Sample records for topological texture features

  1. Topological patterns of mesh textures in serpentinites

    NASA Astrophysics Data System (ADS)

    Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.

    2017-12-01

    Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.

  2. Classification of interstitial lung disease patterns with topological texture features

    NASA Astrophysics Data System (ADS)

    Huber, Markus B.; Nagarajan, Mahesh; Leinsinger, Gerda; Ray, Lawrence A.; Wismüller, Axel

    2010-03-01

    Topological texture features were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honey-combing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. A set of 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and three Minkowski Functionals (MFs, e.g. MF.euler). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions and the significance thresholds were adjusted for multiple comparisons by the Bonferroni correction. The best classification results were obtained by the MF features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers. The highest accuracy was found for MF.euler (97.5%, 96.6%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced topological texture features can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.

  3. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    NASA Astrophysics Data System (ADS)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  4. Segmentation of anatomical branching structures based on texture features and conditional random field

    NASA Astrophysics Data System (ADS)

    Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin

    2012-02-01

    This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.

  5. Topological image texture analysis for quality assessment

    NASA Astrophysics Data System (ADS)

    Asaad, Aras T.; Rashid, Rasber Dh.; Jassim, Sabah A.

    2017-05-01

    Image quality is a major factor influencing pattern recognition accuracy and help detect image tampering for forensics. We are concerned with investigating topological image texture analysis techniques to assess different type of degradation. We use Local Binary Pattern (LBP) as a texture feature descriptor. For any image construct simplicial complexes for selected groups of uniform LBP bins and calculate persistent homology invariants (e.g. number of connected components). We investigated image quality discriminating characteristics of these simplicial complexes by computing these models for a large dataset of face images that are affected by the presence of shadows as a result of variation in illumination conditions. Our tests demonstrate that for specific uniform LBP patterns, the number of connected component not only distinguish between different levels of shadow effects but also help detect the infected regions as well.

  6. Orbital selective spin-texture in a topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R.

    Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to anmore » orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.« less

  7. Manipulating topological states by imprinting non-collinear spin textures

    DOE PAGES

    Streubel, Robert; Han, Luyang; Im, Mi -Young; ...

    2015-03-05

    Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can bemore » imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence« less

  8. Robust weak anti-localisation effect in strongly textured nanocrystalline Bi2Se3 samples

    NASA Astrophysics Data System (ADS)

    Pereira, V. M. M.; Henriques, M. S. C.; Paixão, J. A.

    2018-05-01

    Topological insulators are a quantum state of matter that has recently created a great interest among the scientific community, with Bi2Se3 being one of the most extensively studied materials. Here, we demonstrate that polycrystalline nanostructured samples of Bi2Se3 preserve the existence of topological surface states, where electrons cannot be localised. The nanosheet crystals were synthesised by a microwave-assisted method and their structure, composition and morphology thoroughly characterised. The transport properties of a textured polycrystalline sample with strong preferred orientation along the c-axis were measured, showing the presence of the weak anti-localisation effect and Shubnikov-de Haas oscillations. These features are robust against the presence of non-magnetic impurities and structural defects.

  9. Robustness of topological Hall effect of nontrivial spin textures

    NASA Astrophysics Data System (ADS)

    Jalil, Mansoor B. A.; Tan, Seng Ghee

    2014-05-01

    We analyze the topological Hall conductivity (THC) of topologically nontrivial spin textures like magnetic vortices and skyrmions and investigate its possible application in the readback for magnetic memory based on those spin textures. Under adiabatic conditions, such spin textures would theoretically yield quantized THC values, which are related to topological invariants such as the winding number and polarity, and as such are insensitive to fluctuations and smooth deformations. However, in a practical setting, the finite size of spin texture elements and the influence of edges may cause them to deviate from their ideal configurations. We calculate the degree of robustness of the THC output in practical magnetic memories in the presence of edge and finite size effects.

  10. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    PubMed

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.

  11. Topology-guided deformable registration with local importance preservation for biomedical images

    NASA Astrophysics Data System (ADS)

    Zheng, Chaojie; Wang, Xiuying; Zeng, Shan; Zhou, Jianlong; Yin, Yong; Feng, Dagan; Fulham, Michael

    2018-01-01

    The demons registration (DR) model is well recognized for its deformation capability. However, it might lead to misregistration due to erroneous diffusion direction when there are no overlaps between corresponding regions. We propose a novel registration energy function, introducing topology energy, and incorporating a local energy function into the DR in a progressive registration scheme, to address these shortcomings. The topology energy that is derived from the topological information of the images serves as a direction inference to guide diffusion transformation to retain the merits of DR. The local energy constrains the deformation disparity of neighbouring pixels to maintain important local texture and density features. The energy function is minimized in a progressive scheme steered by a topology tree graph and we refer to it as topology-guided deformable registration (TDR). We validated our TDR on 20 pairs of synthetic images with Gaussian noise, 20 phantom PET images with artificial deformations and 12 pairs of clinical PET-CT studies. We compared it to three methods: (1) free-form deformation registration method, (2) energy-based DR and (3) multi-resolution DR. The experimental results show that our TDR outperformed the other three methods in regard to structural correspondence and preservation of the local important information including texture and density, while retaining global correspondence.

  12. Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2008-08-01

    This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.

  13. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  14. Emergent Momentum-Space Skyrmion Texture on the Surface of Topological Insulators

    NASA Astrophysics Data System (ADS)

    Mohanta, Narayan; Kampf, Arno P.; Kopp, Thilo

    The quantum anomalous Hall effect has been theoretically predicted and experimentally verified in magnetic topological insulators. In addition, the surface states of these materials exhibit a hedgehog-like ``spin'' texture in momentum space. Here, we apply the previously formulated low-energy model for Bi2Se3, a parent compound for magnetic topological insulators, to a slab geometry in which an exchange field acts only within one of the surface layers. In this sample set up, the hedgehog transforms into a skyrmion texture beyond a critical exchange field. This critical field marks a transition between two topologically distinct phases. The topological phase transition takes place without energy gap closing at the Fermi level and leaves the transverse Hall conductance unchanged and quantized to e2 / 2 h . The momentum-space skyrmion texture persists in a finite field range. It may find its realization in hybrid heterostructures with an interface between a three-dimensional topological insulator and a ferromagnetic insulator. The work was supported by the Deutsche Forschungsgemeinschaft through TRR 80.

  15. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.

    PubMed

    Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T

    2017-10-17

    A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.

  16. Semantic and topological classification of images in magnetically guided capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Mewes, P. W.; Rennert, P.; Juloski, A. L.; Lalande, A.; Angelopoulou, E.; Kuth, R.; Hornegger, J.

    2012-03-01

    Magnetically-guided capsule endoscopy (MGCE) is a nascent technology with the goal to allow the steering of a capsule endoscope inside a water filled stomach through an external magnetic field. We developed a classification cascade for MGCE images with groups images in semantic and topological categories. Results can be used in a post-procedure review or as a starting point for algorithms classifying pathologies. The first semantic classification step discards over-/under-exposed images as well as images with a large amount of debris. The second topological classification step groups images with respect to their position in the upper gastrointestinal tract (mouth, esophagus, stomach, duodenum). In the third stage two parallel classifications steps distinguish topologically different regions inside the stomach (cardia, fundus, pylorus, antrum, peristaltic view). For image classification, global image features and local texture features were applied and their performance was evaluated. We show that the third classification step can be improved by a bubble and debris segmentation because it limits feature extraction to discriminative areas only. We also investigated the impact of segmenting intestinal folds on the identification of different semantic camera positions. The results of classifications with a support-vector-machine show the significance of color histogram features for the classification of corrupted images (97%). Features extracted from intestinal fold segmentation lead only to a minor improvement (3%) in discriminating different camera positions.

  17. Automatic system for radar echoes filtering based on textural features and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hedir, Mehdia; Haddad, Boualem

    2017-10-01

    Among the very popular Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been retained to process Ground Echoes (GE) on meteorological radar images taken from Setif (Algeria) and Bordeaux (France) with different climates and topologies. To achieve this task, AI techniques were associated with textural approaches. We used Gray Level Co-occurrence Matrix (GLCM) and Completed Local Binary Pattern (CLBP); both methods were largely used in image analysis. The obtained results show the efficiency of texture to preserve precipitations forecast on both sites with the accuracy of 98% on Bordeaux and 95% on Setif despite the AI technique used. 98% of GE are suppressed with SVM, this rate is outperforming ANN skills. CLBP approach associated to SVM eliminates 98% of GE and preserves precipitations forecast on Bordeaux site better than on Setif's, while it exhibits lower accuracy with ANN. SVM classifier is well adapted to the proposed application since the average filtering rate is 95-98% with texture and 92-93% with CLBP. These approaches allow removing Anomalous Propagations (APs) too with a better accuracy of 97.15% with texture and SVM. In fact, textural features associated to AI techniques are an efficient tool for incoherent radars to surpass spurious echoes.

  18. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  19. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    NASA Astrophysics Data System (ADS)

    He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo

    2018-05-01

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.

  20. Classification of small lesions in dynamic breast MRI: Eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time.

    PubMed

    Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2013-10-01

    Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter , thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented ( p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.

  1. Chemical disorder in topological insulators: A route to magnetism tolerant topological surface states

    DOE PAGES

    Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria; ...

    2017-06-13

    Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less

  2. Chemical disorder in topological insulators: A route to magnetism tolerant topological surface states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria

    Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less

  3. A cosmic microwave background feature consistent with a cosmic texture.

    PubMed

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  4. Skin cancer texture analysis of OCT images based on Haralick, fractal dimension and the complex directional field features

    NASA Astrophysics Data System (ADS)

    Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.

    2016-04-01

    Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.

  5. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    DOE PAGES

    He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...

    2018-02-05

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less

  6. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less

  7. Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice

    NASA Astrophysics Data System (ADS)

    Göbel, Börge; Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-03-01

    The hallmark of a skyrmion crystal (SkX) is the topological Hall effect (THE). In this article we predict and explain an unconventional behavior of the topological Hall conductivity in SkXs. In simple terms, the spin texture of the skyrmions causes an inhomogeneous emergent magnetic field whose associated Lorentz force acts on the electrons. By making the emergent field homogeneous, the THE is mapped onto the quantum Hall effect (QHE). Consequently, each electronic band of the SkX is assigned to a Landau level. This correspondence of THE and QHE allows us to explain the unconventional behavior of the THE of electrons in SkXs. For example, a skyrmion crystal on a triangular lattice exhibits a quantized topological Hall conductivity with steps of 2 .e2/h below and with steps of 1 .e2/h above the van Hove singularity. On top of this, the conductivity shows a prominent sign change at the van Hove singularity. These unconventional features are deeply connected to the topology of the structural lattice.

  8. Spin-polarized surface resonances accompanying topological surface state formation

    PubMed Central

    Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra

    2016-01-01

    Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428

  9. Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Yagil, A.; Almoalem, A.; Soumyanarayanan, Anjan; Tan, Anthony K. C.; Raju, M.; Panagopoulos, C.; Auslaender, O. M.

    2018-05-01

    Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Néel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portend broad applicability in the burgeoning field of topological spin textures.

  10. Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons

    DOE PAGES

    Schaffer, A. F.; Durr, H. A.; Berakdar, J.

    2017-07-17

    Short electron pulses are demonstrated to trigger and control magnetic excitations, even at low electron current densities. We show that the tangential magnetic field surrounding a picosecond electron pulse can imprint topologically protected magnetic textures such as skyrmions in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge can be steered via the duration and the strength of the electron pulses. Here, the study points to a possible way for a spatiotemporally controlled generation of skyrmionic excitations.

  11. Helical Spin Order from Topological Dirac and Weyl Semimetals

    DOE PAGES

    Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong

    2015-08-14

    In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.

  12. Preliminary study report: topological texture features extracted from standard radiographs of the heel bone are correlated with femoral bone mineral density

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Lutz, J.; Koerner, M.; Notohamiprodjo, M.; Reiser, M.

    2009-02-01

    With the growing number of eldery patients in industrialized nations the incidence of geriatric, i.e. osteoporotic fractures is steadily on the rise. It is of great importance to understand the characteristics of hip fractures and to provide diagnostic tests for the assessment of an individual's fracture-risk that allow to take preventive action and give therapeutic advice. At present, bone-mineral-density (BMD) obtained from DXA (dual-energy x-ray-absorptiometry) is the clinical standard of reference for diagnosis and follow-up of osteoporosis. Since availability of DXA - other than that of clinical X-ray imaging - is usually restricted to specialized medical centers it is worth trying to implement alternative methods to estimate an individual's BMD. Radiographs of the peripheral skeleton, e.g. the ankle, range among the most ordered diagnostic procedures in surgery for exclusion or confirmation of fracture. It would be highly beneficial if - as a by-product of conventional imaging - one could obtain a quantitative parameter that is closely correlated with femoral BMD in addition to the original diagnostic information, e.g. fracture status at the peripheral site. Previous studies could demonstrate a correlation between calcaneal BMD and osteoporosis. The objective of our study was to test the hypothesis that topological analysis of calcaneal bone texture depicted by a lateral x-ray projection of the ankle allows to estimate femoral BMD. Our analysis on 34 post-menopausal patients indicate that texture properties based on graylevel topology in calcaneal x-ray-films are closely correlated with BMD at the hip and may qualify as a substitute indicator of femoral fracture risk.

  13. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    NASA Astrophysics Data System (ADS)

    Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).

  14. Stabilizing the false vacuum: Mott skyrmions

    PubMed Central

    Kanász-Nagy, M.; Dóra, B.; Demler, E. A.; Zaránd, G.

    2015-01-01

    Topological excitations keep fascinating physicists since many decades. While individual vortices and solitons emerge and have been observed in many areas of physics, their most intriguing higher dimensional topological relatives, skyrmions (smooth, topologically stable textures) and magnetic monopoles emerging almost necessarily in any grand unified theory and responsible for charge quantization remained mostly elusive. Here we propose that loading a three-component nematic superfluid such as 23Na into a deep optical lattice and thereby creating an insulating core, one can create topologically stable skyrmion textures. The skyrmion's extreme stability and its compact geometry enable one to investigate the skyrmion's structure, and the interplay of topology and excitations in detail. In particular, the superfluid's excitation spectrum as well as the quantum numbers are demonstrated to change dramatically due to the skyrmion, and reflect the presence of a trapped monopole, as imposed by the skyrmion's topology. PMID:25582915

  15. Stabilizing the false vacuum. Mott skyrmions

    DOE PAGES

    Kanász-Nagy, M.; Dóra, B.; Demler, E. A.; ...

    2015-01-13

    Topological excitations keep fascinating physicists since many decades. While individual vortices and solitons emerge and have been observed in many areas of physics, their most intriguing higher dimensional topological relatives, skyrmions (smooth, topologically stable textures) and magnetic monopoles emerging almost necessarily in any grand unified theory and responsible for charge quantization remained mostly elusive. Here we propose that loading a three-component nematic superfluid such as 23Na into a deep optical lattice and thereby creating an insulating core, one can create topologically stable skyrmion textures. The skyrmion’s extreme stability and its compact geometry enable one to investigate the skyrmion’s structure, andmore » the interplay of topology and excitations in detail. In particular, the superfluid’s excitation spectrum as well as the quantum numbers are demonstrated to change dramatically due to the skyrmion, and reflect the presence of a trapped monopole, as imposed by the skyrmion’s topology.« less

  16. Spin-polarized surface resonances accompanying topological surface state formation

    DOE PAGES

    Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; ...

    2016-10-14

    Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi 2Se 3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states canmore » emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. As a result, this work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.« less

  17. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  18. Functional surfaces for tribological applications: inspiration and design

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, Hisham A.

    2016-12-01

    Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.

  19. Mobile Neel skyrmions at room temperature: Status and future

    DOE PAGES

    Jiang, Wanjun; Zhang, Wei; Yu, Guoqiang; ...

    2016-03-07

    Magnetic skyrmions are topologically protected spin textures that exhibit many fascinating features. As compared to the well-studied cryogenic Bloch skyrmions in bulk materials, we focus on the room- temperature Néel skyrmions in thin-film systems with an interfacial broken inversion symmetry in this article. Specifically, we show the stabilization, the creation, and the implementation of Néel skyrmions that are enabled by the electrical current-induced spin-orbit torques. As a result, towards the nanoscale Néel skyrmions, we further discuss the challenges from both material optimization and imaging characterization perspectives.

  20. Skyrmions in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Chen, Gong; Liu, Kai; Zang, Jiadong; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2017-08-01

    Symmetry breaking together with strong spin-orbit interaction gives rise to many exciting phenomena within condensed matter physics. A recent example is the existence of chiral spin textures, which are observed in magnetic systems lacking inversion symmetry. These chiral spin textures, including domain walls and magnetic skyrmions, are both fundamentally interesting and technologically promising. For example, they can be driven very efficiently by electrical currents, and exhibit many new physical properties determined by their real-space topological characteristics. Depending on the details of the competing interactions, these spin textures exist in different parameter spaces. However, the governing mechanism underlying their physical behaviors remains essentially the same. In this review article, the fundamental topological physics underlying these chiral spin textures, the key factors for materials optimization, and current developments and future challenges will be discussed. In the end, a few promising directions that will advance the development of skyrmion based spintronics will be highlighted.

  1. Three-Dimensional Models of Topological Insulators: Engineering of Dirac Cones and Robustness of the Spin Texture

    NASA Astrophysics Data System (ADS)

    Soriano, David; Ortmann, Frank; Roche, Stephan

    2012-12-01

    We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.

  2. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  3. Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators

    PubMed Central

    Battiato, Marco; Sánchez-Barriga, Jaime

    2017-01-01

    Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin–orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized GW+Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron–electron and electron–phonon scatterings. Taking the prototypical insulator Bi2Te3 as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron–electron and electron–phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials. PMID:28773171

  4. Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators.

    PubMed

    Battiato, Marco; Aguilera, Irene; Sánchez-Barriga, Jaime

    2017-07-17

    Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin-orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized G W +Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron-electron and electron-phonon scatterings. Taking the prototypical insulator Bi 2 Te 3 as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron-electron and electron-phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials.

  5. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Kettenis, Chris; van Hecke, Martin

    2018-01-01

    The architecture of mechanical metamaterials is designed to harness geometry, nonlinearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. Although a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape changers or topological insulators; a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations--relevant for small systems--and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials.

  6. Topological defect formation in rotating binary dipolar Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585

    We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point outmore » that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.« less

  7. Topological defects in two-dimensional liquid crystals confined by a box

    NASA Astrophysics Data System (ADS)

    Yao, Xiaomei; Zhang, Hui; Chen, Jeff Z. Y.

    2018-05-01

    When a spatially uniform system that displays a liquid-crystal ordering on a two-dimensional surface is confined inside a rectangular box, the liquid crystal direction field develops inhomogeneous textures accompanied by topological defects because of the geometric frustrations. We show that the rich variety of nematic textures and defect patterns found in recent experimental and theoretical studies can be classified by the solutions of the rather fundamental, extended Onsager model. This is critically examined based on the determined free energies of different defect states, as functions of a few relevant, dimensionless geometric parameters.

  8. Emergent chirality in the electric polarization texture of titanate superlattices.

    PubMed

    Shafer, Padraic; García-Fernández, Pablo; Aguado-Puente, Pablo; Damodaran, Anoop R; Yadav, Ajay K; Nelson, Christopher T; Hsu, Shang-Lin; Wojdeł, Jacek C; Íñiguez, Jorge; Martin, Lane W; Arenholz, Elke; Junquera, Javier; Ramesh, Ramamoorthy

    2018-01-30

    Chirality is a geometrical property by which an object is not superimposable onto its mirror image, thereby imparting a handedness. Chirality determines many important properties in nature-from the strength of the weak interactions according to the electroweak theory in particle physics to the binding of enzymes with naturally occurring amino acids or sugars, reactions that are fundamental for life. In condensed matter physics, the prediction of topologically protected magnetic skyrmions and related spin textures in chiral magnets has stimulated significant research. If the magnetic dipoles were replaced by their electrical counterparts, then electrically controllable chiral devices could be designed. Complex oxide BaTiO 3 /SrTiO 3 nanocomposites and PbTiO 3 /SrTiO 3 superlattices are perfect candidates, since "polar vortices," in which a continuous rotation of ferroelectric polarization spontaneously forms, have been recently discovered. Using resonant soft X-ray diffraction, we report the observation of a strong circular dichroism from the interaction between circularly polarized light and the chiral electric polarization texture that emerges in PbTiO 3 /SrTiO 3 superlattices. This hallmark of chirality is explained by a helical rotation of electric polarization that second-principles simulations predict to reside within complex 3D polarization textures comprising ordered topological line defects. The handedness of the texture can be topologically characterized by the sign of the helicity number of the chiral line defects. This coupling between the optical and novel polar properties could be exploited to encode chiral signatures into photon or electron beams for information processing.

  9. Multidimensional brain activity dictated by winner-take-all mechanisms.

    PubMed

    Tozzi, Arturo; Peters, James F

    2018-06-21

    A novel demon-based architecture is introduced to elucidate brain functions such as pattern recognition during human perception and mental interpretation of visual scenes. Starting from the topological concepts of invariance and persistence, we introduce a Selfridge pandemonium variant of brain activity that takes into account a novel feature, namely, demons that recognize short straight-line segments, curved lines and scene shapes, such as shape interior, density and texture. Low-level representations of objects can be mapped to higher-level views (our mental interpretations): a series of transformations can be gradually applied to a pattern in a visual scene, without affecting its invariant properties. This makes it possible to construct a symbolic multi-dimensional representation of the environment. These representations can be projected continuously to an object that we have seen and continue to see, thanks to the mapping from shapes in our memory to shapes in Euclidean space. Although perceived shapes are 3-dimensional (plus time), the evaluation of shape features (volume, color, contour, closeness, texture, and so on) leads to n-dimensional brain landscapes. Here we discuss the advantages of our parallel, hierarchical model in pattern recognition, computer vision and biological nervous system's evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of wettability and topological features of Namib beetle inspired bumps on dropwise condensation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shakeel; Tang, Hui; Yao, Haimin

    2017-11-01

    The Stenocara beetle lives in arid desert environment where the only available source of water is fog droplets. The beetle contains many hydrophobic/hydrophilic bumps on its back. Water collection occurs on the hydrophilic patches. Once the droplet reaches the critical volume, it sheds down due to gravity. Although a number of studies on condensation and water collection on beetle inspired structures have been reported in literature, most of them were on micro/nano scale textures. However, in nature the beetle bumps are in millimeter scale. At this scale the role of topological features and gravity becomes crucial for early droplet shedding. Therefore, in this work we numerically investigated the effects of bump shape, wettability contrast, surface slope and hydrophilic patch to total area ratio on droplet shedding volume and time. A three-dimensional lattice Boltzmann method (LBM) based numerical framework was used for the simulations. Compared with bumps of other shapes such a cube or a circular cylinder, faster droplet shedding was obtained over a hemispherical bump. Furthermore, it was found that larger hydrophilic patch to total area ratio for the hemispherical bump significantly increased the droplet shedding time.

  11. Gigantic Dzyaloshinskii-Moriya interaction in the MnBi ultrathin films

    NASA Astrophysics Data System (ADS)

    Yu, Jie-Xiang; Zang, Jiadong; Zang's Team

    The magnetic skyrmion, a swirling-like spin texture with nontrivial topology, is driven by strong Dzyaloshinskii-Moriya (DM) interaction originated from the spin-orbit coupling in inversion symmetry breaking systems. Here, based on first-principles calculations, we predict a new material, MnBi ultrathin film, with gigantic DM interactions. The ratio of the DM interaction to the Heisenberg exchange is about 0.3, exceeding any values reported so far. Its high Curie temperature, high coercivity, and large perpendicular magnetoanisotropy make MnBi a good candidate for future spintronics studies. Topologically nontrivial spin textures are emergent in this system. We expect further experimental efforts will be devoted into this systems.

  12. Harmonic field in knotted space

    NASA Astrophysics Data System (ADS)

    Duan, Xiuqing; Yao, Zhenwei

    2018-04-01

    Knotted fields enrich a variety of physical phenomena, ranging from fluid flows, electromagnetic fields, to textures of ordered media. Maxwell's electrostatic equations, whose vacuum solution is mathematically known as a harmonic field, provide an ideal setting to explore the role of domain topology in determining physical fields in confined space. In this work, we show the uniqueness of a harmonic field in knotted tubes, and reduce the construction of a harmonic field to a Neumann boundary value problem. By analyzing the harmonic field in typical knotted tubes, we identify the torsion driven transition from bipolar to vortex patterns. We also analogously extend our discussion to the organization of liquid crystal textures in knotted tubes. These results further our understanding about the general role of topology in shaping a physical field in confined space, and may find applications in the control of physical fields by manipulation of surface topology.

  13. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    2016-08-01

    Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.

  14. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    DOE PAGES

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    2016-08-10

    Topological spin textures form a fundamental paradigm in solid state physics and present unique opportunities to explore exciting phenomena such as the quantum Hall effect. One such non-trivial spin texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their topological and energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique domain configurations of artificial skyrmions and antiskyrmions. We elucidate theirmore » behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. As a result, this research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.« less

  15. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Petford-Long, A. K.; Phatak, C.

    Topological spin textures form a fundamental paradigm in solid state physics and present unique opportunities to explore exciting phenomena such as the quantum Hall effect. One such non-trivial spin texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their topological and energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique domain configurations of artificial skyrmions and antiskyrmions. We elucidate theirmore » behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. As a result, this research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.« less

  16. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  17. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim

    2013-03-01

    Strong topological insulators are materials that host exotic states on their surfaces due to a topological band inversion in their bulk band structure. These surface states have Dirac dispersion as if they were massless relativistic particles, and are assured to remain metallic by time reversal symmetry. The helical spin texture associated with the Dirac dispersion prohibits backscattering, which we have imaged using scanning tunneling microscopy (STM) and spectroscopic mappings. This topological protection can be lifted by time-reversal breaking perturbations that induce a gap at the Dirac point and cant the helical spin texture. Massive Dirac electrons had been visualized by angular resolved photo emission spectroscopy in magnetically doped topological insulators. While we do not identify a gapped spectrum in our STM measurements of similar compounds, we do find a dominating electrostatic response to the charged content of those dopants. In their presence the Dirac spectrum exhibits strong spatial fluctuations. As a result translational invariance is broken over a characteristic length scale and the Dirac-point energy is only locally defined. Possible global manifestations of these local fluctuations will be discussed, as well as alternative avenues for breaking time reversal symmetry while maintaining the integrity of the Dirac spectrum. This work was supported by NSF, NSF-MRSEC, and DARPA.

  18. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.

    PubMed

    Khoje, Suchitra

    2018-02-01

    Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit quality namely Mango and Guava, and might be applicable to in-line sorting systems. © 2017 Wiley Periodicals, Inc.

  19. Visual texture perception via graph-based semi-supervised learning

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  20. Robust constraint on cosmic textures from the cosmic microwave background.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berres, Anne Sabine

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  2. Out-of-equilibrium dynamics and extended textures of topological defects in spin ice

    NASA Astrophysics Data System (ADS)

    Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.

    2016-09-01

    Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .

  3. Image segmentation using association rule features.

    PubMed

    Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J

    2002-01-01

    A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.

  4. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    PubMed Central

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-01-01

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717

  5. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    DOE PAGES

    Xu, Su -Yang; Neupane, Madhab; Belopolski, Ilya; ...

    2015-04-17

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from amore » surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results provide a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.« less

  6. Substitution-induced spin-splitted surface states in topological insulator (Bi1−xSbx)2Te3

    PubMed Central

    He, Xiaoyue; Li, Hui; Chen, Lan; Wu, Kehui

    2015-01-01

    We present a study on surface states of topological insulator (Bi1−xSbx)2Te3 by imaging quasiparticle interference patterns (QPI) using low temperature scanning tunneling microscope. Besides the topological Dirac state, we observed another surface state with chiral spin texture within the conduction band range. The quasiparticle scattering in this state is selectively suppressed. Combined with first-principles calculations, we attribute this state to a spin-splitted band induced by the substitution of Bi with Sb atoms. Our results demonstrate that the coexistence of topological order and alloying may open wider tunability in quantum materials. PMID:25743262

  7. Natural texture retrieval based on perceptual similarity measurement

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun

    2018-04-01

    A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.

  8. Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery

    PubMed Central

    Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel

    2016-01-01

    Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134

  9. An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions.

    PubMed

    Shu, Ting; Zhang, Bob; Yan Tang, Yuan

    2017-04-01

    Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prediction of troponin-T degradation using color image texture features in 10d aged beef longissimus steaks.

    PubMed

    Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R

    2014-02-01

    The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. © 2013.

  11. Topological Electride Y2C.

    PubMed

    Huang, Huaqing; Jin, Kyung-Hwan; Zhang, Shunhong; Liu, Feng

    2018-03-14

    Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride Y 2 C. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of Y 2 C, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of Y 2 C. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.

  12. Aesthetic perception of visual textures: a holistic exploration using texture analysis, psychological experiment, and perception modeling.

    PubMed

    Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi

    2015-01-01

    Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  13. CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer.

    PubMed

    Lee, Scott J; Zea, Ryan; Kim, David H; Lubner, Meghan G; Deming, Dustin A; Pickhardt, Perry J

    2018-04-01

    To determine if identifiable hepatic textural features are present at abdominal CT in patients with colorectal cancer (CRC) prior to the development of CT-detectable hepatic metastases. Four filtration-histogram texture features (standard deviation, skewness, entropy and kurtosis) were extracted from the liver parenchyma on portal venous phase CT images at staging and post-treatment surveillance. Surveillance scans corresponded to the last scan prior to the development of CT-detectable CRC liver metastases in 29 patients (median time interval, 6 months), and these were compared with interval-matched surveillance scans in 60 CRC patients who did not develop liver metastases. Predictive models of liver metastasis-free survival and overall survival were built using regularised Cox proportional hazards regression. Texture features did not significantly differ between cases and controls. For Cox models using all features as predictors, all coefficients were shrunk to zero, suggesting no association between any CT texture features and outcomes. Prognostic indices derived from entropy features at surveillance CT incorrectly classified patients into risk groups for future liver metastases (p < 0.001). On surveillance CT scans immediately prior to the development of CRC liver metastases, we found no evidence suggesting that changes in identifiable hepatic texture features were predictive of their development. • No correlation between liver texture features and metastasis-free survival was observed. • Liver texture features incorrectly classified patients into risk groups for liver metastases. • Standardised texture analysis workflows need to be developed to improve research reproducibility.

  14. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study.

    PubMed

    Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David

    2018-05-14

    To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.

  15. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results.

    PubMed

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M

    2017-07-01

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.

  16. Textural features for radar image analysis

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  17. Can Laws Be a Potential PET Image Texture Analysis Approach for Evaluation of Tumor Heterogeneity and Histopathological Characteristics in NSCLC?

    PubMed

    Karacavus, Seyhan; Yılmaz, Bülent; Tasdemir, Arzu; Kayaaltı, Ömer; Kaya, Eser; İçer, Semra; Ayyıldız, Oguzhan

    2018-04-01

    We investigated the association between the textural features obtained from 18 F-FDG images, metabolic parameters (SUVmax , SUVmean, MTV, TLG), and tumor histopathological characteristics (stage and Ki-67 proliferation index) in non-small cell lung cancer (NSCLC). The FDG-PET images of 67 patients with NSCLC were evaluated. MATLAB technical computing language was employed in the extraction of 137 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and Laws' texture filters. Textural features and metabolic parameters were statistically analyzed in terms of good discrimination power between tumor stages, and selected features/parameters were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). We showed that one textural feature (gray-level nonuniformity, GLN) obtained using GLRLM approach and nine textural features using Laws' approach were successful in discriminating all tumor stages, unlike metabolic parameters. There were significant correlations between Ki-67 index and some of the textural features computed using Laws' method (r = 0.6, p = 0.013). In terms of automatic classification of tumor stage, the accuracy was approximately 84% with k-NN classifier (k = 3) and SVM, using selected five features. Texture analysis of FDG-PET images has a potential to be an objective tool to assess tumor histopathological characteristics. The textural features obtained using Laws' approach could be useful in the discrimination of tumor stage.

  18. Use of feature extraction techniques for the texture and context information in ERTS imagery: Spectral and textural processing of ERTS imagery. [classification of Kansas land use

    NASA Technical Reports Server (NTRS)

    Haralick, R. H. (Principal Investigator); Bosley, R. J.

    1974-01-01

    The author has identified the following significant results. A procedure was developed to extract cross-band textural features from ERTS MSS imagery. Evolving from a single image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial interrelationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure complements the single image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.

  19. Novel chromatin texture features for the classification of pap smears

    NASA Astrophysics Data System (ADS)

    Bejnordi, Babak E.; Moshavegh, Ramin; Sujathan, K.; Malm, Patrik; Bengtsson, Ewert; Mehnert, Andrew

    2013-03-01

    This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into bloblike texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed structural texture features and a range of different cytology features drawn from the literature, show that two of the four top ranking features are structural texture features. They also show that a combination of structural and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment, using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy associated changes (MACs) in Papanicoloau stain.

  20. Parenchymal Texture Analysis in Digital Breast Tomosynthesis for Breast Cancer Risk Estimation: A Preliminary Study

    PubMed Central

    Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.

    2009-01-01

    Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357

  1. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; van der Laan, G.; Hesjedal, T.

    2017-02-01

    The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.

  2. Observation of topological states in an optical Raman lattice with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Song, Bo; He, Chengdong; Zhang, Long; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    The spin-orbit coupling with cold atoms, especially in optical lattices, provides a versatile platform to investigate the intriguing topological matters. In this talk, we will present the realization of one-dimensional spin-dependent lattice dressed by the periodic Raman field. Ultracold 173Yb fermions loaded into an optical Raman lattice reveal non-trivial spin textures due to the band topology, by which we measured topological invariants and determined a topological phase transition. In addition, we explored the non-equilibrium quench dynamics between the topological and the trivial states by suddenly changing the band topology of the optical Raman lattice. The optical Raman lattice demonstrated here opens a new avenue to study the spin-orbit coupling physics and furthermore to realize novel quantum matters such as symmetry-protected topological states. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  3. Spintronics device made of topological materials

    NASA Astrophysics Data System (ADS)

    Wu, Jiansheng; Shi, Zhangsheng; Wang, Maoji

    Topological Materials is a new state of matter of which the bulk states are gapped insulator or superconductor while the surface states are gapless metallic states. Such surface states are robust against local disorder and impurities due to its nontrivial topology. It induces unusual transport properties and shows nontrivial topological spin texture in real space. We have made use of these two exotic properties to make application in spintronics. For example, we propose to make spin-filter transistor using of 1D or 2D quantum anomalous Hall insulator or 2D topological Weyl semimetal, we also propose a device to measure the spin-polarization of current, a device to generate entangled entangled electron pairs. Startup funds of SUSTC, Shenzhen Peacock Plan, Shenzhen Free Exploration Plan with Grant Number JCYJ20150630145302225.

  4. Texture analysis of apparent diffusion coefficient maps for treatment response assessment in prostate cancer bone metastases-A pilot study.

    PubMed

    Reischauer, Carolin; Patzwahl, René; Koh, Dow-Mu; Froehlich, Johannes M; Gutzeit, Andreas

    2018-04-01

    To evaluate whole-lesion volumetric texture analysis of apparent diffusion coefficient (ADC) maps for assessing treatment response in prostate cancer bone metastases. Texture analysis is performed in 12 treatment-naïve patients with 34 metastases before treatment and at one, two, and three months after the initiation of androgen deprivation therapy. Four first-order and 19 second-order statistical texture features are computed on the ADC maps in each lesion at every time point. Repeatability, inter-patient variability, and changes in the feature values under therapy are investigated. Spearman rank's correlation coefficients are calculated across time to demonstrate the relationship between the texture features and the serum prostate specific antigen (PSA) levels. With few exceptions, the texture features exhibited moderate to high precision. At the same time, Friedman's tests revealed that all first-order and second-order statistical texture features changed significantly in response to therapy. Thereby, the majority of texture features showed significant changes in their values at all post-treatment time points relative to baseline. Bivariate analysis detected significant correlations between the great majority of texture features and the serum PSA levels. Thereby, three first-order and six second-order statistical features showed strong correlations with the serum PSA levels across time. The findings in the present work indicate that whole-tumor volumetric texture analysis may be utilized for response assessment in prostate cancer bone metastases. The approach may be used as a complementary measure for treatment monitoring in conjunction with averaged ADC values. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Laser angle-resolved photoemission as a probe of initial state k z dispersion, final-state band gaps, and spin texture of Dirac states in the Bi 2Te 3 topological insulator

    DOE PAGES

    Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; ...

    2016-10-27

    Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi 2Te 3 using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of themore » topological surface states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state k z dispersion and the presence of delicate gaps in the final state electronic spectrum.« less

  6. Writing and deleting single magnetic skyrmions.

    PubMed

    Romming, Niklas; Hanneken, Christian; Menzel, Matthias; Bickel, Jessica E; Wolter, Boris; von Bergmann, Kirsten; Kubetzka, André; Wiesendanger, Roland

    2013-08-09

    Topologically nontrivial spin textures have recently been investigated for spintronic applications. Here, we report on an ultrathin magnetic film in which individual skyrmions can be written and deleted in a controlled fashion with local spin-polarized currents from a scanning tunneling microscope. An external magnetic field is used to tune the energy landscape, and the temperature is adjusted to prevent thermally activated switching between topologically distinct states. Switching rate and direction can then be controlled by the parameters used for current injection. The creation and annihilation of individual magnetic skyrmions demonstrates the potential for topological charge in future information-storage concepts.

  7. Visual Semantic Based 3D Video Retrieval System Using HDFS.

    PubMed

    Kumar, C Ranjith; Suguna, S

    2016-08-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L 2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

  8. A parametric texture model based on deep convolutional features closely matches texture appearance for humans.

    PubMed

    Wallis, Thomas S A; Funke, Christina M; Ecker, Alexander S; Gatys, Leon A; Wichmann, Felix A; Bethge, Matthias

    2017-10-01

    Our visual environment is full of texture-"stuff" like cloth, bark, or gravel as distinct from "things" like dresses, trees, or paths-and humans are adept at perceiving subtle variations in material properties. To investigate image features important for texture perception, we psychophysically compare a recent parametric model of texture appearance (convolutional neural network [CNN] model) that uses the features encoded by a deep CNN (VGG-19) with two other models: the venerable Portilla and Simoncelli model and an extension of the CNN model in which the power spectrum is additionally matched. Observers discriminated model-generated textures from original natural textures in a spatial three-alternative oddity paradigm under two viewing conditions: when test patches were briefly presented to the near-periphery ("parafoveal") and when observers were able to make eye movements to all three patches ("inspection"). Under parafoveal viewing, observers were unable to discriminate 10 of 12 original images from CNN model images, and remarkably, the simpler Portilla and Simoncelli model performed slightly better than the CNN model (11 textures). Under foveal inspection, matching CNN features captured appearance substantially better than the Portilla and Simoncelli model (nine compared to four textures), and including the power spectrum improved appearance matching for two of the three remaining textures. None of the models we test here could produce indiscriminable images for one of the 12 textures under the inspection condition. While deep CNN (VGG-19) features can often be used to synthesize textures that humans cannot discriminate from natural textures, there is currently no uniformly best model for all textures and viewing conditions.

  9. Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis.

    PubMed

    Garnavi, Rahil; Aldeen, Mohammad; Bailey, James

    2012-11-01

    This paper presents a novel computer-aided diagnosis system for melanoma. The novelty lies in the optimised selection and integration of features derived from textural, borderbased and geometrical properties of the melanoma lesion. The texture features are derived from using wavelet-decomposition, the border features are derived from constructing a boundaryseries model of the lesion border and analysing it in spatial and frequency domains, and the geometry features are derived from shape indexes. The optimised selection of features is achieved by using the Gain-Ratio method, which is shown to be computationally efficient for melanoma diagnosis application. Classification is done through the use of four classifiers; namely, Support Vector Machine, Random Forest, Logistic Model Tree and Hidden Naive Bayes. The proposed diagnostic system is applied on a set of 289 dermoscopy images (114 malignant, 175 benign) partitioned into train, validation and test image sets. The system achieves and accuracy of 91.26% and AUC value of 0.937, when 23 features are used. Other important findings include (i) the clear advantage gained in complementing texture with border and geometry features, compared to using texture information only, and (ii) higher contribution of texture features than border-based features in the optimised feature set.

  10. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm

    PubMed Central

    Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao

    2017-01-01

    To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181

  11. Associations Between PET Textural Features and GLUT1 Expression, and the Prognostic Significance of Textural Features in Lung Adenocarcinoma.

    PubMed

    Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin

    2018-02-01

    We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current

    NASA Astrophysics Data System (ADS)

    Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.

    2018-06-01

    With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.

  13. Spectral dependence of texture features integrated with hyperspectral data for area target classification improvement

    NASA Astrophysics Data System (ADS)

    Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.

    2013-05-01

    Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.

  14. A standardised protocol for texture feature analysis of endoscopic images in gynaecological cancer.

    PubMed

    Neofytou, Marios S; Tanos, Vasilis; Pattichis, Marios S; Pattichis, Constantinos S; Kyriacou, Efthyvoulos C; Koutsouris, Dimitris D

    2007-11-29

    In the development of tissue classification methods, classifiers rely on significant differences between texture features extracted from normal and abnormal regions. Yet, significant differences can arise due to variations in the image acquisition method. For endoscopic imaging of the endometrium, we propose a standardized image acquisition protocol to eliminate significant statistical differences due to variations in: (i) the distance from the tissue (panoramic vs close up), (ii) difference in viewing angles and (iii) color correction. We investigate texture feature variability for a variety of targets encountered in clinical endoscopy. All images were captured at clinically optimum illumination and focus using 720 x 576 pixels and 24 bits color for: (i) a variety of testing targets from a color palette with a known color distribution, (ii) different viewing angles, (iv) two different distances from a calf endometrial and from a chicken cavity. Also, human images from the endometrium were captured and analysed. For texture feature analysis, three different sets were considered: (i) Statistical Features (SF), (ii) Spatial Gray Level Dependence Matrices (SGLDM), and (iii) Gray Level Difference Statistics (GLDS). All images were gamma corrected and the extracted texture feature values were compared against the texture feature values extracted from the uncorrected images. Statistical tests were applied to compare images from different viewing conditions so as to determine any significant differences. For the proposed acquisition procedure, results indicate that there is no significant difference in texture features between the panoramic and close up views and between angles. For a calibrated target image, gamma correction provided an acquired image that was a significantly better approximation to the original target image. In turn, this implies that the texture features extracted from the corrected images provided for better approximations to the original images. Within the proposed protocol, for human ROIs, we have found that there is a large number of texture features that showed significant differences between normal and abnormal endometrium. This study provides a standardized protocol for avoiding any significant texture feature differences that may arise due to variability in the acquisition procedure or the lack of color correction. After applying the protocol, we have found that significant differences in texture features will only be due to the fact that the features were extracted from different types of tissue (normal vs abnormal).

