Research on connection structure of aluminumbody bus using multi-objective topology optimization
NASA Astrophysics Data System (ADS)
Peng, Q.; Ni, X.; Han, F.; Rhaman, K.; Ulianov, C.; Fang, X.
2018-01-01
For connecting Aluminum Alloy bus body aluminum components often occur the problem of failure, a new aluminum alloy connection structure is designed based on multi-objective topology optimization method. Determining the shape of the outer contour of the connection structure with topography optimization, establishing a topology optimization model of connections based on SIMP density interpolation method, going on multi-objective topology optimization, and improving the design of the connecting piece according to the optimization results. The results show that the quality of the aluminum alloy connector after topology optimization is reduced by 18%, and the first six natural frequencies are improved and the strength performance and stiffness performance are obviously improved.
Topology optimization under stochastic stiffness
NASA Astrophysics Data System (ADS)
Asadpoure, Alireza
Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.
Time domain topology optimization of 3D nanophotonic devices
NASA Astrophysics Data System (ADS)
Elesin, Y.; Lazarov, B. S.; Jensen, J. S.; Sigmund, O.
2014-02-01
We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire-based waveguide. The obtained results are compared to simplified 2D studies and we demonstrate that 3D topology optimization may lead to significant performance improvements.
NASA Astrophysics Data System (ADS)
Wang, Fengwen; Jensen, Jakob S.; Sigmund, Ole
2012-10-01
Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing imperfections is enforced by considering different design realizations generated from under-, standard- and over-etching processes in the optimization procedure. A constraint ensures a certain modal confinement, and loss related to slow light with high group index is indirectly treated by penalizing field energy located in air regions. It is demonstrated that slow light with a group index up to ng = 278 can be achieved by topology optimized waveguides with promising modal confinement and restricted group-velocity-dispersion. All the topology optimized waveguides achieve a normalized group-index bandwidth of 0.48 or above. The comparisons between circular-hole based designs and topology optimized designs illustrate that the former can be efficient for dispersion engineering but that larger improvements are possible if irregular geometries are allowed.
Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach
NASA Technical Reports Server (NTRS)
Aguilo, Miguel A.; Warner, James E.
2017-01-01
This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.
Topology-optimized metasurfaces: impact of initial geometric layout.
Yang, Jianji; Fan, Jonathan A
2017-08-15
Topology optimization is a powerful iterative inverse design technique in metasurface engineering and can transform an initial layout into a high-performance device. With this method, devices are optimized within a local design phase space, making the identification of suitable initial geometries essential. In this Letter, we examine the impact of initial geometric layout on the performance of large-angle (75 deg) topology-optimized metagrating deflectors. We find that when conventional metasurface designs based on dielectric nanoposts are used as initial layouts for topology optimization, the final devices have efficiencies around 65%. In contrast, when random initial layouts are used, the final devices have ultra-high efficiencies that can reach 94%. Our numerical experiments suggest that device topologies based on conventional metasurface designs may not be suitable to produce ultra-high-efficiency, large-angle metasurfaces. Rather, initial geometric layouts with non-trivial topologies and shapes are required.
A new logistic dynamic particle swarm optimization algorithm based on random topology.
Ni, Qingjian; Deng, Jianming
2013-01-01
Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.
The Topology Optimization Design Research for Aluminum Inner Panel of Automobile Engine Hood
NASA Astrophysics Data System (ADS)
Li, Minhao; Hu, Dongqing; Liu, Xiangzheng; Yuan, Huanquan
2017-11-01
This article discusses the topology optimization methods for automobile engine hood design. The aluminum inner panel of engine hood and mucilage glue regions are set as design areas, and the static performances of engine hood included modal frequency, lateral stiffness, torsional stiffness and indentation stiffness are set as the optimization objectives. The topology optimization results about different objective functions are contrasted for analysis. And based on the reasonable topology optimization result, a suited automobile engine hood designs are raised to further study. Finally, an automobile engine hood that good at all of static performances is designed, and a favorable topology optimization method is put forward for discussion.
NASA Astrophysics Data System (ADS)
Villanueva Perez, Carlos Hernan
Computational design optimization provides designers with automated techniques to develop novel and non-intuitive optimal designs. Topology optimization is a design optimization technique that allows for the evolution of a broad variety of geometries in the optimization process. Traditional density-based topology optimization methods often lack a sufficient resolution of the geometry and physical response, which prevents direct use of the optimized design in manufacturing and the accurate modeling of the physical response of boundary conditions. The goal of this thesis is to introduce a unified topology optimization framework that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the governing equations and measure the performance of the design. The methodology is presented as an alternative to density-based optimization approaches, and is able to accommodate a broad range of engineering design problems. The framework presents state-of-the-art methods for immersed boundary techniques to stabilize the systems of equations and enforce the boundary conditions, and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and energy and species transport problems to test the robustness and the characteristics of the method. A comparison of the framework against density-based topology optimization approaches is studied with regards to convergence, performance, and the capability to manufacture the designs. Furthermore, the ability to control the shape of the design to operate within manufacturing constraints is developed and studied. The analysis capability of the framework is validated quantitatively through comparison against previous benchmark studies, and qualitatively through its application to topology optimization problems. The design optimization problems converge to intuitive designs and resembled well the results from previous 2D or density-based studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
2018-02-08
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
NASA Astrophysics Data System (ADS)
Rong, J. H.; Yi, J. H.
2010-10-01
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
NASA Astrophysics Data System (ADS)
Noguchi, Yuki; Yamamoto, Takashi; Yamada, Takayuki; Izui, Kazuhiro; Nishiwaki, Shinji
2017-09-01
This papers proposes a level set-based topology optimization method for the simultaneous design of acoustic and structural material distributions. In this study, we develop a two-phase material model that is a mixture of an elastic material and acoustic medium, to represent an elastic structure and an acoustic cavity by controlling a volume fraction parameter. In the proposed model, boundary conditions at the two-phase material boundaries are satisfied naturally, avoiding the need to express these boundaries explicitly. We formulate a topology optimization problem to minimize the sound pressure level using this two-phase material model and a level set-based method that obtains topologies free from grayscales. The topological derivative of the objective functional is approximately derived using a variational approach and the adjoint variable method and is utilized to update the level set function via a time evolutionary reaction-diffusion equation. Several numerical examples present optimal acoustic and structural topologies that minimize the sound pressure generated from a vibrating elastic structure.
A heuristic approach to optimization of structural topology including self-weight
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.
Generation of structural topologies using efficient technique based on sorted compliances
NASA Astrophysics Data System (ADS)
Mazur, Monika; Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2018-01-01
Topology optimization, although well recognized is still widely developed. It has gained recently more attention since large computational ability become available for designers. This process is stimulated simultaneously by variety of emerging, innovative optimization methods. It is observed that traditional gradient-based mathematical programming algorithms, in many cases, are replaced by novel and e cient heuristic methods inspired by biological, chemical or physical phenomena. These methods become useful tools for structural optimization because of their versatility and easy numerical implementation. In this paper engineering implementation of a novel heuristic algorithm for minimum compliance topology optimization is discussed. The performance of the topology generator is based on implementation of a special function utilizing information of compliance distribution within the design space. With a view to cope with engineering problems the algorithm has been combined with structural analysis system Ansys.
NASA Astrophysics Data System (ADS)
Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang
2017-10-01
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
NASA Astrophysics Data System (ADS)
Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.
2018-03-01
Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.
Topology optimization based design of unilateral NMR for generating a remote homogeneous field.
Wang, Qi; Gao, Renjing; Liu, Shutian
2017-06-01
This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.
On a biologically inspired topology optimization method
NASA Astrophysics Data System (ADS)
Kobayashi, Marcelo H.
2010-03-01
This work concerns the development of a biologically inspired methodology for the study of topology optimization in engineering and natural systems. The methodology is based on L systems and its turtle interpretation for the genotype-phenotype modeling of the topology development. The topology is analyzed using the finite element method, and optimized using an evolutionary algorithm with the genetic encoding of the L system and its turtle interpretation, as well as, body shape and physical characteristics. The test cases considered in this work clearly show the suitability of the proposed method for the study of engineering and natural complex systems.
Topology optimization of unsteady flow problems using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Nørgaard, Sebastian; Sigmund, Ole; Lazarov, Boyan
2016-02-01
This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems. The optimization problem is solved with a gradient based method, and the design sensitivities are computed by solving the discrete adjoint problem. For moderate Reynolds number flows, it is demonstrated that topology optimization can successfully account for unsteady effects such as vortex shedding and time-varying boundary conditions. Such effects are relevant in several engineering applications, i.e. fluid pumps and control valves.
Topology optimization of finite strain viscoplastic systems under transient loads
Ivarsson, Niklas; Wallin, Mathias; Tortorelli, Daniel
2018-02-08
In this paper, a transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model's kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capabilitymore » of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. Finally, the numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.« less
Optimal Diabatic Dynamics of Majoarana-based Topological Qubits
NASA Astrophysics Data System (ADS)
Seradjeh, Babak; Rahmani, Armin; Franz, Marcel
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles such as Majorana zero modes and are protected from local environmental perturbations. This scheme requires slow operations. By using the Pontryagin's maximum principle, here we show the same quantum gates can be implemented in much shorter times through optimal diabatic pulses. While our fast diabatic gates no not enjoy topological protection, they provide significant practical advantages due to their optimal speed and remarkable robustness to calibration errors and noise. NSERC, CIfAR, NSF DMR- 1350663, BSF 2014345.
A fast finite-difference algorithm for topology optimization of permanent magnets
NASA Astrophysics Data System (ADS)
Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter
2017-09-01
We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.
New displacement-based methods for optimal truss topology design
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Ben-Tal, Aharon; Haftka, Raphael T.
1991-01-01
Two alternate methods for maximum stiffness truss topology design are presented. The ground structure approach is used, and the problem is formulated in terms of displacements and bar areas. This large, nonconvex optimization problem can be solved by a simultaneous analysis and design approach. Alternatively, an equivalent, unconstrained, and convex problem in the displacements only can be formulated, and this problem can be solved by a nonsmooth, steepest descent algorithm. In both methods, the explicit solving of the equilibrium equations and the assembly of the global stiffness matrix are circumvented. A large number of examples have been studied, showing the attractive features of topology design as well as exposing interesting features of optimal topologies.
Topology Optimization - Engineering Contribution to Architectural Design
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2017-10-01
The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one-material problems.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-03-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-01-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060
Self-organization in multilayer network with adaptation mechanisms based on competition
NASA Astrophysics Data System (ADS)
Pitsik, Elena N.; Makarov, Vladimir V.; Nedaivozov, Vladimir O.; Kirsanov, Daniil V.; Goremyko, Mikhail V.
2018-04-01
The paper considers the phenomena of competition in multiplex network whose structure evolves corresponding to dynamics of it's elements, forming closed loop of self-learning with the aim to reach the optimal topology. Numerical analysis of proposed model shows that it is possible to obtain scale-invariant structures for corresponding parameters as well as the structures with homogeneous distribution of connections in the layers. Revealed phenomena emerges as the consequence of the self-organization processes related to structure-dynamical selflearning based on homeostasis and homophily, as well as the result of the competition between the network's layers for optimal topology. It was shown that in the mode of partial and cluster synchronization the network reaches scale-free topology of complex nature that is different from layer to layer. However, in the mode of global synchronization the homogeneous topologies on all layer of the network are observed. This phenomenon is tightly connected with the competitive processes that represent themselves as the natural mechanism of reaching the optimal topology of the links in variety of real-world systems.
Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.
Dong, Hao-Wen; Wang, Yue-Sheng; Zhang, Chuanzeng
2017-04-01
Topology optimization of a waveguide-cavity structure in phononic crystals for designing narrow band filters under the given operating frequencies is presented in this paper. We show that it is possible to obtain an ultra-high-Q filter by only optimizing the cavity topology without introducing any other coupling medium. The optimized cavity with highly symmetric resonance can be utilized as the multi-channel filter, raising filter and T-splitter. In addition, most optimized high-Q filters have the Fano resonances near the resonant frequencies. Furthermore, our filter optimization based on the waveguide and cavity, and our simple illustration of a computational approach to wave control in phononic crystals can be extended and applied to design other acoustic devices or even opto-mechanical devices. Copyright © 2016 Elsevier B.V. All rights reserved.
Topology optimization applied to the design of cooling channels for plastic injection
NASA Astrophysics Data System (ADS)
Muñoz, D. A.; Arango, J. P.; González, C.; Puerto, E.; Garzón, M.
2018-04-01
In this paper, topology optimization is applied to design cooling channels in a mold of structural steel. The problem was implemented in COMSOL multiphysics, where two physics were coupled, heat transfer and solid mechanics. The optimization objective is to maximize the conduction heat flux in the mold and minimize the deformations when the plastic is injected. In order to find an optimal geometry for this objective, a density-based method was implemented into the nonlinear program (NLP) for which feasible results were found.
NASA Astrophysics Data System (ADS)
Vitório, Paulo Cezar; Leonel, Edson Denner
2017-12-01
The structural design must ensure suitable working conditions by attending for safe and economic criteria. However, the optimal solution is not easily available, because these conditions depend on the bodies' dimensions, materials strength and structural system configuration. In this regard, topology optimization aims for achieving the optimal structural geometry, i.e. the shape that leads to the minimum requirement of material, respecting constraints related to the stress state at each material point. The present study applies an evolutionary approach for determining the optimal geometry of 2D structures using the coupling of the boundary element method (BEM) and the level set method (LSM). The proposed algorithm consists of mechanical modelling, topology optimization approach and structural reconstruction. The mechanical model is composed of singular and hyper-singular BEM algebraic equations. The topology optimization is performed through the LSM. Internal and external geometries are evolved by the LS function evaluated at its zero level. The reconstruction process concerns the remeshing. Because the structural boundary moves at each iteration, the body's geometry change and, consequently, a new mesh has to be defined. The proposed algorithm, which is based on the direct coupling of such approaches, introduces internal cavities automatically during the optimization process, according to the intensity of Von Mises stress. The developed optimization model was applied in two benchmarks available in the literature. Good agreement was observed among the results, which demonstrates its efficiency and accuracy.
NASA Technical Reports Server (NTRS)
Burt, Adam O.; Tinker, Michael L.
2014-01-01
In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.
NASA Astrophysics Data System (ADS)
Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin
2018-05-01
Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.
A comparative study on stress and compliance based structural topology optimization
NASA Astrophysics Data System (ADS)
Hailu Shimels, G.; Dereje Engida, W.; Fakhruldin Mohd, H.
2017-10-01
Most of structural topology optimization problems have been formulated and solved to either minimize compliance or weight of a structure under volume or stress constraints, respectively. Even if, a lot of researches are conducted on these two formulation techniques separately, there is no clear comparative study between the two approaches. This paper intends to compare these formulation techniques, so that an end user or designer can choose the best one based on the problems they have. Benchmark problems under the same boundary and loading conditions are defined, solved and results are compared based on these formulations. Simulation results shows that the two formulation techniques are dependent on the type of loading and boundary conditions defined. Maximum stress induced in the design domain is higher when the design domains are formulated using compliance based formulations. Optimal layouts from compliance minimization formulation has complex layout than stress based ones which may lead the manufacturing of the optimal layouts to be challenging. Optimal layouts from compliance based formulations are dependent on the material to be distributed. On the other hand, optimal layouts from stress based formulation are dependent on the type of material used to define the design domain. High computational time for stress based topology optimization is still a challenge because of the definition of stress constraints at element level. Results also shows that adjustment of convergence criterions can be an alternative solution to minimize the maximum stress developed in optimal layouts. Therefore, a designer or end user should choose a method of formulation based on the design domain defined and boundary conditions considered.
