO2], resulting in greater intrinsic water use efficiency. Elevated [CO2] stimulated both above- and belowground biomass as well as grain yield, however, this stimulation was greater under well-watered (WW) than drought (DD) throughout the whole soil profile. Imposition of drought in either or both soil layers decreased aboveground biomass and grain yield under both [CO2] compared to the well-watered treatment. However, the greatest 'CO2 fertilisation effect' was observed when drought was imposed in the top soil layer only (DW), and this was associated with e[CO2]-stimulation of root growth especially in the well-watered bottom layer. We suggest that stimulation of belowground biomass under e[CO2] will allow better access to sub-soil water during grain filling period, when additional water is converted into additional yield with high efficiency in Mediterranean-type dryland agro-ecosystems. If sufficient water is available in the sub-soil, e[CO2] may help mitigating the effect of drying surface soil.
Resilient modulus characterization of Alaskan granular base materials.
DOT National Transportation Integrated Search
2010-08-01
When spring comes to cold regions, the active layer (the top few feet of soil that freezes and thaws seasonally) thaws quickly, while : deeper soil remains frozen. The active layer becomes saturated with water from snowmelt that collects atop the fro...
2016-01-01
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0–40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0–20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0–40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg−1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment. PMID:27560826
Wang, Xiukang; Xing, Yingying
2016-01-01
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0-40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0-20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0-40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg-1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment.
Dissipation dynamics of terbuthylazine in soil during the maize growing season.
Stipičević, Sanja; Mendaš, Gordana; Dvoršćak, Marija; Fingler, Sanja; Galzina, Natalija; Barić, Klara
2017-12-20
Ever since terbuthylazine (TBA) replaced atrazine in herbicide crop treatment, its much greater persistence has raised considerable environmental concern. The aim of our field experiment was to establish the dissipation dynamics of TBA and its degradation product desethylterbuthylazine (DET) in soil over five months of maize growth. We applied TBA as part of pre-emergent treatment in the regular and double-the-regular amounts. Soil samples were collected periodically at the following depths: 0-10 cm, 10-20 cm, 20-30 cm, and 30-50 cm. For TBA and DET soil residue analysis we used microwave-assisted extraction with methanol, followed by HPLC-UV/DAD. Regardless of the application rate, more than 80 % of the applied TBA dissipated from the first 50 cm of soil in the two months after herbicide application and 120 mm of rainfall. Three months later (at maize harvest), less than 4 % of total TBA remained in the soil, mostly in the top 20 cm rich with organic carbon on which TBA is likelier to adsorb. The loss of TBA from soil coincided with the rise in DET, especially the top soil layers, during the periods of low rainfall and highest soil temperatures. This points to biodegradation as the main route of TBA dissipation in humic soils. The applied amount had no significant effect on TBA dissipation in the top (humic) layers, but in the layers with less than 1 % of organic carbon, it was higher when the doublethe- regular dose was applied.
Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.
2016-06-28
Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.
NASA Astrophysics Data System (ADS)
Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin
2016-12-01
The CH4 emissions from soil were influenced by the changeable CH4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH4 production sites during the rice-growing seasons. This layer acted as the source of CH4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha-1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH4 concentrations and diffusive effluxes induced by N in paddy fields.
Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin
2016-12-08
The CH 4 emissions from soil were influenced by the changeable CH 4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH 4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH 4 production sites during the rice-growing seasons. This layer acted as the source of CH 4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH 4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH 4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha -1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH 4 concentrations and diffusive effluxes induced by N in paddy fields.
Xu, Xiang-ru; Luo, Kun; Zhou, Bao-ku; Wang, Jing-kuan; Zhang, Wen-ju; Xu, Ming-gang
2015-07-01
The characteristics and changes of soil organic carbon (SOC) and total nitrogen (TN) in different size particles of soil under different agricultural practices are the basis for better understanding soil carbon sequestration of mollisols. Based on a 31-year long-term field experiment located at the Heilongjiang Academy of Agricultural Sciences (Harbin) , soil samples under six treatments were separated by size-fractionation method to explore changes and distribution of SOC and TN in coarse sand, fine sand, silt and clay from the top layer (0-20 cm) and subsurface layer (20-40 cm). Results showed that long-term application of manure (M) increased the percentages of SOC and TN in coarse sand and clay size fractions. In the top layer, application of nitrogen, phosphorus and potassium fertilizers combined with manure (NPKM) increased the percentages of SOC and TN in coarse sand by 191.3% and 179.3% compared with the control (CK), whereas M application increased the percentages of SOC and TN in clay by 45% and 47% respectively. For subsurface layers, the increase rates of SOC and TN in corresponding parts were lower than that in top layer. In the surface and subsurface layers, the percentages of SOC storage in silt size fraction accounted for 42%-63% and 48%-54%, TN storage accounted for 34%-59% and 41%-47%, respectively. The enrichment factors of SOC and TN in coarse sand and clay fractions of surface layers increased significantly under the treatments with manure. The SOC and TN enrichment factors were highest in the NPKM, being 2.30 and 1.88, respectively, while that in the clay fraction changed little in the subsurface layer.
Lukšienė, Benedikta; Puzas, Andrius; Remeikis, Vidmantas; Druteikienė, Rūta; Gudelis, Arūnas; Gvozdaitė, Rasa; Buivydas, Šarūnas; Davidonis, Rimantas; Kandrotas, Gintautas
2015-05-01
Spatial distribution of activity concentrations of (137)Cs, (90)Sr, and (239,240)Pu in the top layer of undisturbed meadow soils was compared between two regional transects across Lithuania: one in the SW region, more affected by the Chernobyl radioactive fallout, and the other in the NE region. Radiochemical, γ-, α-, β-, and mass spectrometric methods were used to determine the radionuclide activity. Our results validate that higher activity concentrations in the top soil layer were present in the SW region, despite the fact that sampling was performed after 22 years of the Chernobyl Nuclear Power Plant (NPP) accident. Using the activity concentration ratio (137)Cs/(239,240)Puglobal, the contribution of the Chernobyl NPP accident to the total radiocesium activity concentrations in these meadow soils was evaluated and found to be in the range of 6.5-59.1%. Meanwhile, the activity concentration ratio (238)Pu/(239,240)Pu showed that Chernobyl-derived Pu occurred at almost half of the sampling sites. The locations with maximal values of 47% of Chernobyl-derived Pu material were close to northeastern Poland, where deposition of most of non-volatile radioisotopes from the Chernobyl plume was determined.
Cornelius, Mary L; Osbrink, Weste L A
2010-06-01
This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and shelter tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termites built shelter tubes on the sides of the containers. In containers with sand, termites built shelter tubes directly into the air and covered the sides of the container with a layer of sand. The interaction of soil type and moisture availability affected termite movement, feeding, and survival. In assays with moist soils, termites were more likely to aggregate in top soil over potting soil and peat moss. However, termites were more likely to move into containers with dry peat moss and potting soil than containers with dry sand and clay. Termites were also significantly more likely to move into containers with dry potting soil than dry top soil. In the assay with dry soils, termite mortality was high even though termites were able to travel freely between moist sand and dry soil, possibly due to desiccation caused by contact with dry soil. Evaporation from potting soil and peat moss resulted in significant mortality, whereas termites were able to retain enough moisture in top soil, sand, and clay to survive for 25 d. The interaction of soil type and moisture availability influences the distribution of foraging termites in microhabitats.
Model test on partial expansion in stratified subsidence during foundation pit dewatering
NASA Astrophysics Data System (ADS)
Wang, Jianxiu; Deng, Yansheng; Ma, Ruiqiang; Liu, Xiaotian; Guo, Qingfeng; Liu, Shaoli; Shao, Yule; Wu, Linbo; Zhou, Jie; Yang, Tianliang; Wang, Hanmei; Huang, Xinlei
2018-02-01
Partial expansion was observed in stratified subsidence during foundation pit dewatering. However, the phenomenon was suspected to be an error because the compression of layers is known to occur when subsidence occurs. A slice of the subsidence cone induced by drawdown was selected as the prototype. Model tests were performed to investigate the phenomenon. The underlying confined aquifer was generated as a movable rigid plate with a hinge at one end. The overlying layers were simulated with remolded materials collected from a construction site. Model tests performed under the conceptual model indicated that partial expansion occurred in stratified settlements under coordination deformation and consolidation conditions. During foundation pit dewatering, rapid drawdown resulted in rapid subsidence in the dewatered confined aquifer. The rapidly subsiding confined aquifer top was the bottom deformation boundary of the overlying layers. Non-coordination deformation was observed at the top and bottom of the subsiding overlying layers. The subsidence of overlying layers was larger at the bottom than at the top. The layers expanded and became thicker. The phenomenon was verified using numerical simulation method based on finite difference method. Compared with numerical simulation results, the boundary effect of the physical tests was obvious in the observation point close to the movable endpoint. The tensile stress of the overlying soil layers induced by the underlying settlement of dewatered confined aquifer contributed to the expansion phenomenon. The partial expansion of overlying soil layers was defined as inversed rebound. The inversed rebound was induced by inversed coordination deformation. Compression was induced by the consolidation in the overlying soil layers because of drainage. Partial expansion occurred when the expansion exceeded the compression. Considering the inversed rebound, traditional layer-wise summation method for calculating subsidence should be revised and improved.
Validating Large Scale Networks Using Temporary Local Scale Networks
USDA-ARS?s Scientific Manuscript database
The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...
Lee, Eun-Hee; Moon, Kyung-Eun; Cho, Kyung-Suk
2017-01-20
The long-term performance of lab-scale biocovers for the simulation of engineered landfill cover soils was evaluated. Methane (CH 4 ), trimethylamine (TMA), and dimethyl sulfide (DMS) were introduced into the biocovers as landfill gases for 134 days and the removal performance was evaluated. The biocover systems were capable of simultaneously removing methane, TMA, and DMS. Methane was mostly eliminated in the top layer of the systems, while TMA and DMS were removed in the bottom layer. Overall, the methane removal capacity and efficiency were 224.8±55.6g-CH 4 m -2 d -1 and 66.6±12.8%, respectively, whereas 100% removal efficiencies of both TMA and DMS were achieved. Using quantitative PCR and pyrosequencing assay, the bacterial and methanotrophic communities in the top and bottom layers were analyzed along with the removal performance of landfill gases in the biocovers. The top and bottom soil layers possessed distinct communities from the original inoculum, but their structure dynamics were different from each other. While the structures of the bacterial and methanotrophic communities showed little change in the top layer, both communities in the bottom layer were considerably shifted by adding TMA and DMA. These findings provide information that can extend the understanding of full-scale biocover performance in landfills. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling soil moisture memory in savanna ecosystems
NASA Astrophysics Data System (ADS)
Gou, S.; Miller, G. R.
2011-12-01
Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants, as these can maintain transpiration for a longer time even through the top soil layer dries out.
Kim, S B; Bredlaw, M; Korolevych, V Y
2012-01-01
Tritium is routinely released by the Chalk River Laboratories (CRL) nuclear facilities. Three International HT release experiments have been conducted at the CRL site in the past. The site has not been disturbed since the last historical atmospheric testing in 1994 and presents an opportunity to assess the retention of tritium in soil. This study is devoted to the measurement of HTO and OBT activity concentration profiles in the subsurface 25 cm of soil. In terms of soil HTO, there is no evidence from the past HT release experiments that HTO was retained. The HTO activity concentration in the soil pore water appears similar to concentrations found in background areas in Ontario. In contrast, OBT activity concentrations in soil at the same site were significantly higher than HTO activity concentrations in soil. Elevated OBT appears to reside in the top layer of the soil (0-5 cm). In addition, OBT activity concentrations in the top soil layer did not fluctuate much with season, again, quite in contrast with soil HTO. This result suggests that OBT activity concentrations retained the signature of the historical tritium releases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Design high water clearances for highway pavements : [executive summary].
DOT National Transportation Integrated Search
2008-01-01
The majority of state roads in Florida are built using asphalt concrete surfaces. They are constructed in layers. The bottom layer consists of the native soil. The top layer is the surface course, or pavement. It is built upon one or more intermediat...
Manure and tillage use in remediation of eroded land and impacts on soil chemical properties
USDA-ARS?s Scientific Manuscript database
Soil loss through wind and water erosion is an ongoing problem in semiarid regions. A thin layer of top soil loss over a hectare of cropland could be corresponding to tons of productive soil loss per hectare. The objectives of this study were to evaluate the influence of beef feedlot manure, tilla...
76 FR 67379 - Importation of Dracaena Plants From Costa Rica
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... rooting zone for plants produced by air layering) to the farthest terminal growing point. Paragraph (y)(2... the soil line (or top of the rooting zone for plants produced by air layering) to the farthest...
Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident.
El Samad, O; Zahraman, K; Baydoun, R; Nasreddine, M
2007-01-01
Fallout from the Chernobyl reactor accident due to the transport of a radioactive cloud over Lebanon in the beginning of May 1986 was studied 12 years after the accident for determining the level of (137)Cs concentration in soil. Gamma spectroscopy measurements were performed by using coaxial high sensitivity HPGe detectors. More than 90 soil samples were collected from points uniformly distributed throughout the land of Lebanon in order to evaluate their radioactivity. The data obtained showed a relatively high (137)Cs activity per surface area contamination, up to 6545Bqm(-2) in the top soil layer 0-3cm. The average activity of (137)Cs in the top soil layer 0-3cm in depth was 59.7Bqkg(-1) dry soil ranging from 15 to 119Bqkg(-1) dry soil. The horizontal variability was found to be about 45% between the sampling sites. The depth distribution of total (137)Cs activity in soil showed an exponential decrease. Estimation of the annual effective dose due to external radiation from (137)Cs contaminated soil for selected sites gave values ranging from 19.3 to 91.6 micro Svy(-1).
Mars Rover Studies Soil on Mars
NASA Technical Reports Server (NTRS)
2004-01-01
Both out on the plains of Gusev Crater and in the 'Columbia Hills,' NASA's Mars Exploration Rover Spirit has encountered a thin (approximately 1 millimeter or 0.04 inch thick), light-colored, fine-grained layer of material on top of a dark-colored, coarser layer of soil. In the hills, Spirit stopped to take a closer look at soil compacted by one of the rover's wheels. Spirit took this image with the front hazard-avoidance camera during the rover's 314th martian day, or sol (Nov. 19, 2004).van Roon, André; Parsons, John R; Krap, Lenny; Govers, Harrie A J
2005-09-01
This theoretical study was performed to investigate the influence of soil temperature, soil water content and soil organic carbon fraction on the mobility of monoterpenes (C10HnOn') applied as pesticides to a top soil layer. This mobility was expressed as the amount volatilized and leached from the contaminated soil layer after a certain amount of time. For this, (slightly modified) published analytical solutions to a one dimensional, homogeneous medium, diffusion/advection/biodegradation mass balance equation were used. The required input-parameters were determined in a preceding study. Because the monoterpenes studied differ widely in the values for their physico-chemical properties, the relative importance of the various determinants also differed widely. Increasing soil water saturation reduced monoterpene vaporization and leaching losses although a modest increase was usually observed at high soil water contents. Organic matter served as the major retention domain, reducing volatilization and leaching losses. Increasing temperature resulted in higher volatilization and leaching losses. Monoterpene mobility was influenced by vertical water flow. Volatilization losses could be reduced by adding a clean soil layer on top of the contaminated soil. Detailed insight into the specific behaviour of different monoterpenes was obtained by discussing intermediate calculation results; the transport retardation factors and effective soil diffusion coefficients. One insight was that the air-water interface compartment is probably not an important partitioning domain for monoterpenes in most circumstances. The results further indicated that biodegradation is an important process for monoterpenes in soil.
USDA-ARS?s Scientific Manuscript database
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...
SMOS brightness temperature assimilation into the Community Land Model
NASA Astrophysics Data System (ADS)
Rains, Dominik; Han, Xujun; Lievens, Hans; Montzka, Carsten; Verhoest, Niko E. C.
2017-11-01
SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010-2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.
Fly ash in landfill top covers - a review.
Brännvall, E; Kumpiene, J
2016-01-01
Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.
Effect of integrating straw into agricultural soils on soil infiltration and evaporation.
Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong
2012-01-01
Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.
Magnetic Measurements of Atmospheric Dust Deposition in Soils
NASA Astrophysics Data System (ADS)
Kapička, Aleš; Petrovský, Eduard; Grison, Hana; Podrázský, Vilém; Křížek, Pavel
2010-05-01
Atmospheric dust of anthropogenic origin contains significant portion of minerals characterized by ferrimagnetic properties [1,2]. These minerals, mostly iron oxides, can serve as tracers of industrial pollutants in soil layers. Moreover, recent results, e.g., [3,4] show significant correlation between concentration-dependent magnetic parameters (e.g., low-field magnetic susceptibility) and concentration of heavy metals (e.g., Pb, Zn, Cd). In our paper we have investigated magnetic properties of depth soil profiles from Krušné hory Mountains (Czech Republic), which belong to a highly contaminated, so-called Black Triangle in central Europe. Emissions are determined by considerable concentration of big sources of pollution (power plants burning fossil fuel, metallurgical and chemical industry). Increased values of magnetic susceptibility (25 - 200 × 10-5 SI) were clearly identified in the top-soil layers. Thermomagnetic analyses and SEM observation indicate that the accumulated anthropogenic ferrimagnetics dominate these layers. Magnetic enhancement is limited to depths of 4-7 cm below the soil surface, usually in F-H or top of Ah soil horizons; deeper soil horizons contain mainly magnetically weak materials and are characterized by much lower values of susceptibility (up to 30 × 10-5 SI). Significant magnetic parameters (e.g., Curie temperature Tc) and SEM results of contaminated topsoils are comparable with magnetic parameters of atmospheric dust, collected (using high-volume samplers) at the same localities.
Depth distribution of sulfonamide antibiotics in pore water of an undisturbed loamy grassland soil.
Burkhardt, Michael; Stamm, Christian
2007-01-01
Despite the concern raised by the detections of veterinary antibiotics like sulfonamides (SA) in the environment, their fate in soils is still not sufficiently understood. In a previous article, we demonstrated that manure may substantially influence losses of SA via runoff from soils. Here, we report on the effect of manure on SA availability in soil pore water. Three sulfonamides (sulfadimidine, sulfadiazine, sulfathiazole) and two tracers (bromide and Brilliant Blue) were either applied in manure or as aqueous solution on grassland plots. After 1 and 3 d contact time, the plots were irrigated with deionized water. One day after irrigation, soil cores were taken and profiles of pore water concentrations were determined. The median SA concentrations of the top layer on manured plots varied between 40 and 60 microg L(-1) and between 10 and 30 microg L(-1) on the controls. For the conservative tracer Br the mass recovery was about 60 to 75% and much lower for the SA (2 to 14%). Apparent distribution coefficients K(d,app) of the SA in the topsoil ranged between 3 and 15 L kg(-1) on the manured plots and between 30 to 35 kg L(-1) on the controls. Below the top layer, the concentration distribution showed a pattern typical for preferential flow. Locally, SA concentrations down to 30- to 50-cm depth were as high as in the top 5 cm with little effect of the two application matrices. In the topmost layer, the data indicate that 10 to 25% of sulfadimidine were transformed to its acetyl-metabolite.
Distribution of pesticide residues in soil and uncertainty of sampling.
Suszter, Gabriela K; Ambrus, Árpád
2017-08-03
Pesticide residues were determined in about 120 soil cores taken randomly from the top 15 cm layer of two sunflower fields about 30 days after preemergence herbicide treatments. Samples were extracted with acetone-ethyl acetate mixture and the residues were determined with GC-TSD. Residues of dimethenamid, pendimethalin, and prometryn ranged from 0.005 to 2.97 mg/kg. Their relative standard deviations (CV) were between 0.66 and 1.13. The relative frequency distributions of residues in soil cores were very similar to those observed in root and tuber vegetables grown in pesticide treated soils. Based on all available information, a typical CV of 1.00 was estimated for pesticide residues in primary soil samples (soil cores). The corresponding expectable relative uncertainty of sampling is 20% when composite samples of size 25 are taken. To obtain a reliable estimate of the average residues in the top 15 cm layer of soil of a field up to 8 independent replicate random samples should be taken. To obtain better estimate of the actual residue level of the sampled filed would be marginal if larger number of samples were taken.
Time domain reflectometry measurements of solute transport across a soil layer boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissen, H.H.; Moldrup, P.; Kachanoski, R.G.
2000-02-01
The mechanisms governing solute transport through layered soil are not fully understood. Solute transport at, above, and beyond the interface between two soil layers during quasi-steady-state soil water movement was investigated using time domain reflectometry (TDR). A 0.26-m sandy loam layer was packed on top of a 1.35-m fine sand layer in a soil column. Soil water content ({theta}) and bulk soil electrical conductivity (EC{sub b}) were measured by 50 horizontal and 2 vertical TDR probes. A new TDR calibration method that gives a detailed relationship between apparent relative dielectric permittivity (K{sub s}) and {theta} was applied. Two replicate solutemore » transport experiments were conducted adding a conservative tracer (CCl) to the surface as a short pulse. The convective lognormal transfer function model (CLT) was fitted to the TDR-measured time integral-normalized resident concentration breakthrough curves (BTCs). The BTCs and the average solute-transport velocities showed preferential flow occurred across the layer boundary. A nonlinear decrease in TDR-measured {theta} in the upper soil toward the soil layer boundary suggests the existence of a 0.10-m zone where water is confined towards fingered flow, creating lateral variations in the area-averaged water flux above the layer boundary. A comparison of the time integral-normalized flux concentration measured by vertical and horizontal TDR probes at the layer boundary also indicates a nonuniform solute transport. The solute dispersivity remained constant in the upper soil layer, but increased nonlinearly (and further down, linearly) with depth in the lower layer, implying convective-dispersive solute transport in the upper soil, a transition zone just below the boundary, and stochastic-convective solute transport in the remaining part of the lower soil.« less
Pandelova, Marchela; Henkelmann, Bernhard; Bussian, Bernd M; Schramm, Karl-Werner
2018-01-01
Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) were detected in 86 humic topsoil layers and in a subset of 11 randomly selected top mineral forest soils at the depths of 0-5cm and 5-10cm collected from different federal states of Germany. The distribution of these persistent organic pollutants (POPs) in humic topsoils with respect to vegetation cover (coniferous vs. deciduous vs. mixed), total organic carbon (TOC), altitude and latitude data was investigated. There is cross correlation between the contents and TOC while the correlation with latitude indicates higher abundances of POPs in central Germany where there is high population density accompanied with industrial activities. The calculated stocks suggest that humus type (mor, mull, or moder) in conjunction with forest type can explain the relative POPs abundances in different soil layers. Generally, humic topsoils show highest contents of POPs compare to the two mineral soils with a ratio of 100:10:1. However, the stock humic layers of coniferous stands contribute about 50% to the total stock, whereas at deciduous stands the stock is mainly located in the upper mineral soil layer (0-5cm). The soil-water distribution coefficients (Kd) were calculated to estimate the potential translocation in the different soil types. The Kd values vary among the PCBs and PCDD/Fs congeners and are most variable for humic topsoils. There is pronounced chemical abundance in the top mineral soils with increasing Kd and this points to non-water bound transport processes for superlipophilic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Lukšienė, Benedikta; Marčiulionienė, Danutė; Rožkov, Andrej; Gudelis, Arūnas; Holm, Elis; Galvonaitė, Audronė
2012-11-15
The impact of the operating Ignalina Nuclear Power Plant (INPP) on the contamination of top soil layer with artificial radionuclides has been studied. Results of the investigation of artificial gamma-ray emitting radionuclide distribution in soil in the vicinity of the INPP and distant regions in Lithuania in 1996-2008 (INPP operational period) show that nowadays (137)Cs remains the most important artificial gamma-ray emitting radionuclide in the upper soil layer. Mean (137)Cs activity concentrations in the top soil layer in the vicinity of the INPP were found to be significantly lower compared to those in remote regions of Varėna and Plungė (~300 km from INPP). In 1996 and 1998 mean (137)Cs activity concentrations were in the range of 28-45 Bq/kg in the nearest vicinity to the INPP, 103 Bq/kg in Varėna and 340 Bq/kg in Plungė region. (137)Cs activity concentrations were 5-20 times lower in meadow soil (4-14 Bq/kg) compared to swamp and forest soil. (60)Co, the INPP origin radionuclide, was detected in samples only in 1996 and 2000, and the activity concentration of (60)Co was found to be in the range from 0.4 to 7.0 Bq/kg at the sampling ground nearest to the INPP. Average annual activity concentrations of the INPP origin (137)Cs and (60)Co in the air and depositions in the INPP region were modeled using Pasquill-Gifford equations. The modeling results of (137)Cs and (60)Co depositional load in the INPP vicinity agree with the experimentally obtained values. Our results provide the evidence that the operation of INPP did not cause any significant contamination in soil surface. Copyright © 2012 Elsevier B.V. All rights reserved.
Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration
NASA Astrophysics Data System (ADS)
Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon
2011-03-01
Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.
Han, Ziming; Deng, Mingwen; Yuan, Anqi; Wang, Jiahui; Li, Hao; Ma, Jincai
2018-06-01
Soil freeze-thaw cycles (FTCs) change soil physical, chemical, and biological properties, however information regarding their vertical variations in response to FTCs is limited. In this work, black soil (silty loam) packed soil columns were exposed to 8 FTCs, and soil properties were determined for each of vertical layer of soil columns. The results revealed that after FTCs treatment, moisture and electrical conductivity (EC) salinity tended to increase in upper soil layers. Increments of ammonium nitrogen (NH 4 + -N) and nitrate nitrogen (NO 3 - -N) in top layers (0-10cm) were greater than those in other layers, and increments of water soluble organic carbon (WSOC) and decrease of microbial biomass carbon (MBC) in middle layers (10-20cm) were greater than those in both ends. Overall, microbial community structure was mainly influenced by soil physical properties (moisture and EC) and chemical properties (pH and WSOC). For bacterial (archaeal) and fungal communities, soil physical properties, chemical properties and their interaction explained 79.73% and 82.66% of total variation, respectively. Our results provided insights into the vertical variation of soil properties caused by FTCs, and such variation had a major impact on the change of structure and composition of soil bacterial and fungal communities. Copyright © 2017 Elsevier B.V. All rights reserved.
Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?
Selonen, Salla; Liiri, Mira; Setälä, Heikki
2014-04-01
The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.
Normal Incidence for Graded Index Surfaces
NASA Technical Reports Server (NTRS)
Khankhoje, Uday K.; Van Zyl, Jakob
2011-01-01
A plane wave is incident normally from vacuum (eta(sub 0) = 1) onto a smooth surface. The substrate has three layers; the top most layer has thickness d(sub 1) and permittivity epsilon(sub 1). The corresponding numbers for the next layer are d(sub 2); epsilon(sub 2), while the third layer which is semi-in nite has index eta(sub 3). The Hallikainen model [1] is used to relate volumetric soil moisture to the permittivity. Here, we consider the relation for the real part of the permittivity for a typical loam soil: acute epsilon(mv) = 2.8571 + 3.9678 x mv + 118:85 x mv(sup 2).
Heat transfer and phase transitions of water in multi-layer cryolithozone-surface systems
NASA Astrophysics Data System (ADS)
Khabibullin, I. L.; Nigametyanova, G. A.; Nazmutdinov, F. F.
2018-01-01
A mathematical model for calculating the distribution of temperature and the dynamics of the phase transfor-mations of water in multilayer systems on permafrost-zone surface is proposed. The model allows one to perform calculations in the annual cycle, taking into account the distribution of temperature on the surface in warm and cold seasons. A system involving four layers, a snow or land cover, a top layer of soil, a layer of thermal-insulation materi-al, and a mineral soil, is analyzed. The calculations by the model allow one to choose the optimal thickness and com-position of the layers which would ensure the stability of structures built on the permafrost-zone surface.
NASA Astrophysics Data System (ADS)
Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed
2017-04-01
Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility
Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo
2016-01-01
Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602
2007-07-23
KENNEDY SPACE CENTER, FLA. -- The top of NASA's Phoenix Mars Lander can be seen inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida. Launch of Phoenix on the Delta II launch vehicle is scheduled for no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-23
KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, the top of NASA's Phoenix Mars Lander can be seen after workers removed the container lid. Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
Barnes, Andrew D
2002-07-01
One-year-old loblolly pine (Pinus taeda L.) seedlings from four seed sources (Arkansas, Georgia, Texas and Virginia) grown in 1-m-deep sand-filled pits in two water regimes (well-watered and drought) were studied, to gain insight into the process of seedling establishment. Whole-plant transpiration was measured biweekly from July to December. Whole-plant harvests were conducted at 6-week intervals from April to December. Whole-plant transpiration and transpiration per unit leaf and root area were affected by treatment, seedlot and phenology. Seedlings of the Arkansas seedlot maintained significantly higher transpiration rates per unit leaf and root area during drought than seedlings of the Virginia, Georgia or Texas seedlots, but did not accumulate greater biomass. The high transpiration rates of the Arkansas seedlings were attributed to their deep root systems. Allometric relationships indicated that, relative to the whole plant, biomass allocation to needles of drought-treated seedlings was enhanced during the summer (allometric ratio 1.09), whereas allocation to roots was enhanced in the spring and fall (allometric ratios of 1.13 and 1.09, respectively). Relative to the whole plant, biomass allocation to needles of well-watered seedlings was enhanced throughout the experiment (allometric ratio of 1.16 declining to 1.05), whereas the allometric ratio of root to total biomass was 0.89 or less throughout. Allometric relationships also indicated variation in biomass partitioning to roots in three soil layers (0-30, 30-60 and 60-100 cm), which differed among harvests in each soil layer. Root growth in both well-watered and drought-treated seedlings was concentrated in the top soil layer in the spring, shifted to the middle and bottom soil layers in the summer, and then increased in the top soil layer in the fall. Compared with well-watered seedlings, drought-treated seedlings had higher rates of root growth in the bottom soil layer in the fall, a characteristic that would confer tolerance to future periods of limited soil water availability. 2002 Heron Publishing--Victoria, Canada
Ginocchio, Rosanna; Carvallo, Gastón; Toro, Ignacia; Bustamante, Elena; Silva, Yasna; Sepúlveda, Nancy
2004-01-01
Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability.
The temperature characteristics of biological active period of the peat soils of Bakchar swamp
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-01-01
The results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016 are presented. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface to 240 cm. All sites were divided into two groups according the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). Waterlogged sites are better warmed in the summer period, and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is observed in July. The minimum temperature on the surface observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C·cm-1 in February and 1.1 °C·cm-1 in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn, beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but degradation from the top is faster.
Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks
NASA Astrophysics Data System (ADS)
Lorenz, K.
2015-12-01
Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.
Phenotyping for the dynamics of field wheat root system architecture
NASA Astrophysics Data System (ADS)
Chen, Xinxin; Ding, Qishuo; Błaszkiewicz, Zbigniew; Sun, Jiuai; Sun, Qian; He, Ruiyin; Li, Yinian
2017-01-01
We investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development. Root vertical angle in the 40 mm surface soil layer was the largest, but steadily decreased along the soil depth. After 98d, larger root vertical angle appeared in the deep soil layers. PAC revealed a stable root foraging potential in the 0-70d period, which increased rapidly afterwards (70-112d). Root foraging potential, explained by MaxW/MaxD ratio, revealed an enhanced gravitropism in 14d period. No-till post-paddy wheat RLD decreased exponentially in both depth and circular directions, with 90% roots concentrated within the top 20 cm soil layer. RER along soil depth was either positive or negative, depending on specific soil layers and the sampling time.
Phenotyping for the dynamics of field wheat root system architecture
Chen, Xinxin; Ding, Qishuo; Błaszkiewicz, Zbigniew; Sun, Jiuai; Sun, Qian; He, Ruiyin; Li, Yinian
2017-01-01
We investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development. Root vertical angle in the 40 mm surface soil layer was the largest, but steadily decreased along the soil depth. After 98d, larger root vertical angle appeared in the deep soil layers. PAC revealed a stable root foraging potential in the 0–70d period, which increased rapidly afterwards (70–112d). Root foraging potential, explained by MaxW/MaxD ratio, revealed an enhanced gravitropism in 14d period. No-till post-paddy wheat RLD decreased exponentially in both depth and circular directions, with 90% roots concentrated within the top 20 cm soil layer. RER along soil depth was either positive or negative, depending on specific soil layers and the sampling time. PMID:28079107
Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing
2008-09-01
Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).
Zhao, Bingzi; Maeda, Morihiro; Zhang, Jiabao; Zhu, Anning; Ozaki, Yasuo
2006-03-01
Andisols are widespread in Japan and have some special properties such as high anion exchange capacity, low bulk density, and high organic matter content, which might influence the accumulation or chemical fractionation of heavy metals. However, few such data exist in Japanese andisols. The primary objective of this study was to investigate the distribution and chemical fractions of Cu, Zn, Ni, and Cr in the soil profiles and subsequently to assess their potential environmental hazard. Soil samples were taken from a field experiment conducted on Japanese andisols, which had received either swine compost or chemical fertilizers for 6 years. Concentrations of Cu, Zn, Ni, and Cr were determined for all of the obtained extract solutions by ICP-AES. Considerably higher total concentrations of Cu and Zn were observed in the top 20 cm layer of the compost-amended soil, relative to the unfertilized soil, while chemical fertilizers had little effect. Application of the swine compost increased the concentrations of Cu and Zn, but not Ni and Cr, in all fractions in the top 20 cm layer. The greatest increase in the organically bound fraction (OM) Cu and dilute acid-exchangeable fraction (DAEXCH) Zn was observed. This suggests that Cu and Zn are potentially bioavailable and mobile in the andisol profiles after 6-year consecutive applications of the swine compost. On the other hand, distribution of Cu, Zn, Ni and Cr among various soil fractions was generally unaffected by chemical fertilizers. We observed that 6-year consecutive applications of the swine compost led to an increase in total metals of Cu and Zn, as well as their all-chemical fractions, in the top 20 cm soil layers. Potential hazard of heavy metals, especially of Cu and Zn, as a result of the use of swine compost on andisols, must be taken into account. The long-term effect of the accumulation of heavy metals, particularly Cu and Zn, in various plant tissues and soils, as well as their potential risk to surface water via runoff and groundwater via leaching, needs to be carefully considered. Further investigations in the long-term experiments are therefore necessary.
Soil texture and granulometry at the surface of Mars
NASA Technical Reports Server (NTRS)
Dollfus, A.; Deschamps, M.; Zimbelman, J.
1992-01-01
The microtexture of the near-surface Martian soil was sensed with three diagnostic parameters: (1) the albedo A at normal incidence and phase angle 5 degrees, which relates to the composition of the top surface exposed layer; (2) the polarization parameter b characterizes the texture of the top surface layer in terms of grain size; and (3) the thermal inertia parameter I which refers to the soil compaction through the first few decimeters below the top surface sensed by polarimetry, in terms of size for the pieces making a granular regolith. Parameter b was derived from instrument VPM on board the Soviet spacecraft MARS-5, inertial I is from IRTM on the American Viking, and albedo A from both. The polarimetric scans racked strips covering two contrasted regions, the dark hued Mare Erythraeum, and the adjacent bright orange Thaumasia. Erythraem is characterized everywhere by a same type of terrain, despite the large geomorphological diversity of the surface. There is an ubiquitous coating or mantling with small dark grains, of both albedo 12.7 percent and particle size 10 to 20 microns, above a subsurface dislocation in pieces around 300 to 600 microns. A simple model is with sand-size particles completely coated with 15 micron dark grains.
Comparison between the land surface response of the ECMWF model and the FIFE-1987 data
NASA Technical Reports Server (NTRS)
Betts, Alan K.; Ball, John H.; Beljaars, Anton C. M.
1993-01-01
An averaged time series for the surface data for the 15 x 15 km FIFE site was prepared for the summer of 1987. Comparisons with 48-hr forecasts from the ECMWF model for extended periods in July, August, and October 1987 identified model errors in the incoming SW radiation in clear skies, the ground heat flux, the formulation of surface evaporation, the soil-moisture model, and the entrainment at boundary-layer top. The model clear-sky SW flux is too high at the surface by 5-10 percent. The ground heat flux is too large by a factor of 2 to 3 because of the large thermal capacity of the first soil layer (which is 7 cm thick), and a time truncation error. The surface evaporation was near zero in October 1987, rather than of order 70 W/sq m at noon. The surface evaporation falls too rapidly after rainfall, with a time-scale of a few days rather than the 7-10 d (or more) of the observations. On time-scales of more than a few days the specified 'climate layer' soil moisture, rather than the storage of precipitation, has a large control on the evapotranspiration. The boundary-layer-top entrainment is too low. This results in a moist bias in the boundary-layer mixing ratio of order 2 g/Kg in forecasts from an experimental analysis with nearly realistic surface fluxes; this because there is insufficient downward mixing of dry air.
EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: I. FIELD OBSERVATIONS
A field test to quantify the changes of soil temperature and hydraulic head during electroosmosis was conducted. The anode (3.1 m x 3.4 m) was created by laying pieces of titanium mesh coated with mixed metal oxides on top of a 3 cm thick sand layer at a depth of 0.4 m. The catho...
Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.
Arye, Gilboa; Dror, Ishai; Berkowitz, Brian
2011-01-01
The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L⁻¹ in the recharged wastewater to 560 ± 175 ng L⁻¹ after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. Copyright © 2010 Elsevier Ltd. All rights reserved.
Postmortem microbial communities in burial soil layers of skeletonized humans.
Thomas, Torri B; Finley, Sheree J; Wilkinson, Jeremy E; Wescott, Daniel J; Gorski, Azriel; Javan, Gulnaz T
2017-07-01
Microorganisms are major ecological participants in the successional decomposition of vertebrates. The relative abundance, or the scarcity, of certain microbial taxa in gravesoil has the potential to determine the ecological status of skeletons. However, there are substantial knowledge gaps that warrant consideration in the context of the surrounding terrestrial ecosystem. In the current study, we hypothesized that i.) soil microbial diversity is disparate in the latter stage of decomposition (skeletonization) compared to the earlier stages (fresh, bloat, active and advanced decay), and ii.) the three layers of gravesoil (top, middle, and bottom) encompass similar microbial taxa and are analogous with control soil. To test these hypotheses, microbial communities in layers of burial soil of skeletonized bodies (treated) and from control soil, obtained from burial plots with no bodies (untreated), were compared using sequencing data of the 16S rRNA gene. The results demonstrated that Acidobacteria was confirmed as the most abundant microbial genus in all treated and untreated soil layers. Furthermore, Proteobacteria demonstrated a relatively low abundance in skeletonized gravesoil which is dissimilar from previous findings that assessed soil from earlier stages of human decomposition. Also, these results determined that soil microbial signatures were analogous in all three soil layers under the effects of similar abiotic and biotic factors, and they were similar to the communities in untreated soil. Therefore, the current study produced empirical data that give conclusive evidence of soil microbial successional changes, particularly for Proteobacteria, for potential use in forensic microbiology research. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Shaw, A.; Arvidson, R.; Bonitz, R.; Carsten, J.; Keller, H.; Lemmon, M.; Mellon, M. T.; Robinson, M.; Trebi-Ollennu, A.; Volpe, R.
2008-12-01
The Phoenix Mars lander has had access to polygonal terrain; specifically, two polygons and a trough. Slopes in the trenches and dump piles created from the interaction of the Phoenix robotic arm (RA) with the soil around its landing site are similar to those seen on previous missions, such as the MER and Viking missions. This indicates similar cohesion and angle of internal friction to previous landing sites. For example, trench slopes typically range from 44-72° and dump pile slopes range from 20-30°. There are at least two very different types of materials at the site: a layer of soil which goes down to several centimeters below the surface and, below that, a layer of icy soil. The RA can easily dig through the top layer of soil, often using 20-30N force. However, when it encounters icy soil, the RA requires tens of scrapes with the lower tungsten carbide blade on its scoop to progress even a few millimeters. To verify soil property parameters, we analyze the normal and shear stresses exerted on the soil by digging, scraping, and rasping with the RA.
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-03-01
The work presents the results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface down to 240 cm. All sites were divided into two groups according to the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). The waterlogged sites are better warmed in the summer period and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is in July. The minimum temperature on the surface is observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C/cm in February and 1.1 °C/cm in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn or in the beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but the degradation rate from the top is faster.
Alister, Claudio A; Gomez, Patricio A; Rojas, Sandra; Kogan, Marcelo
2009-05-01
A four-year field study was conducted to determine the effect of pluviometric conditions on pendimethalin and oxyfluorfen soil dynamics. Adsorption, dissipation and soil movement were studied in a sandy loam soil from 2003 to 2007. Pendimethalin and oxyfluorfen were applied every year on August at 1.33 and 0.75 kg ha(-1), respectively. Herbicide soil concentrations were determined at 0, 10, 20, 40, 90 and 340 days after application (DAA), under two pluviometric regimens, natural rainfall and irrigated (30 mm every 15 days during the first 90 DAA). More than 74% of the herbicide applied was detected at the top 2.5 cm layer for both herbicides, and none was detected at 10 cm or deeper. Pendimethalin soil half-life ranged from 10.5 to 31.5 days, and was affected mainly by the time interval between application and the first rain event. Pendimethalin soil residues at 90 DAA fluctuated from 2.5 to 13.8% of the initial amount applied, and it decreased to 2.4 and 8.6% at 340 DAA. Oxyfluorfen was more persistent than pendimethalin as indicated by its soil half-life which ranged from 34.3 to 52.3 days, affected primarily by the rain amount at the first rainfall after application. Oxyfluorfen soil residues at 90 DAA ranged from 16.7 to 34.8% and it decreased to 3.3 and 17.9% at 340 DAA. Based on half-life values, herbicide soil residues after one year, and soil depth reached by the herbicides, we conclude that both herbicides should be considered as low risk to contaminate groundwater. However, herbicide concentration at the top 2.5 cm layer should be considered in cases where runoff or soil erosion could occur, because of the potential for surface water contamination.
Velocity of water flow along saturated loess slopes under erosion effects
NASA Astrophysics Data System (ADS)
Huang, Yuhan; Chen, Xiaoyan; Li, Fahu; Zhang, Jing; Lei, Tingwu; Li, Juan; Chen, Ping; Wang, Xuefeng
2018-06-01
Rainfall or snow-melted water recharge easily saturates loose top soils with a less permeable underlayer, such as cultivated soil slope and partially thawed top soil layer, and thus, may influence the velocity of water flow. This study suggested a methodology and device system to supply water from the bottom soil layer at the different locations of slopes. Water seeps into and saturates the soil, when the water level is controlled at the same height of the soil surface. The structures and functions of the device, the components, and the operational principles are described in detail. A series of laboratory experiments were conducted under slope gradients of 5°, 10°, 15°, and 20° and flow rates of 2, 4, and 8 L min-1 to measure the water flow velocities over eroding and non-eroded loess soil slopes, under saturated conditions by using electrolyte tracing. Results showed that flow velocities on saturated slopes were 17% to 88% greater than those on non-saturated slopes. Flow velocity increased rapidly under high flow rates and slope gradients. Saturation conditions were suitable in maintaining smooth rill geomorphology and causing fast water flow. The saturated soil slope had a lubricant effect on the soil surface to reduce the frictional force, resulting in high flow velocity. The flow velocities of eroding rills under different slope gradients and flow rates were approximately 14% to 33% lower than those of non-eroded rills on saturated loess slopes. Compared with that on a saturated loess slope, the eroding rill on a non-saturated loess slope can produce headcuts to reduce the flow velocity. This study helps understand the hydrodynamics of soil erosion and sediment transportation of saturated soil slopes.
NASA Astrophysics Data System (ADS)
Vingiani, S.; Mele, G.; De Mascellis, R.; Terribile, F.; Basile, A.