  15. SU-E-J-262: Variability in Texture Analysis of Gynecological Tumors in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Das, S

    Purpose: This study examines the effect on texture analysis due to variable reconstruction of PET images in the context of an adaptive FDG PET protocol for node positive gynecologic cancer patients. By measuring variability in texture features from baseline and intra-treatment PET-CT, we can isolate unreliable texture features due to large variation. Methods: A subset of seven patients with node positive gynecological cancers visible on PET was selected for this study. Prescribed dose varied between 45–50.4Gy, with a 55–70Gy boost to the PET positive nodes. A baseline and intratreatment (between 30–36Gy) PET-CT were obtained on a Siemens Biograph mCT. Eachmore » clinical PET image set was reconstructed 6 times using a TrueX+TOF algorithm with varying iterations and Gaussian filter. Baseline and intra-treatment primary GTVs were segmented using PET Edge (MIM Software Inc., Cleveland, OH), a semi-automatic gradient-based algorithm, on the clinical PET and transferred to the other reconstructed sets. Using an in-house MATLAB program, four 3D texture matrices describing relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 textural features characterizing texture were calculated in addition to SUV histogram features. The percent variability among parameters was first calculated. Each reconstructed texture feature from baseline and intra-treatment per patient was normalized to the clinical baseline scan and compared using the Wilcoxon signed-rank test in order to isolate variations due to reconstruction parameters. Results: For the baseline scans, 13 texture features showed a mean range greater than 10%. For the intra scans, 28 texture features showed a mean range greater than 10%. Comparing baseline to intra scans, 25 texture features showed p <0.05. Conclusion: Variability due to different reconstruction parameters increased with treatment, however, the majority of texture features showed significant changes during treatment independent of reconstruction effects.« less

  16. SU-F-R-45: The Prognostic Value of Radiotherapy Based On the Changes of Texture Features Between Pre-Treatment and Post-Treatment FDG PET Image for NSCLC Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: The purpose of this research is investigating which texture features extracted from FDG-PET images by gray-level co-occurrence matrix(GLCM) have a higher prognostic value than the other texture features. Methods: 21 non-small cell lung cancer(NSCLC) patients were approved in the study. Patients underwent 18F-FDG PET/CT scans with both pre-treatment and post-treatment. Firstly, the tumors were extracted by our house developed software. Secondly, the clinical features including the maximum SUV and tumor volume were extracted by MIM vista software, and texture features including angular second moment, contrast, inverse different moment, entropy and correlation were extracted using MATLAB.The differences can be calculatedmore » by using post-treatment features to subtract pre-treatment features. Finally, the SPSS software was used to get the Pearson correlation coefficients and Spearman rank correlation coefficients between the change ratios of texture features and change ratios of clinical features. Results: The Pearson and Spearman rank correlation coefficient between contrast and SUV maximum is 0.785 and 0.709. The P and S value between inverse difference moment and tumor volume is 0.953 and 0.942. Conclusion: This preliminary study showed that the relationships between different texture features and the same clinical feature are different. Finding the prognostic value of contrast and inverse difference moment were higher than the other three textures extracted by GLCM.« less

  17. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  18. Identification of low variability textural features for heterogeneity quantification of 18F-FDG PET/CT imaging.

    PubMed

    Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I

    To identify those textural features that are insensitive to both technical and biological factors in order to standardise heterogeneity studies on 18 F-FDG PET imaging. Two different studies were performed. First, nineteen series from a cylindrical phantom filled with different 18 F-FDG activity concentration were acquired and reconstructed using three different protocols. Seventy-two texture features were calculated inside a circular region of interest. The variability of each feature was obtained. Second, the data for 15 patients showing non-pathological liver were acquired. Anatomical and physiological features such as patient's weight, height, body mass index, metabolic active volume, blood glucose level, SUV and SUV standard deviation were also recorded. A liver covering region of interest was delineated and low variability textural features calculated in each patient. Finally, a multivariate Spearman's correlation analysis between biological factors and texture features was performed. Only eight texture features analysed show small variability (<5%) with activity concentration and reconstruction protocol making them suitable for heterogeneity quantification. On the other hand, there is a high statistically significant correlation between MAV and entropy (P<0.05). Entropy feature is, indeed, correlated (P<0.05) with all patient parameters, except body mass index. The textural features that are correlated with neither technical nor biological factors are run percentage, short-zone emphasis and intensity, making them suitable for quantifying functional changes or classifying patients. Other textural features are correlated with technical and biological factors and are, therefore, a source of errors if used for this purpose. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  19. Dissociations between Featural versus Conjunction-based Texture Processing in Infancy: Analyses of Three Potential Contributing Factors.

    ERIC Educational Resources Information Center

    Bertin, Evelin; Bhatt, Ramesh S.

    2001-01-01

    Examined three possible explanations for findings that infants detect textural discrepancies based on individual features more readily than on feature conjunctions. Found that none of the proposed factors could explain 5.5-month-olds' superior processing of featural over conjunction-based textural discrepancies. Findings suggest that in infancy,…

  20. Cloud and surface textural features in polar regions

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  1. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  2. Mammographic parenchymal texture as an imaging marker of hormonal activity: a comparative study between pre- and post-menopausal women

    NASA Astrophysics Data System (ADS)

    Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina

    2011-03-01

    Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.

  3. Mammographic phenotypes of breast cancer risk driven by breast anatomy

    NASA Astrophysics Data System (ADS)

    Gastounioti, Aimilia; Oustimov, Andrew; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina

    2017-03-01

    Image-derived features of breast parenchymal texture patterns have emerged as promising risk factors for breast cancer, paving the way towards personalized recommendations regarding women's cancer risk evaluation and screening. The main steps to extract texture features of the breast parenchyma are the selection of regions of interest (ROIs) where texture analysis is performed, the texture feature calculation and the texture feature summarization in case of multiple ROIs. In this study, we incorporate breast anatomy in these three key steps by (a) introducing breast anatomical sampling for the definition of ROIs, (b) texture feature calculation aligned with the structure of the breast and (c) weighted texture feature summarization considering the spatial position and the underlying tissue composition of each ROI. We systematically optimize this novel framework for parenchymal tissue characterization in a case-control study with digital mammograms from 424 women. We also compare the proposed approach with a conventional methodology, not considering breast anatomy, recently shown to enhance the case-control discriminatory capacity of parenchymal texture analysis. The case-control classification performance is assessed using elastic-net regression with 5-fold cross validation, where the evaluation measure is the area under the curve (AUC) of the receiver operating characteristic. Upon optimization, the proposed breast-anatomy-driven approach demonstrated a promising case-control classification performance (AUC=0.87). In the same dataset, the performance of conventional texture characterization was found to be significantly lower (AUC=0.80, DeLong's test p-value<0.05). Our results suggest that breast anatomy may further leverage the associations of parenchymal texture features with breast cancer, and may therefore be a valuable addition in pipelines aiming to elucidate quantitative mammographic phenotypes of breast cancer risk.

  4. Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable?

    NASA Astrophysics Data System (ADS)

    Borri, Claudia; Paggi, Marco

    2015-02-01

    The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what was expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted for by fractal modeling.

  5. Land use classification using texture information in ERTS-A MSS imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.

    1973-01-01

    The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.

  6. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Markel, D; Hegyi, G

    2016-06-15

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with amore » grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image acquisition parameters.« less

  7. Comparing the role of shape and texture on staging hepatic fibrosis from medical imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Louie, Ryan; Liu, Brent J.; Gao, Xin; Tan, Xiaomin; Qu, Xianghe; Long, Liling

    2016-03-01

    The purpose of this study is to investigate the role of shape and texture in the classification of hepatic fibrosis by selecting the optimal parameters for a better Computer-aided diagnosis (CAD) system. 10 surface shape features are extracted from a standardized profile of liver; while15 texture features calculated from gray level co-occurrence matrix (GLCM) are extracted within an ROI in liver. Each combination of these input subsets is checked by using support vector machine (SVM) with leave-one-case-out method to differentiate fibrosis into two groups: normal or abnormal. The accurate rate value of all 10/15 types number of features is 66.83% by texture, while 85.74% by shape features, respectively. The irregularity of liver shape can demonstrate fibrotic grade efficiently and texture feature of CT image is not recommended to use with shape feature for interpretation of cirrhosis.

  8. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT images.

    PubMed

    Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan

    2010-01-01

    Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Tailoring Spin Textures in Complex Oxide Micromagnets

    DOE PAGES

    Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...

    2016-09-12

    Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less

  10. Volume-rendering on a 3D hyperwall: A molecular visualization platform for research, education and outreach.

    PubMed

    MacDougall, Preston J; Henze, Christopher E; Volkov, Anatoliy

    2016-11-01

    We present a unique platform for molecular visualization and design that uses novel subatomic feature detection software in tandem with 3D hyperwall visualization technology. We demonstrate the fleshing-out of pharmacophores in drug molecules, as well as reactive sites in catalysts, focusing on subatomic features. Topological analysis with picometer resolution, in conjunction with interactive volume-rendering of the Laplacian of the electronic charge density, leads to new insight into docking and catalysis. Visual data-mining is done efficiently and in parallel using a 4×4 3D hyperwall (a tiled array of 3D monitors driven independently by slave GPUs but displaying high-resolution, synchronized and functionally-related images). The visual texture of images for a wide variety of molecular systems are intuitive to experienced chemists but also appealing to neophytes, making the platform simultaneously useful as a tool for advanced research as well as for pedagogical and STEM education outreach purposes. Copyright © 2016. Published by Elsevier Inc.

  11. Quantitative diagnosis of tongue cancer from histological images in an animal model

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo G.; Fei, Baowei

    2016-03-01

    We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected from mice was sent for histological processing. Representative areas of hematoxylin and eosin stained tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology features were extracted from the histological images. The combination of image features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.

  12. Space Object Classification Using Fused Features of Time Series Data

    NASA Astrophysics Data System (ADS)

    Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.

    In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.

  13. Quantifying Urban Texture in Nairobi, Kenya and its Implications for Understanding Natural Hazard Impact

    NASA Astrophysics Data System (ADS)

    Taylor, Faith E.; Malamud, Bruce D.; Millington, James D. A.

    2016-04-01

    The configuration of infrastructure networks such as roads, drainage and power lines can both affect and be affected by natural hazards such as earthquakes, intense rain, wildfires and extreme temperatures. In this paper, we present and compare two methods to quantify urban topology on approximate scales of 0.0005 km2 to 10 km2 and create classifications of different 'urban textures' that relate to risk of natural hazard impact in an area. The methods we use focus on applicability in urban developing country settings, where access to high resolution and high quality data may be difficult. We use the city of Nairobi, Kenya to trial these methods. Nairobi has a population >3 million, and is a mix of informal settlements, residential and commercial development. The city and its immediate surroundings are subject to a variety of natural hazards such as floods, landslides, fires, drought, hail, heavy wind and extreme temperatures; all of these hazards can occur singly, but also have the potential for one to trigger another, thus providing a 'cascade' of hazards, or for two of the hazards to occur spatially and temporally near each other and interact. We use two measures of urban texture: (i) Street block textures, (ii) Google Earth land cover textures. Street block textures builds on the methodology of Louf and Barthelemy (2014) and uses Open Street Map data to analyse the shape, size, complexity and pattern of individual blocks of land created by fully enclosed loops of the major and minor road network of Nairobi. We find >4000 of these blocks ranging in size from approximately 0.0005 km2 to 10 km2, with approximately 5 classifications of urban texture. Google Earth land cover texture is a visual classification of homogeneous parcels of land performed in Google Earth using high-resolution airborne imagery and a qualitative criteria for each land cover type. Using the Google Earth land cover texture method, we identify >40 'urban textures' based on visual characteristics such as colour, texture, shadow and setting and have created a clear criteria for classifying an area based on its visual characteristics. These two methods for classifying urban texture in Nairobi are compared in a GIS and in the field to investigate whether there is a link between the visual appearance of an area and its network topology. From these urban textures, we may start to identify areas where (a) urban texture types may indicate a relative propensity to certain hazards and their interactions and (b) urban texture types that may increase or decrease the impact of a hazard that occurs in that area.

  14. Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography.

    PubMed

    Wu, Haifeng; Sun, Tao; Wang, Jingjing; Li, Xia; Wang, Wei; Huo, Da; Lv, Pingxin; He, Wen; Wang, Keyang; Guo, Xiuhua

    2013-08-01

    The objective of this study was to investigate the method of the combination of radiological and textural features for the differentiation of malignant from benign solitary pulmonary nodules by computed tomography. Features including 13 gray level co-occurrence matrix textural features and 12 radiological features were extracted from 2,117 CT slices, which came from 202 (116 malignant and 86 benign) patients. Lasso-type regularization to a nonlinear regression model was applied to select predictive features and a BP artificial neural network was used to build the diagnostic model. Eight radiological and two textural features were obtained after the Lasso-type regularization procedure. Twelve radiological features alone could reach an area under the ROC curve (AUC) of 0.84 in differentiating between malignant and benign lesions. The 10 selected characters improved the AUC to 0.91. The evaluation results showed that the method of selecting radiological and textural features appears to yield more effective in the distinction of malignant from benign solitary pulmonary nodules by computed tomography.

  15. Spin-orbit coupling in ultracold Fermi gases of 173Yb atoms

    NASA Astrophysics Data System (ADS)

    Song, Bo; He, Chengdong; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Cai, Geyue; Amanov, Dovran; Zhang, Shanchao; Jo, Gyu-Boong

    2017-04-01

    Synthetic spin-orbit coupling (SOC) in cold atoms opens an intriguing new way to probe nontrivial topological orders beyond natural conditions. Here, we report the realization of the SOC physics both in a bulk system and in an optical lattice. First, we demonstrate two hallmarks induced from SOC in a bulk system, spin dephasing in the Rabi oscillation and asymmetric atomic distribution in the momentum space respectively. Then we describe the observation of non-trivial spin textures and the determination of the topological phase transition in a spin-dependent optical lattice dressed by the periodic Raman field. Furthermore, we discuss the quench dynamics between topological and trivial states by suddenly changing the band topology. Our work paves a new way to study non-equilibrium topological states in a controlled manner. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants).

  16. Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Shastry, K.; Saniz, Rolando; Makkonen, Ilja; Barbiellini, Bernardo; Assaf, Badih A.; Heiman, Donald; Moodera, Jagadeesh S.; Partoens, Bart; Bansil, Arun; Weiss, A. H.

    2016-09-01

    Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of Eb=2.7 ±0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.

  17. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  18. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.

    PubMed

    Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei

    2016-10-07

    Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Copyright © 2016, American Association for the Advancement of Science.

  19. Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.

    PubMed

    Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W

    2015-11-01

    To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.

  20. Brownian motion curve-based textural classification and its application in cancer diagnosis.

    PubMed

    Mookiah, Muthu Rama Krishnan; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K

    2011-06-01

    To develop an automated diagnostic methodology based on textural features of the oral mucosal epithelium to discriminate normal and oral submucous fibrosis (OSF). A total of 83 normal and 29 OSF images from histopathologic sections of the oral mucosa are considered. The proposed diagnostic mechanism consists of two parts: feature extraction using Brownian motion curve (BMC) and design ofa suitable classifier. The discrimination ability of the features has been substantiated by statistical tests. An error back-propagation neural network (BPNN) is used to classify OSF vs. normal. In development of an automated oral cancer diagnostic module, BMC has played an important role in characterizing textural features of the oral images. Fisher's linear discriminant analysis yields 100% sensitivity and 85% specificity, whereas BPNN leads to 92.31% sensitivity and 100% specificity, respectively. In addition to intensity and morphology-based features, textural features are also very important, especially in histopathologic diagnosis of oral cancer. In view of this, a set of textural features are extracted using the BMC for the diagnosis of OSF. Finally, a textural classifier is designed using BPNN, which leads to a diagnostic performance with 96.43% accuracy. (Anal Quant

  1. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization.

    PubMed

    Molina, David; Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M

    2017-01-01

    Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images.

  2. Wireless majorana fermions: from magnetic tunability to braiding (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fatin, Geoffrey L.; Matos-Abiague, Alex; Scharf, Benedikt; Zutic, Igor

    2016-10-01

    In condensed-matter systems Majorana bound states (MBSs) are emergent quasiparticles with non-Abelian statistics and particle-antiparticle symmetry. While realizing the non-Abelian braiding statistics under exchange would provide both an ultimate proof for MBS existence and the key element for fault-tolerant topological quantum computing, even theoretical schemes imply a significant complexity to implement such braiding. Frequently examined 1D superconductor/semiconductor wires provide a prototypical example of how to produce MBSs, however braiding statistics are ill-defined in 1D and complex wire networks must be used. By placing an array of magnetic tunnel junctions (MTJs) above a 2D electron gas formed in a semiconductor quantum well grown on the surface of an s-wave superconductor, we have predicted the existence of highly tunable zero-energy MBSs and have proposed a novel scheme by which MBSs could be exchanged [1]. This scheme may then be used to demonstrate the states' non-Abelian statistics through braiding. The underlying magnetic textures produced by MTJ array provides a pseudo-helical texture which allows for highly-controllable topological phase transitions. By defining a local condition for topological nontriviality which takes into account the local rotation of magnetic texture, effective wire geometries support MBS formation and permit their controlled movement in 2D by altering the shape and orientation of such wires. This scheme then overcomes the requirement for a network of physical wires in order to exchange MBSs, allowing easier manipulation of such states. [1] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Zutic, arXiv:1510.08182, preprint.

  3. Entropy-Based Adaptive Nuclear Texture Features are Independent Prognostic Markers in a Total Population of Uterine Sarcomas

    PubMed Central

    Nielsen, Birgitte; Hveem, Tarjei Sveinsgjerd; Kildal, Wanja; Abeler, Vera M; Kristensen, Gunnar B; Albregtsen, Fritz; Danielsen, Håvard E; Rohde, Gustavo K

    2015-01-01

    Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated nuclei (monolayers) were prepared from 50 µm tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of each nuclear image and stored in gray level entropy matrices, and two superior adaptive texture features were calculated from each matrix. The 5-year crude survival was significantly higher (P < 0.001) for patients with high texture feature values (72%) than for patients with low feature values (36%). When combining DNA ploidy classification (diploid/nondiploid) and texture (high/low feature value), the patients could be stratified into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios (HR) of 1, 2.3, and 4.1, P < 0.001). Entropy-based adaptive nuclear texture was an independent prognostic marker for crude survival in multivariate analysis including relevant clinicopathological features (HR = 2.1, P = 0.001), and should therefore be considered as a potential prognostic marker in uterine sarcomas. © The Authors. Published 2014 International Society for Advancement of Cytometry PMID:25483227

  4. Accuracy and variability of texture-based radiomics features of lung lesions across CT imaging conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Yuese; Solomon, Justin; Choudhury, Kingshuk; Marin, Daniele; Samei, Ehsan

    2017-03-01

    Texture analysis for lung lesions is sensitive to changing imaging conditions but these effects are not well understood, in part, due to a lack of ground-truth phantoms with realistic textures. The purpose of this study was to explore the accuracy and variability of texture features across imaging conditions by comparing imaged texture features to voxel-based 3D printed textured lesions for which the true values are known. The seven features of interest were based on the Grey Level Co-Occurrence Matrix (GLCM). The lesion phantoms were designed with three shapes (spherical, lobulated, and spiculated), two textures (homogenous and heterogeneous), and two sizes (diameter < 1.5 cm and 1.5 cm < diameter < 3 cm), resulting in 24 lesions (with a second replica of each). The lesions were inserted into an anthropomorphic thorax phantom (Multipurpose Chest Phantom N1, Kyoto Kagaku) and imaged using a commercial CT system (GE Revolution) at three CTDI levels (0.67, 1.42, and 5.80 mGy), three reconstruction algorithms (FBP, IR-2, IR-4), four reconstruction kernel types (standard, soft, edge), and two slice thicknesses (0.6 mm and 5 mm). Another repeat scan was performed. Texture features from these images were extracted and compared to the ground truth feature values by percent relative error. The variability across imaging conditions was calculated by standard deviation across a certain imaging condition for all heterogeneous lesions. The results indicated that the acquisition method has a significant influence on the accuracy and variability of extracted features and as such, feature quantities are highly susceptible to imaging parameter choices. The most influential parameters were slice thickness and reconstruction kernels. Thin slice thickness and edge reconstruction kernel overall produced more accurate and more repeatable results. Some features (e.g., Contrast) were more accurately quantified under conditions that render higher spatial frequencies (e.g., thinner slice thickness and sharp kernels), while others (e.g., Homogeneity) showed more accurate quantification under conditions that render smoother images (e.g., higher dose and smoother kernels). Care should be exercised is relating texture features between cases of varied acquisition protocols, with need to cross calibration dependent on the feature of interest.

  5. Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

    PubMed

    Keller, Brad M; Oustimov, Andrew; Wang, Yan; Chen, Jinbo; Acciavatti, Raymond J; Zheng, Yuanjie; Ray, Shonket; Gee, James C; Maidment, Andrew D A; Kontos, Despina

    2015-04-01

    An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

  6. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment.

    PubMed

    Zheng, Yuanjie; Keller, Brad M; Ray, Shonket; Wang, Yan; Conant, Emily F; Gee, James C; Kontos, Despina

    2015-07-01

    Mammographic percent density (PD%) is known to be a strong risk factor for breast cancer. Recent studies also suggest that parenchymal texture features, which are more granular descriptors of the parenchymal pattern, can provide additional information about breast cancer risk. To date, most studies have measured mammographic texture within selected regions of interest (ROIs) in the breast, which cannot adequately capture the complexity of the parenchymal pattern throughout the whole breast. To better characterize patterns of the parenchymal tissue, the authors have developed a fully automated software pipeline based on a novel lattice-based strategy to extract a range of parenchymal texture features from the entire breast region. Digital mammograms from 106 cases with 318 age-matched controls were retrospectively analyzed. The lattice-based approach is based on a regular grid virtually overlaid on each mammographic image. Texture features are computed from the intersection (i.e., lattice) points of the grid lines within the breast, using a local window centered at each lattice point. Using this strategy, a range of statistical (gray-level histogram, co-occurrence, and run-length) and structural (edge-enhancing, local binary pattern, and fractal dimension) features are extracted. To cover the entire breast, the size of the local window for feature extraction is set equal to the lattice grid spacing and optimized experimentally by evaluating different windows sizes. The association between their lattice-based texture features and breast cancer was evaluated using logistic regression with leave-one-out cross validation and further compared to that of breast PD% and commonly used single-ROI texture features extracted from the retroareolar or the central breast region. Classification performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC). DeLong's test was used to compare the different ROCs in terms of AUC performance. The average univariate performance of the lattice-based features is higher when extracted from smaller than larger window sizes. While not every individual texture feature is superior to breast PD% (AUC: 0.59, STD: 0.03), their combination in multivariate analysis has significantly better performance (AUC: 0.85, STD: 0.02, p < 0.001). The lattice-based texture features also outperform the single-ROI texture features when extracted from the retroareolar or the central breast region (AUC: 0.60-0.74, STD: 0.03). Adding breast PD% does not make a significant performance improvement to the lattice-based texture features or the single-ROI features (p > 0.05). The proposed lattice-based strategy for mammographic texture analysis enables to characterize the parenchymal pattern over the entire breast. As such, these features provide richer information compared to currently used descriptors and may ultimately improve breast cancer risk assessment. Larger studies are warranted to validate these findings and also compare to standard demographic and reproductive risk factors.

  7. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters.

    PubMed

    Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders

    2017-06-22

    In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.

  8. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.

    1998-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and information content contained within these data. A software package known as the Image Characterization and Modeling System (ICAMS) was used to explore how fractal dimension is related to surface texture and pattern. The ICAMS software was verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was measured to investigate the relationship between texture and resolution for different land covers.

  9. Mobility spectrum analytical approach for the type-II Weyl semimetal Td-MoTe2

    NASA Astrophysics Data System (ADS)

    Pei, Q. L.; Luo, X.; Chen, F. C.; Lv, H. Y.; Sun, Y.; Lu, W. J.; Tong, P.; Sheng, Z. G.; Han, Y. Y.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2018-02-01

    The extreme magnetoresistance (XMR) in orthorhombic W/MoTe2 arises from the combination of the perfect electron-hole (e-h) compensation effect and the unique orbital texture topology, which have comprised an intriguing research field in materials physics. Herein, we apply a special analytical approach as a function of mobility (μ-spectrum) without any hypothesis. Based on the interpretations of longitudinal and transverse electric transport of Td-MoTe2, the types and the numbers of carriers can be obtained. There are three observations: the large residual resistivity ratio can be observed in the MoTe2 single crystal sample, which indicates that the studied crystal is of high quality; we observed three electron-pockets and three hole-ones from the μ-spectrum and that the ratio of h/e is much less than 1, which shows that MoTe2 is more e-like; different from the separated peaks obtained from the hole-like μ-spectrum, those of the electron-like one are continuous, which may indicate the topological feature of electron-pockets in Td-MoTe2. The present results may provide an important clue to understanding the mechanism of the XMR effect in Td-MoTe2.

  10. Variations in algorithm implementation among quantitative texture analysis software packages

    NASA Astrophysics Data System (ADS)

    Foy, Joseph J.; Mitta, Prerana; Nowosatka, Lauren R.; Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.; Al-Hallaq, Hania; Armato, Samuel G.

    2018-02-01

    Open-source texture analysis software allows for the advancement of radiomics research. Variations in texture features, however, result from discrepancies in algorithm implementation. Anatomically matched regions of interest (ROIs) that captured normal breast parenchyma were placed in the magnetic resonance images (MRI) of 20 patients at two time points. Six first-order features and six gray-level co-occurrence matrix (GLCM) features were calculated for each ROI using four texture analysis packages. Features were extracted using package-specific default GLCM parameters and using GLCM parameters modified to yield the greatest consistency among packages. Relative change in the value of each feature between time points was calculated for each ROI. Distributions of relative feature value differences were compared across packages. Absolute agreement among feature values was quantified by the intra-class correlation coefficient. Among first-order features, significant differences were found for max, range, and mean, and only kurtosis showed poor agreement. All six second-order features showed significant differences using package-specific default GLCM parameters, and five second-order features showed poor agreement; with modified GLCM parameters, no significant differences among second-order features were found, and all second-order features showed poor agreement. While relative texture change discrepancies existed across packages, these differences were not significant when consistent parameters were used.

  11. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  12. Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    USGS Publications Warehouse

    Bohor, B.F.; Betterton, W.J.; Krogh, T.E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows SEM visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the UPb isotopic system. ?? 1993.

  13. SU-E-J-256: Predicting Metastasis-Free Survival of Rectal Cancer Patients Treated with Neoadjuvant Chemo-Radiotherapy by Data-Mining of CT Texture Features of Primary Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Wang, J; Shen, L

    Purpose: The purpose of this study is to investigate the relationship between computed tomographic (CT) texture features of primary lesions and metastasis-free survival for rectal cancer patients; and to develop a datamining prediction model using texture features. Methods: A total of 220 rectal cancer patients treated with neoadjuvant chemo-radiotherapy (CRT) were enrolled in this study. All patients underwent CT scans before CRT. The primary lesions on the CT images were delineated by two experienced oncologists. The CT images were filtered by Laplacian of Gaussian (LoG) filters with different filter values (1.0–2.5: from fine to coarse). Both filtered and unfiltered imagesmore » were analyzed using Gray-level Co-occurrence Matrix (GLCM) texture analysis with different directions (transversal, sagittal, and coronal). Totally, 270 texture features with different species, directions and filter values were extracted. Texture features were examined with Student’s t-test for selecting predictive features. Principal Component Analysis (PCA) was performed upon the selected features to reduce the feature collinearity. Artificial neural network (ANN) and logistic regression were applied to establish metastasis prediction models. Results: Forty-six of 220 patients developed metastasis with a follow-up time of more than 2 years. Sixtyseven texture features were significantly different in t-test (p<0.05) between patients with and without metastasis, and 12 of them were extremely significant (p<0.001). The Area-under-the-curve (AUC) of ANN was 0.72, and the concordance index (CI) of logistic regression was 0.71. The predictability of ANN was slightly better than logistic regression. Conclusion: CT texture features of primary lesions are related to metastasisfree survival of rectal cancer patients. Both ANN and logistic regression based models can be developed for prediction.« less

  14. In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome.

    PubMed

    Dahdouh, Sonia; Andescavage, Nickie; Yewale, Sayali; Yarish, Alexa; Lanham, Diane; Bulas, Dorothy; du Plessis, Adre J; Limperopoulos, Catherine

    2018-02-01

    To investigate the ability of three-dimensional (3D) MRI placental shape and textural features to predict fetal growth restriction (FGR) and birth weight (BW) for both healthy and FGR fetuses. We recruited two groups of pregnant volunteers between 18 and 39 weeks of gestation; 46 healthy subjects and 34 FGR. Both groups underwent fetal MR imaging on a 1.5 Tesla GE scanner using an eight-channel receiver coil. We acquired T2-weighted images on either the coronal or the axial plane to obtain MR volumes with a slice thickness of either 4 or 8 mm covering the full placenta. Placental shape features (volume, thickness, elongation) were combined with textural features; first order textural features (mean, variance, kurtosis, and skewness of placental gray levels), as well as, textural features computed on the gray level co-occurrence and run-length matrices characterizing placental homogeneity, symmetry, and coarseness. The features were used in two machine learning frameworks to predict FGR and BW. The proposed machine-learning based method using shape and textural features identified FGR pregnancies with 86% accuracy, 77% precision and 86% recall. BW estimations were 0.3 ± 13.4% (mean percentage error ± standard error) for healthy fetuses and -2.6 ± 15.9% for FGR. The proposed FGR identification and BW estimation methods using in utero placental shape and textural features computed on 3D MR images demonstrated high accuracy in our healthy and high-risk cohorts. Future studies to assess the evolution of each feature with regard to placental development are currently underway. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:449-458. © 2017 International Society for Magnetic Resonance in Medicine.

  15. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

    NASA Astrophysics Data System (ADS)

    Vallières, M.; Freeman, C. R.; Skamene, S. R.; El Naqa, I.

    2015-07-01

    This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.

  16. Deep-learning derived features for lung nodule classification with limited datasets

    NASA Astrophysics Data System (ADS)

    Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.

    2018-02-01

    Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.

  17. SU-F-R-18: Updates to the Computational Environment for Radiological Research for Image Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Aditya P.; Deasy, Joseph O.

    2016-06-15

    Purpose: To present new tools in CERR for Texture Analysis and Visualization. Method: (1) Quantitative Image Analysis: We added the ability to compute Haralick texture features based on local neighbourhood. The Texture features depend on many parameters used in their derivation. For example: (a) directionality, (b) quantization of image, (c) patch-size for the neighborhood, (d) handling of the edge voxels within the region of interest, (e) Averaging co-occurance matrix vs texture features for different directions etc. A graphical user interface was built to set these parameters and then visualize their impact on the resulting texture maps. The entire functionality wasmore » written in Matlab. Array indexing was used to speed up the texture calculation. The computation speed is very competitive with the ITK library. Moreover, our implementation works with multiple CPUs and the computation time can be further reduced by using multiple processor threads. In order to reduce the Haralick texture maps into scalar features, we propose the use of Texture Volume Histograms. This lets users make use of the entire distribution of texture values within the region of interest rather than using just the mean and the standard deviations. (2) Qualitative/Visualization tools: The derived texture maps are stored as a new scan (derived) within CERR’s planC data structure. A display that compares various scans was built to show the raw image and the derived texture maps side-by-side. These images are positionally linked and can be navigated together. CERR’s graphics handling was updated and sped-up to be compatible with the newer Matlab versions. As a result, the users can use (a) different window levels and colormaps for different viewports, (b) click-and-drag or use mouse scroll-wheel to navigate slices. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics and Outcomes modeling.« less

  18. Local binary pattern variants-based adaptive texture features analysis for posed and nonposed facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki

    2017-09-01

    Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.

  19. Aesthetics by Numbers: Links between Perceived Texture Qualities and Computed Visual Texture Properties.

    PubMed

    Jacobs, Richard H A H; Haak, Koen V; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W

    2016-01-01

    Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed-and presumably for this reason-the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities-including the aesthetic appreciation-are sufficiently universal to be predicted-with reasonable accuracy-based on the computed feature content of the textures.

  20. Aesthetics by Numbers: Links between Perceived Texture Qualities and Computed Visual Texture Properties

    PubMed Central

    Jacobs, Richard H. A. H.; Haak, Koen V.; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W.

    2016-01-01

    Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed—and presumably for this reason—the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities—including the aesthetic appreciation—are sufficiently universal to be predicted—with reasonable accuracy—based on the computed feature content of the textures. PMID:27493628

  1. Momentum space view of the ultrafast dynamics of surface photocurrents on topological insulators

    NASA Astrophysics Data System (ADS)

    Kuroda, K.; Reimann, J.; Güdde, J.; Höfer, U.

    2017-02-01

    The Dirac-cone surface states of topological insulators are characterized by a chiral spin texture in k-space with the electron spin locked to its parallel momentum. Mid-infrared pump pulses can induce spin-polarized photocurrents in such a topological surface state by optical transitions between the occupied and unoccupied part of the Dirac cone. We monitor the ultrafast dynamics of the corresponding asymmetric electron population in momentum space directly by time- and angle-resolved two-photon photoemission (2PPE). The elastic scattering times of 2.5 ps deduced for Sb2Te3 corresponds to a mean-fee path of 0.75 μm in real space.

  2. Use of feature extraction techniques for the texture and context information in ERTS imagery. [discrimination of land use categories in Kansas from MSS textural-spectral features

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kelly, G. L. (Principal Investigator); Bosley, R. J.

    1973-01-01

    The author has identified the following significant results. The land use category of subimage regions over Kansas within an MSS image can be identified with an accuracy of about 70% using the textural-spectral features of the multi-images from the four MSS bands.

  3. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization

    PubMed Central

    Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M.

    2017-01-01

    Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images. PMID:28586353

  4. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.

    PubMed

    Agner, Shannon C; Soman, Salil; Libfeld, Edward; McDonald, Margie; Thomas, Kathleen; Englander, Sarah; Rosen, Mark A; Chin, Deanna; Nosher, John; Madabhushi, Anant

    2011-06-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91.

  5. The analysis of image feature robustness using cometcloud

    PubMed Central

    Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin

    2012-01-01

    The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759

  6. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis

    NASA Astrophysics Data System (ADS)

    Leijenaar, Ralph T. H.; Nalbantov, Georgi; Carvalho, Sara; van Elmpt, Wouter J. C.; Troost, Esther G. C.; Boellaard, Ronald; Aerts, Hugo J. W. L.; Gillies, Robert J.; Lambin, Philippe

    2015-08-01

    FDG-PET-derived textural features describing intra-tumor heterogeneity are increasingly investigated as imaging biomarkers. As part of the process of quantifying heterogeneity, image intensities (SUVs) are typically resampled into a reduced number of discrete bins. We focused on the implications of the manner in which this discretization is implemented. Two methods were evaluated: (1) RD, dividing the SUV range into D equally spaced bins, where the intensity resolution (i.e. bin size) varies per image; and (2) RB, maintaining a constant intensity resolution B. Clinical feasibility was assessed on 35 lung cancer patients, imaged before and in the second week of radiotherapy. Forty-four textural features were determined for different D and B for both imaging time points. Feature values depended on the intensity resolution and out of both assessed methods, RB was shown to allow for a meaningful inter- and intra-patient comparison of feature values. Overall, patients ranked differently according to feature values-which was used as a surrogate for textural feature interpretation-between both discretization methods. Our study shows that the manner of SUV discretization has a crucial effect on the resulting textural features and the interpretation thereof, emphasizing the importance of standardized methodology in tumor texture analysis.

  7. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-11-01

    In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  8. Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2018-03-01

    Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.

  9. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, David V.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas; Tucker, Susan L.

    2014-11-15

    Purpose: To determine whether pretreatment CT texture features can improve patient risk stratification beyond conventional prognostic factors (CPFs) in stage III non-small cell lung cancer (NSCLC). Methods and Materials: We retrospectively reviewed 91 cases with stage III NSCLC treated with definitive chemoradiation therapy. All patients underwent pretreatment diagnostic contrast enhanced computed tomography (CE-CT) followed by 4-dimensional CT (4D-CT) for treatment simulation. We used the average-CT and expiratory (T50-CT) images from the 4D-CT along with the CE-CT for texture extraction. Histogram, gradient, co-occurrence, gray tone difference, and filtration-based techniques were used for texture feature extraction. Penalized Cox regression implementing cross-validation wasmore » used for covariate selection and modeling. Models incorporating texture features from the 33 image types and CPFs were compared to those with models incorporating CPFs alone for overall survival (OS), local-regional control (LRC), and freedom from distant metastases (FFDM). Predictive Kaplan-Meier curves were generated using leave-one-out cross-validation. Patients were stratified based on whether their predicted outcome was above or below the median. Reproducibility of texture features was evaluated using test-retest scans from independent patients and quantified using concordance correlation coefficients (CCC). We compared models incorporating the reproducibility seen on test-retest scans to our original models and determined the classification reproducibility. Results: Models incorporating both texture features and CPFs demonstrated a significant improvement in risk stratification compared to models using CPFs alone for OS (P=.046), LRC (P=.01), and FFDM (P=.005). The average CCCs were 0.89, 0.91, and 0.67 for texture features extracted from the average-CT, T50-CT, and CE-CT, respectively. Incorporating reproducibility within our models yielded 80.4% (±3.7% SD), 78.3% (±4.0% SD), and 78.8% (±3.9% SD) classification reproducibility in terms of OS, LRC, and FFDM, respectively. Conclusions: Pretreatment tumor texture may provide prognostic information beyond that obtained from CPFs. Models incorporating feature reproducibility achieved classification rates of ∼80%. External validation would be required to establish texture as a prognostic factor.« less

  10. An improved high order texture features extraction method with application to pathological diagnosis of colon lesions for CT colonography

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Zhang, Guopeng; Lu, Hongbing; Wang, Huafeng; Han, Fangfang; Zhu, Wei; Liang, Zhengrong

    2014-03-01

    Differentiation of colon lesions according to underlying pathology, e.g., neoplastic and non-neoplastic, is of fundamental importance for patient management. Image intensity based textural features have been recognized as a useful biomarker for the differentiation task. In this paper, we introduce high order texture features, beyond the intensity, such as gradient and curvature, for that task. Based on the Haralick texture analysis method, we introduce a virtual pathological method to explore the utility of texture features from high order differentiations, i.e., gradient and curvature, of the image intensity distribution. The texture features were validated on database consisting of 148 colon lesions, of which 35 are non-neoplastic lesions, using the random forest classifier and the merit of area under the curve (AUC) of the receiver operating characteristics. The results show that after applying the high order features, the AUC was improved from 0.8069 to 0.8544 in differentiating non-neoplastic lesion from neoplastic ones, e.g., hyperplastic polyps from tubular adenomas, tubulovillous adenomas and adenocarcinomas. The experimental results demonstrated that texture features from the higher order images can significantly improve the classification accuracy in pathological differentiation of colorectal lesions. The gain in differentiation capability shall increase the potential of computed tomography (CT) colonography for colorectal cancer screening by not only detecting polyps but also classifying them from optimal polyp management for the best outcome in personalized medicine.

  11. Topological numbering of features on a mesh

    NASA Technical Reports Server (NTRS)

    Atallah, Mikhail J.; Hambrusch, Susanne E.; Tewinkel, Lynn E.

    1988-01-01

    Assume a nxn binary image is given containing horizontally convex features; i.e., for each feature, each of its row's pixels form an interval on that row. The problem of assigning topological numbers to such features is considered; i.e., assign a number to every feature f so that all features to the left of f have a smaller number assigned to them. This problem arises in solutions to the stereo matching problem. A parallel algorithm to solve the topological numbering problem in O(n) time on an nxn mesh of processors is presented. The key idea of the solution is to create a tree from which the topological numbers can be obtained even though the tree does not uniquely represent the to the left of relationship of the features.

  12. A Fourier-based textural feature extraction procedure

    NASA Technical Reports Server (NTRS)

    Stromberg, W. D.; Farr, T. G.

    1986-01-01

    A procedure is presented to discriminate and characterize regions of uniform image texture. The procedure utilizes textural features consisting of pixel-by-pixel estimates of the relative emphases of annular regions of the Fourier transform. The utility and derivation of the features are described through presentation of a theoretical justification of the concept followed by a heuristic extension to a real environment. Two examples are provided that validate the technique on synthetic images and demonstrate its applicability to the discrimination of geologic texture in a radar image of a tropical vegetated area.

  13. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  14. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma.

    PubMed

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A; Glas, Martin

    2017-01-31

    Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression.

  15. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans.

    PubMed

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  16. A neural network detection model of spilled oil based on the texture analysis of SAR image

    NASA Astrophysics Data System (ADS)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  17. Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.; Betterton, W. J.; Krogh, T. E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows scanning electron microscope (SEM) visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the U-Pb isotopic system.