Topology optimized permanent magnet systems
NASA Astrophysics Data System (ADS)
Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.
2017-09-01
Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.
Topology-optimized broadband surface relief transmission grating
NASA Astrophysics Data System (ADS)
Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.; Rasmussen, Thomas; Buchwald, Kristian; Sigmund, Ole
2014-03-01
We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane waves. The goal of the optimization is to find a grating design that maximizes diffraction efficiency for the -1st transmission order when illuminated by unpolarized plane waves. Results indicate that a surface relief transmission grating can be designed with a diffraction efficiency of more than 40% in a broadband range going from the ultraviolet region, through the visible region and into the near-infrared region.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
A case study on topology optimized design for additive manufacturing
NASA Astrophysics Data System (ADS)
Gebisa, A. W.; Lemu, H. G.
2017-12-01
Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. Earlier developments of topology optimization considered conventional manufacturing techniques that have limitations in producing complex geometries. This has hindered the topology optimization efforts not to fully be realized. With the emergence of additive manufacturing (AM) technologies, the technology that builds a part layer upon a layer directly from three dimensional (3D) model data of the part, however, producing complex shape geometry is no longer an issue. Realization of topology optimization through AM provides full design freedom for the design engineers. The article focuses on topologically optimized design approach for additive manufacturing with a case study on lightweight design of jet engine bracket. The study result shows that topology optimization is a powerful design technique to reduce the weight of a product while maintaining the design requirements if additive manufacturing is considered.
Research on Collection System Optimal Design of Wind Farm with Obstacles
NASA Astrophysics Data System (ADS)
Huang, W.; Yan, B. Y.; Tan, R. S.; Liu, L. F.
2017-05-01
To the collection system optimal design of offshore wind farm, the factors considered are not only the reasonable configuration of the cable and switch, but also the influence of the obstacles on the topology design of the offshore wind farm. This paper presents a concrete topology optimization algorithm with obstacles. The minimal area rectangle encasing box of the obstacle is obtained by using the method of minimal area encasing box. Then the optimization algorithm combining the advantages of Dijkstra algorithm and Prim algorithm is used to gain the scheme of avoidance obstacle path planning. Finally a fuzzy comprehensive evaluation model based on the analytic hierarchy process is constructed to compare the performance of the different topologies. Case studies demonstrate the feasibility of the proposed algorithm and model.
Aerothermoelastic Topology Optimization with Flutter and Buckling Metrics (Postprint)
2013-07-01
topologies of an unheated panel, thermal buckling-optimal topologies, and flutter- optimality of a heated panel (where the latter case presents a...topological compromise between the former two). The effect of various constraint boundaries, temperature gradients, and (for the flutter of the heated panel...optimality of a heated panel (where the latter case presents a topological compromise between the former two). The effect of various constraint boundaries
NASA Astrophysics Data System (ADS)
Wright, Robert; Abraham, Edo; Parpas, Panos; Stoianov, Ivan
2015-12-01
The operation of water distribution networks (WDN) with a dynamic topology is a recently pioneered approach for the advanced management of District Metered Areas (DMAs) that integrates novel developments in hydraulic modeling, monitoring, optimization, and control. A common practice for leakage management is the sectorization of WDNs into small zones, called DMAs, by permanently closing isolation valves. This facilitates water companies to identify bursts and estimate leakage levels by measuring the inlet flow for each DMA. However, by permanently closing valves, a number of problems have been created including reduced resilience to failure and suboptimal pressure management. By introducing a dynamic topology to these zones, these disadvantages can be eliminated while still retaining the DMA structure for leakage monitoring. In this paper, a novel optimization method based on sequential convex programming (SCP) is outlined for the control of a dynamic topology with the objective of reducing average zone pressure (AZP). A key attribute for control optimization is reliable convergence. To achieve this, the SCP method we propose guarantees that each optimization step is strictly feasible, resulting in improved convergence properties. By using a null space algorithm for hydraulic analyses, the computations required are also significantly reduced. The optimized control is actuated on a real WDN operated with a dynamic topology. This unique experimental program incorporates a number of technologies set up with the objective of investigating pioneering developments in WDN management. Preliminary results indicate AZP reductions for a dynamic topology of up to 6.5% over optimally controlled fixed topology DMAs. This article was corrected on 12 JAN 2016. See the end of the full text for details.
Computer Based Porosity Design by Multi Phase Topology Optimization
NASA Astrophysics Data System (ADS)
Burblies, Andreas; Busse, Matthias
2008-02-01
A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.
Yang, Shaofu; Liu, Qingshan; Wang, Jun
2018-04-01
This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.
On Per-Phase Topology Control and Switching in Emerging Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mousavi, Mirrasoul J.
This paper presents a new concept and approach for topology control and switching in distribution systems by extending the traditional circuit switching to laterals and single-phase loads. Voltage unbalance and other key performance indicators including voltage magnitudes, line loading, and energy losses are used to characterize and demonstrate the technical value of optimizing system topology on a per-phase basis in response to feeder conditions. The near-optimal per-phase topology control is defined as a series of hierarchical optimization problems. The proposed approach is respectively applied to IEEE 13-bus and 123-bus test systems for demonstration, which included the impact of integrating electricmore » vehicles (EVs) in the test circuit. It is concluded that the proposed approach can be effectively leveraged to improve voltage profiles with electric vehicles, the extent of which depends upon the performance of the base case without EVs.« less
A novel algorithm using an orthotropic material model for topology optimization
NASA Astrophysics Data System (ADS)
Tong, Liyong; Luo, Quantian
2017-09-01
This article presents a novel algorithm for topology optimization using an orthotropic material model. Based on the virtual work principle, mathematical formulations for effective orthotropic material properties of an element containing two materials are derived. An algorithm is developed for structural topology optimization using four orthotropic material properties, instead of one density or area ratio, in each element as design variables. As an illustrative example, minimum compliance problems for linear and nonlinear structures are solved using the present algorithm in conjunction with the moving iso-surface threshold method. The present numerical results reveal that: (1) chequerboards and single-node connections are not present even without filtering; (2) final topologies do not contain large grey areas even using a unity penalty factor; and (3) the well-known numerical issues caused by low-density material when considering geometric nonlinearity are resolved by eliminating low-density elements in finite element analyses.
Optimal diabatic dynamics of Majorana-based quantum gates
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Seradjeh, Babak; Franz, Marcel
2017-08-01
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.
On Adding Structure to Unstructured Overlay Networks
NASA Astrophysics Data System (ADS)
Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís
Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.
Optimal network alignment with graphlet degree vectors.
Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Przulj, Natasa
2010-06-30
Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.
Complexity of generic biochemical circuits: topology versus strength of interactions.
Tikhonov, Mikhail; Bialek, William
2016-12-06
The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.
Wrinkle-free design of thin membrane structures using stress-based topology optimization
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Xing, Jian; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-05-01
Thin membrane structures would experience wrinkling due to local buckling deformation when compressive stresses are induced in some regions. Using the stress criterion for membranes in wrinkled and taut states, this paper proposed a new stress-based topology optimization methodology to seek the optimal wrinkle-free design of macro-scale thin membrane structures under stretching. Based on the continuum model and linearly elastic assumption in the taut state, the optimization problem is defined as to maximize the structural stiffness under membrane area and principal stress constraints. In order to make the problem computationally tractable, the stress constraints are reformulated into equivalent ones and relaxed by a cosine-type relaxation scheme. The reformulated optimization problem is solved by a standard gradient-based algorithm with the adjoint-variable sensitivity analysis. Several examples with post-bulking simulations and experimental tests are given to demonstrate the effectiveness of the proposed optimization model for eliminating stress-related wrinkles in the novel design of thin membrane structures.
Method to optimize optical switch topology for photonic network-on-chip
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Hao
2018-04-01
In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.
Optimal topologies for maximizing network transmission capacity
NASA Astrophysics Data System (ADS)
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
A three-dimensional topology optimization model for tooth-root morphology.
Seitz, K-F; Grabe, J; Köhne, T
2018-02-01
To obtain the root of a lower incisor through structural optimization, we used two methods: optimization with Solid Isotropic Material with Penalization (SIMP) and Soft-Kill Option (SKO). The optimization was carried out in combination with a finite element analysis in Abaqus/Standard. The model geometry was based on cone-beam tomography scans of 10 adult males with healthy bone-tooth interface. Our results demonstrate that the optimization method using SIMP for minimum compliance could not adequately predict the actual root shape. The SKO method, however, provided optimization results that were comparable to the natural root form and is therefore suitable to set up the basic topology of a dental root.
A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks
Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong
2015-01-01
This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571
Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.
2007-01-01
Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.
NASA Astrophysics Data System (ADS)
Fang, W.; Quan, S. H.; Xie, C. J.; Ran, B.; Li, X. L.; Wang, L.; Jiao, Y. T.; Xu, T. W.
2017-05-01
The majority of the thermal energy released in an automotive internal combustion cycle is exhausted as waste heat through the tail pipe. This paper describes an automobile exhaust thermoelectric generator (AETEG), designed to recycle automobile waste heat. A model of the output characteristics of each thermoelectric device was established by testing their open circuit voltage and internal resistance, and combining the output characteristics. To better describe the relationship, the physical model was transformed into a topological model. The connection matrix was used to describe the relationship between any two thermoelectric devices in the topological structure. Different topological structures produced different power outputs; their output power was maximised by using an iterative algorithm to optimize the series-parallel electrical topology structure. The experimental results have shown that the output power of the optimal topology structure increases by 18.18% and 29.35% versus that of a pure in-series or parallel topology, respectively, and by 10.08% versus a manually defined structure (based on user experience). The thermoelectric conversion device increased energy efficiency by 40% when compared with a traditional car.
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-06-01
In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
NASA Astrophysics Data System (ADS)
Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian
2018-05-01
Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.
Lin, Chia-Ying; Hsiao, Chun-Ching; Chen, Po-Quan; Hollister, Scott J
2004-08-15
An approach combining global layout and local microstructure topology optimization was used to create a new interbody fusion cage design that concurrently enhanced stability, biofactor delivery, and mechanical tissue stimulation for improved arthrodesis. To develop a new interbody fusion cage design by topology optimization with porous internal architecture. To compare the performance of this new design to conventional threaded cage designs regarding early stability and long-term stress shielding effects on ingrown bone. Conventional interbody cage designs mainly fall into categories of cylindrical or rectangular shell shapes. The designs contribute to rigid stability and maintain disc height for successful arthrodesis but may also suffer mechanically mediated failures of dislocation or subsidence, as well as the possibility of bone resorption. The new optimization approach created a cage having designed microstructure that achieved desired mechanical performance while providing interconnected channels for biofactor delivery. The topology optimization algorithm determines the material layout under desirable volume fraction (50%) and displacement constraints favorable to bone formation. A local microstructural topology optimization method was used to generate periodic microstructures for porous isotropic materials. Final topology was generated by the integration of the two-scaled structures according to segmented regions and the corresponding material density. Image-base finite element analysis was used to compare the mechanical performance of the topology-optimized cage and conventional threaded cage. The final design can be fabricated by a variety of Solid Free-Form systems directly from the image output. The new design exhibited a narrower, more uniform displacement range than the threaded cage design and lower stress at the cage-vertebra interface, suggesting a reduced risk of subsidence. Strain energy density analysis also indicated that a higher portion of total strain energy density was transferred into the new bone region inside the new designed cage, indicating a reduced risk of stress shielding. The new design approach using integrated topology optimization demonstrated comparable or better stability by limited displacement and reduced localized deformation related to the risk of subsidence. Less shielding of newly formed bone was predicted inside the new designed cage. Using the present approach, it is also possible to tailor cage design for specific materials, either titanium or polymer, that can attain the desired balance between stability, reduced stress shielding, and porosity for biofactor delivery.
Hu, Rui; Liu, Shutian; Li, Quhao
2017-05-20
For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.; ...
2017-01-26
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less
Shape and Reinforcement Optimization of Underground Tunnels
NASA Astrophysics Data System (ADS)
Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang
Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.
Structural topology optimization with fuzzy constraint
NASA Astrophysics Data System (ADS)
Rosko, Peter
2011-12-01
The paper deals with the structural topology optimization with fuzzy constraint. The optimal topology of structure is defined as a material distribution problem. The objective is the weight of the structure. The multifrequency dynamic loading is considered. The optimal topology design of the structure has to eliminate the danger of the resonance vibration. The uncertainty of the loading is defined with help of fuzzy loading. Special fuzzy constraint is created from exciting frequencies. Presented study is applicable in engineering and civil engineering. Example demonstrates the presented theory.
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan
2016-01-01
An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.
A level-set procedure for the design of electromagnetic metamaterials.
Zhou, Shiwei; Li, Wei; Sun, Guangyong; Li, Qing
2010-03-29
Achieving negative permittivity and negative permeability signifies a key topic of research in the design of metamaterials. This paper introduces a level-set based topology optimization method, in which the interface between the vacuum and metal phases is implicitly expressed by the zero-level contour of a higher dimensional level-set function. Following a sensitivity analysis, the optimization maximizes the objective based on the normal direction of the level-set function and induced current flow, thereby generating the desirable patterns of current flow on metal surface. As a benchmark example, the U-shaped structure and its variations are obtained from the level-set topology optimization. Numerical examples demonstrate that both negative permittivity and negative permeability can be attained.
NASA Astrophysics Data System (ADS)
Shi, Jin-Xing; Ohmura, Keiichiro; Shimoda, Masatoshi; Lei, Xiao-Wen
2018-07-01
In recent years, shape design of graphene sheets (GSs) by introducing topological defects for enhancing their mechanical behaviors has attracted the attention of scholars. In the present work, we propose a consistent methodology for optimal shape design of GSs using a combination of the molecular mechanics (MM) method, the non-parametric shape optimization method, the phase field crystal (PFC) method, Voronoi tessellation, and molecular dynamics (MD) simulation to maximize their fundamental frequencies. At first, we model GSs as continuum frame models using a link between the MM method and continuum mechanics. Then, we carry out optimal shape design of GSs in fundamental frequency maximization problem based on a developed shape optimization method for frames. However, the obtained optimal shapes of GSs only consisting of hexagonal carbon rings are unstable that do not satisfy the principle of least action, so we relocate carbon atoms on the optimal shapes by introducing topological defects using the PFC method and Voronoi tessellation. At last, we perform the structural relaxation through MD simulation to determine the final optimal shapes of GSs. We design two examples of GSs and the optimal results show that the fundamental frequencies of GSs can be significantly enhanced according to the optimal shape design methodology.
Combined shape and topology optimization for minimization of maximal von Mises stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.
Here, this work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology. By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy.
Combined shape and topology optimization for minimization of maximal von Mises stress
Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.; ...
2017-01-27
Here, this work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology. By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Cardillo, A.; Cascini, G.; Frillici, F. S.; Rotini, F.