2015-06-01
An integrated investigation was carried out on the volcanic soils involved in the landslide phenomena that occurred in 2006 at Mt. Vezzi on the island of Ischia (southern Italy). Chemical (soil pH, organic carbon content, exchangeable cations and cation exchange capacity, electrical conductivity, Na adsorption ratio and Al, Fe and Si forms), physical (particle and pore size distribution, pore structure), hydrological (soil water retention, saturated and unsaturated hydraulic conductivity), mineralogical and micromorphological analyses were carried out for three soil profiles selected in two of the main head scarps. The studied soils showed a substantial abrupt discontinuity in all the studied properties at the interface with a buried fine ash layer (namely, the 2C horizon), that was only marginally involved in the sliding surface of the landslide phenomena. When compared to the overlying horizons, 2C showed (i) fine grey ash that is almost pumice free, with the silt content increasing by 20 %; (ii) ks values 1 order of magnitude lower; (iii) a pore distribution concentrated into small (15-30 μm modal class) pores characterised by a very low percolation threshold (approximately 15-25 μm); (iv) the presence of expandable clay minerals; and (v) increasing Na content in the exchange complex. Most of these properties indicated that 2C was a lower permeability horizon compared to the overlying ones. Nevertheless, it was possible to assume this interface to be an impeding layer to vertical water fluxes only by the identification of a thin (6.5 mm) finely stratified ash layer, on top of 2C, and of the hydromorphic features (e.g. Fe / Mn concretions) within and on top of the layer. Although Mt. Vezzi's soil environment has many properties in common with those of other Campania debris-mudflows (e.g. high gradient, north-facing slope, similar forestry, and volcanic origin of the parent material), the results of this study suggest a more complex relationship between soil properties and landslides and emphasise the role of vertical discontinuities as noteworthy predisposing factors.
[Fine root biomass and production of four vegetation types in Loess Plateau, China].
Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng
2014-11-01
Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.
This dataset represents the adjusted soil erodibility factor within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The STATSGO Layer table specifies two soil erodibility factors for each component layer, KFFACT and KFACT. The STATSGO documentation describes KFFACT as a soil erodibility factor which quanitifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to caluculate soil loss by water. KFACT is described as a soil erodibility factor which is adjusted for the effect of rock fragments. The average value of each of these soil erodibility factors was determined for the top (surface) layer for each map unit of each state.The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Data Source). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The soil erodibility factor was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metri
Hrad, Marlies; Huber-Humer, Marion; Wimmer, Bernhard; Reichenauer, Thomas G
2012-12-01
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH(4) loadings up to 300 lCH(4)/m(2)d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH(4)/m(2)d) were significantly higher than fluxes from the other lysimeters (0-19 g CH(4)/m(2)d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH(4) emissions, even beyond the time of active aeration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hamlett, Christopher A E; Shirtcliffe, Neil J; McHale, Glen; Ahn, Sujung; Bryant, Robert; Doerr, Stefan H; Newton, Michael I
2011-11-15
The wettability of soil is of great importance for plants and soil biota, and in determining the risk for preferential flow, surface runoff, flooding,and soil erosion. The molarity of ethanol droplet (MED) test is widely used for quantifying the severity of water repellency in soils that show reduced wettability and is assumed to be independent of soil particle size. The minimum ethanol concentration at which droplet penetration occurs within a short time (≤ 10 s) provides an estimate of the initial advancing contact angle at which spontaneous wetting is expected. In this study, we test the assumption of particle size independence using a simple model of soil, represented by layers of small (~0.2-2 mm) diameter beads that predict the effect of changing bead radius in the top layer on capillary driven imbibition. Experimental results using a three-layer bead system show broad agreement with the model and demonstrate a dependence of the MED test on particle size. The results show that the critical initial advancing contact angle for penetration can be considerably less than 90° and varies with particle size, demonstrating that a key assumption currently used in the MED testing of soil is not necessarily valid.
NASA Astrophysics Data System (ADS)
Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana
2014-05-01
Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.
Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids.
Bertoncini, E I; D'Orazio, V; Senesi, N; Mattiazzo, M E
2008-07-01
The effect of sewage sludge (SS) amendment on the general properties of the top layers of a sandy and a clayey oxisols and on the nature of their humic acid (HA) fractions was evaluated by chemical and physico-chemical techniques. The amended soils, especially the sandy soil, benefited of SS amendment by increasing their pH to above neutrality and enhancing the contents of C, N, P, and Ca and cation exchange capacity. The SS-HA-like sample showed larger H and N contents and a greater aliphatic character and humification degree than the HAs isolated from non-amended soils. The composition and structure of amended soil HAs were affected by SS application as a function of soil type and layer. In particular, N-containing groups and aliphatic structures of SS-HA-like sample appears to be partially incorporated in the amended soil HAs, and these effects were more evident in the HAs from the sandy oxisol.
NASA Astrophysics Data System (ADS)
Soong, J.; Verbruggen, E.; Janssens, I.
2016-12-01
The Guyafor network contains over 12 pristine tropical rainforest long-term research sites throughout French Guiana, with a focus on vegetation and environmental monitoring at regular intervals. However, biogeochemical and belowground insights are needed to complete the picture of ecosystem functioning in these lowland tropical rainforests, which are critical to Earth's water and energy balance. Improving our biogeochemical understanding of these ecosystems is needed to improve Earth System Models, which poorly represent tropical systems. In July 2015 we sampled soils and litter from 12 of the Guyafor permanent plots in French Guiana spanning a mean annual precipitation gradient of over 2000 mm per year. We measured soil texture, pH, C, N and available P stocks in the top 30 cm, and fungal biodiversity using ITS DNA sequencing and characterized soil organic matter (SOM) C, N and P distribution among physically defined SOM fractions. We also measured litter layer standing stocks and CNP stoichiometry. We found significant stocks of SOM in the top 30 cm of the soil varying by a factor of 4 in the top 30 cm of soil with a negative correlation of arbuscular mycorrhizal fungi and soil C and N with available P. Available P was also a strong predictor of fungal community composition. Furthermore there is evidence for precipitation and mineralogical influences on leaf litter and SOM dynamics highlighting the importance of heterogeneity in tropical soil substrates and sub-climates in better understanding the biogeochemistry of tropical ecosystems.
Effect of reclamation on soil organic carbon pools in coastal areas of eastern China
NASA Astrophysics Data System (ADS)
Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili
2018-04-01
The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.
Effect of reclamation on soil organic carbon pools in coastal areas of eastern China
NASA Astrophysics Data System (ADS)
Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili
2018-06-01
The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.
NASA Astrophysics Data System (ADS)
Guimberteau, M.; Ducharne, A.; Ciais, P.; Boisier, J. P.; Peng, S.; De Weirdt, M.; Verbeeck, H.
2014-06-01
This study analyzes the performance of the two soil hydrology schemes of the land surface model ORCHIDEE in estimating Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29-year period 1980-2008. A simple 2-layer scheme with a bucket topped by an evaporative layer is compared to an 11-layer diffusion scheme. The soil schemes are coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components are compared with several data sets at sub-basin scale. The use of the 11-layer soil diffusion scheme does not significantly change the Amazonian water budget simulation when compared to the 2-layer soil scheme (+3.1 and -3.0% in evapotranspiration and river discharge, respectively). However, the higher water-holding capacity of the soil and the physically based representation of runoff and drainage in the 11-layer soil diffusion scheme result in more dynamic soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11-layer scheme also results in increased dry-season evapotranspiration (+0.5 mm d-1, +17%) and improves river discharge simulation in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin is sustained during the whole dry season with the 11-layer soil diffusion scheme, whereas the 2-layer scheme limits it after only 2 dry months. Lower plant drought stress simulated by the 11-layer soil diffusion scheme leads to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based on eddy covariance and satellite greenness measurements. A dry-season length between 4 and 7 months over the entire Amazon Basin is found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil schemes. On average, the multilayer soil diffusion scheme provides little improvement in simulated hydrology over the wet tropical Amazonian sub-basins, but a more significant improvement is found over the drier sub-basins. The use of a multilayer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon Basin where longer dry seasons and more severe droughts are expected in the next century.
Modelling of percolation rate of stormwater from underground infiltration systems.
Burszta-Adamiak, Ewa; Lomotowski, Janusz
2013-01-01
Underground or surface stormwater storage tank systems that enable the infiltration of water into the ground are basic elements used in Sustainable Urban Drainage Systems (SUDS). So far, the design methods for such facilities have not taken into account the phenomenon of ground clogging during stormwater infiltration. Top layer sealing of the filter bed influences the infiltration rate of water into the ground. This study presents an original mathematical model describing changes in the infiltration rate variability in the phases of filling and emptying the storage and infiltration tank systems, which enables the determination of the degree of top ground layer clogging. The input data for modelling were obtained from studies conducted on experimental sites on objects constructed on a semi-technological scale. The experiment conducted has proven that the application of the model developed for the phase of water infiltration enables us to estimate the degree of module clogging. However, this method is more suitable for reservoirs embedded in more permeable soils than for those located in cohesive soils.
Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China
NASA Astrophysics Data System (ADS)
Wang, Xiaoyan
2017-04-01
Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.
Analyzing the subsurface structure using seismic refraction method: Case study STMKG campus
NASA Astrophysics Data System (ADS)
Wibowo, Bagus Adi; Ngadmanto, Drajat; Daryono
2015-04-01
A geophysic survey is performed to detect subsurface structure under STMKG Campus in Pondok Betung, South Tangerang, Indonesia, using seismic refraction method. The survey used PASI 16S24-U24. The waveform data is acquired from 3 different tracks on the research location with a close range from each track. On each track we expanded 24 geofons with spacing between receiver 2 meters and the total length of each track about 48 meters. The waveform data analysed using 2 different ways. First, used a seismic refractionapplication WINSISIM 12 and second, used a Hagiwara Method. From both analysis, we known the velocity of P-wave in the first and second layer and the thickness of the first layer. From the velocity and the thickness informations we made 2-D vertical subsurface profiles. In this research, we only detect 2 layers in each tracks. The P-wave velocity of first layer is about 200-500 m/s with the thickness of this layer about 3-6 m/s. The P-wave velocity of second layer is about 400-900 m/s. From the P-wave velocity data we interpreted that both layer consisted by similar materials such as top soil, soil, sand, unsaturated gravel, alluvium and clay. But, the P-wave velocity difference between those 2 layers assumed happening because the first layer is soil embankment layer, having younger age than the layer below.
Wang, Shan Shan; Zhao, Yun Ge; Shi, Ya Fang; Gao, Li Qian; Yang, Qiao Yun
2017-12-01
The variations of total nitrogen, available nitrogen and microbial biomass nitrogen caused by simulated grazing disturbance were investigated in the sixth and twelfth months by using field survey combined with laboratory analysis in order to reveal the sensitivity of nitrogen content in biocrustal soils to disturbance in the hilly Loess Plateau region. The results showed that nitrogen contents in biocrustal soil were sensitive to disturbance. Total nitrogen and available nitrogen in the biocrustal layers were decreased by 0.17-0.39 g·kg -1 and 1.78-5.65 mg·kg -1 during the first half-year compared to the undisturbed treatment, and they were found respectively decreased by 0.13-0.40 g·kg -1 and 11.45-32.68 mg·kg -1 one year later since disturbance. The content of microbial biomass nitrogen in the biocrustal layer was reduced by 69.99-330.97 mg·kg -1 , whereas the content was increased by 25.51-352.17 mg·kg -1 in soil of 0-2 cm layer. The induction of nitrogen accumulation depended on the intensity of disturbance. Slight variation was observed in the nitrogen accumulation in biocrustal layer under 20% and 30% disturbance, while significant reduction was found in the 40% and 50% disturbance. Significant reduction was detected only in nitrogen accumulation in the biocrustal layers, whereas no significant influence was found in the top 5 cm soil layer.
Effect of simulated rainfall on leaching and efficacy of fenamiphos.
Johnson, A W; Wauchope, R D; Burgoa, B
1995-12-01
There is increasing concern in the United States about the pesticide movement in soil, groundwater contamination, and pesticide residue in food. The objective of this study was to determine the efficacy, degradation, and movement of fenamiphos (Nemacur 15G) in the soil and residues in squash fruit as influenced by four simulated rainfall treatments (2.5 or 5.0 cm each applied 1 or 3 days after nematicide application) under field conditions. In 1990, concentrations of fenamiphos were greater in the top 15 cm of soil in plots with no rainfall than in those treated with rainfall. Eighty to 95 % of the fenamiphos recovered from treated plots was found in the 0-15-cm soil layer. The concentration of fenamiphos recovered from the 0-15-cm soil layer in 1991 was approximately one-half the concentration recovered in 1990, but greater concentrations of fenamiphos sulfoxide (an oxidation product of fenamiphos) were recovered in 1991 than in 1990. Concentrations of fenamiphos, fenamiphos sulfoxide, and fenamiphos sulfone were near or below detectable levels (0.002 mg/kg soil) below the 0-15-cm soil layer. Rainfall treatments did not affect the efficacy of the nematicide against Meloidogyne incognita race 1. The concentration of fenamiphos in squash fruit in 1991 was below the detectable level (0.01 mg/kg).
Modeling interface shear behavior of granular materials using micro-polar continuum approach
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.
2018-01-01
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.
NASA Astrophysics Data System (ADS)
Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.
2017-12-01
Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P < 0.001). The difference between native and exotic plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P < 0.001). Exotic plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province. PMID:27977678
NASA Astrophysics Data System (ADS)
Thomas, A.; Gill, R. A.
2016-12-01
Climate change with an accompanying decrease in soil moisture is expected to have a significant impact on the sensitive, water-limited ecosystems of America's southwestern deserts. Already, studies have documented shifts in the distributions of competing grasses and shrubs in this region, potentially altering ecosystem function. Of particular interest is the loss of desert grasses and the expansion of desert shrubs over the past three decades. The objective of this work is to use a process-based hydrological model to extrapolate site-level measurements to assess trends in soil moisture availability that may impact plant communities in the Colorado Plateau and surrounding regions. The model, SOILWAT, simulates the daily movement of water through plant and soil layers, incorporating precipitation, interception, evaporation, infiltration between soil layers, and absorption and transpiration by plants, as well as physical site characteristics. We applied SOILWAT to 50 sites that were stratified through the northern, central, and southern regions of Ephedra viridis. We focused on E. viridis because it has displaced desert grasses in plot-scale studies. The model was driven using spatially interpolated daily weather data from the PRISM climate model over a 34-year period. We found that across all years, average soil water content in the sandy soil of the region was higher in soil layers 40-60 cm deep than in the top 20 cm, and highest in the deepest layers down to 100 cm. The consistently higher margin of water in deeper layers may indicate the vulnerability of shallow-rooted grass to increasing evaporation and an advantage to deeply-rooted shrubs such as Ephedra.
Wang, Xiao-Chun; Yang, Wen-Yu; Deng, Xiao-Yan; Zhang, Qun; Yong, Tai-Wen; Liu, Wei-Guo; Yang, Feng; Mao, Shu-Ming
2014-10-01
A large amount of nitrogen (N) fertilizers poured into the fields severely pollute the environment. Reasonable application of N fertilizer has always been the research hotpot. The effects of N management on maize N utilization and residual nitrate N in soil under maize/soybean and maize/ sweet potato relay strip intercropping systems were reported in a field experiment in southwest China. It was found that maize N accumulation, N harvest index, N absorption efficiency, N contribution proportion after the anthesis stage in maize/soybean relay strip intercropping were increased by 6.1%, 5.4%, 4.3%, and 15.1% than under maize/sweet potato with an increase of 22.6% for maize yield after sustainable growing of maize/soybean intercropping system. Nitrate N accumulation in the 0-60 cm soil layer was 12.9% higher under maize/soybean intercropping than under maize/sweet potato intercropping. However, nitrate N concentration in the 60-120 cm soil layer when intercropped with soybean decreased by 10.3% than when intercropped with sweet potato, indicating a decrease of N leaching loss. Increasing of N application rate enhanced N accumulation of maize and decreased N use efficiency and significantly increased nitrate concentration in the soil profile except in the 60-100 cm soil layer, where no significant difference was observed with nitrogen application rate at 0 to 270 kg · hm(-2). Further application of N fertilizer significantly enhanced nitrate leaching loss. Postponing N application increased nitrate accumulation in the 60-100 cm soil layer. The results suggested that N application rates and ratio of base to top dressing had different influences on maize N concentration and nitrate N between maize/soybean and maize/sweet potato intercropping. Maize N concentration in the late growing stage, N harvest index and N use efficiency under maize/soybean intercropping increased (with N application rate at 180-270 kg · hm(-2) and ratio of base to top dressing = 3:2:5) and decreased nitrate leaching loss with yield reaching 7757 kg · hm(-2) on average. However, for maize/sweet potato, N concentration and use efficiency and maize yield increased significantly with N application rate at 180 kg · hm(-2) and ratio of base to top dressing = 5:5 than that under other treatments with yield reaching 6572 kg · hm(-2). Under these circumstances, it would be possible to realize maize high yield, high efficiency and safety of N man- agement under maize/soybean and maize/sweet potato relay strip intercropping systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrad, Marlies; Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at; Wimmer, Bernhard
2012-12-15
Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top coversmore » that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH{sub 4}/m{sup 2} d) were significantly higher than fluxes from the other lysimeters (0-19 g CH{sub 4}/m{sup 2} d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH{sub 4} emissions, even beyond the time of active aeration.« less
NASA Astrophysics Data System (ADS)
Reichel, Katharina; Totsche, Kai Uwe
2013-04-01
Biogeochemical interfaces in soils (Totsche et al. 2010) are the "hot spots" of microbial activity and the processing of organic compounds in soils. The production and relocation of mobile organic matter (MOM) and biocolloids like microorganisms are key processes for the formation and depth propagation of biogeochemical interfaces in soils (BGI). Phenanthrene (PHE) has been shown to affect microbial communities in soils (Ding et al. 2012) and may induce shifts in MOM quantity and quality (amount, type and properties of MOM). We hypothesize that the properties of BGI in soil change significantly due to the presence of PHE. The objectives of this study are (i) to evaluate the effect of PHE on soil microbial communities and on MOM quantity and quality under flow conditions with single- and two-layer column experiments and (ii) to assess the role of these processes for the physicochemical, mechanical and sorptive properties of BGI in soils. The soil columns were operated under water-unsaturated conditions. The top layer (source layer, SL, 2 cm) is made of sieved soil material (Luvisol, Scheyern, Germany) spiked with PHE (0.2 mg/g). The bottom layer (reception layer, RL, 10 cm) comprised the same soil without PHE. PHE-free columns were conducted in parallel as reference. Release and transport of MOM in mature soil of a single-layer column experiment was found to depend on the transport regime. The release of larger sized MOM (>0.45 µm) was restricted to an increased residence time during flow interruptions. Steady flow conditions favor the release of smaller MOM (<0.45 µm). Compared to the reference, in the two-layer column experiments higher OC concentrations were detected in the effluent from PHE spiked columns after enhanced flow interruptions (26d, 52d). That indicated the PHE influenced production or mobilization of MOM. Parallel factor analysis of fluorescence excitation and emission matrices revealed the presence of a constant DOM background and two new unknown components in the effluent, probably PHE metabolites. The emergence of new components emphasizes the role of metabolization processes in the release of MOM. The identification of key microbial actors and communities are currently in progress. Totsche, K.U. et al. (2010): Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci., 173(1), 88-99 Ding, G.-C., Heuer, H. & Smalla, K. (2012): Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbio 10.3389/fmicb.2012.00290.
Song, Yujia; Song, Shoufa
2018-06-04
Artificial bioretention system consisting of Ophiopogon japonicus infiltration medium was used to simulate an infiltration experiment of rainfall runoff. Continuous extraction method was used to detect contents of inorganic phosphorus (P) under exchangeable state (Ex-P) and aluminium phosphate (Al-P) and iron phosphate (Fe-P) at different depths (0, 5, 15 and 35 cm) of soil infiltration medium in bioretention system. Effluent total P (TP) concentration of the system was also monitored. Results indicated that the adsorption of inorganic P, Al-P and Fe-P by soil infiltration medium was implemented layer by layer from top to bottom and gradually weakened. Moreover, Ex-P was gradually transformed into Al-P and Fe-P, whereas Al-P was gradually transformed into Fe-P; thus, Ex-P content reduced layer by layer, whereas Al-P and Fe-P gradually accumulated. The TP removal rate in runoff rainwater by the system was more than 90%, where the TP that was not used by plants was under dynamic equilibrium in water-soil-root system/biological system.
Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A
2016-11-01
Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Erosion of cohesive soil layers above underground conduits
NASA Astrophysics Data System (ADS)
Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier
2017-06-01
Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.
Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she
2015-04-01
The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.
Wittig, Rüdiger
2008-09-01
High SO(2) concentrations as have been observed over decades in the Ruhr district lead to a remarkable reduction of leaf area in the majority of the characteristic broad-leafed herbs of the Central European beech forests even after only a few months of experimental fumigation. Thus, it is no wonder in the time of high SO(2) pollution, e.g., in the town of Herne (centre of the Ruhr district), that there was not a single beech forest hosting, for instance, Viola reichenbachiana or Anemone nemorosa. As air quality has improved very much over some decades in the Ruhr district, one can expect a recolonisation of the beech forests by the species of former time characteristic for the herb layer. However, one has to consider that only the air pollution was reduced, while soil acidification and contamination with heavy metals and PAH are, on the short run, irreversible. That is why experiments were carried out, considering the question as to whether recolonisation of the forests of the Ruhr district by the aforementioned species is possible and why such a recolonisation up to now has not occurred. The experiments were carried out in a beech forest situated in the centre of the Ruhr district in the City of Herne. The wood anemone (A. nemorosa) was chosen as test plant because of its high frequency in beech forests on loess soils outside the Ruhr district, and its absence in beech forests in the Ruhr district. The experiments with A. nemorosa were carried out in three variants with different soils: (a): soil of the local forests (R); (b): soil of the local forests whose soot layer was removed (r); (c): imported soil from a clean air region far away from the Ruhr district (Odenwald). Survival of rhizomes of A. nemorosa is possible for some years in the soils of the Ruhr district; however, the establishment of a population could not be achieved. The results obtained by the imported soil show that it is no longer air pollution, but the soil which prevents the establishment of a population. Sexual reproduction is rather impossible because of the thick litter layer with which all of the Ruhr district's beech forests are covered. With respect to the unfavourable chemistry of the soil of the Ruhr district and in consideration of the unfavourable attributes of the soot layer, the author expected the following order of the development of shoot numbers: O > r > R. However, the result is: O > R > r. In contrast to the expected result, the soot layer has no negative but slightly positive effects on the implanted rhizomes. A possible explanation is that the soot layer, which is situated immediately below the top soil, prevents the top soil from drying up and thus even protects the rhizomes from desiccation. Also, the possibility has to be considered that the soot layer functions as a nutrient storage area. At present, a survival of the rhizomes of A. nemorosa in the soils of the Ruhr district is temporarily possible but does not lead to the establishment of a permanent population. This only can be achieved by additional sexual reproduction. However, the thick litter layer present in all beech forests of the Ruhr district prevents the establishment of seedlings, i.e., it does not allow sexual reproduction to contribute to the population. The soot layer situated below the litter layer represents a second hindrance for germination. Other than seedlings, rhizomes are not negatively affected by the soot layer but even a slight stabilisation has to be stated. As a reason for this slightly positive effect, a protection of the upper mineral soil from desiccation by the hydrophob soot layer has to be considered. Secondly, the soot layer may serve as a nutrient storage which is of particular importance in acid soils, because acidification generally leads to a leeching of nutrients. To answer these questions, detailed further research is necessary. In order to restore the formerly rich herbaceous layer of the forests of the Ruhr district, experiments (removal of the litter layer; liming; ploughing) should be carried out at broad-scale to solve the question of how the strong negative effects of the established thick raw humus layer can be reduced or even be avoided. When the problem of the humus layer is solved, the beech forests of the Ruhr district today highly impoverished in species will become a vivid ecosystem, rich in flowering herbaceous species and thus much more attractive for the people of the Ruhr district than at present.
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Shelef, E.; Sutfin, N. A.; Piliouras, A.; Andresen, C. G.; Wilson, C. J.
2017-12-01
Movement and storage rates of soil and carbon along permafrost-dominated hillslopes may vary dramatically from long-term steady creeping, at centimeters per year, to rapid gullying, land sliding, and active layer detachments of meter to decimeter sized portions of hillslopes. The rate and drivers of hillslope soil processes may have strong feedbacks on microtopography and hydrology that in turn strongly influence vegetation dynamics and biogeochemistry within watersheds. We observed evidence of both steady soil creep and more catastrophic soil erosion processes occurring across three small watersheds in the southern Seward Peninsula, AK. In these watersheds, we inferred active soil creep processes from the occurrence of solifluction lobes with partially buried shrubs and tilted survey benchmarks on slopes lacking lobes. More dramatic and rapid erosion of soils was evidenced by active layer detachments, extensional cracks in the tundra vegetation, gullying, and both small- and large-scale soil failure scarps. The margins and heads of valley hollows exhibited failure scars up to 4m in height. The spatial distribution of actively eroding areas suggests that some portions of hilllslopes may be more susceptible to rapid erosion. Coring of hillslope soils suggests a possible association between more actively eroding areas and the presence of an ice-rich layer (> 50%) at depths of approximately 90 cm down to the inferred top of bedrock at depths at 170 to 200 cm. We observed that the surface of these hillslope regions appears to have greater microtopographic roughness with a more chaotic and "lumpy" surface than portions of the hillslope were no massive ice layers were encountered. We hypothesize that the extensional cracking and chaotic surface roughness may arise from small-scale soil failures triggered when the seasonal thaw depth intersects the ice-rich layer. It may be possible to identify hillslope regions underlain by ice-rich layers with greater susceptibility for localized erosion and deformation based on a quantitative characterization of the hillslope microtopography. Using drone-based LiDAR topographic data to be acquired in late summer of 2017, we will quantitatively explore the relationship between microtopography and hillslope ice-content.
NASA Astrophysics Data System (ADS)
Kim, Jae Gon
2017-04-01
Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.
Subsoil denitrification experiments at KBS MSU
NASA Astrophysics Data System (ADS)
Shcherbak, I.; Robertson, G. P.
2011-12-01
Denitrification is a major soil process that produces nitrous oxide (N2O), a potent greenhouse gas. Most research on denitrification has, for various reasons, concentrated on the top soil layer, ignoring depths below 10-20 cm. Although denitrification is considered to be the most active in top soil, this layer usually accounts for only 10% of the total volume of the soil profile. Our research addresses the questions: How significant is denitrification at depth in the soil profile and how does it vary with land-use? We have two field experiments at the W. K. Kellogg Biological Station (KBS) in southwest Michigan: 1) tilled versus no-tillage rainfed fertilized corn and 2) rainfed versus irrigated corn at six fertilizer levels, with N2O concentrations measured at 10 depths (3, 7, 15, 20, 25, 50, 55, 70, 75, 125 cm) and 5 depths (10, 20, 30, 50, 75 cm), respectively , along with N2O fluxes to the atmosphere in both. Soil environment data (texture, water content, temperature and nitrate content) represent a combination of measured values and simulated values using the SALUS (System Approach to Land Use Sustainability) model. We used diffusion and water balance equations that incorporated carbon dioxide concentrations and flux data collected simultaneously with N2O to determine diffusivity as a function of water content and soil temperature. We used the same diffusivity to obtain N2O production as function of moisture, temperature, and nitrate availability. Further validation of the production function was performed with data collected from the KBS Long-Term Ecological Research (LTER) site , where we also measured belowground concentrations during the 2011 growing season.
Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y
2018-06-01
Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.
Welch, J.E.; Lund, L.J.
1989-01-01
A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found between pH and Zn (r = -0.61).
Watanabe, Toru; Mashiko, Takuma; Maftukhah, Rizki; Kaku, Nobuo; Pham, Dong Duy; Ito, Hiroaki
2017-02-01
This study aims at improving the performance of the cultivating system of rice for animal feed with circulated irrigation of treated municipal wastewater by applying a larger amount of wastewater, as well as adding a microbial fuel cell (MFC) to the system. The results of bench-scale experiments indicate that this modification has increased the rice yield, achieving the target for the rice cultivar used in the experiment. In addition, an assessment of protein content of the harvested rice showed that the value of the rice as animal fodder has improved. Compared with normal one-way irrigation, circulated irrigation significantly enhanced the plant growth and rice production. The direction of the irrigation (bottom-to-top or top-to-bottom) in the soil layer had no significant effect. This modified system demonstrated >96% for nitrogen removal from the treated wastewater used for the irrigation, with approximately 40% of the nitrogen being used for rice plant growth. The MFC installed in the system facilitated power generation comparable with that reported for normal paddy fields. The power generation appeared to be enhanced by bottom-to-top irrigation, which could provide organic-rich treated wastewater directly to the bacterial community living on the anode of the MFC set in the soil layer.
Maznah, Zainol; Halimah, Muhamad; Shitan, Mahendran; Kumar Karmokar, Provash; Najwa, Sulaiman
2017-01-01
Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil. PMID:28060816
Maznah, Zainol; Halimah, Muhamad; Shitan, Mahendran; Kumar Karmokar, Provash; Najwa, Sulaiman
2017-01-01
Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.
Analyzing the subsurface structure using seismic refraction method: Case study STMKG campus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wibowo, Bagus Adi, E-mail: bagusadiwibowo1993@gmail.com; Ngadmanto, Drajat; Daryono
2015-04-24
A geophysic survey is performed to detect subsurface structure under STMKG Campus in Pondok Betung, South Tangerang, Indonesia, using seismic refraction method. The survey used PASI 16S24-U24. The waveform data is acquired from 3 different tracks on the research location with a close range from each track. On each track we expanded 24 geofons with spacing between receiver 2 meters and the total length of each track about 48 meters. The waveform data analysed using 2 different ways. First, used a seismic refractionapplication WINSISIM 12 and second, used a Hagiwara Method. From both analysis, we known the velocity of P-wavemore » in the first and second layer and the thickness of the first layer. From the velocity and the thickness informations we made 2-D vertical subsurface profiles. In this research, we only detect 2 layers in each tracks. The P-wave velocity of first layer is about 200-500 m/s with the thickness of this layer about 3-6 m/s. The P-wave velocity of second layer is about 400-900 m/s. From the P-wave velocity data we interpreted that both layer consisted by similar materials such as top soil, soil, sand, unsaturated gravel, alluvium and clay. But, the P-wave velocity difference between those 2 layers assumed happening because the first layer is soil embankment layer, having younger age than the layer below.« less
2007-06-05
KENNEDY SPACE CENTER, FLA. -- At the Payload Hazardous Servicing Facility, workers integrate the landing radar with the Phoenix spacecraft. Testing will follow. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix spacecraft begins its journey to Mars aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers secure the Phoenix Mars Lander spacecraft onto the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-06-05
KENNEDY SPACE CENTER, FLA. -- A closeup of the landing radar installed on the Phoenix spacecraft. Testing will follow. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton
2007-06-05
KENNEDY SPACE CENTER, FLA. -- At the Payload Hazardous Servicing Facility, workers integrate the landing radar with the Phoenix spacecraft. Testing will follow. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton
2007-08-04
KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander roars off Pad 17A on Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Sandra Joseph and John Kechele
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft rests with its heat shield installed. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-07-19
KENNEDY SPACE CENTER, Fla. --In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander spacecraft is moved toward the spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander spacecraft is lowered onto the spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket at Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon
2007-08-04
KENNEDY SPACE CENTER, FLA. -- The Delta II 7925 rocket carrying NASA's Phoenix Mars lander lifts off amid billows of smoke from Pad 17A at Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton
2007-08-04
KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander thunders to life at 5:26 a.m. EDT at Pad 17A on Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Sandra Joseph and John Kechele
2007-06-05
KENNEDY SPACE CENTER, FLA. -- At the Payload Hazardous Servicing Facility, workers integrate the landing radar with the Phoenix spacecraft. Testing will follow. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- The Phoenix Mars Lander is on display in the Payload Hazardous Servicing Facility. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the heat shield (foreground) for the Phoenix Mars Lander spacecraft is ready for installation. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-06-26
KENNEDY SPACE CENTER, FLA. -- A closeup of the Phoenix Mars Lander on display in the Payload Hazardous Servicing Facility. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers guide the heat shield onto the Phoenix Mars Lander spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers prepare the upper stage booster to be mated to the Phoenix Mars Lander spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-06-05
KENNEDY SPACE CENTER, FLA. -- At the Payload Hazardous Servicing Facility, workers integrate the landing radar with the Phoenix spacecraft. Testing will follow. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton
2007-06-05
KENNEDY SPACE CENTER, FLA. -- At the Payload Hazardous Servicing Facility, the landing radar is integrated with the Phoenix spacecraft. Testing will follow. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/George Shelton
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers rotate the Phoenix Mars Lander spacecraft to move it for mating to the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach the Phoenix Mars Lander spacecraft onto the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers observe the installation of the heat shield onto the Phoenix Mars Lander spacecraft. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-08-04
KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander bounds off Pad 17A on Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Sandra Joseph and John Kechele
NASA Astrophysics Data System (ADS)
Dube, Timothy; Muchena, Richard; Masocha, Mhosisi; Shoko, Cletah
2018-06-01
Accurate and reliable soil organic carbon stock estimation is critical in understanding forest role to regional carbon cycles. So far, the total carbon pool in dry Miombo ecosystems is often under-estimated. In that regard this study sought to model the relationship between the aboveground woody carbon pool and the soil carbon pool, using both ground-based and remote sensing methods. To achieve this objective, the Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI) computed from the newly launched Landsat 8 OLI satellite data were used. Correlation and regression analysis were used to relate Soil Organic Carbon (S.O.C), aboveground woody carbon and remotely sensed vegetation indices. Results showed a soil organic carbon in the upper soil layer (0-15 cm) was positively correlated with aboveground woody carbon and this relationship was significant (r = 0.678; P < 0.05) aboveground carbon. However, there were no significant correlations (r = -0.11, P > 0.05) between SOC in the deeper soil layer (15-30 cm) and aboveground woody carbon. These findings imply that (relationship between aboveground woody carbon and S.O.C) aboveground woody carbon stocks can be used as a proxy to estimate S.O.C in the top soil layer (0-15 cm) in dry Miombo ecosystems. Overall, these findings underscore the potential and significance of remote sensing data in understanding savanna ecosystems contribution to the global carbon cycle.
NASA Astrophysics Data System (ADS)
Korobova, E.; Romanov, S.
2009-04-01
Technogenic radioisotopes now dispersed in the environment are involved in natural and technogenic processes forming specific geochemical fields and serving as tracers of modern mass migration and geofield transformation. Cs-137 radioisotopes having a comparatively long life time are known for a fast fixation by the top soil layer; radiocesium activity can be measured in the surface layer in field conditions. This makes 137Cs rather convenient for the study and modeling a behavior of toxic elements in soils [1-3, 5] and for the investigation of relative stability and hierarchical fractal structures of the soil contamination of the atmospheric origin [2]. The objective of the experimental study performed on the test site in Bryansk region was to find and prove polycentric regularities in the structure of 137Cs contamination field formed after the Chernobyl accident in natural conditions. Such a character of spatial variability can be seen on the maps showing different soil parameters and chemical element distribution measured in grids [3-5]. The research was undertaken to support our idea of the regular patterns in the contamination field structure that enables to apply a mathematical theory of the field to the geochemical fields modeling on the basis of a limited number of direct measurements sufficient to reproduce the configuration and main parameters of the geochemical field structure on the level of the elementary landscape geochemical system (top-slope-bottom). Cs-137 field measurements were verified by a direct soil sampling. Soil cores dissected into subsamples with increments of 2, 5 and 10 cm, were taken to the depth of 40 cm at points with various surface activity located at different elements of relief. According to laboratory measurements 137Cs inventory in soils varied from 344 to 3448 kBq/m2 (983 kBq/m2 on the average). From 95,1% to 98,0% to of the total inventory was retained in the top 20-cm soil layer. This confirmed that field gamma spectrometry could be used to investigate patterns of 137Cs spatial redistribution in the top soil layers. The portion of 137Cs conserved in top layers corresponded to the meso- and micro relief elements. The character and stability of 137Cs spatial structure was studied by measuring its activity within nested plots with different steps of 5, 2, 1 and 0,2 m (the latter was a minimum resolution step for the field NaI detector). Performed measurements showed that the contamination field of 137Cs had a regular structure of polycentric character and exhibited a decrease in spatial variability of contamination with the decrease of the measured area. Repeated measurements of soil contamination in successive years of 2005-2008 along and cross the slopes provided with topographic survey proved the stability of contamination field (r=0, 915, n=121, r=0,912, n=30) and its relation to the meso- and microrelief features. Variation 137Cs activity in lateral direction (along the slopes and thalweg of the hollow)showed a regular character also. In our opinion the regularity in 137Cs spatial structure in the soil cover may result from radionuclide redistribution with the surface and subsurface water flow highly sensitive to the changes in elevation of different scale, and to the slope length and inclination. Cs-137 lateral distribution pattern was likely to reflect alternation of lateral and vertical water mass migration along the slopes. The performed study showing regularity in 137Cs redistribution seems to open new possibilities to develop the deterministic strategy in the study of contamination fields and modeling toxic elements spatial distribution in the soil cover on different scales. The authors are much obliged to Dr. V. Samsonov and Dr. F. Moiseenko for participation in the field work and to S. Kirov for the performance of the laboratory measurement of the soil and plant samples. References 1. Khomutinin, Yu.V., Kashparov, V.A., Zhebrovskaya, E.I., 2001. Optimization of sampling and measurement of the specimen for radioecological monitoring. UkrNIISKHR, Kiev. 2. Korobova, E.M., Romanov, S.L., Samsonov, V.L., Kirov, S.S., 2006. Experimental study of spatial 137Cs redistribution in paragenetic elementary landscapes, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp.157-159. 3. Linnik, V.G., Saveliev, A.A., Govorun, A.P., Ivanitsky, O.M., Sokolov, A.V., 2006. Analysis of the Cs-137 contamination field on micro-landscape scale within the virgin meadows in the western part of the Bryansk region, in: Kasimov, N.S. et al (Eds.), Geochemistry of biosphere (devoted to 90-th anniversary of A.I. Perelman), MSU, IGEM, RFFI, Moscow-Smolensk, pp. 201-204. 4. Samsonova V.P. Spatial variability of the soil parameters. On example of soddy-podozolic soils. Moscow, LKI, 2008, 156 p. 5.Shcheglov, A.I., Tsvetnova, O.B., Klyashtorin, A.I., 2001. Biogeochemical migration of technogenic radionuclides in forest ecosystems. Nauka, Moscow.
NASA Technical Reports Server (NTRS)
Mocko, David M.; Sud, Y. C.
2000-01-01
Refinements to the snow-physics scheme of SSiB (Simplified Simple Biosphere Model) are described and evaluated. The upgrades include a partial redesign of the conceptual architecture to better simulate the diurnal temperature of the snow surface. For a deep snowpack, there are two separate prognostic temperature snow layers - the top layer responds to diurnal fluctuations in the surface forcing, while the deep layer exhibits a slowly varying response. In addition, the use of a very deep soil temperature and a treatment of snow aging with its influence on snow density is parameterized and evaluated. The upgraded snow scheme produces better timing of snow melt in GSWP-style simulations using ISLSCP Initiative I data for 1987-1988 in the Russian Wheat Belt region. To simulate more realistic runoff in regions with high orographic variability, additional improvements are made to SSiB's soil hydrology. These improvements include an orography-based surface runoff scheme as well as interaction with a water table below SSiB's three soil layers. The addition of these parameterizations further help to simulate more realistic runoff and accompanying prognostic soil moisture fields in the GSWP-style simulations. In intercomparisons of the performance of the new snow-physics SSiB with its earlier versions using an 18-year single-site dataset from Valdai Russia, the version of SSiB described in this paper again produces the earliest onset of snow melt. Soil moisture and deep soil temperatures also compare favorably with observations.
Denitrification potential in relation to lithology in five headwater riparian zones.
Hill, Alan R; Vidon, Philippe G F; Langat, Jackson
2004-01-01
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.
Formation of Gas Traps in the Martian Soil and Implications for Methane Variability on Mars.
NASA Astrophysics Data System (ADS)
Pavlov, A.; Davis, J.; Redwing, E.; Trainer, M. G.; Johnson, C.
2017-12-01
Several independent groups have reported on the detection of methane in the Martian atmosphere. Mars Science Laboratory (MSL) methane observations display rapid increase of the atmospheric methane abundance from 1 ppb to 7 ppb levels followed by an abrupt disappearance suggest the possibility of small, local, near-surface sources of methane. Such sources may take the form of shallow subsurface cemented soil caps which can trap gases and are readily activated by either motion of the MSL rover itself, by impacts of small meteorites, or even annual climate oscillations. We have simulated the formation of such soil caps in the shallow subsurface Martian-like condition. We show that the initially uniform sample of icy soil (JSC-Mars-1A) with Mg perchlorate exhibit quick stratification on the scale of several cm under Martian pressures over the period of several days. Briny water migrates towards the top of the sample resulting in the enhanced abundance of perchlorates in the top few cm. As water evaporates and ice sublimates from the top of the sample, perchlorate remains in the top layer of soil causing soil cementation and formation of the cap. The observed caps were solid, ice-free and effectively shut off sublimation of ice from underneath the cap. We tested whether similar soil caps can trap various gases (including methane) in the shallow subsurface of Mars. We injected neon gas at the bottom of the soil sample and monitored neon gas permeability through the soil sample by measuring gas pressure differential above and below the soil sample. We found that a mixture of JSC-Mars-1A and 5% of Mg perchlorate produce gas impermeable soil cap capable of withstanding an excess of 5 mbars of neon under the cap at the soil temperatures +0.5 C - +9 C. The cap remained gas impermeable after subsequent cooling of the sample soil sample to the subzero temperatures. Gas permeability of the soil caps under various temperatures and atmospheric pressures will be reported. Our results suggest that the formation of cemented soil caps can be widespread phenomena on Mars in the areas of shallow permafrost and abundant perchlorates or RSL slopes. Potentially, soil caps can form gas pockets for trace species (like methane) which can be relatively easily disturbed causing abrupt changes in the atmospheric methane abundance detected by MSL's Curiosity rover.
Impact of wildfire and slope aspect on soil temperature in a mountainous environment
Ebel, Brian A.
2012-01-01
Soil temperature changes after landscape disturbance impact hydrology, ecology, and geomorphology. This study used field measurements to examine wildfire and aspect effects on soil temperatures. Combustion of the litter and duff layers on north-facing slopes removed pre-fire aspect-driven soil temperature controls.Wildfire is one of the most significant disturbances in mountainous landscapes and can affect soil temperature, which can in turn impact ecologic and geomorphologic processes. This study measured the temperature in near-surface soil (i.e., top 30 cm) during the first summer after a wildfire. In mountainous environments, aspect can also affect soil temperature, so north- vs. south-facing aspects were compared using a fully factorial experimental design to explore the effects of both wildfire and aspect on soil temperature. The data showed major wildfire impacts on soil temperatures on north-facing aspects (unburned ∼4–5°C cooler, on average) but little impact on south-facing aspects. Differences in soil temperatures between north-facing and south-facing unburned aspects (north ∼5°C cooler, on average) were also observed. The data led to the conclusion that, for this field site during the summer period, the forest canopy and litter and duff layers on north-facing slopes (when unburned) substantially decreased mean soil temperatures and temperature variability. The sparse trees on south-facing slopes caused little to no difference in soil temperatures following wildfire in south-facing soils for unburned compared with burned conditions. The results indicate that wildfire can reduce or even remove aspect impacts on soil temperature by combusting the forest canopy and litter and duff layers, which then homogenizes soil temperatures across the landscape.