  18. TU-D-207B-03: Early Assessment of Response to Chemoradiotherapy Based On Textural Analysis of Pre and Mid-Treatment FDG-PET Image in Locally Advanced Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Y; Pollom, E; Loo, B

    Purpose: To evaluate whether tumor textural features extracted from both pre- and mid-treatment FDG-PET images predict early response to chemoradiotherapy in locally advanced head and neck cancer, and investigate whether they provide complementary value to conventional volume-based measurements. Methods: Ninety-four patients with locally advanced head and neck cancers were retrospectively studied. All patients received definitive chemoradiotherapy and underwent FDG-PET planning scans both before and during treatment. Within the primary tumor we extracted 6 textural features based on gray-level co-occurrence matrices (GLCM): entropy, dissimilarity, contrast, correlation, energy, and homogeneity. These image features were evaluated for their predictive power of treatment responsemore » to chemoradiotherapy in terms of local recurrence free survival (LRFS) and progression free survival (PFS). Logrank test were used to assess the statistical significance of the stratification between low- and high-risk groups. P-values were adjusted for multiple comparisons by the false discovery rate (FDR) method. Results: All six textural features extracted from pre-treatment PET images significantly differentiated low- and high-risk patient groups for LRFS (P=0.011–0.038) and PFS (P=0.029–0.034). On the other hand, none of the textural features on mid-treatment PET images was statistically significant in stratifying LRFS (P=0.212–0.445) or PFS (P=0.168–0.299). An imaging signature that combines textural feature (GLCM homogeneity) and metabolic tumor volume showed an improved performance for predicting LRFS (hazard ratio: 22.8, P<0.0001) and PFS (hazard ratio: 13.9, P=0.0005) in leave-one-out cross validation. Intra-tumor heterogeneity measured by textural features was significantly lower in mid-treatment PET images than in pre-treatment PET images (T-test: P<1.4e-6). Conclusion: Tumor textural features on pretreatment FDG-PET images are predictive for response to chemoradiotherapy in locally advanced head and neck cancer. The complementary information offered by textural features improves patient stratification and may potentially aid in personalized risk-adaptive therapy.« less

  19. Streamlined approach to mapping the magnetic induction of skyrmionic materials.

    PubMed

    Chess, Jordan J; Montoya, Sergio A; Harvey, Tyler R; Ophus, Colin; Couture, Simon; Lomakin, Vitaliy; Fullerton, Eric E; McMorran, Benjamin J

    2017-06-01

    Recently, Lorentz transmission electron microscopy (LTEM) has helped researchers advance the emerging field of magnetic skyrmions. These magnetic quasi-particles, composed of topologically non-trivial magnetization textures, have a large potential for application as information carriers in low-power memory and logic devices. LTEM is one of a very few techniques for direct, real-space imaging of magnetic features at the nanoscale. For Fresnel-contrast LTEM, the transport of intensity equation (TIE) is the tool of choice for quantitative reconstruction of the local magnetic induction through the sample thickness. Typically, this analysis requires collection of at least three images. Here, we show that for uniform, thin, magnetic films, which includes many skyrmionic samples, the magnetic induction can be quantitatively determined from a single defocused image using a simplified TIE approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Functional Adaptation of the Calcaneus in Historical Foot Binding

    PubMed Central

    Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah

    2017-01-01

    ABSTRACT The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock‐dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long‐sought‐after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc. PMID:28561380

  1. Functional Adaptation of the Calcaneus in Historical Foot Binding.

    PubMed

    Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah; Stevens, Molly M

    2017-09-01

    The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock-dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long-sought-after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  2. SU-F-R-32: Evaluation of MRI Acquisition Parameter Variations On Texture Feature Extraction Using ACR Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, J; Wang, C

    Purpose: To investigate the sensitivity of classic texture features to variations of MRI acquisition parameters. Methods: This study was performed on American College of Radiology (ACR) MRI Accreditation Program Phantom. MR imaging was acquired on a GE 750 3T scanner with XRM explain gradient, employing a T1-weighted images (TR/TE=500/20ms) with the following parameters as the reference standard: number of signal average (NEX) = 1, matrix size = 256×256, flip angle = 90°, slice thickness = 5mm. The effect of the acquisition parameters on texture features with and without non-uniformity correction were investigated respectively, while all the other parameters were keptmore » as reference standard. Protocol parameters were set as follows: (a). NEX = 0.5, 2 and 4; (b).Phase encoding steps = 128, 160 and 192; (c). Matrix size = 128×128, 192×192 and 512×512. 32 classic texture features were generated using the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from each image data set. Normalized range ((maximum-minimum)/mean) was calculated to determine variation among the scans with different protocol parameters. Results: For different NEX, 31 out of 32 texture features’ range are within 10%. For different phase encoding steps, 31 out of 32 texture features’ range are within 10%. For different acquisition matrix size without non-uniformity correction, 14 out of 32 texture features’ range are within 10%; for different acquisition matrix size with non-uniformity correction, 16 out of 32 texture features’ range are within 10%. Conclusion: Initial results indicated that those texture features that range within 10% are less sensitive to variations in T1-weighted MRI acquisition parameters. This might suggest that certain texture features might be more reliable to be used as potential biomarkers in MR quantitative image analysis.« less

  3. Texture analysis based on the Hermite transform for image classification and segmentation

    NASA Astrophysics Data System (ADS)

    Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus

    2012-06-01

    Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.

  4. SU-F-R-35: Repeatability of Texture Features in T1- and T2-Weighted MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahon, R; Weiss, E; Karki, K

    Purpose: To evaluate repeatability of lung tumor texture features from inspiration/expiration MR image pairs for potential use in patient specific care models and applications. Repeatability is a desirable and necessary characteristic of features included in such models. Methods: T1-weighted Volumetric Interpolation Breath-Hold Examination (VIBE) and/or T2-weighted MRI scans were acquired for 15 patients with non-small cell lung cancer before and during radiotherapy for a total of 32 and 34 same session inspiration-expiration breath-hold image pairs respectively. Bias correction was applied to the VIBE (VIBE-BC) and T2-weighted (T2-BC) images. Fifty-nine texture features at five wavelet decomposition ratios were extracted from themore » delineated primary tumor including: histogram(HIST), gray level co-occurrence matrix(GLCM), gray level run length matrix(GLRLM), gray level size zone matrix(GLSZM), and neighborhood gray tone different matrix (NGTDM) based features. Repeatability of the texture features for VIBE, VIBE-BC, T2-weighted, and T2-BC image pairs was evaluated by the concordance correlation coefficient (CCC) between corresponding image pairs, with a value greater than 0.90 indicating repeatability. Results: For the VIBE image pairs, the percentage of repeatable texture features by wavelet ratio was between 20% and 24% of the 59 extracted features; the T2-weighted image pairs exhibited repeatability in the range of 44–49%. The percentage dropped to 10–20% for the VIBE-BC images, and 12–14% for the T2-BC images. In addition, five texture features were found to be repeatable in all four image sets including two GLRLM, two GLZSM, and one NGTDN features. No single texture feature category was repeatable among all three image types; however, certain categories performed more consistently on a per image type basis. Conclusion: We identified repeatable texture features on T1- and T2-weighted MRI scans. These texture features should be further investigated for use in specific applications such as tissue classification and changes during radiation therapy utilizing a standard imaging protocol. Authors have the following disclosures: a research agreement with Philips Medical systems (Hugo, Weiss), a license agreement with Varian Medical Systems (Hugo, Weiss), research grants from the National Institute of Health (Hugo, Weiss), UpToDate royalties (Weiss), and none(Mahon, Ford, Karki). Authors have no potential conflicts of interest to disclose.« less

  5. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis.

    PubMed

    Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu

    2015-01-01

    The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Texture analysis of aeromagnetic data for enhancing geologic features using co-occurrence matrices in Elallaqi area, South Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Eldosouky, Ahmed M.; Elkhateeb, Sayed O.

    2018-06-01

    Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.

  7. Freezing effect on bread appearance evaluated by digital imaging

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.

    1999-01-01

    In marketing channels, bread is sometimes delivered in a frozen sate for distribution. Changes occur in physical dimensions, crumb grain and appearance of slices. Ten loaves, twelve bread slices per loaf were scanned for digital image analysis and then frozen in a commercial refrigerator. The bread slices were stored for four weeks scanned again, permitted to thaw and scanned a third time. Image features were extracted, to determine shape, size and image texture of the slices. Different thresholds of grey levels were set to detect changes that occurred in crumb, images were binarized at these settings. The number of pixels falling into these gray level settings were determined for each slice. Image texture features of subimages of each slice were calculated to quantify slice crumb grain. The image features of the slice size showed shrinking of bread slices, as a results of freezing and storage, although shape of slices did not change markedly. Visible crumb texture changes occurred and these changes were depicted by changes in image texture features. Image texture features showed that slice crumb changed differently at the center of a slice compared to a peripheral area close to the crust. Image texture and slice features were sufficient for discrimination of slices before and after freezing and after thawing.

  8. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.

    PubMed

    Owerre, S A

    2017-01-25

    Topological magnon bands and magnon Hall effect in insulating collinear ferromagnets are induced by the Dzyaloshinskii-Moriya interaction (DMI) even at zero magnetic field. In the geometrically frustrated star lattice, a coplanar/noncollinear [Formula: see text] magnetic ordering may be present due to spin frustration. This magnetic structure, however, does not exhibit topological magnon effects even with DMI in contrast to collinear ferromagnets. We show that a magnetic field applied perpendicular to the star plane induces a non-coplanar spin configuration with nonzero spin scalar chirality, which provides topological effects without the need of DMI. The non-coplanar spin texture originates from the topology of the spin configurations and does not need the presence of DMI or magnetic ordering, which suggests that this phenomenon may be present in the chiral spin liquid phases of frustrated magnetic systems. We propose that these anomalous topological magnon effects can be accessible in polymeric iron (III) acetate-a star-lattice antiferromagnet with both spin frustration and long-range magnetic ordering.

  9. STM Studies of Spin-­Orbit Coupled Phases in Real-­ and Momentum-­Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavan, Vidya

    The recently discovered class of spin-orbit coupled materials with interesting topological character are fascinating both from fundamental as well as application point of view. Two striking examples are 3D topological insulators (TIs) and topological crystalline insulators (TCIs). These materials host linearly dispersing (Dirac like) surface states with an odd number of Dirac nodes and are predicted to carry a quantized half-integer value of the axion field. The non-trivial topological properties of TIs and TCIs arise from strong spin-orbit coupling leading to an inverted band structure; which also leads to the chiral spin texture in momentum space. In this project wemore » used low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) to study materials with topological phases in real- and momentum-space. We studied both single crystals and thin films of topological materials which are susceptible to being tuned by doping, strain or gating, allowing us to explore their physical properties in the most interesting regimes and set the stage for future technological applications. .« less

  10. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Craciunescu, O

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% thresholdmore » and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should be used complimentary to SUV metrics, especially when using gradient based segmentation.« less

  11. Image ratio features for facial expression recognition application.

    PubMed

    Song, Mingli; Tao, Dacheng; Liu, Zicheng; Li, Xuelong; Zhou, Mengchu

    2010-06-01

    Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e.g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.

  12. Cloud field classification based on textural features

    NASA Technical Reports Server (NTRS)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.

  13. Optical Lattice Gases of Interacting Fermions

    DTIC Science & Technology

    2015-12-02

    artificial gauge fields or spin-orbit coupling. This topological insulator phase turns into a topological superconductor featuring Majorana zero modes at... superconductors , are a prototypical topological superfluid. Despite its conceptually different origin, the state found by the research team for s-wave...release 2 external field [7]. A Weyl superconductor or superfluid is a gapless topological state of matter that features nontrivial (hedgehog

  14. Time-frequency feature representation using multi-resolution texture analysis and acoustic activity detector for real-life speech emotion recognition.

    PubMed

    Wang, Kun-Ching

    2015-01-14

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.

  15. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma

    PubMed Central

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C.; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A.; Glas, Martin

    2017-01-01

    Rationale Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Methods Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Results Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Principal Conclusions Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression. PMID:28030820

  16. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading.

    PubMed

    Xie, Tian; Chen, Xiao; Fang, Jingqin; Kang, Houyi; Xue, Wei; Tong, Haipeng; Cao, Peng; Wang, Sumei; Yang, Yizeng; Zhang, Weiguo

    2018-04-01

    Presurgical glioma grading by dynamic contrast-enhanced MRI (DCE-MRI) has unresolved issues. The aim of this study was to investigate the ability of textural features derived from pharmacokinetic model-based or model-free parameter maps of DCE-MRI in discriminating between different grades of gliomas, and their correlation with pathological index. Retrospective. Forty-two adults with brain gliomas. 3.0T, including conventional anatomic sequences and DCE-MRI sequences (variable flip angle T1-weighted imaging and three-dimensional gradient echo volumetric imaging). Regions of interest on the cross-sectional images with maximal tumor lesion. Five commonly used textural features, including Energy, Entropy, Inertia, Correlation, and Inverse Difference Moment (IDM), were generated. All textural features of model-free parameters (initial area under curve [IAUC], maximal signal intensity [Max SI], maximal up-slope [Max Slope]) could effectively differentiate between grade II (n = 15), grade III (n = 13), and grade IV (n = 14) gliomas (P < 0.05). Two textural features, Entropy and IDM, of four DCE-MRI parameters, including Max SI, Max Slope (model-free parameters), vp (Extended Tofts), and vp (Patlak) could differentiate grade III and IV gliomas (P < 0.01) in four measurements. Both Entropy and IDM of Patlak-based K trans and vp could differentiate grade II (n = 15) from III (n = 13) gliomas (P < 0.01) in four measurements. No textural features of any DCE-MRI parameter maps could discriminate between subtypes of grade II and III gliomas (P < 0.05). Both Entropy and IDM of Extended Tofts- and Patlak-based vp showed highest area under curve in discriminating between grade III and IV gliomas. However, intraclass correlation coefficient (ICC) of these features revealed relatively lower inter-observer agreement. No significant correlation was found between microvascular density and textural features, compared with a moderate correlation found between cellular proliferation index and those features. Textural features of DCE-MRI parameter maps displayed a good ability in glioma grading. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1099-1111. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm.

    PubMed

    Banchhor, Sumit K; Londhe, Narendra D; Araki, Tadashi; Saba, Luca; Radeva, Petia; Laird, John R; Suri, Jasjit S

    2017-12-01

    Planning of percutaneous interventional procedures involves a pre-screening and risk stratification of the coronary artery disease. Current screening tools use stand-alone plaque texture-based features and therefore lack the ability to stratify the risk. This IRB approved study presents a novel strategy for coronary artery disease risk stratification using an amalgamation of IVUS plaque texture-based and wall-based measurement features. Due to common genetic plaque makeup, carotid plaque burden was chosen as a gold standard for risk labels during training-phase of machine learning (ML) paradigm. Cross-validation protocol was adopted to compute the accuracy of the ML framework. A set of 59 plaque texture-based features was padded with six wall-based measurement features to show the improvement in stratification accuracy. The ML system was executed using principle component analysis-based framework for dimensionality reduction and uses support vector machine classifier for training and testing-phases. The ML system produced a stratification accuracy of 91.28%, demonstrating an improvement of 5.69% when wall-based measurement features were combined with plaque texture-based features. The fused system showed an improvement in mean sensitivity, specificity, positive predictive value, and area under the curve by: 6.39%, 4.59%, 3.31% and 5.48%, respectively when compared to the stand-alone system. While meeting the stability criteria of 5%, the ML system also showed a high average feature retaining power and mean reliability of 89.32% and 98.24%, respectively. The ML system showed an improvement in risk stratification accuracy when the wall-based measurement features were fused with the plaque texture-based features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Spintronic signatures of Klein tunneling in topological insulators

    NASA Astrophysics Data System (ADS)

    Xie, Yunkun; Tan, Yaohua; Ghosh, Avik W.

    2017-11-01

    Klein tunneling, the perfect transmission of normally incident Dirac electrons across a potential barrier, has been widely studied in graphene and explored to design switches, albeit indirectly. We show an alternative way to directly measure Klein tunneling for spin-momentum locked electrons crossing a PN junction along a three-dimensional topological insulator surface. In these topological insulator PN junctions (TIPNJs), the spin texture and momentum distribution of transmitted electrons can be measured electrically using a ferromagnetic probe for varying gate voltages and angles of current injection. Based on transport models across a TIPNJ, we show that the asymmetry in the potentiometric signal between PP and PN junctions and its overall angular dependence serve as a direct signature of Klein tunneling.

  19. Fermiology and Superconductivity of Topological Surface States in PdTe2

    NASA Astrophysics Data System (ADS)

    Clark, O. J.; Neat, M. J.; Okawa, K.; Bawden, L.; Marković, I.; Mazzola, F.; Feng, J.; Sunko, V.; Riley, J. M.; Meevasana, W.; Fujii, J.; Vobornik, I.; Kim, T. K.; Hoesch, M.; Sasagawa, T.; Wahl, P.; Bahramy, M. S.; King, P. D. C.

    2018-04-01

    We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2 , we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.

  20. Interplay between bulk and edge-bound topological defects in a square micromagnet

    DOE PAGES

    Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.; ...

    2018-01-22

    A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less

  1. Interplay between bulk and edge-bound topological defects in a square micromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.

    A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less

  2. Persistence of a surface state arc in the topologically trivial phase of MoTe2

    NASA Astrophysics Data System (ADS)

    Crepaldi, A.; Autès, G.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cilento, F.; Vobornik, I.; Fujii, J.; Bugnon, Ph.; Magrez, A.; Berger, H.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.

    2017-01-01

    The prediction of Weyl fermions in the low-temperature noncentrosymmetric 1 T' phase of MoTe2 still awaits clear experimental confirmation. Here, we report angle-resolved photoemission (ARPES) data and ab initio calculations that reveal a surface state arc dispersing between the valence and the conduction band, as expected for a Weyl semimetal. However, we find that the arc survives in the high-temperature centrosymmetric 1 T'' phase. Therefore, a surface Fermi arc is not an unambiguous fingerprint of a topologically nontrivial phase. We have also investigated the surface state spin texture of the 1 T' phase by spin-resolved ARPES, and identified additional topologically trivial spin-split states within the projected band gap at higher binding energies.

  3. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters.

    PubMed

    Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert

    2010-10-01

    Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation.

  4. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    PubMed Central

    GALAVIS, PAULINA E.; HOLLENSEN, CHRISTIAN; JALLOW, NGONEH; PALIWAL, BHUDATT; JERAJ, ROBERT

    2014-01-01

    Background Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45–60 minutes post-injection of 10 mCi of [18F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation. PMID:20831489

  5. Direct observation of the skyrmion Hall effect

    DOE PAGES

    Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang; ...

    2016-09-19

    The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less

  6. Direct observation of the skyrmion Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang

    The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less

  7. Histogram-based adaptive gray level scaling for texture feature classification of colorectal polyps

    NASA Astrophysics Data System (ADS)

    Pomeroy, Marc; Lu, Hongbing; Pickhardt, Perry J.; Liang, Zhengrong

    2018-02-01

    Texture features have played an ever increasing role in computer aided detection (CADe) and diagnosis (CADx) methods since their inception. Texture features are often used as a method of false positive reduction for CADe packages, especially for detecting colorectal polyps and distinguishing them from falsely tagged residual stool and healthy colon wall folds. While texture features have shown great success there, the performance of texture features for CADx have lagged behind primarily because of the more similar features among different polyps types. In this paper, we present an adaptive gray level scaling and compare it to the conventional equal-spacing of gray level bins. We use a dataset taken from computed tomography colonography patients, with 392 polyp regions of interest (ROIs) identified and have a confirmed diagnosis through pathology. Using the histogram information from the entire ROI dataset, we generate the gray level bins such that each bin contains roughly the same number of voxels Each image ROI is the scaled down to two different numbers of gray levels, using both an equal spacing of Hounsfield units for each bin, and our adaptive method. We compute a set of texture features from the scaled images including 30 gray level co-occurrence matrix (GLCM) features and 11 gray level run length matrix (GLRLM) features. Using a random forest classifier to distinguish between hyperplastic polyps and all others (adenomas and adenocarcinomas), we find that the adaptive gray level scaling can improve performance based on the area under the receiver operating characteristic curve by up to 4.6%.

  8. Computer-aided diagnosis with textural features for breast lesions in sonograms.

    PubMed

    Chen, Dar-Ren; Huang, Yu-Len; Lin, Sheng-Hsiung

    2011-04-01

    Computer-aided diagnosis (CAD) systems provided second beneficial support reference and enhance the diagnostic accuracy. This paper was aimed to develop and evaluate a CAD with texture analysis in the classification of breast tumors for ultrasound images. The ultrasound (US) dataset evaluated in this study composed of 1020 sonograms of region of interest (ROI) subimages from 255 patients. Two-view sonogram (longitudinal and transverse views) and four different rectangular regions were utilized to analyze each tumor. Six practical textural features from the US images were performed to classify breast tumors as benign or malignant. However, the textural features always perform as a high dimensional vector; high dimensional vector is unfavorable to differentiate breast tumors in practice. The principal component analysis (PCA) was used to reduce the dimension of textural feature vector and then the image retrieval technique was performed to differentiate between benign and malignant tumors. In the experiments, all the cases were sampled with k-fold cross-validation (k=10) to evaluate the performance with receiver operating characteristic (ROC) curve. The area (A(Z)) under the ROC curve for the proposed CAD system with the specific textural features was 0.925±0.019. The classification ability for breast tumor with textural information is satisfactory. This system differentiates benign from malignant breast tumors with a good result and is therefore clinically useful to provide a second opinion. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Bayesian Fusion of Color and Texture Segmentations

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto

    2000-01-01

    In many applications one would like to use information from both color and texture features in order to segment an image. We propose a novel technique to combine "soft" segmentations computed for two or more features independently. Our algorithm merges models according to a mean entropy criterion, and allows to choose the appropriate number of classes for the final grouping. This technique also allows to improve the quality of supervised classification based on one feature (e.g. color) by merging information from unsupervised segmentation based on another feature (e.g., texture.)

  10. Hybrid texture generator

    NASA Astrophysics Data System (ADS)

    Miyata, Kazunori; Nakajima, Masayuki

    1995-04-01

    A method is given for synthesizing a texture by using the interface of a conventional drawing tool. The majority of conventional texture generation methods are based on the procedural approach, and can generate a variety of textures that are adequate for generating a realistic image. But it is hard for a user to imagine what kind of texture will be generated simply by looking at its parameters. Furthermore, it is difficult to design a new texture freely without a knowledge of all the procedures for texture generation. Our method offers a solution to these problems, and has the following four merits: First, a variety of textures can be obtained by combining a set of feature lines and attribute functions. Second, data definitions are flexible. Third, the user can preview a texture together with its feature lines. Fourth, people can design their own textures interactively and freely by using the interface of a conventional drawing tool. For users who want to build this texture generation method into their own programs, we also give the language specifications for generating a texture. This method can interactively provide a variety of textures, and can also be used for typographic design.

  11. Classification of pre-sliced pork and Turkey ham qualities based on image colour and textural features and their relationships with consumer responses.

    PubMed

    Iqbal, Abdullah; Valous, Nektarios A; Mendoza, Fernando; Sun, Da-Wen; Allen, Paul

    2010-03-01

    Images of three qualities of pre-sliced pork and Turkey hams were evaluated for colour and textural features to characterize and classify them, and to model the ham appearance grading and preference responses of a group of consumers. A total of 26 colour features and 40 textural features were extracted for analysis. Using Mahalanobis distance and feature inter-correlation analyses, two best colour [mean of S (saturation in HSV colour space), std. deviation of b*, which indicates blue to yellow in L*a*b* colour space] and three textural features [entropy of b*, contrast of H (hue of HSV colour space), entropy of R (red of RGB colour space)] for pork, and three colour (mean of R, mean of H, std. deviation of a*, which indicates green to red in L*a*b* colour space) and two textural features [contrast of B, contrast of L* (luminance or lightness in L*a*b* colour space)] for Turkey hams were selected as features with the highest discriminant power. High classification performances were reached for both types of hams (>99.5% for pork and >90.5% for Turkey) using the best selected features or combinations of them. In spite of the poor/fair agreement among ham consumers as determined by Kappa analysis (Kappa-value<0.4) for sensory grading (surface colour, colour uniformity, bitonality, texture appearance and acceptability), a dichotomous logistic regression model using the best image features was able to explain the variability of consumers' responses for all sensorial attributes with accuracies higher than 74.1% for pork hams and 83.3% for Turkey hams. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Extraction of texture features with a multiresolution neural network

    NASA Astrophysics Data System (ADS)

    Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.

    1992-09-01

    Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.

  13. Diagnostic Performance of Mammographic Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors.

    PubMed

    Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming

    2017-11-09

    The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P < .05). The area under the ROC (AUROC) of histogram, GLCM, and RLM were 0.800, 0.787, and 0.761, with no differences between them (P > .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P < .05). Mammographic texture analysis is a reliable technique for differential diagnosis of benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Wear Behavior of Textured Steel Sliding against Polymers

    PubMed Central

    Wang, Meiling; Zhang, Changtao; Wang, Xiaolei

    2017-01-01

    Artificially fabricated surface textures can significantly improve the friction and wear resistance of a tribological contact. Recently, this surface texturing technique has been applied to polymer materials to improve their tribological performance. However, the wear behavior of textured tribo-pairs made of steel and polymer materials has been less thoroughly investigated and is not well understood; thus, it needs further research. The aim of this study is to investigate the wear properties of tribological contacts made of textured stainless steel against polymer surfaces. Three polymer materials were selected in this study, namely, ultrahigh molecular weight polyethylene (UHMWPE), polyoxymethylene (POM) and (polyetheretherketone) PEEK. Wear tests were operated through a ring-on-plane mode. The results revealed that the texture features and material properties affected the wear rates and friction coefficients of the textured tribo-pairs. In general, PEEK/textured steel achieved the lowest wear rate among the three types of tribo-pairs investigated. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that the elements of C and O on the contacting counterfaces varied with texture features and indicated different wear behavior. Experimental and simulated results showed differences in the stress distribution around the dimple edge, which may influence wear performance. Wear debris with different surface morphologies were found for tribo-pairs with varying texture features. This study has increased the understanding of the wear behavior of tribo-pairs between textured stainless steel and polymer materials. PMID:28772688

  15. Robust pattern decoding in shape-coded structured light

    NASA Astrophysics Data System (ADS)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  16. Associating Specific Materials with Topological Insulation Behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen

    2014-03-01

    The first-principles (a) total-energy/stability calculations combined with (b) electronic structure calculations of band inversion, spin-polarization and topological invariants (Z2) has led to the design and prediction of specific materials that are topological insulators in this study. We classify bulk materials into four types of band-inversion behaviors (TI-1, TI-2, BI-3, BI-4), based on the number of band inversions and their distributions on various time reversal invariant k points. Depending on the inversion type in bulk, the corresponding surface states have different protections e.g., protected by time reversal symmetry (in TI-1 materials), spatial symmetry (in TI-2), or not protected (in BI-3, BI-4). Subject 1 Discovery of new TI by screening materials for a Z2 metric: Such high-throughput search in the framework of Inverse Design methodology predicts a few previously undocumented materials that are TI-1 in their ground state crystal structure. We also predict dozens of materials that are TI-1 however in structures that are not ground states (e.g. perovskite structure of II-Bi-O3). Subject 2 Design Principle to increase the gap of TI-1 materials: In HgTe-like cubic topological materials, the insulating gap is zero since the spin-orbit splitting is positive and so a 4-fold half-filled p-like band is near the Fermi level. By design of hybridization of d-orbitals into the p-like bands, one can create negative spin-orbit splitting and so a finite insulating gap. Subject 3 Unconventional spin textures of TI surface states: Despite the fact that one of our predicted TI-1 KBaBi has inversion symmetry in the bulk-a fact that that would preclude bulk spin polarization-we find a Dresselhaus-like spin texture with non-helical spin texture. This originates from the local spin polarization, anchored on the atomic sites with inversion asymmetric point groups, that is compensated due to global inversion symmetry in bulk. In collaboration with: Jun-Wei Luo, Qihang Liu, Julien Vidal, and Alex Zunger, and supported in part by National Science Foundation DMREF. X.Z. acknowledges the administrative support of REMRSEC at Colorado School of Mines, Golden, Colorado.

  17. Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming

    Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less

  18. Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

    DOE PAGES

    Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming

    2017-11-06

    Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less

  19. Statistical-techniques-based computer-aided diagnosis (CAD) using texture feature analysis: application in computed tomography (CT) imaging to fatty liver disease

    NASA Astrophysics Data System (ADS)

    Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae

    2012-09-01

    This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.

  20. A Clinical Decision Support System Using Ultrasound Textures and Radiologic Features to Distinguish Metastasis From Tumor-Free Cervical Lymph Nodes in Patients With Papillary Thyroid Carcinoma.

    PubMed

    Abbasian Ardakani, Ali; Reiazi, Reza; Mohammadi, Afshin

    2018-03-30

    This study investigated the potential of a clinical decision support approach for the classification of metastatic and tumor-free cervical lymph nodes (LNs) in papillary thyroid carcinoma on the basis of radiologic and textural analysis through ultrasound (US) imaging. In this research, 170 metastatic and 170 tumor-free LNs were examined by the proposed clinical decision support method. To discover the difference between the groups, US imaging was used for the extraction of radiologic and textural features. The radiologic features in the B-mode scans included the echogenicity, margin, shape, and presence of microcalcification. To extract the textural features, a wavelet transform was applied. A support vector machine classifier was used to classify the LNs. In the training set data, a combination of radiologic and textural features represented the best performance with sensitivity, specificity, accuracy, and area under the curve (AUC) values of 97.14%, 98.57%, 97.86%, and 0.994, respectively, whereas the classification based on radiologic and textural features alone yielded lower performance, with AUCs of 0.964 and 0.922. On testing the data set, the proposed model could classify the tumor-free and metastatic LNs with an AUC of 0.952, which corresponded to sensitivity, specificity, and accuracy of 93.33%, 96.66%, and 95.00%. The clinical decision support method based on textural and radiologic features has the potential to characterize LNs via 2-dimensional US. Therefore, it can be used as a supplementary technique in daily clinical practice to improve radiologists' understanding of conventional US imaging for characterizing LNs. © 2018 by the American Institute of Ultrasound in Medicine.

  1. Art Expertise Reduces Influence of Visual Salience on Fixation in Viewing Abstract-Paintings

    PubMed Central

    Koide, Naoko; Kubo, Takatomi; Nishida, Satoshi; Shibata, Tomohiro; Ikeda, Kazushi

    2015-01-01

    When viewing a painting, artists perceive more information from the painting on the basis of their experience and knowledge than art novices do. This difference can be reflected in eye scan paths during viewing of paintings. Distributions of scan paths of artists are different from those of novices even when the paintings contain no figurative object (i.e. abstract paintings). There are two possible explanations for this difference of scan paths. One is that artists have high sensitivity to high-level features such as textures and composition of colors and therefore their fixations are more driven by such features compared with novices. The other is that fixations of artists are more attracted by salient features than those of novices and the fixations are driven by low-level features. To test these, we measured eye fixations of artists and novices during the free viewing of various abstract paintings and compared the distribution of their fixations for each painting with a topological attentional map that quantifies the conspicuity of low-level features in the painting (i.e. saliency map). We found that the fixation distribution of artists was more distinguishable from the saliency map than that of novices. This difference indicates that fixations of artists are less driven by low-level features than those of novices. Our result suggests that artists may extract visual information from paintings based on high-level features. This ability of artists may be associated with artists’ deep aesthetic appreciation of paintings. PMID:25658327

  2. Contourlet textual features: improving the diagnosis of solitary pulmonary nodules in two dimensional CT images.

    PubMed

    Wang, Jingjing; Sun, Tao; Gao, Ni; Menon, Desmond Dev; Luo, Yanxia; Gao, Qi; Li, Xia; Wang, Wei; Zhu, Huiping; Lv, Pingxin; Liang, Zhigang; Tao, Lixin; Liu, Xiangtong; Guo, Xiuhua

    2014-01-01

    To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data. Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93. Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer.

  3. Topological Galleries: A High Level User Interface for Topology Controlled Volume Rendering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCarthy, Brian; Carr, Hamish; Weber, Gunther H.

    2011-06-30

    Existing topological interfaces to volume rendering are limited by their reliance on sophisticated knowledge of topology by the user. We extend previous work by describing topological galleries, an interface for novice users that is based on the design galleries approach. We report three contributions: an interface based on hierarchical thumbnail galleries to display the containment relationships between topologically identifiable features, the use of the pruning hierarchy instead of branch decomposition for contour tree simplification, and drag-and-drop transfer function assignment for individual components. Initial results suggest that this approach suffers from limitations due to rapid drop-off of feature size in themore » pruning hierarchy. We explore these limitations by providing statistics of feature size as function of depth in the pruning hierarchy of the contour tree.« less

  4. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    PubMed

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  5. Segmentation and texture analysis of structural biomarkers using neighborhood-clustering-based level set in MRI of the schizophrenic brain.

    PubMed

    Latha, Manohar; Kavitha, Ganesan

    2018-02-03

    Schizophrenia (SZ) is a psychiatric disorder that especially affects individuals during their adolescence. There is a need to study the subanatomical regions of SZ brain on magnetic resonance images (MRI) based on morphometry. In this work, an attempt was made to analyze alterations in structure and texture patterns in images of the SZ brain using the level-set method and Laws texture features. T1-weighted MRI of the brain from Center of Biomedical Research Excellence (COBRE) database were considered for analysis. Segmentation was carried out using the level-set method. Geometrical and Laws texture features were extracted from the segmented brain stem, corpus callosum, cerebellum, and ventricle regions to analyze pattern changes in SZ. The level-set method segmented multiple brain regions, with higher similarity and correlation values compared with an optimized method. The geometric features obtained from regions of the corpus callosum and ventricle showed significant variation (p < 0.00001) between normal and SZ brain. Laws texture feature identified a heterogeneous appearance in the brain stem, corpus callosum and ventricular regions, and features from the brain stem were correlated with Positive and Negative Syndrome Scale (PANSS) score (p < 0.005). A framework of geometric and Laws texture features obtained from brain subregions can be used as a supplement for diagnosis of psychiatric disorders.

  6. Rotation-invariant image and video description with local binary pattern features.

    PubMed

    Zhao, Guoying; Ahonen, Timo; Matas, Jiří; Pietikäinen, Matti

    2012-04-01

    In this paper, we propose a novel approach to compute rotation-invariant features from histograms of local noninvariant patterns. We apply this approach to both static and dynamic local binary pattern (LBP) descriptors. For static-texture description, we present LBP histogram Fourier (LBP-HF) features, and for dynamic-texture recognition, we present two rotation-invariant descriptors computed from the LBPs from three orthogonal planes (LBP-TOP) features in the spatiotemporal domain. LBP-HF is a novel rotation-invariant image descriptor computed from discrete Fourier transforms of LBP histograms. The approach can be also generalized to embed any uniform features into this framework, and combining the supplementary information, e.g., sign and magnitude components of the LBP, together can improve the description ability. Moreover, two variants of rotation-invariant descriptors are proposed to the LBP-TOP, which is an effective descriptor for dynamic-texture recognition, as shown by its recent success in different application problems, but it is not rotation invariant. In the experiments, it is shown that the LBP-HF and its extensions outperform noninvariant and earlier versions of the rotation-invariant LBP in the rotation-invariant texture classification. In experiments on two dynamic-texture databases with rotations or view variations, the proposed video features can effectively deal with rotation variations of dynamic textures (DTs). They also are robust with respect to changes in viewpoint, outperforming recent methods proposed for view-invariant recognition of DTs.

  7. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    PubMed Central

    Wang, Kun-Ching

    2015-01-01

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590

  8. Theory of current-driven skyrmions in disordered magnets.

    PubMed

    Koshibae, Wataru; Nagaosa, Naoto

    2018-04-20

    An emergent topological particle in magnets, skyrmion, has several unique features distinct from the other magnetic textures such as domain wall, helical structure, and vortex. It is characterized by a topological integer called skyrmion number N sk , which counts how many times the directions of the magnetic moments wrap the unit sphere. This N sk gives the chiral nature of the skyrmion dynamics, and leads to the extremely small critical current density j c for the current-driven motion in terms of spin transfer torque effect. The finite j c indicates the pinning effect due to the disorder such as impurities and defects, and the behaviors of skyrmions under disorder have not been explored well theoretically although it is always relevant in real systems. Here we reveal by a numerical simulation of Landau-Lifshitz-Gilbert equation that there are four different skyrmion phases with the strong disorder, i.e., (A) pinned state, (B) depinned state, (C) skyrmion multiplication/annihilation, and (D) segregation of skyrmions, as the current density increases, while only two phases (A) and (B) appear in the weak disorder case. The microscopic mechanisms of the new phases (C) and (D) are analyzed theoretically. These results offer a coherent understanding of the skyrmion dynamics under current with disorder.

  9. Alteration textures in terrestrial volcanic glass and the associated bacterial community.

    PubMed

    Cockell, C S; Olsson-Francis, K; Herrera, A; Meunier, A

    2009-01-01

    Alteration textures were examined in subglacial (hyaloclastite) deposits at Valafell, Southern Iceland. Pitted and 'elongate' alteration features are observed in the glass similar to granular and tubular features reported previously in deep-ocean basaltic glasses, but elongate features generally did not have a length to width ratio greater than five. Elongate features were found in only 7% of surfaces. Crystalline basalt clasts, which are incorporated into the hyaloclastite, did not display elongate structures. Pitted alteration features were poorly defined in crystalline basalt, comprising only 4% of the surface compared to 47% in the case of basaltic glass. Examination of silica-rich glass (obsidian) and rhyolite similarly showed poorly defined pitted textures that comprised less than 15% of the surface and no elongate features were observed. These data highlight the differences in alteration textures between terrestrial basaltic glass and previously studied deep-ocean and subsurface basaltic glass, and the important role of mineralogy in controlling the type and abundance of alteration features. The hyaloclastite contains a diverse and abundant bacterial population, as determined by 16S rDNA analysis, which could be involved in weathering the glass. Despite the presence of phototrophs, we show that they were not involved in the production of most alteration textures in the basaltic glass materials we examined.

  10. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  11. Significance of MPEG-7 textural features for improved mass detection in mammography.

    PubMed

    Eltonsy, Nevine H; Tourassi, Georgia D; Fadeev, Aleksey; Elmaghraby, Adel S

    2006-01-01

    The purpose of the study is to investigate the significance of MPEG-7 textural features for improving the detection of masses in screening mammograms. The detection scheme was originally based on morphological directional neighborhood features extracted from mammographic regions of interest (ROIs). Receiver Operating Characteristics (ROC) was performed to evaluate the performance of each set of features independently and merged into a back-propagation artificial neural network (BPANN) using the leave-one-out sampling scheme (LOOSS). The study was based on a database of 668 mammographic ROIs (340 depicting cancer regions and 328 depicting normal parenchyma). Overall, the ROC area index of the BPANN using the directional morphological features was Az=0.85+/-0.01. The MPEG-7 edge histogram descriptor-based BPNN showed an ROC area index of Az=0.71+/-0.01 while homogeneous textural descriptors using 30 and 120 channels helped the BPNN achieve similar ROC area indexes of Az=0.882+/-0.02 and Az=0.877+/-0.01 respectively. After merging the MPEG-7 homogeneous textural features with the directional neighborhood features the performance of the BPANN increased providing an ROC area index of Az=0.91+/-0.01. MPEG-7 homogeneous textural descriptor significantly improved the morphology-based detection scheme.

  12. BRAIN TUMOR SEGMENTATION WITH SYMMETRIC TEXTURE AND SYMMETRIC INTENSITY-BASED DECISION FORESTS.

    PubMed

    Bianchi, Anthony; Miller, James V; Tan, Ek Tsoon; Montillo, Albert

    2013-04-01

    Accurate automated segmentation of brain tumors in MR images is challenging due to overlapping tissue intensity distributions and amorphous tumor shape. However, a clinically viable solution providing precise quantification of tumor and edema volume would enable better pre-operative planning, treatment monitoring and drug development. Our contributions are threefold. First, we design efficient gradient and LBPTOP based texture features which improve classification accuracy over standard intensity features. Second, we extend our texture and intensity features to symmetric texture and symmetric intensity which further improve the accuracy for all tissue classes. Third, we demonstrate further accuracy enhancement by extending our long range features from 100mm to a full 200mm. We assess our brain segmentation technique on 20 patients in the BraTS 2012 dataset. Impact from each contribution is measured and the combination of all the features is shown to yield state-of-the-art accuracy and speed.

  13. 3D Texture Features Mining for MRI Brain Tumor Identification

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra

    2014-03-01

    Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.

  14. Recursive Feature Extraction in Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  15. Radiomic texture-curvature (RTC) features for precision medicine of patients with rheumatoid arthritis-associated interstitial lung disease

    NASA Astrophysics Data System (ADS)

    Watari, Chinatsu; Matsuhiro, Mikio; Näppi, Janne J.; Nasirudin, Radin A.; Hironaka, Toru; Kawata, Yoshiki; Niki, Noboru; Yoshida, Hiroyuki

    2018-03-01

    We investigated the effect of radiomic texture-curvature (RTC) features of lung CT images in the prediction of the overall survival of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). We retrospectively collected 70 RA-ILD patients who underwent thin-section lung CT and serial pulmonary function tests. After the extraction of the lung region, we computed hyper-curvature features that included the principal curvatures, curvedness, bright/dark sheets, cylinders, blobs, and curvature scales for the bronchi and the aerated lungs. We also computed gray-level co-occurrence matrix (GLCM) texture features on the segmented lungs. An elastic-net penalty method was used to select and combine these features with a Cox proportional hazards model for predicting the survival of the patient. Evaluation was performed by use of concordance index (C-index) as a measure of prediction performance. The C-index values of the texture features, hyper-curvature features, and the combination thereof (RTC features) in predicting patient survival was estimated by use of bootstrapping with 2,000 replications, and they were compared with an established clinical prognostic biomarker known as the gender, age, and physiology (GAP) index by means of two-sided t-test. Bootstrap evaluation yielded the following C-index values for the clinical and radiomic features: (a) GAP index: 78.3%; (b) GLCM texture features: 79.6%; (c) hypercurvature features: 80.8%; and (d) RTC features: 86.8%. The RTC features significantly outperformed any of the other predictors (P < 0.001). The Kaplan-Meier survival curves of patients stratified to low- and high-risk groups based on the RTC features showed statistically significant (P < 0.0001) difference. Thus, the RTC features can provide an effective imaging biomarker for predicting the overall survival of patients with RA-ILD.

  16. Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice.

    PubMed

    Owerre, S A

    2017-09-27

    In the conventional ferromagnetic systems, topological magnon bands and thermal Hall effect are due to the Dzyaloshinskii-Moriya interaction (DMI). In principle, however, the DMI is either negligible or it is not allowed by symmetry in some quantum magnets. Therefore, we expect that topological magnon features will not be present in those systems. In addition, quantum magnets on the triangular-lattice are not expected to possess topological features as the DMI or spin-chirality cancels out due to equal and opposite contributions from adjacent triangles. Here, however, we predict that the isomorphic frustrated honeycomb-lattice and bilayer triangular-lattice antiferromagnetic system will exhibit topological magnon bands and topological thermal Hall effect in the absence of an intrinsic DMI. These unconventional topological magnon features are present as a result of magnetic-field-induced non-coplanar spin configurations with nonzero scalar spin chirality. The relevance of the results to realistic bilayer triangular antiferromagnetic materials are discussed.

  17. Rock classification based on resistivity patterns in electrical borehole wall images

    NASA Astrophysics Data System (ADS)

    Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph

    2007-06-01

    Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.

  18. The formation of cosmic structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III

    1992-01-01

    The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.

  19. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C; Cunliffe, A; Al-Hallaq, H

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lungmore » were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under Award Number R25GM109439.« less

  20. TU-AB-BRA-05: Repeatability of [F-18]-NaF PET Imaging Biomarkers for Bone Lesions: A Multicenter Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C; Bradshaw, T; Perk, T

    2015-06-15

    Purpose: Quantifying the repeatability of imaging biomarkers is critical for assessing therapeutic response. While therapeutic efficacy has been traditionally quantified by SUV metrics, imaging texture features have shown potential for use as quantitative biomarkers. In this study we evaluated the repeatability of quantitative {sup 18}F-NaF PET-derived SUV metrics and texture features in bone lesions from patients in a multicenter study. Methods: Twenty-nine metastatic castrate-resistant prostate cancer patients received whole-body test-retest NaF PET/CT scans from one of three harmonized imaging centers. Bone lesions of volume greater than 1.5 cm{sup 3} were identified and automatically segmented using a SUV>15 threshold. From eachmore » lesion, 55 NaF PET-derived texture features (including first-order, co-occurrence, grey-level run-length, neighbor gray-level, and neighbor gray-tone difference matrix) were extracted. The test-retest repeatability of each SUV metric and texture feature was assessed with Bland-Altman analysis. Results: A total of 315 bone lesions were evaluated. Of the traditional SUV metrics, the repeatability coefficient (RC) was 12.6 SUV for SUVmax, 2.5 SUV for SUVmean, and 4.3 cm{sup 3} for volume. Their respective intralesion coefficients of variation (COVs) were 12%, 17%, and 6%. Of the texture features, COV was lowest for entropy (0.03%) and highest for kurtosis (105%). Lesion intraclass correlation coefficient (ICC) was lowest for maximum correlation coefficient (ICC=0.848), and highest for entropy (ICC=0.985). Across imaging centers, repeatability of texture features and SUV varied. For example, across imaging centers, COV for SUVmax ranged between 11–23%. Conclusion: Many NaF PET-derived SUV metrics and texture features for bone lesions demonstrated high repeatability, such as SUVmax, entropy, and volume. Several imaging texture features demonstrated poor repeatability, such as SUVtotal and SUVstd. These results can be used to establish response criteria for NaF PET-based treatment response assessment. Prostate Cancer Foundation (PCF)« less

  1. Dynamic facial expression recognition based on geometric and texture features

    NASA Astrophysics Data System (ADS)

    Li, Ming; Wang, Zengfu

    2018-04-01

    Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.