In a recent project the authors have proposed the adoption of Optimization Systems [1] as a bridging element between Computer-Aided Innovation (CAI) and PLM to identify geometrical contradictions [2], a particular case of the TRIZ physical contradiction [3]. A further development of the research [4] has revealed that the solutions obtained from several topological optimizations can be considered as elementary customized modeling features for a specific design task. The topology overcoming the arising geometrical contradiction can be obtained through a manipulation of the density distributions constituting the conflicting pair. Already two strategies of density combination have been identified as capable to solve geometrical contradictions and several others are under extended testing. The paper illustrates the most recent results of the ongoing research mainly related to the extension of the algorithms from 2D to 3D design spaces. The whole approach is clarified by means of two detailed examples, where the proposed technique is compared with classical multi-goal optimization.
Integrated topology and shape optimization in structural design
NASA Technical Reports Server (NTRS)
Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.
1990-01-01
Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.
Acoustic design by topology optimization
NASA Astrophysics Data System (ADS)
Dühring, Maria B.; Jensen, Jakob S.; Sigmund, Ole
2008-11-01
To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along the walls. We obtain well defined optimized designs for a single frequency or a frequency interval for both 2D and 3D problems when considering low frequencies. Second, it is shown that the method can be applied to design outdoor sound barriers in order to reduce the sound level in the shadow zone behind the barrier. A reduction of up to 10 dB for a single barrier and almost 30 dB when using two barriers are achieved compared to utilizing conventional sound barriers.
NASA Astrophysics Data System (ADS)
Masuda, Hiroshi; Kanda, Yutaro; Okamoto, Yoshifumi; Hirono, Kazuki; Hoshino, Reona; Wakao, Shinji; Tsuburaya, Tomonori
2017-12-01
It is very important to design electrical machineries with high efficiency from the point of view of saving energy. Therefore, topology optimization (TO) is occasionally used as a design method for improving the performance of electrical machinery under the reasonable constraints. Because TO can achieve a design with much higher degree of freedom in terms of structure, there is a possibility for deriving the novel structure which would be quite different from the conventional structure. In this paper, topology optimization using sequential linear programming using move limit based on adaptive relaxation is applied to two models. The magnetic shielding, in which there are many local minima, is firstly employed as firstly benchmarking for the performance evaluation among several mathematical programming methods. Secondly, induction heating model is defined in 2-D axisymmetric field. In this model, the magnetic energy stored in the magnetic body is maximized under the constraint on the volume of magnetic body. Furthermore, the influence of the location of the design domain on the solutions is investigated.
Optimizing topological cascade resilience based on the structure of terrorist networks.
Gutfraind, Alexander
2010-11-10
Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades--to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas.
Design Optimization of Irregular Cellular Structure for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao
2017-09-01
Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.
NASA Astrophysics Data System (ADS)
Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.
2016-11-01
There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.
A method of network topology optimization design considering application process characteristic
NASA Astrophysics Data System (ADS)
Wang, Chunlin; Huang, Ning; Bai, Yanan; Zhang, Shuo
2018-03-01
Communication networks are designed to meet the usage requirements of users for various network applications. The current studies of network topology optimization design mainly considered network traffic, which is the result of network application operation, but not a design element of communication networks. A network application is a procedure of the usage of services by users with some demanded performance requirements, and has obvious process characteristic. In this paper, we first propose a method to optimize the design of communication network topology considering the application process characteristic. Taking the minimum network delay as objective, and the cost of network design and network connective reliability as constraints, an optimization model of network topology design is formulated, and the optimal solution of network topology design is searched by Genetic Algorithm (GA). Furthermore, we investigate the influence of network topology parameter on network delay under the background of multiple process-oriented applications, which can guide the generation of initial population and then improve the efficiency of GA. Numerical simulations show the effectiveness and validity of our proposed method. Network topology optimization design considering applications can improve the reliability of applications, and provide guidance for network builders in the early stage of network design, which is of great significance in engineering practices.
Aeroelastic Wingbox Stiffener Topology Optimization
NASA Technical Reports Server (NTRS)
Stanford, Bret K.
2017-01-01
This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.
Topology and boundary shape optimization as an integrated design tool
NASA Technical Reports Server (NTRS)
Bendsoe, Martin Philip; Rodrigues, Helder Carrico
1990-01-01
The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.
NASA Technical Reports Server (NTRS)
Sable, Dan M.; Cho, Bo H.; Lee, Fred C.
1990-01-01
A detailed comparison of a boost converter, a voltage-fed, autotransformer converter, and a multimodule boost converter, designed specifically for the space platform battery discharger, is performed. Computer-based nonlinear optimization techniques are used to facilitate an objective comparison. The multimodule boost converter is shown to be the optimum topology at all efficiencies. The margin is greatest at 97 percent efficiency. The multimodule, multiphase boost converter combines the advantages of high efficiency, light weight, and ample margin on the component stresses, thus ensuring high reliability.
Optimization of topological quantum algorithms using Lattice Surgery is hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon
The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.
Topological transitions in continuously deformed photonic crystals
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Wang, Hai-Xiao; Xu, Changqing; Lai, Yun; Jiang, Jian-Hua; John, Sajeev
2018-02-01
We demonstrate that multiple topological transitions can occur, with high sensitivity, by continuous change of the geometry of a simple two-dimensional dielectric-frame photonic crystal consisting of circular air holes. By changing the radii of the holes and/or the distance between them, multiple transitions between normal and topological photonic band gaps (PBGs) can appear. The time-reversal symmetric topological PBGs resemble the quantum spin Hall insulator of electrons and have two counterpropagating edge states. We search for optimal topological transitions, i.e., sharp transitions sensitive to the geometry, and optimal topological PBGs, i.e., large PBGs with a clean spectrum of edge states. Such optimizations reveal that dielectric-frame photonic crystals are promising for optical sensors and unidirectional waveguides.
Topology-Optimized Multilayered Metaoptics
NASA Astrophysics Data System (ADS)
Lin, Zin; Groever, Benedikt; Capasso, Federico; Rodriguez, Alejandro W.; Lončar, Marko
2018-04-01
We propose a general topology-optimization framework for metasurface inverse design that can automatically discover highly complex multilayered metastructures with increased functionalities. In particular, we present topology-optimized multilayered geometries exhibiting angular phase control, including a single-piece nanophotonic metalens with angular aberration correction, as well as an angle-convergent metalens that focuses light onto the same focal spot regardless of the angle of incidence.
A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas E; Schuman, Catherine D; Young, Steven R
Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less
Design of optimized piezoelectric HDD-sliders
NASA Astrophysics Data System (ADS)
Nakasone, Paulo H.; Yoo, Jeonghoon; Silva, Emilio C. N.
2010-04-01
As storage data density in hard-disk drives (HDDs) increases for constant or miniaturizing sizes, precision positioning of HDD heads becomes a more relevant issue to ensure enormous amounts of data to be properly written and read. Since the traditional single-stage voice coil motor (VCM) cannot satisfy the positioning requirement of high-density tracks per inch (TPI) HDDs, dual-stage servo systems have been proposed to overcome this matter, by using VCMs to coarsely move the HDD head while piezoelectric actuators provides fine and fast positioning. Thus, the aim of this work is to apply topology optimization method (TOM) to design novel piezoelectric HDD heads, by finding optimal placement of base-plate and piezoelectric material to high precision positioning HDD heads. Topology optimization method is a structural optimization technique that combines the finite element method (FEM) with optimization algorithms. The laminated finite element employs the MITC (mixed interpolation of tensorial components) formulation to provide accurate and reliable results. The topology optimization uses a rational approximation of material properties to vary the material properties between 'void' and 'filled' portions. The design problem consists in generating optimal structures that provide maximal displacements, appropriate structural stiffness and resonance phenomena avoidance. The requirements are achieved by applying formulations to maximize displacements, minimize structural compliance and maximize resonance frequencies. This paper presents the implementation of the algorithms and show results to confirm the feasibility of this approach.
NASA Astrophysics Data System (ADS)
Lahuerta, Ricardo Doll; Simões, Eduardo T.; Campello, Eduardo M. B.; Pimenta, Paulo M.; Silva, Emilio C. N.
2013-10-01
This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant-Kirchhoff constitutive law, and strong differences are found.
NASA Astrophysics Data System (ADS)
Fetisov, K. V.; Maksimov, P. V.
2018-05-01
The paper presents the application of topology optimization and laser additive manufacturing in the design of lightweight aerospace parts. At the beginning a brief overview of the topology optimization algorithm SIMP is given, one of the most commonly used algorithm in FEA software. After that, methodology of parts design with using topology optimization is discussed as well as issues related to designing for additive manufacturing. In conclusion, the practical application of the proposed methodologies is presented using the example of one complex assembly unit. As a result of the new design approach, the mass of product was reduced five times, and twenty parts were replaced by one.
NASA Astrophysics Data System (ADS)
Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun
2017-07-01
Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.
Design of complex bone internal structure using topology optimization with perimeter control.
Park, Jaejong; Sutradhar, Alok; Shah, Jami J; Paulino, Glaucio H
2018-03-01
Large facial bone loss usually requires patient-specific bone implants to restore the structural integrity and functionality that also affects the appearance of each patient. Titanium alloys (e.g., Ti-6Al-4V) are typically used in the interfacial porous coatings between the implant and the surrounding bone to promote stability. There exists a property mismatch between the two that in general leads to complications such as stress-shielding. This biomechanical discrepancy is a hurdle in the design of bone replacements. To alleviate the mismatch, the internal structure of the bone replacements should match that of the bone. Topology optimization has proven to be a good technique for designing bone replacements. However, the complex internal structure of the bone is difficult to mimic using conventional topology optimization methods without additional restrictions. In this work, the complex bone internal structure is recovered using a perimeter control based topology optimization approach. By restricting the solution space by means of the perimeter, the intricate design complexity of bones can be achieved. Three different bone regions with well-known physiological loadings are selected to illustrate the method. Additionally, we found that the target perimeter value and the pattern of the initial distribution play a vital role in obtaining the natural curvatures in the bone internal structures as well as avoiding excessive island patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stress-Constrained Structural Topology Optimization with Design-Dependent Loads
NASA Astrophysics Data System (ADS)
Lee, Edmund
Topology optimization is commonly used to distribute a given amount of material to obtain the stiffest structure, with predefined fixed loads. The present work investigates the result of applying stress constraints to topology optimization, for problems with design-depending loading, such as self-weight and pressure. In order to apply pressure loading, a material boundary identification scheme is proposed, iteratively connecting points of equal density. In previous research, design-dependent loading problems have been limited to compliance minimization. The present study employs a more practical approach by minimizing mass subject to failure constraints, and uses a stress relaxation technique to avoid stress constraint singularities. The results show that these design dependent loading problems may converge to a local minimum when stress constraints are enforced. Comparisons between compliance minimization solutions and stress-constrained solutions are also given. The resulting topologies of these two solutions are usually vastly different, demonstrating the need for stress-constrained topology optimization.
Topology optimization for nonlinear dynamic problems: Considerations for automotive crashworthiness
NASA Astrophysics Data System (ADS)
Kaushik, Anshul; Ramani, Anand
2014-04-01
Crashworthiness of automotive structures is most often engineered after an optimal topology has been arrived at using other design considerations. This study is an attempt to incorporate crashworthiness requirements upfront in the topology synthesis process using a mathematically consistent framework. It proposes the use of equivalent linear systems from the nonlinear dynamic simulation in conjunction with a discrete-material topology optimizer. Velocity and acceleration constraints are consistently incorporated in the optimization set-up. Issues specific to crash problems due to the explicit solution methodology employed, nature of the boundary conditions imposed on the structure, etc. are discussed and possible resolutions are proposed. A demonstration of the methodology on two-dimensional problems that address some of the structural requirements and the types of loading typical of frontal and side impact is provided in order to show that this methodology has the potential for topology synthesis incorporating crashworthiness requirements.
Topology synthesis of planar ground structures for energy harvesting applications
NASA Astrophysics Data System (ADS)
Danzi, Francesco; Gibert, James; Cestino, Enrico; Frulla, Giacomo
2017-04-01
In this manuscript, we investigate the use topology optimization to design planar resonators with modal fre- quencies that occur at 1 : n ratios for kinetic energy scavenging of ambient vibrations that exhibit at least two frequency components. Furthermore, we are interested in excitations with a fundamental component containing large amounts of energy and secondary component with smaller energy content. This phenomenon is often seen in rotary machines; their frequency spectrum exhibits peaks on multiple harmonics, where the energy is primarily contained in the rotation frequency of the device. Several theoretical resonators are known to exhibit modal frequencies that at integer multiples 1:2 or 1:3. However, designing manufacturable resonators for other geometries is still a daunting task. With this goal in mind, we utilize topology optimization to determine the layout of the resonator. We formulate the problem in its non-dimensional form, eliminating the constraint on the allowable frequency. The frequency can be obtained a posteriori by means of linear scaling. Conversely, to previous research, which use the clamped beam as initial guess, we synthesize the final shape starting from a ground structure (or structural universe) and remove of the unnecessary beams from the initial guess by means of a graph-based filtering scheme. The algorithm determines the simplest structure that gives the desired frequency's ratio. Within the optimization, the structural design is accomplished by a linear FE analysis. The optimization reveals several trends, the most notable being that having members connected orthogonally as in the L-shaped resonator is not the preferred topology of this devices. In order to fully explore the angle of orientation of connected members on the modal characteristics of the device; we derive a reduced-order model that allows a bifurcation analysis on the effect of member orientation on modal frequency. Furthermore, the reduced order approximation is used solve the coupled electro-mechanical equation of a vibration based energy harvester (VEH). Finally, we present the performance of the VEH under various base excitations. These results show an infinite number of topologies that can have integer ratio modal frequencies, and in some cases harvest more power than a nominal L shaped harvester, operating in the linear regime.
Optimal deployment of resources for maximizing impact in spreading processes
2017-01-01
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples. PMID:28900013
Ivanciuc, Ovidiu
2013-06-01
Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.
Conceptual design and multidisciplinary optimization of in-plane morphing wing structures
NASA Astrophysics Data System (ADS)
Inoyama, Daisaku; Sanders, Brian P.; Joo, James J.
2006-03-01
In this paper, the topology optimization methodology for the synthesis of distributed actuation system with specific applications to the morphing air vehicle is discussed. The main emphasis is placed on the topology optimization problem formulations and the development of computational modeling concepts. For demonstration purposes, the inplane morphing wing model is presented. The analysis model is developed to meet several important criteria: It must allow large rigid-body displacements, as well as variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Preliminary work has indicated that addressed modeling concept meets the criteria and may be suitable for the purpose. Topology optimization is performed on the ground structure based on this modeling concept with design variables that control the system configuration. In other words, states of each element in the model are design variables and they are to be determined through optimization process. In effect, the optimization process assigns morphing members as 'soft' elements, non-morphing load-bearing members as 'stiff' elements, and non-existent members as 'voids.' In addition, the optimization process determines the location and relative force intensities of distributed actuators, which is represented computationally as equal and opposite nodal forces with soft axial stiffness. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of formulation itself. Sample in-plane morphing problems are solved to demonstrate the potential capability of the methodology introduced in this paper.