NASA Astrophysics Data System (ADS)
Ovsepyan, Lilit; Mostovaya, Anna; Lopes de Gerenyu, Valentin; Kurganova, Irina
2015-04-01
Most changes in land use affect significantly the amount of soil organic carbon (SOC) and alter the nutrition status of soil microbial community. The arable lands withdrawal induced usually the carbon sequestration in soil, the significant shifts in quality of soil organic matter and structure of microbial community. This study was aimed to determine the microbial activity of the abandoned lands in Central Russia due to the process of natural self-restoration. For the study, two representative chronosequences were selected in Central Russia: (1) deciduous forest area, DFA (Moscow region, 54o49N'; 37o34'E; Haplic Luvisols) and (2) forest steppe area, FSA (Belgorod region 50o36'N, 36o01'E Luvic Phaeozems). Each chronosequence included current arable, abandoned lands of different age, and forest plots. The total soil organic carbon (Corg, automatic CHNS analyzer), carbon immobilized in microbial biomass (Cmic, SIR method), and respiratory activity (RA) were determined in the topsoil (0-5, 5-10, 10-20 and 20-30 cm layers) for each plots. Relationships between Corg, Cmic, and RA were determined by liner regression method. Our results showed that the conversion of croplands to the permanent forest induced the progressive accumulation Corg, Cmic and acceleration of RA in the top 10-cm layer for both chronosequences. Carbon stock increased from 24.1 Mg C ha-1 in arable to 45.3 Mg C ha-1 in forest soil (Luvic Phaeozems, Belgorod region). In Haplic Luvisols (Moscow region), SOC build up was 2 time less: from 13.5 Mg C ha-1 in arable to 27.9 Mg C ha-1 in secondary forest. During post-agrogenic evolution, Cmic also increased significantly: from 0.34 to 1.43 g C kg-1 soil in Belgorod region and from 0.34 to 0.64 g C kg-1 soil in Moscow region. RA values varied widely in soils studied: from 0.54-0.63 mg C kg-1h-1 in arable plots to 2.02-3.4 mg C kg-1h-1 in forest ones. The close correlations between Cmic, RA and Corg in the top 0-5cm layer (R2 = 0.81-0.90; P<0.01-0.05) were observed for both soils. Concluding, the conversion of former arable soils to native vegetation led to significant increase in respiratory and enzymatic activity, total and microbial carbon in the former plough layer. This study was supported by RFBR (projects NN 12-04-00201a, 12-05-00198a), grant of Russian Government (SSc -6123.2014.4) and program KONTAKT II of the Czech Ministry of Education, Youth and Sports.
Microwave remote sensing of soil water content
NASA Technical Reports Server (NTRS)
Cihlar, J.; Ulaby, F. T.
1975-01-01
Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.
[Effects of land use changes on soil water conservation in Hainan Island, China].
Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min
2017-12-01
In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.
Talore, Deribe G; Tesfamariam, Eyob H; Hassen, Abubeker; Du Toit, J C O; Klampp, Katja; Jean-Francois, Soussana
2016-04-01
Little is known about how basic soil properties respond to contrasting grazing intensities in the Karoo biome, South Africa. The aim of this study was to investigate impacts of long-term (>75 years) grazing at 1.18 heads ha(-1) (heavy; CGH), 0.78 heads ha(-1) (light; CGL), and exclosure on selected soil properties. Soil samples were collected to a depth of 60 cm from the long-term experimental site of Grootfontein Agricultural Development Institute, Eastern Cape. The samples were analyzed for C, N, bulk density and infiltration rate, among others. Generally, heavy and light grazing reduced soil N storage by 27.5% and 22.6%, respectively, compared with the exclosure. Animal exclusion improved water infiltration rate and C stocks significantly (P < 0.05), which was 0.128, 0.097, and 0.093 Mg ha(-1) yr(-1) for exclosure, CGL and CGH, respectively. Soil penetration resistance was higher for grazing treatments in the top 3-7 cm soil layer but for exclosure at the top 1 cm soil surface. Although livestock exclusion has the potential to improve C sequestration, a sufficient resting period for 1-2 years followed by three consecutive grazing years at light stocking rate would be ideal for sustainable livestock production in this arid region of South Africa. © 2015 Society of Chemical Industry.
Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.
Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali
2012-07-01
Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Physically-based landslide assessment for railway infrastructure
NASA Astrophysics Data System (ADS)
Heyerdahl, Håkon; Høydal, Øyvind
2017-04-01
A new high-speed railway line in Eastern Norway passes through areas with Quaternary soil deposits where stability of natural slopes poses considerable challenges. The ground typically consist of thick layers of marine clay deposits, overlain by 8-10 m of silt and sand. Both shallow landslides in the top layers of silt and sand and deep-seated failures in clay must be accounted for. In one section of the railway, the potential for performing stabilizing measures is limited due to existing cultural heritage on top of the slope. Hence, the stability of a steep top section of the slope needs to be evaluated. Assessment of the slope stability for rainfall-triggered slides relies on many parameters. An approach based only on empirical relations will not comply with the design criteria, which only allows deterministic safety margins. From a classic geotechnical approach, the slope would also normally be considered unsafe. However, considerable suction is assumed to exist in the silty and sandy deposits above ground-water level, which will improve the stability. The stabilizing effect however is highly dependent on rainfall, infiltration and soil moisture, and thereby varies continuously. An unsaturated geomechanical approach was taken to assess the slope stability. Soil moisture sensors were installed to monitor changes of in situ water content in the vadose zone. Retention curves for silt/sand specimens samples were measured by pressure plate tests. Some triaxial tests soil strength were performed to check the effect of suction on soil shear strength (performed as drained constant water content tests on compacted specimens). Based on the performed laboratory tests, the unsaturated response of the slope will be modelled numerically and compared with measured soil moisture in situ. Work is still on-going. Initial conditions after respectively dry and wet periods need to be coupled with selected rainfall intensities and duration to see the effect on slope stability. The aim of the work is to reach a result informing the client about the probability of a landslide in the slope, based on expected critical rainfall. A strictly deterministic criterion for minimum safety margin may need to be replaced by scenarios for probability and geometry of potential failures for given return periods and rainfall events.
Li, Hai-Gang; Shen, Jian-Bo; Zhang, Fu-Suo; Lambers, Hans
2010-01-01
Background and Aims Phosphorus (P) is a major factor controlling cluster-root formation. Cluster-root proliferation tends to concentrate in organic matter (OM)-rich surface-soil layers, but the nature of this response of cluster-root formation to OM is not clear. Cluster-root proliferation in response to localized application of OM was characterized in Lupinus albus (white lupin) grown in stratified soil columns to test if the stimulating effect of OM on cluster-root formation was due to (a) P release from breakdown of OM; (b) a decrease in soil density; or (c) effects of micro-organisms other than releasing P from OM. Methods Lupin plants were grown in three-layer stratified soil columns where P was applied at 0 or 330 mg P kg−1 to create a P-deficient or P-sufficient background, and OM, phytate mixed with OM, or perlite was applied to the top or middle layers with or without sterilization. Key Results Non-sterile OM stimulated cluster-root proliferation and root length, and this effect became greater when phytate was supplied in the presence of OM. Both sterile OM and perlite significantly decreased cluster-root formation in the localized layers. The OM position did not change the proportion of total cluster roots to total roots in dry biomass among no-P treatments, but more cluster roots were concentrated in the OM layers with a decreased proportion in other places. Conclusions Localized application of non-sterile OM or phytate plus OM stimulated cluster-root proliferation of L. albus in the localized layers. This effect is predominantly accounted for by P release from breakdown of OM or phytate, but not due to a change in soil density associated with OM. No evidence was found for effects of micro-organisms in OM other than those responsible for P release. PMID:20150198
Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes
Kinner, D.A.; Moody, J.A.
2010-01-01
Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.
Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride
2017-04-01
An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.
2007-06-26
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, photographers dressed in clean-room suits, are able to get closeup shots of the Phoenix Mars Lander. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-06-26
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, photographers dressed in clean-room suits are able to get closeup shots of the Phoenix Mars Lander. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers remove the covering over the heat shield (foreground) for the Phoenix Mars Lander spacecraft before installation. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-06-28
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, workers prepare the second stage of the Delta II launch vehicle to be mated to the Delta first stage below. Phoenix is scheduled to launch Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket at 5:26 a.m. EDT, illuminating the night sky over Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon
2007-07-23
KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers removed the plastic covering from NASA's Phoenix Mars Lander. Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
Phoenix Spacecraft Heat Shield Deployment Test
2007-05-16
In the Payload Hazardous Servicing Facility, a worker monitors the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Spacecraft Heat Shield Deployment Test
2007-05-16
In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander illuminates Launch Pad 17A as it lifts off aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray
2007-06-28
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, workers supervise the lowering of the second stage of the Delta II launch vehicle toward the Delta's first stage below. Phoenix is scheduled to launch Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-07-19
KENNEDY SPACE CENTER, Fla. --In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander spacecraft is moved toward the spacecraft, in the background. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket amid billows of smoke at Cape Canaveral Air Force Station at 5:26 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon
2007-06-18
KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket arrives on Launch Pad 17-A at Cape Canaveral Air Force Station. The rocket is the launch vehicle for the Phoenix spacecraft, targeted for launch on Aug. 3 heading for Mars. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Amanda Diller
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft is lifted from its stand. The Phoenix will be moved to the upper stage booster for mating. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Dimitri Gerondidakis
2007-08-04
KENNEDY SPACE CENTER, FLA. - The Delta II 7925 rocket carrying NASA's Phoenix Mars lander lifts off at 5:26 a.m. EDT amid billows of smoke on Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix spacecraft makes an auspicious start on its journey to Mars aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix Mars lander lifts off from Pad 17A aboard a Delta II 7925 rocket at 5:26 a.m. EDT, illuminating the pad at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Regina Mitchell-Ryall and Jerry Cannon
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers guide the Phoenix Mars Lander spacecraft onto the upper stage booster. The spacecraft and booster will be mated for launch. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach an overhead crane to the Phoenix Mars Lander spacecraft. The Phoenix will be lifted and moved to the upper stage booster for mating. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-06-28
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, workers begin mating the second stage of the Delta II launch vehicle to the Delta first stage below. Phoenix is scheduled to launch Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-08-04
KENNEDY SPACE CENTER, FLA. - NASA's Phoenix spacecraft makes a dramatic start on its mission to Mars aboard a Delta II 7925 rocket at 5:26 a.m. EDT from Pad 17A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Tony Gray and Robert Murray
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers prepare the Phoenix Mars Lander spacecraft for rotation. After rotation, the Phoenix will be mated with the upper stage booster. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-06-28
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, workers supervise the lowering of the second stage of the Delta II launch vehicle toward the Delta's first stage below. Phoenix is scheduled to launch Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
Kim, Ki-Hyun; Yoon, Hye-On; Jung, Myung-Chae; Oh, Jong-Min; Brown, Richard J. C.
2012-01-01
In an effort to study the possible effects of climate change on the behavior of atmospheric mercury (Hg), we built a temperature–controlled microchamber system to measure its emission from top soils. To this end, mercury vapour emission rates were investigated in the laboratory using top soil samples collected from an urban area. The emissions of Hg, when measured as a function of soil temperature (from ambient levels up to 70°C at increments of 10°C), showed a positive correlation with rising temperature. According to the continuous analyses of the Hg vapor given off by the identical soil samples, evasion rate diminished noticeably with increasing number of repetitions. The experimental results, if examined in terms of activation energy (Ea), showed highly contrasting patterns between the single and repetitive runs. Although the results of the former exhibited Ea values smaller than the vaporization energy of Hg (i.e., <14 Kcal mol−1), those of the latter increased systematically with increasing number of repetitions. As such, it is proposed that changes in the magnitude of Ea values can be used as a highly sensitive criterion to discriminate the important role of vaporization from other diverse (biotic/abiotic) processes occurring in the soil layer. PMID:22927791
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548
A New Model of Size-graded Soil Veneer on the Lunar Surface
NASA Technical Reports Server (NTRS)
Basu, Abhijit; McKay, David S.
2005-01-01
Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.
Vermicomposting of source-separated human faeces for nutrient recycling.
Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor
2010-01-01
The present study examined the suitability of vermicomposting technology for processing source-separated human faeces. Since the earthworm species Eisenia fetida could not survive in fresh faeces, modification in the physical characteristics of faeces was necessary before earthworms could be introduced to faeces. A preliminary study with six different combinations of faeces, soil and bulking material (vermicompost) in different layers was conducted to find out the best condition for biomass growth and reproduction of earthworms. The results indicated that SVFV combination (soil, vermicompost, faeces and vermicompost - bottom to top layers) was the best for earthworm biomass growth indicating the positive role of soil layer in earthworm biomass growth. Further studies with SVFV and VFV combinations, however, showed that soil layer did not enhance vermicompost production rate. Year-long study conducted with VFV combination to assess the quality and quantity of vermicompost produced showed an average vermicompost production rate of 0.30kg-cast/kg-worm/day. The vermicompost produced was mature as indicated by low dissolved organic carbon (2.4+/-0.43mg/g) and low oxygen uptake rate (0.15+/-0.09mg O(2)/g VS/h). Complete inactivation of total coliforms was noted during the study, which is one of the important objectives of human faeces processing. Results of the study thus indicated the potential of vermicomposting for processing of source-separated human faeces.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1997-01-01
A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.
Metals in European roadside soils and soil solution--a review.
Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd
2014-06-01
This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yuan, Yanan; Wang, Yajie; Ding, Wei; Li, Jinjun; Wu, Feng
2016-01-01
Transformation of inorganic arsenic species has drawn great concern in recent decades because of worldwide and speciation-dependent pollution and the hazards that they pose to the environment and to human health. As(III) photooxidation in aquatic systems has received much attention, but little is known about photochemical transformation of arsenic species on top soil. As(III) photooxidation on natural montmorillonite under UV-A radiation was investigated by using a moisture- and temperature-controlled photochemical chamber with two black-light lamps. Initial As(III) concentration, pH, layer thickness, humic acid (HA) concentration, the presence of additional iron ions, and the contribution of reactive oxygen species (ROS) were examined. The results show that pH values of the clay layers greatly influenced As(III) photooxidation on montmorillonite. As(III) photooxidation followed the Langmuir-Hinshelwood model. HA and additional iron ions greatly promoted photooxidation, but excess Fe(II) competed with As(III) for oxidation by ROS. Scavenging experiments revealed that natural montmorillonite induced the conversion of As(III) to As(V) by generating ROS (mainly HO(•) and HO2(•)/O2(•-)) and that HO(•) radical was the predominant oxidant in this system. Our work demonstrates that photooxidation on the surface of natural clay minerals in top soil can be important to As(III) transformation. This allows understanding and predicting the speciation and behavior of arsenic on the soil surface.
Erosion and vegetation restoration impacts on ecosystem carbon dynamics in South China
Tang, X.; Liu, Shuguang; Zhou, G.
2010-01-01
To quantify the consequences of erosion and vegetation restoration on ecosystem C dynamics (a key element in understanding the terrestrial C cycle), field measurements were collected since 1959 at two experimental sites set up on highly disturbed barren land in South China. One site had received vegetation restoration (the restored site) while the other received no planting and remained barren (the barren site). The Erosion-Deposition Carbon Model (EDCM) was used to simulate the ecosystem C dynamics at both sites. The on-site observations in 2007 showed that soil organic C (SOC) storage in the top 80-cm soil layer at the barren site was 50.3 ± 3.5 Mg C ha−1, half that of the restored site. The SOC and surface soil loss by erosion at the restored site from 1959 to 2007 was 3.7 Mg C ha−1 and 2.2 cm, respectively—one-third and one-eighth that of the barren site. The on-site C sequestration in SOC and vegetation at the restored site was 0.67 and 2.5 Mg C ha−1 yr−1, respectively, from 1959 to 2007, driven largely by tree growth and high atmospheric N deposition in the study area. Simulated findings suggested that higher N deposition resulted in higher on-site SOC storage in the soil profile (with SOC in the top 20-cm layer increasing more significantly), and higher on-site ecosystem C sequestration as long as N saturation was not reached. Lacking human-induced vegetation recovery, the barren site remained as barren land from 1959 to 2007 and the on-site C decrease was 0.28 Mg C ha−1 yr−1 Our study clearly indicated that vegetation restoration and burial by soil erosion provide a large potential C sink in terrestrial ecosystems.
Pan, Xin-li; Lin, Bo; Liu, Qing
2008-08-01
To investigate the effects of elevated temperature on the soil organic carbon content, soil respiration rate, and soil enzyme activities in subalpine Picea asperata plantations in western Sichuan Province of China, a simulation study was conducted in situ with open-top chambers from November 2005 to July 2007. The results showed that under elevated temperature, the mean air temperature and soil temperature were 0.42 degrees C and 0.25 degrees C higher than the control, respectively. In the first and the second year, the increased temperature had somewhat decreasing effects on the soil organic carbon and the C/N ratio at the soil depths of 0-10 cm and 10-20 cm. In the first year the soil organic carbon and the C/N ratio in 0-10 cm soil layer decreased by 8.69%, and 8.52%, respectively; but in the second year, the decrements were lesser. Soil respiration rate was significantly enhanced in the first year of warming, but had no significant difference with the control in the second year. In the first year of warming, the activities of soil invertase, polyphenol oxidase, catalase, protease, and urease increased, and the invertase and polyphenol oxidase activities in 0-10 cm soil layer were significantly higher than the control. In the second year of warming, the activities of invertase, protease and urease still had an increase, but those of catalase and polyphenol oxidase had a downtrend, compared with the control.
Piezoelectric Resonator with Two Layers
NASA Technical Reports Server (NTRS)
Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)
2013-01-01
A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground
NASA Astrophysics Data System (ADS)
Tang, Liang; Ling, Xianzhang; Xu, Pengju; Gao, Xia; Wang, Dongsheng
2010-03-01
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three El Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
NASA Astrophysics Data System (ADS)
Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.
2012-10-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.
Quality of soil and Transfer of pesticide under wastewater irrigation regime
NASA Astrophysics Data System (ADS)
Dahchour, Abdelmalek; El hajjaji, Souad; El makhoukhi, Fadoua; El m'rabet, Mohammadine; Satrallah, Ahmed
2016-04-01
Wastewater (WW) usage in irrigation is seen as good and cost effective alternative to face scarcity of water in some arid areas of the world. In Morocco the situation of water resources could be alarming by 2030. Irrigation with WW has been proven beneficial in terms of stabilizing soil structure, enrichment with mineral nutrients useful for crops and increase of production. Usage of WW may coincide with the presence of pollutants such as pesticides and heavy metals in the soil. This situation may enhance the transfer of the pollutants towards groundwater sheet. Gharb area in an important agricultural area of Morocco dominated by sandy and clayey soils, the closeness of water sheet and frequent preferential flow channels in the soil. Test of mobility was conducted in non structured soil columns (30 cm length, 7.5 cm internal diameter), composed with 6 section of 5 cm each and packed with 300g of previously air dried soil sieved at 2mm. Mass equivalent to the rate of application of fenoxyprop-ethyl, an herbicide commonly used in the area was applied 1 cm under the top layer of the soil in the columns. Three columns were used for the test; one of them was eluted with distilled water and used as control. Columns were irrigated with treated wastewater at the flow rate of 1mL/min. Percolated water was collected at 5 intervals of 1 hours. Residue was the herbicide was analyzed in percolated water and the sections of the columns. Result showed net increase in organic matter and conductivity of soil and slight decrease in pH. Analysis of residue showed that the movement of herbicide has increased in the columns percolated with wastewater compared with the control. The herbicide was found five top sections treated eluted with WW and remains in the top section in the control. No residue was detected in percolated water from all the columns treated and the control.
Soil Carbon Distribution along a Hill Slope in the Siberian Arctic
NASA Astrophysics Data System (ADS)
Ludwig, S.; Bunn, A. G.; Schade, J. D.
2011-12-01
Arctic ecosystems are warming at an accelerated rate relative to lower latitudes, and this warming has significant global significance. In particular, the thawing of permafrost soils has the potential to strongly influence global carbon cycling and the functioning of terrestrial and aquatic ecosystems. Our overarching scientific goal is to study the impact of thawing permafrost on the transport and processing of carbon and other nutrients as they move with water from terrestrial ecosystems to the Arctic Ocean. Transport of materials from soil to headwater aquatic ecosystems is the first step in this movement. Processes occurring along hill slopes strongly influence the form and concentration of material available for transport. These processes include downhill accumulation of materials due to groundwater movement, or alternatively, local effects of changes in soil and vegetation characteristics. In this project, we studied a hill slope adjacent to a small first order stream in the Kolyma River in Eastern Siberia. We sampled soil at several points along three transects from the top of the hill to the riparian zone by coring and homogenizing the entire active layer at each point. We measured soil organic matter content, soil moisture, water extractable dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and CDOM absorbance. We also measured soil respiration using a laboratory-based biological oxygen demand protocol conducted on soil-water slurries. Active layer depth decreased down the hillslope, while soil moisture, organic matter, and DOC all increased down the hillslope. CDOM absorbance increased downhill, which indicates a decrease in molecular weight of organic compounds at the bottom of the hill. This suggests either an input of newer carbon or processing of high molecular weight DOM down the slope. Soil respiration also increased downhill and was likely driven in part by increased OM in the shallower active layer. Finally, several soil variables were tightly correlated with active layer depth, suggesting that these patterns are driven by changes in the rate of thaw of the active layer driving local soil processes. Clearly, our results suggest significant changes in the form and amount of carbon available for processing and transport along hillslope transects, which may strongly influence the role of terrestrial-aquatic linkage in transport and processing of carbon and other nutrients.
Salinas Villafane, Omar R; Igarashi, Toshifumi; Harada, Shusaku; Kurosawa, Mitsuru; Takase, Toshio
2012-12-01
This paper describes the chemistry of porewater when constructing different soil layers on acidic weathered rock of a closed mine to remediate the surface environment. Three cases were set on a flat surface of the site, all under different layer systems. Case 1 was only composed of weathered rocks. A top neutralization layer was constructed on the weathered rocks in case 2, whereas both an upper low-permeable and middle neutralization layers were constructed on the weathered rocks in case 3. The low-permeable layer of 30 cm thick consists of clay, and the neutralization layer of 30 cm thick consists of the mixture of the weathered rock and calcium carbonate as a neutralizer. Porewater sampling systems and soil sensors to measure temperature, water content, and electrical conductivity were set at different depths. In case 1, steadily high concentrations of heavy metals were observed regardless of the depth, and the pH ranged from 2 to 4. In cases 2 and 3, a dramatic decrease in concentrations of heavy metals was observed, even below the neutralization layer. For both cases, pH values were circumneutral. There were no significant seasonable changes in heavy metals concentrations and pH of porewater by considering the temperature and precipitation. In addition, the water content of the layers in case 3 fluctuated more mildly than that in cases 1 and 2, indicating that the low-permeable layer reduced the rate of infiltration. Therefore, a significant reduction in the load of heavy metals released from the site can be achieved by both implementing neutralization and low-permeable layers.
NASA Astrophysics Data System (ADS)
Wu, Y. H.; Nakakita, E.
2017-12-01
Hillslope stability is highly related to stress equilibrium near the top surface of soil-mantled hillslopes. Stress field in a hillslope can also be significantly altered by variable groundwater motion under the rainfall influence as well as by different vegetation above and below the slope. The topographic irregularity, biological effects from vegetation and variable rainfall patterns couple with others to make the prediction of shallow landslide complicated and difficult. In an increasing tendency of extreme rainfall, the mountainous area in Japan has suffered more and more shallow landslides. To better assess shallow landslide hazards, we would like to develop a new mechanically-based method to estimate the fully three-dimensional stress field in hillslopes. The surface soil-layer of hillslope is modelled as a poroelastic medium, and the tree surcharge on the slope surface is considered as a boundary input of stress forcing. The modelling of groundwater motion is involved to alter effective stress state in the soil layer, and the tree root-reinforcement estimated by allometric equations is taken into account for influencing the soil strength. The Mohr-Coulomb failure theory is then used for locating possible yielding surfaces, or says for identifying failure zones. This model is implemented by using the finite element method. Finally, we performed a case study of the real event of massive shallow landslides occurred in Hiroshima in August, 2014. The result shows good agreement with the field condition.
Old-growth forests can accumulate carbon in soils
Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.
2006-01-01
Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.
2007-07-23
KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers remove the container lid from NASA's Phoenix Mars Lander. Launch of Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-18
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first stage of a Delta II rocket has been lifted into the mobile service tower. The rocket is the launch vehicle for the Phoenix spacecraft, targeted for launch on Aug. 3 heading for Mars. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Amanda Diller
2007-05-17
KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket, at right. The rocket is designated for the launch of the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix is targeted for Aug. 3. Photo credit: NASA/Kim Shiflett
2007-07-23
KENNEDY SPACE CENTER, FLA. -- NASA's Phoenix Mars Lander is revealed inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, after workers removed the coverings protecting the spacecraft. Launch of Phoenix on a Delta II launch vehicle is scheduled for no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-23
KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers remove the container from NASA's Phoenix Mars Lander. Launch of Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-23
KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers begin to remove the plastic covering from NASA's Phoenix Mars Lander. Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-20
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Cape Canaveral Air Force Station, the solar array panels on the Phoenix Mars Lander spacecraft are unfolded. The deployment of the panels is part of the pre-launch testing under way. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3. Photo credit: NASA/George Shelton
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft is moved across the area toward the upper stage booster at right. The spacecraft and booster will be mated for launch. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-07-17
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers help guide the suspended Phoenix Mars Lander spacecraft toward the upper stage booster in the center. The spacecraft and booster will be mated for launch. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/Dimitri Gerondidakis
2007-06-18
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first stage of a Delta II rocket is ready for lifting up into the mobile service tower. The rocket is the launch vehicle for the Phoenix spacecraft, targeted for launch on Aug. 3 heading for Mars. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Amanda Diller
2007-05-17
KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket. The rocket is designated for the launch of the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix is targeted for Aug. 3. Photo credit: NASA/Kim Shiflett
2007-05-17
KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket. The rocket is designated for the launch of the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix is targeted for Aug. 3. Photo credit: NASA/Kim Shiflett
2007-07-23
KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers remove the container from NASA's Phoenix Mars Lander. Launch of Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-22
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes illumination testing of its solar array panels. The Phoenix will be launched toward Mars to land in icy soils near the planet's north polar permanent ice cap. It will explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3 from Pad 17-A at Cape Canaveral Air Force Station . Photo credit: NASA/Kim Shiflett
2007-06-20
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Cape Canaveral Air Force Station, this mesh bag holds the spring and bolt from the test firing to deploy the solar panels on the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3. Photo credit: NASA/George Shelton
2007-05-17
KENNEDY SPACE CENTER, FLA. -- In Hangar A&O on Cape Canaveral Air Force Station in Florida, workers conduct a steering test on the first stage of a Delta II rocket, at right. The rocket is designated for the launch of the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix is targeted for Aug. 3. Photo credit: NASA/Kim Shiflett
2007-06-22
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes illumination testing of its solar array panels. The Phoenix will be launched toward Mars to land in icy soils near the planet's north polar permanent ice cap. It will explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3 from Pad 17-A at Cape Canaveral Air Force Station . Photo credit: NASA/Kim Shiflett
2007-07-20
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander is covered before the shipping canister is installed around it. After the canning, the Phoenix will be transferred to Launch Pad 17-A on Cape Canaveral Air Force Station in Florida for launch on Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-05-16
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers monitor the Phoenix spacecraft during a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, a technician takes a measurement on the Phoenix Mars Lander. The spacecraft is on display for the media. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-07-20
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers complete installing segments of the shipping canister around the base of the Phoenix Mars Lander. After the canning, the Phoenix will be transferred to Launch Pad 17-A on Cape Canaveral Air Force Station in Florida for launch on Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-06-22
KENNEDY SPACE CENTER, FLA. -- After illumination testing of the solar array panels, technicians begin stowing the panels on the Phoenix Mars Lander spacecraft. The Phoenix will be launched toward Mars to land in icy soils near the planet's north polar permanent ice cap. It will explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3 from Pad 17-A at Cape Canaveral Air Force Station . Photo credit: NASA/Kim Shiflett
2007-06-18
KENNEDY SPACE CENTER, FLA. -- The truck and transporter carrying the first stage of a Delta II rocket pull beneath the mobile service tower on Launch Pad 17-A at Cape Canaveral Air Force Station. The rocket is the launch vehicle for the Phoenix spacecraft, targeted for launch on Aug. 3,heading for Mars. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Amanda Diller
2007-05-16
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers prepare to put the Phoenix spacecraft through a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-07-20
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers secure the upper canister to the lower segments surrounding the Phoenix Mars Lander. After the canning, the Phoenix will be transferred to Launch Pad 17-A on Cape Canaveral Air Force Station in Florida for launch on Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-05-16
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix spacecraft undergoes a heat shield deployment test, with a firing of ordnance associated with the separation device. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton
2007-07-23
KENNEDY SPACE CENTER, FLA. -- Inside the mobile service tower of Launch Pad 17-A at Cape Canaveral Air Force Station in Florida, workers begin to remove the container from NASA's Phoenix Mars Lander. Launch of Phoenix is scheduled to launch on the Delta II launch vehicle no earlier than Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-18
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter beneath the mobile service tower. The rocket is the launch vehicle for the Phoenix spacecraft, targeted for launch on Aug. 3 heading for Mars. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Amanda Diller
Bioturbation by the Fungus-Gardening Ant, Trachymyrmex septentrionalis
Tschinkel, Walter R.; Seal, Jon N.
2016-01-01
Soil invertebrates such as ants are thought to be important manipulators of soils in temperate and tropical ecosystems. The fungus gardening ant, Trachymyrmex septentrionalis, is an important agent of biomantling, that is, of depositing soil excavated from below onto the surface, and has been suggested as an agent of bioturbation (moving soil below ground) as well. The amount of bioturbation by this ant was quantified by planting queenright colonies in sand columns consisting of 5 layers of different colored sand. The amount of each color of sand deposited on the surface was determined from April to November 2015. In November, colonies were excavated and the color and amount of sand deposited below ground (mostly as backfill in chambers) was determined. Extrapolated to one ha, T. septentrionalis deposited 800 kg of sand per annum on the surface, and an additional 200 kg (17% of the total excavated) below ground. On average, this mixes 1.3% of the sand from other layers within the top meter of soil per millennium, but this mixing is unlikely to be homogeneous, and probably occurs as "hotspots" in both horizontal and vertical space. Such mixing is discussed as a challenge to sediment dating by optically stimulated luminescence (OSL). PMID:27391485
Bioturbation by the Fungus-Gardening Ant, Trachymyrmex septentrionalis.
Tschinkel, Walter R; Seal, Jon N
2016-01-01
Soil invertebrates such as ants are thought to be important manipulators of soils in temperate and tropical ecosystems. The fungus gardening ant, Trachymyrmex septentrionalis, is an important agent of biomantling, that is, of depositing soil excavated from below onto the surface, and has been suggested as an agent of bioturbation (moving soil below ground) as well. The amount of bioturbation by this ant was quantified by planting queenright colonies in sand columns consisting of 5 layers of different colored sand. The amount of each color of sand deposited on the surface was determined from April to November 2015. In November, colonies were excavated and the color and amount of sand deposited below ground (mostly as backfill in chambers) was determined. Extrapolated to one ha, T. septentrionalis deposited 800 kg of sand per annum on the surface, and an additional 200 kg (17% of the total excavated) below ground. On average, this mixes 1.3% of the sand from other layers within the top meter of soil per millennium, but this mixing is unlikely to be homogeneous, and probably occurs as "hotspots" in both horizontal and vertical space. Such mixing is discussed as a challenge to sediment dating by optically stimulated luminescence (OSL).
Shirima, Deo D; Totland, Ørjan; Moe, Stein R
2016-11-01
The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0-15, 15-30, and 30-60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.
Impacts of different types of measurements on estimating unsaturated flow parameters
NASA Astrophysics Data System (ADS)
Shi, Liangsheng; Song, Xuehang; Tong, Juxiu; Zhu, Yan; Zhang, Qiuru
2015-05-01
This paper assesses the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.
Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters
NASA Astrophysics Data System (ADS)
Shi, L.
2015-12-01
This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.
Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth
Becerra, Alejandra; Bartoloni, Norberto; Cofré, Noelia; Soteras, Florencia; Cabello, Marta
2014-01-01
Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0–50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0–10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina. PMID:25242945
Changes in soil nitrogen cycling under Norway spruce logging residues on a clear-cut
NASA Astrophysics Data System (ADS)
Smolander, Aino; Lindroos, Antti-Jussi; Kitunen, Veikko
2016-04-01
In Europe, forest biomass is increasingly being used as a source of energy to replace fossil fuels. In practice, this means that logging residues, consisting of green branches and stem tops, are more commonly harvested. In 2012 logging residues were harvested from about one third of clear-cuts in Finland. Our aim was to study how logging residues affect soil organic matter quality, in particular soil N cycling processes and composition of certain groups of plant secondary compounds, tannins and terpenes. Compounds in these groups were of interest because they are abundant in logging residues, and they have been shown to control soil N cycling. In connection with clear-cutting a Norway spruce stand in southern Finland, we established a controlled field experiment by building logging residue piles (40 kg/m2) on study plots. The piles consisted of fresh spruce branches and tops with green foliage. Control plots with no residues were included (0 kg/m2). Changes in soil organic matter properties have now been monitored for three growing seasons. Logging residues affected organic layer properties strongly. For example, they increased net nitrification and nitrate concentrations. There were also increases in the concentrations of certain terpenes and condensed tannins due to the residues. The significance of logging residues on soil processes and properties will be shown.
Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA.
Goossens, Dirk; Buck, Brenda
2009-08-01
Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particles<10microm), during the driving as well as during episodes of wind erosion. Particular attention is paid to how the creation of a new trail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63-2000microm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2-63microm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.
Biology, spread, and biological control of winter moth in the eastern United States
Joseph Elkinton; George Boettner; Andrew Liebhold; Rodger Gwiazdowski
2015-01-01
The winter moth (Operophtera brumata L.; Lepidoptera: Geometridae) is an inchworm caterpillar that hatches coincident with bud-break on its hosts and feeds on a wide range of deciduous trees. It is one of a group of geometrid species that feed in early spring and then pupate in the top layer of the soil or litter beginning in mid-May. As postulated...
Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data
NASA Astrophysics Data System (ADS)
hatte, C.; Balesdent, J.; Guiot, J.
2012-12-01
Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).
Persistence of 137Cs in the litter layers of forest soil horizons of Mount IDA/Kazdagi, Turkey.
Karadeniz, Özlem; Karakurt, Hidayet; Çakır, Rukiye; Çoban, Fatih; Büyükok, Emir; Akal, Cüneyt
2015-01-01
In 2010-2012, an extensive study was performed in forest sites of Mount IDA (Kazdagi)/Edremit 26 years after the Chernobyl accident. The (137)Cs activity concentrations were determined by gamma-ray spectrometry in the forest soil layers (OL, OF + OH and A horizons) separately. Based on 341 surface soil samples and 118 soil profiles, activity concentrations of (137)Cs in OL horizons varied between 0.25 ± 0.14 and 70 ± 1 Bq kg(-1), while the ranges of (137)Cs activity concentrations in OF + OH and A horizons were 13 ± 1-555 ± 3 Bq kg(-1) and 2 ± 1-253 ± 2 Bq kg(-1), respectively. Cesium-137 deposition in the study area was estimated to be in the range of 1-39 kBq m(-2) and a linear relationship between the deposition of (137)Cs and the altitude was observed. The distributions of (137)Cs activities in OL, OF + OH and A horizons throughout the region were mapped in detail. The highest (137)Cs activities were found in OF + OH horizons, with markedly lower (137)Cs activity in mineral horizons of soil profiles. It is observed that (137)Cs content of humus layer increases with the thickness of the humus layer for coniferous forest sites. The (137)Cs activity concentrations were higher than the recommended screening limits (150 Bq kg(-1)) at some of the investigated areas. The current activity concentration of top soil layers indicates that over many years since the initial deposition, (137)Cs activity is keeping still high in the organic horizons. Copyright © 2014 Elsevier Ltd. All rights reserved.
An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin
Tan, Zhengxi; Tieszen, Larry L.; Zhu, Zhiliang; Liu, Shuguang; Howard, Stephen M.
2007-01-01
BackgroundWildfires are an increasingly important component of the forces that drive the global carbon (C) cycle and climate change as progressive warming is expected in boreal areas. This study estimated C emissions from the wildfires across the Alaskan Yukon River Basin in 2004. We spatially related the firescars to land cover types and defined the C fractions of aboveground biomass and the ground layer (referring to the top 15 cm organic soil layer only in this paper) consumed in association with land cover types, soil drainage classes, and the C stocks in the ground layer.ResultsThe fires led to a burned area of 26,500 km2 and resulted in the total C emission of 81.1 ± 13.6 Tg (Tg, Teragram; 1 Tg = 1012 g) or 3.1 ± 0.7 kg C m-2 burned. Of the total C emission, about 73% and 27% could be attributed to the consumption of the ground layer and aboveground biomass, respectively.ConclusionThe predominant contribution of the ground layer to the total C emission implies the importance of ground fuel management to the control of wildfires and mitigation of C emissions. The magnitude of the total C emission depends on fire extent, while the C loss in kg C m-2 burned is affected strongly by the ground layer and soil drainage condition. The significant reduction in the ground layer by large fires may result in profound impacts on boreal ecosystem services with an increase in feedbacks between wildfires and climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shishi; Wei, Yaxing; Post, Wilfred M
2013-01-01
The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively,more » of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.« less
Effect of top soil wettability on water evaporation and plant growth.
Gupta, Bharat; Shah, D O; Mishra, Brijesh; Joshi, P A; Gandhi, Vimal G; Fougat, R S
2015-07-01
In general, agricultural soil surfaces being hydrophilic in nature get easily wetted by water. The water beneath the soil moves through capillary effect and comes to the surface of the soil and thereafter evaporates into the surrounding air due to atmospheric conditions such as sunlight, wind current, temperature and relative humidity. To lower the water loss from soil, an experiment was designed in which a layer of hydrophobic soil was laid on the surface of ordinary hydrophilic soil. This technique strikingly decreased loss of water from the soil. The results indicated that the evaporation rate significantly decreased and 90% of water was retained in the soil in 83 h by the hydrophobic layer of 2 cm thickness. A theoretical calculation based on diffusion of water vapour (gas phase) through hydrophobic capillaries provide a meaningful explanation of experimental results. A greater retention of water in the soil by this approach can promote the growth of plants, which was confirmed by growing chick pea (Cicer arietinum) plants and it was found that the length of roots, height of shoot, number of branches, number of leaves, number of secondary roots, biomass etc. were significantly increased upon covering the surface with hydrophobic soil in comparison to uncovered ordinary hydrophilic soil of identical depth. Such approach can also decrease the water consumption by the plants particularly grown indoors in residential premises, green houses and poly-houses etc. and also can be very useful to prevent water loss and enhance growth of vegetation in semi-arid regions. Copyright © 2015 Elsevier Inc. All rights reserved.
Wolters, André; Kromer, Thomas; Linnemann, Volker; Schäffer, Andreas; Vereecken, Harry
2003-04-01
Volatilization from soil and plant surfaces after application is an important source of pesticide residues to the atmosphere. The laboratory photovolatility chamber allows the simultaneous measurement of volatilization and photodegradation of 14C-labeled pesticides under controlled climatic conditions. Both continuous air sampling, which quantifies volatile organic compounds and 14CO2 separately, and the detection of surface-located residues allow for a mass balance of radioactivity. The setup of the photovolatility chamber was optimized, and additional sensors were installed to characterize the influence of soil moisture, soil temperature, and evaporation on volatilization. The modified flow profile in the glass dome of the chamber arising from the use of a high-performance metal bellows pump was measured. Diminished air velocity near the soil surface and a wind velocity of 0.2 m/s in 3 cm height allowed the requirements of the German guideline on assessing pesticide volatilization for registration purposes to be fulfilled. Determination of soil moisture profiles of the upper soil layer illustrated that defined water content in the soil up to a depth of 4 cm could be achieved by water saturation of air. Cumulative volatilization of [phenyl-UL-14C]parathion-methyl ranged from 2.4% under dry conditions to 32.9% under moist conditions and revealed the clear dependence of volatilization on the water content in the top layer.
Pleistocene ice-rich yedoma in Interior Alaska
NASA Astrophysics Data System (ADS)
Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.
2011-12-01
Yedoma, or the ice-rich syngenetic permafrost with large ice wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek area, Boot Lake area, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of ice-rich silt with large ice wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding area revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-ice (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between ice wedges are extremely ice-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave ice were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek area) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the area are extremely ice-rich. Thickness of ice-rich silt varies from 10 m to more than 26 m, and volume of wedge-ice reaches 35-45%. Soil between ice wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to climate changes during Holocene or to wildfires, or both. The ice-poor layer of thawed and refrozen sediments (gravimetric moisture content usually does not exceed 40%) was encountered in many boreholes below the thin ice-rich intermediate layer (gravimetric moisture content usually exceeds 100%). These two layers separate ice wedges from the active layer and protect them from further thawing. Such structure of the upper permafrost at different yedoma sites of Interior Alaska can explain a relatively rare occurrence of surface features related to yedoma degradation such as thermokarst mounds and erosional gullies developed along ice wedges.
NASA Astrophysics Data System (ADS)
Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter
2010-05-01
An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively high abiotic and biotic dynamics of soil pore structure in the soil surface even during the very early development stages. The structure formation has potentially great effects on changing runoff and infiltration by forming sealing layers or preferential flow paths.