  2. P04.19 Recommendations for computation of textural measures obtained from 3D brain tumor MRIs: A robustness analysis points out the need for standardization.

    PubMed Central

    Molina, D.; Pérez-Beteta, J.; Martínez-González, A.; Velásquez, C.; Martino, J.; Luque, B.; Revert, A.; Herruzo, I.; Arana, E.; Pérez-García, V. M.

    2017-01-01

    Abstract Introduction: Textural analysis refers to a variety of mathematical methods used to quantify the spatial variations in grey levels within images. In brain tumors, textural features have a great potential as imaging biomarkers having been shown to correlate with survival, tumor grade, tumor type, etc. However, these measures should be reproducible under dynamic range and matrix size changes for their clinical use. Our aim is to study this robustness in brain tumors with 3D magnetic resonance imaging, not previously reported in the literature. Materials and methods: 3D T1-weighted images of 20 patients with glioblastoma (64.80 ± 9.12 years-old) obtained from a 3T scanner were analyzed. Tumors were segmented using an in-house semi-automatic 3D procedure. A set of 16 3D textural features of the most common types (co-occurrence and run-length matrices) were selected, providing regional (run-length based measures) and local information (co-ocurrence matrices) on the tumor heterogeneity. Feature robustness was assessed by means of the coefficient of variation (CV) under both dynamic range (16, 32 and 64 gray levels) and/or matrix size (256x256 and 432x432) changes. Results: None of the textural features considered were robust under dynamic range changes. The textural co-occurrence matrix feature Entropy was the only textural feature robust (CV < 10%) under spatial resolution changes. Conclusions: In general, textural measures of three-dimensional brain tumor images are neither robust under dynamic range nor under matrix size changes. Thus, it becomes mandatory to fix standards for image rescaling after acquisition before the textural features are computed if they are to be used as imaging biomarkers. For T1-weighted images a dynamic range of 16 grey levels and a matrix size of 256x256 (and isotropic voxel) is found to provide reliable and comparable results and is feasible with current MRI scanners. The implications of this work go beyond the specific tumor type and MRI sequence studied here and pose the need for standardization in textural feature calculation of oncological images. FUNDING: James S. Mc. Donnell Foundation (USA) 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer [Collaborative award 220020450 and planning grant 220020420], MINECO/FEDER [MTM2015-71200-R], JCCM [PEII-2014-031-P].

  3. Combining multiple features for color texture classification

    NASA Astrophysics Data System (ADS)

    Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo

    2016-11-01

    The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.

  4. Mapping Topological Magnetization and Magnetic Skyrmions

    NASA Astrophysics Data System (ADS)

    Chess, Jordan J.

    A 2014 study by the US Department of Energy conducted at Lawrence Berkeley National Laboratory estimated that U.S. data centers consumed 70 billion kWh of electricity. This represents about 1.8% of the total U.S. electricity consumption. Putting this in perspective 70 billion kWh of electricity is the equivalent of roughly 8 big nuclear reactors, or around double the nation's solar panel output. Developing new memory technologies capable of reducing this power consumption would be greatly beneficial as our demand for connectivity increases in the future. One newly emerging candidate for an information carrier in low power memory devices is the magnetic skyrmion. This magnetic texture is characterized by its specific non-trivial topology, giving it particle-like characteristics. Recent experimental work has shown that these skyrmions can be stabilized at room temperature and moved with extremely low electrical current densities. This rapidly developing field requires new measurement techniques capable of determining the topology of these textures at greater speed than previous approaches. In this dissertation, I give a brief introduction to the magnetic structures found in Fe/Gd multilayered systems. I then present newly developed techniques that streamline the analysis of Lorentz Transmission Electron Microscopy (LTEM) data. These techniques are then applied to further the understanding of the magnetic properties of these Fe/Gd based multilayered systems. This dissertation includes previously published and unpublished co-authored material.

  5. Texture-specific bag of visual words model and spatial cone matching-based method for the retrieval of focal liver lesions using multiphase contrast-enhanced CT images.

    PubMed

    Xu, Yingying; Lin, Lanfen; Hu, Hongjie; Wang, Dan; Zhu, Wenchao; Wang, Jian; Han, Xian-Hua; Chen, Yen-Wei

    2018-01-01

    The bag of visual words (BoVW) model is a powerful tool for feature representation that can integrate various handcrafted features like intensity, texture, and spatial information. In this paper, we propose a novel BoVW-based method that incorporates texture and spatial information for the content-based image retrieval to assist radiologists in clinical diagnosis. This paper presents a texture-specific BoVW method to represent focal liver lesions (FLLs). Pixels in the region of interest (ROI) are classified into nine texture categories using the rotation-invariant uniform local binary pattern method. The BoVW-based features are calculated for each texture category. In addition, a spatial cone matching (SCM)-based representation strategy is proposed to describe the spatial information of the visual words in the ROI. In a pilot study, eight radiologists with different clinical experience performed diagnoses for 20 cases with and without the top six retrieved results. A total of 132 multiphase computed tomography volumes including five pathological types were collected. The texture-specific BoVW was compared to other BoVW-based methods using the constructed dataset of FLLs. The results show that our proposed model outperforms the other three BoVW methods in discriminating different lesions. The SCM method, which adds spatial information to the orderless BoVW model, impacted the retrieval performance. In the pilot trial, the average diagnosis accuracy of the radiologists was improved from 66 to 80% using the retrieval system. The preliminary results indicate that the texture-specific features and the SCM-based BoVW features can effectively characterize various liver lesions. The retrieval system has the potential to improve the diagnostic accuracy and the confidence of the radiologists.

  6. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis.

    PubMed

    Mookiah, M R K; Rohrmeier, A; Dieckmeyer, M; Mei, K; Kopp, F K; Noel, P B; Kirschke, J S; Baum, T; Subburaj, K

    2018-04-01

    This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

  7. Differentiation of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR Imaging Features and Feasibility of Texture Analysis.

    PubMed

    Lakhman, Yulia; Veeraraghavan, Harini; Chaim, Joshua; Feier, Diana; Goldman, Debra A; Moskowitz, Chaya S; Nougaret, Stephanie; Sosa, Ramon E; Vargas, Hebert Alberto; Soslow, Robert A; Abu-Rustum, Nadeem R; Hricak, Hedvig; Sala, Evis

    2017-07-01

    To investigate whether qualitative magnetic resonance (MR) features can distinguish leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and assess the feasibility of texture analysis (TA). This retrospective study included 41 women (ALM = 22, LMS = 19) imaged with MRI prior to surgery. Two readers (R1, R2) evaluated each lesion for qualitative MR features. Associations between MR features and LMS were evaluated with Fisher's exact test. Accuracy measures were calculated for the four most significant features. TA was performed for 24 patients (ALM = 14, LMS = 10) with uniform imaging following lesion segmentation on axial T2-weighted images. Texture features were pre-selected using Wilcoxon signed-rank test with Bonferroni correction and analyzed with unsupervised clustering to separate LMS from ALM. Four qualitative MR features most strongly associated with LMS were nodular borders, haemorrhage, "T2 dark" area(s), and central unenhanced area(s) (p ≤ 0.0001 each feature/reader). The highest sensitivity [1.00 (95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and specificity [0.95 (95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)] were achieved for R1/R2, respectively, when a lesion had ≥3 of these four features. Sixteen texture features differed significantly between LMS and ALM (p-values: <0.001-0.036). Unsupervised clustering achieved accuracy of 0.75 (sensitivity: 0.70; specificity: 0.79). Combination of ≥3 qualitative MR features accurately distinguished LMS from ALM. TA was feasible. • Four qualitative MR features demonstrated the strongest statistical association with LMS. • Combination of ≥3 these features could accurately differentiate LMS from ALM. • Texture analysis was a feasible semi-automated approach for lesion categorization.

  8. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.

  9. Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images.

    PubMed

    Chaddad, Ahmad; Daniel, Paul; Niazi, Tamim

    2018-01-01

    Colorectal cancer (CRC) is markedly heterogeneous and develops progressively toward malignancy through several stages which include stroma (ST), benign hyperplasia (BH), intraepithelial neoplasia (IN) or precursor cancerous lesion, and carcinoma (CA). Identification of the malignancy stage of CRC pathology tissues (PT) allows the most appropriate therapeutic intervention. This study investigates multiscale texture features extracted from CRC pathology sections using 3D wavelet transform (3D-WT) filter. Multiscale features were extracted from digital whole slide images of 39 patients that were segmented in a pre-processing step using an active contour model. The capacity for multiscale texture to compare and classify between PTs was investigated using ANOVA significance test and random forest classifier models, respectively. 12 significant features derived from the multiscale texture (i.e., variance, entropy, and energy) were found to discriminate between CRC grades at a significance value of p  < 0.01 after correction. Combining multiscale texture features lead to a better predictive capacity compared to prediction models based on individual scale features with an average (±SD) classification accuracy of 93.33 (±3.52)%, sensitivity of 88.33 (± 4.12)%, and specificity of 96.89 (± 3.88)%. Entropy was found to be the best classifier feature across all the PT grades with an average of the area under the curve (AUC) value of 91.17, 94.21, 97.70, 100% for ST, BH, IN, and CA, respectively. Our results suggest that multiscale texture features based on 3D-WT are sensitive enough to discriminate between CRC grades with the entropy feature, the best predictor of pathology grade.

  10. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

    PubMed

    Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

  11. Multiresolution Local Binary Pattern texture analysis for false positive reduction in computerized detection of breast masses on mammograms

    NASA Astrophysics Data System (ADS)

    Choi, Jae Young; Kim, Dae Hoe; Choi, Seon Hyeong; Ro, Yong Man

    2012-03-01

    We investigated the feasibility of using multiresolution Local Binary Pattern (LBP) texture analysis to reduce falsepositive (FP) detection in a computerized mass detection framework. A new and novel approach for extracting LBP features is devised to differentiate masses and normal breast tissue on mammograms. In particular, to characterize the LBP texture patterns of the boundaries of masses, as well as to preserve the spatial structure pattern of the masses, two individual LBP texture patterns are then extracted from the core region and the ribbon region of pixels of the respective ROI regions, respectively. These two texture patterns are combined to produce the so-called multiresolution LBP feature of a given ROI. The proposed LBP texture analysis of the information in mass core region and its margin has clearly proven to be significant and is not sensitive to the precise location of the boundaries of masses. In this study, 89 mammograms were collected from the public MAIS database (DB). To perform a more realistic assessment of FP reduction process, the LBP texture analysis was applied directly to a total of 1,693 regions of interest (ROIs) automatically segmented by computer algorithm. Support Vector Machine (SVM) was applied for the classification of mass ROIs from ROIs containing normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classification accuracy and its improvement using multiresolution LBP features. With multiresolution LBP features, the classifier achieved an average area under the ROC curve, , z A of 0.956 during testing. In addition, the proposed LBP features outperform other state-of-the-arts features designed for false positive reduction.

  12. Topological Insulators: A New Platform for Fundamental Science and Applications

    NASA Astrophysics Data System (ADS)

    Bansil, Arun

    2013-03-01

    Topological insulators constitute a new phase of quantum matter whose recent discovery has focused world-wide attention on wide-ranging phenomena in materials driven by spin-orbit coupling effects well beyond their traditional role in determining magnetic properties. I will discuss how by exploiting electronic structure techniques we have been able to predict and understand the characteristics of many new classes of binary, ternary and quaternary topologically interesting systems. The flexibility of chemical, structural and magnetic parameters so obtained is the key ingredient for exploring fundamental science questions, including novel spin-textures and exotic superconducting states, as well as for the realization of multi-functional topological devices for thermoelectric, spintronics, information processing and other applications. I will also highlight new insights that have been enabled through our material-specific modeling of angle-resolved photoemission (ARPES) and scanning tunneling (STS) spectroscopies of topological surface states, including effects of the photoemission and tunneling matrix element, which is well-known to be important for a robust interpretation of various highly resolved spectroscopies. Work supported by the Materials Science & Engineering Division, Basic Energy Sciences, U. S. D. O. E.

  13. Squirming motion of baby skyrmions in nematic fluids.

    PubMed

    Ackerman, Paul J; Boyle, Timothy; Smalyukh, Ivan I

    2017-09-22

    Skyrmions are topologically protected continuous field configurations that cannot be smoothly transformed to a uniform state. They behave like particles and give origins to the field of skyrmionics that promises racetrack memory and other technological applications. Unraveling the non-equilibrium behavior of such topological solitons is a challenge. We realize skyrmions in a chiral liquid crystal and, using numerical modeling and polarized video microscopy, demonstrate electrically driven squirming motion. We reveal the intricate details of non-equilibrium topology-preserving textural changes driving this behavior. Direction of the skyrmion's motion is robustly controlled in a plane orthogonal to the applied field and can be reversed by varying frequency. Our findings may spur a paradigm of soliton dynamics in soft matter, with a rich interplay between topology, chirality, and orientational viscoelasticity.A skyrmion is a topological object originally introduced to model elementary particles and a baby skyrmion is its two-dimensional counterpart which can be realized as a defect in liquid crystals. Here the authors show that an electric field can drive uniform motion of baby skyrmions in liquid crystals.

  14. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J., E-mail: bje@mayo.edu

    Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiersmore » were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78–0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker.« less

  15. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards

    PubMed Central

    Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.

    2015-01-01

    Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842

  16. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards.

    PubMed

    Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E

    2015-10-01

    Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.

  17. Deep Filter Banks for Texture Recognition, Description, and Segmentation.

    PubMed

    Cimpoi, Mircea; Maji, Subhransu; Kokkinos, Iasonas; Vedaldi, Andrea

    Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture represenations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.

  18. Induction Mapping of the 3D-Modulated Spin Texture of Skyrmions in Thin Helimagnets

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Wolf, D.; Stolt, M. J.; Jin, S.; Pohl, D.; Rellinghaus, B.; Schmidt, M.; Büchner, B.; Goennenwein, S. T. B.; Nielsch, K.; Lubk, A.

    2018-05-01

    Envisaged applications of Skyrmions in magnetic memory and logic devices crucially depend on the stability and mobility of these topologically nontrivial magnetic textures in thin films. We present for the first time quantitative maps of the magnetic induction that provide evidence for a 3D modulation of the Skyrmionic spin texture. The projected in-plane magnetic induction maps as determined from in-line and off-axis electron holography carry the clear signature of Bloch Skyrmions. However, the magnitude of this induction is much smaller than the values expected for homogeneous Bloch Skyrmions that extend throughout the thickness of the film. This finding can only be understood if the underlying spin textures are modulated along the out-of-plane z direction. The projection of (the in-plane magnetic induction of) helices is further found to exhibit thickness-dependent lateral shifts, which show that this z modulation is accompanied by an (in-plane) modulation along the x and y directions.

  19. Parametric classification of handvein patterns based on texture features

    NASA Astrophysics Data System (ADS)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  20. Hepatic CT image query using Gabor features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenguang; Cheng, Hongyan; Zhuang, Tiange

    2004-07-01

    A retrieval scheme for liver computerize tomography (CT) images based on Gabor texture is presented. For each hepatic CT image, we manually delineate abnormal regions within liver area. Then, a continuous Gabor transform is utilized to analyze the texture of the pathology bearing region and extract the corresponding feature vectors. For a given sample image, we compare its feature vector with those of other images. Similar images with the highest rank are retrieved. In experiments, 45 liver CT images are collected, and the effectiveness of Gabor texture for content based retrieval is verified.

  1. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Yu, X. Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.

    2014-03-01

    Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion—a particle-like object in which spins point in all directions to wrap a sphere—constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.

  2. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni 2MnGa

    DOE PAGES

    Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; ...

    2016-05-17

    Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in amore » nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni 2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.« less

  3. Contourlet Textual Features: Improving the Diagnosis of Solitary Pulmonary Nodules in Two Dimensional CT Images

    PubMed Central

    Wang, Jingjing; Sun, Tao; Gao, Ni; Menon, Desmond Dev; Luo, Yanxia; Gao, Qi; Li, Xia; Wang, Wei; Zhu, Huiping; Lv, Pingxin; Liang, Zhigang; Tao, Lixin; Liu, Xiangtong; Guo, Xiuhua

    2014-01-01

    Objective To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. Materials and Methods A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data. Results Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93. Conclusion Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer. PMID:25250576

  4. 18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer.

    PubMed

    Tsujikawa, Tetsuya; Rahman, Tasmiah; Yamamoto, Makoto; Yamada, Shizuka; Tsuyoshi, Hideaki; Kiyono, Yasushi; Kimura, Hirohiko; Yoshida, Yoshio; Okazawa, Hidehiko

    2017-11-01

    The aims of our study were to find the textural features on 18 F-FDG PET/CT which reflect the different histological architectures between cervical cancer subtypes and to make a visual assessment of the association between 18 F-FDG PET textural features in cervical cancer. Eighty-three cervical cancer patients [62 squamous cell carcinomas (SCCs) and 21 non-SCCs (NSCCs)] who had undergone pretreatment 18 F-FDG PET/CT were enrolled. A texture analysis was performed on PET/CT images, from which 18 PET radiomics features were extracted including first-order features such as standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), second- and high-order textural features using SUV histogram, normalized gray-level co-occurrence matrix (NGLCM), and neighborhood gray-tone difference matrix, respectively. These features were compared between SCC and NSCC using a Bonferroni adjusted P value threshold of 0.0028 (0.05/18). To assess the association between PET features, a heat map analysis with hierarchical clustering, one of the radiomics approaches, was performed. Among 18 PET features, correlation, a second-order textural feature derived from NGLCM, was a stable parameter and it was the only feature which showed a robust trend toward significant difference between SCC and NSCC. Cervical SCC showed a higher correlation (0.70 ± 0.07) than NSCC (0.64 ± 0.07, P = 0.0030). The other PET features did not show any significant differences between SCC and NSCC. A higher correlation in SCC might reflect higher structural integrity and stronger spatial/linear relationship of cancer cells compared with NSCC. A heat map with a PET feature dendrogram clearly showed 5 distinct clusters, where correlation belonged to a cluster including MTV and TLG. However, the association between correlation and MTV/TLG was not strong. Correlation was a relatively independent PET feature in cervical cancer. 18 F-FDG PET textural features might reflect the differences in histological architecture between cervical cancer subtypes. PET radiomics approaches reveal the association between PET features and will be useful for finding a single feature or a combination of features leading to precise diagnoses, potential prognostic models, and effective therapeutic strategies.

  5. Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers.

    PubMed

    Mougiakakou, Stavroula G; Valavanis, Ioannis K; Nikita, Alexandra; Nikita, Konstantina S

    2007-09-01

    The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed. Number of regions of interests (ROIs) corresponding to C1-C4 have been defined by experienced radiologists in non-enhanced liver CT images. For each ROI, five distinct sets of texture features were extracted using first order statistics, spatial gray level dependence matrix, gray level difference method, Laws' texture energy measures, and fractal dimension measurements. Two different ECs were constructed and compared. The first one consists of five multilayer perceptron neural networks (NNs), each using as input one of the computed texture feature sets or its reduced version after genetic algorithm-based feature selection. The second EC comprised five different primary classifiers, namely one multilayer perceptron NN, one probabilistic NN, and three k-nearest neighbor classifiers, each fed with the combination of the five texture feature sets or their reduced versions. The final decision of each EC was extracted by using appropriate voting schemes, while bootstrap re-sampling was utilized in order to estimate the generalization ability of the CAD architectures based on the available relatively small-sized data set. The best mean classification accuracy (84.96%) is achieved by the second EC using a fused feature set, and the weighted voting scheme. The fused feature set was obtained after appropriate feature selection applied to specific subsets of the original feature set. The comparative assessment of the various CAD architectures shows that combining three types of classifiers with a voting scheme, fed with identical feature sets obtained after appropriate feature selection and fusion, may result in an accurate system able to assist differential diagnosis of focal liver lesions from non-enhanced CT images.

  6. Persistent topological features of dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maletić, Slobodan, E-mail: slobodan@hitsz.edu.cn; Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade; Zhao, Yi, E-mail: zhao.yi@hitsz.edu.cn

    Inspired by an early work of Muldoon et al., Physica D 65, 1–16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examinedmore » by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.« less

  7. WE-E-17A-05: Complementary Prognostic Value of CT and 18F-FDG PET Non-Small Cell Lung Cancer Tumor Heterogeneity Features Quantified Through Texture Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desseroit, M; Cheze Le Rest, C; Tixier, F

    2014-06-15

    Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET images have complementary and independent prognostic value in NSCLC.« less

  8. Nonlinear Dirac cones

    NASA Astrophysics Data System (ADS)

    Bomantara, Raditya Weda; Zhao, Wenlei; Zhou, Longwen; Gong, Jiangbin

    2017-09-01

    Physics arising from two-dimensional (2D) Dirac cones has been a topic of great theoretical and experimental interest to studies of gapless topological phases and to simulations of relativistic systems. Such 2D Dirac cones are often characterized by a π Berry phase and are destroyed by a perturbative mass term. By considering mean-field nonlinearity in a minimal two-band Chern insulator model, we obtain a different type of Dirac cone that is robust to local perturbations without symmetry restrictions. Due to a different pseudospin texture, the Berry phase of the Dirac cone is no longer quantized in π , and can be continuously tuned as an order parameter. Furthermore, in an Aharonov-Bohm (AB) interference setup to detect such Dirac cones, the adiabatic AB phase is found to be π both theoretically and computationally, offering an observable topological invariant and a fascinating example where the Berry phase and AB phase are fundamentally different. We hence discover a nonlinearity-induced quantum phase transition from a known topological insulating phase to an unusual gapless topological phase.

  9. Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator.

    PubMed

    Charpentier, Sophie; Galletti, Luca; Kunakova, Gunta; Arpaia, Riccardo; Song, Yuxin; Baghdadi, Reza; Wang, Shu Min; Kalaboukhov, Alexei; Olsson, Eva; Tafuri, Francesco; Golubev, Dmitry; Linder, Jacob; Bauch, Thilo; Lombardi, Floriana

    2017-12-08

    Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p x  + ip y wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi 2 Te 3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral p x  + ip y component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and π coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi 2 Te 3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.

  10. Spontaneous topological charging of tactoids in a living nematic

    NASA Astrophysics Data System (ADS)

    Genkin, Mikhail M.; Sokolov, Andrey; Aranson, Igor S.

    2018-04-01

    Living nematic is a realization of an active matter combining a nematic liquid crystal with swimming bacteria. The material exhibits a remarkable tendency towards spatio-temporal self-organization manifested in formation of dynamic textures of self-propelled half-integer topological defects (disclinations). Here we report on the study of such living nematic near normal inclusions, or tactoids, naturally realized in liquid crystals close to the isotropic-nematic (I–N) phase transition. On the basis of the computational analysis, we have established that tactoid’s I–N interface spontaneously acquire negative topological charge which is proportional to the tactoid’s size and depends on the concentration of bacteria. The observed negative charging is attributed to the drastic difference in the mobilities of +1/2 and ‑1/2 topological defects in active systems. The effect is described in the framework of a kinetic theory for point-like weakly-interacting defects with different mobilities. Our dedicated experiment fully confirmed the theoretical prediction. The results hint into new strategies for control of active matter.

  11. Spontaneous topological charging of tactoids in a living nematic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genkin, Mikhail M.; Sokolov, Andrey; Aranson, Igor S.

    Living nematic is a realization of an active matter combining a nematic liquid crystal with swimming bacteria. The material exhibits a remarkable tendency towards spatio-temporal self-organization manifested in formation of dynamic textures of self-propelled half-integer topological defects (disclinations). Here we report on the study of such living nematic near normal inclusions, or tactoids, naturally realized in liquid crystals close to the isotropic-nematic (I-N) phase transition. On the basis of the computational analysis, we have established that tactoid's I-Ninterface spontaneously acquire negative topological charge which is proportional to the tactoid's size and depends on the concentration of bacteria. The observed negativemore » charging is attributed to the drastic difference in the mobilities of +1/2 and -1/2 topological defects in active systems. The effect is described in the framework of a kinetic theory for point-like weakly-interacting defects with different mobilities. Our dedicated experiment fully confirmed the theoretical prediction. Here, the results hint into new strategies for control of active matter.« less

  12. Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Kanazawa, N.; White, J. S.; Rønnow, H. M.; Dewhurst, C. D.; Morikawa, D.; Shibata, K.; Arima, T.; Kagawa, F.; Tsukazaki, A.; Kozuka, Y.; Ichikawa, M.; Kawasaki, M.; Tokura, Y.

    2017-12-01

    We report the engineering of spin-hedgehog crystals in thin films of the chiral magnet MnGe by tailoring the magnetic anisotropy. As evidenced by neutron scattering on films with different thicknesses and by varying a magnetic field, we can realize continuously deformable spin-hedgehog crystals, each of which is described as a superposition state of a different set of three spin spirals (a triple-q state). The directions of the three propagation vectors q vary systematically, gathering from the three orthogonal 〈100 〉 directions towards the film normal as the strength of the uniaxial magnetic anisotropy and/or the magnetic field applied along the film normal increase. The formation of triple-q states coincides with the onset of topological Hall signals, that are ascribed to skew scattering by an emergent magnetic field originating in the nontrivial topology of spin hedgehogs. These findings highlight how nanoengineering of chiral magnets makes possible the rational design of unique topological spin textures.

  13. Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films

    DOE PAGES

    Logan, J. A.; Patel, S. J.; Harrington, S. D.; ...

    2016-06-27

    The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi 2Se 3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin-more » and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. As a result, this experimental verification of topological behavior is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices.« less

  14. Spontaneous topological charging of tactoids in a living nematic

    DOE PAGES

    Genkin, Mikhail M.; Sokolov, Andrey; Aranson, Igor S.

    2018-04-13

    Living nematic is a realization of an active matter combining a nematic liquid crystal with swimming bacteria. The material exhibits a remarkable tendency towards spatio-temporal self-organization manifested in formation of dynamic textures of self-propelled half-integer topological defects (disclinations). Here we report on the study of such living nematic near normal inclusions, or tactoids, naturally realized in liquid crystals close to the isotropic-nematic (I-N) phase transition. On the basis of the computational analysis, we have established that tactoid's I-Ninterface spontaneously acquire negative topological charge which is proportional to the tactoid's size and depends on the concentration of bacteria. The observed negativemore » charging is attributed to the drastic difference in the mobilities of +1/2 and -1/2 topological defects in active systems. The effect is described in the framework of a kinetic theory for point-like weakly-interacting defects with different mobilities. Our dedicated experiment fully confirmed the theoretical prediction. Here, the results hint into new strategies for control of active matter.« less

  15. Engineering and Probing Topological Properties of Dirac Semimetal Films by Asymmetric Charge Transfer.

    PubMed

    Villanova, John W; Barnes, Edwin; Park, Kyungwha

    2017-02-08

    Dirac semimetals (DSMs) have topologically robust three-dimensional Dirac (doubled Weyl) nodes with Fermi-arc states. In heterostructures involving DSMs, charge transfer occurs at the interfaces, which can be used to probe and control their bulk and surface topological properties through surface-bulk connectivity. Here we demonstrate that despite a band gap in DSM films, asymmetric charge transfer at the surface enables one to accurately identify locations of the Dirac-node projections from gapless band crossings and to examine and engineer properties of the topological Fermi-arc surface states connecting the projections, by simulating adatom-adsorbed DSM films using a first-principles method with an effective model. The positions of the Dirac-node projections are insensitive to charge transfer amount or slab thickness except for extremely thin films. By varying the amount of charge transfer, unique spin textures near the projections and a separation between the Fermi-arc states change, which can be observed by gating without adatoms.

  16. Efficient Data Mining for Local Binary Pattern in Texture Image Analysis

    PubMed Central

    Kwak, Jin Tae; Xu, Sheng; Wood, Bradford J.

    2015-01-01

    Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the grey levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images. PMID:25767332

  17. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification.

    PubMed

    Zhou, Tao; Li, Zhaofu; Pan, Jianjun

    2018-01-27

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.

  18. Textured Image Segmentation

    DTIC Science & Technology

    1980-01-01

    descriminated by frequency domain features. It has been shown (201 that Fourier features provide useful information for aerial classification and for...Package for the Social. Sciences (SPSS). These descriminant algorithms are documented in Appendix C. Source textures are known, so that cluster

  19. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset also stores the topology rules (the "BasinsFD_Topology") that constrain the relations within and among component feature classes. The feature dataset also forces any feature classes inside it to have a consistent projection system, which is, in this case, an Albers-Equal-Area projection system. 3. BasinsFD_Topology: This topology contains four persistent topology rules that constrain the spatial relations within the "BasinLines" feature class and between the "BasinLines" feature class and the "BasinPolys" feature classes. 4. Sites: This point feature class contains the digital representations of the site locations for which Colorado Water Science Center basin boundaries have been delineated. This feature class includes point locations for Colorado Water Science Center active (as of September 30, 2009) gages and for other sites. 5. BasinLines: This line feature class contains the perimeters of basins delineated for features in the "Sites" feature class, and it also contains information regarding the sources of lines used for the basin boundaries. 6. BasinPolys: This polygon feature class contains the polygonal basin areas delineated for features in the "Sites" feature class, and it is used to derive the numeric drainage areas published by the Colorado Water Science Center.

  20. Plaque echodensity and textural features are associated with histologic carotid plaque instability.

    PubMed

    Doonan, Robert J; Gorgui, Jessica; Veinot, Jean P; Lai, Chi; Kyriacou, Efthyvoulos; Corriveau, Marc M; Steinmetz, Oren K; Daskalopoulou, Stella S

    2016-09-01

    Carotid plaque echodensity and texture features predict cerebrovascular symptomatology. Our purpose was to determine the association of echodensity and textural features obtained from a digital image analysis (DIA) program with histologic features of plaque instability as well as to identify the specific morphologic characteristics of unstable plaques. Patients scheduled to undergo carotid endarterectomy were recruited and underwent carotid ultrasound imaging. DIA was performed to extract echodensity and textural features using Plaque Texture Analysis software (LifeQ Medical Ltd, Nicosia, Cyprus). Carotid plaque surgical specimens were obtained and analyzed histologically. Principal component analysis (PCA) was performed to reduce imaging variables. Logistic regression models were used to determine if PCA variables and individual imaging variables predicted histologic features of plaque instability. Image analysis data from 160 patients were analyzed. Individual imaging features of plaque echolucency and homogeneity were associated with a more unstable plaque phenotype on histology. These results were independent of age, sex, and degree of carotid stenosis. PCA reduced 39 individual imaging variables to five PCA variables. PCA1 and PCA2 were significantly associated with overall plaque instability on histology (both P = .02), whereas PCA3 did not achieve statistical significance (P = .07). DIA features of carotid plaques are associated with histologic plaque instability as assessed by multiple histologic features. Importantly, unstable plaques on histology appear more echolucent and homogeneous on ultrasound imaging. These results are independent of stenosis, suggesting that image analysis may have a role in refining the selection of patients who undergo carotid endarterectomy. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.

    PubMed

    Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse

    2017-01-01

    Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.

  2. Three-dimensional ultrasound-based texture analysis of the effect of atorvastatin on carotid atherosclerosis

    NASA Astrophysics Data System (ADS)

    Awad, Joseph; Krasinski, Adam; Spence, David; Parraga, Grace; Fenster, Aaron

    2010-03-01

    Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of death and disability. This is driving the development of image analysis methods to quantitatively evaluate local arterial effects of potential treatments of carotid disease. Here we investigate the use of novel texture analysis tools to detect potential changes in the carotid arteries after statin therapy. Three-dimensional (3D) carotid ultrasound images were acquired from the left and right carotid arteries of 35 subjects (16 treated with 80 mg atorvastatin and 19 treated with placebo) at baseline and after 3 months of treatment. Two-hundred and seventy texture features were extracted from 3D ultrasound carotid artery images. These images previously had their vessel walls (VW) manually segmented. Highly ranked individual texture features were selected and compared to the VW volume (VWV) change using 3 measures: distance between classes, Wilcoxon rank sum test, and accuracy of the classifiers. Six classifiers were used. Using texture feature (L7R7) increases the average accuracy and area under the ROC curve to 74.4% and 0.72 respectively compared to 57.2% and 0.61 using VWV change. Thus, the results demonstrate that texture features are more sensitive in detecting drug effects on the carotid vessel wall than VWV change.

  3. Estimating local scaling properties for the classification of interstitial lung disease patterns

    NASA Astrophysics Data System (ADS)

    Huber, Markus B.; Nagarajan, Mahesh B.; Leinsinger, Gerda; Ray, Lawrence A.; Wismueller, Axel

    2011-03-01

    Local scaling properties of texture regions were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honeycombing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and the estimation of local scaling properties with Scaling Index Method (SIM). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions including the Bonferroni correction. The best classification results were obtained by the set of SIM features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers with the highest accuracy (94.1%, 93.7%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced texture features using local scaling properties can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.

  4. Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI.

    PubMed

    Ahmed, Shaheen; Iftekharuddin, Khan M; Vossough, Arastoo

    2011-03-01

    Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.

  5. Equilibrium of fluid membranes endowed with orientational order

    NASA Astrophysics Data System (ADS)

    Kumar Alageshan, Jaya; Chakrabarti, Buddhapriya; Hatwalne, Yashodhan

    2017-04-01

    Minimization of the low-temperature elastic free-energy functional of orientationlly ordered membranes involves independent variation of the membrane-shape, while keeping the orientational order on it (its texture) fixed. We propose an operational, coordinate-independent method for implementing such a variation. Using the Nelson-Peliti formulation of elasticity that emphasizes the interplay between geometry, topology, and thermal fluctuations of orientationally ordered membranes, we minimize the elastic free energy to obtain equations governing their equilibrium shape, together with associated free boundary conditions. Our results are essential for understanding and predicting equilibrium shapes as well as textures of membranes and vesicles; particularly under conditions in which shape deformations are large.

  6. Hyperspectral remote sensing image retrieval system using spectral and texture features.

    PubMed

    Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan

    2017-06-01

    Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.

  7. Persistent quasiplanar nematic texture: Its properties and topological defects

    NASA Astrophysics Data System (ADS)

    Pieranski, Pawel; Godinho, Maria Helena; Čopar, Simon

    2016-10-01

    In the so-called quasiplanar texture of a nematic layer confined between parallel plates with homeotropic anchoring conditions, the director field rotates by π between limit surfaces so that field lines have the shape of a dowsing Y-shaped wooden tool. The orientation of the director field at midheight of the layer is arbitrary for symmetry reasons and is thus very sensitive to perturbations. We point out that contrary to accepted ideas the quasiplanar texture can be preserved infinitely in spite of its metastability with respect to the homogeneous homeotropic texture. We propose to call such a long-lived version of the quasiplanar texture the dowser texture. We demonstrate both experimentally and theoretically that in samples of variable thickness, the director field is sensitive to the gradient of the sample thickness through a linear coupling term. As a result, it has a tendency to follow the direction of the thickness gradient. Because of its sensitivity to perturbations we propose to call the midplane director field the dowser field and its tendency to follow the thickness gradient cuneitropism. Under effect of the gradient field, the dowser field obeys the sine-Gordon equation and exhibits domain walls that correspond to the well-known solitonic solutions of the sine-Gordon model.

  8. Semantic attributes based texture generation

    NASA Astrophysics Data System (ADS)

    Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa

    2018-04-01

    Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.

  9. Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters.

    PubMed

    Wang, Jing-Jing; Wu, Hai-Feng; Sun, Tao; Li, Xia; Wang, Wei; Tao, Li-Xin; Huo, Da; Lv, Ping-Xin; He, Wen; Guo, Xiu-Hua

    2013-01-01

    Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.

  10. SU-E-I-85: Exploring the 18F-Fluorodeoxyglucose PET Characteristics in Staging of Esophageal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    2014-06-01

    Purpose: The aim of this study was to explore the characteristics derived from 18F-fluorodeoxyglucose (18F-FDG) PET image and assess its capacity in staging of esophageal squamous cell carcinoma (ESCC). Methods: 26 patients with newly diagnosed ESCC who underwent 18F-FDG PET scan were included in this study. Different image-derived indices including the standardized uptake value (SUV), gross tumor length, texture features and shape feature were considered. Taken the histopathologic examination as the gold standard, the extracted capacities of indices in staging of ESCC were assessed by Kruskal-Wallis test and Mann-Whitney test. Specificity and sensitivity for each of the studied parameters weremore » derived using receiver-operating characteristic curves. Results: 18F-FDG SUVmax and SUVmean showed statistically significant capability in AJCC and TNM stages. Texture features such as ENT and CORR were significant factors for N stages(p=0.040, p=0.029). Both FDG PET Longitudinal length and shape feature Eccentricity (EC) (p≤0.010) provided powerful stratification in the primary ESCC AJCC and TNM stages than SUV and texture features. Receiver-operating-characteristic curve analysis showed that tumor textural analysis can capability M stages with higher sensitivity than SUV measurement but lower in T and N stages. Conclusion: The 18F-FDG image-derived characteristics of SUV, textural features and shape feature allow for good stratification AJCC and TNM stage in ESCC patients.« less

  11. Classification Features of US Images Liver Extracted with Co-occurrence Matrix Using the Nearest Neighbor Algorithm

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita; Nicolae, Mariana Carmen

    2011-12-01

    Co-occurrence matrix has been applied successfully for echographic images characterization because it contains information about spatial distribution of grey-scale levels in an image. The paper deals with the analysis of pixels in selected regions of interest of an US image of the liver. The useful information obtained refers to texture features such as entropy, contrast, dissimilarity and correlation extract with co-occurrence matrix. The analyzed US images were grouped in two distinct sets: healthy liver and steatosis (or fatty) liver. These two sets of echographic images of the liver build a database that includes only histological confirmed cases: 10 images of healthy liver and 10 images of steatosis liver. The healthy subjects help to compute four textural indices and as well as control dataset. We chose to study these diseases because the steatosis is the abnormal retention of lipids in cells. The texture features are statistical measures and they can be used to characterize irregularity of tissues. The goal is to extract the information using the Nearest Neighbor classification algorithm. The K-NN algorithm is a powerful tool to classify features textures by means of grouping in a training set using healthy liver, on the one hand, and in a holdout set using the features textures of steatosis liver, on the other hand. The results could be used to quantify the texture information and will allow a clear detection between health and steatosis liver.

  12. Quantitative Ultrasound Using Texture Analysis of Myofascial Pain Syndrome in the Trapezius.

    PubMed

    Kumbhare, Dinesh A; Ahmed, Sara; Behr, Michael G; Noseworthy, Michael D

    2018-01-01

    Objective-The objective of this study is to assess the discriminative ability of textural analyses to assist in the differentiation of the myofascial trigger point (MTrP) region from normal regions of skeletal muscle. Also, to measure the ability to reliably differentiate between three clinically relevant groups: healthy asymptomatic, latent MTrPs, and active MTrP. Methods-18 and 19 patients were identified with having active and latent MTrPs in the trapezius muscle, respectively. We included 24 healthy volunteers. Images were obtained by research personnel, who were blinded with respect to the clinical status of the study participant. Histograms provided first-order parameters associated with image grayscale. Haralick, Galloway, and histogram-related features were used in texture analysis. Blob analysis was conducted on the regions of interest (ROIs). Principal component analysis (PCA) was performed followed by multivariate analysis of variance (MANOVA) to determine the statistical significance of the features. Results-92 texture features were analyzed for factorability using Bartlett's test of sphericity, which was significant. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.94. PCA demonstrated rotated eigenvalues of the first eight components (each comprised of multiple texture features) explained 94.92% of the cumulative variance in the ultrasound image characteristics. The 24 features identified by PCA were included in the MANOVA as dependent variables, and the presence of a latent or active MTrP or healthy muscle were independent variables. Conclusion-Texture analysis techniques can discriminate between the three clinically relevant groups.

  13. SU-F-R-20: Image Texture Features Correlate with Time to Local Failure in Lung SBRT Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M; Abazeed, M; Woody, N

    Purpose: To explore possible correlation between CT image-based texture and histogram features and time-to-local-failure in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT).Methods and Materials: From an IRB-approved lung SBRT registry for patients treated between 2009–2013 we selected 48 (20 male, 28 female) patients with local failure. Median patient age was 72.3±10.3 years. Mean time to local failure was 15 ± 7.1 months. Physician-contoured gross tumor volumes (GTV) on the planning CT images were processed and 3D gray-level co-occurrence matrix (GLCM) based texture and histogram features were calculated in Matlab. Data were exported tomore » R and a multiple linear regression model was used to examine the relationship between texture features and time-to-local-failure. Results: Multiple linear regression revealed that entropy (p=0.0233, multiple R2=0.60) from GLCM-based texture analysis and the standard deviation (p=0.0194, multiple R2=0.60) from the histogram-based features were statistically significantly correlated with the time-to-local-failure. Conclusion: Image-based texture analysis can be used to predict certain aspects of treatment outcomes of NSCLC patients treated with SBRT. We found entropy and standard deviation calculated for the GTV on the CT images displayed a statistically significant correlation with and time-to-local-failure in lung SBRT patients.« less

  14. Crop identification of SAR data using digital textural analysis

    NASA Technical Reports Server (NTRS)

    Nuesch, D. R.

    1983-01-01

    After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.

  15. Texture Feature Extraction and Classification for Iris Diagnosis

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Li, Naimin

    Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.

  16. Texture-based segmentation and analysis of emphysema depicted on CT images

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Wang, Xingwei; Lederman, Dror; Pu, Jiantao; Sciurba, Frank C.; Gur, David; Leader, J. Ken

    2011-03-01

    In this study we present a texture-based method of emphysema segmentation depicted on CT examination consisting of two steps. Step 1, a fractal dimension based texture feature extraction is used to initially detect base regions of emphysema. A threshold is applied to the texture result image to obtain initial base regions. Step 2, the base regions are evaluated pixel-by-pixel using a method that considers the variance change incurred by adding a pixel to the base in an effort to refine the boundary of the base regions. Visual inspection revealed a reasonable segmentation of the emphysema regions. There was a strong correlation between lung function (FEV1%, FEV1/FVC, and DLCO%) and fraction of emphysema computed using the texture based method, which were -0.433, -.629, and -0.527, respectively. The texture-based method produced more homogeneous emphysematous regions compared to simple thresholding, especially for large bulla, which can appear as speckled regions in the threshold approach. In the texture-based method, single isolated pixels may be considered as emphysema only if neighboring pixels meet certain criteria, which support the idea that single isolated pixels may not be sufficient evidence that emphysema is present. One of the strength of our complex texture-based approach to emphysema segmentation is that it goes beyond existing approaches that typically extract a single or groups texture features and individually analyze the features. We focus on first identifying potential regions of emphysema and then refining the boundary of the detected regions based on texture patterns.