Research into topology optimization and the FDM method for a space cracked membrane
NASA Astrophysics Data System (ADS)
Hu, Qingxi; Li, Wanyuan; Zhang, Haiguang; Liu, Dali; Peng, Fujun; Duan, Yongchao
2017-07-01
The problem that the space membranes are easily torn open is the main focus in this paper, and a bionic strengthening-ribs structure is proposed for a space membrane based on interdisciplinary strengths, such as topology optimization, composite materials, and rapid prototyping. The optimization method and modeling method of membranes with bionic strengthening-ribs was studied. The PEEK and SCF/PEEK composite material which are applied to the space environment are chosen, and FDM technology is used. Through topology optimization, bionic strengthening-ribs with good tensile and tear capacities were obtained. Cracked membranes, cracked membranes with PEEK strengthening-ribs and SCF/PEEK strengthening-ribs were tested and test data were obtained. An extension situation and tension fracture were compared for three cases. The experimental results showed that membranes with the bionic strengthening-ribs structure have better mechanical properties, and the strength of the membranes with PEEK and SCF/PEEK strengthening-ribs were raised, respectively, up to 266.9% and 185.9%. The strengthening-ribs structure greatly improves the capacity to halt membrane crack-growth, which has an important significance to avoid membrane tear, and to ensure the spacecraft orbital lifetime.
Truss topology optimization with simultaneous analysis and design
NASA Technical Reports Server (NTRS)
Sankaranarayanan, S.; Haftka, Raphael T.; Kapania, Rakesh K.
1992-01-01
Strategies for topology optimization of trusses for minimum weight subject to stress and displacement constraints by Simultaneous Analysis and Design (SAND) are considered. The ground structure approach is used. A penalty function formulation of SAND is compared with an augmented Lagrangian formulation. The efficiency of SAND in handling combinations of general constraints is tested. A strategy for obtaining an optimal topology by minimizing the compliance of the truss is compared with a direct weight minimization solution to satisfy stress and displacement constraints. It is shown that for some problems, starting from the ground structure and using SAND is better than starting from a minimum compliance topology design and optimizing only the cross sections for minimum weight under stress and displacement constraints. A member elimination strategy to save CPU time is discussed.
A terahertz performance of hybrid single walled CNT based amplifier with analytical approach
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Song, Hanjung
2018-01-01
This work is focuses on terahertz performance of hybrid single walled carbon nanotube (CNT) based amplifier and proposed for measurement of soil parameters application. The proposed circuit topology provides hybrid structure which achieves wide impedance bandwidth of 0.33 THz within range of 1.07-THz to 1.42-THz with fractional amount of 28%. The single walled RF CNT network executes proposed ambition and proves its ability to resonant at 1.25-THz with analytical approach. Moreover, a RF based microstrip transmission line radiator used as compensator in the circuit topology which achieves more than 30 dB of gain. A proper methodology is chosen for achieves stability at circuit level in order to obtain desired optimal conditions. The fundamental approach optimizes matched impedance condition at (50+j0) Ω and noise variation with impact of series resistances for the proposed hybrid circuit topology and demonstrates the accuracy of performance parameters at the circuit level. The chip fabrication of the proposed circuit by using RF based commercial CMOS process of 45 nm which reveals promising results with simulation one. Additionally, power measurement analysis achieves highest output power of 26 dBm with power added efficiency of 78%. The succeed minimum noise figure from 0.6 dB to 0.4 dB is outstanding achievement for circuit topology at terahertz range. The chip area of hybrid circuit is 0.65 mm2 and power consumption of 9.6 mW.
NASA Astrophysics Data System (ADS)
Takezawa, Akihiro; Takenaka, Koshi; Zhang, Xiaopeng
2018-05-01
Ca2RuO4‑ y ceramics exhibit a large volumetric negative thermal expansions (NTE), although the crystallographic volume contraction on heating is much smaller than the NTE. Therefore, we examine the differences in the mechanisms underlying the volumetric thermal expansion for ruthenate ceramics and crystals in the context of the elasticity. We identify the possible microstructure of ruthenate ceramics composed of crystal grains and cavities using structural topology optimization. We conclude that the measured large volumetric NTE of ruthenate ceramics is certainly possible via anisotropic crystallographic thermal expansion through an elastic mechanism.
Topology optimization in acoustics and elasto-acoustics via a level-set method
NASA Astrophysics Data System (ADS)
Desai, J.; Faure, A.; Michailidis, G.; Parry, G.; Estevez, R.
2018-04-01
Optimizing the shape and topology (S&T) of structures to improve their acoustic performance is quite challenging. The exact position of the structural boundary is usually of critical importance, which dictates the use of geometric methods for topology optimization instead of standard density approaches. The goal of the present work is to investigate different possibilities for handling topology optimization problems in acoustics and elasto-acoustics via a level-set method. From a theoretical point of view, we detail two equivalent ways to perform the derivation of surface-dependent terms and propose a smoothing technique for treating problems of boundary conditions optimization. In the numerical part, we examine the importance of the surface-dependent term in the shape derivative, neglected in previous studies found in the literature, on the optimal designs. Moreover, we test different mesh adaptation choices, as well as technical details related to the implicit surface definition in the level-set approach. We present results in two and three-space dimensions.
Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials
NASA Astrophysics Data System (ADS)
Gresch, Dominik; Autès, Gabriel; Yazyev, Oleg V.; Troyer, Matthias; Vanderbilt, David; Bernevig, B. Andrei; Soluyanov, Alexey A.
2017-02-01
The intense theoretical and experimental interest in topological insulators and semimetals has established band structure topology as a fundamental material property. Consequently, identifying band topologies has become an important, but often challenging, problem, with no exhaustive solution at the present time. In this work we compile a series of techniques, some previously known, that allow for a solution to this problem for a large set of the possible band topologies. The method is based on tracking hybrid Wannier charge centers computed for relevant Bloch states, and it works at all levels of materials modeling: continuous k .p models, tight-binding models, and ab initio calculations. We apply the method to compute and identify Chern, Z2, and crystalline topological insulators, as well as topological semimetal phases, using real material examples. Moreover, we provide a numerical implementation of this technique (the Z2Pack software package) that is ideally suited for high-throughput screening of materials databases for compounds with nontrivial topologies. We expect that our work will allow researchers to (a) identify topological materials optimal for experimental probes, (b) classify existing compounds, and (c) reveal materials that host novel, not yet described, topological states.
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-07
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
3-D phononic crystals with ultra-wide band gaps
Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit
2017-01-01
In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812
3-D phononic crystals with ultra-wide band gaps.
Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit
2017-02-24
In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.
Optimal deployment of resources for maximizing impact in spreading processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokhov, Andrey Y.; Saad, David
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Optimal deployment of resources for maximizing impact in spreading processes
Lokhov, Andrey Y.; Saad, David
2017-09-12
The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distributionmore » of available resources hence results from an interplay between network topology and spreading dynamics. Here, we show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples.« less
Measuring the value of accurate link prediction for network seeding.
Wei, Yijin; Spencer, Gwen
2017-01-01
The influence-maximization literature seeks small sets of individuals whose structural placement in the social network can drive large cascades of behavior. Optimization efforts to find the best seed set often assume perfect knowledge of the network topology. Unfortunately, social network links are rarely known in an exact way. When do seeding strategies based on less-than-accurate link prediction provide valuable insight? We introduce optimized-against-a-sample ([Formula: see text]) performance to measure the value of optimizing seeding based on a noisy observation of a network. Our computational study investigates [Formula: see text] under several threshold-spread models in synthetic and real-world networks. Our focus is on measuring the value of imprecise link information. The level of investment in link prediction that is strategic appears to depend closely on spread model: in some parameter ranges investments in improving link prediction can pay substantial premiums in cascade size. For other ranges, such investments would be wasted. Several trends were remarkably consistent across topologies.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)
NASA Astrophysics Data System (ADS)
Garland, Anthony
The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.
NASA Astrophysics Data System (ADS)
Krawczyk, Rafał D.; Czarski, Tomasz; Kolasiński, Piotr; Linczuk, Paweł; Poźniak, Krzysztof T.; Chernyshova, Maryna; Kasprowicz, Grzegorz; Wojeński, Andrzej; Zabolotny, Wojciech; Zienkiewicz, Paweł
2016-09-01
This article is an overview of what has been implemented in the process of development and testing the GEM detector based acquisition system in terms of post-processing algorithms. Information is given on mex functions for extended statistics collection, unified hex topology and optimized S-DAQ algorithm for splitting overlapped signals. Additional discussion on bottlenecks and major factors concerning optimization is presented.
Investigation of another approach in topology optimization
NASA Astrophysics Data System (ADS)
Krotkikh, A. A.; Maximov, P. V.
2018-05-01
The paper presents investigation of another approach in topology optimization. The authors realized the method of topology optimization with using ideas of the SIMP method which was created by Martin P. Bends0e. There are many ways in objective function formulation of topology optimization methods. In terms of elasticity theory, the objective function of the SIMP method is a compliance of an object which should be minimized. The main idea of this paper was avoiding the filtering procedure in the SIMP method. Reformulation of the statement of the problem in terms of function minimization allows us to solve this by big variety of methods. The authors decided to use the interior point method which was realized in Wolfram Mathematica. This way can generate side effects which should be investigated for preventing their appearing in future. Results comparison of the SIMP method and the suggested method are presented in paper and analyzed.
Topological design of all-ceramic dental bridges for enhancing fracture resistance.
Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing
2016-06-01
Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Topology Optimization of an Aircraft Wing
2015-06-11
Fraction VWT Virtual Wind Tunnel xvi TOPOLOGY OPTIMIZATION OF AN AIRCRAFT WING I. Introduction 1.1 Background Current aircraft wing design , which...ware in order to optimize the design of individual spars and wing-box structures for large commercial aircraft . They considered a hybrid global/local...weight in an aircraft by eliminating unnecessary material. An optimized approach has the potential to streamline the design process by allowing a
Topology synthesis and size optimization of morphing wing structures
NASA Astrophysics Data System (ADS)
Inoyama, Daisaku
This research demonstrates a novel topology and size optimization methodology for synthesis of distributed actuation systems with specific applications to morphing air vehicle structures. The main emphasis is placed on the topology and size optimization problem formulations and the development of computational modeling concepts. The analysis model is developed to meet several important criteria: It must allow a rigid-body displacement, as well as a variation in planform area, with minimum strain on structural members while retaining acceptable numerical stability for finite element analysis. Topology optimization is performed on a semi-ground structure with design variables that control the system configuration. In effect, the optimization process assigns morphing members as "soft" elements, non-morphing load-bearing members as "stiff' elements, and non-existent members as "voids." The optimization process also determines the optimum actuator placement, where each actuator is represented computationally by equal and opposite nodal forces with soft axial stiffness. In addition, the configuration of attachments that connect the morphing structure to a non-morphing structure is determined simultaneously. Several different optimization problem formulations are investigated to understand their potential benefits in solution quality, as well as meaningfulness of the formulations. Extensions and enhancements to the initial concept and problem formulations are made to accommodate multiple-configuration definitions. In addition, the principal issues on the external-load dependency and the reversibility of a design, as well as the appropriate selection of a reference configuration, are addressed in the research. The methodology to control actuator distributions and concentrations is also discussed. Finally, the strategy to transfer the topology solution to the sizing optimization is developed and cross-sectional areas of existent structural members are optimized under applied aerodynamic loads. That is, the optimization process is implemented in sequential order: The actuation system layout is first determined through multi-disciplinary topology optimization process, and then the thickness or cross-sectional area of each existent member is optimized under given constraints and boundary conditions. Sample problems are solved to demonstrate the potential capabilities of the presented methodology. The research demonstrates an innovative structural design procedure from a computational perspective and opens new insights into the potential design requirements and characteristics of morphing structures.
Watts, Seth; Tortorelli, Daniel A.
2017-04-13
Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Seth; Tortorelli, Daniel A.
Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less
Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations.
Clausen, Anders; Wang, Fengwen; Jensen, Jakob S; Sigmund, Ole; Lewis, Jennifer A
2015-10-07
Topology optimized architectures are designed and printed with programmable Poisson's ratios ranging from -0.8 to 0.8 over large deformations of 20% or more. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detailed design of a lattice composite fuselage structure by a mixed optimization method
NASA Astrophysics Data System (ADS)
Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.
2016-10-01
In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.
Design and optimization of color lookup tables on a simplex topology.
Monga, Vishal; Bala, Raja; Mo, Xuan
2012-04-01
An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.
Topology-optimized dual-polarization Dirac cones
NASA Astrophysics Data System (ADS)
Lin, Zin; Christakis, Lysander; Li, Yang; Mazur, Eric; Rodriguez, Alejandro W.; Lončar, Marko
2018-02-01
We apply a large-scale computational technique, known as topology optimization, to the inverse design of photonic Dirac cones. In particular, we report on a variety of photonic crystal geometries, realizable in simple isotropic dielectric materials, which exhibit dual-polarization Dirac cones. We present photonic crystals of different symmetry types, such as fourfold and sixfold rotational symmetries, with Dirac cones at different points within the Brillouin zone. The demonstrated and related optimization techniques open avenues to band-structure engineering and manipulating the propagation of light in periodic media, with possible applications to exotic optical phenomena such as effective zero-index media and topological photonics.
Isogeometric Analysis for Topology Optimization with a Phase Field Model
2011-09-01
surface force h and body force f . 2 Topology Optimization in the Minimum Compli- ance Case In this section we introduce the topology optimization...for a given material density function ρ, such that: −∇ · σ̃(ρ,u) = f in Ω, u = 0 on ΓD, σ̃(ρ,u)n̂ = h on ΓN , ρ given, (3) where ΓD ⊂ ∂Ω is the...force h is applied (traction or pressure); for the sake of simplicity we assume a null displacement on ΓD. Also, f is the body force acting in the
Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.
2016-01-01
Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937
Topology Optimization for Energy Management in Underwater Sensor Networks
2015-02-01
1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
The properties of optimal two-dimensional phononic crystals with different material contrasts
NASA Astrophysics Data System (ADS)
Liu, Zong-Fa; Wu, Bin; He, Cun-Fu
2016-09-01
By modifying the spatial distribution of constituent material phases, phononic crystals (PnCs) can be designed to exhibit band gaps within which sound and vibration cannot propagate. In this paper, the developed topology optimization method (TOM), based on genetic algorithms (GAs) and the finite element method (FEM), is proposed to design two-dimensional (2D) solid PnC structures composed of two contrasting elastic materials. The PnCs have the lowest order band gap that is the third band gap for the coupled mode, the first band gap for the shear mode or the XY 34 Z band gap for the mixed mode. Moreover, the effects of the ratios of contrasting material properties on the optimal layout of unit cells and the corresponding phononic band gaps (PBGs) are investigated. The results indicate that the topology of the optimal PnCs and corresponding band gaps varies with the change of material contrasts. The law can be used for the rapid design of desired PnC structures.