Carbon and 14C distribution in tropical and subtropical agricultural soils
NASA Astrophysics Data System (ADS)
Prastowo, Erwin; Grootes, Pieter; Nadeau, Marie
2016-04-01
Paddy soil management affects, through the alternating anoxic and oxic conditions it creates, the transport and stabilisation of soil organic matter (SOM). Irrigation water may percolate more organic materials - dissolved (DOM) and colloidal - into the subsoil during anoxic conditions. Yet a developed ploughpan tends to prevent C from going deeper in the subsoil and partly decouple C distribution in top and sub soil. We investigate the influence of different soil type and environment. We observed the C and 14C distribution in paddy and non-paddy soil profiles in three different soil types from four different climatic regions of tropical Indonesia, and subtropical China. Locations were Sukabumi (Andosol, ca. 850 m a.s.l), Bogor (clayey Alisol, ca. 240 m a.s.l), and Ngawi (Vertisol, ca. 70 m a.s.l) in Jawa, Indonesia, and Cixi (Alisol(sandy), ca. 4 - 6 m a.s.l) in Zhejiang Province, China. We compared rice paddies with selected neighbouring non-paddy fields and employed AMS 14C as a tool to study C dynamics from bulk, alkali soluble-humic, and insoluble humin samples, and macrofossils (plant remains, charcoal). Our data suggest that vegetation type determines the quantity and quality of biomass introduced as litter and root material in top and subsoil, and thus contributes to the soil C content and profile, which fits the 14C signal distribution, as well as 13C in Ngawi with C4 sugar cane as upland crop. 14C concentrations for the mobile humic acid fraction were generally higher than for bulk samples from the same depth, except when recent plant and root debris led to high 14C levels in near-surface samples. The difference in sampling, - averaged layer for bulk sample and 1-cm layer thickness for point sample - shows gradients in C and 14C across the layers, which could be a reason for discrepancies between the two. High 14C concentrations - in Andosol Sukabumi up to 111 pMC - exceed the atmospheric 14CO2concentration in the sampling year in 2012 (˜ 103 pMC) and reflect stored organic material from earlier years with a higher atmospheric bomb 14C content. Direct inputs of plant material into the subsoil is indicated by young organic remains with more than 103 pMC below 0.8 m depth. In combination with 13C observation, it is quite obvious that introduction of young C took place in both paddy and non-paddy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.C. Weaver
2009-04-29
The primary objective of the independent verification was to determine if BJC performed the appropriate actions to meet the specified “hot spot” cleanup criteria of 500 picocuries per gram (pCi/g) uranium-238 (U-238) in surface soil. Specific tasks performed by the independent verification team (IVT) to satisfy this objective included: 1) performing radiological walkover surveys, and 2) collecting soil samples for independent analyses. The independent verification (IV) efforts were designed to evaluate radioactive contaminants (specifically U-238) in the exposed surfaces below one foot of the original site grade, given that the top one foot layer of soil on the site wasmore » removed in its entirety.« less
2007-07-23
KENNEDY SPACE CENTER, FLA. — The Phoenix Mars Lander, on its transporter, is escorted out of the Payload Hazardous Servicing Facility for its transfer to Launch Pad 17-A at Cape Canaveral Air Force Station. Launch of NASA's Phoenix Mars Lander is scheduled for Aug. 3. There are two instantaneous launch times, 5:35:18 and 6:11:24 a.m. EDT. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- On Pad 17-A at Cape Canaveral Air Force Station, the solid rocket booster is raised off its transporter. The SRB will be lifted into the mobile service tower for mating with the Delta II first stage. The Delta is the launch vehicle for the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3. Photo credit: NASA/Kim Shiflett
2007-07-19
KENNEDY SPACE CENTER, Fla. -- In the Payload Hazardous Servicing Facility, workers attach a crane to the heat shield for the Phoenix Mars Lander spacecraft. The crane will lift and move the heat shield for installation over the lander within the cruise stage. Targeted for launch from Cape Canaveral Air Force Station on Aug. 3, Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Troy Cryder
2007-06-19
KENNEDY SPACE CENTER, FLA. -- On Pad 17-A at Cape Canaveral Air Force Station, three solid rocket boosters wait for the Delta II first stage to arrive at the mobile service tower. The SRBs will be mated with the Delta, which is the launch vehicle for the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3. Photo credit: NASA/Kim Shiflett
2007-06-18
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, workers prepare the first stage of a Delta II rocket to be lifted up into the mobile service tower. The rocket is the launch vehicle for the Phoenix spacecraft, targeted for launch on Aug. 3 heading for Mars. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Amanda Diller
2007-06-04
KENNEDY SPACE CENTER, FLA. -- In the Payload Handling Servicing Facility, the Phoenix spacecraft is upside down during rotation. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, Phoenix Program Manager Barry Goldstein, from the Jet Propulsion Laboratory, briefs media personnel dressed in clean-room suits about the mission of the Phoenix Mars Lander, in the background. Phoenix is scheduled to launch Aug. 3 from Launch Pad 17-A at Cape Canaveral Air Force Station. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
Karas, Panagiotis A; Makri, Sotirina; Papadopoulou, Evangelia S; Ehaliotis, Constantinos; Menkissoglu-Spiroudi, Urania; Karpouzas, Dimitrios G
2016-02-01
Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those effluents and biobeds appear as a viable alternative. We employed a column study to investigate the potential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates effectively reduced the leaching of OPP and IMZ which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of the substrate, OPP was restricted in the top 0-20cm of the columns and was bioavailable (extractable with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at deeper layers (20-50, 50-80cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abundance was significantly lower in the top layer of all substrates from where the highest pesticide amounts were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and OPP from wastewaters of citrus FPP. Copyright © 2015 Elsevier Inc. All rights reserved.
Hydrology of two slopes in subarctic Yukon, Canada
NASA Astrophysics Data System (ADS)
Carey, Sean K.; Woo, Ming-Ko
1999-11-01
Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan
2014-05-01
Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote Sensing AG) and the physical temperature of the soil surface measured by infrared sensor. As the input data for S-PM: volumes of soil components, mineralogical composition, organic matter content, specific surface area and bulk density of the soil were used. Water contents in the model are iteratively changed, until emissivities calculated from the S-PM reach the best agreement with emissivities measured by the radiometer. Final water content will correspond to the soil moisture measured by the radiometer. Then, the examined soil profile will be virtually divided into thin slices where moisture, temperature and thermal properties will be measured and simultaneously modelled via S-PM. In the next step, the slices will be "added" starting from top (soil surface), until the effective soil moisture will be equal to the soil moisture measured by ELBARA. The thickness of obtained stack will be equal to desired "penetration depth". Moreover, it will be verified further by measuring the moisture content using thermal inertia. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.
Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher
2014-02-18
Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from undisturbed, background soils emphasizing the important role of soils in sequestering past and current Hg pollution loads.
Rain water transport and storage in a model sandy soil with hydrogel particle additives.
Wei, Y; Durian, D J
2014-10-01
We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.
Clay illuviation provides a long-term sink for C sequestration in subsoils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier P. O.; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Simó, Iolanda; Six, Johan; Creamer, Rachel E.
2017-04-01
Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.
Soil and surface layer type affect non-rainfall water inputs
NASA Astrophysics Data System (ADS)
Agam, Nurit; Berliner, Pedro; Jiang, Anxia
2017-04-01
Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted and non-crusted sandy soils often exceeded that between crusted and non-crusted loess soils.
Soil moisture decline due to afforestation across the Loess Plateau, China
NASA Astrophysics Data System (ADS)
Jia, Xiaoxu; Shao, Ming'an; Zhu, Yuanjun; Luo, Yi
2017-03-01
The Loess Plateau of China is a region with one of the most severe cases of soil erosion in the world. Since the 1950s, there has been afforestation measure to control soil erosion and improve ecosystem services on the plateau. However, the introduction of exotic tree species (e.g., R. pseudoacacia, P. tabulaeformis and C. korshinskii) and high-density planting has had a negative effect on soil moisture content (SMC) in the region. Any decrease in SMC could worsen soil water shortage in both the top and deep soil layers, further endangering the sustainability of the fragile ecosystem. This study analyzed the variations in SMC following the conversion of croplands into forests in the Loess Plateau. SMC data within the 5-m soil profile were collected at 50 sites in the plateau region via field survey, long-term in-situ observations and documented literature. The study showed that for the 50 sites, the depth-averaged SMC was much lower under forest than under cropland. Based on in-situ measurements of SMC in agricultural plots and C. korshinskii plots in 2004-2014, SMC in the 0-4 m soil profile in both plots declined significantly (p < 0.01) during the growing season. The rate of decline in SMC in various soil layers under C. korshinskii plots (-0.008 to -0.016 cm3 cm-3 yr-1) was much higher than those under agricultural plots (-0.004 to -0.005 cm3 cm-3 yr-1). This suggested that planting C. korshinskii intensified soil moisture decline in China's Loess Plateau. In the first 20-25 yr of growth, the depth-averaged SMC gradually decreased with stand age in R. pseudoacacia plantation, but SMC somehow recovered with increasing tree age over the 25-year period. Irrespectively, artificial forests consumed more deep soil moisture than cultivated crops in the study area, inducing soil desiccation and dry soil layer formation. Thus future afforestation should consider those species that use less water and require less thinning for sustainable soil conservation without compromising future water resources demands in the Loess Plateau.
Lievens, Hans; Vernieuwe, Hilde; Álvarez-Mozos, Jesús; De Baets, Bernard; Verhoest, Niko E.C.
2009-01-01
In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration. PMID:22399956
NASA Astrophysics Data System (ADS)
Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen
2016-04-01
The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is located in an artificial oasis in the semi-arid region of northwestern China. Land surface temperature (LST) and soil volumetric water content (SVW) at first layer measured at Daman station are taken as observations in the framework of data assimilation. The study demonstrates the feasibility of ESIL in improving the soil moisture and temperature profile under unknown irrigation. ESIL promotes the coefficient correlation with in-situ measurements for soil moisture and temperature at first layer from 0.3421 and 0.7027 (ensemble simulation) to 0.8767 and 0.8304 meanwhile all the RMSE of soil moisture and temperature in deeper layers dramatically decrease more than 40 percent in different degree. To verify the reliability of ESIL in practical application, thereby promoting the utilization of satellite data, we test ESIL with varying observation internal interval and standard deviation. As a consequence, ESIL shows stabilized and promising effectiveness in soil moisture and soil temperature estimation.
Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska
Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; ...
2015-12-18
We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the activemore » layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.« less
2007-06-04
KENNEDY SPACE CENTER, FLA. -- In the Payload Handling Servicing Facility, the Phoenix spacecraft is being rotated for center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-06-04
KENNEDY SPACE CENTER, FLA. -- In the Payload Handling Servicing Facility, the Phoenix spacecraft is being rotated for center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-06-04
KENNEDY SPACE CENTER, FLA. -- In the Payload Handling Servicing Facility, the Phoenix spacecraft is being rotated for center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-06-19
KENNEDY SPACE CENTER, FLA. -- On Pad 17-A at Cape Canaveral Air Force Station, one solid rocket booster is lifted into the mobile service tower while another, below, is raised from its transporter. The SRBs will be mated with the Delta II first stage. The Delta is the launch vehicle for the Phoenix Mars Lander spacecraft. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Phoenix is scheduled to launch Aug. 3. Photo credit: NASA/Kim Shiflett
Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S
2015-11-01
This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Zhang, Yanwei; Tan, Dongfei; Geng, Yue; Wang, Lu; Peng, Yi; He, Zeying; Xu, Yaping; Liu, Xiaowei
2016-01-01
Field investigations on perfluoroalkyl acid (PFAA) levels in various environmental matrixes were reported, but there is still a lack of PFAA level data for agricultural environments, especially agricultural producing areas, so we collected soil, irrigation water and agricultural product samples from agricultural producing areas in the provinces of Liaoning, Shandong and Sichuan in China. The background pollution from instruments was removed and C4–C18 PFAAs were detected by LC-MS/MS. The concentrations of PFAAs in the top and deep layers of soil were compared, and the levels of PFAAs in different agricultural environments (greenhouses and open agriculture) were analyzed. We found the order of PFAA levels by province was Shandong > Liaoning > Sichuan. A descending trend of PFAA levels from top to deep soil and open to greenhouse agriculture was shown and perfluorobutanoic acid (PFBA) was considered as a marker for source analysis. Bean vegetables contribute highly to the overall PFAA load in vegetables. A significant correlation was shown between irrigation water and agricultural products. The EDI (estimated daily intake) from vegetables should be of concern in China. PMID:27973400
Land cover effects on thresholds for surface runoff generation in Eastern Madagascar
NASA Astrophysics Data System (ADS)
van Meerveld, Ilja H. J.; Prasad Ghimire, Chandra; Zwartendijk, Bob W.; Ravelona, Maafaka; Lahitiana, Jaona; Bruijnzeel, L. Adrian
2016-04-01
Reforestation and natural regrowth in the tropics are promoted for a wide range of benefits, including carbon sequestration, land rehabilitation and streamflow regulation. However, their effects on runoff generation mechanisms and streamflow are still poorly understood. Evaporative losses (transpiration and interception) likely increase with forest regrowth, while infiltration rates are expected to increase and surface runoff occurrence is, therefore, expected to decrease. As part of a larger project investigating the effects of land use on hydrological processes in upland Eastern Madagascar, this presentation reports on a comparison of the thresholds for surface runoff generation at a degraded grassland site, a young secondary forest site (5-7 years; LAI 1.83) and a mature secondary forest site (ca. 20 years; LAI 3.39). Surface runoff was measured on two (young and mature secondary forest) or three (degraded site) 3 m by 10 m plots over a one-year period (October 2014-September 2015). Soil moisture was measured at four (degraded site) to six depths (both forests), while perched groundwater levels were measured in piezometers installed at 30 cm below the soil surface. Soil hydraulic conductivity was measured in situ at the surface and at 10-20 and 20-30 cm depths at three locations in each plot. Porosity, moisture content at field capacity and bulk density were determined from soil cores taken at 2.5-7.5, 12.5-17.5 and 22.5-27.5 cm depth. The porosity and texture of the different plots were comparable. The hydraulic conductivity of the soil differed between the different land uses and declined sharply at 20-30 cm below the soil surface. Total surface runoff during the study period was 11% of incident rainfall at the degraded site vs. 2% for the two secondary forest sites. Maximum monthly runoff coefficients were 22%, 3.5% and 2.7% for the degraded site, the young forest site and the mature forest site, respectively, but individual event runoff coefficients could be as high as 45%, 12%, and 10%, respectively. Initial analyses indicate that a threshold rainfall amount was required before surface runoff occurs. Comparison of surface runoff occurrence with perched groundwater levels and soil moisture data showed that surface runoff was generated once the top-soil (0-20 cm) became saturated because of impeded drainage to the low hydraulic conductivity deeper layers. Thresholds for saturation overland flow generation were higher at the two forested sites compared to the degraded grassland due to their greater percolation to deeper layers, faster shallow lateral flow, and larger available storage in the top layers. The detailed analyses of the soil moisture and rainfall thresholds for surface runoff generation and their temporal variation will be used to develop a bucket-based conceptual model for runoff generation at these upland tropical sites. Key words: Runoff plot, rainfall threshold, soil moisture, saturation overland flow, secondary forest, soil hydraulic conductivity, Madagascar, p4ges project
Taxonomic and environmental soil diversity of marine terraces of Gronfjord (West Spitsbergen island)
NASA Astrophysics Data System (ADS)
Alekseev, Ivan; Abakumov, Evgeny
2017-04-01
Soil surveys in polar region are faced to problems of soil diagnostics, evolution, geography and pedogenesis with the aim to assess the actual state and future dynamics of soil cover under changing environmental conditions. This investigation is devoted to specification of taxonomic and environmental soil diversity of marine terraces of Gronfjord (Svalbard archipelago, West Spitsbergen Island). It was established 3 key plots (Grendasselva, Aldegonda rivers and marine terrace in surroundings of Barentsburg aerodrome). Soil diagnostics was carried out according to Russian soil classification system and WRB. Grendasselva river valley is characterized by numerous patterned ground elements combined with lichen-moss and moss-lichen patches with sporadic inclusions of higher plants (mostly Lusula pilosa). Soil cover is represented by Typic Cryosols on elevated sites and Histic Gleysols, Turbic Gleysols and Histosols on well-drained boggy sites. Aldegonda river valley characterizes by predominance of entic soils (soil with non-pronounced profile differentiation) on moraine material (mostly Cryic Leptosols). Vegetation is presented by sporadic plant communities comprised by Lusula pilosa and thin lichen-moss ground layer (developed only in well-moistened micro depression). Marine terrace in surroundings of Barentsburg aerodrome is covered by moss-lichen tundra with sporadic inclusions of Lusula pilosa. On the top of the terrace compressed barren circles are quite abundant. Soil catena has been established within this key plot. Soil types are represented by Typic Cryosols in watershed parts of catena, Gleysols and Histic Gleysols in accumulation positions. The active layer depths have been distinguished using vertical electrical sounding. They ranged from 80-90 cm at Grendasselva and Aldegonda river key plot to 140-150 cm at marine terrace in surroundings of Barentsburg aerodrome. Regional differences in this indicator may be explained not only by local differences in thermal regime of soil and permafrost layers, but also by different ways of anthropogenic forcing on studied key plots. Spatial differentiation of soil types within the studied area is caused mainly by relief conditions (since it determines moisture conditions and gleyzation rates especially) and parent materials. Cryogenic mass transfer, cryoturbations and degree of their manifestation in studied soils depend on active layer thickness and also varies significantly. This study was conducted in cooperation with Arctic and Antarctic Research Institute (Saint Petersburg, Russia) and supported by Russian Foundation for basic research, grant 16-34-60010, Russian presidents' grant for Young Doctors of Science № MD-3615.2015.4.
NASA Astrophysics Data System (ADS)
Yasumiishi, Misa; Nishimura, Taku; Osawa, Kazutoshi; Renschler, Chris
2017-04-01
The continual monitoring of environmental radioactive levels in Fukushima, Japan following the nuclear plant accident in March 2011 provides our society with valuable information in two ways. First, the collected data can be used as an indicator to assess the progress of decontamination efforts. Secondly, the collected data also can be used to understand the behavior of radioactive isotopes in the environment which leads to further understanding of the landform processes. These two aspects are inseparable for us to understand the effects of radioactive contamination in a dynamic environmental system. During the summer of 2016, 27 soil core samples were collected on a farmer's land (rice paddies and forest) in Fukushima, about 20 km northwest of the nuclear plant. Each core was divided into 2.0 - 3.0 cm slices for the Cs-134, Cs-137, and I-131 level measurement. The collected data is being analyzed from multiple perspectives: temporal, spatial, and geophysical. In the forest area, even on the same hillslope, multiple soil types and horizon depths were observed which indicates the challenges in assessing the subsurface radioactive isotope movements. It appears that although highly humic soils show higher or about the same level of radioactivity in the surface layers, as the depth increased, the radioactivity decreased more in those samples compared with more sandy soils. With regard to the direction a slope faces and the sampling altitudes, the correlation between those attributes and radioactivity levels is inconclusive at this moment. The altitude might have affected the fallout level on a single hillslope-basis. However, to determine the correlation, further sampling and the detailed analysis of vegetation and topography might be necessary. Where the surface soil was scraped and new soil was brought in, former rice paddy surface layers did show three-magnitude levels lower of radioactivity in the top layer when compared with forest soils. At the foot of forest slopes where the surface soil was scraped and litter was cleared, the scraping showed mixed results in radioactivity reduction. It is estimated that by the completion of soil decontamination in 2020, up to 22 million cubic meters of so-called 'contaminated soils' will have been scraped off in the affected areas and transferred to an underground storage. Understanding the radioactive isotope behaviors is crucial to assessing the financial and environmental consequences of such measures. As an example, a 30-year simulation of a 5-13 % hillslope under thick vegetation with GeoWEPP (the Geospatial interface for the Water Erosion Prediction Project) resulted in a very small soil loss on the hillslope. However, the results showed about five tons of soil loss through channels and as sediment discharge annually. On the hillslope, the radioactivity level in about the top 4.0 cm of the soil exceeded the 8,000 Bq/kg threshold which the Japanese government has set for surface soil removal. Referring to the case study data in Fukushima, this presentation will discuss how environmental decontamination measures (e.g. forest clearing) and monitoring methods should be considered and planned against dynamic environmental processes.
Soil moisture controls on phenology and productivity in a semi-arid critical zone.
Cleverly, James; Eamus, Derek; Restrepo Coupe, Natalia; Chen, Chao; Maes, Wouter; Li, Longhui; Faux, Ralph; Santini, Nadia S; Rumman, Rizwana; Yu, Qiang; Huete, Alfredo
2016-10-15
The Earth's Critical Zone, where physical, chemical and biological systems interact, extends from the top of the canopy to the underlying bedrock. In this study, we investigated soil moisture controls on phenology and productivity of an Acacia woodland in semi-arid central Australia. Situated on an extensive sand plain with negligible runoff and drainage, the carry-over of soil moisture content (θ) in the rhizosphere enabled the delay of phenology and productivity across seasons, until conditions were favourable for transpiration of that water to prevent overheating in the canopy. Storage of soil moisture near the surface (in the top few metres) was promoted by a siliceous hardpan. Pulsed recharge of θ above the hardpan was rapid and depended upon precipitation amount: 150mm storm(-1) resulted in saturation of θ above the hardpan (i.e., formation of a temporary, discontinuous perched aquifer above the hardpan in unconsolidated soil) and immediate carbon uptake by the vegetation. During dry and inter-storm periods, we inferred the presence of hydraulic lift from soil storage above the hardpan to the surface due to (i) regular daily drawdown of θ in the reservoir that accumulates above the hardpan in the absence of drainage and evapotranspiration; (ii) the dimorphic root distribution wherein most roots were found in dry soil near the surface, but with significant root just above the hardpan; and (iii) synchronisation of phenology amongst trees and grasses in the dry season. We propose that hydraulic redistribution provides a small amount of moisture that maintains functioning of the shallow roots during long periods when the surface soil layer was dry, thereby enabling Mulga to maintain physiological activity without diminishing phenological and physiological responses to precipitation when conditions were favourable to promote canopy cooling. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.
2015-12-01
Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow melt dynamics in forested land surfaces. The turbulent transport dynamics, including counter-gradient fluxes, and radiation features including land surface albedo, are discussed in the context of the snow energy balance.
An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior
NASA Astrophysics Data System (ADS)
Brubaker, Kaye L.; Entekhabi, Dara
1995-03-01
A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.
Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements
NASA Astrophysics Data System (ADS)
Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.
2012-12-01
The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02 and SMEX 08 field experiments.
Nam, Sun-Hwa; An, Youn-Joo
2015-12-01
This study evaluated five methods of soil inoculation using the soil alga Chlorococcum infusionum to determine the most efficient and reproducible method for promoting the growth of soil algae for toxicity testing. The five techniques included application of C. infusionum in a circle on top of the soil, to a central spot on top of the soil, to a central spot in the subsoil, to one side on top of the soil, and application divided between a circle and a central spot on top of the soil. Of these, the first method generated the greatest amount of chlorophyll fluorescence and was the method with the best reproducibility. We evaluated the applicability of this method in an assessment of the toxicity of copper and nickel to C. infusionum in two representative standard soils. Copper (20-75 mg/kg for OECD soil and 20-60 mg/kg Lufa 2.2 soil) and nickel (400-500 mg/kg for OECD soil and 60-100 mg/kg Lufa 2.2 soil) reduced the chlorophyll fluorescence of C. infusionum when the inoculation was delivered in a circle on top of both soil types. To our knowledge, this is the first study to assess the suitability of different soil algal inoculation methods for terrestrial toxicity testing. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, A.R.; Gagnon, M.J.
1987-01-01
The lowbush blueberry (Vaccinium angustifolium Ait.) is an important commercial crop of the Lac-Saint-Jean area (Quebec, Canada). The major blueberry fields are located on sandy soils relatively poor in available mineral nutrients. The nutrients originate from a thin organic layer found on the top of these sandy soils. The leaf mineral contents (N, P, K, Mg, Ca, Mn, Fe, Cu, Zn and B) were measured in five blueberry fields during 1984 and 1985. Soil pH and soil available P, K, and Mg were also assessed. The results show that the leaf mineral contents are generally adequate. However, K and Znmore » might be occasionally deficient when compared to the actual established standards. The available Mg in soil was significantly correlated with the leaf Mg concentration. The data also suggest that the influence of the pH following the burn pruning seems to influence the nutrition of this species.« less
Microbial community structure and diversity in a municipal solid waste landfill.
Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui
2017-08-01
Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Rongming; Cao, Yu; Li, Zijian
2018-02-20
A diode includes: a semiconductor substrate; a cathode metal layer contacting a bottom of the substrate; a semiconductor drift layer on the substrate; a graded aluminum gallium nitride (AlGaN) semiconductor barrier layer on the drift layer and having a larger bandgap than the drift layer, the barrier layer having a top surface and a bottom surface between the drift layer and the top surface, the barrier layer having an increasing aluminum composition from the bottom surface to the top surface; and an anode metal layer directly contacting the top surface of the barrier layer.
Adanacioglu, Neşe; Boztok, Kaya; Akdeniz, Ramazan Cengiz
2015-01-01
The aim of this research is to evaluate the effects of light intensity, casing layers, and layering styles on the production of the culinary-medicinal mushroom Agaricus brasiliensis in Turkey. The experiments were designed in split-split plots and replicated twice. Three different light intensities-I1, 350 lux; I2, 450 lux; and I3, 750 lux-were used in main plots as environmental factors. A mixture of 4 different casing layers- peat (100%), peat-perlite (75%:25%), peat-clinoptilolite (75%:25%), and peat-perlite-clinoptilolite (60%:20%:20%)-were used at split plots and at split plots. S1, a flat, 3-cm casing layer; S2, a flat, 5-cm casing layer; and S3, casing soil ridges 10 cm wide × 4 cm high, 10 cm apart, were deposited on top of 1-cm overall soil casing layers. At the end of the harvest phase, the total yield was estimated per 100 kg of substrate. Biological efficiency (percentage) was determined from the fresh weight of the mushrooms and the dry weight of the compost at the end of the harvesting period. The highest total yield (7.2 kg/100 kg compost) and biological efficiency (27.63%) were achieved from I2 × peat-perlite-clinoptilolite × S2 treatment. Influence of light intensity, casing layer, layering style, and their interaction in treatments with color values (L*, a*, b*, chroma*, and hue*) also were examined. It has been shown that within color values, chroma* (saturation) values of mushroom caps were affected by light intensity, casing layer, and layering style treatments and light intensity × casing layer treatments and the brightness of mushroom caps tended to increase as light intensity increased.
Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming
2016-04-15
The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P < 0.01) positively correlated with the contents of Fe2O3, Ni, Cu, As and V in the industrial top soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.
2007-06-04
KENNEDY SPACE CENTER, FLA. -- In the Payload Handling Servicing Facility, an overhead crane lifts the Phoenix spacecraft from its stand for a move to a rotation stand for an interim weight and center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-06-04
KENNEDY SPACE CENTER, FLA. -- In the Payload Handling Servicing Facility, an overhead crane lowers the Phoenix spacecraft onto a rotation stand for an interim weight and center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-07-23
KENNEDY SPACE CENTER, FLA. — Attached to an overhead crane, the Phoenix Mars Lander is lifted up alongside the mobile service tower on Launch Pad 17-A at Cape Canaveral Air Force Station. Once inside the tower, the lander will be mated to the Delta II launch vehicle. Launch of NASA's Phoenix Mars Lander is scheduled for Aug. 3. There are two instantaneous launch times, 5:35:18 and 6:11:24 a.m. EDT. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-04
KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the Phoenix spacecraft from its stand for a move to a rotation stand for an interim weight and center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-06-28
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for NASA's Phoenix Mars Lander is suspended in front of the mobile service tower while workers place protective panels around the nozzle. The second stage will be lifted into the mobile service tower and mated with the Delta's first stage. Phoenix is scheduled to launch Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-28
KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for NASA's Phoenix Mars Lander arrives on Launch Pad 17-A at Cape Canaveral Air Force Station. The second stage will be lifted into the mobile service tower and mated with the Delta's first stage. The second stage will be lifted into the mobile service tower and mated with the first stage. Phoenix is scheduled to launch Aug. 3. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Kim Shiflett
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved into place around the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-04
KENNEDY SPACE CENTER, FLA. -- In the Payload Handling Servicing Facility, an overhead crane lifts the Phoenix spacecraft from its stand for a move to a rotation stand for an interim weight and center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
NASA Astrophysics Data System (ADS)
Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu
2017-09-01
Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.
Effects of different soil management practices on soil properties and microbial diversity
NASA Astrophysics Data System (ADS)
Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga
2018-01-01
The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.
It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils << 1 Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to
Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone.
Liu, Chang; Dang, Xiuli; Mayes, Melanie A; Chen, Leilei; Zhang, Yulong
2017-01-01
Continuous application of P fertilizers under different irrigation patterns can change soil phosphorus (P) chemical behavior and increase soil P levels that are of environmental concern. To assess the effect of long-term different irrigation patterns on soil P fractions and availability, this study examined sequential changes in soil organic P and inorganic P from furrow irrigation (FI), surface drip irrigation (SUR), and subsurface drip irrigation (SDI) in the brown soil zone (0-60 cm) during 1998 to 2011. Analyses of soil P behavior showed that the levels of total P are frequently high on top soil layers. The total P (TP) contents of the entire soil profiles under three irrigation treatments were 830.2-3180.1 mg/kg. The contents of available P (AP) were 72.6-319.3 mg P/kg soil through soil profiles. The greatest TP and AP contents were obtained within the upper soil layers in FI. Results of Hedley's P fractionation indicate that HCl-P is a dominant form and the proportion to TP ranges from 29% to 43% in all three methods. The contents of various fractions of P were positively correlated with the levels of total carbon (TC), total inorganic carbon (TIC), and calcium (Ca), whereas the P fractions had negative correlation with pH in all soil samples. Regression models proved that NaHCO3-Po was an important factor in determining the amount of AP in FI. H2O-Po, NaHCO3-Po, and NaOH-Pi were related to available P values in SUR. NaHCO3-Po and NaOH-Po played important roles in SDI. The tomato yield under SUR was higher than SDI and FI. The difference of P availability was also controlled by the physicochemical soil properties under different irrigation schedule. SUR was a reasonable irrigation pattern to improve the utilization efficiency of water and fertilizer.
Assessing Impacts of 20 yr Old Miscanthus on Soil Organic Carbon Quality
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Schäfer, Gerhard; Kuhn, Nikolaus
2015-04-01
The use of biomass as a renewable energy source has become increasingly popular in Upper Rhine Region to meet the demand for renewable energy. Miscanthus is one of the most favorite biofuel crops, due to its long life and large yields, as well as low energy and fertilizer inputs. However, current research on Miscanthus is mostly focused on the techniques and economics to produce biofuel or the impacts of side products such as ash and sulfur emissions to human health. Research on the potential impacts of Miscanthus onto soil quality, especially carbon quality after long-term adoption, is very limited. Some positive benefits, such as sequestrating organic carbon, have been repeatedly reported in previous research. Yet the quality of newly sequestrated organic carbon and its potential impacts onto global carbon cycling remain unclear. To fully account for the risks and benefits of Miscanthus, it is required to investigate the quality as well as the potential CO2 emissions of soil organic carbon on Miscanthus fields. As a part of the Interreg Project to assess the environmental impacts of biomass production in the Upper Rhine Region, this study aims to evaluate the carbon quality and the potential CO2 emissions after long-term Miscanthus adoption. Soils were sampled at 0-10, 10-40, 40-70, and 70-100 cm depths on three Miscanthus fields with up to 20 years of cultivation in Ammerzwiller France, Münchenstein Switzerland, and Farnsburg Switzerland. Soil texture, pH, organic carbon and nitrogen content were measured for each sampled layer. Topsoils of 0-10 cm and subsoils of 10-40 cm were also incubated for 40 days to determine the mineralization potential of the soil organic matter. Our results show that: 1) only in top soils of 0-10 cm, the 20 year old Miscanthus field has significantly higher soil organic carbon concentrations, than the control site. No significant differences were observed in deeper soil layers. Similar tendencies were also observed for organic nitrogen content as well C/N ratios. This indicates that the positive benefits of Miscanthus in sequestrating organic carbon and improving soil quality are probably only effective in top soils. 2) Soils from the 20 years old Miscanthus fields produced significantly more CO2 than the control site, suggesting the great susceptibility of organic carbon on Miscanthus fields to mineralization. Overall, our results indicate a potentially additional contribution of Miscanthus fields to atmospheric CO2 compared to reference soils, cautioning the widespread adoption of Miscanthus. Consequently, further studies aiming at a full emission balance are required to assess the overall environmental impacts of biomass production in the Upper Rhine Region.
NASA Astrophysics Data System (ADS)
Bae, J.; Ryu, Y.
2017-12-01
The expansion of urban artificial structures has altered the spatial distribution of soil organic carbon (SOC) stocks. The majority of the urban soil studies within the land-cover types, however, focused on top soils despite the potential of deep soils to store large amounts of SOC. Here, we investigate vertical distribution of SOC stocks in both impervious surfaces (n = 11) and adjacent green spaces (n = 8) to a depth of 4 m with in an apartment complex area, Seoul, Republic of Korea. We found that more than six times differences in SOC stocks were observed at 0-1 m depth between the impervious surfaces (1.90 kgC m-2) and the green spaces (12.03 kgC m-2), but no significant differences appeared when comparing them at the depth of 0-4 m. We found "cultural layers" with the largest SOC stocks at 1-2 m depth in the impervious surfaces (15.85 kgC m-2) and 2-3 m depths in urban green spaces (12.52 kgC m-2). Thus, the proportions of SOC stocks at the 0-1 m depth to the total of 0-4 m depth were 6.83% in impervious surfaces and 32.15% in urban green spaces, respectively. The 13C and 15N stable isotope data with historical aerial photographs revealed that the cropland which existed before 1978 formed the SOC in the cultural layers. Our results highlight that impervious surface could hold large amount of SOC stock which has been overlooked in urban carbon cycles. We believe this finding will help city planners and policy makers to develop carbon management programs better towards sustainable urban ecosystems.
Bunzl, K; Kracke, W; Schimmack, W
1992-03-01
The vertical activity distributions of fallout 238Pu, 239+240Pu, 241Am, 134Cs and 137Cs in a forest soil (Hapludult) were determined at several locations in a spruce stand separately according to their origin (global fallout or Chernobyl fallout). To determine the rate of migration of these radionuclides in each soil horizon, the observed depth profiles of the radionuclides were evaluated with a compartment model. In the top organic horizons (LOf1 and Of2), the migration rates for all radionuclides from both sources were above 0.5 cm per year. In the Oh horizon the migration rates observed for global fallout Pu, Am and Cs were similar (0.2-0.4 cm per year). Compared with Pu, however, the mobility of Am is slightly, but statistically significantly, enhanced. The highest rate in this layer was found for Chernobyl-derived radiocaesium (2 cm per year). In the layers of the mineral horizon (depth 0-2, 2-5 and 5-10 cm) the observed migration rates were very similar for global fallout Pu (0.08-0.7 cm per year) and Am (0.1-2 cm per year). In comparison, the migration rate of global fallout radiocaesium was about half in each layer. The highest rate was observed again for Chernobyl-derived radiocaesium (0.5-3 cm per year).
Stamou, Ioannis; Antizar-Ladislao, Blanca
2016-10-01
The study evaluated the impact of commercial silver doped titanium dioxide nanoparticles (Ag-TiO2NPs) and silver nanoparticles (AgNPs) on the in-vessel composting of municipal solid waste (MSW), using fluorescence excitation-emission matrix (EEM) spectroscopy as a tool to evaluate the microbial degradation of MSW and subsequent soil application of compost. The fate of NPs present in mature compost used as a top-layer soil conditioner was investigated using a column approach at laboratory scale. The results suggested that the presence of either Ag-TiO2NPs or AgNPs did not inhibit the microbial degradation process within the range of metal concentrations used (5/225, 10/450, 20/900, 50/2250mg Ag/Ti per kg of organic matter for Ag-TiO2NP and 5, 10, 20, 50mg Ag per kg of organic matter for AgNPs). Higher concentrations of Ag-TiO2NP and AgNPs resulted in a higher inorganic carbon removal, and lower formation of humins. Formation of humins was higher for non-contaminated MSW and compost. EEM peaks shifted towards the humic substances (HS) region during in-vessel composting, indicating that microbial degradation occurred and that NPs did not have any effect on humification and therefore on compost stability. The leaching results suggested that only a low percentage of the total NPs (in weight) in compost, up to ca. 5% for Ag and up to ca. 15% for Ti, leached out from the columns, which was assumed the amount that potentially could leach to the environment. These results suggested that NPs will mainly accumulate in soils' top layers following application of compost contaminated with NP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method for collecting spores from a mold
Au, Frederick H. F.; Beckert, Werner F.
1977-01-01
A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.
System for sampling and monitoring microscopic organisms and substances
Au, Frederick H. F.; Beckert, Werner F.
1976-01-01
A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.
NASA Astrophysics Data System (ADS)
Badorreck, A.; Gerke, H. H.; Weller, U.; Vontobel, P.
2009-04-01
In the Lusatia mining district (NE-Germany) an artificial catchment was constructed to study initial ecosystem development and runoff generation. As a key process in this early stage, we investigate the surface structure dynamics as it strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. The presented work focuses on observations of soil pore structure formation at the surface at five sites in the catchment and in an adjacent "younger" area composed of comparable sediments. Moreover we've conducted infiltration experiments in the lab and field to relate the soil pore structure to the hydraulic properties. The surface soil was sampled in cylindrical rings (10 cm³) down to 2 cm depth from which bulk density profiles were obtained using X-ray computed tomography (CT) (at UFZ- Halle, Germany) with a resolution of 0.084 mm. The influence of structure on infiltration was investigated using neutron radiography (at the NEUTRA facility of the Paul-Scherrer-Institut, Villigen, Switzerland) to visualise two-dimensional (2D) infiltration patterns. The slab-type samples were equilibrated to different initial water contents and then exposed to drip irrigation (to simulate rainfall) while a series of neutron radiographs were taken. In addition, field measurements with a miniature tension infiltrometer were conduced. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The infiltration rates were severely affected by the surface crusts; however, the rates were independent of the vesicular pore layer.
NASA Astrophysics Data System (ADS)
Chowdhury, Ashim
2010-05-01
STUDY ON THE DISTRIBUTION OF ORGANIC CARBON IN SOIL FRACTIONS AND ITS REACTION POTENTIAL OF BINDING THE PESTICIDES **SUMITRA ROY1, SANKHAJIT ROY1, *ASHIM CHOWDHURY2, SASWATI PRADHAN2 and PETER BURAUEL3 1Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalay, Mohanpur, West Bengal, India. 2Department of Agricultural Chemistry and Soil Science, University of Calcutta, West Bengal, India. 3Institute of Chemical Dynamics & Geosphere, FZ-Juelich, Germany. *Correspondence: ashimkly@hotmail.com **Research work carried out as DAAD Sandwich research fellow at FZ- Juelich, Germany Soil is the ultimate sink of all selectively applied pesticides. In addition to the basic physicochemical data of an active ingredient, the fate of the various compounds is largely determined by the type of application. Finally, pesticide and their metabolites, as well as structural elements, remain in the native carbon reserves of the soil or are sorbed & fixed to clay minerals and clay- humus complexes. Soil organic matter (SOM) and the soil microbial community are the crucial components which regulate soil processes and contribute towards the stability of the soil ecosystem. It is an energy source for biological mineralization processes, functions as a buffer and participates in chemical reaction. Knowledge is essential to understand the extent to which the SOM influences the mobilization and immobilization processes of foreign substance in soil and the substance transport and pollutant decomposition in soil. The freshly incorporated organic matter undergoes mineralization and the non mineralized carbon fraction is of special relevance with respect to soil stability in general and decisive for the fate and particular the persistence of xenobiotics in soil. The biological and physicochemical interactions establishing equilibrium between the organic matter bound, fixed or complexed to the soil matrix and that dissolve in the soil solution must be understood in detail to realize soil and groundwater conservation. The radio-tracer technology emerged as the latest technology in agriculture, which helps in studying the translocation of pesticide along with the organic matter and furthermore, the distribution of the pesticide in the soil phases. For the elucidation of these relationships and distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides, the present laboratory study was undertaken using 14C-enriched and non labeled maize straw as a source of fresh SOM in different soil fractions vis-à-vis its effect on distribution of 14C-labeled benazolin and non labeled benazolin (a selective, post emergence herbicide) as a xenobiotics throughout the soil system. To determine the turnover of SOM fractionation of top layer of the both the benazolin treated soil column was done followed by determination of 14C content in four different soil phases obtained from fraction, characterization of different phase and identification of the metabolites with TLC, HPLC and GC-MS. The result clearly indicated that where soil columns received non- labeled maize straw and 14C-benazolin as well as 14C-labeled maize straw and nonlabeled benazolin; the unit weight distribution study of radioactivity in benazolin followed the decreasing trend in different phases in following order of electrolyte>colloidal> micro aggregate > sediment phases respectively. The percentage distribution of maize straw (fresh organic matter) was also found highest in electrolyte phase followed the same order as in the case of benazolin. It was observed in phase-wise distribution study that radioactivity either of 14C-maize straw or 14C-benazolin was mostly concentrated in the sediment phase followed by micro aggregate, colloidal and electrolyte phase. From this it was clear that the soil columns, which received maize straw, have bound the pesticide benazolin and hindered the translocation to the lower layers leading to higher percentage of recovered radioactivity at top layer. Thus, these two results can be correlated in a way that dissolve organic matter affects the mobility of the pesticide along with its own mobility.
NASA Astrophysics Data System (ADS)
Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia
2014-05-01
Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community development which was soil horizon specific and its effects on soil microbial activity may impact on nutrient cycling.
NASA Astrophysics Data System (ADS)
Niroumand, Hamed; Kassim, Khairul Anuar
2014-03-01
Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern.
Large-scale fabrication of vertically aligned ZnO nanowire arrays
Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang
2014-09-09
A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.
The temporal changes in saturated hydraulic conductivity of forest soils
NASA Astrophysics Data System (ADS)
Kornél Szegedi, Balázs
2015-04-01
I investigated the temporal variability of forest soils infiltration capacity through compaction. I performed the measurements of mine in The Botanical Garden of Sopron between 15.09.2014 - 15.10.2014. I performed the measurements in 50-50 cm areas those have been cleaned of vegetation, where I measured the bulk density and volume of soil hydraulic conductivity with Tension Disk Infiltrometer (TDI) in 3-3 repetitions. I took undisturbed 160 cm3 from the upper 5 cm layer of the cleaned soil surface for the bulk density measurements. Then I loosened the top 10-15 cm layer of the soil surface with spade. After the cultivation of the soil I measured the bulk density and volume of water conductivity also 3-3 repetitions. Later I performed the hydraulic conductivity (Ksat) using the TDI and bulk density measurements on undisturbed samples on a weekly basis in the study area. I illustrated the measured hydraulic conductivity and bulk density values as a function of cumulative rainfall by using simple graphical and statistical methods. The rate of the soil compaction pace was fast and smooth based on the change of the measured bulk density values. There was a steady downward trend in hydraulic conductivity parallel the compaction. The cultivation increased the hydraulic conductivity nearly fourfold compared to original, than decreased to half by 1 week. In the following the redeposition rate declined, but based on the literature data, almost 3-4 months enough to return the original state before cultivation of the soil hydraulic conductivity and bulk density values. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project.
Lowe, Mike; Miner, Michael L.; ,
1990-01-01
Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.
Ramos, Fabricio T; Dores, Eliana Fg de Carvalho; Weber, Oscarlina L Dos Santos; Beber, Daniel C; Campelo, José H; Maia, João C de Souza
2018-07-01
Agricultural conservation practices increase total organic carbon storage in soil (T OCS ), a factor that is correlated with the physical and chemical qualities of highly weathered soils. In this study, we investigated the effects of T OCS on the physicochemical attributes of a Latosol after 10 years of no-till management in Mato Grosso State, Brazil. T COS was highly correlated (r = 0.92) with cation exchange capacity (CEC, pH = 7) and soil density. In the top 0.2 m soil layer, CEC increased by 25% with every 1.8 kg m -2 of stored organic carbon. Eliminating soil organic matter reduced CEC from an already low value of 8.40 cmol c kg -1 to 4.82 cmol c kg -1 . Humus is therefore clearly important for the formation of a negative liquid charge in a predominantly electropositive but clayey soil. We confirmed that T OCS is an indicator related to the physiochemical characteristics of weathered soils. Furthermore, our results demonstrate that the increased carbon storage under non-tilling systems is essential for guaranteeing weathered soil fertility in tropical climates. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Yu, Yang; Wei, Wei; Chen, Liding; Feng, Tianjiao; Qin, Wei
2017-04-01
Soil is a key component of the earth, it plays important role in regulating the chemical, hydrological and biological cycles. Land preparation techniques (e.g., leveled ditches, leveled benches, adversely graded tableland and fish-scale pits) is one of the most effective ecological engineering practices to reduce water erosion. Land preparation greatly affects soil physicochemical properties, soil moisture variation, runoff and sediment prevention. This study investigated the influence of different land preparation techniques on soil conditions, runoff and erosion during vegetation restoration, which remained poorly understand to date. Soil samples were collected from depths of 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm, 60-80 cm and 80-100 cm, in the typical hilly watershed of Dingxi City, Loess Plateau. Soil bulk density (BD), soil organic matter (SOM) and total nitrogen (TN) were determined for different land preparations and vegetation type (Caragana korshinskii, Platycladus orientalis, Pinus tabulaeformis and Prunus armeniaca) combinations. Fractal theory was used to analyze the soil particle size distribution (PSD). Redundancy analyses were conducted to distinguish the relationships between soil conditions and the factors influencing them (land preparation and vegetation). The analysis of runoff coefficient and erosion rates were calculated considering the monitoring time. The results indicated that: 1) the effect of land preparation on soil properties and PSD varies with soil depth. For each land preparation category, SOM and TN values showed a significant difference between the top soil layer and the underlying soil depth. 2) The 20 cm soil layer was a boundary that distinguished the explanatory factors, with land preparation and vegetation type as the controlling factors in the 0-20 cm and 20-100 cm soil layers, respectively. Land preparation and vegetation significantly affected soil properties in the surface soil layer, while land preparation (41.6%) was the more important driver for this layer compared with vegetation (37.2%). Land preparation affected the soil properties by abiotic factors (e.g., surface runoff and sediment transport), while vegetation influenced soil physical and chemical properties via biotic factors (e.g., canopy and root). 3) Fish-scale pits-Pinus tabulaeformis had the highest runoff coefficient (3.91%) and adverse grade tableland-Platycladus orientalis had the lowest (1.10%). The runoff coefficient of level bench-Caragana korshinskii, fish-scale pits-Platycladus orientalis, level ditch-Prunus armeniaca and adverse grade tableland-Pinus tabulaeformis were 3.02%, 2.59%, 2.42% and 1.58%, respectively. Level bench-Caragana korshinskii had the highest erosion modulus (0.036 t/ha) and adverse grade tableland-Pinus tabulaeformis showed the lowest (0.006 t/ha). Erosion modulus of fish-scale pits-Platycladus orientalis, level ditch-Prunus armeniaca and adverse grade tableland-Platycladus orientalis were 0.026 t/ha, 0.019 t/ha and 0.015 t/ha, respectively. Compared with control, the runoff coefficient could be reduced 37.7%, 31.9%, 44.3%, 60.5%, 18.2% and 63%, respectively. Erosion modulus could be reduced 77.8%, 62.9%, 82.6%, 84.7%, 53.9% and 76.3%, respectively. Our study demonstrated that land preparation techniques and vegetation type commonly determine soil conditions and that land preparation is a recommended method to improve and rehabilitate degraded ecosystems. Applications of land preparation to vegetation restoration in the fragile ecosystems were an effective way for preventing water loss and soil erosion. Considering site-specific land preparation-plant species combinations could be critical to ensure long-term land stabilization.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.