  17. High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells

    DOEpatents

    Daniel, Claus; Blue, Craig A.; Ott, Ronald D.

    2014-08-19

    Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.

  18. A statistical-textural-features based approach for classification of solid drugs using surface microscopic images.

    PubMed

    Tahir, Fahima; Fahiem, Muhammad Abuzar

    2014-01-01

    The quality of pharmaceutical products plays an important role in pharmaceutical industry as well as in our lives. Usage of defective tablets can be harmful for patients. In this research we proposed a nondestructive method to identify defective and nondefective tablets using their surface morphology. Three different environmental factors temperature, humidity and moisture are analyzed to evaluate the performance of the proposed method. Multiple textural features are extracted from the surface of the defective and nondefective tablets. These textural features are gray level cooccurrence matrix, run length matrix, histogram, autoregressive model and HAAR wavelet. Total textural features extracted from images are 281. We performed an analysis on all those 281, top 15, and top 2 features. Top 15 features are extracted using three different feature reduction techniques: chi-square, gain ratio and relief-F. In this research we have used three different classifiers: support vector machine, K-nearest neighbors and naïve Bayes to calculate the accuracies against proposed method using two experiments, that is, leave-one-out cross-validation technique and train test models. We tested each classifier against all selected features and then performed the comparison of their results. The experimental work resulted in that in most of the cases SVM performed better than the other two classifiers.

  19. Texture Fish

    ERIC Educational Resources Information Center

    Stone, Julie

    2007-01-01

    In an effort to provide an opportunity for her first graders to explore texture through an engaging subject, the author developed a three-part lesson that features fish in a mixed-media artwork: (1) Exploring Textured Paint; (2) Creating the Fish; and (3) Role Playing. In this lesson, students effectively explore texture through painting, drawing,…

  20. Multiresolution texture models for brain tumor segmentation in MRI.

    PubMed

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  1. Structural analysis of natural textures.

    PubMed

    Vilnrotter, F M; Nevatia, R; Price, K E

    1986-01-01

    Many textures can be described structurally, in terms of the individual textural elements and their spatial relationships. This paper describes a system to generate useful descriptions of natural textures in these terms. The basic approach is to determine an initial, partial description of the elements using edge features. This description controls the extraction of the texture elements. The elements are grouped by type, and spatial relationships between elements are computed. The descriptions are shown to be useful for recognition of the textures, and for reconstruction of periodic textures.

  2. A Combined Use of Decomposition and Texture for Terrain Classification of Fully Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Rodionova, N. V.

    2007-03-01

    This p aper presents two-stag e unsupervised terrain classification of fully polarimetr ic SA R data using Freeman and Durden decomposition based on three simp le scattering mechanisms: surface, volume and double bounce (first step), and textur al features (uncorrelated uniformity , contr ast, inv erse mo men t and entropy) obtained from grey lev el co-occurrence matr ices (GLCM) (second step). Textural f eatures ar e defined in moving w indow 5x5 pixels w ith N=32 (N - number of grey lev els) . This algorith m preserves th e purity of domin ant polarimetric scattering properties and defines textural features in each scatter ing category. It is shown better object discrimin ation after app lying textur e w ith in fix ed scattering category. Speckle r eduction is one of th e main mo ments in imag e interpr etation improvement because of its great influen ce on textur e. Results from unfiltered and Lee filtered polar imetr ic SAR imag es show that the v alues of contrast and en tropy decr ease and th e values of uniformity and inverse moment increase with speckle reduction, that's tru e for all polarizations (HH, VV, HV). Th e d iscr imination b etw een objects increases after speckle f ilter ing. Polar ization influen ce on textur e features is def ined by calculating th e features in SAR images w ith HH , VV and HV polarizations before and after speck le filter ing, and then creating RG B images. It is shown mor e polarization inf luence on textur e features (uniformity , inverse mo ment and entropy) before filtering and less influen ce - after speck le f iltering. I t's not true for contrast wher e polar ization influen ce is not ch anged practically w ith filtering. SIR-C/X-SA R SLC L-band imag es of Moscow r egion are used for illustr ation.

  3. Topological Hall Effect in Skyrmions: A Nonequilibrium Coherent Transport Approach

    NASA Astrophysics Data System (ADS)

    Yin, Gen; Zang, Jiadong; Lake, Roger

    2014-03-01

    Skyrmion is a topological spin texture recently observed in many materials with broken inversion symmetry. In experiments, one effective method to detect the skyrmion crystal phase is the topological Hall measurement. At adiabatic approximation, previous theoretical studies show that the Hall signal is provided by an emergent magnetic field, which explains the topological Hall effect in the classical level. Motivated by the potential device application of skyrmions as digital bits, it is important to understand the topological Hall effect in the mesoscopic level, where the electron coherence should be considered. In this talk, we will discuss the quantum aspects of the topological Hall effect on a tight binding setup solved by nonequilibrium Green's function (NEGF). The charge distribution, Hall potential distribution, thermal broadening effect and the Hall resistivity are investigated in detail. The relation between the Hall resistance and the DM interaction is investigated. Driven by the spin transferred torque (SST), Skyrmion dynamics is previously studied within the adiabatic approximation. At the quantum transport level, this talk will also discuss the non-adiabatic effect in the skyrmion motion with the presence of the topological Hall effect. This material is based upon work supported by the National Science Foundation under Grant Nos. NSF 1128304 and NSF 1124733. It was also supported in part by FAME, one of six centers of STARnet, an SRC program sponsored by MARCO and DARPA.

  4. Origin of the extremely large magnetoresistance in topological semimetal PtS n4

    NASA Astrophysics Data System (ADS)

    Luo, X.; Xiao, R. C.; Chen, F. C.; Yan, J.; Pei, Q. L.; Sun, Y.; Lu, W. J.; Tong, P.; Sheng, Z. G.; Zhu, X. B.; Song, W. H.; Sun, Y. P.

    2018-05-01

    PtS n4 with extremely large magnetoresistance (XMR), a fascinating topological material platform, hosts a novel topological structure and Dirac node arcs, in which the Dirac nodes form closed loops in the momentum space. Here we performed the angular dependent magnetoresistivity (AMR), Hall effect, heat capacity measurements, and first-principles calculations to study the electronic properties of topological semimetal PtS n4 . There are some interesting observations on PtS n4 . (1) In the different experimental probes, we observed the anomalies around T ˜55 K . Significant changes of the transport results and the heat capacity have been observed, indicating successive Fermi surface reconstruction induced by the temperature. It means there is Lifshitz transition (LT) induced by the temperature in PtS n4 . (2) The perfect compensation between the electron and hole has been found around T ˜30 K , where the XMR appears, which is confirmed by the Hall effect measurements and the first-principles calculations. The XMR effect in PtS n4 is suggested to originate from the combination of the electron-hole compensation and a particular orbital texture on the electron pocket. Meanwhile, we also found that LT seems to serve as a knob for the novel topological properties in two-dimensional (2D) topological semimetals (TSMs).

  5. Topological phases of topological-insulator thin films

    NASA Astrophysics Data System (ADS)

    Asmar, Mahmoud M.; Sheehy, Daniel E.; Vekhter, Ilya

    2018-02-01

    We study the properties of a thin film of topological insulator material. We treat the coupling between helical states at opposite surfaces of the film in the properly-adapted tunneling approximation, and show that the tunneling matrix element oscillates as a function of both the film thickness and the momentum in the plane of the film for Bi2Se3 and Bi2Te3 . As a result, while the magnitude of the matrix element at the center of the surface Brillouin zone gives the gap in the energy spectrum, the sign of the matrix element uniquely determines the topological properties of the film, as demonstrated by explicitly computing the pseudospin textures and the Chern number. We find a sequence of transitions between topological and nontopological phases, separated by semimetallic states, as the film thickness varies. In the topological phase, the edge states of the film always exist but only carry a spin current if the edge potentials break particle-hole symmetry. The edge states decay very slowly away from the boundary in Bi2Se3 , making Bi2Te3 , where this scale is shorter, a more promising candidate for the observation of these states. Our results hold for free-standing films as well as heterostructures with large-gap insulators.

  6. The Pore3D library package for the textural analysis of X-ray computed microtomographic images of rocks

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, Daria; Mancini, Lucia; Voltolini, Marco; Brun, Francesco; Polacci, Margherita

    2010-05-01

    Many research fields in Geosciences require the knowledge of the three-dimensional (3D) texture of rocks. X-ray computed microtomography (μCT) supplies an effective method to directly acquire 3D information. Transmission X-ray μCT is a non-destructive technique based on the mapping of the linear attenuation coefficient of X-rays crossing the investigated sample. The 3D distribution of constituents and the contrast based on the different absorption properties of the components can be enhanced by phase-contrast imaging. On an X-ray tomographic dataset, if spatial resolution at the micron scale and proper software are available, a complete textural and morphological quantitative analysis can be carried out and a number of parameters can be extracted, including geometry and organization of discrete rock components (such as crystals, vesicles, fractures, alteration-compositional zones). In the case of volcanic rocks, μCT can be used to image and quantify the textural and morphological characteristics of the rock constituents, such as vesicles (gas bubbles in solidified, erupted products), crystals and glass fibers. For pyroclastic rocks, investigated parameters to characterize the vesicle portion are the size distribution, geometry and orientation of the pores, the pore-throat size and organization, the pore-surface roughness and the topology of the overall pore and pore-throat network. In this work we present several procedures able to extract quantitative information from CT images of volcanic rocks. The imaging experiments have been carried out at the Elettra Synchrotron Light Laboratory in Trieste (Italy) using both the synchrotron radiation at the SYRMEP beamline and a custom-developed μCT system, named TOMOLAB, equipped with a microfocus X-ray tube and based on a cone-beam geometry. The reconstructed 3D images (or volumes) have been elaborated with a software library, named Pore3D, custom-developed by the SYRMEP group at Elettra. The Pore3D software library allows a quantitative description of the morphology and topology of the sample components and it operates directly in the 3D domain, without inferring about the 3D behavior from stacked 2D information. The library has been elaborated to merge together in a common environment some of the features already available in previous research and commercial software, customizing in some cases their applications, adding new tools for the artifact reduction in the tomographic images and enhancing state-of-the-art methods for the quantitative analysis, as based on the specific know-how acquired by the SYRMEP group. The microtomographic experiments on selected pumices and scoriae have given us the opportunity to reconstruct and study the 3D internal structure of very different samples, originated at volcanoes with unique eruptive behavior and hazard potential. In particular, the analysis of vesicle size, shape, distribution, orientation and degree of interconnectivity, quantifies aspects that are directly related to the magma nature and dynamics. In fact, magma near the Earth's surface exists as a multiphase system, including gas bubbles and solid crystals in a liquid medium. The rheology of the magma and the processes that govern the transition between effusive and explosive eruptions can be fully understood if the gas permeability and flow through the bubble networks are quantified. As pyroclasts are natural records of the magma state, in terms of texture and composition, during the last phases of the conduit ascent, the textural 3D information can be coupled to physical, rheological and chemical properties of the parent magma.

  7. SU-F-R-36: Validating Quantitative Radiomic Texture Features for Oncologic PET: A Digital Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Yang, Y; Young, L

    Purpose: Radiomic texture features derived from the oncologic PET have recently been brought under intense investigation within the context of patient stratification and treatment outcome prediction in a variety of cancer types; however, their validity has not yet been examined. This work is aimed to validate radiomic PET texture metrics through the use of realistic simulations in the ground truth setting. Methods: Simulation of FDG-PET was conducted by applying the Zubal phantom as an attenuation map to the SimSET software package that employs Monte Carlo techniques to model the physical process of emission imaging. A total of 15 irregularly-shaped lesionsmore » featuring heterogeneous activity distribution were simulated. For each simulated lesion, 28 texture features in relation to the intensity histograms (GLIH), grey-level co-occurrence matrices (GLCOM), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated and compared with their respective values extracted from the ground truth activity map. Results: In reference to the values from the ground truth images, texture parameters appearing on the simulated data varied with a range of 0.73–3026.2% for GLIH-based, 0.02–100.1% for GLCOM-based, 1.11–173.8% for GLNDM-based, and 0.35–66.3% for GLZSM-based. For majority of the examined texture metrics (16/28), their values on the simulated data differed significantly from those from the ground truth images (P-value ranges from <0.0001 to 0.04). Features not exhibiting significant difference comprised of GLIH-based standard deviation, GLCO-based energy and entropy, GLND-based coarseness and contrast, and GLZS-based low gray-level zone emphasis, high gray-level zone emphasis, short zone low gray-level emphasis, long zone low gray-level emphasis, long zone high gray-level emphasis, and zone size nonuniformity. Conclusion: The extent to which PET imaging disturbs texture appearance is feature-dependent and could be substantial. It is thus advised that use of PET texture parameters for predictive and prognostic measurements in oncologic setting awaits further systematic and critical evaluation.« less

  8. Lattice-matched heterojunctions between topological and normal insulators: A first-principles study

    NASA Astrophysics Data System (ADS)

    Lee, Hyungjun; Yazyev, Oleg V.

    2017-02-01

    Gapless boundary modes at the interface between topologically distinct regions are one of the most salient manifestations of topology in physics. Metallic boundary states of time-reversal-invariant topological insulators (TIs), a realization of topological order in condensed matter, have been of much interest not only due to such a fundamental nature, but also due to their practical significance. These boundary states are immune to backscattering and localization owing to their topological origin, thereby opening up the possibility to tailor them for potential uses in spintronics and quantum computing. The heterojunction between a TI and a normal insulator (NI) is a representative playground for exploring such a topologically protected metallic boundary state and expected to constitute a building block for future electronic and spintronic solid-state devices based on TIs. Here, we report a first-principles study of two experimentally realized lattice-matched heterojunctions between TIs and NIs, Bi2Se3 (0001)/InP(111) and Bi2Te3 (0001)/BaF2(111). We evaluate the band offsets at these interfaces from many-body perturbation theory within the G W approximation as well as density-functional theory. Furthermore, we investigate the topological interface states, demonstrating that at these lattice-matched heterointerfaces, they are strictly localized and their helical spin textures are as well preserved as those at the vacuum-facing surfaces. These results taken together may help in designing devices relying on spin-helical metallic boundary states of TIs.

  9. [Visual Texture Agnosia in Humans].

    PubMed

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.

  10. Development of low friction snake-inspired deterministic textured surfaces

    NASA Astrophysics Data System (ADS)

    Cuervo, P.; López, D. A.; Cano, J. P.; Sánchez, J. C.; Rudas, S.; Estupiñán, H.; Toro, A.; Abdel-Aal, H. A.

    2016-06-01

    The use of surface texturization to reduce friction in sliding interfaces has proved successful in some tribological applications. However, it is still difficult to achieve robust surface texturing with controlled designer-functionalities. This is because the current existing gap between enabling texturization technologies and surface design paradigms. Surface engineering, however, is advanced in natural surface constructs especially within legless reptiles. Many intriguing features facilitate the tribology of such animals so that it is feasible to discover the essence of their surface construction. In this work, we report on the tribological behavior of a novel class of surfaces of which the spatial dimensions of the textural patterns originate from micro-scale features present within the ventral scales of pre-selected snake species. Mask lithography was used to produce implement elliptical texturizing patterns on the surface of titanium alloy (Ti6Al4V) pins. To study the tribological behavior of the texturized pins, pin-on-disc tests were carried out with the pins sliding against ultra-high molecular weight polyethylene discs with no lubrication. For comparison, two non-texturized samples were also tested under the same conditions. The results show the feasibility of the texturization technique based on the coefficient of friction of the textured surfaces to be consistently lower than that of the non-texturized samples.

  11. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  12. Joint classification and contour extraction of large 3D point clouds

    NASA Astrophysics Data System (ADS)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2017-08-01

    We present an effective and efficient method for point-wise semantic classification and extraction of object contours of large-scale 3D point clouds. What makes point cloud interpretation challenging is the sheer size of several millions of points per scan and the non-grid, sparse, and uneven distribution of points. Standard image processing tools like texture filters, for example, cannot handle such data efficiently, which calls for dedicated point cloud labeling methods. It turns out that one of the major drivers for efficient computation and handling of strong variations in point density, is a careful formulation of per-point neighborhoods at multiple scales. This allows, both, to define an expressive feature set and to extract topologically meaningful object contours. Semantic classification and contour extraction are interlaced problems. Point-wise semantic classification enables extracting a meaningful candidate set of contour points while contours help generating a rich feature representation that benefits point-wise classification. These methods are tailored to have fast run time and small memory footprint for processing large-scale, unstructured, and inhomogeneous point clouds, while still achieving high classification accuracy. We evaluate our methods on the semantic3d.net benchmark for terrestrial laser scans with >109 points.

  13. Automated characterization of normal and pathologic lung tissue by topological texture analysis of multidetector CT

    NASA Astrophysics Data System (ADS)

    Boehm, H. F.; Fink, C.; Becker, C.; Reiser, M.

    2007-03-01

    Reliable and accurate methods for objective quantitative assessment of parenchymal alterations in the lung are necessary for diagnosis, treatment and follow-up of pulmonary diseases. Two major types of alterations are pulmonary emphysema and fibrosis, emphysema being characterized by abnormal enlargement of the air spaces distal to the terminal, nonrespiratory bronchiole, accompanied by destructive changes of the alveolar walls. The main characteristic of fibrosis is coursening of the interstitial fibers and compaction of the pulmonary tissue. With the ability to display anatomy free from superimposing structures and greater visual clarity, Multi-Detector-CT has shown to be more sensitive than the chest radiograph in identifying alterations of lung parenchyma. In automated evaluation of pulmonary CT-scans, quantitative image processing techniques are applied for objective evaluation of the data. A number of methods have been proposed in the past, most of which utilize simple densitometric tissue features based on the mean X-ray attenuation coefficients expressed in terms of Hounsfield Units [HU]. Due to partial volume effects, most of the density-based methodologies tend to fail, namely in cases, where emphysema and fibrosis occur within narrow spatial limits. In this study, we propose a methodology based upon the topological assessment of graylevel distribution in the 3D image data of lung tissue which provides a way of improving quantitative CT evaluation. Results are compared to the more established density-based methods.

  14. Poor textural image tie point matching via graph theory

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Chen, Shiyu; Yuan, Wei; Cai, Yang

    2017-07-01

    Feature matching aims to find corresponding points to serve as tie points between images. Robust matching is still a challenging task when input images are characterized by low contrast or contain repetitive patterns, occlusions, or homogeneous textures. In this paper, a novel feature matching algorithm based on graph theory is proposed. This algorithm integrates both geometric and radiometric constraints into an edge-weighted (EW) affinity tensor. Tie points are then obtained by high-order graph matching. Four pairs of poor textural images covering forests, deserts, bare lands, and urban areas are tested. For comparison, three state-of-the-art matching techniques, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), and features from accelerated segment test (FAST), are also used. The experimental results show that the matching recall obtained by SIFT, SURF, and FAST varies from 0 to 35% in different types of poor textures. However, through the integration of both geometry and radiometry and the EW strategy, the recall obtained by the proposed algorithm is better than 50% in all four image pairs. The better matching recall improves the number of correct matches, dispersion, and positional accuracy.

  15. Image-Based 3D Face Modeling System

    NASA Astrophysics Data System (ADS)

    Park, In Kyu; Zhang, Hui; Vezhnevets, Vladimir

    2005-12-01

    This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2[InlineEquation not available: see fulltext.]3 minutes.

  16. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    PubMed Central

    Cho, Nam-Hoon; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panitz, J.K.G.

    A homogeneous, micrometer-sized conical surface texture forms on 2% Be-Cu alloy which is bombarded with an argon beam produced by a Kaufman ion source. The dimensions of the features that form strongly depend on: (1) argon energy (from 250 to 1500 eV), (2) fluence (10{sup 19} to 10{sup 20} ions/cm{sup 2}), and (3) flux (0.1 to 1 mA/cm{sup 2}). The texture morphology depends less strongly on the background ambient (Mo vs graphite), earlier alloy heat treatments and the temperature during bombardment (100{degree}C and 450{degree}C). As the texture matures with increasing fluence, the number of large features increases at the expensemore » of the number of small features. The observed relationship between texture formation and ion flux suggests that the evolution of these features is not adequately described by theories predicting that the mature conical sidewall angle is related to the angle of the maximum sputtering yield. These textured surfaces can be coated with other metals for a variety of possible applications including: (1) pulsed power Li+ beam anodes, (2) cold cathode field emission devices, (3) optical absorbers and (4) catalysis supports. 18 refs., 5 figs.« less

  18. Automatic segmentation of low-visibility moving objects through energy analyis of the local 3D spectrum

    NASA Astrophysics Data System (ADS)

    Nestares, Oscar; Miravet, Carlos; Santamaria, Javier; Fonolla Navarro, Rafael

    1999-05-01

    Automatic object segmentation in highly noisy image sequences, composed by a translating object over a background having a different motion, is achieved through joint motion-texture analysis. Local motion and/or texture is characterized by the energy of the local spatio-temporal spectrum, as different textures undergoing different translational motions display distinctive features in their 3D (x,y,t) spectra. Measurements of local spectrum energy are obtained using a bank of directional 3rd order Gaussian derivative filters in a multiresolution pyramid in space- time (10 directions, 3 resolution levels). These 30 energy measurements form a feature vector describing texture-motion for every pixel in the sequence. To improve discrimination capability and reduce computational cost, we automatically select those 4 features (channels) that best discriminate object from background, under the assumptions that the object is smaller than the background and has a different velocity or texture. In this way we reject features irrelevant or dominated by noise, that could yield wrong segmentation results. This method has been successfully applied to sequences with extremely low visibility and for objects that are even invisible for the eye in absence of motion.

  19. Topological phenomena in classical optical networks

    PubMed Central

    Shi, T.; Kimble, H. J.; Cirac, J. I.

    2017-01-01

    We propose a scheme to realize a topological insulator with optical-passive elements and analyze the effects of Kerr nonlinearities in its topological behavior. In the linear regime, our design gives rise to an optical spectrum with topological features and where the bandwidths and bandgaps are dramatically broadened. The resulting edge modes cover a very wide frequency range. We relate this behavior to the fact that the effective Hamiltonian describing the system’s amplitudes is long range. We also develop a method to analyze the scheme in the presence of a Kerr medium. We assess robustness and stability of the topological features and predict the presence of chiral squeezed fluctuations at the edges in some parameter regimes. PMID:29073093

  20. Topological crystalline magnets: Symmetry-protected topological phases of fermions

    DOE PAGES

    Watanabe, Haruki; Fu, Liang

    2017-02-27

    Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property ( RT) 2 = -1 of the edge state. Finally, an anisotropic response to the externalmore » magnetic field can be an experimental signature.« less

  1. Topological crystalline magnets: Symmetry-protected topological phases of fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Haruki; Fu, Liang

    Here, we introduce a novel class of interaction-enabled topological crystalline insulators in two- and three-dimensional electronic systems, which we call “topological crystalline magnet.” It is protected by the product of the time-reversal symmetry T and a mirror symmetry or a rotation symmetry R. A topological crystalline magnet exhibits two intriguing features: (i) it cannot be adiabatically connected to any Slater insulator and (ii) the edge state is robust against coupling electrons to the edge. These features are protected by the anomalous symmetry transformation property ( RT) 2 = -1 of the edge state. Finally, an anisotropic response to the externalmore » magnetic field can be an experimental signature.« less

  2. Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Virk, Naunidh; Autès, Gabriel; Yazyev, Oleg V.

    2018-04-01

    We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3 . Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2 π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.

  3. Using gapped topological surface states of Bi 2Se 3 films in a field effect transistor

    DOE PAGES

    Sun, Jifeng; Singh, David J.

    2017-02-08

    Three dimensional topological insulators are insulators with topologically protected surface states that can have a high band velocity and high mobility at room temperature. This then suggests electronic applications that exploit these surface states, but the lack of a band gap poses a fundamental difficulty. We report a first principles study based on density functional theory for thin Bi 2Se 3 films in the context of a field effect transistor. It is known that a gap is induced in thin layers due to hybridization between the top and bottom surfaces, but it is not known whether it is possible tomore » use the topological states in this type of configuration. In particular, it is unclear whether the benefits of topological protection can be retained to a sufficient degree. We also show that there is a thickness regime in which the small gap induced by hybridization between the two surfaces is sufficient to obtain transistor operation at room temperature, and furthermore, that the band velocity and spin texture that are important for the mobility are preserved for Fermi levels of relevance to device application.« less

  4. Band structure and spin texture of Bi2Se3 3 d ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Velev, Julian P.; Dang, Xiaoqian; Tsymbal, Evgeny Y.

    2016-07-01

    The spin-helical surface states in a three-dimensional topological insulator (TI), such as Bi2Se3 , are predicted to have superior efficiency in converting charge current into spin polarization. This property is said to be responsible for the giant spin-orbit torques observed in ferromagnetic metal/TI structures. In this work, using first-principles and model tight-binding calculations, we investigate the interface between the topological insulator Bi2Se3 and 3 d -transition ferromagnetic metals Ni and Co. We find that the difference in the work functions of the topological insulator and the ferromagnetic metals shift the topological surface states down about 0.5 eV below the Fermi energy where the hybridization of these surface states with the metal bands destroys their helical spin structure. The band alignment of Bi2Se3 and Ni (Co) places the Fermi energy far in the conduction band of bulk Bi2Se3 , where the spin of the carriers is aligned with the magnetization in the metal. Our results indicate that the topological surface states are unlikely to be responsible for the huge spin-orbit torque effect observed experimentally in these systems.

  5. MO-G-BRF-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - Sensitivity of PET-Based Texture Features to Respiratory Motion in Non-Small Cell Lung Cancer (NSCLC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, S; Aerts, H; Berbeco, R

    2014-06-15

    Purpose: PET-based texture features are used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing whole body (3D) and respiratory-gated (4D) PET imaging. Methods: Twenty-six patients (34 lesions) received 3D and 4D [F-18]FDG-PET scans before chemo-radiotherapy. The acquired 4D data were retrospectively binned into five breathing phases to create the 4D image sequence. Four texture features (Coarseness, Contrast, Busyness, and Complexity) were computed within the the physician-defined tumor volume. The relative difference (δ) in each measure between the 3D- and 4D-PET imaging was calculated. Wilcoxonmore » signed-rank test (p<0.01) was used to determine if δ was significantly different from zero. Coefficient of variation (CV) was used to determine the variability in the texture features between all 4D-PET phases. Pearson correlation coefficient was used to investigate the impact of tumor size and motion amplitude on δ. Results: Significant differences (p<<0.01) between 3D and 4D imaging were found for Coarseness, Busyness, and Complexity. The difference for Contrast was not significant (p>0.24). 4D-PET increased Busyness (∼20%) and Complexity (∼20%), and decreased Coarseness (∼10%) and Contrast (∼5%) compared to 3D-PET. Nearly negligible variability (CV=3.9%) was found between the 4D phase bins for Coarseness and Complexity. Moderate variability was found for Contrast and Busyness (CV∼10%). Poor correlation was found between the tumor volume and δ for the texture features (R=−0.34−0.34). Motion amplitude had moderate impact on δ for Contrast and Busyness (R=−0.64− 0.54) and no impact for Coarseness and Complexity (R=−0.29−0.17). Conclusion: Substantial differences in textures were found between 3D and 4D-PET imaging. Moreover, the variability between phase bins for Coarseness and Complexity was negligible, suggesting that similar quantification can be obtained from all phases. Texture features, blurred out by respiratory motion during 3D-PET acquisition, can be better resolved by 4D-PET imaging with any phase.« less

  6. Comparison of Texture Features Used for Classification of Life Stages of Malaria Parasite.

    PubMed

    Bairagi, Vinayak K; Charpe, Kshipra C

    2016-01-01

    Malaria is a vector borne disease widely occurring at equatorial region. Even after decades of campaigning of malaria control, still today it is high mortality causing disease due to improper and late diagnosis. To prevent number of people getting affected by malaria, the diagnosis should be in early stage and accurate. This paper presents an automatic method for diagnosis of malaria parasite in the blood images. Image processing techniques are used for diagnosis of malaria parasite and to detect their stages. The diagnosis of parasite stages is done using features like statistical features and textural features of malaria parasite in blood images. This paper gives a comparison of the textural based features individually used and used in group together. The comparison is made by considering the accuracy, sensitivity, and specificity of the features for the same images in database.

  7. Boundary charges and integral identities for solitons in (d + 1)-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Gao, Zhifeng; Yang, Yisong

    2017-12-01

    We establish a 3-parameter family of integral identities to be used on a class of theories possessing solitons with spherical symmetry in d spatial dimensions. The construction provides five boundary charges that are related to certain integrals of the profile functions of the solitons in question. The framework is quite generic and we give examples of both topological defects (like vortices and monopoles) and topological textures (like Skyrmions) in 2 and 3 dimensions. The class of theories considered here is based on a kinetic term and three functionals often encountered in reduced Lagrangians for solitons. One particularly interesting case provides a generalization of the well-known Pohozaev identity. Our construction, however, is fundamentally different from scaling arguments behind Derrick's theorem and virial relations. For BPS vortices, we find interestingly an infinity of integrals simply related to the topological winding number.

  8. Discovery of stable skyrmionic state in ferroelectric nanocomposites

    NASA Astrophysics Data System (ADS)

    Nahas, Y.; Prokhorenko, S.; Louis, L.; Gui, Z.; Kornev, I.; Bellaiche, L.

    2015-10-01

    Non-coplanar swirling field textures, or skyrmions, are now widely recognized as objects of both fundamental interest and technological relevance. So far, skyrmions were amply investigated in magnets, where due to the presence of chiral interactions, these topological objects were found to be intrinsically stabilized. Ferroelectrics on the other hand, lacking such chiral interactions, were somewhat left aside in this quest. Here we demonstrate, via the use of a first-principles-based framework, that skyrmionic configuration of polarization can be extrinsically stabilized in ferroelectric nanocomposites. The interplay between the considered confined geometry and the dipolar interaction underlying the ferroelectric phase instability induces skyrmionic configurations. The topological structure of the obtained electrical skyrmion can be mapped onto the topology of domain-wall junctions. Furthermore, the stabilized electrical skyrmion can be as small as a few nanometers, thus revealing prospective skyrmion-based applications of ferroelectric nanocomposites.

  9. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  10. Texture analysis of pulmonary parenchyma in normal and emphysematous lung

    NASA Astrophysics Data System (ADS)

    Uppaluri, Renuka; Mitsa, Theophano; Hoffman, Eric A.; McLennan, Geoffrey; Sonka, Milan

    1996-04-01

    Tissue characterization using texture analysis is gaining increasing importance in medical imaging. We present a completely automated method for discriminating between normal and emphysematous regions from CT images. This method involves extracting seventeen features which are based on statistical, hybrid and fractal texture models. The best subset of features is derived from the training set using the divergence technique. A minimum distance classifier is used to classify the samples into one of the two classes--normal and emphysema. Sensitivity and specificity and accuracy values achieved were 80% or greater in most cases proving that texture analysis holds great promise in identifying emphysema.

  11. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  12. Prostate cancer detection: Fusion of cytological and textural features.

    PubMed

    Nguyen, Kien; Jain, Anil K; Sabata, Bikash

    2011-01-01

    A computer-assisted system for histological prostate cancer diagnosis can assist pathologists in two stages: (i) to locate cancer regions in a large digitized tissue biopsy, and (ii) to assign Gleason grades to the regions detected in stage 1. Most previous studies on this topic have primarily addressed the second stage by classifying the preselected tissue regions. In this paper, we address the first stage by presenting a cancer detection approach for the whole slide tissue image. We propose a novel method to extract a cytological feature, namely the presence of cancer nuclei (nuclei with prominent nucleoli) in the tissue, and apply this feature to detect the cancer regions. Additionally, conventional image texture features which have been widely used in the literature are also considered. The performance comparison among the proposed cytological textural feature combination method, the texture-based method and the cytological feature-based method demonstrates the robustness of the extracted cytological feature. At a false positive rate of 6%, the proposed method is able to achieve a sensitivity of 78% on a dataset including six training images (each of which has approximately 4,000×7,000 pixels) and 1 1 whole-slide test images (each of which has approximately 5,000×23,000 pixels). All images are at 20X magnification.

  13. Prostate cancer detection: Fusion of cytological and textural features

    PubMed Central

    Nguyen, Kien; Jain, Anil K.; Sabata, Bikash

    2011-01-01

    A computer-assisted system for histological prostate cancer diagnosis can assist pathologists in two stages: (i) to locate cancer regions in a large digitized tissue biopsy, and (ii) to assign Gleason grades to the regions detected in stage 1. Most previous studies on this topic have primarily addressed the second stage by classifying the preselected tissue regions. In this paper, we address the first stage by presenting a cancer detection approach for the whole slide tissue image. We propose a novel method to extract a cytological feature, namely the presence of cancer nuclei (nuclei with prominent nucleoli) in the tissue, and apply this feature to detect the cancer regions. Additionally, conventional image texture features which have been widely used in the literature are also considered. The performance comparison among the proposed cytological textural feature combination method, the texture-based method and the cytological feature-based method demonstrates the robustness of the extracted cytological feature. At a false positive rate of 6%, the proposed method is able to achieve a sensitivity of 78% on a dataset including six training images (each of which has approximately 4,000×7,000 pixels) and 1 1 whole-slide test images (each of which has approximately 5,000×23,000 pixels). All images are at 20X magnification. PMID:22811959

  14. Relationship between trabecular texture features of CT images and an amount of bone cement volume injection in percutaneous vertebroplasty

    NASA Astrophysics Data System (ADS)

    Tack, Gye Rae; Choi, Hyung Guen; Shin, Kyu-Chul; Lee, Sung J.

    2001-06-01

    Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate pain relief. However, treatment failures due to disproportionate PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. In this study, appropriate amount of PMMA volume was assessed based on the imaging data of a given patient under the following hypotheses: (1) a relationship can be drawn between the volume of PMMA injection and textural features of the trabecular bone in preoperative CT images and (2) the volume of PMMA injection can be estimated based on 3D reconstruction of postoperative CT images. Gray-level run length analysis was used to determine the textural features of the trabecular bone. The width of trabecular (T-texture) and the width of intertrabecular spaces (I-texture) were calculated. The correlation between PMMA volume and textural features of patient's CT images was also examined to evaluate the appropriate PMMA amount. Results indicated that there was a strong correlation between the actual PMMA injection volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT image (correlation coefficient, requals0.96 and requals-0.95, respectively). T- texture (requals-0.93) did correlate better with the actual PMMA volume more than the I-texture (requals0.57). Therefore, it was demonstrated that appropriate PMMA injection volume could be predicted based on the textural analysis for better clinical management of the osteoporotic spine.

  15. Skin cancer texture analysis of OCT images based on Haralick, fractal dimension, Markov random field features, and the complex directional field features

    NASA Astrophysics Data System (ADS)

    Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.; Khramov, Alexander G.

    2016-10-01

    In this paper, we propose a report about our examining of the validity of OCT in identifying changes using a skin cancer texture analysis compiled from Haralick texture features, fractal dimension, Markov random field method and the complex directional features from different tissues. Described features have been used to detect specific spatial characteristics, which can differentiate healthy tissue from diverse skin cancers in cross-section OCT images (B- and/or C-scans). In this work, we used an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images. The Haralick texture features as contrast, correlation, energy, and homogeneity have been calculated in various directions. A box-counting method is performed to evaluate fractal dimension of skin probes. Markov random field have been used for the quality enhancing of the classifying. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. Our results demonstrate that these texture features may present helpful information to discriminate tumor from healthy tissue. The experimental data set contains 488 OCT-images with normal skin and tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevus. All images were acquired from our laboratory SD-OCT setup based on broadband light source, delivering an output power of 20 mW at the central wavelength of 840 nm with a bandwidth of 25 nm. We obtained sensitivity about 97% and specificity about 73% for a task of discrimination between MM and Nevus.

  16. Textural features and SUV-based variables assessed by dual time point 18F-FDG PET/CT in locally advanced breast cancer.

    PubMed

    Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel

    2017-12-01

    To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.

  17. Distinct cognitive mechanisms involved in the processing of single objects and object ensembles

    PubMed Central

    Cant, Jonathan S.; Sun, Sol Z.; Xu, Yaoda

    2015-01-01

    Behavioral research has demonstrated that the shape and texture of single objects can be processed independently. Similarly, neuroimaging results have shown that an object's shape and texture are processed in distinct brain regions with shape in the lateral occipital area and texture in parahippocampal cortex. Meanwhile, objects are not always seen in isolation and are often grouped together as an ensemble. We recently showed that the processing of ensembles also involves parahippocampal cortex and that the shape and texture of ensemble elements are processed together within this region. These neural data suggest that the independence seen between shape and texture in single-object perception would not be observed in object-ensemble perception. Here we tested this prediction by examining whether observers could attend to the shape of ensemble elements while ignoring changes in an unattended texture feature and vice versa. Across six behavioral experiments, we replicated previous findings of independence between shape and texture in single-object perception. In contrast, we observed that changes in an unattended ensemble feature negatively impacted the processing of an attended ensemble feature only when ensemble features were attended globally. When they were attended locally, thereby making ensemble processing similar to single-object processing, interference was abolished. Overall, these findings confirm previous neuroimaging results and suggest that distinct cognitive mechanisms may be involved in single-object and object-ensemble perception. Additionally, they show that the scope of visual attention plays a critical role in determining which type of object processing (ensemble or single object) is engaged by the visual system. PMID:26360156

  18. Texture-based approach to palmprint retrieval for personal identification

    NASA Astrophysics Data System (ADS)

    Li, Wenxin; Zhang, David; Xu, Z.; You, J.

    2000-12-01

    This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.

  19. Texture-based approach to palmprint retrieval for personal identification

    NASA Astrophysics Data System (ADS)

    Li, Wenxin; Zhang, David; Xu, Z.; You, J.

    2001-01-01

    This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.

  20. BCC skin cancer diagnosis based on texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.

    2011-03-01

    In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.

  1. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    NASA Astrophysics Data System (ADS)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  2. Optimization of VPSC Model Parameters for Two-Phase Titanium Alloys: Flow Stress Vs Orientation Distribution Function Metrics

    NASA Astrophysics Data System (ADS)

    Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.

    2018-06-01

    The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, J; Duran, C; Stingo, F

    Purpose: To characterize the effect of virtual monochromatic reconstructions on several commonly used texture analysis features in DECT of the chest. Further, to assess the effect of monochromatic energy levels on the ability of these textural features to identify tissue types. Methods: 20 consecutive patients underwent chest CTs for evaluation of lung nodules using Siemens Somatom Definition Flash DECT. Virtual monochromatic images were constructed at 10keV intervals from 40–190keV. For each patient, an ROI delineated the lesion under investigation, and cylindrical ROI’s were placed within 5 different healthy tissues (blood, fat, muscle, lung, and liver). Several histogram- and Grey Levelmore » Cooccurrence Matrix (GLCM)-based texture features were then evaluated in each ROI at each energy level. As a means of validation, these feature values were then used in a random forest classifier to attempt to identify the tissue types present within each ROI. Their predictive accuracy at each energy level was recorded. Results: All textural features changed considerably with virtual monochromatic energy, particularly below 70keV. Most features exhibited a global minimum or maximum around 80keV, and while feature values changed with energy above this, patient ranking was generally unaffected. As expected, blood demonstrated the lowest inter-patient variability, for all features, while lung lesions (encompassing many different pathologies) exhibited the highest. The accuracy of these features in identifying tissues (76% accuracy) was highest at 80keV, but no clear relationship between energy and classification accuracy was found. Two common misclassifications (blood vs liver and muscle vs fat) accounted for the majority (24 of the 28) errors observed. Conclusion: All textural features were highly dependent on virtual monochromatic energy level, especially below 80keV, and were more stable above this energy. However, in a random forest model, these commonly used features were able to reliably differentiate between most tissues types regardless of energy level. Dr Godoy has received a dual-energy CT research grant from Siemens Healthcare. That grant did not directly fund this research.« less

  4. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification

    PubMed Central

    Pan, Jianjun

    2018-01-01

    This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073

  5. Built-up Areas Extraction in High Resolution SAR Imagery based on the method of Multiple Feature Weighted Fusion

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.

    2015-06-01

    Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.

  6. Effects of pavement surface texture on noise and frictional characteristics.

    DOT National Transportation Integrated Search

    1987-02-01

    An experimental modification of the transverse groove : surface texture of a section of an urban interstate highway was : performed by the Iowa Department of Transportation. Transverse : groove texturing is a design feature required by the Federal : ...

  7. SU-E-J-251: Incorporation of Pre-Therapy 18F-FDG Uptake with CT Texture Features in a Predictive Model for Radiation Pneumonitis Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, G; Cunliffe, A; Armato, S

    2015-06-15

    Purpose: To determine whether the addition of standardized uptake value (SUV) statistical variables to CT lung texture features can improve a predictive model of radiation pneumonitis (RP) development in patients undergoing radiation therapy. Methods: Anonymized data from 96 esophageal cancer patients (18 RP-positive cases of Grade ≥ 2) were retrospectively collected including pre-therapy PET/CT scans, pre-/posttherapy diagnostic CT scans and RP status. Twenty texture features (firstorder, fractal, Laws’ filter and gray-level co-occurrence matrix) were calculated from diagnostic CT scans and compared in anatomically matched regions of the lung. The mean, maximum, standard deviation, and 50th–95th percentiles of the SUV valuesmore » for all lung voxels in the corresponding PET scans were acquired. For each texture feature, a logistic regression-based classifier consisting of (1) the average change in that texture feature value between the pre- and post-therapy CT scans and (2) the pre-therapy SUV standard deviation (SUV{sub SD}) was created. The RP-classification performance of each logistic regression model was compared to the performance of its texture feature alone by computing areas under the receiver operating characteristic curves (AUCs). T-tests were performed to determine whether the mean AUC across texture features changed significantly when SUV{sub SD} was added to the classifier. Results: The AUC for single-texturefeature classifiers ranged from 0.58–0.81 in high-dose (≥ 30 Gy) regions of the lungs and from 0.53–0.71 in low-dose (< 10 Gy) regions. Adding SUVSD in a logistic regression model using a 50/50 data partition for training and testing significantly increased the mean AUC by 0.08, 0.06 and 0.04 in the low-, medium- and high-dose regions, respectively. Conclusion: Addition of SUVSD from a pre-therapy PET scan to a single CT-based texture feature improves RP-classification performance on average. These findings demonstrate the potential for more accurate prediction of RP using information from multiple imaging modalities. Supported, in part, by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under grant number T32 EB002103; SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. HA receives royalties through the University of Chicago for computer-aided diagnosis technology.« less

  8. Convolutional neural network approach for enhanced capture of breast parenchymal complexity patterns associated with breast cancer risk

    NASA Astrophysics Data System (ADS)

    Oustimov, Andrew; Gastounioti, Aimilia; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina

    2017-03-01

    We assess the feasibility of a parenchymal texture feature fusion approach, utilizing a convolutional neural network (ConvNet) architecture, to benefit breast cancer risk assessment. Hypothesizing that by capturing sparse, subtle interactions between localized motifs present in two-dimensional texture feature maps derived from mammographic images, a multitude of texture feature descriptors can be optimally reduced to five meta-features capable of serving as a basis on which a linear classifier, such as logistic regression, can efficiently assess breast cancer risk. We combine this methodology with our previously validated lattice-based strategy for parenchymal texture analysis and we evaluate the feasibility of this approach in a case-control study with 424 digital mammograms. In a randomized split-sample setting, we optimize our framework in training/validation sets (N=300) and evaluate its descriminatory performance in an independent test set (N=124). The discriminatory capacity is assessed in terms of the the area under the curve (AUC) of the receiver operator characteristic (ROC). The resulting meta-features exhibited strong classification capability in the test dataset (AUC = 0.90), outperforming conventional, non-fused, texture analysis which previously resulted in an AUC=0.85 on the same case-control dataset. Our results suggest that informative interactions between localized motifs exist and can be extracted and summarized via a fairly simple ConvNet architecture.