Topology optimization of 3D shell structures with porous infill
NASA Astrophysics Data System (ADS)
Clausen, Anders; Andreassen, Erik; Sigmund, Ole
2017-08-01
This paper presents a 3D topology optimization approach for designing shell structures with a porous or void interior. It is shown that the resulting structures are significantly more robust towards load perturbations than completely solid structures optimized under the same conditions. The study indicates that the potential benefit of using porous structures is higher for lower total volume fractions. Compared to earlier work dealing with 2D topology optimization, we found several new effects in 3D problems. Most notably, the opportunity for designing closed shells significantly improves the performance of porous structures due to the sandwich effect. Furthermore, the paper introduces improved filter boundary conditions to ensure a completely uniform coating thickness at the design domain boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soer, Wouter
LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-powermore » LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm 2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm 2 and 4 mm 2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux greater than 4100 lm, a correlated color temperature (CCT) of 4000K and a color rendering index (CRI) greater than 70.« less
Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field
NASA Astrophysics Data System (ADS)
Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.
2017-08-01
Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.
Exploring optimal topology of thermal cloaks by CMA-ES
NASA Astrophysics Data System (ADS)
Fujii, Garuda; Akimoto, Youhei; Takahashi, Masayuki
2018-02-01
This paper presents topology optimization for thermal cloaks expressed by level-set functions and explored using the covariance matrix adaptation evolution strategy (CMA-ES). Designed optimal configurations provide superior performances in thermal cloaks for the steady-state thermal conduction and succeed in realizing thermal invisibility, despite the structures being simply composed of iron and aluminum and without inhomogeneities caused by employing metamaterials. To design thermal cloaks, a prescribed objective function is used to evaluate the difference between the temperature field controlled by a thermal cloak and when no thermal insulator is present. The CMA-ES involves searches for optimal sets of level-set functions as design variables that minimize a regularized fitness involving a perimeter constraint. Through topology optimization subject to structural symmetries about four axes, we obtain a concept design of a thermal cloak that functions in an isotropic heat flux.
Jiang, Ailian; Zheng, Lihong
2018-03-29
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
2018-01-01
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336
Topology optimization of a gas-turbine engine part
NASA Astrophysics Data System (ADS)
Faskhutdinov, R. N.; Dubrovskaya, A. S.; Dongauzer, K. A.; Maksimov, P. V.; Trufanov, N. A.
2017-02-01
One of the key goals of aerospace industry is a reduction of the gas turbine engine weight. The solution of this task consists in the design of gas turbine engine components with reduced weight retaining their functional capabilities. Topology optimization of the part geometry leads to an efficient weight reduction. A complex geometry can be achieved in a single operation with the Selective Laser Melting technology. It should be noted that the complexity of structural features design does not affect the product cost in this case. Let us consider a step-by-step procedure of topology optimization by an example of a gas turbine engine part.
An n -material thresholding method for improving integerness of solutions in topology optimization
Watts, Seth; Tortorelli, Daniel A.
2016-04-10
It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, themore » canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.« less
NASA Astrophysics Data System (ADS)
Mitchell, Sarah L.; Ortiz, Michael
2016-09-01
This study utilizes computational topology optimization methods for the systematic design of optimal multifunctional silicon anode structures for lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such this work considers two design objectives, the first being minimum compliance under design dependent volume expansion, and the second maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the influence of the minimum structural feature size and prescribed volume fraction are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the structural and conduction design criteria. The weighted sum method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. A rigid frame structure was found to be an excellent compromise between the structural and conduction design criteria, providing both the required structural rigidity and direct conduction pathways. The developments and results presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-07-14
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.
Multimaterial topology optimization of contact problems using phase field regularization
NASA Astrophysics Data System (ADS)
Myśliński, Andrzej
2018-01-01
The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.
The Optimizer Topology Characteristics in Seismic Hazards
NASA Astrophysics Data System (ADS)
Sengor, T.
2015-12-01
The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.
The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model
NASA Astrophysics Data System (ADS)
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2016-05-01
Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.
Homology and the optimization of DNA sequence data
NASA Technical Reports Server (NTRS)
Wheeler, W.
2001-01-01
Three methods of nucleotide character analysis are discussed. Their implications for molecular sequence homology and phylogenetic analysis are compared. The criterion of inter-data set congruence, both character based and topological, are applied to two data sets to elucidate and potentially discriminate among these parsimony-based ideas. c2001 The Willi Hennig Society.
A Design Method for Topologically Insulating Metamaterials
NASA Astrophysics Data System (ADS)
Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara
Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.
Simulation-Driven Design Approach for Design and Optimization of Blankholder
NASA Astrophysics Data System (ADS)
Sravan, Tatipala; Suddapalli, Nikshep R.; Johan, Pilthammar; Mats, Sigvant; Christian, Johansson
2017-09-01
Reliable design of stamping dies is desired for efficient and safe production. The design of stamping dies are today mostly based on casting feasibility, although it can also be based on criteria for fatigue, stiffness, safety, economy. Current work presents an approach that is built on Simulation Driven Design, enabling Design Optimization to address this issue. A structural finite element model of a stamping die, used to produce doors for Volvo V70/S80 car models, is studied. This die had developed cracks during its usage. To understand the behaviour of stress distribution in the stamping die, structural analysis of the die is conducted and critical regions with high stresses are identified. The results from structural FE-models are compared with analytical calculations pertaining to fatigue properties of the material. To arrive at an optimum design with increased stiffness and lifetime, topology and free-shape optimization are performed. In the optimization routine, identified critical regions of the die are set as design variables. Other optimization variables are set to maintain manufacturability of the resultant stamping die. Thereafter a CAD model is built based on geometrical results from topology and free-shape optimizations. Then the CAD model is subjected to structural analysis to visualize the new stress distribution. This process is iterated until a satisfactory result is obtained. The final results show reduction in stress levels by 70% with a more homogeneous distribution. Even though mass of the die is increased by 17 %, overall, a stiffer die with better lifetime is obtained. Finally, by reflecting on the entire process, a coordinated approach to handle such situations efficiently is presented.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.
Huang, Shuqiang; Tao, Ming
2017-01-22
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.
Design Optimization Toolkit: Users' Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro
The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less
An Efficient Framework Model for Optimizing Routing Performance in VANETs.
Al-Kharasani, Nori M; Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala; Hanapi, Zurina Mohd
2018-02-15
Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).
Topology optimized design of functionally graded piezoelectric ultrasonic transducers
NASA Astrophysics Data System (ADS)
Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio C. N.
2010-01-01
This work presents a new approach to systematically design piezoelectric ultrasonic transducers based on Topology Optimization Method (TOM) and Functionally Graded Material (FGM) concepts. The main goal is to find the optimal material distribution of Functionally Graded Piezoelectric Ultrasonic Transducers, to achieve the following requirements: (i) the transducer must be designed to have a multi-modal or uni-modal frequency response, which defines the kind of generated acoustic wave, either short pulse or continuous wave, respectively; (ii) the transducer is required to oscillate in a thickness extensional mode or piston-like mode, aiming at acoustic wave generation applications. Two kinds of piezoelectric materials are mixed for producing the FGM transducer. Material type 1 represents a PZT-5A piezoelectric ceramic and material type 2 represents a PZT-5H piezoelectric ceramic. To illustrate the proposed method, two Functionally Graded Piezoelectric Ultrasonic Transducers are designed. The TOM has shown to be a useful tool for designing Functionally Graded Piezoelectric Ultrasonic Transducers with uni-modal or multi-modal dynamic behavior.
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim
2018-01-01
Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.
Topology-changing shape optimization with the genetic algorithm
NASA Astrophysics Data System (ADS)
Lamberson, Steven E., Jr.
The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.
Online particle detection with Neural Networks based on topological calorimetry information
NASA Astrophysics Data System (ADS)
Ciodaro, T.; Deva, D.; de Seixas, J. M.; Damazio, D.
2012-06-01
This paper presents the latest results from the Ringer algorithm, which is based on artificial neural networks for the electron identification at the online filtering system of the ATLAS particle detector, in the context of the LHC experiment at CERN. The algorithm performs topological feature extraction using the ATLAS calorimetry information (energy measurements). The extracted information is presented to a neural network classifier. Studies showed that the Ringer algorithm achieves high detection efficiency, while keeping the false alarm rate low. Optimizations, guided by detailed analysis, reduced the algorithm execution time by 59%. Also, the total memory necessary to store the Ringer algorithm information represents less than 6.2 percent of the total filtering system amount.
NASA Astrophysics Data System (ADS)
Zhang, Shengyong
2017-07-01
Spot welding has been widely used for vehicle body construction due to its advantages of high speed and adaptability for automation. An effort to increase the stiffness-to-weight ratio of spot-welded structures is investigated based upon nonlinear finite element analysis. Topology optimization is conducted for reducing weight in the overlapping regions by choosing an appropriate topology. Three spot-welded models (lap, doubt-hat and T-shape) that approximate “typical” vehicle body components are studied for validating and illustrating the proposed method. It is concluded that removing underutilized material from overlapping regions can result in a significant increase in structural stiffness-to-weight ratio.
Wind farm topology-finding algorithm considering performance, costs, and environmental impacts.
Tazi, Nacef; Chatelet, Eric; Bouzidi, Youcef; Meziane, Rachid
2017-06-05
Optimal power in wind farms turns to be a modern problem for investors and decision makers; onshore wind farms are subject to performance and economic and environmental constraints. The aim of this work is to define the best installed capacity (best topology) with maximum performance and profits and consider environmental impacts as well. In this article, we continue the work recently done on wind farm topology-finding algorithm. The proposed resolution technique is based on finding the best topology of the system that maximizes the wind farm performance (availability) under the constraints of costs and capital investments. Global warming potential of wind farm is calculated and taken into account in the results. A case study is done using data and constraints similar to those collected from wind farm constructors, managers, and maintainers. Multi-state systems (MSS), universal generating function (UGF), wind, and load charge functions are applied. An economic study was conducted to assess the wind farm investment. Net present value (NPV) and levelized cost of energy (LCOE) were calculated for best topologies found.
Skoura, Angeliki; Bakic, Predrag R; Megalooikonomou, Vasilis
2013-01-01
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.
Skoura, Angeliki; Bakic, Predrag R.; Megalooikonomou, Vasilis
2014-01-01
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis. PMID:25414850
NASA Astrophysics Data System (ADS)
Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.
2016-05-01
One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.
NASA Astrophysics Data System (ADS)
Madhikar, Pratik Ravindra
The most important and crucial design feature while designing an Aircraft Electric Power Distribution System (EPDS) is reliability. In EPDS, the distribution of power is from top level generators to bottom level loads through various sensors, actuators and rectifiers with the help of AC & DC buses and control switches. As the demands of the consumer is never ending and the safety is utmost important, there is an increase in loads and as a result increase in power management. Therefore, the design of an EPDS should be optimized to have maximum efficiency. This thesis discusses an integrated tool that is based on a Need Based Design method and Fault Tree Analysis (FTA) to achieve the optimum design of an EPDS to provide maximum reliability in terms of continuous connectivity, power management and minimum cost. If an EPDS is formulated as an optimization problem then it can be solved with the help of connectivity, cost and power constraints by using a linear solver to get the desired output of maximum reliability at minimum cost. Furthermore, the thesis also discusses the viability and implementation of the resulted topology on typical large aircraft specifications.
NASA Astrophysics Data System (ADS)
Cameron, Christopher J.; Lind Nordgren, Eleonora; Wennhage, Per; Göransson, Peter
2014-06-01
Balancing structural and acoustic performance of a multi-layered sandwich panel is a formidable undertaking. Frequently the gains achieved in terms of reduced weight, still meeting the structural design requirements, are lost by the changes necessary to regain acceptable acoustic performance. To alleviate this, a design method for a multifunctional load bearing vehicle body panel is proposed which attempts to achieve a balance between structural and acoustic performance. The approach is based on numerical modelling of the structural and acoustic behaviour in a combined topology, size, and property optimization in order to achieve a three dimensional optimal distribution of structural and acoustic foam materials within the bounding surfaces of a sandwich panel. In particular the effects of the coupling between one of the bounding surface face sheets and acoustic foam are examined for its impact on both the structural and acoustic overall performance of the panel. The results suggest a potential in introducing an air gap between the acoustic foam parts and one of the face sheets, provided that the structural design constraints are met without prejudicing the layout of the different foam types.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-01-01
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971
Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A
2017-11-15
The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The customized fixation system with topological optimized structure has good biomechanical behavior for mandibular angle fracture because the stress, strain and displacement within the plate could be reduced significantly comparing to conventional "one mini-plate" or "two mini-plates" systems. The design methodology for customized fixation system could be used for other fractures in mandible or other bones to acquire better mechanical behavior of the system and improve stable environment for bone healing. And together with SLM, the customized plate with optimal structure could be designed and fabricated rapidly to satisfy the urgent time requirements for treatment.
Evolutionary and biological metaphors for engineering design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakiela, M.
1994-12-31
Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.
Optimal Mass Transport for Shape Matching and Comparison
Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng
2015-01-01
Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265
Aerostructural Shape and Topology Optimization of Aircraft Wings
NASA Astrophysics Data System (ADS)
James, Kai
A series of novel algorithms for performing aerostructural shape and topology optimization are introduced and applied to the design of aircraft wings. An isoparametric level set method is developed for performing topology optimization of wings and other non-rectangular structures that must be modeled using a non-uniform, body-fitted mesh. The shape sensitivities are mapped to computational space using the transformation defined by the Jacobian of the isoparametric finite elements. The mapped sensitivities are then passed to the Hamilton-Jacobi equation, which is solved on a uniform Cartesian grid. The method is derived for several objective functions including mass, compliance, and global von Mises stress. The results are compared with SIMP results for several two-dimensional benchmark problems. The method is also demonstrated on a three-dimensional wingbox structure subject to fixed loading. It is shown that the isoparametric level set method is competitive with the SIMP method in terms of the final objective value as well as computation time. In a separate problem, the SIMP formulation is used to optimize the structural topology of a wingbox as part of a larger MDO framework. Here, topology optimization is combined with aerodynamic shape optimization, using a monolithic MDO architecture that includes aerostructural coupling. The aerodynamic loads are modeled using a three-dimensional panel method, and the structural analysis makes use of linear, isoparametric, hexahedral elements. The aerodynamic shape is parameterized via a set of twist variables representing the jig twist angle at equally spaced locations along the span of the wing. The sensitivities are determined analytically using a coupled adjoint method. The wing is optimized for minimum drag subject to a compliance constraint taken from a 2 g maneuver condition. The results from the MDO algorithm are compared with those of a sequential optimization procedure in order to quantify the benefits of the MDO approach. While the sequentially optimized wing exhibits a nearly-elliptical lift distribution, the MDO design seeks to push a greater portion of the load toward the root, thus reducing the structural deflection, and allowing for a lighter structure. By exploiting this trade-off, the MDO design achieves a 42% lower drag than the sequential result.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems
Huang, Shuqiang; Tao, Ming
2017-01-01
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735
Topology optimization of pressure adaptive honeycomb for a morphing flap
NASA Astrophysics Data System (ADS)
Vos, Roelof; Scheepstra, Jan; Barrett, Ron
2011-03-01
The paper begins with a brief historical overview of pressure adaptive materials and structures. By examining avian anatomy, it is seen that pressure-adaptive structures have been used successfully in the Natural world to hold structural positions for extended periods of time and yet allow for dynamic shape changes from one flight state to the next. More modern pneumatic actuators, including FAA certified autopilot servoactuators are frequently used by aircraft around the world. Pneumatic artificial muscles (PAM) show good promise as aircraft actuators, but follow the traditional model of load concentration and distribution commonly found in aircraft. A new system is proposed which leaves distributed loads distributed and manipulates structures through a distributed actuator. By using Pressure Adaptive Honeycomb (PAH), it is shown that large structural deformations in excess of 50% strains can be achieved while maintaining full structural integrity and enabling secondary flight control mechanisms like flaps. The successful implementation of pressure-adaptive honeycomb in the trailing edge of a wing section sparked the motivation for subsequent research into the optimal topology of the pressure adaptive honeycomb within the trailing edge of a morphing flap. As an input for the optimization two known shapes are required: a desired shape in cruise configuration and a desired shape in landing configuration. In addition, the boundary conditions and load cases (including aerodynamic loads and internal pressure loads) should be specified for each condition. Finally, a set of six design variables is specified relating to the honeycomb and upper skin topology of the morphing flap. A finite-element model of the pressure-adaptive honeycomb structure is developed specifically tailored to generate fast but reliable results for a given combination of external loading, input variables, and boundary conditions. Based on two bench tests it is shown that this model correlates well to experimental results. The optimization process finds the skin and honeycomb topology that minimizes the error between the acquired shape and the desired shape in each configuration.