2017-12-01
Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation types. The interaction between these zones is of strong interest to understand the evolution of the landscape and the permafrost distribution. The obtained information is expected to be useful for improving predictions of Arctic ecosystem feedbacks to climate.
Assessing the legacy effects of historic charcoal production in Brandenburg, Germany
NASA Astrophysics Data System (ADS)
Schneider, Anna; Hirsch, Florian; Raab, Alexandra; Bonhage, Alexander; Raab, Thomas
2017-04-01
Charcoal produced in kilns or hearths was an important source of energy in many regions of Europe and Northern America until the 19th century, and charcoal production in hearths is still common in many other regions of the world. The remains of charcoal hearths are therefore a widespread legacy of historic land use in forest areas. Soils on charcoal hearth sites are characterized by a technogenic layer rich in charcoal and ash on top of the soil profile, and by a pyrogenic modification of substrates below the former hearth. The aims of our study are to examine how these alterations to the natural soil profiles affect the soil water regime and other soil physical properties, and to assess the relevance of these effects on the landscape scale. We present first results of a mapping of hearth site occurrence in forest areas in the state of Brandenburg, Germany, and of a characterization of the infiltration behaviour on hearth sites as compared with undisturbed forest soils. Results of mapping small-scale relief features from LIDAR-based digital elevation models show that charcoal hearths occur in a high density in many large forest areas throughout Brandenburg. In the areas studied so far, up to almost 3% of the soil surface were found to be affected by the remains of historic hearths. First analyses of soil physical properties indicate differences in the infiltration characteristics of hearth site soils and undisturbed forest soils: Hood infiltrometer measurements show a very high spatial variability of hydraulic conductivity for hearth site soils, and water-drop-penetration-time tests reflect extremely high hydrophobicity of the technogenic layer on the sites. Results of dye tracer experiment show considerably strong preferential flow and therefore a higher spatial variability of soil wetness below the hearth remains. Overall, our first results therefore indicate that the legacy effects of historic charcoal production might significantly affect overall site conditions in forest areas with a high density of charcoal hearth remains.
NASA Astrophysics Data System (ADS)
Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.
2009-04-01
First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR spectra of EPS was observed with carbohydrates, using cellulose, dextran and humic acid Na salt as controls. Obviously, humification does not play a key role during this initial phase of soil formation. It was hypothesized that biological soil crusts facilitate the weathering of mineral substrate by (I) circumventing loss of fine particles with erosion, (II) by chemical treatment of minerals and (III) by catching small mineral-particles by glutinous EPS on the soil surface from the surrounding area.
USDA-ARS?s Scientific Manuscript database
This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and mud tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termi...
A survey of lead contamination in soil along Interstate 880, Alameda County, California.
Teichman, J; Coltrin, D; Prouty, K; Bir, W A
1993-09-01
This study was undertaken to determine the levels of lead in soils taken from yards of homes in close proximity to a major freeway. Soils were collected from the yards of homes in communities adjacent to the freeway and within a 1-mile radius. Samples were analyzed using U.S. Environmental Protection Agency (EPA) methods and atomic absorption instrumentation. Ten percent of the samples were split and sent to a second laboratory for quality control. The possibility of lead-based paint contributing to the contamination was eliminated by sampling more than 20 feet from the homes. The soils closest to the highway showed lead levels exceeding California's and EPA's criteria for hazardous waste. A stratified sample of the depth of contamination in soils was also undertaken. Previously identified "hot spots" (soils with lead levels exceeding 500 ppm in the top 0.75 inch) were core sampled. Results indicated 90% of the subsurface samples contained lead exceeding the surface contaminations. This may be attributed to decades of urban lead-laden dust deposition. As the use of leaded gasolines have diminished in the past decade, the uppermost layers of soil/dust contained lower amounts of lead.
2007-08-03
KENNEDY SPACE CENTER, FLA. -- Preparations to move the mobile service tower, or gantry, from around the Delta II 7925 rocket are under way under the lights on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann
2007-08-03
KENNEDY SPACE CENTER, FLA. -- The solid rocket boosters on the Delta II 7925 rocket are revealed following the retraction of the mobile service tower, or gantry, on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann
2007-06-04
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Handling Servicing Facility attach an overhead crane to the Phoenix spacecraft. The spacecraft will be lifted and moved to a rotation stand for an interim weight and center of gravity determination. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, Photo credit: NASA/George Shelton
2007-08-03
KENNEDY SPACE CENTER, FLA. -- The Delta II 7925 rocket is revealed as the mobile service tower, or gantry, rolls back on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann
2007-08-03
KENNEDY SPACE CENTER, FLA. -- Rollback of the mobile service tower, or gantry, from around the Delta II 7925 rocket is complete on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves closer to the Phoenix Mars Lander for installation toward the first half. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
NASA Astrophysics Data System (ADS)
Zhidkin, Andrey
2015-04-01
New method of quantitative assessments of vertical soil solid phase transport (pedoturbations) is based on redistribution of spherical magnetic particles (SMP) in soil profiles. SMP - are fly ash components, which mainly produce during coal burning. The main sources of SMP on studied object were locomotives on the railroads, which used coal at the turn of the XIX century. SMP income into the soil only from the atmosphere, very stable for destructions, can be preserved in soils for centuries, and have the same size and weight as the soil matter. So SMP redistribution reflects soil solid phase transport. SMP used as tracers of soil erosion (Olson et.al., 2013), but for the first time applied for quantitative assessments of pedoturbations. In Belgorod region of Russia studied vertical distribution of SMP in soils in different types of land use: a) arable chernozem about 160-year plowing, b) arable chernozem 120-year plowing, c) dark-gray forest soil, which didn't plow at least last 150 years. All three sites are located nearby for the same physical-geography conditions. Distribution of SMP studied layer by layer (thickness of the layer 7 cm) from the top to 70 cm depth, in triplicate soil columns in every land use type (totally 90 soil samples). The period of SMP kept in studied soils is about 115 years. Revealed the different depth of SMP penetration (burial) in soil profiles for this period: 49 cm in the soil of 160-year arable land, 58 cm in the soil of 120-year arable land and 68 cm in the virgin forest soil. Different depth of SMP penetration is connected with different activity of pedoturbations, which differs according to the composition of soil flora and fauna, root activity, and animal mixing work. It is supposed that in the arable land single cropping can reduce the thickness of the active layer and as a result the zone of active pedoturbation depth. Based on SMP distribution counted rates of vertical soil solid phase transport, which are equaled: 31 t/ha/year in the soil of 160-year arable land, 28 t/ha/year in the soil of 120-year arable land, 24 t/ha/year in the virgin forest soil. Certainly raised rates of vertical transport in arable land relative to forest is connected with agricultural plowing. Revealed the connection between the period of plowing and rates of vertical soil transport. Also worth noting is that the rates of pedoturbation in virgin forest soils are rather high and only 1,2-1,3 times less than on arable land uses. This research is funded by Russian Foundation for Basic Research - Project 14-05-31141. 1. Olson K.R., Gennadiyev A.N., Zhidkin A.P., Markelov M.V., Golosov V.N., Lang J.M. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates // Catena. - 2013. - V. 104 - P. 103-110.
Out-of-plane (SH) soil-structure interaction: a shear wall with rigid and flexible ring foundation
NASA Astrophysics Data System (ADS)
Le, Thang; Lee, Vincent W.; Luo, Hao
2016-02-01
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solutions available. The soil-structure interaction problem is one of the most classic problems connecting the two disciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and superstructure. This interaction effect is important across many structure, foundation, and subgrade types but is most pronounced when a rigid superstructure is founded on a relatively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the superstructure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half-space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple a superstructure from its substructure resting on a shaking half-space.
Turf Hummocks in Arctic Canada: Characteristics and Development
NASA Astrophysics Data System (ADS)
Tarnocai, C.; Walker, D. A.; Broll, G.
2006-12-01
Turf hummocks, which occur commonly in the Arctic, were studied in three ecoclimatic regions, ranging from Banks Island in the Mid-Arctic, through Ellef Ringnes and Prince Patrick islands in the Oceanic High Arctic, to Ellesmere Island in the High Arctic. These hummocks are dome-shaped features that generally occur on 5- 20% slopes and are associated with silty loam soils. They are generally 11-40 cm high, 18-60 cm in diameter, and have a thaw depth of 30-50 cm. The organic carbon and total nitrogen contents of the organic-rich soil horizons are high. Soil temperatures under the tops of hummocks are 3-5°C higher than under the adjoining interhummock troughs. The combination of these factors provides a much more favorable soil environment for biological activity, including plant growth, than does the surrounding area. The vegetation cover on these turf hummocks is dominantly mosses and lichens with Luzula sp. on Prince Patrick and Ellef Ringnes islands and Dryas integrifolia and Cassiope tetragona on Banks and Ellesmere islands. The development of turf hummocks is usually initiated by small polygons, whose diameters determine the initial diameters of the hummocks. Establishment of vegetation on these small polygons provides the next step in their development and, if eolian material is available, the vegetation captures this material and the hummock builds up. The internal morphology of turf hummocks reveals multiple buried, organic-rich layers, representing former hummock surfaces. The stone- and gravel-free silty loam composing the soil horizons between these organic- rich layers is very different from the underlying materials composing the former small polygon. These soil horizons also contain a high amount of well-decomposed organic matter that is dispersed uniformly throughout the horizons. Radiocarbon dates for the buried organic layers suggest a gradual build-up process in which the age of the organic layers increases with depth. A minimum of 1200-2000 years is required for the turf hummocks to develop to their present stage. Data obtained from the multiple organic-rich layers suggest that each former hummock surface was stable for 100 years or more. This paper provides information about the internal and external morphology and thermal properties of the turf hummocks, and a model for their development.
Factors affecting water balance and percolate production for a landfill in operation.
Poulsen, Tjalfe G; Møoldrup, Per
2005-02-01
Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.
NASA Astrophysics Data System (ADS)
Girona García, Antonio; Badía-Villas, David; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara; González-Pérez, José Antonio
2015-04-01
The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) [1]. It is known that the products generated by Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) pyrolysis of organic matter are related to their origin [2 and references therein]. Therefore this technique can be used to investigate said changes. In this work, Py-GC/MS is used to study changes in SOM quality surrogated to the effect of the centennial replacement of beech by Scots pine. The soils studied were two acid soil profiles developed on quartzites under a humid climate at an altitude of 1400-1500 masl from Moncayo (Iberian range, NE-Spain). For each soil profile three organic layers (litter: OL, fragmented litter OF and humified litter OH) and the mineral soil horizons (Ah, E, Bhs and C) were sampled. After 100 years since the pine afforestation, differences in the relative abundance of lipids released by pyrolysis were observed in the O-layers ranging from 3.82-7.20% in pine soils and 0.98-1.25% in beech soils. No differences were observed in mineral horizons with depth except for the C horizons where beech lipid content was much higher (21.25%) than in that under pine (1.07%). Both pine and beech soils show similar nitrogen compounds relative contents along the soil profile, increasing from OL to Ah (3.49-9.11% and 2.75-11.73% in beech and pine respectively) with a conspicuous reduction in the E horizon. It is remarkable the absence of nitrogen compounds in beech Bhs and C horizons. The relative content of aromatic compounds in O-layers show opposite trends for beech and pine; an enrichment in aromatic compounds is observed in beech OL layer (12.39%) decreasing to 4.11% in OH layer in contrast, whereas for pine O-layers the aromatic compounds relative abundance was higher in the OH (5.83%) than in the OL layer (2.8%). Mineral Ah and E horizons show similar values in both beech (18.30-10.09%) and pine (15.81-10.01%) soils; nevertheless the relative abundance of aromatic compounds content is higher in beech mineral horizons Bhs (41.96%) and C (30.91%) than in those under pine (11.43% and 13.04% for Bhs and C respectively). Polycyclic aromatic hydrocarbons (PAHs) were only observed in the mineral soil horizons showing similar relative abundances ranging from 0.61-6.63% in beech and 0.96-3.05% in pine soils. The highest PAHs relative abundance was found in the Bhs horizon under beech. This may indicate the occurrence of fire events in the area and its translocation and accumulation by leaching from top soil in the spodic horizon. Differences in the relative abundances of lignin derived pyrolysis products (Methoxyphenols) were mainly observed in the O-layers whereas the relative abundances were similar for the mineral horizons that ranged from 1.49-4.31% in beech and 1.42-4.67% in pine. Lignin relative abundance is much higher in OH beech layer (31.88%) than in pine OH layer (14.99%) whereas similar relative contents were found in OL and OF layers ranging from 26.21-27-12% and 20.22-25.92% in beech and pine respectively. In the soil developed under beech the polysaccharide derived moieties show a relative content increase along the profile from a 9.86% in OL layer to a 29.86% in E horizon followed by a remarkable decrease in the Bhs (4.86%) and C (11.22%). Besides, the polysaccharide relative abundance in the soil under pine show a similar trend ranging from 12-23% to 30.65% but the decrease in Bhs and C horizons was found less marked (26.83% and 24.12% respectively). (1) Carceller F, Vallejo VR (1996). Influencia de la vegetación en los procesos de podsolización en los suelos de la Sierra del Moncayo (Zaragoza). Geogaceta 20: 1127-1130. (2) De la Rosa JM, Faria SR, Varela ME, Knicker H, González-Vila FJ, González-Pérez JA, Keizer J (2012). Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191: 24-30. Acknowledgements This study is part of the results of the FUEGOSOL (CGL2013-43440-R) and GEOFIRE Projects (CGL2012-38655-C04-01) funded by the Spanish Ministry for Economy and Competitiveness. N.T Jiménez-Morillo is funded by a FPI research grant (BES-2013-062573).
Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia
NASA Astrophysics Data System (ADS)
Fuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf
2018-02-01
Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes - on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m-2 and 1.8 kg N m-2 and for Bykovsky Peninsula 25.9 kg C m-2 and 2.2 kg N m-2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10-0.57 mm yr-1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ˜ 5.8 Tg (13.2 kg C m-2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.
Vijver, Martina G; Spijker, Job; Vink, Jos P M; Posthuma, Leo
2008-12-01
Metals in floodplain soils and sediments (deposits) can originate from lithogenic and anthropogenic sources, and their availability for uptake in biota is hypothesized to depend on both origin and local sediment conditions. In criteria-based environmental risk assessments, these issues are often neglected, implying local risks to be often over-estimated. Current problem definitions in river basin management tend to require a refined, site-specific focus, resulting in a need to address both aspects. This paper focuses on the determination of local environmental availabilities of metals in fluvial deposits by addressing both the origins of the metals and their partitioning over the solid and solution phases. The environmental availability of metals is assumed to be a key force influencing exposure levels in field soils and sediments. Anthropogenic enrichments of Cu, Zn and Pb in top layers could be distinguished from lithogenic background concentrations and described using an aluminium-proxy. Cd in top layers was attributed to anthropogenic enrichment almost fully. Anthropogenic enrichments for Cu and Zn appeared further to be also represented by cold 2M HNO3 extraction of site samples. For Pb the extractions over-estimated the enrichments. Metal partitioning was measured, and measurements were compared to predictions generated by an empirical regression model and by a mechanistic-kinetic model. The partitioning models predicted metal partitioning in floodplain deposits within about one order of magnitude, though a large inter-sample variability was found for Pb.
Transient Liquid Water as a Mechanism for Induration of Soil Crusts on Mars
NASA Technical Reports Server (NTRS)
Landis, G. A.; Blaney, D.; Cabrol, N.; Clark, B. C.; Farmer, J.; Grotzinger, J.; Greeley, R.; McLennan, S. M.; Richter, L.; Yen, A.
2004-01-01
The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer tagged as "duricrust". A hypothesis to explain the formation of duricrust on Mars should address not only the potential mechanisms by which these materials become cemented, but also the textural and compositional components of cemented Martian soils. Elemental analyzes at five sites on Mars show that these soils have sulfur content of up to 4%, and chlorine content of up to 1%. This is consistent with the presence of sulfates and halides as mineral cements. . For comparison, the rock "Adirondack" at the MER site, after the exterior layer was removed, had nearly five times lower sulfur and chlorine content , and the Martian meteorites have ten times lower sulfur and chlorine content, showing that the soil is highly enriched in the saltforming elements compared with rock.Here we propose two alternative models to account for the origin of these crusts, each requiring the action of transient liquid water films to mediate adhesion and cementation of grains. Two alternative versions of the transient water hypothesis are offered, a top down hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a bottom up alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water.
NASA Astrophysics Data System (ADS)
Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.
2014-12-01
Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.
NASA Astrophysics Data System (ADS)
Pare, D.; Bernier, P. Y.; Trofymow, J. A.; Moore, T. R.
2011-12-01
The forest soils of Canada contain large amounts of carbon and its dynamics is one of the key areas of uncertainty in the carbon balance of North America. While estimates of total soil carbon stocks are available, the relative role of soil organic matter (SOM) quality from that of environmental conditions in maintaining these C reservoirs is poorly known. Soil organic matter (SOM) quality was evaluated with the use of both acid hydrolysis and lab incubation at several temperatures for 15 sites part of the Fluxnet Canada network that represent the major ecological forest groups in Canada and included as well two peatland sites. The mineralizable fraction of soil total C (TOC) varied fivefold across sites and soil layers (4 to 25%). To the opposite acid hydrolysable C was a constant fraction of total organic C (TOC) representing 23 and 37% of TOC in the forest floor and top mineral soil (0-20cm) respectively. Total soil carbon pools were highly correlated with pools of recalcitrant C but weakly to labile pools, especially in the mineral soils. These results indicated that soils accumulating a thick organic layer, such as black spruce and peatland soils, are also accumulating potentially labile C that could be mineralised given favourable environmental conditions. However, this relationship is barely significant for the mineral soils where greater C accumulation indicated in essence more accumulation into recalcitrant pools. Mineralized C was correlated with cellulose concentration in the forest floor (R=0.68) and not with acid-hydrolizable C in either soil horizons suggesting that this fraction in non-relevant to C dynamics. Estimates soil heterotrophic respiration (Rh-lab) using incubation derived equation and field soil hourly temperatures were compared with the size of the soil potentially mineralizable C pool (labile C). The difference between these two figures was large for soil having a large portion of their C reserves in the organic layer but was small for soil having most of their C in the mineral soil. These results suggest that Rh on the former soils is mostly constraint by environmental variables while on the latter this flux is constrained by the recalcitrance of the organic matter. Rh-lab values were generally in good agreements with Rh estimated from eddy covariance tower fluxes (0.45.GPP) except for all three temperate wet coastal forest sites of BC where the incubation derived model greatly underestimated Rh fluxes possibly because of a greater role of plant roots that remain active during a long period in these environments.
USDA-ARS?s Scientific Manuscript database
Increased energy extraction has impacted rangelands throughout the western U.S. Ecological restoration can be enhanced with proper management of affected top soils. Little information exists on effects of stockpiling on soil microbial community composition and functionality and seed bank dynamics. T...
NASA Astrophysics Data System (ADS)
Sauer, Daniela; Schülli-Maurer, Isabelle
2014-05-01
Until the 1960s pedologists in Germany assumed that soils on hard rock in the mountainous regions of Germany developed directly from the underlying hard rock. Then, especially Schilling and Wiefel (1962) in eastern Germany and Semmel (1964, 1968) in western Germany developed, independently from each other, the concept of Pleistocene periglacial slope deposits (PPSD). However, it took several decades until this concept became largely accepted and was also introduced in textbooks and in the German soil and substrate taxonomy. This paper compares soil development on hard rock covered by PPSD in the eastern Rhenish Massif (Germany) to soil development that took place indeed directly on hard rock, in southern Norway, where glaciers removed all loose, weathered material from the rock during the last glacial period. Eight soil profiles developed in PPSD on quartzite and 12 soil profiles developed in PPSD on diabase are compared to four profiles in the Oslofjord region developed from hard rock. Soils were described in the field and analysed with regard to particle size analysis, pH in water, total element composition, Fed, Feo, CEC and base saturation. 1) Podzol developed from medium-grained granite This soil has an age of ca. 10,000 years. An 18 cm thick organic surface layer has accumulated on top of the mineral soil consisting of an E (14 cm) and BCs (14 cm) horizon. Vegetation at the site consists mainly of pine, birch, fir, and blueberry, heather and mosses. 2) Podzol developed from coarse-grained granite This soil has an age of above 11,000 years. The organic surface layer has a thickness of 7 cm; the mineral soil comprises an E (7 cm) and Bs (7 cm) horizon. Vegetation consists mainly of pine, fir, birch, and blueberry, heather, ferns and mosses. 3) Cambic Leptosol developed from Latite This soil has an age of ca. 10,000 years. The thickness of the organic surface layer is 5 cm; the mineral soil comprises an Ah (4 cm) and AB (20 cm) horizon. Vegetation consists mainly of beech, birch, fir, pine, and sorb, blueberry and hair-grass (Deschampsia flexuosa). 4) Cambisol developed from Monzonite This soil has an age of ca. 9,500 years. The thickness of the organic surface layer is 6 cm; the mineral soil comprises an Ah (9 cm), Bw (17 cm) and BC (9 cm) horizon. Vegetation consists mainly of fir, oak, beech, and sorb, blueberry, ferns, grasses and mosses. Geochemical data suggest that the soil has not entirely developed from Monzonite but that the Ah and Bw horizon are mainly composed of a thin layer of beach sediments. The comparison demonstrates the importance of physical weathering under periglacial conditions and formation of PPSD for Holocene soil development on hard rock in central Europe. References: Schilling, W., Wiefel, H. (1962): Jungpleistozäne Periglazialbildungen und ihre regionale Differenzierung in einigen Teilen Thüringens und des Harzes. Geologie, Jg. 11, Heft 4: 393 - 504. Semmel, A. (1964): Junge Schuttdecken in Hessischen Mittelgebirgen. Notitzbl. Hess. L.-Amt Bodenforsch. 92: 275 - 285. Semmel, A. (1968): Studien über den Verlauf jungpleistozäner Formung in Hessen. Frankfurter Geogr. Hefte 45.
Li, Yi; Shao, Ming'an
2006-12-01
With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.
NASA Technical Reports Server (NTRS)
Bakwin, Peter S.; Wofsy, Steven C.; Fan, Song-Miao; Keller, Michael; Trumbore, Susan E.
1990-01-01
Emissions of NO from soils in the Amazon rain forest were measured at 66 locations using an enclosure technique, and continuous vertical profiles of NO and O3 were measured between the ground and 41-m altitude. Fluxes of NO averaged 8.9 (+ or - 1.5) x 10 to the 9th molecules/sq cm per sec from the dominant (yellow clay) soils of the region, with larger fluxes observed from adjacent white sand soils. Fluxes from clay soils were lower by more than a factor of 5 than fluxes observed during the dry season at a nearby site. Low soil emission rates were reflected in lower concentrations of NO at the top of the forest canopy in the wet season, only 30-50 parts per trillion by volume during the daytime. The measured fluxes are consistent with chemical mass balances for NO within the forest canopy, calculated from the NO and O3 profiles taken at night, and with observations of NO between 150 and 5000 m altitude. Measurements of NO emission rates from soil plots fertilized using NaNO3, NH4Cl, or sucrose indicated that a reductive pathway (denitrification) may have been primarily responsible for production of the NO released by both clay and sand soils.
Fertilization increases paddy soil organic carbon density.
Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun
2012-04-01
Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.
Fertilization increases paddy soil organic carbon density*
Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun
2012-01-01
Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369
Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis
Song, Xinzhang; Peng, Changhui; Zhou, Guomo; Jiang, Hong; Wang, Weifeng
2014-01-01
The Grain for Green Program (GGP), initiated in 1999, is the largest ecological restoration project in central and western China. Here, for the first time, we performed a meta-analysis and found that the GGP largely increased the soil organic carbon (SOC). The SOC was increased by 48.1%, 25.4%, and 25.5% at soil depths of 0–20 cm, 20–40 cm, and 40–60 cm, respectively. Moreover, this carbon accumulation has significantly increased over time since GGP implementation. The carbon accumulation showed a significantly more active response to the GGP in the top 20 cm of soil than in the deeper soil layers. Conversion of cropland to forest could lead to significantly greater SOC accumulation than would the conversion of cropland to grassland. Conversion from cropland to woodland could lead to greater SOC accumulation than would the conversion to either shrubland or orchard. Our results suggest that the GGP implementation caused SOC to accumulate and that there remains a large potential for further accumulation of carbon in the soil, which will help to mitigate climate change in the near future. PMID:24675818
Farmer, John G; Graham, Margaret C; Eades, Lorna J; Lilly, Allan; Bacon, Jeffrey R
2016-02-15
Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon (206)Pb/(207)Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon (206)Pb/(207)Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of (208)Pb/(207)Pb vs. (208)Pb/(206)Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The (206)Pb/(207)Pb ratio of the organic top horizon in (ii) was unrelated to the (206)Pb/(207)Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the (206)Pb/(207)Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m(-2) were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean (206)Pb/(207)Pb ratio~1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shinohara, Koki; Suzuki, Takahiro; Takamura, Yota; Nakagawa, Shigeki
2018-05-01
In this study, to obtain perpendicular magnetic tunnel junctions (p-MTJs) using half-metallic ferromagnets (HMFs), several methods were developed to induce perpendicular magnetic anisotropy (PMA) in full-Heusler Co2FeSi (CFS) alloy thin layers in an MTJ multilayer composed of a layered CFS/MgO/CFS structure. Oxygen exposure at 2.0 Pa for 10 min after deposition of the bottom CFS layer was effective for obtaining PMA in the CFS layer. One of the reasons for the PMA is the formation of nearly ideal CFS/MgO interfaces due to oxygen exposure before the deposition of the MgO layer. The annealing process was effective for obtaining PMA in the top CFS layer capped with a Pd layer. PMA was clearly observed in the top CFS layer of a Cr(40 nm)/Pd(50 nm)/bottom CFS(0.6 nm)/MgO(2.0 nm)/top CFS(0.6 nm)/ Pd(10 nm) multilayer, where the top CFS and Pd thin films were deposited at RT and subsequently annealed at 300°C. In addition to the continuous layer growth of the films, the crystalline orientation alignment at the top CFS/Pd interface probably attributes to the origin of PMA at the top CFS layer.
Chemistry and particle track studies of Apollo 14 glasses.
NASA Technical Reports Server (NTRS)
Glass, B. P.; Storzer, D.; Wagner, G. A.
1972-01-01
The abundance and the composition of Apollo 14 glasses have been studied. Glass particles were analyzed for Si, Ti, Al, Fe, Mn, Mg, Na, and K by electron microprobe analysis. The refractive indices of 26 particles were determined by the oil immersion method. Track analyses have been carried out in order to determine the uranium content and the radiation history of glass particles. The proper identification of galactic and solar flare nuclei tracks makes it possible to estimated residence times of the glass particles in the top layer of the lunar soil.
Aggregate distribution and associated organic carbon influenced by cover crops
NASA Astrophysics Data System (ADS)
Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá
2013-04-01
Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.
Enhancement of Late Successional Plants on Ex-Arable Land by Soil Inoculations
Carbajo, Vanesa; den Braber, Bowy; van der Putten, Wim H.; De Deyn, Gerlinde B.
2011-01-01
Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic) soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land. PMID:21760929
G P, Bindumol; C C, Harilal
2017-09-15
Leaching potential of pesticides, apart from climatological factors, depends on soil physical properties, soil-pesticide interaction and chemical nature of the molecule. Recent investigations have revealed the presence of various organophosphate pesticides in various agroecosystems. The present study investigated the soil transport mechanism of commonly used organophosphate pesticides in acidic sandy clay loam soils of Kerala State, India. Packed soil column experiment was undertaken under laboratory condition for 30 days. Unsaturated flow was carried out using distilled water/0.01 M CaCl 2 solution after applying chlorpyriphos and quinalphos at the rate of 0.04% a.i.ha -1 and 0.025% a.i.ha -1 , respectively. The study revealed the retention of residues of chlorpyriphos and quinalphos in the top 5-cm layer. Irrespective of the applied concentration of chlorpyriphos and quinalphos, the relative concentration of the pesticides in soil was similar. About 56% of the applied chemicals were dissipated in 30 days of unsaturated flow. A new dissipation compound iron, tricarbonyl [N-(phenyl-2-pyridinylmethyene) benzenamine-N, N'], was detected in GCMS analysis of soil extract from distilled water percolated soil. The dissipation of chlorpyriphos and quinalphos was faster in 0.01 M CaCl 2 -treated soil column. Among the pesticides analysed, the residue of quinalphos was detected in leachate.
Cao, Chong; Huang, Juan; Yan, Chunni; Liu, Jialiang; Hu, Qian; Guan, Wenzhu
2018-05-01
The increasing utilization of silver nanoparticles (Ag NPs) in industry and commerce inevitably raises its release into wastewater. In this work, effects of Ag NPs on system performance and microbial community along the way of a vertical flow constructed wetland (VFCW) were investigated, along with the removal and fate of Ag NPs within the system. Results showed that the performance of control wetland kept stable during the experimental period, and the top substrate layer (soil layer) of wetland could remove most of pollutants in the influent. The study also suggested that addition of Ag NPs did not significantly affect organic matters removal. However, adverse effects were observed on the nitrogen and phosphorus removal. Removal efficiencies of TN, NH 4 + -N and TP approximately obviously reduced by approximately 10.10%, 8.42% and 28.35% respectively in contrast to before dosing after exposing 100 μg/L Ag NPs for 94 d, while the no dosing wetland with the stable performance. It was found that Ag NPs accumulated in the upper soil layer more than in the lower soil layer, and Ag NPs could enter into the plant tissues. After continuous input of Ag NPs, removal efficiency of Ag NPs was measured as 95.72%, which showed that the CW could effectively remove Ag NPs from the wastewater. The high-throughput sequencing results revealed that Ag NPs caused the shifts in microbial community structures and changed the relative abundances of key functional bacteria, which finally resulted in a lower efficiency of biological nitrogen and phosphorus removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Study on Calculation Model of Culvert Soil Pressure
NASA Astrophysics Data System (ADS)
Liu, Jing; Tian, Xiao-yan; Gao, Xiao-mei
2017-09-01
Culvert diseases are prevalent in highway engineering. There are many factors involved in the occurrence of the disease, and the problem is complex. However, the design cannot accurately determine the role of the soil pressure on the culvert is the main reason to the disease. Based on the theoretical analysis and field test, this paper studies the characteristics of the stress and deformation of the culvert-soil structure. According to the theory of soil mechanics, the calculation model of vertical soil pressure at the top of culvert is determined, and the formula of vertical soil pressure at the top of culvert is deduced. Through the field test of the vertical soil pressure at the top of culvert of several engineering examples, the calculation formula of this paper is verified, which can provide reference for future practical engineering.
[Effect of long-term fertilization on microbial community functional diversity in black soil].
Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku
2015-10-01
In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P < 0.05) , while the variations among treatments were different in the two soil layers. Canonical correspondence analysis (CCA) showed that soil microbial community metabolic function of all the treatments was different between the two soil layers, and there was difference among all treatments in each soil layer, while the influences of soil nutrients on soil microbial community metabolic function of all treatments were similar in each soil layer. It was concluded that long-term different fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer.
Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?
NASA Astrophysics Data System (ADS)
Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea
2017-04-01
In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips reduced the wind speed, hence lowering evapotranspiration in the crop strip. The plot was not aligned directly to North and we observed steeper soil water potential gradients in the part of the crop strip more exposed to sunlight. The two tree species behaved differently. The poplar strips showed more marked diurnal changes in soil water potential, with fast drying during daytime and rewetting during nighttime. We suppose that the rewetting during nighttime was caused by hydraulic lift, which supports passively the drier upper soil with water from the wetter, lower soil layers. This experimental study shows the importance of above- and belowground tree-crop interactions and demonstrate the positive effect of tree strips in reducing drought stress in crops.
Total Storage and Landscape Partitioning of Soil Organic Carbon and Phytomass Carbon in Siberia
NASA Astrophysics Data System (ADS)
Siewert, M. B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Hugelius, G.
2014-12-01
We present results of detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) from two study sites in Siberia. The study sites in the Tundra (Kytalyk) and the Taiga (Spasskaya Pad) reflect two contrasting environments in the continuous permafrost zone. In total 57 individual field sites (24 and 33 per study site respectively) have have been sampled for SOC and PC along transects cutting across different land covers. In Kytalyk the sampling depth for the soil pedons was 1 m depth. In Spasskaya Pad where the active layer was significantly deeper, we aimed for 2 m depth or tried to include at least the top of the permafrost. Here the average depth of soil profiles was 152 cm. PC was sampled from 1x1 m ground coverage plots. In Spasskaya Pad tree phytomass was also estimated on a 5x5 m plot. The SOC storage was calculated separately for the intervals 0-30 cm, 30-100 cm and 100-200 cm (the latter only for Spasskaya Pad), as well as for organic layer vs. mineral soil, active layer vs. permafrost and for cryoturbated soil horizons. Landscape partitioning was performed by thematic up-scaling using a vegetation based land cover classification of very high resolution (2x2 m) satellite imagery. Non-Metric Multidimensional Scaling (NMDS) was used to explore the relationship of SOC with PC and different soil and permafrost related variables. The results show that the different land cover classes can be considered distinct storages of SOC, but that PC is not significantly related to total SOC storage. At both study sites the 30-100 cm SOC storage is more important for the total SOC storage than the 0-30 cm interval, and large portions of the total SOC are stored in the permafrost. The largest contribution comes from wetland pedons, but highly cryoturbated individual non-wetland pedons can match these. In Kytalyk the landscape partitioning of SOC mostly follows large scale geomorphological features, while in Spasskaya pad forest type also has a large influence.
An Investigation of Instantaneous Plume Rise from Rocket Exhaust
1996-12-01
METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.5054 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET. WIND WIND LAYER WIND SPEED...SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.6911 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET...TIME (SECS) 368.08 FIRST MIXING LAYER HEIGHT- (METERS) TOP = 210.62 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR
Role of air on local water retention behavior in the shallow heterogeneous vadose zone
NASA Astrophysics Data System (ADS)
Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.
2009-12-01
In the presence of a subsurface source, air flowing through the unsaturated soil can transport toxic vapor into subsurface structures due to pressure gradients created by, e.g., a pressure drop within the building. Development of dynamic air pathways in the subsurface are largely controlled by the geological heterogeneity and the spatial and temporal distribution of soil moisture. To better understand how these air pathways are developed, it is crucial to know how water is retained in heterogeneous medium at spatial resolutions that are finer than those adopted in typical hydrologic and soil physics applications. Although methods for soil water pressure measurement can be readily found in literature, a technique for measuring “air pressure” in wet soil is not well-established or documented. Hydrophobic porous ceramic cups have been used to measure non-wetting NAPL phase pressure in two-phase systems. However, our preliminary tests using the hydrophobic ceramic cups installed in highly wet soil showed that under conditions of fast drainage of the wetting fluid that is replaced by air, it typically took some time before the cups responded to register the air pressure. Therefore, an attempt was made to develop a more robust method where the time lag is minimized. The tested materials were; 1) ceramic porous cups, 2) sintered stainless steel cups, 3) porous glass discs, and 4) non-woven PTFE fabric. The ceramic cups, sintered stainless steel cups and sintered porous glass discs required hydrophobic treatment, whereas the non-woven PTFE fabric is hydrophobic by itself. To treat the ceramic porous cups, the method proposed by Parker and Lenhard [1988] was adopted. The sintered porous stainless steel cups and porous glass discs were treated by a commercially available water repellant compound. For those four materials, contact angle, water entry pressure, and time lag to respond to an imposed pressure were measured. The best performing material was then tested in a simple heterogeneous column. The column was packed using two sands to form three layers where the coarser sand was sandwitched by two layers of a finer sand. In each layer, soil moisture, water pressure and air pressure were monitored. The soil was initially saturated and suction at the bottom was gradually increased to induce wetting fluid drainage, and followed by a wetting cycle. In the drainage cycle, the coarse middle layer did not drain until air front reached the bottom of the top fine layer. Once the air front reached the fine-coarse interface, air was quickly pulled into the coarse layer. The results showed that the newly developed hydrophobic material showed very small time lag and captured the abrupt air pressure change in the wet soil. In the wetting cycle, we observed positive air pressure which indicated entrapment of air and its compression as wetting proceeded. This behavior cannot be evaluated properly without the rapid measurement of air pressure. The method is currently being applied in a large 2D vertical aquifer with a structured heterogeneity to investigate how air pathways are formed under various flux/temperature conditions at the soil surface.
NASA Astrophysics Data System (ADS)
Alizadehtazi, B.; Montalto, F. A.
2013-12-01
Rain drop impact causes soil crust formation which, in turn, reduces infiltration rates and increases runoff, contributing to soil erosion, downstream flooding and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. This impulse breaks larger soil aggregates into smaller particles and disperses soil from its original position. The displaced soil particles self-stratify, with finer particles at the top forming the crust. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Very little research has sought to quantify the effect that canopies and mulch can have on this phenomenon. This presentation presents preliminary findings from ongoing study conducted using rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to discuss green infrastructure facility maintenance and design strategies, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.
Plasmon absorption modulator systems and methods
Kekatpure, Rohan Deodatta; Davids, Paul
2014-07-15
Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.
NASA Astrophysics Data System (ADS)
Altdorff, Daniel; van der Kruk, Jan; Bechtold, Michel; Tiemeyer, Bärbel; Huismann, Sander
2013-04-01
Intact peatlands are natural sinks of climate-relevant atmospheric CO2 and they are able to store high amounts of organic carbon (C). In addition, intact peatlands are increasingly important given positive effects on biodiversity, hydrological processes and corresponding management issues. Nevertheless, large parts of peatlands in populated areas were modified by human activity during the last centuries. In Germany, more than 90% of the peatlands are drained, mainly for agricultural use. Due to the recent recognition of the positive effects of intact peatlands, there are presently several initiatives for re-wetting parts of these peatlands. However, a restoration to nearly natural conditions needs an evaluation of the current situation as well as an assessment of the restoration potential. Therefore, soil properties like peat layer thickness, bulk density and moisture content need to be known. Non-invasive hydrogeophysical methods offer the possibility for a time and cost-effective characterization of peatlands. In this study, we investigated a medium-scale peatland area (approximately 35 ha) of the 3000 ha large 'Großes Moor' peatland. We present apparent conductivity (ECa) values obtained from Electromagnetic Induction (EMI) measurements representative for three investigation depths (approximately 0.25, 0.5, and 1m). We selected zones with dissimilar ECa to identify areas where strong changes in the subsoil properties with depth are expected (i.e. shallow peat soil on top of sand). Within these areas, additional measurements were made using Ground Penetration Radar (GPR) and soil sampling was performed. In total, six 30 m long GPR profiles and corresponding common midpoint (CMP) measurements were recorded. Additionally, 15 soil cores were taken down to a depth of 0.9 m in order to obtain peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content. Each core was divided into several 5 to 20 cm thick layers to obtain information on the vertical variation of these soil properties with depth. Our results indicate that the peat layer is generally characterized by lower BD, higher pore water EC, higher C content, and higher water contents compared to the underlying sand layer. Preliminary EMI results indicate a ECa - C content correlation that decreases with EMI investigation depth from 0.25 to 1 m. Regarding all soil core properties, the strongest contrast occurs at the peat-sand interface. This contrast also clearly appears in some of the GPR results. The EMI apparent conductivities are positively correlated with soil water content and peat thickness obtained from the soil cores. Preliminary GPR results confirm an increased thickness of the upper layer in areas with increased ECa values. The EMI results also reveal clear patterns linked over several fields with different land use history that represent natural structures in the subsurface.
[Simulation of CO2 exchange between forest canopy and atmosphere].
Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan
2006-12-01
Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.
NASA Astrophysics Data System (ADS)
Wu, Xiaodong; Zhao, Lin; Fang, Hongbing; Zhao, Yuguo; Smoak, Joseph M.; Pang, Qiangqiang; Ding, Yongjian
2016-01-01
While permafrost in the circum-Artic has great influence on soil organic carbon (SOC) and total nitrogen (TN) stocks, this might not be the case in low-latitude arid permafrost regions. We test this hypothesis in the western Qinghai-Tibetan Plateau (QTP) permafrost region. Fifty-nine soil profiles were analyzed to examine the SOC and TN distribution and the controlling factors in western QTP, which is a desert steppe ecoregion. Mean stocks of SOC (5.29 kg m-2) and TN (0.56 kg m-2) for the top 200 cm in this area were lower than those of the east QTP and circum-Arctic regions. The SOC and TN stocks under vegetative cover with permafrost conditions were significantly higher than those of desert conditions. The SOC and TN stocks for the layers of different depths were related to the content of clay, silt, and moisture. Although the active layer thickness (ALT) had a significant negative correlation to soil moisture, the ALT explained little or no variance in the SOC and TN stocks. The results showed that in the vast permafrost regions of the western QTP, the SOC and TN stocks are very low, and the main controlling factors for the SOC and TN are soil texture, moisture, and vegetation type. The SOC pool in this area may not be as vulnerable to degradation associated with climate warming and thus not emit greenhouse gases at the same rate as other permafrost regions. The different response of the SOC in this region should be considered in carbon cycling models.
Shaddox, Travis W; Kruse, Jason K; Miller, Grady L; Nkedi-Kizza, Peter; Sartain, Jerry B
2016-09-01
United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 μg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altman, D.J.; Hazen, T.C.; Tien, A.J.
1997-05-10
The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organicmore » sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.« less
Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf
2013-01-01
Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.
Zhao, Yanyun; Ding, Yong; Hou, Xiangyang; Li, Frank Yonghong; Han, Wenjun; Yun, Xiangjun
2017-01-01
Soil represents the largest terrestrial organic carbon pool. To address global climate change, it is essential to explore the soil organic carbon storage patterns and their controlling factors. We investigated the soil organic carbon density (SOCD) in 48 grassland sites along the Eurasian steppe eastern transect (ESET) region, which covers the Inner Mongolia grassland subregion and Mongolia grasslands subregion. Specifically, we analyzed the SOCD in the top 30 cm soil layer and its relationships with climatic variables, soil texture, grazing intensity and community biomass productivity. The results showed that the average SOCD of the ESET was 4.74 kg/m2, and the SOCD of the Inner Mongolia grassland subregion (4.11 kg/m2) was significantly lower than that of the Mongolia grassland subregion (5.79 kg/m2). Significant negative relationships were found between the SOCD and the mean annual temperature (MAT), mean annual precipitation (MAP) and grazing intensity in the ESET region. The MAT and grazing intensity were identified as the major factors influencing the SOCD in the ESET region; the MAP and MAT were the major factors influencing the SOCD in the Inner Mongolia grassland subregion; and the MAT and soil pH were the major factors influencing the SOCD in the Mongolia grassland subregion.