  9. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  10. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    NASA Technical Reports Server (NTRS)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  11. Power spectral ensity of markov texture fields

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Holtzman, J. C.

    1984-01-01

    Texture is an important image characteristic. A variety of spatial domain techniques were proposed for extracting and utilizing textural features for segmenting and classifying images. for the most part, these spatial domain techniques are ad hos in nature. A markov random field model for image texture is discussed. A frequency domain description of image texture is derived in terms of the power spectral density. This model is used for designing optimum frequency domain filters for enhancing, restoring and segmenting images based on their textural properties.

  12. Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1

    PubMed Central

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.

    2012-01-01

    Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392

  13. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  14. Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires

    NASA Astrophysics Data System (ADS)

    Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.

    2017-04-01

    Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.

  15. Spin Josephson effect in topological superconductor-ferromagnet junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn

    2014-03-21

    The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less

  16. Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires

    PubMed Central

    Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.

    2017-01-01

    Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder. PMID:28374744

  17. Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires.

    PubMed

    Dufouleur, J; Veyrat, L; Dassonneville, B; Xypakis, E; Bardarson, J H; Nowka, C; Hampel, S; Schumann, J; Eichler, B; Schmidt, O G; Büchner, B; Giraud, R

    2017-04-04

    Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi 2 Te 3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.

  18. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    NASA Astrophysics Data System (ADS)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  19. Detection of pigment network in dermatoscopy images using texture analysis

    PubMed Central

    Anantha, Murali; Moss, Randy H.; Stoecker, William V.

    2011-01-01

    Dermatoscopy, also known as dermoscopy or epiluminescence microscopy (ELM), is a non-invasive, in vivo technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such prominent feature is the pigment network. Two texture-based algorithms are developed for the detection of pigment network. These methods are applicable to various texture patterns in dermatoscopy images, including patterns that lack fine lines such as cobblestone, follicular, or thickened network patterns. Two texture algorithms, Laws energy masks and the neighborhood gray-level dependence matrix (NGLDM) large number emphasis, were optimized on a set of 155 dermatoscopy images and compared. Results suggest superiority of Laws energy masks for pigment network detection in dermatoscopy images. For both methods, a texel width of 10 pixels or approximately 0.22 mm is found for dermatoscopy images. PMID:15249068

  20. Evaluation and recognition of skin images with aging by support vector machine

    NASA Astrophysics Data System (ADS)

    Hu, Liangjun; Wu, Shulian; Li, Hui

    2016-10-01

    Aging is a very important issue not only in dermatology, but also cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The evaluation and classification of aging is an important issue with the medical cosmetology workers nowadays. The purpose of this study is to assess chronological-age-related and photo-age-related of human skin. The texture features of skin surface skin, such as coarseness, contrast were analyzed by Fourier transform and Tamura. And the aim of it is to detect the object hidden in the skin texture in difference aging skin. Then, Support vector machine was applied to train the texture feature. The different age's states were distinguished by the support vector machine (SVM) classifier. The results help us to further understand the mechanism of different aging skin from texture feature and help us to distinguish the different aging states.

  1. Character of skin on photo-thermal response and its regeneration process using second-harmonic generation microscopy.

    PubMed

    Wu, Shu-lian; Li, Hui; Zhang, Xiao-man; Chen, Wei R; Wang, Yun-Xia

    2014-01-01

    Quantitative characterization of skin collagen on photo-thermal response and its regeneration process is an important but difficult task. In this study, morphology and spectrum characteristics of collagen during photo-thermal response and its light-induced remodeling process were obtained by second-harmonic generation microscope in vivo. The texture feature of collagen orientation index and fractal dimension was extracted by image processing. The aim of this study is to detect the information hidden in skin texture during the process of photo-thermal response and its regeneration. The quantitative relations between injured collagen and texture feature were established for further analysis of the injured characteristics. Our results show that it is feasible to determine the main impacts of phototherapy on the skin. It is important to understand the process of collagen remodeling after photo-thermal injuries from texture feature.

  2. Integrative topological analysis of mass spectrometry data reveals molecular features with clinical relevance in esophageal squamous cell carcinoma

    PubMed Central

    Gao, She-Gan; Liu, Rui-Min; Zhao, Yun-Gang; Wang, Pei; Ward, Douglas G.; Wang, Guang-Chao; Guo, Xiang-Qian; Gu, Juan; Niu, Wan-Bin; Zhang, Tian; Martin, Ashley; Guo, Zhi-Peng; Feng, Xiao-Shan; Qi, Yi-Jun; Ma, Yuan-Fang

    2016-01-01

    Combining MS-based proteomic data with network and topological features of such network would identify more clinically relevant molecules and meaningfully expand the repertoire of proteins derived from MS analysis. The integrative topological indexes representing 95.96% information of seven individual topological measures of node proteins were calculated within a protein-protein interaction (PPI) network, built using 244 differentially expressed proteins (DEPs) identified by iTRAQ 2D-LC-MS/MS. Compared with DEPs, differentially expressed genes (DEGs) and comprehensive features (CFs), structurally dominant nodes (SDNs) based on integrative topological index distribution produced comparable classification performance in three different clinical settings using five independent gene expression data sets. The signature molecules of SDN-based classifier for distinction of early from late clinical TNM stages were enriched in biological traits of protein synthesis, intracellular localization and ribosome biogenesis, which suggests that ribosome biogenesis represents a promising therapeutic target for treating ESCC. In addition, ITGB1 expression selected exclusively by integrative topological measures correlated with clinical stages and prognosis, which was further validated with two independent cohorts of ESCC samples. Thus the integrative topological analysis of PPI networks proposed in this study provides an alternative approach to identify potential biomarkers and therapeutic targets from MS/MS data with functional insights in ESCC. PMID:26898710

  3. Exactly Solvable Models for Topological Phases of Matter

    NASA Astrophysics Data System (ADS)

    Tarantino, Nicolas Alessandro

    Topological systems are characterized by some collection of features which remain unchanged under deformations of the Hamiltonian which leave the band gap open. The earliest examples of these were free fermion systems, allowing us to study the band structure to determine if a candidate material supports topological features. However, we can also ask the reversed question, i.e. Given a band gap, what topological features can be engineered? This classification problem proved to have numerous answers depending on which extra assumptions we allow, producing many candidate phases. While free fermion topological features could be classified by their band structures (culminating in the 10-fold way), strongly interacting systems defied this approach, and so classification outstripped the construction of even the most elementary Hamiltonians, leaving us with a number of phases which could exist, but do not have a single strongly interacting representative. The purpose of this thesis is to resolve this in certain cases by constructing commuting projector models (CPM), a class of exactly solvable models, for two types of topological phases, known as symmetry enriched topological (SET) order and fermionic symmetry protected topological (SPT) phases respectively. After introducing the background and history of commuting projector models, we will move on to the details of how these Hamiltonians are built. In the first case, we construct a CPM for a SET, showing how to encode the necessary group cohomology data into a lattice model. In the second, we construct a CPM for a fermionic SPT, and find that we must include a combinatorial representation of a spin structure to make the model consistent. While these two projects were independent, they are linked thematically by a technique known as decoration, where extra data is encoded onto simple models to generate exotic phases.

  4. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer.

    PubMed

    Gnep, Khémara; Fargeas, Auréline; Gutiérrez-Carvajal, Ricardo E; Commandeur, Frédéric; Mathieu, Romain; Ospina, Juan D; Rolland, Yan; Rohou, Tanguy; Vincendeau, Sébastien; Hatt, Mathieu; Acosta, Oscar; de Crevoisier, Renaud

    2017-01-01

    To explore the association between magnetic resonance imaging (MRI), including Haralick textural features, and biochemical recurrence following prostate cancer radiotherapy. In all, 74 patients with peripheral zone localized prostate adenocarcinoma underwent pretreatment 3.0T MRI before external beam radiotherapy. Median follow-up of 47 months revealed 11 patients with biochemical recurrence. Prostate tumors were segmented on T 2 -weighted sequences (T 2 -w) and contours were propagated onto the coregistered apparent diffusion coefficient (ADC) images. We extracted 140 image features from normalized T 2 -w and ADC images corresponding to first-order (n = 6), gradient-based (n = 4), and second-order Haralick textural features (n = 130). Four geometrical features (tumor diameter, perimeter, area, and volume) were also computed. Correlations between Gleason score and MRI features were assessed. Cox regression analysis and random survival forests (RSF) were performed to assess the association between MRI features and biochemical recurrence. Three T 2 -w and one ADC Haralick textural features were significantly correlated with Gleason score (P < 0.05). Twenty-eight T 2 -w Haralick features and all four geometrical features were significantly associated with biochemical recurrence (P < 0.05). The most relevant features were Haralick features T 2 -w contrast, T 2 -w difference variance, ADC median, along with tumor volume and tumor area (C-index from 0.76 to 0.82; P < 0.05). By combining these most powerful features in an RSF model, the obtained C-index was 0.90. T 2 -w Haralick features appear to be strongly associated with biochemical recurrence following prostate cancer radiotherapy. 3 J. Magn. Reson. Imaging 2017;45:103-117. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Bag-of-features approach for improvement of lung tissue classification in diffuse lung disease

    NASA Astrophysics Data System (ADS)

    Kato, Noriji; Fukui, Motofumi; Isozaki, Takashi

    2009-02-01

    Many automated techniques have been proposed to classify diffuse lung disease patterns. Most of the techniques utilize texture analysis approaches with second and higher order statistics, and show successful classification result among various lung tissue patterns. However, the approaches do not work well for the patterns with inhomogeneous texture distribution within a region of interest (ROI), such as reticular and honeycombing patterns, because the statistics can only capture averaged feature over the ROI. In this work, we have introduced the bag-of-features approach to overcome this difficulty. In the approach, texture images are represented as histograms or distributions of a few basic primitives, which are obtained by clustering local image features. The intensity descriptor and the Scale Invariant Feature Transformation (SIFT) descriptor are utilized to extract the local features, which have significant discriminatory power due to their specificity to a particular image class. In contrast, the drawback of the local features is lack of invariance under translation and rotation. We improved the invariance by sampling many local regions so that the distribution of the local features is unchanged. We evaluated the performance of our system in the classification task with 5 image classes (ground glass, reticular, honeycombing, emphysema, and normal) using 1109 ROIs from 211 patients. Our system achieved high classification accuracy of 92.8%, which is superior to that of the conventional system with the gray level co-occurrence matrix (GLCM) feature especially for inhomogeneous texture patterns.

  6. Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.

    PubMed

    Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa

    2017-03-01

    Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.

  7. The performance improvement of automatic classification among obstructive lung diseases on the basis of the features of shape analysis, in addition to texture analysis at HRCT

    NASA Astrophysics Data System (ADS)

    Lee, Youngjoo; Kim, Namkug; Seo, Joon Beom; Lee, JuneGoo; Kang, Suk Ho

    2007-03-01

    In this paper, we proposed novel shape features to improve classification performance of differentiating obstructive lung diseases, based on HRCT (High Resolution Computerized Tomography) images. The images were selected from HRCT images, obtained from 82 subjects. For each image, two experienced radiologists selected rectangular ROIs with various sizes (16x16, 32x32, and 64x64 pixels), representing each disease or normal lung parenchyma. Besides thirteen textural features, we employed additional seven shape features; cluster shape features, and Top-hat transform features. To evaluate the contribution of shape features for differentiation of obstructive lung diseases, several experiments were conducted with two different types of classifiers and various ROI sizes. For automated classification, the Bayesian classifier and support vector machine (SVM) were implemented. To assess the performance and cross-validation of the system, 5-folding method was used. In comparison to employing only textural features, adding shape features yields significant enhancement of overall sensitivity(5.9, 5.4, 4.4% in the Bayesian and 9.0, 7.3, 5.3% in the SVM), in the order of ROI size 16x16, 32x32, 64x64 pixels, respectively (t-test, p<0.01). Moreover, this enhancement was largely due to the improvement on class-specific sensitivity of mild centrilobular emphysema and bronchiolitis obliterans which are most hard to differentiate for radiologists. According to these experimental results, adding shape features to conventional texture features is much useful to improve classification performance of obstructive lung diseases in both Bayesian and SVM classifiers.

  8. Identification of natural images and computer-generated graphics based on statistical and textural features.

    PubMed

    Peng, Fei; Li, Jiao-ting; Long, Min

    2015-03-01

    To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.

  9. Computer-aided diagnosis in phase contrast imaging X-ray computed tomography for quantitative characterization of ex vivo human patellar cartilage.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismuller, Axel

    2013-10-01

    Visualization of ex vivo human patellar cartilage matrix through the phase contrast imaging X-ray computed tomography (PCI-CT) has been previously demonstrated. Such studies revealed osteoarthritis-induced changes to chondrocyte organization in the radial zone. This study investigates the application of texture analysis to characterizing such chondrocyte patterns in the presence and absence of osteoarthritic damage. Texture features derived from Minkowski functionals (MF) and gray-level co-occurrence matrices (GLCM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These texture features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). The best classification performance was observed with the MF features perimeter (AUC: 0.94 ±0.08 ) and "Euler characteristic" (AUC: 0.94 ±0.07 ), and GLCM-derived feature "Correlation" (AUC: 0.93 ±0.07). These results suggest that such texture features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix, enabling classification of cartilage as healthy or osteoarthritic with high accuracy.

  10. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  11. Topological edge states and impurities: Manifestation in the local static and dynamical characteristics of dimerized quantum chains

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2018-04-01

    Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.

  12. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  13. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Byrd, D; Bowen, S

    2015-06-15

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolutionmore » of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter-institution studies attempting to validate prognostic values of PET texture features in cancer treatment.« less

  14. Textural characterization of histopathological images for oral sub-mucous fibrosis detection.

    PubMed

    Krishnan, M Muthu Rama; Shah, Pratik; Choudhary, Anirudh; Chakraborty, Chandan; Paul, Ranjan Rashmi; Ray, Ajoy K

    2011-10-01

    In the field of quantitative microscopy, textural information plays a significant role very often in tissue characterization and diagnosis, in addition to morphology and intensity. The aim of this work is to improve the classification accuracy based on textural features for the development of a computer assisted screening of oral sub-mucous fibrosis (OSF). In fact, a systematic approach is introduced in order to grade the histopathological tissue sections into normal, OSF without dysplasia and OSF with dysplasia, which would help the oral onco-pathologists to screen the subjects rapidly. In totality, 71 textural features are extracted from epithelial region of the tissue sections using various wavelet families, Gabor-wavelet, local binary pattern, fractal dimension and Brownian motion curve, followed by preprocessing and segmentation. Wavelet families contribute a common set of 9 features, out of which 8 are significant and other 61 out of 62 obtained from the rest of the extractors are also statistically significant (p<0.05) in discriminating the three stages. Based on mean distance criteria, the best wavelet family (i.e., biorthogonal3.1 (bior3.1)) is selected for classifier design. support vector machine (SVM) is trained by 146 samples based on 69 textural features and its classification accuracy is computed for each of the combinations of wavelet family and rest of the extractors. Finally, it has been investigated that bior3.1 wavelet coefficients leads to higher accuracy (88.38%) in combination with LBP and Gabor wavelet features through three-fold cross validation. Results are shown and discussed in detail. It is shown that combining more than one texture measure instead of using just one might improve the overall accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Validation of CBCT for the computation of textural biomarkers

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ruellas, Antonio C.; Benavides, Erika; Marron, Steve; Wolford, Larry; Cevidanes, Lucia

    2015-03-01

    Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr- CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr- CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.

  16. Texture-Based Analysis of 100 MR Examinations of Head and Neck Tumors - Is It Possible to Discriminate Between Benign and Malignant Masses in a Multicenter Trial?

    PubMed

    Fruehwald-Pallamar, J; Hesselink, J R; Mafee, M F; Holzer-Fruehwald, L; Czerny, C; Mayerhoefer, M E

    2016-02-01

    To evaluate whether texture-based analysis of standard MRI sequences can help in the discrimination between benign and malignant head and neck tumors. The MR images of 100 patients with a histologically clarified head or neck mass, from two different institutions, were analyzed. Texture-based analysis was performed using texture analysis software, with region of interest measurements for 2 D and 3 D evaluation independently for all axial sequences. COC, RUN, GRA, ARM, and WAV features were calculated for all ROIs. 10 texture feature subsets were used for a linear discriminant analysis, in combination with k-nearest-neighbor classification. Benign and malignant tumors were compared with regard to texture-based values. There were differences in the images from different field-strength scanners, as well as from different vendors. For the differentiation of benign and malignant tumors, we found differences on STIR and T2-weighted images for 2 D, and on contrast-enhanced T1-TSE with fat saturation for 3 D evaluation. In a separate analysis of the subgroups 1.5 and 3 Tesla, more discriminating features were found. Texture-based analysis is a useful tool in the discrimination of benign and malignant tumors when performed on one scanner with the same protocol. We cannot recommend this technique for the use of multicenter studies with clinical data. 2 D/3 D texture-based analysis can be performed in head and neck tumors. Texture-based analysis can differentiate between benign and malignant masses. Analyzed MR images should originate from one scanner with an identical protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Parenchymal texture measures weighted by breast anatomy: preliminary optimization in a case-control study

    NASA Astrophysics Data System (ADS)

    Gastounioti, Aimilia; Keller, Brad M.; Hsieh, Meng-Kang; Conant, Emily F.; Kontos, Despina

    2016-03-01

    Growing evidence suggests that quantitative descriptors of the parenchymal texture patterns hold a valuable role in assessing an individual woman's risk for breast cancer. In this work, we assess the hypothesis that breast cancer risk factors are not uniformly expressed in the breast parenchymal tissue and, therefore, breast-anatomy-weighted parenchymal texture descriptors, where different breasts ROIs have non uniform contributions, may enhance breast cancer risk assessment. To this end, we introduce an automated breast-anatomy-driven methodology which generates a breast atlas, which is then used to produce a weight map that reinforces the contributions of the central and upper-outer breast areas. We incorporate this methodology to our previously validated lattice-based strategy for parenchymal texture analysis. In the framework of a pilot case-control study, including digital mammograms from 424 women, our proposed breast-anatomy-weighted texture descriptors are optimized and evaluated against non weighted texture features, using regression analysis with leave-one-out cross validation. The classification performance is assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The collective discriminatory capacity of the weighted texture features was maximized (AUC=0.87) when the central breast area was considered more important than the upperouter area, with significant performance improvement (DeLong's test, p-value<0.05) against the non-weighted texture features (AUC=0.82). Our results suggest that breast-anatomy-driven methodologies have the potential to further upgrade the promising role of parenchymal texture analysis in breast cancer risk assessment and may serve as a reference in the design of future studies towards image-driven personalized recommendations regarding women's cancer risk evaluation.

  18. Validation of CBCT for the computation of textural biomarkers

    PubMed Central

    Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia

    2015-01-01

    Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA. PMID:26085710

  19. Validation of CBCT for the computation of textural biomarkers.

    PubMed

    Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia

    2015-03-17

    Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.

  20. Quantum algorithms for topological and geometric analysis of data

    PubMed Central

    Lloyd, Seth; Garnerone, Silvano; Zanardi, Paolo

    2016-01-01

    Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis. PMID:26806491

  1. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data

    PubMed Central

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088

  2. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  3. TU-G-204-05: The Effects of CT Acquisition and Reconstruction Conditions On Computed Texture Feature Values of Lung Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, P; Young, S; Kim, G

    2015-06-15

    Purpose: Texture features have been investigated as a biomarker of response and malignancy. Because these features reflect local differences in density, they may be influenced by acquisition and reconstruction parameters. The purpose of this study was to investigate the effects of radiation dose level and reconstruction method on features derived from lung lesions. Methods: With IRB approval, 33 lung tumor cases were identified from clinically indicated thoracic CT scans in which the raw projection (sinogram) data were available. Based on a previously-published technique, noise was added to the raw data to simulate reduced-dose versions of each case at 25%, 10%more » and 3% of the original dose. Original and simulated reduced dose projection data were reconstructed with conventional and two iterative-reconstruction settings, yielding 12 combinations of dose/recon conditions. One lesion from each case was contoured. At the reference condition (full dose, conventional recon), 17 lesions were randomly selected for repeat contouring (repeatability). For each lesion at each dose/recon condition, 151 texture measures were calculated. A paired differences approach was employed to compare feature variation from repeat contours at the reference condition to the variation observed in other dose/recon conditions (reproducibility). The ratio of standard deviation of the reproducibility to repeatability was used as the variation measure for each feature. Results: The mean variation (standard deviation) across dose levels and kernel was significantly different with a ratio of 2.24 (±5.85) across texture features (p=0.01). The mean variation (standard deviation) across dose levels with conventional recon was also significantly different with 2.30 (7.11) (p=0.025). The mean variation across reconstruction settings of original dose has a trend in showing difference with 1.35 (2.60) among all features (p=0.09). Conclusion: Texture features varied considerably with variations in dose and reconstruction condition. Care should be taken to standardize these conditions when using texture as a quantitative feature. This effort supported in part by a grant from the National Cancer Institute’s Quantitative Imaging Network (QIN): U01 CA181156; The UCLA Department of Radiology has a Master Research Agreement with Siemens Healthcare; Dr. McNitt-Gray has previously received research support from Siemens Healthcare.« less

  4. Evaluation of Shape and Textural Features from CT as Prognostic Biomarkers in Non-small Cell Lung Cancer.

    PubMed

    Bianconi, Francesco; Fravolini, Mario Luca; Bello-Cerezo, Raquel; Minestrini, Matteo; Scialpi, Michele; Palumbo, Barbara

    2018-04-01

    We retrospectively investigated the prognostic potential (correlation with overall survival) of 9 shape and 21 textural features from non-contrast-enhanced computed tomography (CT) in patients with non-small-cell lung cancer. We considered a public dataset of 203 individuals with inoperable, histologically- or cytologically-confirmed NSCLC. Three-dimensional shape and textural features from CT were computed using proprietary code and their prognostic potential evaluated through four different statistical protocols. Volume and grey-level run length matrix (GLRLM) run length non-uniformity were the only two features to pass all four protocols. Both features correlated negatively with overall survival. The results also showed a strong dependence on the evaluation protocol used. Tumour volume and GLRLM run-length non-uniformity from CT were the best predictor of survival in patients with non-small-cell lung cancer. We did not find enough evidence to claim a relationship with survival for the other features. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Cloud cover analysis with Arctic Advanced Very High Resolution Radiometer data. II - Classification with spectral and textural measures

    NASA Technical Reports Server (NTRS)

    Key, J.

    1990-01-01

    The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.

  6. Efficacy of texture, shape, and intensity features for robust posterior-fossa tumor segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Iftekharuddin, K. M.; Ogg, R. J.; Laningham, F. H.

    2009-02-01

    Our previous works suggest that fractal-based texture features are very useful for detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. In this work, we investigate and compare efficacy of our texture features such as fractal and multifractional Brownian motion (mBm), and intensity along with another useful level-set based shape feature in PF tumor segmentation. We study feature selection and ranking using Kullback -Leibler Divergence (KLD) and subsequent tumor segmentation; all in an integrated Expectation Maximization (EM) framework. We study the efficacy of all four features in both multimodality as well as disparate MRI modalities such as T1, T2 and FLAIR. Both KLD feature plots and information theoretic entropy measure suggest that mBm feature offers the maximum separation between tumor and non-tumor tissues in T1 and FLAIR MRI modalities. The same metrics show that intensity feature offers the maximum separation between tumor and non-tumor tissue in T2 MRI modality. The efficacies of these features are further validated in segmenting PF tumor using both single modality and multimodality MRI for six pediatric patients with over 520 real MR images.

  7. Detection of Focal Cortical Dysplasia Lesions in MRI Using Textural Features

    NASA Astrophysics Data System (ADS)

    Loyek, Christian; Woermann, Friedrich G.; Nattkemper, Tim W.

    Focal cortical dysplasia (FCD) is a frequent cause of medically refractory partial epilepsy. The visual identification of FCD lesions on magnetic resonance images (MRI) is a challenging task in standard radiological analysis. Quantitative image analysis which tries to assist in the diagnosis of FCD lesions is an active field of research. In this work we investigate the potential of different texture features, in order to explore to what extent they are suitable for detecting lesional tissue. As a result we can show first promising results based on segmentation and texture classification.

  8. SU-D-BRA-07: A Phantom Study to Assess the Variability in Radiomics Features Extracted From Cone-Beam CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fave, X; Fried, D; UT Health Science Center Graduate School of Biomedical Sciences, Houston, TX

    2015-06-15

    Purpose: Several studies have demonstrated the prognostic potential for texture features extracted from CT images of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine if these features could be extracted with high reproducibility from cone-beam CT (CBCT) images in order for features to be easily tracked throughout a patient’s treatment. Methods: Two materials in a radiomics phantom, designed to approximate NSCLC tumor texture, were used to assess the reproducibility of 26 features. This phantom was imaged on 9 CBCT scanners, including Elekta and Varian machines. Thoracic and head imaging protocols were acquired on eachmore » machine. CBCT images from 27 NSCLC patients imaged using the thoracic protocol on Varian machines were obtained for comparison. The variance for each texture measured from these patients was compared to the variance in phantom values for different manufacturer/protocol subsets. Levene’s test was used to identify features which had a significantly smaller variance in the phantom scans versus the patient data. Results: Approximately half of the features (13/26 for material1 and 15/26 for material2) had a significantly smaller variance (p<0.05) between Varian thoracic scans of the phantom compared to patient scans. Many of these same features remained significant for the head scans on Varian (12/26 and 8/26). However, when thoracic scans from Elekta and Varian were combined, only a few features were still significant (4/26 and 5/26). Three features (skewness, coarsely filtered mean and standard deviation) were significant in almost all manufacturer/protocol subsets. Conclusion: Texture features extracted from CBCT images of a radiomics phantom are reproducible and show significantly less variation than the same features measured from patient images when images from the same manufacturer or with similar parameters are used. Reproducibility between CBCT scanners may be high enough to allow the extraction of meaningful texture values for patients. This project was funded in part by the Cancer Prevention Research Institute of Texas (CPRIT). Xenia Fave is a recipient of the American Association of Physicists in Medicine Graduate Fellowship.« less

  9. Multifractal modeling, segmentation, prediction, and statistical validation of posterior fossa tumors

    NASA Astrophysics Data System (ADS)

    Islam, Atiq; Iftekharuddin, Khan M.; Ogg, Robert J.; Laningham, Fred H.; Sivakumar, Bhuvaneswari

    2008-03-01

    In this paper, we characterize the tumor texture in pediatric brain magnetic resonance images (MRIs) and exploit these features for automatic segmentation of posterior fossa (PF) tumors. We focus on PF tumor because of the prevalence of such tumor in pediatric patients. Due to varying appearance in MRI, we propose to model the tumor texture with a multi-fractal process, such as a multi-fractional Brownian motion (mBm). In mBm, the time-varying Holder exponent provides flexibility in modeling irregular tumor texture. We develop a detailed mathematical framework for mBm in two-dimension and propose a novel algorithm to estimate the multi-fractal structure of tissue texture in brain MRI based on wavelet coefficients. This wavelet based multi-fractal feature along with MR image intensity and a regular fractal feature obtained using our existing piecewise-triangular-prism-surface-area (PTPSA) method, are fused in segmenting PF tumor and non-tumor regions in brain T1, T2, and FLAIR MR images respectively. We also demonstrate a non-patient-specific automated tumor prediction scheme based on these image features. We experimentally show the tumor discriminating power of our novel multi-fractal texture along with intensity and fractal features in automated tumor segmentation and statistical prediction. To evaluate the performance of our tumor prediction scheme, we obtain ROCs and demonstrate how sharply the curves reach the specificity of 1.0 sacrificing minimal sensitivity. Experimental results show the effectiveness of our proposed techniques in automatic detection of PF tumors in pediatric MRIs.

  10. Combined texture feature analysis of segmentation and classification of benign and malignant tumour CT slices.

    PubMed

    Padma, A; Sukanesh, R

    2013-01-01

    A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.

  11. Rule-based topology system for spatial databases to validate complex geographic datasets

    NASA Astrophysics Data System (ADS)

    Martinez-Llario, J.; Coll, E.; Núñez-Andrés, M.; Femenia-Ribera, C.

    2017-06-01

    A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in spatial relationships among datasets is presented. This improved topology rule system is built over the spatial extension Jaspa. Both projects are open source, freely available software developed by the corresponding author of this paper. Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the topology rules are designed and performed in the spatial backend). If the topology rules are applied in the frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules, it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is performed in the spatial backend. The proposed topology system allows users to check the complex spatial relationships among features (from one or several spatial layers) that require some complex cartographic datasets, such as the data specifications proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.

  12. Phase transitions triggered by quantum fluctuations in the inflationary universe

    NASA Technical Reports Server (NTRS)

    Nagasawa, Michiyasu; Yokoyama, Junichi

    1991-01-01

    The dynamics of a second-order phase transition during inflation, which is induced by time-variation of spacetime curvature, is studied as a natural mechanism to produce topological defects of typical grand unification scales such as cosmic strings or global textures. It is shown that their distribution is almost scale-invariant with small- and large-scale cutoffs. Also discussed is how these cutoffs are given.

  13. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2}=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R{sub adj}{sup 2}=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. Conclusions: The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.« less

  14. Texture for script identification.

    PubMed

    Busch, Andrew; Boles, Wageeh W; Sridharan, Sridha

    2005-11-01

    The problem of determining the script and language of a document image has a number of important applications in the field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a document image, based on the observation that text has a distinct visual texture. An experimental evaluation of a number of commonly used texture features is conducted on a newly created script database, providing a qualitative measure of which features are most appropriate for this task. Strategies for improving classification results in situations with limited training data and multiple font types are also proposed.

  15. Generation and control of noncollinear magnetism by supercurrent

    NASA Astrophysics Data System (ADS)

    Takashima, Rina; Kato, Yasuyuki; Yanase, Youichi; Motome, Yukitoshi

    2018-02-01

    When superconductivity couples with noncollinear spin textures, rich physics arises, for instance, singlet Cooper pairs can be converted to triplet pairs, and topological superconductors can be realized. For their applications, the controllability of noncollinear magnetism is a crucial issue. Here, we propose that a supercurrent can induce and control noncollinear magnetic orders in a correlated metal on top of a singlet superconductor. We show that the magnetic instability in the correlated metal is enhanced by the proximity effect of supercurrents, which leads to phase transitions from a paramagnetic state to noncollinear magnetic phases with helical or vortexlike spin textures. Furthermore, these magnetic orders can be switched by the direction of the supercurrent. We also discuss the effect of the Rashba spin-orbit coupling and the experimental realization.

  16. Texture classification of normal tissues in computed tomography using Gabor filters

    NASA Astrophysics Data System (ADS)

    Dettori, Lucia; Bashir, Alia; Hasemann, Julie

    2007-03-01

    The research presented in this article is aimed at developing an automated imaging system for classification of normal tissues in medical images obtained from Computed Tomography (CT) scans. Texture features based on a bank of Gabor filters are used to classify the following tissues of interests: liver, spleen, kidney, aorta, trabecular bone, lung, muscle, IP fat, and SQ fat. The approach consists of three steps: convolution of the regions of interest with a bank of 32 Gabor filters (4 frequencies and 8 orientations), extraction of two Gabor texture features per filter (mean and standard deviation), and creation of a Classification and Regression Tree-based classifier that automatically identifies the various tissues. The data set used consists of approximately 1000 DIACOM images from normal chest and abdominal CT scans of five patients. The regions of interest were labeled by expert radiologists. Optimal trees were generated using two techniques: 10-fold cross-validation and splitting of the data set into a training and a testing set. In both cases, perfect classification rules were obtained provided enough images were available for training (~65%). All performance measures (sensitivity, specificity, precision, and accuracy) for all regions of interest were at 100%. This significantly improves previous results that used Wavelet, Ridgelet, and Curvelet texture features, yielding accuracy values in the 85%-98% range The Gabor filters' ability to isolate features at different frequencies and orientations allows for a multi-resolution analysis of texture essential when dealing with, at times, very subtle differences in the texture of tissues in CT scans.

  17. Classification of glioblastoma and metastasis for neuropathology intraoperative diagnosis: a multi-resolution textural approach to model the background

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Gokozan, Hamza Numan; Elder, Brad; Puduvalli, Vinay K.; Otero, Jose J.; Gurcan, Metin N.

    2014-03-01

    Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers.

  18. New displacement-based methods for optimal truss topology design

    NASA Technical Reports Server (NTRS)

    Bendsoe, Martin P.; Ben-Tal, Aharon; Haftka, Raphael T.

    1991-01-01

    Two alternate methods for maximum stiffness truss topology design are presented. The ground structure approach is used, and the problem is formulated in terms of displacements and bar areas. This large, nonconvex optimization problem can be solved by a simultaneous analysis and design approach. Alternatively, an equivalent, unconstrained, and convex problem in the displacements only can be formulated, and this problem can be solved by a nonsmooth, steepest descent algorithm. In both methods, the explicit solving of the equilibrium equations and the assembly of the global stiffness matrix are circumvented. A large number of examples have been studied, showing the attractive features of topology design as well as exposing interesting features of optimal topologies.

  19. Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature

    NASA Astrophysics Data System (ADS)

    Barker, Joseph; Tretiakov, Oleg A.

    2016-04-01

    Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, Skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that Skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic Skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which, e.g., results in a complete cancellation of the Magnus force. We find that the composite nature of antiferromagnetic Skyrmions gives rise to different dynamical behavior due to both an applied current and temperature effects.

  20. Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Li, Tracy; Bloch, Immanuel; Demler, Eugene

    2017-06-01

    Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states with topological order. Here we present a general scheme based on a combination of microwave driving and lattice shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry. We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent square lattice. More generally, our method can be used to open gaps between different spin states without breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators with nontrivial spin textures closely related to the Kane-Mele model.

  1. Parameter optimization of parenchymal texture analysis for prediction of false-positive recalls from screening mammography

    NASA Astrophysics Data System (ADS)

    Ray, Shonket; Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2016-03-01

    This work details a methodology to obtain optimal parameter values for a locally-adaptive texture analysis algorithm that extracts mammographic texture features representative of breast parenchymal complexity for predicting falsepositive (FP) recalls from breast cancer screening with digital mammography. The algorithm has two components: (1) adaptive selection of localized regions of interest (ROIs) and (2) Haralick texture feature extraction via Gray- Level Co-Occurrence Matrices (GLCM). The following parameters were systematically varied: mammographic views used, upper limit of the ROI window size used for adaptive ROI selection, GLCM distance offsets, and gray levels (binning) used for feature extraction. Each iteration per parameter set had logistic regression with stepwise feature selection performed on a clinical screening cohort of 474 non-recalled women and 68 FP recalled women; FP recall prediction was evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC) and associations between the extracted features and FP recall were assessed via odds ratios (OR). A default instance of mediolateral (MLO) view, upper ROI size limit of 143.36 mm (2048 pixels2), GLCM distance offset combination range of 0.07 to 0.84 mm (1 to 12 pixels) and 16 GLCM gray levels was set. The highest ROC performance value of AUC=0.77 [95% confidence intervals: 0.71-0.83] was obtained at three specific instances: the default instance, upper ROI window equal to 17.92 mm (256 pixels2), and gray levels set to 128. The texture feature of sum average was chosen as a statistically significant (p<0.05) predictor and associated with higher odds of FP recall for 12 out of 14 total instances.

  2. [18]Fluorodeoxyglucose Positron Emission Tomography for the Textural Features of Cervical Cancer Associated with Lymph Node Metastasis and Histological Type.

    PubMed

    Shen, Wei-Chih; Chen, Shang-Wen; Liang, Ji-An; Hsieh, Te-Chun; Yen, Kuo-Yang; Kao, Chia-Hung

    2017-09-01

    In this study, we investigated the correlation between the lymph node (LN) status or histological types and textural features of cervical cancers on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. We retrospectively reviewed the imaging records of 170 patients with International Federation of Gynecology and Obstetrics stage IB-IVA cervical cancer. Four groups of textural features were studied in addition to the maximum standardized uptake value (SUV max ), metabolic tumor volume, and total lesion glycolysis (TLG). Moreover, we studied the associations between the indices and clinical parameters, including the LN status, clinical stage, and histology. Receiver operating characteristic curves were constructed to evaluate the optimal predictive performance among the various textural indices. Quantitative differences were determined using the Mann-Whitney U test. Multivariate logistic regression analysis was performed to determine the independent factors, among all the variables, for predicting LN metastasis. Among all the significant indices related to pelvic LN metastasis, homogeneity derived from the gray-level co-occurrence matrix (GLCM) was the sole independent predictor. By combining SUV max , the risk of pelvic LN metastasis can be scored accordingly. The TLG mean was the independent feature of positive para-aortic LNs. Quantitative differences between squamous and nonsquamous histology can be determined using short-zone emphasis (SZE) from the gray-level size zone matrix (GLSZM). This study revealed that in patients with cervical cancer, pelvic or para-aortic LN metastases can be predicted by using textural feature of homogeneity from the GLCM and TLG mean, respectively. SZE from the GLSZM is the sole feature associated with quantitative differences between squamous and nonsquamous histology.

  3. Texture and color features for tile classification

    NASA Astrophysics Data System (ADS)

    Baldrich, Ramon; Vanrell, Maria; Villanueva, Juan J.

    1999-09-01

    In this paper we present the results of a preliminary computer vision system to classify the production of a ceramic tile industry. We focus on the classification of a specific type of tiles whose production can be affected by external factors, such as humidity, temperature, origin of clays and pigments. Variations on these uncontrolled factors provoke small differences in the color and the texture of the tiles that force to classify all the production. A constant and non- subjective classification would allow avoiding devolution from customers and unnecessary stock fragmentation. The aim of this work is to simulate the human behavior on this classification task by extracting a set of features from tile images. These features are induced by definitions from experts. To compute them we need to mix color and texture information and to define global and local measures. In this work, we do not seek a general texture-color representation, we only deal with textures formed by non-oriented colored-blobs randomly distributed. New samples are classified using Discriminant Analysis functions derived from known class tile samples. The last part of the paper is devoted to explain the correction of acquired images in order to avoid time and geometry illumination changes.

  4. Volumetric characterization of human patellar cartilage matrix on phase contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel

    2015-03-01

    Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  5. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    PubMed Central

    2009-01-01

    Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426

  6. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2017-03-01

    We propose using multi-scale image textures to investigate links between neuroanatomical regions and clinical variables in MRI. Texture features are derived at multiple scales of resolution based on the Laplacian-of-Gaussian (LoG) filter. Three quantifier functions (Average, Standard Deviation and Entropy) are used to summarize texture statistics within standard, automatically segmented neuroanatomical regions. Significance tests are performed to identify regional texture differences between ASD vs. TDC and male vs. female groups, as well as correlations with age (corrected p < 0.05). The open-access brain imaging data exchange (ABIDE) brain MRI dataset is used to evaluate texture features derived from 31 brain regions from 1112 subjects including 573 typically developing control (TDC, 99 females, 474 males) and 539 Autism spectrum disorder (ASD, 65 female and 474 male) subjects. Statistically significant texture differences between ASD vs. TDC groups are identified asymmetrically in the right hippocampus, left choroid-plexus and corpus callosum (CC), and symmetrically in the cerebellar white matter. Sex-related texture differences in TDC subjects are found in primarily in the left amygdala, left cerebellar white matter, and brain stem. Correlations between age and texture in TDC subjects are found in the thalamus-proper, caudate and pallidum, most exhibiting bilateral symmetry.

  7. Colloquium: Zoo of quantum-topological phases of matter

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Gang

    2017-10-01

    What are topological phases of matter? First, they are phases of matter at zero temperature. Second, they have a nonzero energy gap for the excitations above the ground state. Third, they are disordered liquids that seem to have no feature. But those disordered liquids actually can have rich patterns of many-body entanglement representing new kinds of order. This Colloquium gives a simple introduction and a brief survey of topological phases of matter. First topological phases with topological order (i.e., with long-range entanglement) are discussed. Then topological phases without topological order (i.e., with short-range entanglement) are covered.

  8. A comparative analysis of image features between weave embroidered Thangka and piles embroidered Thangka

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Wang, Weilan

    2018-04-01

    Thangka is a treasure of Tibetan culture. In its digital protection, most of the current research focuses on the content of Thangka images, not the fabrication process. For silk embroidered Thangka of "Guo Tang", there are two craft methods, namely, weave embroidered and piles embroidered. The local texture of weave embroidered Thangka is rough, and that of piles embroidered Thangka is more smooth. In order to distinguish these two kinds of fabrication processes from images, a effectively segmentation algorithm of color blocks is designed firstly, and the obtained color blocks contain the local texture patterns of Thangka image; Secondly, the local texture features of the color block are extracted and screened; Finally, the selected features are analyzed experimentally. The experimental analysis shows that the proposed features can well reflect the difference between methods of weave embroidered and piles embroidered.

  9. Finger vein recognition with personalized feature selection.

    PubMed

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-08-22

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG.

  10. Finger Vein Recognition with Personalized Feature Selection

    PubMed Central

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-01-01

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG. PMID:23974154

  11. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining andmore » grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.« less

  12. Noninvasive Classification of Hepatic Fibrosis Based on Texture Parameters From Double Contrast-Enhanced Magnetic Resonance Images

    PubMed Central

    Bahl, Gautam; Cruite, Irene; Wolfson, Tanya; Gamst, Anthony C.; Collins, Julie M.; Chavez, Alyssa D.; Barakat, Fatma; Hassanein, Tarek; Sirlin, Claude B.