Li, Ning; Cürüklü, Baran; Bastos, Joaquim; Sucasas, Victor; Fernandez, Jose Antonio Sanchez; Rodriguez, Jonathan
2017-01-01
The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) project is to make autonomous underwater vehicles (AUVs), remote operated vehicles (ROVs) and unmanned surface vehicles (USVs) more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC) algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV’s parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC) algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the transmission power adjustment ratio while improving the network performance. PMID:28471387
Li, Ning; Cürüklü, Baran; Bastos, Joaquim; Sucasas, Victor; Fernandez, Jose Antonio Sanchez; Rodriguez, Jonathan
2017-05-04
The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) project is to make autonomous underwater vehicles (AUVs), remote operated vehicles (ROVs) and unmanned surface vehicles (USVs) more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC) algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV's parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC) algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the transmission power adjustment ratio while improving the network performance.
Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks
Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young
2014-01-01
Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241
Resource optimization scheme for multimedia-enabled wireless mesh networks.
Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young
2014-08-08
Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.
3D Printed Composites for Topology Transforming Multifunctional Devices
2017-01-26
approach to find non -trivial designs. The comparison against experimental measurements motivates future research on improving the accuracy of the...new methodology for the fabrication and the design of new multifunctional composites and devices using 3D printing. The main accomplishments of this...design; 6) developing a finite element framework for the optimum design of PACS by topology optimization; 7) optimizing and experimentally
NASA Astrophysics Data System (ADS)
Manna, S.; Kamlapure, A.; Cornils, L.; Hänke, T.; Hedegaard, E. M. J.; Bremholm, M.; Iversen, B. B.; Hofmann, Ph.; Wiebe, J.; Wiesendanger, R.
2017-01-01
The discovery of high-temperature superconductivity in Fe-based compounds triggered numerous investigations on the interplay between superconductivity and magnetism, and on the enhancement of transition temperatures through interface effects. It is widely believed that the emergence of optimal superconductivity is intimately linked to the suppression of long-range antiferromagnetic (AFM) order, although the exact microscopic picture remains elusive because of the lack of atomically resolved data. Here we present spin-polarized scanning tunnelling spectroscopy of ultrathin FeTe1-xSex (x=0, 0.5) films on bulk topological insulators. Surprisingly, we find an energy gap at the Fermi level, indicating superconducting correlations up to Tc~6 K for one unit cell FeTe grown on Bi2Te3, in contrast to the non-superconducting bulk FeTe. The gap spatially coexists with bi-collinear AFM order. This finding opens perspectives for theoretical studies of competing orders in Fe-based superconductors and for experimental investigations of exotic phases in superconducting layers on topological insulators.
Authorship attribution based on Life-Like Network Automata.
Machicao, Jeaneth; Corrêa, Edilson A; Miranda, Gisele H B; Amancio, Diego R; Bruno, Odemir M
2018-01-01
The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, texts have been successfully modeled as networks, where words are represented by nodes linked according to textual similarity measurements. Such models are useful to identify informative topological patterns for the authorship recognition task. However, there is no consensus on which measurements should be used. Thus, we proposed a novel method to characterize text networks, by considering both topological and dynamical aspects of networks. Using concepts and methods from cellular automata theory, we devised a strategy to grasp informative spatio-temporal patterns from this model. Our experiments revealed an outperformance over structural analysis relying only on topological measurements, such as clustering coefficient, betweenness and shortest paths. The optimized results obtained here pave the way for a better characterization of textual networks.
Kang, Heesuk; Hollister, Scott J; La Marca, Frank; Park, Paul; Lin, Chia-Ying
2013-10-01
Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.
An Efficient Framework Model for Optimizing Routing Performance in VANETs
Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala
2018-01-01
Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED). PMID:29462884
On the Relationship between Variational Level Set-Based and SOM-Based Active Contours
Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad
2015-01-01
Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736
Topology optimization of thermal fluid flows with an adjoint Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Dugast, Florian; Favennec, Yann; Josset, Christophe; Fan, Yilin; Luo, Lingai
2018-07-01
This paper presents an adjoint Lattice Boltzmann Method (LBM) coupled with the Level-Set Method (LSM) for topology optimization of thermal fluid flows. The adjoint-state formulation implies discrete velocity directions in order to take into account the LBM boundary conditions. These boundary conditions are introduced at the beginning of the adjoint-state method as the LBM residuals, so that the adjoint-state boundary conditions can appear directly during the adjoint-state equation formulation. The proposed method is tested with 3 numerical examples concerning thermal fluid flows, but with different objectives: minimization of the mean temperature in the domain, maximization of the heat evacuated by the fluid, and maximization of the heat exchange with heated solid parts. This latter example, treated in several articles, is used to validate our method. In these optimization problems, a limitation of the maximal pressure drop and of the porosity (number of fluid elements) is also applied. The obtained results demonstrate that the method is robust and effective for solving topology optimization of thermal fluid flows.
Optimality problem of network topology in stocks market analysis
NASA Astrophysics Data System (ADS)
Djauhari, Maman Abdurachman; Gan, Siew Lee
2015-02-01
Since its introduction fifteen years ago, minimal spanning tree has become an indispensible tool in econophysics. It is to filter the important economic information contained in a complex system of financial markets' commodities. Here we show that, in general, that tool is not optimal in terms of topological properties. Consequently, the economic interpretation of the filtered information might be misleading. To overcome that non-optimality problem, a set of criteria and a selection procedure of an optimal minimal spanning tree will be developed. By using New York Stock Exchange data, the advantages of the proposed method will be illustrated in terms of the power-law of degree distribution.
Topology optimized gold nanostrips for enhanced near-infrared photon upconversion
NASA Astrophysics Data System (ADS)
Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian; Balling, Peter; Sigmund, Ole; Madsen, Søren P.
2017-09-01
This letter presents a topology optimization study of metal nanostructures optimized for electric-field enhancement in the infrared spectrum. Coupling of such nanostructures with suitable ions allows for an increased photon-upconversion yield, with one application being an increased solar-cell efficiency by exploiting the long-wavelength part of the solar spectrum. In this work, topology optimization is used to design a periodic array of two-dimensional gold nanostrips for electric-field enhancements in a thin film doped with upconverting erbium ions. The infrared absorption band of erbium is utilized by simultaneously optimizing for two polarizations, up to three wavelengths, and three incident angles. Geometric robustness towards manufacturing variations is implemented considering three different design realizations simultaneously in the optimization. The polarization-averaged field enhancement for each design is evaluated over an 80 nm wavelength range and a ±15-degree incident angle span. The highest polarization-averaged field enhancement is 42.2 varying by maximally 2% under ±5 nm near-uniform design perturbations at three different wavelengths (1480 nm, 1520 nm, and 1560 nm). The proposed method is generally applicable to many optical systems and is therefore not limited to enhancing photon upconversion.
Practical synchronization on complex dynamical networks via optimal pinning control
NASA Astrophysics Data System (ADS)
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Matte, Guillaume M; Van Neer, Paul L M J; Danilouchkine, Mike G; Huijssen, Jacob; Verweij, Martin D; de Jong, Nico
2011-03-01
Second-harmonic imaging is currently one of the standards in commercial echographic systems for diagnosis, because of its high spatial resolution and low sensitivity to clutter and near-field artifacts. The use of nonlinear phenomena mirrors is a great set of solutions to improve echographic image resolution. To further enhance the resolution and image quality, the combination of the 3rd to 5th harmonics--dubbed the superharmonics--could be used. However, this requires a bandwidth exceeding that of conventional transducers. A promising solution features a phased-array design with interleaved low- and high-frequency elements for transmission and reception, respectively. Because the amplitude of the backscattered higher harmonics at the transducer surface is relatively low, it is highly desirable to increase the sensitivity in reception. Therefore, we investigated the optimization of the number of elements in the receiving aperture as well as their arrangement (topology). A variety of configurations was considered, including one transmit element for each receive element (1/2) up to one transmit for 7 receive elements (1/8). The topologies are assessed based on the ratio of the harmonic peak pressures in the main and grating lobes. Further, the higher harmonic level is maximized by optimization of the center frequency of the transmitted pulse. The achievable SNR for a specific application is a compromise between the frequency-dependent attenuation and nonlinearity at a required penetration depth. To calculate the SNR of the complete imaging chain, we use an approach analogous to the sonar equation used in underwater acoustics. The generated harmonic pressure fields caused by nonlinear wave propagation were modeled with the iterative nonlinear contrast source (INCS) method, the KZK, or the Burger's equation. The optimal topology for superharmonic imaging was an interleaved design with 1 transmit element per 6 receive elements. It improves the SNR by ~5 dB compared with the interleaved (1/2) design reported in literature. The optimal transmit frequency for superharmonic echocardiography was found to be 1.0 to 1.2 MHz. For superharmonic abdominal imaging this frequency was found to be 1.7 to 1.9 MHz. For 2nd-harmonic echocardiography, the optimal transmit frequency of 1.8 MHz reported in the literature was corroborated with our simulation results.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-09-25
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-01-01
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Jiang, Huaiguang; Tan, Jin
This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less
A flexible layout design method for passive micromixers.
Deng, Yongbo; Liu, Zhenyu; Zhang, Ping; Liu, Yongshun; Gao, Qingyong; Wu, Yihui
2012-10-01
This paper discusses a flexible layout design method of passive micromixers based on the topology optimization of fluidic flows. Being different from the trial and error method, this method obtains the detailed layout of a passive micromixer according to the desired mixing performance by solving a topology optimization problem. Therefore, the dependence on the experience of the designer is weaken, when this method is used to design a passive micromixer with acceptable mixing performance. Several design disciplines for the passive micromixers are considered to demonstrate the flexibility of the layout design method for passive micromixers. These design disciplines include the approximation of the real 3D micromixer, the manufacturing feasibility, the spacial periodic design, and effects of the Péclet number and Reynolds number on the designs obtained by this layout design method. The capability of this design method is validated by several comparisons performed between the obtained layouts and the optimized designs in the recently published literatures, where the values of the mixing measurement is improved up to 40.4% for one cycle of the micromixer.
Lightweight structure design for supporting plate of primary mirror
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wang, Wei; Liu, Bei; Qu, Yan Jun; Li, Xu Peng
2017-10-01
A topological optimization design for the lightweight technology of supporting plate of the primary mirror is presented in this paper. The supporting plate of the primary mirror is topologically optimized under the condition of determined shape, loads and environment. And the optimal structure is obtained. The diameter of the primary mirror in this paper is 450mm, and the material is SiC1 . It is better to select SiC/Al as the supporting material. Six points of axial relative displacement can be used as constraints in optimization2 . Establishing the supporting plate model and setting up the model parameters. After analyzing the force of the main mirror on the supporting plate, the model is applied with force and constraints. Modal analysis and static analysis of supporting plates are calculated. The continuum structure topological optimization mathematical model is created with the variable-density method. The maximum deformation of the surface of supporting plate under the gravity of the mirror and the first model frequency are assigned to response variable, and the entire volume of supporting structure is converted to object function. The structures before and after optimization are analyzed using the finite element method. Results show that the optimized fundamental frequency increases 29.85Hz and has a less displacement compared with the traditional structure.
NASA Astrophysics Data System (ADS)
Fu, Liyue; Song, Aiguo
2018-02-01
In order to improve the measurement precision of 6-axis force/torque sensor for robot, BP decoupling algorithm optimized by GA (GA-BP algorithm) is proposed in this paper. The weights and thresholds of a BP neural network with 6-10-6 topology are optimized by GA to develop decouple a six-axis force/torque sensor. By comparison with other traditional decoupling algorithm, calculating the pseudo-inverse matrix of calibration and classical BP algorithm, the decoupling results validate the good decoupling performance of GA-BP algorithm and the coupling errors are reduced.
Semilinear (topological) spaces and applications
NASA Technical Reports Server (NTRS)
Prakash, P.; Sertel, M. R.
1971-01-01
Semivector spaces are defined and some of their algebraic aspects are developed including some structure theory. These spaces are then topologized to obtain semilinear topological spaces for which a hierarchy of local convexity axioms is identified. A number of fixed point and minmax theorems for spaces with various local convexity properties are established. The spaces of concern arise naturally as various hyperspaces of linear and semilinear (topological) spaces. It is indicated briefly how all this can be applied in socio-economic analysis and optimization.
Inference of the sparse kinetic Ising model using the decimation method
NASA Astrophysics Data System (ADS)
Decelle, Aurélien; Zhang, Pan
2015-05-01
In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014), 10.1103/PhysRevLett.112.070603] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ1-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ1-optimization-based methods.
A Highly Functional Decision Paradigm Based on Nonlinear Adaptive Genetic Algorithm
1997-10-07
significant speedup. p£ lC <$jALTnimm SCTED & 14. SUBJECT TERMS Network Topology Optimization, Mathlink, Mathematica Plug-In, GA Route Optimizer, DSP...operations per second 2.4 Gbytes/second sustainable on-chip data transfer rate 400 Mb/s off-chip peak transfer rate Layer-to-layer interconnection...SecondHighestDist# = DistanceArray%(IndexList%(ChromeGene%(i%, 1) -1), IndexList%( Chrom eGene%(i%, 2) - 1)) For j% = 1 To StrandLength% - 1 ’If highest distance
An efficient approach to the travelling salesman problem using self-organizing maps.
Vieira, Frederico Carvalho; Dória Neto, Adrião Duarte; Costa, José Alfredo Ferreira
2003-04-01
This paper presents an approach to the well-known Travelling Salesman Problem (TSP) using Self-Organizing Maps (SOM). The SOM algorithm has interesting topological information about its neurons configuration on cartesian space, which can be used to solve optimization problems. Aspects of initialization, parameters adaptation, and complexity analysis of the proposed SOM based algorithm are discussed. The results show an average deviation of 3.7% from the optimal tour length for a set of 12 TSP instances.
Three-dimensional electrical impedance tomography: a topology optimization approach.
Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli
2008-02-01
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
Trade-offs between robustness and small-world effect in complex networks
Peng, Guan-Sheng; Tan, Suo-Yi; Wu, Jun; Holme, Petter
2016-01-01
Robustness and small-world effect are two crucial structural features of complex networks and have attracted increasing attention. However, little is known about the relation between them. Here we demonstrate that, there is a conflicting relation between robustness and small-world effect for a given degree sequence. We suggest that the robustness-oriented optimization will weaken the small-world effect and vice versa. Then, we propose a multi-objective trade-off optimization model and develop a heuristic algorithm to obtain the optimal trade-off topology for robustness and small-world effect. We show that the optimal network topology exhibits a pronounced core-periphery structure and investigate the structural properties of the optimized networks in detail. PMID:27853301
Yi, Meng; Chen, Qingkui; Xiong, Neal N
2016-11-03
This paper considers the distributed access and control problem of massive wireless sensor networks' data access center for the Internet of Things, which is an extension of wireless sensor networks and an element of its topology structure. In the context of the arrival of massive service access requests at a virtual data center, this paper designs a massive sensing data access and control mechanism to improve the access efficiency of service requests and makes full use of the available resources at the data access center for the Internet of things. Firstly, this paper proposes a synergistically distributed buffer access model, which separates the information of resource and location. Secondly, the paper divides the service access requests into multiple virtual groups based on their characteristics and locations using an optimized self-organizing feature map neural network. Furthermore, this paper designs an optimal scheduling algorithm of group migration based on the combination scheme between the artificial bee colony algorithm and chaos searching theory. Finally, the experimental results demonstrate that this mechanism outperforms the existing schemes in terms of enhancing the accessibility of service requests effectively, reducing network delay, and has higher load balancing capacity and higher resource utility rate.
NASA Astrophysics Data System (ADS)
Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong
2018-05-01
The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.
NASA Astrophysics Data System (ADS)
Yang, Kai Ke; Zhu, Ji Hong; Wang, Chuang; Jia, Dong Sheng; Song, Long Long; Zhang, Wei Hong
2018-02-01
The purpose of this paper is to investigate the structures achieved by topology optimization and their fabrications by 3D printing considering the particular features of material microstructures and macro mechanical performances. Combining Digital Image Correlation and Optical Microscope, this paper experimentally explored the anisotropies of stiffness and strength existing in the 3D printed polymer material using Stereolithography (SLA) and titanium material using Selective Laser Melting (SLM). The standard specimens and typical structures obtained by topology optimization were fabricated along different building directions. On the one hand, the experimental results of these SLA produced structures showed stable properties and obviously anisotropic rules in stiffness, ultimate strengths and places of fractures. Further structural designs were performed using topology optimization when the particular mechanical behaviors of SLA printed materials were considered, which resulted in better structural performances compared to the optimized designs using `ideal' isotropic material model. On the other hand, this paper tested the mechanical behaviors of SLM printed multiscale lattice structures which were fabricated using the same metal powder and the same machine. The structural stiffness values are generally similar while the strength behaviors show a difference, which are mainly due to the irregular surface quality of the tiny structural branches of the lattice. The above evidences clearly show that the consideration of the particular behaviors of 3D printed materials is therefore indispensable for structural design and optimization in order to improve the structural performance and strengthen their practical significance.
Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Dunning, Peter D.
2014-01-01
Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system.. Shennan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this (Akgun et al., 1998b). SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
NASA Astrophysics Data System (ADS)
Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois
2016-04-01
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
Optimal consensus algorithm integrated with obstacle avoidance
NASA Astrophysics Data System (ADS)
Wang, Jianan; Xin, Ming
2013-01-01
This article proposes a new consensus algorithm for the networked single-integrator systems in an obstacle-laden environment. A novel optimal control approach is utilised to achieve not only multi-agent consensus but also obstacle avoidance capability with minimised control efforts. Three cost functional components are defined to fulfil the respective tasks. In particular, an innovative nonquadratic obstacle avoidance cost function is constructed from an inverse optimal control perspective. The other two components are designed to ensure consensus and constrain the control effort. The asymptotic stability and optimality are proven. In addition, the distributed and analytical optimal control law only requires local information based on the communication topology to guarantee the proposed behaviours, rather than all agents' information. The consensus and obstacle avoidance are validated through simulations.
Yang, Q; Siganos, G; Faloutsos, M; Lonardi, S
2006-01-01
Recent research efforts have made available genome-wide, high-throughput protein-protein interaction (PPI) maps for several model organisms. This has enabled the systematic analysis of PPI networks, which has become one of the primary challenges for the system biology community. In this study, we attempt to understand better the topological structure of PPI networks by comparing them against man-made communication networks, and more specifically, the Internet. Our comparative study is based on a comprehensive set of graph metrics. Our results exhibit an interesting dichotomy. On the one hand, both networks share several macroscopic properties such as scale-free and small-world properties. On the other hand, the two networks exhibit significant topological differences, such as the cliqueishness of the highest degree nodes. We attribute these differences to the distinct design principles and constraints that both networks are assumed to satisfy. We speculate that the evolutionary constraints that favor the survivability and diversification are behind the building process of PPI networks, whereas the leading force in shaping the Internet topology is a decentralized optimization process geared towards efficient node communication.
NASA Astrophysics Data System (ADS)
Inhofer, A.; Duffy, J.; Boukhicha, M.; Bocquillon, E.; Palomo, J.; Watanabe, K.; Taniguchi, T.; Estève, I.; Berroir, J. M.; Fève, G.; Plaçais, B.; Assaf, B. A.
2018-02-01
A metal-dielectric topological-insulator capacitor device based on hexagonal-boron-nitrate- (h -BN) encapsulated CVD-grown Bi2Se3 is realized and investigated in the radio-frequency regime. The rf quantum capacitance and device resistance are extracted for frequencies as high as 10 GHz and studied as a function of the applied gate voltage. The superior quality h -BN gate dielectric combined with the optimized transport characteristics of CVD-grown Bi2Se3 (n ˜1018 cm-3 in 8 nm) on h -BN allow us to attain a bulk depleted regime by dielectric gating. A quantum-capacitance minimum and a linear variation of the capacitance with the chemical potential are observed revealing a Dirac regime. The topological surface state in proximity to the gate is seen to reach charge neutrality, but the bottom surface state remains charged and capacitively coupled to the top via the insulating bulk. Our work paves the way toward implementation of topological materials in rf devices.
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957
Tetradymites as thermoelectrics and topological insulators
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin
2017-10-01
Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.
Topology optimization of natural convection: Flow in a differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Berggren, Martin; Henningson, Dan
2017-11-01
The goal of the present work is to develop methods for optimization of the design of natural convection cooled heat sinks, using resolved simulation of both fluid flow and heat transfer. We rely on mathematical programming techniques combined with direct numerical simulations in order to iteratively update the topology of a solid structure towards optimality, i.e. until the design yielding the best performance is found, while satisfying a specific set of constraints. The investigated test case is a two-dimensional differentially heated cavity, in which the two vertical walls are held at different temperatures. The buoyancy force induces a swirling convective flow around a solid structure, whose topology is optimized to maximize the heat flux through the cavity. We rely on the spectral-element code Nek5000 to compute a high-order accurate solution of the natural convection flow arising from the conjugate heat transfer in the cavity. The laminar, steady-state solution of the problem is evaluated with a time-marching scheme that has an increased convergence rate; the actual iterative optimization is obtained using a steepest-decent algorithm, and the gradients are conveniently computed using the continuous adjoint equations for convective heat transfer.
Optimizing the Learning Order of Chinese Characters Using a Novel Topological Sort Algorithm
Wang, Jinzhao
2016-01-01
We present a novel algorithm for optimizing the order in which Chinese characters are learned, one that incorporates the benefits of learning them in order of usage frequency and in order of their hierarchal structural relationships. We show that our work outperforms previously published orders and algorithms. Our algorithm is applicable to any scheduling task where nodes have intrinsic differences in importance and must be visited in topological order. PMID:27706234
Topology optimization of two-dimensional elastic wave barriers
NASA Astrophysics Data System (ADS)
Van hoorickx, C.; Sigmund, O.; Schevenels, M.; Lazarov, B. S.; Lombaert, G.
2016-08-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is inserted into a design domain situated between the source and the receiver to minimize wave transmission. At low frequencies, the stiffened material reflects and guides waves away from the surface. At high frequencies, destructive interference is obtained that leads to high values of the insertion loss. To handle harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged insertion loss are found to be sensitive to geometric imperfections. In order to obtain a robust design, a worst case approach is followed.
Emergent spectral properties of river network topology: an optimal channel network approach.
Abed-Elmdoust, Armaghan; Singh, Arvind; Yang, Zong-Liang
2017-09-13
Characterization of river drainage networks has been a subject of research for many years. However, most previous studies have been limited to quantities which are loosely connected to the topological properties of these networks. In this work, through a graph-theoretic formulation of drainage river networks, we investigate the eigenvalue spectra of their adjacency matrix. First, we introduce a graph theory model for river networks and explore the properties of the network through its adjacency matrix. Next, we show that the eigenvalue spectra of such complex networks follow distinct patterns and exhibit striking features including a spectral gap in which no eigenvalue exists as well as a finite number of zero eigenvalues. We show that such spectral features are closely related to the branching topology of the associated river networks. In this regard, we find an empirical relation for the spectral gap and nullity in terms of the energy dissipation exponent of the drainage networks. In addition, the eigenvalue distribution is found to follow a finite-width probability density function with certain skewness which is related to the drainage pattern. Our results are based on optimal channel network simulations and validated through examples obtained from physical experiments on landscape evolution. These results suggest the potential of the spectral graph techniques in characterizing and modeling river networks.
Biyikli, Emre; To, Albert C.
2015-01-01
A new topology optimization method called the Proportional Topology Optimization (PTO) is presented. As a non-sensitivity method, PTO is simple to understand, easy to implement, and is also efficient and accurate at the same time. It is implemented into two MATLAB programs to solve the stress constrained and minimum compliance problems. Descriptions of the algorithm and computer programs are provided in detail. The method is applied to solve three numerical examples for both types of problems. The method shows comparable efficiency and accuracy with an existing optimality criteria method which computes sensitivities. Also, the PTO stress constrained algorithm and minimum compliance algorithm are compared by feeding output from one algorithm to the other in an alternative manner, where the former yields lower maximum stress and volume fraction but higher compliance compared to the latter. Advantages and disadvantages of the proposed method and future works are discussed. The computer programs are self-contained and publicly shared in the website www.ptomethod.org. PMID:26678849
Authorship attribution based on Life-Like Network Automata
Machicao, Jeaneth; Corrêa, Edilson A.; Miranda, Gisele H. B.; Amancio, Diego R.
2018-01-01
The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, texts have been successfully modeled as networks, where words are represented by nodes linked according to textual similarity measurements. Such models are useful to identify informative topological patterns for the authorship recognition task. However, there is no consensus on which measurements should be used. Thus, we proposed a novel method to characterize text networks, by considering both topological and dynamical aspects of networks. Using concepts and methods from cellular automata theory, we devised a strategy to grasp informative spatio-temporal patterns from this model. Our experiments revealed an outperformance over structural analysis relying only on topological measurements, such as clustering coefficient, betweenness and shortest paths. The optimized results obtained here pave the way for a better characterization of textual networks. PMID:29566100
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.
Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S
2016-11-14
The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.
Topology optimization of hyperelastic structures using a level set method
NASA Astrophysics Data System (ADS)
Chen, Feifei; Wang, Yiqiang; Wang, Michael Yu; Zhang, Y. F.
2017-12-01
Soft rubberlike materials, due to their inherent compliance, are finding widespread implementation in a variety of applications ranging from assistive wearable technologies to soft material robots. Structural design of such soft and rubbery materials necessitates the consideration of large nonlinear deformations and hyperelastic material models to accurately predict their mechanical behaviour. In this paper, we present an effective level set-based topology optimization method for the design of hyperelastic structures that undergo large deformations. The method incorporates both geometric and material nonlinearities where the strain and stress measures are defined within the total Lagrange framework and the hyperelasticity is characterized by the widely-adopted Mooney-Rivlin material model. A shape sensitivity analysis is carried out, in the strict sense of the material derivative, where the high-order terms involving the displacement gradient are retained to ensure the descent direction. As the design velocity enters into the shape derivative in terms of its gradient and divergence terms, we develop a discrete velocity selection strategy. The whole optimization implementation undergoes a two-step process, where the linear optimization is first performed and its optimized solution serves as the initial design for the subsequent nonlinear optimization. It turns out that this operation could efficiently alleviate the numerical instability and facilitate the optimization process. To demonstrate the validity and effectiveness of the proposed method, three compliance minimization problems are studied and their optimized solutions present significant mechanical benefits of incorporating the nonlinearities, in terms of remarkable enhancement in not only the structural stiffness but also the critical buckling load.
CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.
Design of materials with prescribed nonlinear properties
NASA Astrophysics Data System (ADS)
Wang, F.; Sigmund, O.; Jensen, J. S.
2014-09-01
We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].
Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms
Yang, Fan; Xiao, Deyun; Shah, Sirish L.
2009-01-01
To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524
Community structure detection based on the neighbor node degree information
NASA Astrophysics Data System (ADS)
Tang, Li-Ying; Li, Sheng-Nan; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo
2016-11-01
Community structure detection is of great significance for better understanding the network topology property. By taking into account the neighbor degree information of the topological network as the link weight, we present an improved Nonnegative Matrix Factorization (NMF) method for detecting community structure. The results for empirical networks show that the largest improved ratio of the Normalized Mutual Information value could reach 63.21%. Meanwhile, for synthetic networks, the highest Normalized Mutual Information value could closely reach 1, which suggests that the improved method with the optimal λ can detect the community structure more accurately. This work is helpful for understanding the interplay between the link weight and the community structure detection.
Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael
2015-04-08
The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on themore » performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.« less
On the use of topology optimization for improving heat transfer in molding process
NASA Astrophysics Data System (ADS)
Agazzi, A.; LeGoff, R.; Truc-Vu, C.
2016-10-01
In the plastic industry, one of the key factor is to control heat transfer. One way to achieve that goal is to design an effective cooling system. But in some area of the mold, where it is not possible to design cooling system, the use of a highly conductive material, such as copper pin, is often used. Most of the time, the location, the size and the quantity of the copper pin are made by empirical considerations, without using optimization procedures. In this article, it is proposed to use topology optimization, in order to improve transient conductive heat transfer in an injection/blowing mold. Two methodologies are applied and compared. Finally, the optimal distribution of cooper pin in the mold is given.
Optimization of lattice surgery is NP-hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon J.
2017-09-01
The traditional method for computation in either the surface code or in the Raussendorf model is the creation of holes or "defects" within the encoded lattice of qubits that are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work, we focus on the lattice surgery representation, which realizes transversal logic operations without destroying the intrinsic 2D nearest-neighbor properties of the braid-based surface code and achieves universality without defects and braid-based logic. For both techniques there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult and the classical complexity associated with this problem has yet to be determined. In the context of lattice-surgery-based logic, we can introduce an optimality condition, which corresponds to a circuit with the lowest resource requirements in terms of physical qubits and computational time, and prove that the complexity of optimizing a quantum circuit in the lattice surgery model is NP-hard.
Parameter Optimization for Turbulent Reacting Flows Using Adjoints
NASA Astrophysics Data System (ADS)
Lapointe, Caelan; Hamlington, Peter E.