Source identification and apportionment of heavy metals in urban soil profiles.
Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing
2015-05-01
Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hou, Xiangyang; Li, Frank Yonghong; Han, Wenjun; Yun, Xiangjun
2017-01-01
Soil represents the largest terrestrial organic carbon pool. To address global climate change, it is essential to explore the soil organic carbon storage patterns and their controlling factors. We investigated the soil organic carbon density (SOCD) in 48 grassland sites along the Eurasian steppe eastern transect (ESET) region, which covers the Inner Mongolia grassland subregion and Mongolia grasslands subregion. Specifically, we analyzed the SOCD in the top 30 cm soil layer and its relationships with climatic variables, soil texture, grazing intensity and community biomass productivity. The results showed that the average SOCD of the ESET was 4.74 kg/m2, and the SOCD of the Inner Mongolia grassland subregion (4.11 kg/m2) was significantly lower than that of the Mongolia grassland subregion (5.79 kg/m2). Significant negative relationships were found between the SOCD and the mean annual temperature (MAT), mean annual precipitation (MAP) and grazing intensity in the ESET region. The MAT and grazing intensity were identified as the major factors influencing the SOCD in the ESET region; the MAP and MAT were the major factors influencing the SOCD in the Inner Mongolia grassland subregion; and the MAT and soil pH were the major factors influencing the SOCD in the Mongolia grassland subregion. PMID:29084243
Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai
2012-11-01
The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.
NASA Astrophysics Data System (ADS)
Kuo, Chih-Hao
Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.
Genesis of petroduric and petrocalcic horizons in Latinamerica volcanic soils
NASA Astrophysics Data System (ADS)
Quantin, Paul
2010-05-01
Introduction. In Latinamerica, from Mexico to Chile, there are indurated volcanic soils horizons, named 'tepetate' in Mexico or cangahua in the Andes Mountains. Apart from original volcanic tuffs, these horizons were produced by pedogenesis: either through a former weathering of volcanic ash layers into fragic and later to petrocalcic horizons; or after a former soil formation through a second process of transformation from clayey volcanic soils to silicified petroduric horizons. This oral presentation will briefly deal with the formation of petroduric horizons in Mexico and petrocalcic horizon in Ecuador. Petroduric horizon genesis in Mexico. A soil climato-toposequence, near to Veracruz (Rossignol & Quantin, 1997), shows downwards an evolution from a ferralic Nitisol to a petroduric Durisol. A Durisol profile comports these successive horizons: at the top A and Eg, then columnar Btg-sim, laminar Bt-sim , prismatic Bsim, plinthite Cg, over andesite lava flow. Among its main features are especially recorded: clay mineralogy, microscopy and HRTEM. These data show: an increase in cristobalite at the expenses of 0.7 nm halloysite in Egsiltans, laminar Bt-sim, around or inside the columns or prisms of Btg-sim and Bsimhorizons. HRTEM (Elsass & al 2000) on ultra thin sections reveals an 'epigenesis' of clay sheets by amorphous silica, to form successively A-opal, Ct-opal and microcrystalline cristobalite. From these data and some groundwater chemical analyses, a scenario of duripan formation from a past clayey Nitisol is inferred: clay eluviation-illuviation process? alternate redoximorphy? clay degradation, Al leaching and Si accumulation, to form successively A-opal, Ct-opal and cristobalite. Petrocalcic horizon genesis in Ecuador. A soil climato-toposequence on pyroclastic flows, near to Bolivar in Ecuador (Quantin & Zebrowski, 1997), shows downwards the evolution from fragic-eutric-vitric Cambisols to petrocalcic-vitric Phaeozems, at the piedmont under semi-arid climate. A complex soil profile of petrocalcic Phaeozem, derived from 4 pyroclastic layers, shows among its successive horizons: in layer 3 the 'upper cangahua' with petrocalcic features and in layer 4 the 'lower cangahua' with hard fragipan properties. The features of the petrocalcic cangahua differ from a Mexican fragipan (Hidalgo & al 1997) by: a hard calcrete, higher alkalinity, stability in water after HCl and NaOH treatment, 2-4% of 'free silica'. The macro and micro-morphology shows: the laminar calcite crust, at the top of cangahua, with alternate micrite-sparite layers; downwards, microcalcite infillings in the voids of a prismatic structure, invading the groundmass by epigenesis of clay sheets, together whith microcrystalline opal. From these data this scenario is inferred: after a former weathering of volcanic glass to form a clayey matrix, as well amorphous silica and microcalcite coatings and infillings, then a second process, perhaps due to drier climate, produced the laminar crust formation, by invasion of microcalcite in the matrix. Conclusion. The petrocalcic horizon in Ecuador was produced by two processes: from a former phase of weathering giving a fragic horizon to a second producing the accumulation of calcite and some opal over and inside the matrix, due to climate change. The petroduric horizon in Mexico, is the product of a very complex soil transformation, from a former clayey Nitisol, through four successive processes: clay eluviation-illuviation, alternate redoximorphy, clay degradation, finally a progressive silicification over and inside the groundmass, probably due to pedoclimate change. References F. Elsass, D. Dubroeucq & M. Thiry. 2000. Clay Minerals, 35, 477-489. C. Hidalgo, P. Quantin & F. Elsass. 1997. Memorias del III Simposio Internacional sobre Suelos volcanicos endurecidos (Quito 1996), p. 65-72. - P. Quantin & C. Zebrowski. 1997. idem, p. 29-47.- J.P. Rossignol & P. Quantin. 1997. idem, p. 73-82.
Elaidate-Intercalated hydrotalcite as a sorbent material for metalaxyl immobilitzation in soil
NASA Astrophysics Data System (ADS)
López-Cabeza, Rocío; Cornejo, Juan; Hermosín, María C.; Cox, Lucía; Celis, Rafael
2015-04-01
Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds (HTs), comprise a special group of layered materials. Their structure consists of positively charged layers of mixed divalent (MII) and trivalent (MIII) metal hydroxide [MII1-xMIIIx(OH)2]x+, with the positive charge being balanced by inorganic hydrated anions (An-x/n·mH2O), which occupy the interlayer space. LDHs have anion exchange properties and, therefore, are good sorbents for anionic pollutants. In addition, the anionic exchange properties of LDHs allow the intercalation of organic anions in the interlayer space to render the LDH surface hydrophobic. This increases its affinity to hydrophobic organic compounds. Pesticides with chiral centers are an emerging class of organic pollutants and it has become clear that addressing the different efficacy, toxicity, and environmental behavior of chiral pesticide enantiomers is necessary to avoid the incorrect assumption that enantiomers have identical environmental behavior. Appropriate soil remediation strategies accounting for the enantioselective behavior of chiral pesticide enantiomers are also needed. In this work, we evaluated the performance of elaidate-modified hydrotalcite (HT-ELA) as a sorbent to remove the chiral fungicide metalaxyl from aqueous solution and as an amendment for metalaxyl immobilization in soil. Analysis of metalaxyl by chiral high-performance liquid chromatography allowed us to monitor the sorption and mobility of the two enantiomers of metalaxyl, S-(+)-metalaxyl and R-(-)-metalaxyl, independently. Batch sorption experiments showed that HT-ELA [Mg3Al(OH)8ELA] displayed an excellent performance as an sorbent of the two enantiomers of metalaxyl from aqueous solution and that its addition to a sandy loam agricultural soil at a rate of 1% greatly enhanced the sorption of metalaxyl enantiomers by the soil. Column leaching experiments demonstrated that amending the soil top layer (0-2.5 cm) with HT-ELA at a rate of 1% reduced the leaching of S- and R-metalaxyl. The R-enantiomer of metalaxyl leached less than the S-enantiomer due to its faster degradation in the soil. Our results illustrate the ability of elaidate-modified hydrotalcite to enhance the retention of the two enantiomers of the fungicide metalaxyl in the tested soil, which may be useful in the design of immobilization strategies, particularly of the more persistent S-metalaxyl enantiomer, which may represent increased risk of ground water contamination. Acknowledgments: MINECO Project AGL2011-23779, FACCE-JPI Project Designchar4food, JA Research Group AGR-264 and FEDER-FSE (OP 2007-2013).
Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun
2014-10-01
A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.
Ethylcellulose formulations for controlled release of the herbicide alachlor in a sandy soil.
Sopeña, Fátima; Cabrera, Alegría; Maqueda, Celia; Morillo, Esmeralda
2007-10-03
The development of controlled-release formulations of alachlor to diminish its leaching in sandy soils, avoiding groundwater contamination and maintaining its efficacy, was studied. For this purpose, ethylcellulose (EC) microencapsulated formulations (MEFs) of alachlor were prepared under different conditions and applied to soil columns to study their mobility. The results show that in all cases the release into water of alachlor from MEFs was retarded when compared with commercial formulation. Total leaching losses in soil columns were reduced to 59% from 98%. The mobility of alachlor from EC microspheres into soil columns has been greatly diminished in comparison with its current commercial formulation (CF), above all with increasing EC/herbicide ratios. Distribution of alachlor applied as MEFs at different depths in the soil was higher in the soil surface (66.3-81.3% of herbicide applied at the first 12 cm). In contrast, the residues from CF along the complete soil column were only 20.4%. From the results of bioassays, MEFs showed a higher efficacy than CF at 30 days after the treatment. The use of ME formulations could provide an advantage in minimizing the risk of groundwater contamination by alachlor and reducing the application rates, as a result of maintaining the desired concentration of the herbicide in the top soil layer, obtaining longer periods of weed control.
Seasonal variability of microbial biomass phosphorus in urban soils.
Halecki, W; Gąsiorek, M
2015-01-01
Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Juan; Fan, Shu-Kai; Zhang, Ming-Hua; Grieneisen, Michael L; Zhang, Jian-Feng
2018-03-15
Aliphatic hydrocarbons (AHs) are major petroleum contaminants in the environment. In this study, the AHs bound to various soil endogenetic humus fractions were separated through successive extraction. Most of the AHs (46.1%) in soils were adsorbed onto/into humic acids (HA) and a small quantity of AHs (9.6%) were organic solvent extractable. AHs in B. chinensis were also analyzed since their potential risks to the residents through ingestion. AHs from C 21 to C 34 , so called high molecular weight AHs (HMWAHs), were dominant AHs in B. chinensis (85.5%) and soils (70.4%), followed by AHs from C 16 to C 21, whose mobility can be enhanced via binding to fulvic acids and then can be taken up by plant root lipids (soil-plant pathway). HMWAHs were mainly HA-bound and then were detained in the top soil layers. HMWAHs associated with fine topsoil particles could be transported to B. chinensis via the soil-air-plant pathway, including resuspension and aboveground plant cuticle capture. Results from Principal Component Analysis combined with Regression Analysis supported this assumption due to the positive correlations between HMWAHs concentration in B. chinensis and fine particle contents in soils. This work presents the distributions of petroleum contaminants that result from previously described behavior mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil-manure systems.
Wang, Na; Guo, Xinyan; Xu, Jing; Hao, Lijun; Kong, Deyang; Gao, Shixiang
2015-01-01
Animal manure application is a main spreading route of veterinary antibiotics in soil and groundwater. The sorption and leaching behavior of five commonly used sulfonamides in five typical soil and soil/manure mixtures from China were investigated in this study. Results showed that the empirical Freundlich equation fits well the sorption behavior of selected sulfonamides (r(2) was between 0.803 and 0.999, 1/n was between 0.68 and 1.44), and pH and soil organic carbon (OC) were the key impact factors to sorption and leaching. Addition of manure was found to increase the Kd values of sulfonamides in five different soils, following the rules that the more polar substances, the more increased extent of sorption after manure amendment (5.87 times for sulfadiazine with Log Kow = -0.09, and 2.49 times for sulfamethoxazole with Log Kow = 0.89). When the simulated rainfall amount reached 300 mL (180 mm), sulfonamides have high migration potential to the groundwater, especially in the soil with low OC and high pH. However, manure amendment increased the sorption capacity of sulfonamides in the top layer, thus it might play a role in decreasing the mobility of sulfonamides in soils. The systematic study would be more significant to assess the ecological risks and suggest considering the influence of manure amendment for the environmental fate of antibiotics.
Methane oxidation at a surface-sealed boreal landfill.
Einola, Juha; Sormunen, Kai; Lensu, Anssi; Leiskallio, Antti; Ettala, Matti; Rintala, Jukka
2009-07-01
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m(3) ha(-1) h(-1). Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m(3) ha(-1) h(-1)) and methane emissions (6-135 m(3) ha(-1) h(-1)) compared to the other points (< 20 m(3) ha(-1) h(-1) and < 10 m(3) ha(-1) h(-1), respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.
90Sr and 137Cs in environmental samples from Dolon near the Semipalatinsk Nuclear Test Site.
Gastberger, M; Steinhäusler, F; Gerzabek, M H; Hubmer, A; Lettner, H
2000-09-01
The (90)Sr and (137)Cs activities of soil, plant, and milk samples from the village of Dolon, located close to the Semipalatinsk Nuclear Test Site in Kazakhstan, were determined. The areal deposition at the nine sampling sites is in the range of <500 to 6,100 Bq m(-2) and 300 to 7,900 Bq m-2 for (90)Sr and (137)Cs, respectively. Similar values have been reported in the literature. At some of the sites both nuclides mainly have remained in the top 6 cm of the soil profiles; at others they were partly transported into deeper soil layers since the deposition. For most of the samples the (90)Sr yield after destruction of the soil matrix is significantly higher than after extracting with 6 M HCl indicating that (90)Sr is partly associated with fused silicates. The low mean (90)Sr activity concentrations of vegetation samples (14 Bq kg(-1) dw) and milk samples (0.05 Bq kg(-1) fw) suggest that this has favorable consequences in terms of limiting its bioavailability.
Biochar increases plant available water in a sandy soil under an aerobic rice cropping system
NASA Astrophysics Data System (ADS)
de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Meinke, H.
2014-03-01
The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 t ha-1) on the water retention capacity (WRC) of a sandy Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields at 2 and 3 years after application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each t ha-1 of biochar amendment at 2 and 3 years after application. The impact of biochar on soil WRC was most likely related to an increase in overall porosity of the sandy soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5% and 1.6% for each t ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under water limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.
Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system
NASA Astrophysics Data System (ADS)
de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Marimon, B. H., Jr.; Meinke, H.
2014-09-01
The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha-1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.
NASA Technical Reports Server (NTRS)
Adams, J. B.; Smith, M. O.; Johnson, P. E.
1986-01-01
A Viking Lander 1 image was modeled as mixtures of reflectance spectra of palagonite dust, gray andesitelike rock, and a coarse rocklike soil. The rocks are covered to varying degrees by dust but otherwise appear unweathered. Rocklike soil occurs as lag deposits in deflation zones around stones and on top of a drift and as a layer in a trench dug by the lander. This soil probably is derived from the rocks by wind abrasion and/or spallation. Dust is the major component of the soil and covers most of the surface. The dust is unrelated spectrally to the rock but is equivalent to the global-scale dust observed telescopically. A new method was developed to model a multispectral image as mixtures of end-member spectra and to compare image spectra directly with laboratory reference spectra. The method for the first time uses shade and secondary illumination effects as spectral end-members; thus the effects of topography and illumination on all scales can be isolated or removed. The image was calibrated absolutely from the laboratory spectra, in close agreement with direct calibrations. The method has broad applications to interpreting multispectral images, including satellite images.
Paz, Anat; Tadmor, Galit; Malchi, Tomer; Blotevogel, Jens; Borch, Thomas; Polubesova, Tamara; Chefetz, Benny
2016-10-01
Irrigation with reclaimed wastewater may result in the ubiquitous presence of pharmaceutical compounds (PCs) and their metabolites in the agroecosystem. In this study, we focused on two highly persistent anticonvulsant drugs, lamotrigine and carbamazepine and two of its metabolites (EP-CBZ and DiOH-CBZ), aiming to elucidate their behavior in agricultural ecosystem using batch and lysimeter experiments. Sorption of the studied compounds by soils was found to be governed mainly by the soil organic matter level. Sorption affinity of compounds to soils followed the order lamotrigine > carbamazepine > EP-CBZ > DiOH-CBZ. Sorption was reversible, and no competition between sorbates in bi-solute systems was observed. The results of the lysimeter studies were in accordance with batch experiment findings, demonstrating accumulation of lamotrigine and carbamazepine in top soil layers enriched with organic matter. Detection of carbamazepine and one of its metabolites in rain-fed wheat previously irrigated with reclaimed wastewater, indicates reversibility of their sorption, resulting in their potential leaching and their availability for plant uptake. This study demonstrates the long-term implication of introduction of PCs to the agroecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Changes of soil physical properties during the conversion of cropland to agroforestry system].
Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin
2017-01-01
To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.
NASA Astrophysics Data System (ADS)
Bracho, R. G.; Schuur, E. A.; Pegoraro, E.; Crummer, K. G.; Natali, S.; Zhou, J.; Wu, L.; Luo, Y.; Tiedje, J. M.; Konstantinidis, K.
2013-12-01
Permafrost soils contain approximately1700 Pg of carbon (C), twice the amount of C in the atmosphere. Temperatures in higher latitudes are increasing, inducing permafrost thaw and subsequent microbial decomposition of previously frozen C. This process is one of the most likely positive feedbacks to climate change. Understanding the temperature sensitivity (Q10) and dynamics of SOM decomposition under warming is essential to predict the future state of the earth - climate system. Alaskan tundra soils were exposed to two winter warming (WW) seasons in the field, which warmed the soils by 4°C to 40 cm depth. Soils were obtained from three depths (0 - 15, 15 - 25 and 45 - 55 cm) and differed in initial amounts of labile and recalcitrant C. Soils were incubated in the lab under aerobic conditions, at 15 and 25°C over 365 days. Q10 was estimated at 14, 100 & 280 days of incubation (DOI); C fluxes were measured periodically and dynamics of SOM decomposition (C pool sizes and decay rates) were estimated by fitting a two pool C model to cumulative respired C (Ccum, mgC/ginitialC). After two WW seasons, initial C content tended to decrease through the soil profile and C:N ratio was significantly decreased in the top 15 cm. After one year of incubation, Ccum was twice as high at 25°C as at 15°C and significantly decreased with depth. No significant WW field treatment was detected, although Ccum tended to be lower in warmed soils. Labile C accounted for up to 5% of initial soil C content in the top 15 cm and decreased with depth. Soils exposed to WW had smaller labile C pools, and higher labile C decay rates in the top 25 cm. Q10 significantly decreased with time and depth as labile pool decreased, especially for WW. This decrease with time indicates a lower temperature sensitivity of the most recalcitrant C pool. The deepest WW soil layer, where warming was more pronounced, had significantly lower Q10 compared to control soils at the same depth. After two seasons, the warming treatment affected decomposition by reducing labile C pools and increasing its decay rates. Warming also reduced temperature sensitivity, showing acclimation of the most recalcitrant C pool in the tundra ecosystem.
Cretoiu, Mariana Silvia; Korthals, Gerard W; Visser, Johnny H M; van Elsas, Jan Dirk
2013-09-01
A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment.
Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.
Vinichuk, Mykhailo M
2013-01-01
Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil < soil-root interface (or rhizosphere) < fungal mycelium < fungal sporocarps. The uptake of Cu, Zn and Cd during the entire transfer process in natural conditions between soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.
Cretoiu, Mariana Silvia; Korthals, Gerard W.; Visser, Johnny H. M.
2013-01-01
A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment. PMID:23811512
Senko, Olga; Maslova, Olga; Efremenko, Elena
2017-11-23
Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His₆-OPH) is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH)₂, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP)-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His₆-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE 50 ) or poly-l-aspartic acid (PLD 50 ). The soil's humidity is then increased up to 60-80%, the top layer (10-30 cm) of soil is thoroughly stirred, and then exposed for 48-72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His₆-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0-8.4). Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.
Fipronil mobility and transformation in undisturbed soil columns.
Chatterjee, Niladri Sekhar; Gupta, Suman
2010-08-01
The downward movement of fipronil and its two toxic metabolites i.e. sulfone and desulfinyl were studied in undisturbed soil columns. Mobility behavior of two different formulations of fipronil viz granular and suspension concentrate were also studied. The undisturbed columns containing sandy loam soil were leached with water equivalent to 400 mm rainfall. Results revealed that although majority of the fipronil (approximately 80%) remained in top 0-5 cm layer, substantial amount (approximately 15%) moved to 5-10 cm depth. In case of metabolites sulfone and desulfinyl >90% of the residues remained in 0-5 cm core indicating low mobility of these metabolites in comparison to fipronil. Results of mobility behavior of fipronil in granular and SC formulations revealed low mobility in granular formulation. Sulfide was detected as the major degradation product in both the formulations and was found to be distributed throughout the column. A little amount of sulfone (0.1% of the total recovered) was also detected upto 10 cm depth.
NASA Astrophysics Data System (ADS)
Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi
2011-02-01
We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.
Murphy, S.F.; Brantley, S.L.; Blum, A.E.; White, A.F.; Dong, H.
1998-01-01
Samples of soil, saprolite, bedrock, and porewater from a lower montane wet forest, the Luquillo Experimental Forest (LEF) in Puerto Rico, were studied to investigate the rates and mechanisms of biotite weathering. The soil profile, at the top of a ridge in the Rio Icacos watershed, consists of a 50-100-cm thick layer of unstructured soil above a 600-800 cm thick saprolite developed on quartz diorite. The only minerals present in significant concentration within the soil and saprolite are biotite, quartz, kaolinite, and iron oxides. Biotite is the only primary silicate releasing significant K and Mg to porewaters. Although biotite in samples of the quartz diorite bedrock is extensively chloritized, chlorite is almost entirely absent in the saprolite phyllosilicates. Phyllosilicate grains are present as 200-1000 ??m wide books below about 50 cm depth. X-ray diffraction (XRD) and electron microprobe analyses indicate that the phyllosilicate grains contain a core of biotite surrounded by variable amounts of kaolinite. Lattice fringe images under transmission electron microscope (TEM) show single layers of biotite altering to two layers of kaolinite, suggesting dissolution of biotite and precipitation of kaolinite at discrete boundaries. Some single 14-A?? layers are also observed in the biotite under TEM. The degree of kaolinitization of individual phyllosilicate grains as observed by TEM decreases with depth in the saprolite. This TEM work is the first such microstructural evidence of epitaxial growth of kaolinite onto biotite during alteration in low-temperature environments. The rate of release of Mg in the profile, calculated as a flux through the soil normalized per watershed land area, is approximately 500 mol hectare-1 yr-1 (1.6 ?? 10-9 molMg m-2soil s-1). This rate is similar to the flux estimated from Mg discharge out the Rio Icacos (1000 mol hectare-1 yr-1, or 3.5 ?? 10-9 molMg m-2soil s-1), indicating that scaling up from the soil to the watershed is possible for Mg release. The rate of Mg release from biotite, normalized to Brunauer-Emmett-Teller (BET) surface area, is calculated using a mass balance equation which includes the density and volume of phyllosilicate grains, porewater chemistry and flux, and soil porosity. The mean rates of biotite weathering calculated from K and Mg release rates are approximately 6 and 11 ?? 10-16 molbiotite m-2biotite s-1 respectively, significantly slower than laboratory rates (10-12 to 10-11 molbiotite m-2biotite s-1). The discrepancy in scaling down from the soil to the laboratory is probably explained by (1) differences in weathering mechanism between the two environments, (2) higher solute concentrations in soil porewaters, (3) loss of reactive surface area of biotite in the saprolite due to kaolinite and iron oxide coatings, and/or (4) unaccounted-for heterogeneities in flow path through the soil. Copyright ?? 1998 Elsevier Science Ltd.
Water-retaining barrier and method of construction
Adams, Melvin R.; Field, Jim G.
1996-01-01
An agricultural barrier providing a medium for supporting plant life in an arid or semi-arid land region having a ground surface, the barrier being disposed on native soil of the region, the barrier including: a first layer composed of pieces of basalt, the first layer being porous and being in contact with the native soil; a porous second layer of at least one material selected from at least one of sand and gravel, the second layer being less porous than, and overlying, the first layer; and a porous third layer containing soil which favors plant growth, the third layer being less porous than, and overlying, the second layer and having an exposed upper surface, wherein the porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer.
Water-retaining barrier and method of construction
Adams, M.R.; Field, J.G.
1996-02-20
An agricultural barrier is disclosed which provides a medium for supporting plant life in an arid or semi-arid land region having a ground surface. The barrier is disposed on native soil of the region. The barrier includes a first porous layer composed of pieces of basalt, and is in contact with the native soil. There is a less porous second layer of at least one material selected from at least one of sand and gravel. The second layer overlies the first layer. A third layer, less porous than the second layer, contains soil which favors plant growth. The third layer overlies the second layer and has an exposed upper surface. The porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer. 2 figs.
NASA Astrophysics Data System (ADS)
Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper
2013-09-01
The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement surface deflections with very low average errors comparable with those obtained directly from the finite element analyses.
Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C
2013-08-01
To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques. © 2013 John Wiley & Sons Ltd.
Oro, J; Holzer, G
1979-01-01
The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. Its disappearance from the top layer could be caused by degradation processes on the surface of the planet. Possible destructive agents include ultraviolet light, oxygen and metal oxides. In this study we tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given period of irradiation. A definite degradation was noticed in the case of naphthalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.
NASA Astrophysics Data System (ADS)
McGowan, L. E.; Paw U, K. T.; Dahlke, H. E.
2017-12-01
In the Western U.S., future water resources depend on the forested mountain snowpack. The variations in and estimates of forest mountain snow volume are vital to projecting annual water availability; yet, snow forest processes are not fully known. Most snow models calculate snow-canopy unloading based on time, temperature, Leaf Area Index (LAI), and/or wind speed. While models crudely consider the canopy shape via LAI, current models typically do not consider the vertical canopy structure or varied energetics within multiple canopy layers. Vertical canopy structure influences the spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability. Within the canopy both the snowpack and energetic exposures to the snowpack (wind, shortwave and longwave radiation, turbulent heat fluxes etc.) vary widely in the vertical. The water and energy balance in each layer is dependent on all other layers. For example, increased snow canopy content in the top of the canopy will reduce available shortwave radiation at the bottom and snow unloading in a mid-layer can cascade and remove snow from all the lower layers. We examined vertical interactions and structures of the forest canopy on the impact of unloading utilizing the Advanced Canopy-Atmosphere-Soil-Algorithm (ACASA), a multilayer soil-vegetation-atmosphere numerical model based on higher-order closure of turbulence equations. Our results demonstrate how a multilayer model can be used to elucidate the physical processes of snow unloading, and could help researchers better parameterize unloading in snow-hydrology models.
Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts
NASA Astrophysics Data System (ADS)
Brook, Anna; Hamzi, Seham; Wittenberg, Lea
2015-04-01
Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating gradient of layered ash with diverse physicochemical properties. The obtained post-burned soils were processed as following: 1. loss of mass (ML); 2. ash layers sampling - the produced ash layers were collected separately; 3. grinding; 4. color - the Munsell colour chart; 5. spectroscopy- each sample was analysed by two spectrometer, first is the Ocean Optics USB4000 (0.35-1.05 μm) portable system across visible and near infrared (VNIR) region using contact Halogen illumination, second is the Bruker Tensor II (2.35-25 μm) across mid infrared (MIR) region by Furrier transform IR (FTIR) system using the Pike EasiDiff diffuse reflectance spectroscopy (DRS) optical bench; 6. pH and electrical conductivity (EC) including total dissolve solids (TDS) and salinity (S) measurements. The result of high concentration of carbonates, oxides, and hydroxides of basic cations decreasing EC levels caused by high pH (>8) there the CaCO3 surfaces are negatively charged and variation of mineralogical composition introducing very detailed list of minerals (high concentration of Nickeline NiAs, Cuprite Cu2O, Rehodochrosite MnCO3 and Nitrolite Na2Al2Si3O102H2O in the top-layers and mixtures e.g. Kaolinite/Smectite (85% Kaol.) Al2Si2O5(OH)4+(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2nH2O and Mesolite + Hydroxyapophyllite Na2Ca2Al6Si9O308H2O + KCa4Si8O20(OH,F)8H2O between ash and post-burn top-soil layers. Bodí M.B., Muñoz-Santa I., Armero C., Doerr S.H., Mataix-Solera J., Cerdà A., 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, vol. 108, pp. 14-24. Certini G., Scalenghe R., Woods W.W., 2013. The impact of warfare on the soil environment. Earth-Science Reviews, vol. 127, pp. 1-15. Keesstra S.D., Temme A.J.A.M., Schoorl J.M., Visser S.M., 2014. Evaluating the hydrological component of new catchment-scale sediment delivery model LAPSUS-D. Geomorphology, vol. 212, pp. 97-107. Levin N., Levental S., Morag H., 2013. The effect of wildfires on vegetation cover and dune activity in Australia's desert dunes: a multisensor analysis International Journal of Wildland Fire, vol. 21 (4), pp. 459-475. Lugassi R., Ben-Dor E., Eshel G., 2013. Reflectance spectroscopy of soils post-heating'Assessing thermal alterations in soil minerals. Geoderma, vol. 231, pp. 268-279. Pereira P., Úbeda X., Martin D., Mataix-Solera J., Guerrero C. 2011. Effects of a low prescribed fire in ash water soluble elements in a Cork Oak (Quercus suber) forest located in Northeast of Iberian Peninsula, Environmental Research, vol. 111(2), pp. 237-247. Shakesby R.A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions Earth Science Reviews, vol. 105, pp. 71-100. Woods, S.W., Balfour, V.N. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils, Journal of Hydrology, vol. 393, pp. 274-286.
Anderson, P; Davidson, C M; Duncan, A L; Littlejohn, D; Ure, A M; Garden, L M
2000-06-01
Made-up ground collected from layers of a trial pit excavated on a former industrial site was treated with artificial rainwater in a series of column leaching and sorption experiments. Metal mobility and the ability of various layers of material obtained from the pit to act as sources or sinks of potentially toxic elements were assessed. Samples from different layers varied in their abilities to raise the pH of rainwater applied at pH 3.5 and 4.3, and this was reflected in the amounts of metals mobilised by the rainwater as it percolated through the soil column. Material from the top two layers of the pit released cadmium, copper, manganese, lead, nickel and zinc to the aqueous phase, but the lower layers, with higher buffering capacity, were able to resist acidification even when the equivalent of 12 months' rainfall (western UK) was applied. Column sorption experiments confirmed the ability of material from layer 4 (48-50 cm) to take up copper, manganese and zinc. Metals were determined in the leachates by flame and electrothermal atomic absorption spectrometry and principle anions by ion chromatography.
NASA Astrophysics Data System (ADS)
Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David
2017-04-01
At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental parameters (moisture, radiation rate, redox conditions, etc.). Our data underline significant differences in soil biogeochemistry under different forest ecosystems and reveal the importance of interactions in the soil-vegetation-climate system for the determination of soil composition.
Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools.
Ashiagbori, G; Forkuo, E K; Laari, P; Aabeyir, R
2014-07-01
Soil erosion involves detachment and transport of soil particles from top soil layers, degrading soil quality and reducing the productivity of affected lands. Soil eroded from the upland catchment causes depletion of fertile agricultural land and the resulting sediment deposited at the river networks creates river morphological change and reservoir sedimentation problems. However, land managers and policy makers are more interested in the spatial distribution of soil erosion risk than in absolute values of soil erosion loss. The aim of this paper is to model the spatial distribution of soil erosion in Densu River Basin of Ghana using RUSLE and GIS tools and to use the model to explore the relationship between erosion susceptibility, slope and land use/land cover (LULC) in the Basin. The rainfall map, digital elevation model, soil type map, and land cover map, were input data in the soil erosion model developed. This model was then categorized into four different erosion risk classes. The developed soil erosion map was then overlaid with the slope and LULC maps of the study area to explore their effects on erosion susceptibility of the soil in the Densu River Basin. The Model, predicted 88% of the basin as low erosion risk and 6% as moderate erosion risk, 3% as high erosion risk and 3% as severe risk. The high and severe erosion areas were distributed mainly within the areas of high slope gradient and also sections of the moderate forest LULC class. Also, the areas within the moderate forest LULC class found to have high erosion risk, had an intersecting high erodibility soil group.
NASA Astrophysics Data System (ADS)
Robertson, Andy; Davies, Christian; Smith, Pete; McNamara, Niall
2014-05-01
Miscanthus is a lignocellulosic C4 crop that can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by reducing carbon (C) emissions associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC) however there is still considerable uncertainty surrounding estimates of net C exchange and the best management practices to achieve the best greenhouse gas (GHG) mitigation potential. Using an input manipulation experiment, we monitored emissions of N2O, CH4 and CO2 from living Miscanthus roots, aboveground plant litter and soil individually to quantify and partition these emissions and better understand the influence of abiotic factors on SOC and GHG dynamics under Miscanthus. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare commercial Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input (roots or senesced aboveground plant litter) to the soil by way of controlled exclusion techniques. The delta 13C value of soil C and CO2 emitted from each treatment was measured monthly between March 2009 and March 2013. Measurements of CH4 and N2O emissions were also taken at the soil surface from each treatment. Miscanthus-derived emissions were determined using the isotopic discrimination between C4 plant matter and C3 soil, and the treatments were compared to assess their effects on C inputs and outputs to the soil. Both CH4 and N2O emissions were below detection limits, mainly due to a lack of fertiliser additions and limited disturbance of the agricultural site. However, results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2 emissions in winter and spring whereas root respiration dominates the summer and autumn fluxes. After four years of aboveground plant litter removal there was no significant change in total soil C stocks indicating that earlier harvests and more thorough litter removal from the site would have little impact on C inputs to the soil. Outside the input manipulation treatments we also compared the top 30cm of soil from beneath the Miscanthus plantation with that below an adjacent arable field cropped with a winter wheat and oil seed rape rotation (the prior land use of the Miscanthus site). Results showed a greater soil C stock in the Miscanthus soils, although the difference was not statistically significant after 7 years of growth. Additionally, physiochemical soil fractionation of the top 30cm of soils below the input manipulation treatments indicates that soil fractions describing particulate organic matter, sand and soil aggregates all contain significantly more Miscanthus C in the top 15cm than in the 15-30cm layer, and when both roots and aboveground plant litter are present.
NASA Astrophysics Data System (ADS)
Albergel, Clément; Munier, Simon; Leroux, Delphine Jennifer; Dewaele, Hélène; Fairbairn, David; Lavinia Barbu, Alina; Gelati, Emiliano; Dorigo, Wouter; Faroux, Stéphanie; Meurey, Catherine; Le Moigne, Patrick; Decharme, Bertrand; Mahfouf, Jean-Francois; Calvet, Jean-Christophe
2017-10-01
In this study, a global land data assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the interactions between soil-biosphere-atmosphere (ISBA, Interactions between Soil, Biosphere and Atmosphere) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is more effective in modifying soil moisture (SM) from the top layers of soil, as model sensitivity to SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of the assimilation impact is conducted using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observation-based estimates of upscaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.
The relative importance of decomposition and transport mechanisms in accounting for C profiles
NASA Astrophysics Data System (ADS)
Guenet, B.; Eglin, T.; Vasilyeva, N.; Peylin, P.; Ciais, P.; Chenu, C.
2012-10-01
Soil is the major terrestrial reservoirs of carbon, and a substantial part of this carbon is stored in deep layers, typically deeper than 50 cm below the surface. Several studies underlined the quantitative importance of this deep Soil Organic Carbon (SOC) pool and models are needed to better understand this stock and its evolution under climate and land-uses changes. In this study, we test and compare 3 simple theoretical models of vertical transport for SOC against SOC profiles measurements from a long-term bare fallow experiment carried out by the Central-Chernozem State Natural Biosphere Reserve named after V.V. Alekhin, in the Kursk Region of Russia. The transport schemes tested are diffusion, advection or both diffusion and advection. They are coupled to two different formulations of soil carbon decomposition kinetics. The first formulation is a first order kinetics widely used in global SOC decomposition models; the second one links SOC decomposition rate to the amount of fresh organic matter, representing a "priming effect". Field data are from a set of three bare fallow plots where soil received no input during the past 20, 26 and 58 yr respectively. Parameters of the models were optimized using a Bayesian method. The best results are obtained when SOC decomposition is assumed to be controlled by fresh organic matter. In comparison to the first-order kinetic model, the "priming" model reduces the underestimation of SOC decomposition in the top layers and the over estimation in the deep layers. We also observe that the transport scheme that improved the fit with the data depends on the soil carbon mineralization formulation chosen. When soil carbon decomposition is modelled to depend on the fresh organic matter amount, the transport mechanisms which improves best the fit to the SOC profile data is the model representing both advection and diffusion. Interestingly, the older the bare fallow is, the lesser the need for diffusion is. This suggests that stabilized carbon may not be transported within the profile by the same mechanisms than more labile carbon.
James M. Vose; Katherine J. Elliott; Dale W. Johnson; Roger F. Walker; Mark G. Johnson; David T. Tingey
1995-01-01
We measured growing season soil CO2 evolution under elevated atmospheric CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and determine regulating mechanisms. Elevated CO2 treatments were applied in open-top chambers containing 3-...
Cloud layer thicknesses from a combination of surface and upper-air observations
NASA Technical Reports Server (NTRS)
Poore, Kirk D.; Wang, Junhong; Rossow, William B.
1995-01-01
Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.
Green roof soil system affected by soil structural changes: A project initiation
NASA Astrophysics Data System (ADS)
Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal
2014-05-01
Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.
Senko, Olga; Efremenko, Elena
2017-01-01
Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His6-OPH) is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH)2, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP)-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His6-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE50) or poly-l-aspartic acid (PLD50). The soil’s humidity is then increased up to 60–80%, the top layer (10–30 cm) of soil is thoroughly stirred, and then exposed for 48–72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His6-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0–8.4). Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used. PMID:29168784
Search for the Origin of Hematite at Meridiani Planum and Gusev Crater
NASA Astrophysics Data System (ADS)
Dreibus, G.; Brückner, J.; Jagoutz, E.
2005-05-01
The landscape in Meridiani Planum encountered by the Rover Opportunity is different to all previous Mars landing sites. While those locations look like typical unsorted alluvials, Meridiani Planum consists of sorted sands with aeolian features like small dunes and desert pavements in places. Chemical compositions of soils and rocks at Gusev crater and Meridiani Planum were measured by the Alpha Proton X-Ray Spectrometer (APXS) [1, 2]. At Meridiani Planum all soils and outcrops have a higher mean Fe/Si ratio of 0.75 compared to rocks and soils in Gusev crater with a mean Fe/Si of 0.57. The enrichment of Fe results from an admixture of hematite (Fe2O3) as determined in-situ by the Mössbauer spectrometer (MB) [3]. The formation of hematite is an indicator for aqueous activities under oxidizing conditions. The highest portion of this mineral was found in the spherical grains, also nicknamed `blueberries', which cover most place at the landing site. These spherules were also found in rock exposures in Eagle crater to about 2 % by volume and were interpreted as concretions that formed by precipitation from aqueous fluids inside sedimentary rocks [4]. At Gusev crater no hematite was observed until sol 90 except for layering on a rock. However, about three months later at the foot of the Columbia Hills the MB detected hematite in a rock, dubbed `Pot of Gold'. Our investigations of hematite bearing materials, measured by APXS, MB, and Microscopic Imager (MI) [5], provide an integrated view of different occurrences of hematite on the Martian surface. Ratios of Fe to Mn are compared with Fe concentrations for various soils and outcrops in Meridiani Planum and Gusev crater. Most samples cluster at a mean Fe/Mn ratio of about 50 and range in Fe from 12 to 17 wt. %. Exceptions are found for those Meridiani Planum soils that have very high Fe contents of about 26 wt. %, such as targets dubbed `JackRussell', `FredRipple', and `Berry Bowl full', all showing Fe/Mn ratios of about 110. Based on APXS measurements we cannot distinguish, whether spherules consist of pure hematite or carry a thin layer of hematite. All these high hematite bearing soils are top surface samples, while corresponding subsurface soil samples or soils disturbed by rover wheels have low hematite contents. The very high Fe/Mn ratios of three undisturbed samples together with very high hematite contents suggest the presence of a hematite-rich top layer irrespectively of shape and area coverage of spherules or fragments and could be interpreted as a surface coating similar to terrestrial surface coatings. In the hematite rich outcrops with the same Fe/Mn ratio as found for the soil samples the formation of the main portion of fine dispersed hematite must be an isochemical re-crystallization process under strongly oxidizing conditions. [1] Gellert, R. et al. (2004) Science, 305, 829-832. [2] Rieder, R. et al. (2004) Science, 306, 1746-1749. [3] Klingelhöfer, G. et al. (2004) Science, 306, 1740-1745. [4] Squyres, S, et al. (2004) Science, 306, 1698-1703. [5] Herkenhoff, K. E. et al. (2004) Science, 306, 1727-1730.
Soil thermal properties at two different sites on James Ross Island in the period 2012/13
NASA Astrophysics Data System (ADS)
Hrbáček, Filip; Láska, Kamil
2015-04-01
James Ross Island (JRI) is the largest island in the eastern part of the Antarctic Peninsula. Ulu Peninsula in the northern part of JRI is considered the largest ice free area in the Maritime Antarctica region. However, information about permafrost on JRI, active layer and its soil properties in general are poorly known. In this study, results of soil thermal measurements at two different sites on Ulu Peninsula are presented between 1 April 2012 and 30 April 2013. The study sites are located (1) on an old Holocene marine terrace (10 m a. s. l.) in the closest vicinity of Johann Gregor Mendel (JGM) Station and (2) on top of a volcanic plateau named Johnson Mesa (340 m a. s. l.) about 4 km south of the JGM Station. The soil temperatures were measured at 30 min interval using platinum resistance thermometers Pt100/8 in two profiles up to 200 cm at JGM Station and 75 cm at Johnson Mesa respectively. Decagon 10HS volumetric water content sensors were installed up 30 cm at Johnson Mesa to 50 cm at JGM Station, while Hukseflux HFP01 soil heat flux sensors were used for direct monitoring of soil physical properties at 2.5 cm depth at both sites. The mean soil temperature varied between -5.7°C at 50 cm and -6.3°C at 5 cm at JGM Station, while that for Johnson Mesa varied between -6.9°C at 50 cm and -7.1°C at 10 cm. Maximum active layer thickness estimated from 0 °C isotherm reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively which corresponded with maximum observed annual temperature at 50 cm at both sites. The warmest part of both profiles detected at 50 cm depth corresponded with maximum thickness of active layer, estimated from 0°C isotherm, reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively. Volumetric water content at 5 cm varied around 0.25 m3m-3 at both sites. The slight increase to 0.32 m3m-3 was observed at JGM Station at 50 cm and at Johnson Mesa at 30 cm depth. Soil texture analysis showed distinctly higher share of coarser fraction >2 mm at Johnson Mesa than at JGM Station. Comparison of both sites indicated that mean ground temperature at 50 cm depth was higher by 1.2 °C at JGM station, although the active layer was thicker by 2 cm only. It can therefore be concluded that soil physical properties like texture and moisture may significantly affect thermal regime at boundary between AL and permafrost table during individual thawing seasons.
Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong
2014-12-01
The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (P<0.05), but the storage of TOC in the plough pan soil decreased by 8.0% to 11.5% (P<0.05) except for the treatments of WM and MM. The storage of DOC and DOC/TOC ratio decreased significantly in top soil in the treatments with straw mulching or returning in six modes. The storage of POC and POC/TOC ratio in WM and WM-MM treatments, MOC and MOC/TOC ratio in WR treatment, increased significantly in top soil. In the other three treatments with straw mulching and returning (MM, MR, WR-MR), the storage of POC and MOC increased significantly in top soil. These results suggested that straw mulching had the potential to accumulate active organic carbon fraction in soil, straw soil-returning had the potential to accumulate stable organic carbon fraction. Considering organic carbon sequestration in cropland in the region of Guanzhong plain, maize straw mulching or soil-returning was better than wheat straw, and wheat straw and maize straw soil-returning (WR-MR) were better than wheat and maize straw mulching (WM-MM).
Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay
2011-09-01
Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.
Natal-da-Luz, T; Ojeda, G; Costa, M; Pratas, J; Lanno, R P; Van Gestel, C A M; Sousa, J P
2012-08-01
Sewage sludge application to soils is regulated by its total metal content. However, the real risk of metals is determined by the fraction that is biologically available. The available fraction is highly related to the strength of metal binding by the matrix, which is a dynamic process. The evaluation of the fate of metals in time can contribute increased accuracy of ecological risk assessment. Aiming to evaluate short-term changes in metal availability when metals were applied to soil directly (metal-spiked) or by way of an organic matrix (sludge-amended), a laboratory experiment was performed using open microcosms filled with agricultural soil. A concentration gradient of industrial sludge (11, 15, 55, and 75 t/ha) that was contaminated predominantly with chromium, copper, nickel, and zinc, or soil freshly spiked with the same concentrations of these metals, were applied on top of the agricultural soil. After 0, 3, 6, and 12 weeks, total (HNO(3) 69 %) and 0.01 M CaCl(2)-extractable metal concentrations in soil and metal content in the percolates were measured. Results demonstrated that comparison between sludge-amended and metal-spiked soils may give important information about the role of sludge matrix on metal mobility and availability in soil. In sludge-amended soils, extractable-metal concentrations were independent of the sludge concentration and did not change over time. In metal-spiked soils, metal extractability decreased with time due to ageing and transport of metals to deeper layers. In general, the sludge matrix increased the adsorption of metals, thus decreasing their mobility in soils.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2010-05-18
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Pore size distribution of a deeply excavated Oxisol after 19 years reclamation
NASA Astrophysics Data System (ADS)
dos Santos Batista Bonini, Carolina; de Cássia Marchini, Débora; Alves, Marlene Cristina; García de Arruda, Otton; Paz-Ferreiro, Jorge
2013-04-01
Digging of the local soil and using it as a raw material for construction purposes has been identified as a non-negligible source of land degradation. Techniques aimed at soil profile reconstruction and ecological restoration of soils truncated by mechanical excavation using heavy machinery have been investigated Both, total soil porosity and pore size distribution are important properties for soil management as well as for assessing the recovery of soil function after land degradation. In this way, macropores are responsible for aeration, whereas water storage depends on soil meso- and micropores in the soil and the optimal pore-size distribution is also an indicator of soil quality. We investigated the changes in the pore size distribution of a soil that was beheaded to extract raw materials after a 19 year period of reclamation, which involved the use of green manures, gypsum and pasture for the purpose of profile recovery. The studied area is located in Mato Grosso do Sul State, Brzil. A field trial was performed following a completely randomized experimental design with seven treatments and four replications. Starting 1992, the initial treatments were: 1) control (tilled bare soil), 2)Stizolobium aterrium, 3)Cajanus cajan, 4)lime+S. aterrimum, 5) lime+C. cajan, 6) lime + gypsum + S. aterrimum, 7) lime + gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all the experimental plots. Data from vegetated treatments were compared with bare soil (control) and native vegetation (Savannah). Soil samples were collected in 2011 at the 0.00-0.10, 0.10-0.20, and 0.20-0.40 m depths. Treatment differences were assessed by analysis of variance, following the Scott-Knott test (5%) of probability to compare averages. Macroporosity of the 0.00-0.10 m top layer was above the 0.10 m3m-3 threshold considered as critical for plant growth. On the 0.10-0.20 m layer only treatments with C. cajan later on followed by C. ensiformis reached macroporosities over the 0.10 m3m-3 threshold, and on the 0.20-0.40 m no treatment was above this critical value. In spite of the positive development of macroporosity in the restored soil profile, this physical attribute was far from the typical values corresponding to local soils under native Savannah vegetation.
Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy
NASA Astrophysics Data System (ADS)
Brook, Anna; Kopel, Daniella; Wittenberg, Lea
2017-04-01
Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which is significantly higher in most samples. The suggested method was very effective for tracing the man-made substances, we could find concrete and asphalt, plastic and synthetic polymers after they were assimilated, broken down and decomposed into soil particles. By the top-down un-mixing method we did not limit the substances we characterize and so we could detect unexpected materials and contaminants. In five location we have traces of cyanide cadmium Cd(CN)2 probably residues of old television scenes, traces of schwertmannite Fe8O8(OH)6(SO4)·nH2O or Fe3+16O16(OH,SO4)12-13·10-12H2O acid drainage were found in four sites and the most alarmingly the detecting of actinolite Ca2(Mg4.5-2.5Fe2+0.5-2.5)Si8O22(OH)2 and tremolite Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH), asbestos minerals, originate from the construction debris in almost all of the sites.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
Effects of the conversion of cropland to forest on the CH4 oxidation capacity in soils.
NASA Astrophysics Data System (ADS)
Bárcena, Teresa G.; D'Imperio, Ludovica; Priemé, Anders; Gundersen, Per; Vesterdal, Lars; Christiansen, Jesper R.
2013-04-01
As the second most important greenhouse gas (GHG) in the atmosphere, methane (CH4) plays a central role in global warming. Diverse types of soil have been reported as potential CH4 sinks due to the activity of methane oxidizing bacteria (MOB), underlining the importance of this functional group of microorganisms on a global basis. Agricultural practices are known to negatively affect CH4 oxidation in soil, while afforestation of former agricultural soils has been shown to enhance CH4 oxidation over time. However, knowledge is scarce with regard to the mechanisms driving the process of CH4 oxidation in different land uses. Our aim was to study the changes in CH4 uptake capacity in soils along a land-use change gradient from cropland to forest. We performed an incubation experiment to study the CH4 oxidation capacity of the top mineral soil (0-5 cm and 5-15 cm depth) for sites representing the transition from agriculture to afforestation based on monoculture of three tree species with different stand ages: pedunculate oak (4, 19, 42 and >200 years old), European larch (22 and 41 years old) and Norway spruce (15 and 43 years old). Main soil parameters were also measured to determine differences in soil properties between sites. Methane oxidation rates were related to the abundance of the soil methanotrophic community based on quantitative PCR (qPCR). In addition, we also estimated the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA), in order to investigate the link between these two similar functional groups. Although present, the abundance of AOB was under detection limit. The effects and interactions among all measured variables were summarized by Principal Component Analysis (PCA). Along the gradient, CH4 oxidation increased with increasing stand age in both soil layers (ranging from 0-1.3 nmol g-1dw d-1). However, we detected significant differences, in particular between oak and spruce, suggesting a possible tree species effect on the CH4 oxidation potential. The abundance of MOB also increased with stand age in the top layer (0-5 cm), but this trend was not clear in the 5-15 cm. On the other hand, we found a consistent decrease in the abundance of AOA with increasing stand age. This trend suggests that over time, the environmental niche shared by these microbial populations changes in favour of the MOB, most likely induced by changes in soil parameters, such as bulk density, carbon content and concentration of inorganic forms of nitrogen. In fact, results from the PCA indicated that over time, bulk density and carbon content were the variables that changed the most across the land use gradient, thereby influencing the CH4 oxidation capacity and the presence of the MOB. Our study provides evidence for a positive impact of afforestation of former cropland on CH4 uptake capacity in soils, contributing to mitigate the climatic consequences of this strong GHG in the atmosphere. Keywords: methane oxidation, afforestation, methane oxidizing bacteria (MOB), bulk density.
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
30 CFR 715.16 - Topsoil handling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... as the surface soil layers. Where the A horizon is less than 6 inches, a 6-inch layer that includes... replaced as the surface soil layer. (3) Where necessary to obtain soil productivity consistent with... amounts and analyses as determined by soil tests shall be applied to the surface soil layer so that it...
Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan.
Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq
2006-02-01
The present study evaluated the influence of temperature, moisture, and microbial activity on the degradation and persistence of commonly used cotton pesticides, i.e., carbosulfan, carbofuran, lambda-cyhalothrin, endosulfan, and monocrotophos, with the help of laboratory incubation and lysimeter studies on sandy loam soil (Typic Ustocurepts) in Pakistan. Drainage from the lysimeters was sampled on days 49, 52, 59, 73, 100, 113, and 119 against the pesticide application on days 37, 63, 82, 108, and 137 after the sowing of cotton. Carbofuran, monocrotophos, and nitrate were detected in the drainage samples, with an average value, respectively, of 2.34, 2.6 microg/L, and 15.6 mg/L for no-tillage and 2.16, 2.3 microg/L, and 13.4 mg/L for tillage. In the laboratory, pesticide disappearance kinetics were measured with sterile and nonsterile soils from 0 to 10 cm in depth at 15, 25, and 35 degrees C and 50% and 90% field water capacities. Monocrotophos and carbosulfan dissipation followed first-order kinetics while others followed second-order kinetics. The results of incubation studies showed that temperature and moisture contents significantly reduced the t(1/2) (half-life) values of pesticides in sterile and nonsterile soil, but the effect of microbial activity was nearly significant that might be due to less organic carbon (0.3%). The presence of carbofuran and monocrotophos in the soil profile (0-10, 10-30, 30-60, 60-90, 90-150 cm) and the higher concentrations of endosulfan and lambda-cyhalothrin in the top layer (0-10 cm) showed the persistence of the pesticides. The detection of endosulfan and lambda-cyhalothrin in the 10-30 cm soil layer might be due to preferential flow. The data generated from this study could be helpful for risk assessment studies of pesticides and for validating pesticide transport models for sandy loam soils in cotton-growing areas of Pakistan.
NASA Astrophysics Data System (ADS)
Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis
2017-04-01
The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11 - 12 cm) and high content of organic matter (23 - 26 %); humus in the upper horizons mainly consists of humic acids, while in lower horizons it is with higher ratio of fulvic acids. The second group is soils with a gradual humus distribution along the profile and with a smaller amount of organic matter in the upper horizon (9 - 13 %) and with no differentiation in humus composition. Folic Cambisols are formed on the watershed surfaces, on the steep slopes under pine and oak trees. Under thin litter horizon these soils have organic-accumulative horizon of well decomposed organic matter, but in contrast with Dystric Cambisols it doesn't have strong granular structure. At the bottom the organic horizon is humic-impregnated or has clear streaks of humus. Humic Cambisols are formed in the lower parts of slopes, on steep slopes and high river terraces under pine and deciduous forests. All this soils have humified litter horizon, which is up to 7 cm in depth, weak differentiation of the soil profile, deep humus-accumulative horizon (18 - 31 cm) with dark gray, almost black color, with strong granular structure and loam or clay loam texture. Soil acidity is determined by the lithogenic basis. Base saturation is quite high (77 - 90%) in mineral horizons and is up to 70 % in organic and accumulative ones. There is a high amount of humus on the entire profile (5 - 16 %), which consists of humic acids in the upper half of the profile and of fulvates at the bottom. Humic Cambisols Gleyic are located in the lower parts of gentle slopes under mixed forest. Due to higher moisture at the lower parts of slopes this soils have signs of weak gley process in dense subsoil horizons in the form of small light grey spots. Humic Leptosols are weakly developed soils formed on rocky hills, boulders, rocky outcrops, under thick moss layer, under which is a layer of weathered gravel rock. Humic Cambisols (Calcic) are formed on the surface sediments of limestone. They have a deep soil profile, up to 40 cm and it's humus-accumulative horizon is dark gray or black, gradually passing into soil-forming rock. Bw horizon, typical for Cambisols, is weak.
Atomic-Level Properties of Thermal Barrier Coatings: Characterization of Metal-Ceramic Interfaces
2001-01-01
these cases metal - metal bonds were stronger than metal - substrate bonds, thus predicting a 3D (cluster) growth mode as opposed to layer-by-layer...coat layer must be deposited. The top coat serves as the insulator and the bond coat mediates contact between the top coat and metal alloy substrate ...in thermomechanical properties between a YSZ top coat and a metal -alloy substrate is enough to require the introduction of an intermediate layer. This
Soil, vegetation and total organic carbon stock development in self-restoring abandoned vineyards
NASA Astrophysics Data System (ADS)
József Novák, Tibor; Incze, József; Spohn, Marie; Giani, Luise
2016-04-01
Abandoned vineyard's soil and vegetation development was studied on Tokaj Nagy-Hill, which is one of the traditional wine-producing regions of Hungary, it is declared as UNESCO World Heritage site as cultural landscape. Spatial distribution and pattern of vineyards were changing during the last several hundreds of years, therefore significant part of abandoned vineyards were subjected to long-term spontaneous secondary succession of vegetation and self-restoration of soils in absence of later cultivation. Two chronosequences of spontaneously regenerating vineyard abandonments, one on south (S-sequence) and one on southwest (SW-sequence) slope with differing times since their abandonment (193, 142, 101, 63, 39 and 14 years), were compiled and studied. The S-sequence was 25-35% sloped and strongly eroded, and the SW-sequence was 17-25% sloped and moderately eroded. The sites were investigated in respect of vegetation characteristics, soil physico-chemical characteristics, total organic carbon stocks (TOC stocks), accumulation rates of total organic carbon (TOC accumulation rates), and soil profiles, which were classified according to the World Reference Base (WRB) 2014. Vegetation development resulted in shrub-grassland mosaics, supplemented frequently by protected forb species and forest development at the earliest abandonment in S-sequence, and predominantly to forest vegetation in SW-sequence, where trees were only absent at the 63 and 14 years old abandonment sites. In all sites soils on level of reference groups according to WRB were classified, and Cambisols, Regosols, Calcisols, Leptosols, Chernozems and Phaeozems were found. Soils of the S-sequence show shallow remnants of loess cover with colluvic and redeposited soil materials containing 15-65% skeletal volcanic rock of weathering products coated by secondary calcium carbonates. The SW-sequence profiles are developed on deep loess or loess derivatives. The calcium-carbonate content was higher in profiles of the S-sequence (18.1±10.4%) than in the SW-sequence (6.7±2.7%); consequently. The pH of the topsoil was higher in the S-sequence, and correlated significantly negatively with the age of abandonment in both sequences (r=-0.893; p=0.01 in S, and r=-0.739; p=0.05 in SW). TOC stocks of the top 6 cm soil layers were higher in the S-sequence (1.82±0.71 kg m-2) than in the SW-sequence (0.95 ± 0.49 kg m-2), and correlated significantly positively with the duration of self-restoration. When calculated for the whole profile, TOC stocks were similar in both S- and SW-sequences (S: 8.21±3.31 kg m-2; SW: 8.24±6.01 kg m-2). The TOC accumulation rates of the top 6 cm soil layers exhibited 18.9±10.0 g C m-2y-1 in the S and 7.0±4.2 g C m-2y-1 in the SW-sequence. Sites with the same age of abandonment developed to different vegetation and had different soil features in both chronosequences, indicating that duration of self-restoration is only one of the directive factors in soil development and carbon sequestration processes after abandonment of viticulture on Tokaj Nagy-Hill, which was significantly affected by lithology, slope steepness and exposition as well. Keywords: soil organic carbon stocks; soil organic carbon accumulation rates; vineyard abandonment; terraced soils; Tokaj,
Soil Compaction Assessment Using Spectral Analysis of Surface Waves (SASW)
NASA Astrophysics Data System (ADS)
Afiq Roslan, Muhammad; Madun, Aziman; Hazreek Zainalabidin, Mohd; Dan@Azlan, Mohd Firdaus Md; Khaidir Abu Talib, Mohd; Nur Hidayat Zahari, Muhammad; Ambak, Kamaruddin; Ashraf Mohamad Ismail, Mohd
2018-04-01
Compaction is a process of soil densification in earthworks via by pressing the soil particles with air being expelled from the soil mass, thereby increasing its unit weight. Thus, it is important to evaluate the quality of soil compaction as prescribed in the technical requirement. SASW method is widely used for estimating material properties in layered structures based on the dispersion characteristics of Rayleigh Waves. The small scale at dimension area of 1.0 m width x 1.0 m length x 0.9 m depth was excavated and back filled with laterite soil. The soil was compacted for every layer at 0.3 m thickness. Each layer of soil compaction was conducted compaction test using core cutter methods and SASW test to determine the density and shear wave velocity. The phase velocity for layer 1 was between 112 m/s and 114 m/s, layer 2 was between 67 m/s and 74 m/s and layer 3 was between 74 m/s and 97 m/s. The result shows that the compacted soil layers are not fulfilled the quality of compacted soil layers where supposedly the expected shear wave velocity for the compacted layers should be higher than 180 m/s which is classified as stiff soil.
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2014-09-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget. We review current estimates of soil organic carbon stocks (mass/area) and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg. Correcting the HWSD's bulk density of organic soils, especially Histosols, results in a mass of 1062 Pg. The uncertainty of bulk density of Histosols alone introduces a range of -56 to +180 Pg for the estimate of global SOC in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arc minutes, the areal masses of SOC and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. Incorporating more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Data Base (496 Pg SOC) and tropical peatland carbon, global soils contain 1324 Pg SOC in the upper 1 m including 421 Pg in tropical soils, whereof 40 Pg occur in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
Chen, Xiaochen; Fukushi, Kensuke
2016-03-01
To develop a sound post-treatment process for anaerobically-digested strong wastewater, a novel natural treatment system comprising two units is put forward. The first unit, a trickling filter, provides for further reduction of biochemical oxygen demand and adjustable nitrification. The subsequent soil-plant unit aims at removing and recovering the nutrients nitrogen (N), phosphorus (P) and potassium (K). As a lab-scale feasibility study, a soil column test was conducted, in which black soil and valuable Kentucky bluegrass were integrated to treat artificial nutrient-enriched wastewater. After a long-term operation, the nitrification function was well established in the top layers, despite the need for an improved denitrification process prior to discharge. P and K were retained by the soil through distinct mechanisms. Since they either partially or totally remained in plant-available forms in the soil, indirect nutrient reuse could be achieved. As for Kentucky bluegrass, it displayed better growth status when receiving wastewater, with direct recovery of 8%, 6% and 14% of input N, P and K, respectively. Furthermore, the indispensable role of Kentucky bluegrass for better treatment performance was proved, as it enhanced the cell-specific nitrification potential of the soil nitrifying microorganisms inhabiting the rhizosphere. After further upgrade, the proposed system is expected to become a new solution for strong wastewater pollution. Copyright © 2015. Published by Elsevier B.V.
Potentiometric Detection of Pathogens
2012-01-01
nanosize organic electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field...electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field effect transistors, in...the conducting polymer top-layer, which makes the devices very functional and competitive. Secondly, the device development is discussed and finally
A Finite Element Procedure for Analysis of Laminated Composite Plates
1991-06-18
71 14. X-stress at midsurface of the top layer with refinement in x- direction; Angle-ply specimen, using edge elements...72 15. X-stress at midsurface of top layer with thickness refinement; Angle- ply specimen ............................................ 73 16...XY-stress at midsurface of top layer with refinement in y-direction; Angle-ply specimen ........................................ 74 17. XY-stress at
A Finite Element Procedure for Analysis of Laminated Composite Plates
1991-06-18
71 14. X-stress at midsurface of the top layer with refinement in x- direction; Angle-ply specimen, using edge elements...72 15. X-stress at midsurface of top layer with thickness refinement; Angle- ply specimen ............................................. 73 16. XY...stress at midsurface of top layer with refinement in y-direction; Angle-ply specimen ........................................ 74 17. XY-stress at
Jia, Zhen Yu; Zhang, Jun Hua; Ding, Sheng Yan; Feng, Shu; Xiong, Xiao Bo; Liang, Guo Fu
2016-04-22
Soil phosphorus is an important indicator to measure the soil fertility, because the content of soil phosphorus has an important effect on physical and chemical properties of soil, plant growth, and microbial activity in soil. In this study, the soil samples collecting and indoor analysis were conducted in Zhoukou City located in the flooded area of the Yellow River. By using GIS combined with geo-statistics, we tried to analyze the spatial variability and content distribution of soil total phosphorus (TP) and soil available phosphorus (AP) in the study area. Results showed that TP and AP of both soil layers (0-20 cm and 20-40 cm) were rich, and the contents of TP and AP in surface layer (0-20 cm) were higher than in the second layer (20-40 cm). TP and AP of both soil layers exhibited variation at medium level, and AP had varied much higher than TP. TP of both layers showed medium degree of anisotropy which could be well modeled by the Gaussian model. TP in the surface layer showed strong spatial correlation, but that of the second layer had medium spatial correlation. AP of both layers had a weaker scope in anisotropy which could be simulated by linear model, and both soil layers showed weaker spatial correlations. TP of both soil layers showed a slowly rising change from southwest to northeast of the study area, while it gradually declined from northwest to southeast. AP in soil surface layer exhibited an increase tendency firstly and then decrease from southwest to the northeast, while it decreased firstly and then increased from southeast to the northwest. AP in the second soil layer had an opposite change in the southwest to the northeast, while it showed continuously increasing tendency from northwest to the southeast. The contents of TP and AP in the surface layer presented high grades and the second layer of TP belonged to medium grade, but the second layer of AP was in a lower grade. The artificial factors such as land use type, cropping system, irrigation and fertilization were the main factors influencing the distribution and spatial variation of soil phosphorus in this area.
Aeolian cliff-top deposits and buried soils in the White River Badlands, South Dakota, USA
Rawling, J. E.; Fredlund, G.G.; Mahan, S.
2003-01-01
Aeolian deposits in the North American Great Plains are important sources of Holocene palaeo-environmental records. Although there are extensive studies on loess and dune records in the region, little is known about records in aeolian cliff-top deposits. These are common on table (mesa) edges in the White River Badlands. These sediments typically have loam and sandy-loam textures with dominantly very fine sand, 0.5-1% organic carbon and 0.5-5% CaCO3. Some of these aeolian deposits are atypically coarse and contain granules and fine pebbles. Buried soils within these deposits are weakly developed with A-C and A-AC-C profiles. Beneath these are buried soils with varying degrees of pedogenic development formed in fluvial, aeolian or colluvial deposits. Thickness and number of buried soils vary. However, late-Holocene soils from several localities have ages of approximately 1300, 2500 and 3700 14C yrs BP. The 1300 14C yr BP soil is cumulic, with a thicker and lighter A horizon. Soils beneath the cliff-top deposits are early-Holocene (typically 7900 but as old as 10000 14C yrs BP) at higher elevation (???950 m) tables, and late-Holocene (2900 14C yrs BP) at lower (???830 m) tables. These age estimates are based on total organic matter 14C ages from the top 5 cm of buried soils, and agreement is good between an infrared stimulated luminescence age and bracketing 14C ages. Our studies show that cliff-top aeolian deposits have a history similar to that of other aeolian deposits on the Great Plains, and they are another source of palaeoenvironmental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Newsom, Rob K.; Turner, David D.
One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less
Woody plant roots fail to penetrate a clay-lined landfill: Managment implications
NASA Astrophysics Data System (ADS)
Robinson, George R.; Handel, Steven N.
1995-01-01
In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.
A tracer experiment to study flow paths of water in a forest soil
NASA Astrophysics Data System (ADS)
Feyen, H.; Wunderli, H.; Wydler, H.; Papritz, A.
1999-12-01
This contribution discusses a tracer experiment, which was performed to study the flow paths of water in a macroporous forest soil. The experiment was performed in the framework of a study on the cycling of nitrogen in forested Prealpine catchments, in which losses of nitrate from virtually pristine areas were observed. Two soil plots with distinct micro-topography and top-soil were investigated: a well drained mor humus on a mound and a wet muck humus in a small depression. To reveal the effect of the soil horizons on the flow regime, tracers were applied both onto the soil surface and injected into the sub-soil. Tracers injected directly into the gleyic sub-soil reached the outlet (at a distance of 3.3 m) about 1000 times faster than could be expected from the saturated hydraulic conductivity of the soil matrix. Peak concentrations were observed after 18 (muck humus, tracer recovery 31%) to 70 min (mor humus, tracer recovery 40%). The peak concentration was 10 times smaller on the drier mor humus plot as compared to the muck humus. The mobile water content of the sub-soil varied between 0.5 (muck humus) and 1.3% (mor humus) of the total available soil water. The discrepancy in residence time, peak concentration and volume of mobile water between both sub-soils can be attributed to the differently structured sub-soil (longer travel distance and mixing volume in the drier mor humus). Tracers applied onto the soil surface resulted in a much slower breakthrough (tracer peaks after 400-700 min). Thus, in contrast to the sub-soil, flow through the matrix was the predominating transport process in the upper humus layers of both plots.
Microbial activity promotes carbon storage in temperate soils
NASA Astrophysics Data System (ADS)
Lange, Markus; Eisenhauer, Nico; Sierra, Carlos; Gleixner, Gerd
2014-05-01
Soils are one of the most important carbon sink and sources. Soils contain up to 3/4 of all terrestrial carbon. Beside physical aspects of soil properties (e.g. soil moisture and texture) plants play an important role in carbon sequestration. The positive effect of plant diversity on carbon storage is already known, though the underlying mechanisms remain still unclear. In the frame of the Jena Experiment, a long term biodiversity experiment, we are able to identify these processes. Nine years after an land use change from an arable field to managed grassland the mean soil carbon concentrations increased towards the concentrations of permanent meadows. The increase was positively linked to a plant diversity gradient. High diverse plant communities produce more biomass, which in turn results in higher amounts of litter inputs. The plant litter is transferred to the soil organic matter by the soil microbial community. However, higher plant diversity also causes changes in micro-climatic condition. For instance, more diverse plant communities have a more dense vegetation structure, which reduced the evaporation of soils surface and thus, increases soil moisture in the top layer. Higher inputs and higher soil moisture lead to an enlarged respiration of the soil microbial community. Most interestingly, the carbon storage in the Jena Experiment was much more related to microbial respiration than to plant root inputs. Moreover, using radiocarbon, we found a significant younger carbon age in soils of more diverse plant communities than in soils of lower diversity, indicating that more fresh carbon is integrated into the carbon pool. Putting these findings together, we could show, that the positive link between plant diversity and carbon storage is due to a higher microbial decomposition of plant litter, pointing out that carbon storage in soils is a function of the microbial community.
Geochemical control on uranium(IV) mobility in a mining-impacted wetland.
Wang, Yuheng; Bagnoud, Alexandre; Suvorova, Elena; McGivney, Eric; Chesaux, Lydie; Phrommavanh, Vannapha; Descostes, Michael; Bernier-Latmani, Rizlan
2014-09-02
Wetlands often act as sinks for uranium and other trace elements. Our previous work at a mining-impacted wetland in France showed that a labile noncrystalline U(IV) species consisting of U(IV) bound to Al-P-Fe-Si aggregates was predominant in the soil at locations exhibiting a U-containing clay-rich layer within the top 30 cm. Additionally, in the porewater, the association of U(IV) with Fe(II) and organic matter colloids significantly increased U(IV) mobility in the wetland. In the present study, within the same wetland, we further demonstrate that the speciation of U at a location not impacted by the clay-rich layer is a different noncrystalline U(IV) species, consisting of U(IV) bound to organic matter in soil. We also show that the clay-poor location includes an abundant sulfate supply and active microbial sulfate reduction that induce substantial pyrite (FeS2) precipitation. As a result, Fe(II) concentrations in the porewater are much lower than those at clay-impacted zones. U porewater concentrations (0.02-0.26 μM) are also considerably lower than those at the clay-impacted locations (0.21-3.4 μM) resulting in minimal U mobility. In both cases, soil-associated U represents more than 99% of U in the wetland. We conclude that the low U mobility reported at clay-poor locations is due to the limited association of Fe(II) with organic matter colloids in porewater and/or higher stability of the noncrystalline U(IV) species in soil at those locations.
Depth-dependent erodibility: representing burnt soils as a two-layered cohesive/non-cohesive system
NASA Astrophysics Data System (ADS)
Nyman, P.; Sheridan, G. J.; Moody, J. A.; Smith, H. G.; Lane, P. N.
2011-12-01
Immediately after wildfire there is an abundant supply of non-cohesive ash, soil and gravel which is easily entrained by overland flow. Under these conditions the sediment flux on hillslopes can be assumed to be equal to the transport capacity of the flow. However, the supply of material is finite and at some point the hillslope could shift towards a system where entrainment is restricted by armouring and soil cohesion. In this study we test the notion that burnt hillslopes can be represented as a two-layered system of non-cohesive and cohesive soils. Using a combination of i) shear vane measurements, ii) confined hillslope flow experiments and iii) a laboratory flume, we demonstrate how erosion on burnt hillslopes primarily takes place in a distinct layer of non-cohesive soil with erosion properties that are very different to the underlying soil matrix. Shear vane measurements were taken at 5 soil depths at more than 50 points along transects in order to quantify the depth and spatial distribution of non-cohesive soil in two small (0.5 ha) and steep (30 deg) convergent basins (SE Australia) that were burnt at high severity. The measurements showed that the recently burnt hillslopes were mantled with non-cohesive soil to an average depth of 18mm and 20mm at the two sites which were situated in different geologic terrain but in similar eucalyptus dominated forests. In the hillslope flow experiments, the rapid entrainment of non-cohesive material resulted in very high sediment concentration (50-60% by volume) in the initial surge from the test area. During the flow experiments the sediment concentration decreased exponentially with time until the erosion rate reached a steady state reflecting the erodibility of the underlying cohesive soil. The formation of shallow rills and the presence of large clasts (>16cm) within the test area resulted in incomplete removal of the non-cohesive material at shear stress < 50 Ncm-2. At shear stress > 50 Ncm-2 all material was removed, and the erosion depth at the end of the experiments was equal to the depth of non-cohesive material measured using the shear vane. In a separate set of experiments, a laboratory flume was used to measure the erodibility at different soil depths using soil cores that were burnt at moderate to high severity. Unlike the field based flow experiments, the erodibility measurements of non-cohesive soils in the flume were not restricted by the transport capacity of the flow. Results from the flume experiments showed a two order of magnitude decrease in erodibility within the top 2cm of the soil profile for soil cores from both chaparral and coniferous forests (western US). In summary, these results indicate that a majority of hillslope sediment may be generated from a relatively shallow layer of non-cohesive and highly erodible material. The depth of this material may be an important property that can help determine the post-fire erosion and debris flow potential, particularly in systems where other sources of sediment are limited. The study confirms that erodibility of burnt soil shows strong variation with depth and that the assumption of a constant erodibility factor may lead to misrepresentation of important processes.
Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng
2012-02-01
Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the downward growth of cotton roots, which was essential for achieving water-saving and high-yielding cultivation of cotton with drip irrigation under mulch.
Cai, Wen Tao; Li, He Yi; Lai, Li Ming; Zhang, Xiao Long; Guan, Tian Yu; Zhou, Ji Hua; Jiang, Lian He; Zheng, Yuan Run
2017-03-18
A series of typical abandoned croplands in the regions of Ruanliang and Yingliang in the Ordos Plateau, China, were selected, and dynamics of the surface litter, biological soil crust and soil bulk density, soil texture, and soil moisture in different soil layers were investigated. The results showed that in the abandoned cropland in Ruanliang, the clay particle content and surface litter of the surface soil layer (0-10 cm) increased during the restoration process, while that of soil bulk density substantially decreased and soil water content slightly increased in the surface soil. In the medium soil layer (10-30 cm), the clay particle content increased and the soil water content slightly decreased. In the deep soil layer (30-50 cm), there was a relatively large variation in the physical properties. In the abandoned cropland in Yingliang, the coverage of litter and the coverage and thickness of the biological soil crust increased during the abandonment process. The surface soil bulk density, soil clay particle content and soil water content remained constant in 0-10 cm soil layer, while the physical properties varied substantially in 10-40 cm soil layer. The shallow distribution of the soil water content caused by the accumulation of the litter and clay particles on the soil surface might be the key reason of the replacement of the semi-shrub Artemisia ordosica community with a perennial grass community over the last 20 years of the abandoned cropland in Ruanliang. The relatively high soil water content in the shallow layer and the development of the biological soil crust might explain why the abandoned cropland in Yingliang was not invaded by the semi-shrub A. ordosica during the restoration process.
Pontoni, Ludovico; van Hullebusch, Eric D; Fabbricino, Massimiliano; Esposito, Giovanni; Pirozzi, Francesco
2016-11-01
A micro-contamination phenomenon was reproduced and studied at lab-scale, mimicking the irrigation of a standard artificial soil with a water solution containing three Heavy Metals (HMs) at trace concentration level. To assess the dynamics of micro-pollutants accumulation and migration trough the soil, the organic matter in the soil was varied, together with sodicity of the irrigation water. Accumulation of the investigated contaminants was observed mainly in the top layer (≤1 cm) of the irrigated soil. This was attributed to the high interaction capacity of the soil compared to the low HM concentrations in the water phase. HMs transport pattern was described assuming a multi-component mechanism including: i) the interaction of HMs with the colloidal phase of the soil; ii) the slow and constant release of small molecular weight ligands detaching from the soil immobile matrix; iii) the transportation of HMs through the soil by these low molecular weight chaperon molecules. The mobility was directly related to the soil organic matter (SOM), since higher amount of SOM correspond to a higher number of chaperon molecules. In the first centimetre of the soil the metals were mostly bound to the acid labile fraction. Very low mobilization was observed with increasing sodicity in the leaching water, since such conditions were unfavourable to the colloidal mobilization of SOM. This indicated that water/soil transfer of pollutant is not only related to the contaminant concentration in the irrigation water but also to the characteristics of the aqueous solution and to the physical-chemical properties of the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd
2014-01-01
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.
NASA Astrophysics Data System (ADS)
Grant, Richard H.; Omonode, Rex A.
2018-04-01
Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities < 0.05 ms-1) averaged 1.16 µmol m-2 s-1 CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.
Phoenix Mars Lander Spacecraft Heat Shield Installation
2007-05-11
In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Processing
2007-05-10
This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Phoenix Mars Lander Spacecraft Heat Shield Installation
2007-05-11
In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.
Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.
2015-01-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
NASA Astrophysics Data System (ADS)
Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.
2015-11-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
NASA Astrophysics Data System (ADS)
Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.
2017-12-01
Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.
NASA Astrophysics Data System (ADS)
Said-Pullicino, D.; Bol, R.; Gigliotti, G.
2009-04-01
The application of municipal waste compost (MWC) and other organic materials may serve to enhance soil fertility and increase C stocks of earthen materials and mine spoils used in land reclamation activities, particularly in the recovery of degraded areas left by exhausted quarries, mines, abandoned industrial zones, degraded natural areas and exhausted landfill sites. Such land management options may serve as a precondition for landscaping and reclamation of degraded areas, reforestation or agriculture. In fact, previous results have shown that compost application to the capping layer of a landfill covering soil significantly enhanced the fertility, evidenced by an improvement in soil structure, porosity and water holding capacity, an increase in the relative proportion of recalcitrant C pools and an increase in soil nutrient content, microbial activity and soil microbial biomass. Proper management of MWC requires a capacity to understand and predict their impacts on C dynamics in the field subsequent to application. Although numerous works deal with the effects of compost application in agricultural systems, little is known on how land rehabilitation practices effect C dynamics in such relatively young soil systems. The estimation of SOC pools and their potential turnover rates in land reclamation activities is fundamental to our understanding of terrestrial C dynamics. In the framework of a long-term field experiment, the objective of this work was to evaluate the temporal and spatial dynamics of compost-derived organic matter with respect to the major processes involved in organic matter cycling in an anthropogenic landfill covering soil originally amended with a single dose of MWC. We investigated long-term organic C dynamics in such systems by collecting samples at different depths over a 10 year chronosequence subsequent to compost application to the top layer of the landfill covering soil. Variations in the stable isotope composition (delta 13C) of the soil samples show that even after 10 years, amended topsoils were significantly enriched in compost-derived organic matter, confirming that the utilisation of such organic inputs in land reclamation activities has the potential to enhance the C stocks of degraded areas. The addition of compost to the superficial layer also resulted in a significant input of soluble organic compounds subject to leaching along the soil profile. Sorption isotherms for compost-derived water-extractable organic matter onto mineral materials used for landfill covering suggest that sorptive preservation was primarily responsible for the increase in C content and the shift in the C isotopic signature to values similar to that of the applied compost, in the deeper soil horizons over the 10 year experimental period. This was also confirmed by the accumulation of lignin-derived phenolic compounds. Nevertheless, analysis for non-cellulosic carbohydrates in soils samples and their respective water-extractable fractions suggest that a proportion of compost-derived, labile organic matter fraction is leached through the soil profile and potentially lost from the soil system, particularly in the years immediately after compost application.
Impact of sedimentation on wetland carbon sequestration in an agricultural watershed.
McCarty, Gregory; Pachepsky, Yakov; Ritchie, Jerry
2009-01-01
Landscape redistribution of soil C is common within agricultural ecosystems. Little is known about the effects of upland sediment deposition on C dynamics within riparian wetlands. To assess sedimentation impact, we obtained profile samples of wetland soil and used the combination of (137)Cs, (210)Pb, and (14)C chronological markers to determine rates of C sequestration and mineral deposition over the history of a wetland within a first-order catchment under agricultural management in the coastal plains of the United States. Substantial post settlement deposition in the wetland soil was evidenced in places by a 20- to 40-cm layer of mineral soil that buried the original histosol. Soil profiles contained a minimum in C content within the top 35 cm of the profile which originated from a rapid deposition from low C upland soils. Radiocarbon and radioisotope dating showed that increases in C above this minimum were the result of C sequestered in the past approximately 50 yr. Modeling the kinetics of modern C dynamics using the (137)Cs and (210)Pb markers within these surface profiles provides strong evidence for accelerated C sequestration associated with mineral sediment deposition in the ecosystem. These findings indicate that at the landscape scale, dilution of ecosystem C by import of low C upland sediment into wetlands stimulates C sequestration by pulling soil C content below some pedogenic equilibrium value for the ecosystem. They also indicate that over the history of the wetland, rates of C accretion may be linked to mineral soil deposition.
Soil gas radon concentrations measurements in terms of great soil groups.
Içhedef, Mutlu; Saç, Müslim Murat; Camgöz, Berkay; Bolca, Mustafa; Harmanşah, Çoşkun
2013-12-01
In this study, soil gas radon concentrations were investigated according to locations, horizontal soil layers and great soil groups around Tuzla Fault, Seferihisar-İzmir. Great soil groups are a category that described the horizontal soil layers under soil classification system and distributions of radon concentration in the great soil groups are firstly determined by the present study. According to the obtained results, it has been showed that the radon concentrations in the Koluvial soil group are higher than the other soil groups in the region. Also significant differences on location in same great soil group were determined. The radon concentrations in the Koluvial soil groups were measured with respect to soil layers structures (A, B, C1, and C2). It has been observed that the values increase with depth of soil (C2>C1>B>A). The main reason may be due to the meteorological factors that have limited effect on radon escape from deep layers. Although fault lines pass thought the study area radon concentrations were varied location to location, layer to layer and great group to great group. The study shows that a detailed location description should be performed before soil radon measurements for earthquake predictions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Light emitting ceramic device and method for fabricating the same
Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2004-11-30
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Improvement in top-gate MoS2 transistor performance due to high quality backside Al2O3 layer
NASA Astrophysics Data System (ADS)
Bolshakov, Pavel; Zhao, Peng; Azcatl, Angelica; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.
2017-07-01
A high quality Al2O3 layer is developed to achieve high performance in top-gate MoS2 transistors. Compared with top-gate MoS2 field effect transistors on a SiO2 layer, the intrinsic mobility and subthreshold slope were greatly improved in high-k backside layer devices. A forming gas anneal is found to enhance device performance due to a reduction in the charge trap density of the backside dielectric. The major improvements in device performance are ascribed to the forming gas anneal and the high-k dielectric screening effect of the backside Al2O3 layer. Top-gate devices built upon these stacks exhibit a near-ideal subthreshold slope of ˜69 mV/dec and a high Y-Function extracted intrinsic carrier mobility (μo) of 145 cm2/V.s, indicating a positive influence on top-gate device performance even without any backside bias.
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; Matamala, R.; Ping, C. L.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.; Mishra, U.
2017-12-01
Ice-wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plains and river deltas. The progressive expansion of ice wedges influences polygon development and strongly affects cryoturbation and soil formation. Thus, we hypothesized that polygon type impacts the distribution and composition of soil organic carbon (C) stocks across the landscape and that such information can improve estimates of permafrost C stocks vulnerable to active layer thickening and increased decomposition due to climatic change. We quantified the distribution of soil C across entire polygon profiles (2-m depth) for three developmental types - flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons (3 replicates of each) - formed on glaciomarine sediments within and near the Barrow Environmental Observatory at the northern tip of Alaska. Active layer thickness averaged 45 cm and did not vary among polygon types. Similarly, active layer C stocks were unaffected by polygon type, but permafrost C stocks increased from FCPs to LCPs to HCPs despite greater ice volumes in HCPs. These differences were due to a greater presence of organic horizons in the upper permafrost of LCPs and, especially, HCPs. On average, C stocks in polygon interiors were double those of troughs, on a square meter basis. However, HCPs were physically smaller than LCPs and FCPs, which affected estimates of C stocks at the landscape scale. Accounting for the number of polygons per unit area and the proportional distribution of troughs versus interiors, we estimated permafrost C stocks (2-m depth) increased from 259 Mg C ha-1 in FCPs to 366 Mg C ha-1 in HCPs. Active layer C stocks did not differ among polygon types and averaged 328 Mg C ha-1. We used our detailed polygon profiles to investigate the impact of active layer deepening as projected by Earth system models under future climate scenarios. Because HCPs have a greater proportion of upper permafrost C stocks in organic horizons, permafrost C in areas dominated by this polygon type may be at greater risk for destabilization. Thus, accounting for geospatial distributions of ice-wedge polygon types and associated variations in C stocks and composition could improve observational estimates of regional C stocks and their vulnerability to changing climatic conditions.
Carbon stabilization mechanisms in soils in the Andes
NASA Astrophysics Data System (ADS)
Jansen, Boris; Cammeraat, Erik
2015-04-01
The volcanic ash soils of the Andes contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute significant potential sources or sinks of the greenhouse gas CO2. Climate and/or land use change potentially have a strong effect on these large SOM stocks. To clarify the role of chemical and physical stabilisation mechanisms in volcanic ash soils in the montane tropics, we investigated carbon stocks and stabilization mechanisms in the top- and subsoil along an altitudinal transect in the Ecuadorian Andes. The transect encompassed a sequence of paleosols under forest and grassland (páramo), including a site where vegetation cover changed in the last century. We applied selective extraction techniques, performed X-ray diffraction analyses of the clay fraction and estimated pore size distributions at various depths in the top- and subsoil along the transect. In addition, from several soils the molecular composition of SOM was further characterized with depth in the current soil as well as the entire first and the top of the second paleosol using GC/MS analyses of extractable lipids and Pyrolysis-GC/MS analyses of bulk organic matter. Our results show that organic carbon stocks in the mineral soil under forest a páramo vegetation were roughly twice as large as global averages for volcanic ash soils, regardless of whether the first 30cm, 100cm or 200cm were considered. We found the carbon stabilization mechanisms involved to be: i) direct stabilization of SOM in organo-metallic (Al-OM) complexes; ii) indirect protection of SOM through low soil pH and toxic levels of Al; and iii) physical protection of SOM due to a very high microporosity of the soil (Tonneijck et al., 2010; Jansen et al. 2011). When examining the organic carbon at a molecular level, interestingly we found extensive degradation of lignin in the topsoil while extractable lipids were preferentially preserved in the subsoil (Nierop and Jansen, 2009). Both vegetation types contributed to soil acidification, thus increasing SOM accumulation and inducing positive feedbacks. While carbon stocks in the mineral soil were roughly equivalent under forest and páramo vegetation, a significant amount of additional carbon were stored in exceptionally large ecto-organic layers of up to a meter thick under forest vegetation that are absent under páramo. In our presentation we will further elaborate these results and place them in the context of SOM turnover under climate and/or land-use change in the broader Andean region, including a comparison with SOM dynamics in non-volcanic soils as present in the Peruvian púna systems. Jansen, B., Tonneijck, F.H. and Verstraten, J.M., 2011. Selective Extraction Methods to Discern Fractions of Aluminium, Iron and Organic Carbon in Montane Volcanic Ash Soils, Pedosphere, 21: 549-565. Nierop, K.G.J. and Jansen,B., 2009. Extensive transformation of organic matter and excellent lipid preservation at the upper, superhumid Guandera páramo, Geoderma, 151: 357-369. Tonneijck, F.H., Jansen, B., Nierop, K.G.J. ., Verstraten, J.M., Sevink, J. and De Lange, L., 2010. Carbon stocks and stabilization mechanisms in volcanic ash soils in natural Andean ecosystems of northern Ecuador, European Journal of Soil Science, 61: 392-405.