    2016-01-01

    Purpose To demonstrate a proof of concept that quantitative texture feature analysis of double contrast-enhanced magnetic resonance imaging (MRI) can classify fibrosis noninvasively, using histology as a reference standard. Materials and Methods A Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional Review Board (IRB)-approved retrospective study of 68 patients with diffuse liver disease was performed at a tertiary liver center. All patients underwent double contrast-enhanced MRI, with histopathology-based staging of fibrosis obtained within 12 months of imaging. The MaZda software program was used to compute 279 texture parameters for each image. A statistical regularization technique, generalized linear model (GLM)-path, was used to develop a model based on texture features for dichotomous classification of fibrosis category (F ≤2 vs. F ≥3) of the 68 patients, with histology as the reference standard. The model's performance was assessed and cross-validated. There was no additional validation performed on an independent cohort. Results Cross-validated sensitivity, specificity, and total accuracy of the texture feature model in classifying fibrosis were 91.9%, 83.9%, and 88.2%, respectively. Conclusion This study shows proof of concept that accurate, noninvasive classification of liver fibrosis is possible by applying quantitative texture analysis to double contrast-enhanced MRI. Further studies are needed in independent cohorts of subjects. PMID:22851409

  13. Verification of LANDSAT imagery for morphametric and topological studies of drainage basins in a section of the western plateau of Sao Paulo State: Tiete-Aguapei watershed. M.S. Thesis; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camargo, J. C. G.

    1982-01-01

    The potential of using LANDSAT MSS imagery for morphometric and topological studies of drainage basins was verified. Using Tiete and Aguapei watershed (Western Plateau) as the test site because of its homogeneous landscape. Morphometric variables collected for ten drainage basins include: circularity index; river density; drainage density; topographic texture; areal and index length; basin parameter; and main river length 1st order and 2nd order channel length. The topographical variables determined were: order; magnitude; bifuraction ratio; weighted bifuraction ratio; number of segments; number of linking; trajectory length; and topological diameter. Data were collected on topographical maps at the scale of 1:250,000 and 1:59,000 and on LANDSAT imagery at the scale of 1:250,000. The results which were summarized on tables for further analysis, show that LANDSAT imagery can supply the lack of topographic charts for drainage studies.

  14. Surface Reactivity Enhancement on a Pd/Bi2Te3 Heterostructure through Robust Topological Surface States

    PubMed Central

    He, Qing Lin; Lai, Ying Hoi; Lu, Yao; Law, Kam Tuen; Sou, Iam Keong

    2013-01-01

    We present a study of the surface reactivity of a Pd/Bi2Te3 thin film heterostructure. The topological surface states from Bi2Te3, being delocalized and robust owing to their topological natures, were found to act as an effective electron bath that significantly enhances the surface reactivity of palladium in the presence of two oxidizing agents, oxygen and tellurium respectively, which is consistent with a theoretical calculation. The surface reactivity of the adsorbed tellurium on this heterostructure is also intensified possibly benefitted from the effective transfer of the bath electrons. A partially inserted iron ferromagnetic layer at the interface of this heterostructure was found to play two competing roles arising from the higher-lying d-band center of the Pd/Fe bilayer and the interaction between the ferromagnetism and the surface spin texture of Bi2Te3 on the surface reactivity and their characteristics also demonstrate that the electron bath effect is long-lasting against accumulated thickness of adsorbates. PMID:23970163

  15. TU-AB-BRA-04: Quantitative Radiomics: Sensitivity of PET Textural Features to Image Acquisition and Reconstruction Parameters Implies the Need for Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyflot, MJ; Yang, F; Byrd, D

    Purpose: Despite increased use of heterogeneity metrics for PET imaging, standards for metrics such as textural features have yet to be developed. We evaluated the quantitative variability caused by image acquisition and reconstruction parameters on PET textural features. Methods: PET images of the NEMA IQ phantom were simulated with realistic image acquisition noise. 35 features based on intensity histograms (IH), co-occurrence matrices (COM), neighborhood-difference matrices (NDM), and zone-size matrices (ZSM) were evaluated within lesions (13, 17, 22, 28, 33 mm diameter). Variability in metrics across 50 independent images was evaluated as percent difference from mean for three phantom girths (850,more » 1030, 1200 mm) and two OSEM reconstructions (2 iterations, 28 subsets, 5 mm FWHM filtration vs 6 iterations, 28 subsets, 8.6 mm FWHM filtration). Also, patient sample size to detect a clinical effect of 30% with Bonferroni-corrected α=0.001 and 95% power was estimated. Results: As a class, NDM features demonstrated greatest sensitivity in means (5–50% difference for medium girth and reconstruction comparisons and 10–100% for large girth comparisons). Some IH features (standard deviation, energy, entropy) had variability below 10% for all sensitivity studies, while others (kurtosis, skewness) had variability above 30%. COM and ZSM features had complex sensitivities; correlation, energy, entropy (COM) and zone percentage, short-zone emphasis, zone-size non-uniformity (ZSM) had variability less than 5% while other metrics had differences up to 30%. Trends were similar for sample size estimation; for example, coarseness, contrast, and strength required 12, 38, and 52 patients to detect a 30% effect for the small girth case but 38, 88, and 128 patients in the large girth case. Conclusion: The sensitivity of PET textural features to image acquisition and reconstruction parameters is large and feature-dependent. Standards are needed to ensure that prospective trials which incorporate textural features are properly designed to detect clinical endpoints. Supported by NIH grants R01 CA169072, U01 CA148131, NCI Contract (SAIC-Frederick) 24XS036-004, and a research contract from GE Healthcare.« less

  16. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification?

    PubMed

    Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin

    2014-01-01

    Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.

  17. Layout Slam with Model Based Loop Closure for 3d Indoor Corridor Reconstruction

    NASA Astrophysics Data System (ADS)

    Baligh Jahromi, A.; Sohn, G.; Jung, J.; Shahbazi, M.; Kang, J.

    2018-05-01

    In this paper, we extend a recently proposed visual Simultaneous Localization and Mapping (SLAM) techniques, known as Layout SLAM, to make it robust against error accumulations, abrupt changes of camera orientation and miss-association of newly visited parts of the scene to the previously visited landmarks. To do so, we present a novel technique of loop closing based on layout model matching; i.e., both model information (topology and geometry of reconstructed models) and image information (photometric features) are used to address a loop-closure detection. The advantages of using the layout-related information in the proposed loop-closing technique are twofold. First, it imposes a metric constraint on the global map consistency and, thus, adjusts the mapping scale drifts. Second, it can reduce matching ambiguity in the context of indoor corridors, where the scene is homogenously textured and extracting sufficient amount of distinguishable point features is a challenging task. To test the impact of the proposed technique on the performance of Layout SLAM, we have performed the experiments on wide-angle videos captured by a handheld camera. This dataset was collected from the indoor corridors of a building at York University. The obtained results demonstrate that the proposed method successfully detects the instances of loops while producing very limited trajectory errors.

  18. Cosmic Topology

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  19. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-12-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  20. A Study of Feature Extraction Using Divergence Analysis of Texture Features

    NASA Technical Reports Server (NTRS)

    Hallada, W. A.; Bly, B. G.; Boyd, R. K.; Cox, S.

    1982-01-01

    An empirical study of texture analysis for feature extraction and classification of high spatial resolution remotely sensed imagery (10 meters) is presented in terms of specific land cover types. The principal method examined is the use of spatial gray tone dependence (SGTD). The SGTD method reduces the gray levels within a moving window into a two-dimensional spatial gray tone dependence matrix which can be interpreted as a probability matrix of gray tone pairs. Haralick et al (1973) used a number of information theory measures to extract texture features from these matrices, including angular second moment (inertia), correlation, entropy, homogeneity, and energy. The derivation of the SGTD matrix is a function of: (1) the number of gray tones in an image; (2) the angle along which the frequency of SGTD is calculated; (3) the size of the moving window; and (4) the distance between gray tone pairs. The first three parameters were varied and tested on a 10 meter resolution panchromatic image of Maryville, Tennessee using the five SGTD measures. A transformed divergence measure was used to determine the statistical separability between four land cover categories forest, new residential, old residential, and industrial for each variation in texture parameters.

  1. Deep neural networks for texture classification-A theoretical analysis.

    PubMed

    Basu, Saikat; Mukhopadhyay, Supratik; Karki, Manohar; DiBiano, Robert; Ganguly, Sangram; Nemani, Ramakrishna; Gayaka, Shreekant

    2018-01-01

    We investigate the use of Deep Neural Networks for the classification of image datasets where texture features are important for generating class-conditional discriminative representations. To this end, we first derive the size of the feature space for some standard textural features extracted from the input dataset and then use the theory of Vapnik-Chervonenkis dimension to show that hand-crafted feature extraction creates low-dimensional representations which help in reducing the overall excess error rate. As a corollary to this analysis, we derive for the first time upper bounds on the VC dimension of Convolutional Neural Network as well as Dropout and Dropconnect networks and the relation between excess error rate of Dropout and Dropconnect networks. The concept of intrinsic dimension is used to validate the intuition that texture-based datasets are inherently higher dimensional as compared to handwritten digits or other object recognition datasets and hence more difficult to be shattered by neural networks. We then derive the mean distance from the centroid to the nearest and farthest sampling points in an n-dimensional manifold and show that the Relative Contrast of the sample data vanishes as dimensionality of the underlying vector space tends to infinity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An intelligent framework for medical image retrieval using MDCT and multi SVM.

    PubMed

    Balan, J A Alex Rajju; Rajan, S Edward

    2014-01-01

    Volumes of medical images are rapidly generated in medical field and to manage them effectively has become a great challenge. This paper studies the development of innovative medical image retrieval based on texture features and accuracy. The objective of the paper is to analyze the image retrieval based on diagnosis of healthcare management systems. This paper traces the development of innovative medical image retrieval to estimate both the image texture features and accuracy. The texture features of medical images are extracted using MDCT and multi SVM. Both the theoretical approach and the simulation results revealed interesting observations and they were corroborated using MDCT coefficients and SVM methodology. All attempts to extract the data about the image in response to the query has been computed successfully and perfect image retrieval performance has been obtained. Experimental results on a database of 100 trademark medical images show that an integrated texture feature representation results in 98% of the images being retrieved using MDCT and multi SVM. Thus we have studied a multiclassification technique based on SVM which is prior suitable for medical images. The results show the retrieval accuracy of 98%, 99% for different sets of medical images with respect to the class of image.

  3. Simultaneous control of magnetic topologies for reconfigurable vortex arrays

    DOE PAGES

    Im, Mi-Young; Fischer, Peter; Han, Hee-Sung; ...

    2017-02-10

    The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less

  4. Simultaneous control of magnetic topologies for reconfigurable vortex arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Mi-Young; Fischer, Peter; Han, Hee-Sung

    The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polaritymore » by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.« less

  5. Probe Knots and Hopf Insulators with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Wang, Sheng-Tao; Sun, Kai; Duan, L.-M.

    2018-01-01

    Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here we find that knotted structures also exist in a peculiar class of three-dimensional topological insulators—the Hopf insulators. In particular, we demonstrate that the momentum-space spin textures of Hopf insulators are twisted in a nontrivial way, which implies the presence of various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in Hopf insulators, which may have potential applications in spintronics and quantum information processing. D.L.D., S.T.W. and L.M.D. are supported by the ARL, the IARPA LogiQ program, and the AFOSR MURI program, and supported by Tsinghua University for their visits. K.S. acknowledges the support from NSF under Grant No. PHY1402971. D.L.D. is also supported by JQI-NSF-PFC and LPS-MPO-CMTC at the final stage of this paper.

  6. High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain

    NASA Astrophysics Data System (ADS)

    Trommsdorff, V.; Sánchez-Vizcaíno, V. López; Gómez-Pugnaire, M. T.; Müntener, O.

    The prograde, high pressure, transition from antigorite serpentinite to enstatite-olivine rock occurs along a tectonically undisturbed profile at Cerro del Almirez, SE Spain. The reactant assemblage is antigorite + olivine with tremolite rimming precursor diopside. The product assemblage of tremolite + chlorite + enstatite + olivine has a spinifex-like texture with arborescent or radiating olivine elongated parallel to [001] and with radially grown enstatite. Product enstatite is very poor in Al2O3. Due to numerous oriented submicroscopic inclusions of chromian magnetite, product olivine has a brownish pleochroism and a bulk chromium content similar to precursor antigorite. Titanian clinohumite with a fluorine content of 0.45-0.50 wt% persisted beyond the breakdown of antigorite. The partitioning of iron and magnesium amongst the silicate phases is almost identical to that at lower pressures. Average Kd values Mn/Mg and Ni/Mg are 0.17 and 0.70 for antigorite-olivine pairs and 1.83 and 0.22 for orthopyroxene-olivine pairs, respectively. These data are useful in discriminating generations of olivine grown on each other. From the field data a phase diagram topology for a portion of the system CaO-MgO-SiO2-H2O is derived. This topology forms the basis for extrapolations into inaccessible P-T regions.

  7. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  8. Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE-MRI protocol.

    PubMed

    Milenković, Jana; Dalmış, Mehmet Ufuk; Žgajnar, Janez; Platel, Bram

    2017-09-01

    New ultrafast view-sharing sequences have enabled breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to be performed at high spatial and temporal resolution. The aim of this study is to evaluate the diagnostic potential of textural features that quantify the spatiotemporal changes of the contrast-agent uptake in computer-aided diagnosis of malignant and benign breast lesions imaged with high spatial and temporal resolution DCE-MRI. The proposed approach is based on the textural analysis quantifying the spatial variation of six dynamic features of the early-phase contrast-agent uptake of a lesion's largest cross-sectional area. The textural analysis is performed by means of the second-order gray-level co-occurrence matrix, gray-level run-length matrix and gray-level difference matrix. This yields 35 textural features to quantify the spatial variation of each of the six dynamic features, providing a feature set of 210 features in total. The proposed feature set is evaluated based on receiver operating characteristic (ROC) curve analysis in a cross-validation scheme for random forests (RF) and two support vector machine classifiers, with linear and radial basis function (RBF) kernel. Evaluation is done on a dataset with 154 breast lesions (83 malignant and 71 benign) and compared to a previous approach based on 3D morphological features and the average and standard deviation of the same dynamic features over the entire lesion volume as well as their average for the smaller region of the strongest uptake rate. The area under the ROC curve (AUC) obtained by the proposed approach with the RF classifier was 0.8997, which was significantly higher (P = 0.0198) than the performance achieved by the previous approach (AUC = 0.8704) on the same dataset. Similarly, the proposed approach obtained a significantly higher result for both SVM classifiers with RBF (P = 0.0096) and linear kernel (P = 0.0417) obtaining AUC of 0.8876 and 0.8548, respectively, compared to AUC values of previous approach of 0.8562 and 0.8311, respectively. The proposed approach based on 2D textural features quantifying spatiotemporal changes of the contrast-agent uptake significantly outperforms the previous approach based on 3D morphology and dynamic analysis in differentiating the malignant and benign breast lesions, showing its potential to aid clinical decision making. © 2017 American Association of Physicists in Medicine.

  9. Adaptive texture filtering for defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  10. Image-based non-contact monitoring of skin texture changed by piloerection for emotion estimation

    NASA Astrophysics Data System (ADS)

    Uchida, Mihiro; Akaho, Rina; Ogawa, Keiko; Tsumura, Norimichi

    2018-02-01

    In this paper, we find the effective feature values of skin textures captured by non-contact camera to monitor piloerection on the skin for emotion estimation. Recently, emotion estimation is required for service robots to interact with human more naturally. There are a lot of researches of estimating emotion and additional methods are required to improve emotion estimation because using only a few methods may not give enough information for emotion estimation. In the previous study, it is necessary to fix a device on the subject's arm for detecting piloerection, but the contact monitoring can be stress itself and distract the subject from concentrating in the stimuli and evoking strong emotion. So, we focused on the piloerection as the object obtained with non-contact methods. The piloerection is observed as goose bumps on the skin when the subject is emotionally moved, scared and so on. This phenomenon is caused by contraction of arrector pili muscles with the activation of sympathetic nervous system. This piloerection changes skin texture. Skin texture is important in the cosmetic industry to evaluate skin condition. Therefore, we thought that it will be effective to evaluate the condition of skin texture for emotion estimation. The evaluations were performed by extracting the effective feature values from skin textures captured with a high resolution camera. The effective feature values should have high correlation with the degree of piloerection. In this paper, we found that standard deviation of short-line inclination angles in the texture is well correlated with the degree of piloerection.

  11. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    NASA Astrophysics Data System (ADS)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  12. Music Structure Analysis from Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.; Goto, Masataka

    Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.

  13. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors.

    PubMed

    Rodriguez Gutierrez, D; Awwad, A; Meijer, L; Manita, M; Jaspan, T; Dineen, R A; Grundy, R G; Auer, D P

    2014-05-01

    Qualitative radiologic MR imaging review affords limited differentiation among types of pediatric posterior fossa brain tumors and cannot detect histologic or molecular subtypes, which could help to stratify treatment. This study aimed to improve current posterior fossa discrimination of histologic tumor type by using support vector machine classifiers on quantitative MR imaging features. This retrospective study included preoperative MRI in 40 children with posterior fossa tumors (17 medulloblastomas, 16 pilocytic astrocytomas, and 7 ependymomas). Shape, histogram, and textural features were computed from contrast-enhanced T2WI and T1WI and diffusivity (ADC) maps. Combinations of features were used to train tumor-type-specific classifiers for medulloblastoma, pilocytic astrocytoma, and ependymoma types in separation and as a joint posterior fossa classifier. A tumor-subtype classifier was also produced for classic medulloblastoma. The performance of different classifiers was assessed and compared by using randomly selected subsets of training and test data. ADC histogram features (25th and 75th percentiles and skewness) yielded the best classification of tumor type (on average >95.8% of medulloblastomas, >96.9% of pilocytic astrocytomas, and >94.3% of ependymomas by using 8 training samples). The resulting joint posterior fossa classifier correctly assigned >91.4% of the posterior fossa tumors. For subtype classification, 89.4% of classic medulloblastomas were correctly classified on the basis of ADC texture features extracted from the Gray-Level Co-Occurence Matrix. Support vector machine-based classifiers using ADC histogram features yielded very good discrimination among pediatric posterior fossa tumor types, and ADC textural features show promise for further subtype discrimination. These findings suggest an added diagnostic value of quantitative feature analysis of diffusion MR imaging in pediatric neuro-oncology. © 2014 by American Journal of Neuroradiology.

  14. Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: A first comparative study of its kind.

    PubMed

    Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S

    2016-04-01

    Psoriasis is an autoimmune skin disease with red and scaly plaques on skin and affecting about 125 million people worldwide. Currently, dermatologist use visual and haptic methods for diagnosis the disease severity. This does not help them in stratification and risk assessment of the lesion stage and grade. Further, current methods add complexity during monitoring and follow-up phase. The current diagnostic tools lead to subjectivity in decision making and are unreliable and laborious. This paper presents a first comparative performance study of its kind using principal component analysis (PCA) based CADx system for psoriasis risk stratification and image classification utilizing: (i) 11 higher order spectra (HOS) features, (ii) 60 texture features, and (iii) 86 color feature sets and their seven combinations. Aggregate 540 image samples (270 healthy and 270 diseased) from 30 psoriasis patients of Indian ethnic origin are used in our database. Machine learning using PCA is used for dominant feature selection which is then fed to support vector machine classifier (SVM) to obtain optimized performance. Three different protocols are implemented using three kinds of feature sets. Reliability index of the CADx is computed. Among all feature combinations, the CADx system shows optimal performance of 100% accuracy, 100% sensitivity and specificity, when all three sets of feature are combined. Further, our experimental result with increasing data size shows that all feature combinations yield high reliability index throughout the PCA-cutoffs except color feature set and combination of color and texture feature sets. HOS features are powerful in psoriasis disease classification and stratification. Even though, independently, all three set of features HOS, texture, and color perform competitively, but when combined, the machine learning system performs the best. The system is fully automated, reliable and accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. TU-F-12A-05: Sensitivity of Textural Features to 3D Vs. 4D FDG-PET/CT Imaging in NSCLC Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Nyflot, M; Bowen, S

    2014-06-15

    Purpose: Neighborhood Gray-level difference matrices (NGLDM) based texture parameters extracted from conventional (3D) 18F-FDG PET scans in patients with NSCLC have been previously shown to associate with response to chemoradiation and poorer patient outcome. However, the change in these parameters when utilizing respiratory-correlated (4D) FDG-PET scans has not yet been characterized for NSCLC. The Objectives: of this study was to assess the extent to which NGLDM-based texture parameters on 4D PET images vary with reference to values derived from 3D scans in NSCLC. Methods: Eight patients with newly diagnosed NSCLC treated with concomitant chemoradiotherapy were included in this study. 4Dmore » PET scans were reconstructed with OSEM-IR in 5 respiratory phase-binned images and corresponding CT data of each phase were employed for attenuation correction. NGLDM-based texture features, consisting of coarseness, contrast, busyness, complexity and strength, were evaluated for gross tumor volumes defined on 3D/4D PET scans by radiation oncologists. Variation of the obtained texture parameters over the respiratory cycle were examined with respect to values extracted from 3D scans. Results: Differences between texture parameters derived from 4D scans at different respiratory phases and those extracted from 3D scans ranged from −30% to 13% for coarseness, −12% to 40% for contrast, −5% to 50% for busyness, −7% to 38% for complexity, and −43% to 20% for strength. Furthermore, no evident correlations were observed between respiratory phase and 4D scan texture parameters. Conclusion: Results of the current study showed that NGLDM-based texture parameters varied considerably based on choice of 3D PET and 4D PET reconstruction of NSCLC patient images, indicating that standardized image acquisition and analysis protocols need to be established for clinical studies, especially multicenter clinical trials, intending to validate prognostic values of texture features for NSCLC.« less

  16. Statistical Analysis of Protein Ensembles

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  17. Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex

    PubMed Central

    Tan, Wei; Chen, Liang; Ji, Xia; Lin, Hai-Qing

    2014-01-01

    Photonic simulations of quantum Hall edge states and topological insulators have inspired considerable interest in recent years. Interestingly, there are theoretical predictions for another type of topological states in topological superconductors, but debates over their experimental observations still remain. Here we investigate the photonic analogue of the px + ipy model of topological superconductor. Two essential characteristics of topological superconductor, particle-hole symmetry and px + ipy pairing potentials, are well emulated in photonic systems. Its topological features are presented by chiral edge state and zero-energy mode at a vortex. This work may fertilize the study of photonic topological states, and open up the possibility for emulating wave behaviors in superconductors. PMID:25488408

  18. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    PubMed

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  19. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahiner, B.; Chan, H.P.; Petrick, N.

    1996-10-01

    The authors investigated the classification of regions of interest (ROI`s) on mammograms as either mass or normal tissue using a convolution neural network (CNN). A CNN is a back-propagation neural network with two-dimensional (2-D) weight kernels that operate on images. A generalized, fast and stable implementation of the CNN was developed. The input images to the CNN were obtained form the ROI`s using two techniques. The first technique employed averaging and subsampling. The second technique employed texture feature extraction methods applied to small subregions inside the ROI. Features computed over different subregions were arranged as texture images, which were subsequentlymore » used as CNN inputs. The effects of CNN architecture and texture feature parameters on classification accuracy were studied. Receiver operating characteristic (ROC) methodology was used to evaluate the classification accuracy. A data set consisting of 168 ROI`s containing biopsy-proven masses and 504 ROI`s containing normal breast tissue was extracted from 168 mammograms by radiologists experienced in mammography. This data set was used for training and testing the CNN. With the best combination of CNN architecture and texture feature parameters, the area under the test ROC curve reached 0.87, which corresponded to a true-positive fraction of 90% at a false positive fraction of 31%. The results demonstrate the feasibility of using a CNN for classification of masses and normal tissue on mammograms.« less

  20. Characterization of PET/CT images using texture analysis: the past, the present… any future?

    PubMed

    Hatt, Mathieu; Tixier, Florent; Pierce, Larry; Kinahan, Paul E; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2017-01-01

    After seminal papers over the period 2009 - 2011, the use of texture analysis of PET/CT images for quantification of intratumour uptake heterogeneity has received increasing attention in the last 4 years. Results are difficult to compare due to the heterogeneity of studies and lack of standardization. There are also numerous challenges to address. In this review we provide critical insights into the recent development of texture analysis for quantifying the heterogeneity in PET/CT images, identify issues and challenges, and offer recommendations for the use of texture analysis in clinical research. Numerous potentially confounding issues have been identified, related to the complex workflow for the calculation of textural features, and the dependency of features on various factors such as acquisition, image reconstruction, preprocessing, functional volume segmentation, and methods of establishing and quantifying correspondences with genomic and clinical metrics of interest. A lack of understanding of what the features may represent in terms of the underlying pathophysiological processes and the variability of technical implementation practices makes comparing results in the literature challenging, if not impossible. Since progress as a field requires pooling results, there is an urgent need for standardization and recommendations/guidelines to enable the field to move forward. We provide a list of correct formulae for usual features and recommendations regarding implementation. Studies on larger cohorts with robust statistical analysis and machine learning approaches are promising directions to evaluate the potential of this approach.

  1. Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Scheurer, Mathias S.; Chatterjee, Shubhayu; Sachdev, Subir; Georges, Antoine; Ferrero, Michel

    2018-04-01

    One of the distinctive features of hole-doped cuprate superconductors is the onset of a "pseudogap" below a temperature T* . Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is holelike and that, for a broad range of parameters, its opening is concomitant with a Fermi-surface topology change from electronlike to holelike. We identify a common link between these observations: The polelike feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi-surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this polelike feature and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.

  2. Improved opponent color local binary patterns: an effective local image descriptor for color texture classification

    NASA Astrophysics Data System (ADS)

    Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo

    2018-01-01

    Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.

  3. Texture and microstructure evolution in single-phase Ti{sub x}Ta{sub 1-x}N alloys of rocksalt structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.

    2011-08-15

    The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less

  4. Using automated texture features to determine the probability for masking of a tumor on mammography, but not ultrasound.

    PubMed

    Häberle, Lothar; Hack, Carolin C; Heusinger, Katharina; Wagner, Florian; Jud, Sebastian M; Uder, Michael; Beckmann, Matthias W; Schulz-Wendtland, Rüdiger; Wittenberg, Thomas; Fasching, Peter A

    2017-08-30

    Tumors in radiologically dense breast were overlooked on mammograms more often than tumors in low-density breasts. A fast reproducible and automated method of assessing percentage mammographic density (PMD) would be desirable to support decisions whether ultrasonography should be provided for women in addition to mammography in diagnostic mammography units. PMD assessment has still not been included in clinical routine work, as there are issues of interobserver variability and the procedure is quite time consuming. This study investigated whether fully automatically generated texture features of mammograms can replace time-consuming semi-automatic PMD assessment to predict a patient's risk of having an invasive breast tumor that is visible on ultrasound but masked on mammography (mammography failure). This observational study included 1334 women with invasive breast cancer treated at a hospital-based diagnostic mammography unit. Ultrasound was available for the entire cohort as part of routine diagnosis. Computer-based threshold PMD assessments ("observed PMD") were carried out and 363 texture features were obtained from each mammogram. Several variable selection and regression techniques (univariate selection, lasso, boosting, random forest) were applied to predict PMD from the texture features. The predicted PMD values were each used as new predictor for masking in logistic regression models together with clinical predictors. These four logistic regression models with predicted PMD were compared among themselves and with a logistic regression model with observed PMD. The most accurate masking prediction was determined by cross-validation. About 120 of the 363 texture features were selected for predicting PMD. Density predictions with boosting were the best substitute for observed PMD to predict masking. Overall, the corresponding logistic regression model performed better (cross-validated AUC, 0.747) than one without mammographic density (0.734), but less well than the one with the observed PMD (0.753). However, in patients with an assigned mammography failure risk >10%, covering about half of all masked tumors, the boosting-based model performed at least as accurately as the original PMD model. Automatically generated texture features can replace semi-automatically determined PMD in a prediction model for mammography failure, such that more than 50% of masked tumors could be discovered.

  5. Adaptive Texture Synthesis for Large Scale City Modeling

    NASA Astrophysics Data System (ADS)

    Despine, G.; Colleu, T.

    2015-02-01

    Large scale city models textured with aerial images are well suited for bird-eye navigation but generally the image resolution does not allow pedestrian navigation. One solution to face this problem is to use high resolution terrestrial photos but it requires huge amount of manual work to remove occlusions. Another solution is to synthesize generic textures with a set of procedural rules and elementary patterns like bricks, roof tiles, doors and windows. This solution may give realistic textures but with no correlation to the ground truth. Instead of using pure procedural modelling we present a method to extract information from aerial images and adapt the texture synthesis to each building. We describe a workflow allowing the user to drive the information extraction and to select the appropriate texture patterns. We also emphasize the importance to organize the knowledge about elementary pattern in a texture catalogue allowing attaching physical information, semantic attributes and to execute selection requests. Roofs are processed according to the detected building material. Façades are first described in terms of principal colours, then opening positions are detected and some window features are computed. These features allow selecting the most appropriate patterns from the texture catalogue. We experimented this workflow on two samples with 20 cm and 5 cm resolution images. The roof texture synthesis and opening detection were successfully conducted on hundreds of buildings. The window characterization is still sensitive to the distortions inherent to the projection of aerial images onto the facades.

  6. Temporal resolution of orientation-defined texture segregation: a VEP study.

    PubMed

    Lachapelle, Julie; McKerral, Michelle; Jauffret, Colin; Bach, Michael

    2008-09-01

    Orientation is one of the visual dimensions that subserve figure-ground discrimination. A spatial gradient in orientation leads to "texture segregation", which is thought to be concurrent parallel processing across the visual field, without scanning. In the visual-evoked potential (VEP) a component can be isolated which is related to texture segregation ("tsVEP"). Our objective was to evaluate the temporal frequency dependence of the tsVEP to compare processing speed of low-level features (e.g., orientation, using the VEP, here denoted llVEP) with texture segregation because of a recent literature controversy in that regard. Visual-evoked potentials (VEPs) were recorded in seven normal adults. Oriented line segments of 0.1 degrees x 0.8 degrees at 100% contrast were presented in four different arrangements: either oriented in parallel for two homogeneous stimuli (from which were obtained the low-level VEP (llVEP)) or with a 90 degrees orientation gradient for two textured ones (from which were obtained the texture VEP). The orientation texture condition was presented at eight different temporal frequencies ranging from 7.5 to 45 Hz. Fourier analysis was used to isolate low-level components at the pattern-change frequency and texture-segregation components at half that frequency. For all subjects, there was lower high-cutoff frequency for tsVEP than for llVEPs, on average 12 Hz vs. 17 Hz (P = 0.017). The results suggest that the processing of feature gradients to extract texture segregation requires additional processing time, resulting in a lower fusion frequency.

  7. Texture operator for snow particle classification into snowflake and graupel

    NASA Astrophysics Data System (ADS)

    Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro

    2012-11-01

    In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.

  8. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

    PubMed

    Bates, Anthony; Miles, Kenneth

    2017-12-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.

  9. Multifractal texture estimation for detection and segmentation of brain tumors.

    PubMed

    Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M

    2013-11-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.

  10. Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors

    PubMed Central

    Islam, Atiq; Reza, Syed M. S.

    2016-01-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available. PMID:23807424

  11. Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival

    PubMed Central

    Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M

    2016-01-01

    Objective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan–Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Results: Kaplan–Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T1 weighted MR images of patients with GBM are predictors of survival. Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour. PMID:27319577

  12. Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival.

    PubMed

    Molina, David; Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M

    2016-07-04

    The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T 1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan-Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Kaplan-Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Heterogeneity measures computed on the post-contrast pre-operative T 1 weighted MR images of patients with GBM are predictors of survival. Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour.

  13. Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.

    2017-12-01

    The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.

  14. SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Riyahi, S; Lu, W

    Purpose: Normal lung CT texture features have been used for the prediction of radiation-induced lung disease (radiation pneumonitis and radiation fibrosis). For these features to be clinically useful, they need to be relatively invariant (robust) to tumor size and not correlated with normal lung volume. Methods: The free-breathing CTs of 14 lung SBRT patients were studied. Different sizes of GTVs were simulated with spheres placed at the upper lobe and lower lobe respectively in the normal lung (contralateral to tumor). 27 texture features (9 from intensity histogram, 8 from grey-level co-occurrence matrix [GLCM] and 10 from grey-level run-length matrix [GLRM])more » were extracted from [normal lung-GTV]. To measure the variability of a feature F, the relative difference D=|Fref -Fsim|/Fref*100% was calculated, where Fref was for the entire normal lung and Fsim was for [normal lung-GTV]. A feature was considered as robust if the largest non-outlier (Q3+1.5*IQR) D was less than 5%, and considered as not correlated with normal lung volume when their Pearson correlation was lower than 0.50. Results: Only 11 features were robust. All first-order intensity-histogram features (mean, max, etc.) were robust, while most higher-order features (skewness, kurtosis, etc.) were unrobust. Only two of the GLCM and four of the GLRM features were robust. Larger GTV resulted greater feature variation, this was particularly true for unrobust features. All robust features were not correlated with normal lung volume while three unrobust features showed high correlation. Excessive variations were observed in two low grey-level run features and were later identified to be from one patient with local lung diseases (atelectasis) in the normal lung. There was no dependence on GTV location. Conclusion: We identified 11 robust normal lung CT texture features that can be further examined for the prediction of radiation-induced lung disease. Interestingly, low grey-level run features identified normal lung diseases. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  15. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fave, Xenia, E-mail: xjfave@mdanderson.org; Fried, David; Mackin, Dennis

    Purpose: Increasing evidence suggests radiomics features extracted from computed tomography (CT) images may be useful in prognostic models for patients with nonsmall cell lung cancer (NSCLC). This study was designed to determine whether such features can be reproducibly obtained from cone-beam CT (CBCT) images taken using medical Linac onboard-imaging systems in order to track them through treatment. Methods: Test-retest CBCT images of ten patients previously enrolled in a clinical trial were retrospectively obtained and used to determine the concordance correlation coefficient (CCC) for 68 different texture features. The volume dependence of each feature was also measured using the Spearman rankmore » correlation coefficient. Features with a high reproducibility (CCC > 0.9) that were not due to volume dependence in the patient test-retest set were further examined for their sensitivity to differences in imaging protocol, level of scatter, and amount of motion by using two phantoms. The first phantom was a texture phantom composed of rectangular cartridges to represent different textures. Features were measured from two cartridges, shredded rubber and dense cork, in this study. The texture phantom was scanned with 19 different CBCT imagers to establish the features’ interscanner variability. The effect of scatter on these features was studied by surrounding the same texture phantom with scattering material (rice and solid water). The effect of respiratory motion on these features was studied using a dynamic-motion thoracic phantom and a specially designed tumor texture insert of the shredded rubber material. The differences between scans acquired with different Linacs and protocols, varying amounts of scatter, and with different levels of motion were compared to the mean intrapatient difference from the test-retest image set. Results: Of the original 68 features, 37 had a CCC >0.9 that was not due to volume dependence. When the Linac manufacturer and imaging protocol were kept consistent, 4–13 of these 37 features passed our criteria for reproducibility more than 50% of the time, depending on the manufacturer-protocol combination. Almost all of the features changed substantially when scatter material was added around the phantom. For the dense cork, 23 features passed in the thoracic scans and 11 features passed in the head scans when the differences between one and two layers of scatter were compared. Using the same test for the shredded rubber, five features passed the thoracic scans and eight features passed the head scans. Motion substantially impacted the reproducibility of the features. With 4 mm of motion, 12 features from the entire volume and 14 features from the center slice measurements were reproducible. With 6–8 mm of motion, three features (Laplacian of Gaussian filtered kurtosis, gray-level nonuniformity, and entropy), from the entire volume and seven features (coarseness, high gray-level run emphasis, gray-level nonuniformity, sum-average, information measure correlation, scaled mean, and entropy) from the center-slice measurements were considered reproducible. Conclusions: Some radiomics features are robust to the noise and poor image quality of CBCT images when the imaging protocol is consistent, relative changes in the features are used, and patients are limited to those with less than 1 cm of motion.« less

  16. Classification of pulmonary emphysema from chest CT scans using integral geometry descriptors

    NASA Astrophysics Data System (ADS)

    van Rikxoort, E. M.; Goldin, J. G.; Galperin-Aizenberg, M.; Brown, M. S.

    2011-03-01

    To gain insight into the underlying pathways of emphysema and monitor the effect of treatment, methods to quantify and phenotype the different types of emphysema from chest CT scans are of crucial importance. Current standard measures rely on density thresholds for individual voxels, which is influenced by inspiration level and does not take into account the spatial relationship between voxels. Measures based on texture analysis do take the interrelation between voxels into account and therefore might be useful for distinguishing different types of emphysema. In this study, we propose to use Minkowski functionals combined with rotation invariant Gaussian features to distinguish between healthy and emphysematous tissue and classify three different types of emphysema. Minkowski functionals characterize binary images in terms of geometry and topology. In 3D, four Minkowski functionals are defined. By varying the threshold and size of neighborhood around a voxel, a set of Minkowski functionals can be defined for each voxel. Ten chest CT scans with 1810 annotated regions were used to train the method. A set of 108 features was calculated for each training sample from which 10 features were selected to be most informative. A linear discriminant classifier was trained to classify each voxel in the lungs into a subtype of emphysema or normal lung. The method was applied to an independent test set of 30 chest CT scans with varying amounts and types of emphysema with 4347 annotated regions of interest. The method is shown to perform well, with an overall accuracy of 95%.

  17. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.

    PubMed

    Chaddad, Ahmad; Sabri, Siham; Niazi, Tamim; Abdulkarim, Bassam

    2018-06-19

    We propose a multiscale texture features based on Laplacian-of Gaussian (LoG) filter to predict progression free (PFS) and overall survival (OS) in patients newly diagnosed with glioblastoma (GBM). Experiments use the extracted features derived from 40 patients of GBM with T1-weighted imaging (T1-WI) and Fluid-attenuated inversion recovery (FLAIR) images that were segmented manually into areas of active tumor, necrosis, and edema. Multiscale texture features were extracted locally from each of these areas of interest using a LoG filter and the relation between features to OS and PFS was investigated using univariate (i.e., Spearman's rank correlation coefficient, log-rank test and Kaplan-Meier estimator) and multivariate analyses (i.e., Random Forest classifier). Three and seven features were statistically correlated with PFS and OS, respectively, with absolute correlation values between 0.32 and 0.36 and p < 0.05. Three features derived from active tumor regions only were associated with OS (p < 0.05) with hazard ratios (HR) of 2.9, 3, and 3.24, respectively. Combined features showed an AUC value of 85.37 and 85.54% for predicting the PFS and OS of GBM patients, respectively, using the random forest (RF) classifier. We presented a multiscale texture features to characterize the GBM regions and predict he PFS and OS. The efficiency achievable suggests that this technique can be developed into a GBM MR analysis system suitable for clinical use after a thorough validation involving more patients. Graphical abstract Scheme of the proposed model for characterizing the heterogeneity of GBM regions and predicting the overall survival and progression free survival of GBM patients. (1) Acquisition of pretreatment MRI images; (2) Affine registration of T1-WI image with its corresponding FLAIR images, and GBM subtype (phenotypes) labelling; (3) Extraction of nine texture features from the three texture scales fine, medium, and coarse derived from each of GBM regions; (4) Comparing heterogeneity between GBM regions by ANOVA test; Survival analysis using Univariate (Spearman rank correlation between features and survival (i.e., PFS and OS) based on each of the GBM regions, Kaplan-Meier estimator and log-rank test to predict the PFS and OS of patient groups that grouped based on median of feature), and multivariate (random forest model) for predicting the PFS and OS of patients groups that grouped based on median of PFS and OS.

  18. Textures in Arcadia Planitia

    NASA Image and Video Library

    2003-03-07

    An unusual mix of textures is featured in this image from NASA Mars Odyssey spacecraft of a surface east of the Phlegra Montes. Scabby mounds, commonly occurring around degraded craters, mix with a more muted, knobby terrain.

  19. Mammographic texture synthesis using genetic programming and clustered lumpy background

    NASA Astrophysics Data System (ADS)

    Castella, Cyril; Kinkel, Karen; Descombes, François; Eckstein, Miguel P.; Sottas, Pierre-Edouard; Verdun, Francis R.; Bochud, François O.

    2006-03-01

    In this work we investigated the digital synthesis of images which mimic real textures observed in mammograms. Such images could be produced in an unlimited number with tunable statistical properties in order to study human performance and model observer performance in perception experiments. We used the previously developed clustered lumpy background (CLB) technique and optimized its parameters with a genetic algorithm (GA). In order to maximize the realism of the textures, we combined the GA objective approach with psychophysical experiments involving the judgments of radiologists. Thirty-six statistical features were computed and averaged, over 1000 real mammograms regions of interest. The same features were measured for the synthetic textures, and the Mahalanobis distance was used to quantify the similarity of the features between the real and synthetic textures. The similarity, as measured by the Mahalanobis distance, was used as GA fitness function for evolving the free CLB parameters. In the psychophysical approach, experienced radiologists were asked to qualify the realism of synthetic images by considering typical structures that are expected to be found on real mammograms: glandular and fatty areas, and fiber crossings. Results show that CLB images found via optimization with GA are significantly closer to real mammograms than previously published images. Moreover, the psychophysical experiments confirm that all the above mentioned structures are reproduced well on the generated images. This means that we can generate an arbitrary large database of textures mimicking mammograms with traceable statistical properties.

  20. A comparative study of new and current methods for dental micro-CT image denoising

    PubMed Central

    Lashgari, Mojtaba; Qin, Jie; Swain, Michael

    2016-01-01

    Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583

  1. IDH mutation assessment of glioma using texture features of multimodal MR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Tian, Qiang; Wu, Yu-Xia; Xu, Xiao-Pan; Li, Bao-Juan; Liu, Yi-Xiong; Liu, Yang; Lu, Hong-Bing

    2017-03-01

    Purpose: To 1) find effective texture features from multimodal MRI that can distinguish IDH mutant and wild status, and 2) propose a radiomic strategy for preoperatively detecting IDH mutation patients with glioma. Materials and Methods: 152 patients with glioma were retrospectively included from the Cancer Genome Atlas. Corresponding T1-weighted image before- and post-contrast, T2-weighted image and fluid-attenuation inversion recovery image from the Cancer Imaging Archive were analyzed. Specific statistical tests were applied to analyze the different kind of baseline information of LrGG patients. Finally, 168 texture features were derived from multimodal MRI per patient. Then the support vector machine-based recursive feature elimination (SVM-RFE) and classification strategy was adopted to find the optimal feature subset and build the identification models for detecting the IDH mutation. Results: Among 152 patients, 92 and 60 were confirmed to be IDH-wild and mutant, respectively. Statistical analysis showed that the patients without IDH mutation was significant older than patients with IDH mutation (p<0.01), and the distribution of some histological subtypes was significant different between IDH wild and mutant groups (p<0.01). After SVM-RFE, 15 optimal features were determined for IDH mutation detection. The accuracy, sensitivity, specificity, and AUC after SVM-RFE and parameter optimization were 82.2%, 85.0%, 78.3%, and 0.841, respectively. Conclusion: This study presented a radiomic strategy for noninvasively discriminating IDH mutation of patients with glioma. It effectively incorporated kinds of texture features from multimodal MRI, and SVM-based classification strategy. Results suggested that features selected from SVM-RFE were more potential to identifying IDH mutation. The proposed radiomics strategy could facilitate the clinical decision making in patients with glioma.