Transparent flexible nanogenerator as self-powered sensor for transportation monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhong Lin; Hu, Youfan; Lin, Long
2016-06-14
A traffic sensor includes a flexible substrate having a top surface. A piezoelectric structure extends from the first electrode layer. The piezoelectric structure has a top end. An insulating layer is infused into the piezoelectric structure. A first electrode layer is disposed on top of the insulating layer. A second electrode layer is disposed below the flexible substrate. A packaging layer is disposed around the substrate, the first electrode layer, the piezoelectric structure, the insulating layer and the second electrode layer. In a method of sensing a traffic parameter, a piezoelectric nanostructure-based traffic sensor is applied to a roadway. Anmore » electrical event generated by the piezoelectric nanostructure-based traffic sensor in response to a vehicle interacting with the piezoelectric nanostructure-based traffic sensor is detected. The electrical event is correlated with the traffic parameter.« less
Characterization of a New Organosilicon Photoresist
NASA Astrophysics Data System (ADS)
Cunningham, Wells C.
1987-08-01
For a number of years, there has lo'ep. great interest in organometallic based photoresists for use as the top layer in multilevel resist schemes.-' In general, bilevel approaches to lithography are forced upon the industry as a means of planarizing topography for a subsequent patterning step. This pattern is initially defined by exposure and development of a thin top layer (0.3 to 0.5μm) over the thicker bottom layer (1.0 to 2.0μm). (See Figure 1). In a conventional bilevel approach, the chosen bottom layer is photoactive at a wavelength for which the top is relatively opaque. The top level acts as a portable conformable mask (PCM) for image transfer through the bottom layer after its exposure and wet development. By using a silicon containing photoresist on the top image transfer may be accomplished using an oxygen plasma instead of a second exposure and development. The PCM in this case acts as an etch mask by forming a silicon dioxide crust in the plasma which slows the etch rate of the top versus the bottom layer. A generic curve of etch rate of a photoresist versus percent silicon by weight is shown in Figure 2. The shape is similar over a wide range of organosilicon polymers.5,6
NASA Astrophysics Data System (ADS)
Dumedah, Gift; Walker, Jeffrey P.; Chik, Li
2014-07-01
Soil moisture information is critically important for water management operations including flood forecasting, drought monitoring, and groundwater recharge estimation. While an accurate and continuous record of soil moisture is required for these applications, the available soil moisture data, in practice, is typically fraught with missing values. There are a wide range of methods available to infilling hydrologic variables, but a thorough inter-comparison between statistical methods and artificial neural networks has not been made. This study examines 5 statistical methods including monthly averages, weighted Pearson correlation coefficient, a method based on temporal stability of soil moisture, and a weighted merging of the three methods, together with a method based on the concept of rough sets. Additionally, 9 artificial neural networks are examined, broadly categorized into feedforward, dynamic, and radial basis networks. These 14 infilling methods were used to estimate missing soil moisture records and subsequently validated against known values for 13 soil moisture monitoring stations for three different soil layer depths in the Yanco region in southeast Australia. The evaluation results show that the top three highest performing methods are the nonlinear autoregressive neural network, rough sets method, and monthly replacement. A high estimation accuracy (root mean square error (RMSE) of about 0.03 m/m) was found in the nonlinear autoregressive network, due to its regression based dynamic network which allows feedback connections through discrete-time estimation. An equally high accuracy (0.05 m/m RMSE) in the rough sets procedure illustrates the important role of temporal persistence of soil moisture, with the capability to account for different soil moisture conditions.
Coating with overlay metallic-cermet alloy systems
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)
1984-01-01
A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.
Bååth, E; Díaz-Raviña, M; Bakken, L R
2005-11-01
The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.
NASA Astrophysics Data System (ADS)
Wacha, K. M.; Papanicolaou, T.; Wilson, C. G.
2010-12-01
Field measurements and numerical models are currently being used to estimate quantities of Total Belowground Carbon Allocation (TBCA) for three representative land uses, viz. corn, soybeans, and prairie bromegrass for CRP (Conservation Reserve Program) of an agricultural Iowa sub-watershed, located within the Clear Creek Watershed (CCW). Since it is difficult to measure TBCA directly, a mass balance approach has been implemented to estimate TBCA as follows: TBCA = FS + FE+ Δ(CS + CR + CL) - FA , where the term Fs denotes soil respiration; FE is the carbon content of the eroded/deposited soil; ΔCS, ΔCR, ΔCL denote the changes in carbon content of the mineral soil, plant roots, and litter layer, respectively; and FA is the above ground litter fall of dead plant material to the soil. The terms are hypothesized to have a huge impact on TBCA within agricultural settings due to intensive tillage practices, water-driven soil erosion/deposition, and high usage of fertilizer. To test our hypothesis, field measurements are being performed at the plot scale, replicating common agricultural land management practices. Soil respiration (FS) is being measured with an EGM-4 CO2 Gas Analyzer and SRC-1 Soil Respiration Chamber (PP Systems), soil moisture and temperature are recorded in the top 20 cm for each respective soil respiration measurement, and litter fall rates (FA) are acquired by collecting the residue in a calibrated pan. The change in carbon content of the soil (ΔCS), roots (ΔCR) and litter layer (ΔCL) are being analyzed by collecting soil samples throughout the life cycle of the plant. To determine the term FE for the three representative land management practices, a funnel collection system located at the plot outlet was used for collecting the eroded material after natural rainfall events. Field measurements of TBCA at the plot scale via the mass balance approach are used to calibrate the numerical agronomic process model DAYCENT, which simulates the daily fluxes of carbon (CS) and soil respiration (FS) and incorporates a plant-growth model that allows the determination of the terms FA, CR, and CL. Once calibrated, DAYCENT can be used in conjunction with the Watershed Erosion Prediction Project (WEPP) model, which calculates erosion/deposition rates, to provide estimates of TBCA at a larger global scale.
Ulrich, E.M.; Foreman, W.T.; Van Metre, P.C.; Wilson, J.T.; Rounds, S.A.
2009-01-01
Spatial, temporal, and sediment-type trends in enantiomer signatures were evaluated for cis- and trans-chlordane (CC, TC) in archived core, suspended, and surficial-sediment samples from six lake, reservoir, and river sites across the United States. The enantiomer fractions (EFs) measured in these samples are in good agreement with those reported for sediment, soil, and air samples in previous studies. The chlordane EFs were generally close to the racemic value of 0.5, with CC values ranging from 0.493 to 0.527 (usually >0.5) and TC values from 0.463 to 0.53 (usually <0.5). EF changes with core depth were detected for TC and CC in some cores, with the most non-racemic values near the top of the core. Surficial and suspended sediments generally have EF values similar to the top core layers but are often more non-racemic, indicating that enantioselective degradation is occurring before soils are eroded and deposited into bottom sediments. We hypothesize that rapid losses (desorption or degradation) from suspended sediments of the more bioavailable chlordane fraction during transport and initial deposition could explain the apparent shift to more racemic EF values in surficial and top core sediments. Near racemic CC and TC in the core profiles suggest minimal alteration of chlordane from biotic degradation, unless it is via non-enantioselective processes. EF values for the heptachlor degradate, heptachlor epoxide (HEPX), determined in surficial sediments from one location only were always non-racemic (EF ??? 0.66), were indicative of substantial biotic processing, and followed reported EF trends.
Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Willis, P. B.
1984-01-01
Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.
BOREAS Soils Data over the SSA in Raster Format and AEAC Projection
NASA Technical Reports Server (NTRS)
Knapp, David; Rostad, Harold; Hall, Forrest G. (Editor)
2000-01-01
This data set consists of GIS layers that describe the soils of the BOREAS SSA. The original data were submitted as vector layers that were gridded by BOREAS staff to a 30-meter pixel size in the AEAC projection. These data layers include the soil code (which relates to the soil name), modifier (which also relates to the soil name), and extent (indicating the extent that this soil exists within the polygon). There are three sets of these layers representing the primary, secondary, and tertiary soil characteristics. Thus, there is a total of nine layers in this data set along with supporting files. The data are stored in binary, image format files.
NASA Astrophysics Data System (ADS)
Magiera, Tadeusz; Szuszkiewisz, Marcin; Szuszkiewicz, Maria; Żogała, Bogdan
2017-04-01
The primary goal of this work was to distinguish between soil pollution from long-range and local transport of atmospheric pollutants using soil magnetometry in combination with geochemical analyses and precise delineation of polluted soil layers by using integrated magnetic (surface susceptibility, gradiometric measurement) and other geophysical techniques (conductivity and electrical resistivity tomography). The study area was located in the Izery region of Poland (within the "Black Triangle" region, which is the nickname for one of Europe's most polluted areas, where Germany, Poland and the Czech Republic meet). The study area was located in the Forest Glade where the historical local pollution source (glass factory) was active since and of 18th until the end of 19th century. The magnetic signal here was the combination of long-range transport of magnetic particles, local deposition and anthropogenic layers containing ashes and slags and partly comprising the subsoil of modern soil. Application of the set of different geophysical techniques enabled the precise location of these layers. The effect of the long-range pollution transport was observed on a neighboring hill (Granicznik) of which the western, northwestern and southwestern parts of the slope were exposed to the transport of atmospheric pollutants from the Czech Republic and Germany and Poland. Using soil magnetometry, it was possible to discriminate between long-range transport of atmospheric pollutants and anthropogenic pollution related to the former glasswork located in the Forest Glade. The magnetic susceptibility values (κ) as well as the number of "hot-spots" of volume magnetic susceptibility is significantly larger in the Forest Glade than on the Granicznik Hill where the κ is < 20 ×10-5 SI units. Generally, the western part of the Granicznik Hill is characterized by about two times higher k values than the southeastern part. This trend is attributed to the fact that the western part was subjected mostly to the long-range pollution originating from lignite power plants along the Polish border, while the southeastern part of the hill was shielded by crag and tail formation. Also the set of chemical elements connected with magnetic particles from long-range transport observed on the western slope an the top of Granicznik Hill (As, Cd, Hg, In, Mo, Sb, Se and U) is different than this observed on the Forest Glad connected with local pollution source (Cu, Nb, Ni, Pb, Sn and Zn).
Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.
1998-01-01
A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.
[Characteristics of soil moisture in artificial impermeable layers].
Suo, Gai-Di; Xie, Yong-Sheng; Tian, Fei; Chuai, Jun-Feng; Jing, Min-Xiao
2014-09-01
For the problem of low water and fertilizer use efficiency caused by nitrate nitrogen lea- ching into deep soil layer and soil desiccation in dryland apple orchard, characteristics of soil moisture were investigated by means of hand tamping in order to find a new approach in improving the water and fertilizer use efficiency in the apple orchard. Two artificial impermeable layers of red clay and dark loessial soil were built in soil, with a thickness of 3 or 5 cm. Results showed that artificial impermeable layers with the two different thicknesses were effective in reducing or blocking water infiltration into soil and had higher seepage controlling efficiency. Seepage controlling efficiency for the red clay impermeable layer was better than that for the dark loessial soil impermeable layer. Among all the treatments, the red clay impermeable layer of 5 cm thickness had the highest bulk density, the lowest initial infiltration rate (0.033 mm · min(-1)) and stable infiltration rate (0.018 mm · min(-1)) among all treatments. After dry-wet alternation in summer and freezing-thawing cycle in winter, its physiochemical properties changed little. Increase in years did not affect stable infiltration rate of soil water. The red clay impermeable layer of 5 cm thickness could effectively increase soil moisture content in upper soil layer which was conducive to raise the water and nutrient use efficiency. The approach could be applied to the apple production of dryland orchard.
Cyclotron Orbits of Composite Fermions in the Fractional Quantum Hall Regime
NASA Astrophysics Data System (ADS)
Jo, Insun; Deng, Hao; Liu, Yang; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.
2018-01-01
We study a bilayer GaAs hole system that hosts two distinct many-body phases at low temperatures and high perpendicular magnetic fields. The higher-density (top) layer develops a Fermi sea of composite fermions (CFs) in its half-filled lowest Landau level, while the lower-density (bottom) layer forms a Wigner crystal (WC) as its filling becomes very small. Owing to the interlayer interaction, the CFs in the top layer feel the periodic Coulomb potential of the WC in the bottom layer. We measure the magnetoresistance of the top layer while changing the bottom-layer density. As the WC layer density increases, the resistance peaks separating the adjacent fractional quantum Hall states in the top layer change nonmonotonically and attain maximum values when the cyclotron orbit of the CFs encloses one WC lattice point. These features disappear at T =275 mK when the WC melts. The observation of such geometric resonance features is unprecedented and surprising as it implies that the CFs retain a well-defined cyclotron orbit and Fermi wave vector even deep in the fractional quantum Hall regime, far from half-filling.
Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields
NASA Astrophysics Data System (ADS)
Kimura, M.
2004-12-01
Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were leached from the plow layer by percolating water amounted to 170 kgC ha-1 in a Japanese rice field, among which 120 kgC of organic materials were adsorbed in the subsoil layer between 13 and 40 cm depth.
Michels, E; Annicaerta, B; De Moor, S; Van Nevel, L; De Fraeye, M; Meiresonne, L; Vangronsveld, J; Tack, F M G; Ok, Y S; Meers, Erik
2018-01-02
Poplar clones were studied for their phytoextraction capacity in the second growth cycle (6-year growth) on a site in the Belgian Campine region, which is contaminated with Cd and Zn via historic atmospheric deposition of nearby zinc smelter activities. The field trial revealed regrowth problems for some clones that could not be predicted in the first growth cycle. Four allometric relations were assessed for their capacity to predict biomass yield in the second growth cycle. A power function based on the shoot diameter best estimates the biomass production of poplar with R 2 values between 0.94 and 0.98. The woody biomass yield ranged from 2.1 to 4.8 ton woody Dry Mass (DM) ha -1 y -1 . The primary goal was to reduce soil concentrations of metals caused by phytoextraction. Nevertheless, increased metal concentrations were determined in the topsoil. This increase can partially be explained by the input of metals from deeper soil layers in the top soil through litterfall. The phytoextraction option with poplar short rotation coppice in this setup did not lead to the intended soil remediation in a reasonable time span. Therefore, harvest of the leaf biomass is put forward as a crucial part of the strategy for soil remediation through Cd/Zn phytoextraction.
Fang, Xiong; Liu, Ju-Xiu; Yin, Guang-Cai; Zhao, Liang; Liu, Shi-Zhong; Chu, Guo-Wei; Li, Yi-Yong
2013-01-01
Through concentrated application of lime, sewage sludge and lime + sewage sludge on the sloping top of the hilly woodlands, the restoration effects of the three soil amendments on the acidified soil of hilly woodland were studied. The results showed that: (1) Joint application of sewage sludge + lime can significantly (P < 0.05) decrease soil acidity, promote the rapid increase in soil organic matter and nitrogen content, increase soil cation exchange capacity, and effectively improve acidified soil. (2) Through natural diffusion mechanisms of surface and subsurface runoff, a large area of acidified soil of hilly woodlands can be restored by concentrated application of soil amendments on the sloping top of the hilly woodlands. (3) It is conducive to solve the pollution problems of the urban sewage sludge by using municipal sewage sludge to restore acidified soil, but only for the restoration of acidified soil of timber forest.
NASA Astrophysics Data System (ADS)
Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Biasi, Christina; Martikainen, Pertti J.
2014-05-01
Peatlands, especially those located in the highly sensitive arctic and subarctic latitudes, are known to play a major role in the global carbon cycle. Predicted climatic changes - entailing an increase in near-surface temperature and a change in precipitation patterns - will most likely have a serious yet uncertain impact on the greenhouse gas (GHG) balance of these ecosystems. Microbial processes are enhanced by warmer temperatures which may lead to increased trace gas fluxes to the atmosphere. However, the response of ecosystem processes and related GHG fluxes may differ largely across the landscape depending on soil type, vegetation cover, and moisture conditions. In this study we investigate how temperature increase potentially reflects on GHG fluxes (CO2, CH4 and N2O) from various tundra surfaces in the Russian Arctic. These surfaces include raised peat plateau complexes, mineral tundra soils, bare surfaces affected by frost action such as peat circles and thermokarst lake walls, as well as wetlands. Predicted temperature increase and climate change effects are simulated by means of open top chambers (OTCs), which are placed on different soil types for the whole snow-free period. GHG fluxes, gas and nutrient concentrations in the soil profile, as well as supporting environmental parameters are monitored for the full growing season. Aim of the study is not only the quantification of aboveground GHG fluxes from the study area, but the linking of those to underlying biogeochemical processes in permafrost soils. Special emphasis is placed on the interface between active layer and old permafrost and its response to warming, since little is known about the lability of old carbon stocks made available through an increase in active layer depth. Overall goal of the study is to gain a better understanding of C and N cycling in subarctic tundra soils and to deepen knowledge in respect to carbon-permafrost feedbacks in respect to climate.
Depth distribution of cesium-137 in paddy fields across the Fukushima pollution plume in 2013.
Lepage, Hugo; Evrard, Olivier; Onda, Yuichi; Lefèvre, Irène; Laceby, J Patrick; Ayrault, Sophie
2015-09-01
Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture. Copyright © 2015 Elsevier Ltd. All rights reserved.
He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li
2017-01-01
Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191
Effect of cultivation ages on Cu accumulation in Greenhouse Soils in North China
NASA Astrophysics Data System (ADS)
Wang, Jun; Guo, Wenmiao; Chen, Xin; Shi, Yi
2017-11-01
In this study, we determined the influence of cultivation age on Cu accumulation in greenhouse soils. The concentration of plant available Cu (A-Cu) decreased with depth, and the contents of top soils (0-40 cm) in greenhouses were higher than those of the open field. There was a positive correlation between A-Cu concentrations in soils and cultivation ages (R2=0.572). The contents of total Cu (T-Cu) decreased with depth, and positively correlated with cultivation ages in top soils (0-20cm) (R2=0.446). The long-term usage of manures can cause Cu increase and accumulation in greenhouse soils in comparison to the open field.
NASA Astrophysics Data System (ADS)
Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin
2015-04-01
Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the humus layer in monospecific stands. Forest floor stocks were also influenced by microelevation and canopy opening in the European beech stand and by microelevation in the Norway spruce stand. Root turnover and Norway spruce litterfall proportion directly increased C stocks in the mineral soil of the mixed stand. Additionally, N stock in the forest floor of the mixed stand was positively correlated with the Norway spruce litterfall proportion. Spatial analyses further confirmed that species composition was the main source of spatial variability of SOC stock in mixed stands. These results suggest that the admixture of individuals of European beech and Norway spruce may lead to a translocation of SOC from the forest floor to the better protected mineral soil layer, which might be beneficial for long term SOC sequestration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson
This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of onemore » or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.« less
Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material
NASA Astrophysics Data System (ADS)
Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk
2011-02-01
The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.
Soil heating and impact of prescribed burning
NASA Astrophysics Data System (ADS)
Stoof, Cathelijne
2016-04-01
Prescribed burning is highly uncommon in the Netherlands, where wildfire awareness is increasing but its risk management does not yet include fuel management strategies. A major exception is on two military bases, that need to burn their fields in winter and spring to prevent wildfires during summer shooting practice. Research on these very frequent burns has so far been limited to effects on biodiversity, yet site managers and policy makers have questions regarding the soil temperatures reached during these burns because of potential impact on soil properties and soil dwelling fauna. In March 2015, I therefore measured soil and litter temperatures under heath and grass vegetation during a prescribed burn on military terrain in the Netherlands. Soil and litter moisture were sampled pre- and post-fire, ash was collected, and fireline intensity was estimated from flame length. While standing vegetation was dry (0.13 g water/g biomass for grass and 0.6 g/g for heather), soil and litter were moist (0.21 cm3/cm3 and 1.6 g/g, respectively). Soil heating was therefore very limited, with maximum soil temperature at the soil-litter interface remaining being as low as 6.5 to 11.5°C, and litter temperatures reaching a maximum of 77.5°C at the top of the litter layer. As a result, any changes in physical properties like soil organic matter content and bulk density were not significant. These results are a first step towards a database of soil heating in relation to fuel load and fire intensity in this temperate country, which is not only valuable to increase understanding of the relationships between fire intensity and severity, but also instrumental in the policy debate regarding the sustainability of prescribed burns.
Burgos, Pilar; Madejón, Paula; Madejón, Engracia; Girón, Ignacio; Cabrera, Francisco; Murillo, José Manuel
2013-01-15
The long-term influence of a mine spill in soil was studied 12 years after the Aznalcóllar accident. Soils where the pyritic sludge was not removed, a fenced plot established for research purposes (2000 m(2)) and soils where the process of remediation was accomplished successfully were sampled and studied in detail. Soils were characterized at different depths, down to 100 cm depth, determining chemical parameters and total concentrations of major and trace elements. Moreover plants colonizing remediated (RE) and non remediated (NRE) soils were also analysed attending their potential risk for herbivores. Strong acidification was observed in the NRE soil except in surface (0-10 cm). The progressive colonization of natural vegetation, more than 90% of the fenced plot covered by plants, could facilitate this increased pH values in the top soil (pH 6). In the NRE soil, the successive oxidation and hydrolysis of sulphide in the deposited sludge on the surface after the accident resulted in a re-dissolution of the most mobile element (Cd, Cu and Zn) and a penetration to deeper layers. Trace element concentrations in plants growing in the NRE soil showed normal contents for higher plants and tolerable for livestock. Nitrogen and mineral nutrients were of the same order in both soils, and also normal for high plants and adequate for animal nutrition. Despite of the natural remediation of the NRE soil, results demonstrate that the remediation tasks carried out in all the area, the Guadiamar Green Corridor at present, were necessary to avoid the leaching of the most mobile elements and minimize the risk of contamination of groundwater sources, many of them close to the Doñana National Park. Copyright © 2012 Elsevier Ltd. All rights reserved.
Intersection of All Top Quantile
This layer combines the Top quantiles of the CES, CEVA, and EJSM layers so that viewers can see the overlap of 00e2??hot spots00e2?? for each method. This layer was created by James Sadd of Occidental College of Los Angeles
Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust
NASA Technical Reports Server (NTRS)
Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.
2009-01-01
A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.
[Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.
Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui
2016-04-22
In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.
Representation of Dissolved Organic Carbon in the JULES Dynamic Global Vegetation Model
NASA Astrophysics Data System (ADS)
Nakhavali, Mahdi; Friedlingstein, Pierre; Guenet, Bertrand; Ciais, Philip
2017-04-01
Current global models of the carbon cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, hence not considering lateral transport of carbon from the continent to the oceans. This also means that such models implicitly consider that all the CO2 which is not respired to the atmosphere is stored on land, hence overestimating the land sink of carbon. Moving toward a boundless carbon cycle that is integrating the whole continuum from land to ocean to atmosphere is needed in order to better understand Earth's carbon cycle and to make more reliable projection of its future. Here we present an original representation of Dissolved Organic Carbon (DOC) processes in the Joint UK Land Environment Simulator (JULES). The standard version of JULES represent energy, water and carbon cycles and exchanges with the atmosphere, but only account for water run-off, not including export of carbon from terrestrial ecosystems to the aquatic environments. The aim of the project is to include in JULES a representation of DOC production in terrestrial soils, due to incomplete decomposition of organic matter, its decomposition to the atmosphere, and its export to the river network by leaching. In new developed version of JULES (JULES-DOCM), DOC pools, based on their decomposition rate, are classified into labile and recalcitrant within 3 meters of soil. Based on turnover rate, DOC coming from plant material pools and microbial biomass is directed to labile pool, while DOC from humus is directed to recalcitrant pool. Both of these pools have free (dissolved) and locked (adsorbed) form where just the free pool is subjected to decomposition and leaching. DOC production and decomposition are controlled by rate modifiers (moisture, temperature, vegetation fraction and decomposition rate) at each soil layer. Decomposed DOC is released to the atmosphere following a fixed carbon use efficiency. Leaching accounts for both surface (runoff) and subsurface (groundwater) components and is parameterized as Top soil leaching (from top 20cm) and Bottom soil leaching (down to 3 meters) depending on DOC concentration and runoff leaving that layer. The model parameters are calibrated against specific sites (Brasschaat, Hainich and Carlow) for which observations of DOC concentration and leaching are available. Tuning is performed optimizing parameters such as DOC labile and recalcitrant resident time, DOC vertical distribution and CUE. Once this calibration has been performed at the site level, the model is used for global simulations with the major historical forcing (climate, atmospheric CO2 and land-use changes) in order to estimate the changes of DOC export and their attribution to anthropogenic activities.
Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier
2016-11-18
The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.
Zhi, Jinghui; Zhang, Li-Zhi
2017-08-30
This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.
NASA Astrophysics Data System (ADS)
Gao, Lei; Lv, Yujuan; Wang, Dongdong; Tahir, Muhammad; Peng, Xinhua
2015-12-01
Knowing the amount of soil water storage (SWS) in agricultural soil profiles is important for understanding physical, chemical, and biological soil processes. However, measuring the SWS in deep soil layers is more expensive and time consuming than in shallower layers. Whether deep SWS can be predicted from shallow-layer measurements through temporal stability analysis (TSA) remains unclear. To address this issue, the soil water content was measured at depths of 0-1.6 m (0.2-m depth intervals) at 79 locations along an agricultural slope on 28 occasions between July 2013 and October 2014. SWSs values were then calculated for the 0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers. The SWS exhibited strong temporal stability, with mean Spearman's ranking coefficients (rs) of 0.83, 0.92, 0.83, and 0.79 in the 0-0.4, 0.4-0.8, 0.8-1.2, and 1.2-1.6 m soil layers, respectively. As expected, the most temporally stable location (MTSL1) accurately predicted the average SWS of the corresponding soil layer, and the values of absolute bias relative to mean (ARB) were lower than 3% for all of the investigated soil layers. Using TSA, deep-layer SWS information could be predicted using a single-location measurement in the 0-0.4 m soil layer. The mean ARB values between the observed and predicted mean SWS values were 2.9%, 4.3%, 3.9%, and 2.7% in the 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers, respectively. The prediction accuracy of the spatial distribution generally decreased with increasing depth, with linear determination coefficients (R2) of 0.93, 0.79, 0.72, and 0.84 for the four soil layers, respectively. The proposed method could further expand the application of the temporal stability technique in the estimation of SWS.
NASA Astrophysics Data System (ADS)
Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jing
2017-05-01
Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10-40 cm depth in the grassland and arable land, and 10-60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20-50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.
P-wave and surface wave survey for permafrost analysis in alpine regions
NASA Astrophysics Data System (ADS)
Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.
2012-04-01
In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing of seismic data involved the tomographic interpretation of traveltime P-wave first arrivals by considering the continuous refraction of the ray-paths. Several surface-wave dispersion curves were extracted in f-k domain along the seismic line and then inverted through a laterally constrained inversion algorithm to obtain a pseudo-2D section of S-wave velocity. Georadar investigation (about 2 km of georadar lines in the first site) confirmed the presence both of fine and coarse sediments in the uppermost layer; the seismic data allowed the moraines to be characterized down to 20-25 meters of depth. At the elevation of 2700 m asl, we observed a general decrease of the P-wave traveltimes collected in November, when the near surface layer was in frozen condition, respect to the data acquired in June. The frozen layer is responsible of the inversion of P-wave velocity with depth; the higher velocity layer (frozen) cannot be detected in the tomographic interpretation of refraction tomographic of the P-wave arrivals. Compressional wave velocity ranges from 700 m/s on the uppermost part, to 2000-2500 m/s in the internal part of the sediments reaching values higher than 5000 m/s at depth about 20 m. The analysis of surface wave permitted to estimate a slight increase from summer to winter of the S-wave velocity, in the depth range between 0 to 5 m.
Xiong, Li; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Yin, Rui; Li, Zhi-Ping; Gou, Xiao-Lin; Tang, Shi-Shan
2014-05-01
This study characterized the dynamics of the activities of urease, nitrate reductase and nitrite reductase in both soil organic layer and mineral soil layer under three depths of snow pack (deep snowpack, moderate snowpack and shallow snowpack) over the three critical periods (snow formed period, snow stable period, and snow melt period) in the subalpine Abies faxoniana forest of western Sichuan in the winter of 2012 and 2013. Throughout the winter, soil temperature under deep snowpack increased by 46.2% and 26.2%, respectively in comparison with moderate snowpack and shallow snowpack. In general, the three nitrogen-related soil enzyme activities under shallow snowpack were 0.8 to 3.9 times of those under deep snowpack during the winter. In the beginning and thawing periods of seasonal snow pack, shallow snowpack significantly increased the activities of urease, nitrate and nitrite reductase enzyme in both soil organic layer and mineral soil layer. Although the activities of the studied enzymes in soil organic layer and mineral soil layer were observed to be higher than those under deep- and moderate snowpacks in deep winter, no significant difference was found under the three snow packs. Meanwhile, the effects of snowpack on the activities of the measured enzymes were related with season, soil layer and enzyme type. Significant variations of the activities of nitrogen-related enzymes were found in three critical periods over the winter, and the three measured soil enzymes were significantly higher in organic layer than in mineral layer. In addition, the activities of the three measured soil enzymes were closely related with temperature and moisture in soils. In conclusion, the decrease of snow pack induced by winter warming might increase the activities of soil enzymes related with nitrogen transformation and further stimulate the process of wintertime nitrogen transformation in soils of the subalpine forest.
Composition and maturity of the 60013/14 core
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Morris, Richard V.; Lauer, Howard V., Jr.
1993-01-01
The 60013/14 double drive tube (62 cm deep) is one of three regolith cores taken 35-40 m apart in a triangular array on the Cayley plains at station 10' (LM/ALSEP), Apollo 16. This trio, which includes double drive tube 60009/10 (59 cm deep) and deep drill core 60001-7 (220 cm), is the only such array of cores returned from the Moon. The top 45 cm of 60013/14 is mature, as is surface reference soil 60601 taken nearby. Maturity generally decreases with depth, with soil below 45 cm being submature. The zone of lowest maturity (34 is less than or equal to I(sub s)/FeO is less than 50) extends from 46 to 58 cm depth, and corresponds to the distinct region of light-colored soil observed during core processing. In the other two cores, most of the compositional variation results from mixing between fine-grained, mature soil with 10-11 micro-g/g Sc and coarse-grained ferroan anorthosite consisting of greater than 99% plagioclase with less than 0.5 micro-g/g Sc. This is most evident in 60009/10 which contains a high abundance of plagioclase at about 54 cm depth (minimum Sc: 3-4 micro-g/g); a similar zone occurs in 60001-7 at 17-22 cm (MPU-C), although it is not as rich in plagioclase (minimum Sc: 6-7 micro-g/g). Compositional variations are less in 60013/14 than in the other two cores (range: 7.9-10.0 micro-g/g Sc), but are generally consistent with the 'plagioclase dilution' effect seen in 60009/10, i.e., most 60013/14 samples plot along the mixing line of 60009/10. However, a plagioclase component is not the cause of the lower maturity and lighter color of the unit at 46-58 cm depth in 60013/14. Many of the samples in this zone have distinctly lower Sm/Sc ratios than typical LM-area soils and plot off the mixing trend defined by 60009/10. This requires a component with moderately high Sc, but low-Sm/Sc, such as feldspathic fragmental breccia (FFB) or granulitic breccia. A component of Descartes regolith, such as occurs at North Ray Crater (NRC) and which is rich in FFB, could account for the composition of these soils (i.e., a 3:1 mixture of 60601 and NRC soil). It seems unlikely that NRC ejecta would occur half a meter deep at the LM station, thus this low-Sm/Sc component may result from an older, local crater that penetrated the Cayley surface layer and excavated underlying Descartes material, as did North Ray Crater. There is no evidence for such a unit or component in the other two cores. Soil below the light-colored unit (58-62) cm has 'typical' Sm/Sc ratios, but the lowest absolute Sc concentrations, i.e., it is compositionally equivalent to a mixture of surface soil and plagioclase such as that in ferroan anorthosite. This is the only soil that might be related to the plagioclase-rich units in the other two cores. Except for the mature soil at the top of each core and, perhaps, the plagioclase-rich layers, there is little compositional evidence for any common unit among the three cores. Soil corresponding to the mare-glass-bearing unit (MPU-B) and regolith-breccia-bearing unit (MPU-A) of 60001-7 do not occur in 60013/14 or 60009/10.
Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman; Susskind, Joel
1999-01-01
This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.
Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS)
Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon
2016-01-01
A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm. PMID:27077861
Photovoltaic healing of non-uniformities in semiconductor devices
Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.
2006-08-29
A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Berger, Pétra; Lindebner, Leopold
2016-01-01
Rigorous studies of recovery from soil acidification are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area at different soil depths) and foliar chemistry from three decades ago. It was hypothesized that declining acidic deposition is reflected in soil and foliar chemistry. Top soil pH within the stemflow area increased significantly by 0.6 units in both H2O and KCl extracts from 1984 to 2012. Exchangeable Ca and Mg increased markedly in the stemflow area and to a lower extent in the top soil of the between trees area. Trends of declining base cations in the lower top soil were probably caused by mobilization of organic S and associated leaching with high amounts of sulfate. Contents of C, N and S decreased markedly in the stemflow area from 1984 to 2012, suggesting that mineralization rates of organic matter increased due to more favorable soil conditions. It is concluded that the top soil will continue to recover from acidic deposition. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed. The beech trees of the Vienna Woods showed no sign of recovery from acidification although S deposition levels decreased. Release of historic S even increased foliar S contents. Base cation levels in the foliage declined but are still adequate for beech trees. Increasing N/nutrient ratios over time were considered not the result of marginally higher N foliar contents in 2012 but of diminishing nutrient uptake due to the decrease in ion concentration in soil solution. The mean foliar N/P ratio already increased to the alarming value of 31. Further nutritional imbalances will predispose trees to vitality loss. PMID:27344089
NASA Astrophysics Data System (ADS)
Trifonova, T. A.; Zabelina, O. N.
2017-04-01
Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia M.
Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.
Freyre-González, Julio A; Tauch, Andreas
2017-09-10
Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage=73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage=71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung
2016-11-01
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.
Method of Fabricating Schottky Barrier solar cell
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y. C. M. (Inventor)
1982-01-01
On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.
SF Box--a tool for evaluating the effects on soil functions in remediation projects.
Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Norberg, Tommy
2014-10-01
Although remediation is usually aimed at reducing the risks posed by contaminants to human health and the environment, it is also desirable that the remediated soil within future green spaces is capable of providing relevant ecological functions, e.g., basis for primary production. Yet while addressing a contamination problem by reducing contaminant concentration and/or amounts in the soil, the remedial action itself can lead to soil structure disturbances, decline in organic matter and nutrient deficiencies, and in turn affect a soil's capacity to carry out its ecological soil functions. This article presents the Soil Function Box (SF Box) tool that is aimed to facilitate integration of information from suggested soil quality indicators (SQIs) into a management process in remediation using a scoring method. The scored SQIs are integrated into a soil quality index corresponding to 1 of 5 classes. SF Box is applied to 2 cases from Sweden (Kvillebäcken and Hexion), explicitly taking into consideration uncertainties in the results by means of Monte Carlo simulations. At both sites the generated soil quality indices corresponded to a medium soil performance (soil class 3) with a high certainty. The main soil constraints at both Kvillebäcken and Hexion were associated with biological activity in the soil, as soil organisms were unable to supply plant-available N. At the Kvillebäcken site the top layer had a content of coarse fragment (ø > 2 mm) higher than 35%, indicating plant rooting limitations. At the Hexion site, the soil had limited amount of organic matter, thus poor aggregate stability and nutrient cycling potential. In contrast, the soil at Kvillebäcken was rich in organic matter. The soils at both sites were capable of storing a sufficient amount of water for soil organisms between precipitation events. © 2014 SETAC.
Evaluating Soil Carbon Sequestration in Central Iowa
NASA Astrophysics Data System (ADS)
Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.
2005-12-01
The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.
Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi
2016-01-01
Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg−1. Manganese and iron concentrations averaged 811 µg·g−1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment. PMID:27827965
Nguyen Van, Thinh; Ozaki, Akinori; Nguyen Tho, Hoang; Nguyen Duc, Anh; Tran Thi, Yen; Kurosawa, Kiyoshi
2016-11-05
Heavy metal contamination of soil and sediment in estuaries warrants study because a healthy estuarine environment, including healthy soil, is important in order to achieve ecological balance and good aquaculture production. The Ba Lat estuary of the Red River is the largest estuary in northern Vietnam and is employed in various land uses. However, the heavy metal contamination of its soil has not yet been reported. The following research was conducted to clarify contamination levels, supply sources, and the effect of land use on heavy metal concentrations in the estuary. Soil samples were collected from the top soil layer of the estuary, and their arsenic (As), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) concentrations were analyzed, as were other soil properties. Most soils in the estuary were loam, silt loam, or sandy loam. The pH was neutral, and the cation exchange capacity ranged from 3.8 to 20 cmol·kg -1 . Manganese and iron concentrations averaged 811 µg·g -1 and 1.79%, respectively. The magnitude of the soil heavy metal concentrations decreased in the order of Zn > Pb > Cr > Cu > As > Cd. The concentrations were higher in the riverbed and mangrove forest than in other land-use areas. Except for As, the mean heavy metal concentrations were lower than the permissible levels for agricultural soils in Vietnam. The principal component analyses suggested that soil As, Pb, Zn, Cd, and Cu were of anthropogenic origin, whereas Cr was of non-anthropogenic origin. The spatial distribution of concentration with land use indicated that mangrove forests play an important role in preventing the spread of heavy metals to other land uses and in maintaining the estuarine environment.
Sun, Jian; Wang, Xiaodan; Cheng, Genwei; Wu, Jianbo; Hong, Jiangtao; Niu, Shuli
2014-01-01
Understanding the impact of grazing intensity on grassland production and soil fertility is of fundamental importance for grassland conservation and management. We thus compared three types of alpine steppe management by studying vegetation traits and soil properties in response to three levels of grazing pressure: permanent grazing (M1), seasonal grazing (M2), and grazing exclusion (M3) in the alpine steppe in Xainza County, Tibetan Plateau. The results showed that community biomass allocation did not support the isometric hypothesis under different grassland management types. Plants in M1 had less aboveground biomass but more belowground biomass in the top soil layer than those in M2 and M3, which was largely due to that root/shoot ratios of dominant plants in M1 were far greater than those in M2 and M3. The interramet distance and the tiller size of the dominant clonal plants were greater in M3 than in M1 and M2, while the resprouting from rhizome buds did not differ significantly among the three greezing regimes. Both soil bulk density and soil available nitrogen in M3 were greater than in M1 at the 15–30 cm soil depth (P = 0.05). Soil organic carbon and soil total nitrogen were greater in M3 than in M1 and M2 (P = 0.05). We conclude that the isometric hypothesis is not supported in this study and fencing is a helpful grassland management in terms of plant growth and soil nutrient retention in alpine steppe. The extreme cold, scarce precipitation and short growing period may be the causation of the unique plant and soil responses to different management regimes. PMID:25268517
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
Two layer structure for reinforcing pothole repair
NASA Astrophysics Data System (ADS)
Yuan, Wei; Yuan, Kuo-Yao; Zou, Linhua; Yang, Jenn-Ming; Ju, Jiann-Wen; Kao, Wei; Carlson, Larry
2013-04-01
We have applied dicyclopentadiene (DCPD) resin for reinforcing pothole patch materials due to its unique properties - low cost, low viscosity at beginning and ultra-toughness after curing, chemical compatibility with tar, tunable curing profile through catalyst design. In this paper, we have designed a two layer structure - well compacted base layer and DCPD reinforced 1-1.5" top layer - for pothole repair. By choosing two graded asphalt mixes, a porous top layer and fully compacted base layer was prepared after compaction and ready for DCPD resin infiltration. The DCPD curing and infiltration profile within this porous top layer was measured with thermocouples. The rutting resistance was tested with home-made wheel rutter. The cage effect due to the p-DCPD wrapping was characterized with wheel penetration test. The results showed that this two layer structure pothole repair has greatly improved properties and can be used for pothole repair to increase the service life.
Device for thermal transfer and power generation
Weaver, Stanton Earl [Northville, NY; Arik, Mehmet [Niskayuna, NY
2011-04-19
A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.
Lovestead, Tara M; Bruno, Thomas J
2011-01-30
Victims of crimes are often buried in clandestine graves. There are several techniques for finding buried bodies or the scattered remains of a victim; however, none of these methods are very reliable or work in all scenarios. One way to detect gravesoil is to detect the biochemical changes of the surrounding soil due to cadaver decomposition, for example, the release of nitrogenous compounds. A simple and low-cost way to detect these compounds is based on the reaction of alpha amino groups with ninhydrin to form Ruhemann's purple. This test for ninhydrin-reactive nitrogen (NRN) has, to date, only been performed by direct solvent extraction of soil samples. Here, we present a method that detects trace quantities of NRN in the headspace air above gravesoil. Our method is based on an improved purge and trap method developed in our lab for sampling low volatility compounds, as well as volatile compounds at trace quantities, by applying low temperature collection on short alumina-coated porous layer open tubular (PLOT) columns. We modified this method to sample the headspace air above gravesoil with a motorized pipetter and a PLOT column at ambient temperatures. We generated gravesoil using rat cadavers and local soil. Trace quantities of NRN were successfully detected in the headspace air above gravesoil. We report the quantities of NRN recovered for buried rats, rats laid on top of soil, and blank graves (no rats) as a function of time (weeks to months). This work is the first (and thus far, only) example of a method for detecting NRN in the vapor phase, providing another tool for forensic investigators to aid in locating elusive clandestine graves. Published by Elsevier Ireland Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... review (1) the finding that the claim term ``top layer'' recited in claim 1 of the '106 patent means ``an outer layer of the chip assembly upon which the terminals are fixed,'' the requirement that ``the `top layer' is a single layer,'' and the effect of the findings on the infringement analysis, invalidity...
Structural and electrical investigations of MBE-grown SiGe nanoislands
NASA Astrophysics Data System (ADS)
Şeker, İsa; Karatutlu, Ali; Gürbüz, Osman; Yanık, Serhat; Bakış, Yakup; Karakız, Mehmet
2018-01-01
SiGe nanoislands were grown by Molecular Beam Epitaxy (MBE) method on Si (100) substrates with comparative growth parameters such as annealing temperature, top Ge content and layer-by-layer annealing (LBLA). XRD and Raman data suggest that annealing temperature, top Ge content and layer-by-layer annealing (LBLA) can overall give a control not only over the amorphous content but also over yielding the strained Ge layer formation in addition to mostly Ge crystallites. Depending on the layer design and growth conditions, size of the crystallites was observed to be changed. Four Point Probe (FPP) Method via Semiconductor Analyzer shows that 100 °C rise in annealing temperature of the samples with Si0.25Ge0.75 top layers caused rougher islands with vacancies which further resulted in the formation of laterally higher resistive thin film sheets. However, vertically performed I-AFM analysis produced higher I-V values which suggest that the vertical and horizantal conductance mechanisms appear to be different. Ge top-layered samples gained greater crystalline structure and better surface conductivity where LBLA resulted in the formation of Ge nucleation and tight 2D stacking resulting in enhanced current values.