  2. Synthesized interstitial lung texture for use in anthropomorphic computational phantoms

    NASA Astrophysics Data System (ADS)

    Becchetti, Marc F.; Solomon, Justin B.; Segars, W. Paul; Samei, Ehsan

    2016-04-01

    A realistic model of the anatomical texture from the pulmonary interstitium was developed with the goal of extending the capability of anthropomorphic computational phantoms (e.g., XCAT, Duke University), allowing for more accurate image quality assessment. Contrast-enhanced, high dose, thorax images for a healthy patient from a clinical CT system (Discovery CT750HD, GE healthcare) with thin (0.625 mm) slices and filtered back- projection (FBP) were used to inform the model. The interstitium which gives rise to the texture was defined using 24 volumes of interest (VOIs). These VOIs were selected manually to avoid vasculature, bronchi, and bronchioles. A small scale Hessian-based line filter was applied to minimize the amount of partial-volumed supernumerary vessels and bronchioles within the VOIs. The texture in the VOIs was characterized using 8 Haralick and 13 gray-level run length features. A clustered lumpy background (CLB) model with added noise and blurring to match CT system was optimized to resemble the texture in the VOIs using a genetic algorithm with the Mahalanobis distance as a similarity metric between the texture features. The most similar CLB model was then used to generate the interstitial texture to fill the lung. The optimization improved the similarity by 45%. This will substantially enhance the capabilities of anthropomorphic computational phantoms, allowing for more realistic CT simulations.

  3. Monitoring of bone regeneration process by means of texture analysis

    NASA Astrophysics Data System (ADS)

    Kokkinou, E.; Boniatis, I.; Costaridou, L.; Saridis, A.; Panagiotopoulos, E.; Panayiotakis, G.

    2009-09-01

    An image analysis method is proposed for the monitoring of the regeneration of the tibial bone. For this purpose, 130 digitized radiographs of 13 patients, who had undergone tibial lengthening by the Ilizarov method, were studied. For each patient, 10 radiographs, taken at an equal number of postoperative successive time moments, were available. Employing available software, 3 Regions Of Interest (ROIs), corresponding to the: (a) upper, (b) central, and (c) lower aspect of the gap, where bone regeneration was expected to occur, were determined on each radiograph. Employing custom developed algorithms: (i) a number of textural features were generated from each of the ROIs, and (ii) a texture-feature based regression model was designed for the quantitative monitoring of the bone regeneration process. Statistically significant differences (p < 0.05) were derived for the initial and the final textural features values, generated from the first and the last postoperatively obtained radiographs, respectively. A quadratic polynomial regression equation fitted data adequately (r2 = 0.9, p < 0.001). The suggested method may contribute to the monitoring of the tibial bone regeneration process.

  4. Non-negative matrix factorization in texture feature for classification of dementia with MRI data

    NASA Astrophysics Data System (ADS)

    Sarwinda, D.; Bustamam, A.; Ardaneswari, G.

    2017-07-01

    This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).

  5. SU-E-J-260: Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular Carcinoma (HCC) in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Wang, J; Lu, W

    Purpose: To identify the effective quantitative image features (radiomics features) for prediction of response, survival, recurrence and metastasis of hepatocellular carcinoma (HCC) in radiotherapy. Methods: Multiphase contrast enhanced liver CT images were acquired in 16 patients with HCC on pre and post radiation therapy (RT). In this study, arterial phase CT images were selected to analyze the effectiveness of image features for the prediction of treatment outcome of HCC to RT. Response evaluated by RECIST criteria, survival, local recurrence (LR), distant metastasis (DM) and liver metastasis (LM) were examined. A radiation oncologist manually delineated the tumor and normal liver onmore » pre and post CT scans, respectively. Quantitative image features were extracted to characterize the intensity distribution (n=8), spatial patterns (texture, n=36), and shape (n=16) of the tumor and liver, respectively. Moreover, differences between pre and post image features were calculated (n=120). A total of 360 features were extracted and then analyzed by unpaired student’s t-test to rank the effectiveness of features for the prediction of response. Results: The five most effective features were selected for prediction of each outcome. Significant predictors for tumor response and survival are changes in tumor shape (Second Major Axes Length, p= 0.002; Eccentricity, p=0.0002), for LR, liver texture (Standard Deviation (SD) of High Grey Level Run Emphasis and SD of Entropy, both p=0.005) on pre and post CT images, for DM, tumor texture (SD of Entropy, p=0.01) on pre CT image and for LM, liver (Mean of Cluster Shade, p=0.004) and tumor texture (SD of Entropy, p=0.006) on pre CT image. Intensity distribution features were not significant (p>0.09). Conclusion: Quantitative CT image features were found to be potential predictors of the five endpoints of HCC in RT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  6. A change detection method for remote sensing image based on LBP and SURF feature

    NASA Astrophysics Data System (ADS)

    Hu, Lei; Yang, Hao; Li, Jin; Zhang, Yun

    2018-04-01

    Finding the change in multi-temporal remote sensing image is important in many the image application. Because of the infection of climate and illumination, the texture of the ground object is more stable relative to the gray in high-resolution remote sensing image. And the texture features of Local Binary Patterns (LBP) and Speeded Up Robust Features (SURF) are outstanding in extracting speed and illumination invariance. A method of change detection for matched remote sensing image pair is present, which compares the similarity by LBP and SURF to detect the change and unchanged of the block after blocking the image. And region growing is adopted to process the block edge zone. The experiment results show that the method can endure some illumination change and slight texture change of the ground object.

  7. Game theory-based visual tracking approach focusing on color and texture features.

    PubMed

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin

    2017-07-20

    It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.

  8. Morphological self-organizing feature map neural network with applications to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Shijun; Jing, Zhongliang; Li, Jianxun

    2005-01-01

    The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  9. Structure-guided statistical textural distinctiveness for salient region detection in natural images.

    PubMed

    Scharfenberger, Christian; Wong, Alexander; Clausi, David A

    2015-01-01

    We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.

  10. A set of hypotheses on tribology of mammalian herbivore teeth

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas M.; Clauss, Marcus; Schulz-Kornas, Ellen

    2016-03-01

    Once erupted, mammal cheek teeth molars are continuously worn. Contact of molar surfaces with ingesta and with other teeth contribute to this wear. Microscopic wear features (dental surface texture) change continuously as new wear overprints old texture features. These features have been debated to indicate diet. The general assumption in relating occlusal textures to diet is that they are independent of masticatory movements and forces. If this assumption is not accepted, one needs to propose that occlusal textures comprise signals not only from the ‘last supper’ but also from masticatory events that represent ecological, species- or taxon-specific adaptations, and that occlusal textures therefore give a rather unspecific, somehow diet-related signal that is functionally inadequately understood. In order to test for mechanical mechanisms of wear, we created a hypothesis matrix that related sampled individuals with six tribological variables. Three variables represent mechanically relevant ingesta properties, and three represent animal-specific characteristics of the masticatory system. Three groups of mammal species (free ranging Cetartiodactyla and Perissodactyla, free ranging primates, and artificially fed rabbits) were investigated in terms of their 3D dental surface textures, which were quantified employing ten ISO 25178 surface texture parameters. We first formulated a set of specific predictions based on theoretical reflections on the effects of diet properties and animal characteristics, and subsequently performed discriminant analysis to test which parameters actually followed these predictions. We found that parameters Vvc, Vmc, Sp, Sq allowed the prediction of both, ingesta properties and properties of the masticatory system, if combined with other parameters. Sha, Sda and S5v had little predictive power in our dataset. Spd seemed rather unrelated to ingesta properties and made this parameter a suitable indicator of masticatory system properties.

  11. Uric acid versus non-uric acid urinary stones: differentiation with single energy CT texture analysis.

    PubMed

    Zhang, G-M-Y; Sun, H; Shi, B; Xu, M; Xue, H-D; Jin, Z-Y

    2018-05-21

    To evaluate the accuracy of computed tomography (CT) texture analysis (TA) to differentiate uric acid (UA) stones from non-UA stones on unenhanced CT in patients with urinary calculi with ex vivo Fourier transform infrared spectroscopy (FTIR) as the reference standard. Fourteen patients with 18 UA stones and 31 patients with 32 non-UA stones were included. All the patients had preoperative CT evaluation and subsequent surgical removal of the stones. CTTA was performed on CT images using commercially available research software. Each texture feature was evaluated using the non-parametric Mann-Whitney test. Receiver operating characteristic (ROC) curves were created and the area under the ROC curve (AUC) was calculated for texture parameters that were significantly different. The features were used to train support vector machine (SVM) classifiers. Diagnostic accuracy was evaluated. Compared to non-UA stones, UA stones had significantly lower mean, standard deviation and mean of positive pixels but higher kurtosis (p<0.001) on both unfiltered and filtered texture scales. There were no significant differences in entropy or skewness between UA and non-UA stones. The average SVM accuracy of texture features for differentiating UA from non-UA stones ranged from 88% to 92% (after 10-fold cross validation). A model incorporating standard deviation, skewness, and kurtosis from unfiltered texture scale images resulted in an AUC of 0.965±00.029 with a sensitivity of 94.4% and specificity of 93.7%. CTTA can be used to accurately differentiate UA stones from non-UA stones in vivo using unenhanced CT images. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. The influence of physical factors on recognizing blood cells in the computer microscopy systems of acute leukemia diagnosis

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.; Tupitsyn, N. N.; Frenkel, M. A.; Mozhenkova, A. V.

    2017-01-01

    The work investigated the effect of the choice of color space component on blood cell detection based on the calculation of texture attributes of blood cells nuclei in bone marrow. The study identified the most informative color space and texture characteristics of blood cells, designed for components of these spaces. Significance ratio was introduced to assess the quality of features. We offered features that have enabled to divide lymphocytes from lymphoblasts. The selection of the features was based on the results of the data analysis.

  13. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    NASA Astrophysics Data System (ADS)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input-output relationships in high-dimensional systems for many problems in science and engineering. The HDMR method is developed to improve the efficiency of the deducing high dimensional behaviors. The method is formed by a particular organization of low dimensional component functions, in which each function is the contribution of one or more input variables to the output variables.

  14. Pretreatment 18F-FDG PET Textural Features in Locally Advanced Non-Small Cell Lung Cancer: Secondary Analysis of ACRIN 6668/RTOG 0235.

    PubMed

    Ohri, Nitin; Duan, Fenghai; Snyder, Bradley S; Wei, Bo; Machtay, Mitchell; Alavi, Abass; Siegel, Barry A; Johnson, Douglas W; Bradley, Jeffrey D; DeNittis, Albert; Werner-Wasik, Maria; El Naqa, Issam

    2016-06-01

    In a secondary analysis of American College of Radiology Imaging Network (ACRIN) 6668/RTOG 0235, high pretreatment metabolic tumor volume (MTV) on (18)F-FDG PET was found to be a poor prognostic factor for patients treated with chemoradiotherapy for locally advanced non-small cell lung cancer (NSCLC). Here we utilize the same dataset to explore whether heterogeneity metrics based on PET textural features can provide additional prognostic information. Patients with locally advanced NSCLC underwent (18)F-FDG PET prior to treatment. A gradient-based segmentation tool was used to contour each patient's primary tumor. MTV, maximum SUV, and 43 textural features were extracted for each tumor. To address overfitting and high collinearity among PET features, the least absolute shrinkage and selection operator (LASSO) method was applied to identify features that were independent predictors of overall survival (OS) after adjusting for MTV. Recursive binary partitioning in a conditional inference framework was utilized to identify optimal thresholds. Kaplan-Meier curves and log-rank testing were used to compare outcomes among patient groups. Two hundred one patients met inclusion criteria. The LASSO procedure identified 1 textural feature (SumMean) as an independent predictor of OS. The optimal cutpoint for MTV was 93.3 cm(3), and the optimal SumMean cutpoint for tumors above 93.3 cm(3) was 0.018. This grouped patients into three categories: low tumor MTV (n = 155; median OS, 22.6 mo), high tumor MTV and high SumMean (n = 23; median OS, 20.0 mo), and high tumor MTV and low SumMean (n = 23; median OS, 6.2 mo; log-rank P < 0.001). We have described an appropriate methodology to evaluate the prognostic value of textural PET features in the context of established prognostic factors. We have also identified a promising feature that may have prognostic value in locally advanced NSCLC patients with large tumors who are treated with chemoradiotherapy. Validation studies are warranted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Pretreatment 18F-FDG PET Textural Features in Locally Advanced Non–Small Cell Lung Cancer: Secondary Analysis of ACRIN 6668/RTOG 0235

    PubMed Central

    Ohri, Nitin; Duan, Fenghai; Snyder, Bradley S.; Wei, Bo; Machtay, Mitchell; Alavi, Abass; Siegel, Barry A.; Johnson, Douglas W.; Bradley, Jeffrey D.; DeNittis, Albert; Werner-Wasik, Maria; El Naqa, Issam

    2016-01-01

    In a secondary analysis of American College of Radiology Imaging Network (ACRIN) 6668/RTOG 0235, high pretreatment metabolic tumor volume (MTV) on 18F-FDG PET was found to be a poor prognostic factor for patients treated with chemoradiotherapy for locally advanced non–small cell lung cancer (NSCLC). Here we utilize the same dataset to explore whether heterogeneity metrics based on PET textural features can provide additional prognostic information. Methods Patients with locally advanced NSCLC underwent 18F-FDG PET prior to treatment. A gradient-based segmentation tool was used to contour each patient’s primary tumor. MTV, maximum SUV, and 43 textural features were extracted for each tumor. To address over-fitting and high collinearity among PET features, the least absolute shrinkage and selection operator (LASSO) method was applied to identify features that were independent predictors of overall survival (OS) after adjusting for MTV. Recursive binary partitioning in a conditional inference framework was utilized to identify optimal thresholds. Kaplan–Meier curves and log-rank testing were used to compare outcomes among patient groups. Results Two hundred one patients met inclusion criteria. The LASSO procedure identified 1 textural feature (SumMean) as an independent predictor of OS. The optimal cutpoint for MTV was 93.3 cm3, and the optimal Sum-Mean cutpoint for tumors above 93.3 cm3 was 0.018. This grouped patients into three categories: low tumor MTV (n = 155; median OS, 22.6 mo), high tumor MTV and high SumMean (n = 23; median OS, 20.0 mo), and high tumor MTV and low SumMean (n = 23; median OS, 6.2 mo; log-rank P < 0.001). Conclusion We have described an appropriate methodology to evaluate the prognostic value of textural PET features in the context of established prognostic factors. We have also identified a promising feature that may have prognostic value in locally advanced NSCLC patients with large tumors who are treated with chemoradiotherapy. Validation studies are warranted. PMID:26912429

  16. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Karahaliou, A.; Vassiou, K.; Skiadopoulos, S.; Kanavou, T.; Yiakoumelos, A.; Costaridou, L.

    2009-07-01

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  17. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  18. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  19. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  20. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods.

    PubMed

    Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini

    2009-01-01

    Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.

  1. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.

    PubMed

    Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J

    2017-10-20

    This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.

  2. Feature extraction using gray-level co-occurrence matrix of wavelet coefficients and texture matching for batik motif recognition

    NASA Astrophysics Data System (ADS)

    Suciati, Nanik; Herumurti, Darlis; Wijaya, Arya Yudhi

    2017-02-01

    Batik is one of Indonesian's traditional cloth. Motif or pattern drawn on a piece of batik fabric has a specific name and philosopy. Although batik cloths are widely used in everyday life, but only few people understand its motif and philosophy. This research is intended to develop a batik motif recognition system which can be used to identify motif of Batik image automatically. First, a batik image is decomposed into sub-images using wavelet transform. Six texture descriptors, i.e. max probability, correlation, contrast, uniformity, homogenity and entropy, are extracted from gray-level co-occurrence matrix of each sub-image. The texture features are then matched to the template features using canberra distance. The experiment is performed on Batik Dataset consisting of 1088 batik images grouped into seven motifs. The best recognition rate, that is 92,1%, is achieved using feature extraction process with 5 level wavelet decomposition and 4 directional gray-level co-occurrence matrix.

  3. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  4. Unsupervised texture image segmentation by improved neural network ART2

    NASA Technical Reports Server (NTRS)

    Wang, Zhiling; Labini, G. Sylos; Mugnuolo, R.; Desario, Marco

    1994-01-01

    We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.

  5. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  6. TH-E-BRF-04: Characterizing the Response of Texture-Based CT Image Features for Quantification of Radiation-Induced Normal Lung Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, S; Court, L; Briere, T

    2014-06-15

    Purpose: Radiation induced lung damage (RILD) is an important dose-limiting toxicity for patients treated with radiation therapy. Scoring systems for RILD are subjective and limit our ability to find robust predictors of toxicity. We investigate the dose and time-related response for texture-based lung CT image features that serve as potential quantitative measures of RILD. Methods: Pre- and post-RT diagnostic imaging studies were collected for retrospective analysis of 21 patients treated with photon or proton radiotherapy for NSCLC. Total lung and selected isodose contours (0–5, 5–15, 15–25Gy, etc.) were deformably registered from the treatment planning scan to the pre-RT and availablemore » follow-up CT studies for each patient. A CT image analysis framework was utilized to extract 3698 unique texture-based features (including co-occurrence and run length matrices) for each region of interest defined by the isodose contours and the total lung volume. Linear mixed models were fit to determine the relationship between feature change (relative to pre-RT), planned dose and time post-RT. Results: Seventy-three follow-up CT scans from 21 patients (median: 3 scans/patient) were analyzed to describe CT image feature change. At the p=0.05 level, dose affected feature change in 2706 (73.1%) of the available features. Similarly, time affected feature change in 408 (11.0%) of the available features. Both dose and time were significant predictors of feature change in a total of 231 (6.2%) of the extracted image features. Conclusion: Characterizing the dose and time-related response of a large number of texture-based CT image features is the first step toward identifying objective measures of lung toxicity necessary for assessment and prediction of RILD. There is evidence that numerous features are sensitive to both the radiation dose and time after RT. Beyond characterizing feature response, further investigation is warranted to determine the utility of these features as surrogates of clinically significant lung injury.« less

  7. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  8. Realization of a topological phase transition in a gyroscopic lattice

    NASA Astrophysics Data System (ADS)

    Mitchell, Noah P.; Nash, Lisa M.; Irvine, William T. M.

    2018-03-01

    Topological metamaterials exhibit unusual behaviors at their boundaries, such as unidirectional chiral waves, that are protected by a topological feature of their band structures. The ability to tune such a material through a topological phase transition in real time could enable the use of protected waves for information storage and readout. Here we dynamically tune through a topological phase transition by breaking inversion symmetry in a metamaterial composed of interacting gyroscopes. Through the transition, we track the divergence of the edge modes' localization length and the change in Chern number characterizing the topology of the material's band structure. This Rapid Communication provides a new axis with which to tune the response of mechanical topological metamaterials.

  9. Material characterization and defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles

    1992-08-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  10. Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.

    2017-05-01

    This paper proposes a two-stage method for the reconstruction of city buildings with discontinuities and roof overhangs from oriented nadir and oblique aerial images. To model the structures the input data is transformed into a dense point cloud, segmented and filtered with a modified marching cubes algorithm to reduce the positional noise. Assuming a monolithic building the remaining vertices are initially projected onto a 2D grid and passed to RANSAC-based regression and topology analysis to geometrically determine finite wall, ground and roof planes. If this should fail due to the presence of discontinuities the regression will be repeated on a 3D level by traversing voxels within the regularly subdivided bounding box of the building point set. For each cube a planar piece of the current surface is approximated and expanded. The resulting segments get mutually intersected yielding both topological and geometrical nodes and edges. These entities will be eliminated if their distance-based affiliation to the defining point sets is violated leaving a consistent building hull including its structural breaks. To add the roof overhangs the computed polygonal meshes are projected onto the digital surface model derived from the point cloud. Their shapes are offset equally along the edge normals with subpixel accuracy by detecting the zero-crossings of the second-order directional derivative in the gradient direction of the height bitmap and translated back into world space to become a component of the building. As soon as the reconstructed objects are finished the aerial images are further used to generate a compact texture atlas for visualization purposes. An optimized atlas bitmap is generated that allows perspectivecorrect multi-source texture mapping without prior rectification involving a partially parallel placement algorithm. Moreover, the texture atlases undergo object-based image analysis (OBIA) to detect window areas which get reintegrated into the building models. To evaluate the performance of the proposed method a proof-of-concept test on sample structures obtained from real-world data of Heligoland/Germany has been conducted. It revealed good reconstruction accuracy in comparison to the cadastral map, a speed-up in texture atlas optimization and visually attractive render results.

  11. Artificial Neural Network Application in the Diagnosis of Disease Conditions with Liver Ultrasound Images

    PubMed Central

    Lele, Ramachandra Dattatraya; Joshi, Mukund; Chowdhary, Abhay

    2014-01-01

    The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data. PMID:25332717

  12. Factorization-based texture segmentation

    DOE PAGES

    Yuan, Jiangye; Wang, Deliang; Cheriyadat, Anil M.

    2015-06-17

    This study introduces a factorization-based approach that efficiently segments textured images. We use local spectral histograms as features, and construct an M × N feature matrix using M-dimensional feature vectors in an N-pixel image. Based on the observation that each feature can be approximated by a linear combination of several representative features, we factor the feature matrix into two matrices-one consisting of the representative features and the other containing the weights of representative features at each pixel used for linear combination. The factorization method is based on singular value decomposition and nonnegative matrix factorization. The method uses local spectral histogramsmore » to discriminate region appearances in a computationally efficient way and at the same time accurately localizes region boundaries. Finally, the experiments conducted on public segmentation data sets show the promise of this simple yet powerful approach.« less

  13. Reproducibility and Prognosis of Quantitative Features Extracted from CT Images12

    PubMed Central

    Balagurunathan, Yoganand; Gu, Yuhua; Wang, Hua; Kumar, Virendra; Grove, Olya; Hawkins, Sam; Kim, Jongphil; Goldgof, Dmitry B; Hall, Lawrence O; Gatenby, Robert A; Gillies, Robert J

    2014-01-01

    We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and texture from computed tomography (CT) scans of non-small cell lung cancer (NSCLC). CT images are dependent on various scanning factors. We focus on characterizing image features that are reproducible in the presence of variations due to patient factors and segmentation methods. Thirty-two NSCLC nonenhanced lung CT scans were obtained from the Reference Image Database to Evaluate Response data set. The tumors were segmented using both manual (radiologist expert) and ensemble (software-automated) methods. A set of features (219 three-dimensional and 110 two-dimensional) was computed, and quantitative image features were statistically filtered to identify a subset of reproducible and nonredundant features. The variability in the repeated experiment was measured by the test-retest concordance correlation coefficient (CCCTreT). The natural range in the features, normalized to variance, was measured by the dynamic range (DR). In this study, there were 29 features across segmentation methods found with CCCTreT and DR ≥ 0.9 and R2Bet ≥ 0.95. These reproducible features were tested for predicting radiologist prognostic score; some texture features (run-length and Laws kernels) had an area under the curve of 0.9. The representative features were tested for their prognostic capabilities using an independent NSCLC data set (59 lung adenocarcinomas), where one of the texture features, run-length gray-level nonuniformity, was statistically significant in separating the samples into survival groups (P ≤ .046). PMID:24772210

  14. Computer-aided diagnosis of liver tumors on computed tomography images.

    PubMed

    Chang, Chin-Chen; Chen, Hong-Hao; Chang, Yeun-Chung; Yang, Ming-Yang; Lo, Chung-Ming; Ko, Wei-Chun; Lee, Yee-Fan; Liu, Kao-Lang; Chang, Ruey-Feng

    2017-07-01

    Liver cancer is the tenth most common cancer in the USA, and its incidence has been increasing for several decades. Early detection, diagnosis, and treatment of the disease are very important. Computed tomography (CT) is one of the most common and robust imaging techniques for the detection of liver cancer. CT scanners can provide multiple-phase sequential scans of the whole liver. In this study, we proposed a computer-aided diagnosis (CAD) system to diagnose liver cancer using the features of tumors obtained from multiphase CT images. A total of 71 histologically-proven liver tumors including 49 benign and 22 malignant lesions were evaluated with the proposed CAD system to evaluate its performance. Tumors were identified by the user and then segmented using a region growing algorithm. After tumor segmentation, three kinds of features were obtained for each tumor, including texture, shape, and kinetic curve. The texture was quantified using 3 dimensional (3-D) texture data of the tumor based on the grey level co-occurrence matrix (GLCM). Compactness, margin, and an elliptic model were used to describe the 3-D shape of the tumor. The kinetic curve was established from each phase of tumor and represented as variations in density between each phase. Backward elimination was used to select the best combination of features, and binary logistic regression analysis was used to classify the tumors with leave-one-out cross validation. The accuracy and sensitivity for the texture were 71.82% and 68.18%, respectively, which were better than for the shape and kinetic curve under closed specificity. Combining all of the features achieved the highest accuracy (58/71, 81.69%), sensitivity (18/22, 81.82%), and specificity (40/49, 81.63%). The Az value of combining all features was 0.8713. Combining texture, shape, and kinetic curve features may be able to differentiate benign from malignant tumors in the liver using our proposed CAD system. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours.

    PubMed

    Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N

    2015-09-01

    The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Characterization of alteration textures in Cretaceous oceanic crust (pillow lava) from the N-Atlantic (DSDP Hole 418A) by spatially-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Fliegel, Daniel; Knowles, Emily; Wirth, Richard; Templeton, Alexis; Staudigel, Hubert; Muehlenbachs, Karlis; Furnes, Harald

    2012-11-01

    The habit, mineralogy, crystallography, and Fe speciation of tubular and granular alteration textures in basaltic glass recovered from DSDP Hole 418A, which have previously been associated with biologically mediated alteration, were investigated using an integrated suite of microscopic and spectroscopic approaches in order to shine light on their formation and mineralization history. Two different analytical approaches were used: (1) micro scale investigations with conventional petrographic optical microcopy and microscale X-ray fluorescence mapping and X-ray absorption spectroscopy, and (2) nano scale analyses with FIB (focused ion beam milling) to prepare cross-sections for TEM (transmission electron microscopy), EELS (electron energy loss spectroscopy), and STXM (scanning transmission electron microscopy) analyses. The integrated data show that tubular and granular textures are similar in chemical, mineralogical and structural habit. Both granular and tubular alteration textures show a marked transition from ferrous iron in the glass matrix to ferric iron in the textures. Granular and tubular textures are filled with sheet silicates of similar chemistry, and both exhibit thin amorphous alteration rims ∼10-20 nm wide. The alteration rims are typically depleted in Ca and Fe. Ca is enriched at the contact between the secondary mineralization and the alteration rims, whereas Fe is enriched throughout the alteration features and is mainly present as FeIII in contrast to FeII in the host glass. Carbon is enriched only in a few areas, and could possibly be of organic origin but is not bound in carbonate. The mineralization of the features follows the sequence: dissolution of the glass; formation of a leached amorphous rim; mineralizing the cavities by smectide type clays and subsequently congruent growing of the texture diameter by diffusing of the elements through the alteration layer. None of the features could be linked solely to a biogenic origin and hence the biogenicity of the textures can neither be refuted nor supported by this micro- and nano-scale data set.

  17. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging.

    PubMed

    Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn

    2018-03-30

    Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.

  18. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  19. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    PubMed

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  20. Diagnosis of human prostate carcinoma cancer stem cells enriched from DU145 cell lines changes with microscopic texture analysis in radiation and hyperthermia treatment using run-length matrix.

    PubMed

    Abbasian Ardakani, Ali; Rajaee, Jila; Khoei, Samideh

    2017-11-01

    Hyperthermia and radiation have the ability to induce structural and morphological changes on both macroscopic and microscopic level. Normal and damage cells have a different texture but may be perceived by human eye, as having the same texture. To explore the potential of texture analysis based on run-length matrix, a total of 32 sphere images for each group and treatment regime were used in this study. Cells were subjected to the treatment with different doses of 6 MeV electron radiation (0 2, 4 and 6 Gy), hyperthermia (at 43° C in 0, 30, 60 and 90 min) and radiation + hyperthermia (at 43 °C in 30 min with 2, 4 and 6 Gy dose), respectively. Twenty run-length matrix (RLM) features were extracted as descriptors for each selected region of interest for texture analysis. Linear discriminant analysis was employed to transform raw data to lower-dimensional spaces and increase discriminative power. The features were classified by the first nearest neighbor classifier. RLM features represented the best performance with sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of 100% between 0 and 6 Gy radiation, 0 and 6 Gy radiation + hyperthermia, 0 and 90 min and 30 and 90 min hyperthermia groups. The area under receiver operating characteristic curve was 1 for these groups. RLM features have a high potential to characterize cell changes during different treatment regimes.

  1. Associations of Tumor PD-1 Ligands, Immunohistochemical Studies, and Textural Features in 18F-FDG PET in Squamous Cell Carcinoma of the Head and Neck.

    PubMed

    Chen, Rui-Yun; Lin, Ying-Chun; Shen, Wei-Chih; Hsieh, Te-Chun; Yen, Kuo-Yang; Chen, Shang-Wen; Kao, Chia-Hung

    2018-01-08

    To know tumor PD-L1 expression through IHC or the FDG-PET related radiomics, we investigated the association between programmed cell death protein 1 ligand (PD-L1) expression and immunohistochemical (IHC) biomarkers or textural features of 18F-fluoro-2-deoxdeoxyglucose positron emission tomography ( 18 F-FDG PET) in 53 oropharyngeal or hypopharyngeal cancer patients who were ready to undergo radiotherapy-based treatment. Differences in textural features or biomarkers between tumors with and without PD-L1 expression were tested using a Mann-Whitney U test. The predicted values for PD-L1 expression were examined using logistic regression analysis. The mean percentages of tumor PD-L1 expression were 6.2 ± 13.5. Eighteen tumors had PD-L1 expression ≥5%, whereas 30 tumors ≥1%. Using a 5% cutoff, the p16 staining percentage and the textural index of correlation were two factors associated with PD-L1 expression. The odds ratios (ORs) were 17.00 (p = 0.028) and 0.009 (p = 0.015), respectively. When dichotomizing PD-L1 at 1%, the p16 and Ki-67 staining percentages were two predictors for PD-L1 expression with ORs of 11.41 (p = 0.035) and 757.77 (p = 0.045). p16 and Ki-67 staining percentages and several PET/CT-derived textural features can provide supplemental information to determine tumor PD-L1 expression in HNCs.

  2. Magnetization-prepared rapid acquisition with gradient echo magnetic resonance imaging signal and texture features for the prediction of mild cognitive impairment to Alzheimer's disease progression.

    PubMed

    Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Celaya-Padilla, José M; Galván-Tejada, Jorge I; Treviño, Victor; Tamez-Peña, Jose

    2014-10-01

    Early diagnoses of Alzheimer's disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different ([Formula: see text]). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones.

  3. Topological Principles of Control in Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle

    Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.

  4. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.

    PubMed

    Lee, Hansang; Hong, Helen; Kim, Junmo; Jung, Dae Chul

    2018-04-01

    To develop an automatic deep feature classification (DFC) method for distinguishing benign angiomyolipoma without visible fat (AMLwvf) from malignant clear cell renal cell carcinoma (ccRCC) from abdominal contrast-enhanced computer tomography (CE CT) images. A dataset including 80 abdominal CT images of 39 AMLwvf and 41 ccRCC patients was used. We proposed a DFC method for differentiating the small renal masses (SRM) into AMLwvf and ccRCC using the combination of hand-crafted and deep features, and machine learning classifiers. First, 71-dimensional hand-crafted features (HCF) of texture and shape were extracted from the SRM contours. Second, 1000-4000-dimensional deep features (DF) were extracted from the ImageNet pretrained deep learning model with the SRM image patches. In DF extraction, we proposed the texture image patches (TIP) to emphasize the texture information inside the mass in DFs and reduce the mass size variability. Finally, the two features were concatenated and the random forest (RF) classifier was trained on these concatenated features to classify the types of SRMs. The proposed method was tested on our dataset using leave-one-out cross-validation and evaluated using accuracy, sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), and area under receiver operating characteristics curve (AUC). In experiments, the combinations of four deep learning models, AlexNet, VGGNet, GoogleNet, and ResNet, and four input image patches, including original, masked, mass-size, and texture image patches, were compared and analyzed. In qualitative evaluation, we observed the change in feature distributions between the proposed and comparative methods using tSNE method. In quantitative evaluation, we evaluated and compared the classification results, and observed that (a) the proposed HCF + DF outperformed HCF-only and DF-only, (b) AlexNet showed generally the best performances among the CNN models, and (c) the proposed TIPs not only achieved the competitive performances among the input patches, but also steady performance regardless of CNN models. As a result, the proposed method achieved the accuracy of 76.6 ± 1.4% for the proposed HCF + DF with AlexNet and TIPs, which improved the accuracy by 6.6%p and 8.3%p compared to HCF-only and DF-only, respectively. The proposed shape features and TIPs improved the HCFs and DFs, respectively, and the feature concatenation further enhanced the quality of features for differentiating AMLwvf from ccRCC in abdominal CE CT images. © 2018 American Association of Physicists in Medicine.

  5. UV laser-ablated surface textures as potential regulator of cellular response.

    PubMed

    Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim

    2010-06-01

    Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

  6. Textural features for image classification

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  7. A comparative study for chest radiograph image retrieval using binary texture and deep learning classification.

    PubMed

    Anavi, Yaron; Kogan, Ilya; Gelbart, Elad; Geva, Ofer; Greenspan, Hayit

    2015-08-01

    In this work various approaches are investigated for X-ray image retrieval and specifically chest pathology retrieval. Given a query image taken from a data set of 443 images, the objective is to rank images according to similarity. Different features, including binary features, texture features, and deep learning (CNN) features are examined. In addition, two approaches are investigated for the retrieval task. One approach is based on the distance of image descriptors using the above features (hereon termed the "descriptor"-based approach); the second approach ("classification"-based approach) is based on a probability descriptor, generated by a pair-wise classification of each two classes (pathologies) and their decision values using an SVM classifier. Best results are achieved using deep learning features in a classification scheme.

  8. Vortex line topology during vortex tube reconnection

    NASA Astrophysics Data System (ADS)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  9. Probability mapping of scarred myocardium using texture and intensity features in CMR images

    PubMed Central

    2013-01-01

    Background The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium. Methods In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function. Results In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image. Conclusion The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardium). PMID:24053280

  10. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    PubMed

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  11. Characterization of the major histopathological components of thyroid nodules using sonographic textural features for clinical diagnosis and management.

    PubMed

    Chen, Shao-Jer; Yu, Sung-Nien; Tzeng, Jeh-En; Chen, Yen-Ting; Chang, Ku-Yaw; Cheng, Kuo-Sheng; Hsiao, Fu-Tsung; Wei, Chang-Kuo

    2009-02-01

    In this study, the characteristic sonographic textural feature that represents the major histopathologic components of the thyroid nodules was objectively quantified to facilitate clinical diagnosis and management. A total of 157 regions-of-interest thyroid ultrasound image was recruited in the study. The sonographic system used was the GE LOGIQ 700), (General Electric Healthcare, Chalfant St. Giles, UK). The parameters affecting image acquisition were kept in the same condition for all lesions. Commonly used texture analysis methods were applied to characterize thyroid ultrasound images. Image features were classified according to the corresponding pathologic findings. To estimate their relevance and performance to classification, ReliefF was used as a feature selector. Among the various textural features, the sum average value derived from co-occurrence matrix can well reflect echogenicity and can effectively differentiate between follicles and fibrosis base thyroid nodules. Fibrosis shows lowest echogenicity and lowest difference sum average value. Enlarged follicles show highest echogenicity and difference sum average values. Papillary cancer or follicular tumors show the difference sum average values and echogenicity between. The rule of thumb for the echogenicity is that the more follicles are mixed in, the higher the echo of the follicular tumor and papillary cancer will be and vice versa for fibrosis mixed. Areas with intermediate and lower echo should address the possibility of follicular or papillary neoplasm mixed with either follicles or fibrosis. These areas provide more cellular information for ultrasound guided aspiration

  12. Morphological texture assessment of oral bone as a screening tool for osteoporosis

    NASA Astrophysics Data System (ADS)

    Analoui, Mostafa; Eggertsson, Hafsteinn; Eckert, George

    2001-07-01

    Three classes of texture analysis approaches have been employed to assess the textural characteristic of oral bone. A set of linear structuring elements was used to compute granulometric features of trabecular bone. Multifractal analysis was also used to compute the fractal dimension of the corresponding tissues. In addition, some statistical features and histomorphometric parameters were computed. To assess the proposed approach we acquired digital intraoral radiographs of 47 subjects (14 males and 33 females). All radiographs were captured at 12 bits/pixel. Images were converted to binary form through a sliding locally adaptive thresholding approach. Each subject was scanned by DEXA for bone dosimetry. Subject were classified into one of the following three categories according World Health Organization (WHO) standard (1) healthy, (2) with osteopenia and (3) osteoporosis. In this study fractal dimension showed very low correlation with bone mineral density (BMD) measurements, which did not reach a level of statistical significance (p<0.5). However, entropy of pattern spectrum (EPS), along with statistical features and histomorphometric parameters, has shown correlation coefficients ranging from low to high, with statistical significance for both males and females. The results of this study indicate the utility of this approach for bone texture analysis. It is conjectured that designing a 2-D structuring element, specially tuned to trabecular bone texture, will increase the efficacy of the proposed method.

  13. Identification of important image features for pork and turkey ham classification using colour and wavelet texture features and genetic selection.

    PubMed

    Jackman, Patrick; Sun, Da-Wen; Allen, Paul; Valous, Nektarios A; Mendoza, Fernando; Ward, Paddy

    2010-04-01

    A method to discriminate between various grades of pork and turkey ham was developed using colour and wavelet texture features. Image analysis methods originally developed for predicting the palatability of beef were applied to rapidly identify the ham grade. With high quality digital images of 50-94 slices per ham it was possible to identify the greyscale that best expressed the differences between the various ham grades. The best 10 discriminating image features were then found with a genetic algorithm. Using the best 10 image features, simple linear discriminant analysis models produced 100% correct classifications for both pork and turkey on both calibration and validation sets. 2009 Elsevier Ltd. All rights reserved.

  14. Wavelet-based energy features for glaucomatous image classification.

    PubMed

    Dua, Sumeet; Acharya, U Rajendra; Chowriappa, Pradeep; Sree, S Vinitha

    2012-01-01

    Texture features within images are actively pursued for accurate and efficient glaucoma classification. Energy distribution over wavelet subbands is applied to find these important texture features. In this paper, we investigate the discriminatory potential of wavelet features obtained from the daubechies (db3), symlets (sym3), and biorthogonal (bio3.3, bio3.5, and bio3.7) wavelet filters. We propose a novel technique to extract energy signatures obtained using 2-D discrete wavelet transform, and subject these signatures to different feature ranking and feature selection strategies. We have gauged the effectiveness of the resultant ranked and selected subsets of features using a support vector machine, sequential minimal optimization, random forest, and naïve Bayes classification strategies. We observed an accuracy of around 93% using tenfold cross validations to demonstrate the effectiveness of these methods.

  15. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    PubMed

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  16. Spin textures on general surfaces of the correlated topological insulator SmB6

    NASA Astrophysics Data System (ADS)

    Baruselli, Pier Paolo; Vojta, Matthias

    2016-05-01

    Employing the k .p expansion for a family of tight-binding models for SmB6, we analytically compute topological surface states on a generic (l m n ) surface. We show how the Dirac-cone spin structure depends on model ingredients and on the angle θ between the surface normal and the main crystal axes. We apply the general theory to (001), (110), (111), and (210) surfaces, for which we provide concrete predictions for the spin pattern of surface states which we also compare with tight-binding results. As shown in previous work, the spin pattern on a (001 ) surface can be related to the value of mirror Chern numbers, and we explore the possibility of topological phase transitions between states with different mirror Chern numbers and the associated change of the spin structure of surface states. Such transitions may be accessed by varying either the hybridization between conduction and f electrons or the crystal-field splitting of the low-energy f multiplets, and we compute corresponding phase diagrams. Experimentally, chemical doping is a promising route to realize such transitions.

  17. Transmission through a potential barrier in Luttinger liquids with a topological spin gap

    NASA Astrophysics Data System (ADS)

    Kainaris, Nikolaos; Carr, Sam T.; Mirlin, Alexander D.

    2018-03-01

    We study theoretically the transport of the one-dimensional single-channel interacting electron gas through a strong potential barrier in the parameter regime where the spin sector of the low-energy theory is gapped by interaction (Luther-Emery liquid). There are two distinct phases of this nature, of which one is of particular interest as it exhibits nontrivial interaction-induced topological properties. Focusing on this phase and using bosonization and an expansion in the tunneling strength we calculate the conductance through the barrier as a function of the temperature as well as the local density of states (LDOS) at the barrier. Our main result concerns the mechanism of bound-state-mediated tunneling. The characteristic feature of the topological phase is the emergence of protected zero-energy bound states with fractional spin located at the impurity position. By flipping this fractional spin, single electrons can tunnel across the impurity even though the bulk spectrum for spin excitations is gapped. This results in a finite LDOS below the bulk gap and in a nonmonotonic behavior of the conductance. The system represents an important physical example of an interacting symmetry-protected topological phase, which combines features of a topological spin insulator and a topological charge metal, in which the topology can be probed by measuring transport properties.

  18. Beyond the subjective experience of colour: An experimental case study of grapheme-texture synesthesia.

    PubMed

    Banno, Hayaki; Koga, Hiroki; Yamamoto, Hiroki; Saiki, Jun

    2017-07-01

    This study was a case investigation of grapheme-texture synestheste TH, a female who subjectively reported experiencing a visual association between grapheme and colour/texture. First, we validated the existence of a synesthetic association in an objective manner. Involuntarily elicited experience is a major hallmark that is common to different types of synesthetes. Our results indicated interference between physical and synesthetic texture, suggesting the involuntary occurrence of synesthetic textural experience. We analysed the behavioural measures using the EZ diffusion model. The result suggested that TH's synesthetic experience was dissociable from that of briefly trained associative processing of non-synesthetes. Second, we investigated how the synesthetic experience of colour and texture dimensions was bound in the visual representation. We found that the interference effects of colour and texture were not independent. This suggested that in the elicited experience, the colour and texture features construct an integrated representation.

  19. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Im, J.; DeGottardi, W.

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  20. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE PAGES

    Fang, L.; Im, J.; DeGottardi, W.; ...

    2016-10-12

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

Top