2017-11-01
The formulation of a new adjoint solver for topology optimization of turbulent reacting flows is presented. This solver provides novel configurations (e.g., geometries and operating conditions) based on desired system outcomes (i.e., objective functions) for complex reacting flow problems of practical interest. For many such problems, it would be desirable to know optimal values of design parameters (e.g., physical dimensions, fuel-oxidizer ratios, and inflow-outflow conditions) prior to real-world manufacture and testing, which can be expensive, time-consuming, and dangerous. However, computational optimization of these problems is made difficult by the complexity of most reacting flows, necessitating the use of gradient-based optimization techniques in order to explore a wide design space at manageable computational cost. The adjoint method is an attractive way to obtain the required gradients, because the cost of the method is determined by the dimension of the objective function rather than the size of the design space. Here, the formulation of a novel solver is outlined that enables gradient-based parameter optimization of turbulent reacting flows using the discrete adjoint method. Initial results and an outlook for future research directions are provided.
Optimal design of tunable phononic bandgap plates under equibiaxial stretch
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.
2016-05-01
Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite element method. Following earlier studies by the authors, specialized GA algorithm, topology mapping, assessment and analysis techniques are employed to get feasible porous topologies of assumed thick PhP, efficiently.
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Li, Yan; Zhang, Yingchen
In this paper, a big data-based approach is proposed for the security improvement of an unplanned microgrid islanding (UMI). The proposed approach contains two major steps: the first step is big data analysis of wide-area monitoring to detect a UMI and locate it; the second step is particle swarm optimization (PSO)-based stability enhancement for the UMI. First, an optimal synchrophasor measurement device selection (OSMDS) and matching pursuit decomposition (MPD)-based spatial-temporal analysis approach is proposed to significantly reduce the volume of data while keeping appropriate information from the synchrophasor measurements. Second, a random forest-based ensemble learning approach is trained to detectmore » the UMI. When combined with grid topology, the UMI can be located. Then the stability problem of the UMI is formulated as an optimization problem and the PSO is used to find the optimal operational parameters of the UMI. An eigenvalue-based multiobjective function is proposed, which aims to improve the damping and dynamic characteristics of the UMI. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed approach.« less
Optimization of coupled device based on optical fiber with crystalline and integrated resonators
NASA Astrophysics Data System (ADS)
Bassir, David; Salzenstein, Patrice; Zhang, Mingjun
2017-05-01
Because of the advantages in terms of reproducibility for optical resonators on chip which are designed of various topologies and integration with optical devices. To increase the Q-factor from the lower rang [104 - 106 ] to higher one [108 -1010] [1-4] one use crystalline resonators. It is much complicated to couple an optical signal from a tapered fiber to crystalline resonator than from a defined ridge to a resonator designed on a chip. In this work, we will focus on the optimization of the crystalline resonators under straight wave guide (based on COMSOL multi-physic software) [5- 7] and subject also to technological constraints of manufacturing. The coupling problem at the Nano scale makes our optimizations problem more dynamics in term of design space.
A Global Approach to the Optimal Trajectory Based on an Improved Ant Colony Algorithm for Cold Spray
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Chen, Tingyang; Zeng, Chunnian; Guo, Xueping; Lian, Huijuan; Zheng, You; Wei, Xiaoxu
2016-12-01
This paper is concerned with finding a global approach to obtain the shortest complete coverage trajectory on complex surfaces for cold spray applications. A slicing algorithm is employed to decompose the free-form complex surface into several small pieces of simple topological type. The problem of finding the optimal arrangement of the pieces is translated into a generalized traveling salesman problem (GTSP). Owing to its high searching capability and convergence performance, an improved ant colony algorithm is then used to solve the GTSP. Through off-line simulation, a robot trajectory is generated based on the optimized result. The approach is applied to coat real components with a complex surface by using the cold spray system with copper as the spraying material.
Tabu Search enhances network robustness under targeted attacks
NASA Astrophysics Data System (ADS)
Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi
2016-03-01
We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.
Ming, Dengming; Chen, Rui; Huang, He
2018-05-10
Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k -cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.
Yi, Meng; Chen, Qingkui; Xiong, Neal N.
2016-01-01
This paper considers the distributed access and control problem of massive wireless sensor networks’ data access center for the Internet of Things, which is an extension of wireless sensor networks and an element of its topology structure. In the context of the arrival of massive service access requests at a virtual data center, this paper designs a massive sensing data access and control mechanism to improve the access efficiency of service requests and makes full use of the available resources at the data access center for the Internet of things. Firstly, this paper proposes a synergistically distributed buffer access model, which separates the information of resource and location. Secondly, the paper divides the service access requests into multiple virtual groups based on their characteristics and locations using an optimized self-organizing feature map neural network. Furthermore, this paper designs an optimal scheduling algorithm of group migration based on the combination scheme between the artificial bee colony algorithm and chaos searching theory. Finally, the experimental results demonstrate that this mechanism outperforms the existing schemes in terms of enhancing the accessibility of service requests effectively, reducing network delay, and has higher load balancing capacity and higher resource utility rate. PMID:27827878
Cooperative Optimal Coordination for Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di; Ren, Wei
In this paper, we consider the optimal coordination problem for distributed energy resources (DERs) including distributed generators and energy storage devices. We propose an algorithm based on the push-sum and gradient method to optimally coordinate storage devices and distributed generators in a distributed manner. In the proposed algorithm, each DER only maintains a set of variables and updates them through information exchange with a few neighbors over a time-varying directed communication network. We show that the proposed distributed algorithm solves the optimal DER coordination problem if the time-varying directed communication network is uniformly jointly strongly connected, which is a mildmore » condition on the connectivity of communication topologies. The proposed distributed algorithm is illustrated and validated by numerical simulations.« less
Multi-physics optimization of three-dimensional microvascular polymeric components
NASA Astrophysics Data System (ADS)
Aragón, Alejandro M.; Saksena, Rajat; Kozola, Brian D.; Geubelle, Philippe H.; Christensen, Kenneth T.; White, Scott R.
2013-01-01
This work discusses the computational design of microvascular polymeric materials, which aim at mimicking the behavior found in some living organisms that contain a vascular system. The optimization of the topology of the embedded three-dimensional microvascular network is carried out by coupling a multi-objective constrained genetic algorithm with a finite-element based physics solver, the latter validated through experiments. The optimization is carried out on multiple conflicting objective functions, namely the void volume fraction left by the network, the energy required to drive the fluid through the network and the maximum temperature when the material is subjected to thermal loads. The methodology presented in this work results in a viable alternative for the multi-physics optimization of these materials for active-cooling applications.
Optimization of Aerospace Structure Subject to Damage Tolerance Criteria
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.
1999-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers. It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages. A common method for topology optimization is that of compliance minimization which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system. Sherrnan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this. SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
On the Use of CAD and Cartesian Methods for Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.
2004-01-01
The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.
Optimal Topology Control and Power Allocation for Minimum Energy Consumption in Consensus Networks
2011-12-16
network topologies, such as small world graphs, can greatly increase the convergence rate. In [9], the authors show that nonbipartite Ramanujan graphs...unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 23384 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60...of iterations necessary to achieve consensus. From this perspec- tive, enforcing a small world, scale-free, or Ramanujan graph topology may not be the
LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cyr, Eric C.; von Winckel, Gregory John; Kouri, Drew Philip
This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of thismore » exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.« less
Chemical crosslinking and mass spectrometry to elucidate the topology of integral membrane proteins
Debelyy, Mykhaylo O.; Waridel, Patrice; Quadroni, Manfredo; Conzelmann, Andreas
2017-01-01
Here we made an attempt to obtain partial structural information on the topology of multispan integral membrane proteins of yeast by isolating organellar membranes, removing peripheral membrane proteins at pH 11.5 and introducing chemical crosslinks between vicinal amino acids either using homo- or hetero-bifunctional crosslinkers. Proteins were digested with specific proteases and the products analysed by mass spectrometry. Dedicated software tools were used together with filtering steps optimized to remove false positive crosslinks. In proteins of known structure, crosslinks were found only between loops residing on the same side of the membrane. As may be expected, crosslinks were mainly found in very abundant proteins. Our approach seems to hold to promise to yield low resolution topological information for naturally very abundant or strongly overexpressed proteins with relatively little effort. Here, we report novel XL-MS-based topology data for 17 integral membrane proteins (Akr1p, Fks1p, Gas1p, Ggc1p, Gpt2p, Ifa38p, Ist2p, Lag1p, Pet9p, Pma1p, Por1p, Sct1p, Sec61p, Slc1p, Spf1p, Vph1p, Ybt1p). PMID:29073188
Influence of the number of topologically interacting neighbors on swarm dynamics
Shang, Yilun; Bouffanais, Roland
2014-01-01
Recent empirical and theoretical works on collective behaviors based on a topological interaction are beginning to offer some explanations as for the physical reasons behind the selection of a particular number of nearest neighbors locally affecting each individual's dynamics. Recently, flocking starlings have been shown to topologically interact with a very specific number of neighbors, between six to eight, while metric-free interactions were found to govern human crowd dynamics. Here, we use network- and graph-theoretic approaches combined with a dynamical model of locally interacting self-propelled particles to study how the consensus reaching process and its dynamics are influenced by the number k of topological neighbors. Specifically, we prove exactly that, in the absence of noise, consensus is always attained with a speed to consensus strictly increasing with k. The analysis of both speed and time to consensus reveals that, irrespective of the swarm size, a value of k ~ 10 speeds up the rate of convergence to consensus to levels close to the one of the optimal all-to-all interaction signaling. Furthermore, this effect is found to be more pronounced in the presence of environmental noise. PMID:24567077
Default cascades in complex networks: topology and systemic risk.
Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano
2013-09-26
The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only--but substantially--when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011.
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-10-09
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-01-01
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
A biologically inspired neural network for dynamic programming.
Francelin Romero, R A; Kacpryzk, J; Gomide, F
2001-12-01
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Fikri Muhammad, Khairul; Mohd Khairuddin, Ismail; Ishak, Ismayuzri; Razlan Yusoff, Ahmad
2016-02-01
This paper presents the new form of coils for electromagnetic energy harvesting system based on topology optimization method which look-liked a cap to maximize the power output. It could increase the number of magnetic flux linkage interception of a cylindrical permanent magnet which in this case is of 10mm diameter. Several coils with different geometrical properties have been build and tested on a vibration generator with frequency of 100Hz. The results showed that the coil with lowest number of winding transduced highest power output of 680μW while the highest number of windings generated highest voltage output of 0.16V.
A novel design for passive misscromixers based on topology optimization method.
Chen, Xueye; Li, Tiechuan
2016-08-01
In this paper, a series of novel passive micromixers, called topological micromixers with reversed flow (TMRFX), are proposed. The reversed flow in the microchannels can enhance chaotic advection and produce better mixing performance. Therefore the maximum of reversed flow is chosen as the objective function of the topology optimization problem. Because the square-wave unit is easier to fabricate and have better mixing performance than many other serpentine micromixers, square-wave structure becomes the original geometry structure. By simulating analysis, the series of TMRFX, namely TMRF, TMRF0.75, TMRF0.5, TMRF0.25, mix better than the square-wave micromixer at various Reynolds numbers (Re), but pressure drops of TMRFX are much higher. Lots of intensive numerical simulations are conducted to prove that TMRF and TMRF0.75 have remarkable advantages on mixing over other micromixers at various Re. The mixing performance of TMRF0.75 is similar to TMRF's. What's more, TMRF have a larger pressure drop than TMRF0.75, which means that TMRF have taken more energy than TMRF0.75. For a wide range of Re (Re ≤ 0.1 and Re ≥ 10), TMRF0.75 delivers a great performance and the mixing efficiency is greater than 95 %. Even in the range of 0.1-10 for the Re, the mixing efficiency of TMRF0.75 is higher than 85 %.
NASA Astrophysics Data System (ADS)
Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang; Jauho, A.-P.
2017-11-01
The thermoelectric performance of a topological energy converter is analyzed. The H -shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an electric power output in the other arm. Analytical expressions for the output voltage, the figure of merit (Z T ), and energy-converting efficiency are reported. We show that the output voltage and the Z T can be tuned by the geometry of the device and the physical properties of the material. Importantly, contrary to a conventional thermoelectric device, here a low electric conductivity may, in fact, enhance the Z T value, thereby opening a path to strategies in optimizing the figure of merit.
Advances in fuel cell vehicle design
NASA Astrophysics Data System (ADS)
Bauman, Jennifer
Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.
An auxiliary optimization method for complex public transit route network based on link prediction
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian
2018-02-01
Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.
Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing
2017-01-01
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962
Design of crashworthy structures with controlled behavior in HCA framework
NASA Astrophysics Data System (ADS)
Bandi, Punit
The field of crashworthiness design is gaining more interest and attention from automakers around the world due to increasing competition and tighter safety norms. In the last two decades, topology and topometry optimization methods from structural optimization have been widely explored to improve existing designs or conceive new designs with better crashworthiness. Although many gradient-based and heuristic methods for topology- and topometry-based crashworthiness design are available these days, most of them result in stiff structures that are suitable only for a set of vehicle components in which maximizing the energy absorption or minimizing the intrusion is the main concern. However, there are some other components in a vehicle structure that should have characteristics of both stiffness and flexibility. Moreover, the load paths within the structure and potential buckle modes also play an important role in efficient functioning of such components. For example, the front bumper, side frame rails, steering column, and occupant protection devices like the knee bolster should all exhibit controlled deformation and collapse behavior. The primary objective of this research is to develop new methodologies to design crashworthy structures with controlled behavior. The well established Hybrid Cellular Automaton (HCA) method is used as the basic framework for the new methodologies, and compliant mechanism-type (sub)structures are the highlight of this research. The ability of compliant mechanisms to efficiently transfer force and/or motion from points of application of input loads to desired points within the structure is used to design solid and tubular components that exhibit controlled deformation and collapse behavior under crash loads. In addition, a new methodology for controlling the behavior of a structure under multiple crash load scenarios by adaptively changing the contributions from individual load cases is developed. Applied to practical design problems, the results demonstrate that the methodologies provide a practical tool to aid the design engineer in generating design concepts for crashworthy structures with controlled behavior. Although developed in the HCA framework, the basic ideas behind these methods are generic and can be easily implemented with other available topology- and topometry-based optimization methods.
System-Level Performance of Antenna Arrays in CDMA-Based Cellular Mobile Radio Systems
NASA Astrophysics Data System (ADS)
Czylwik, Andreas; Dekorsy, Armin
2004-12-01
Smart antennas exploit the inherent spatial diversity of the mobile radio channel, provide an antenna gain, and also enable spatial interference suppression leading to reduced intracell as well as intercell interference. Especially, for the downlink of future CDMA-based mobile communications systems, transmit beamforming is seen as a well-promising smart antenna technique. The main objective of this paper is to study the performance of diverse antenna array topologies when applied for transmit beamforming in the downlink of CDMA-based networks. In this paper, we focus on uniform linear array (ULA) and uniform circular array (UCA) topologies. For the ULA, we consider three-sector base stations with one linear array per sector. While recent research on downlink beamforming is often restricted to one single cell, this study takes into account the important impact of intercell interference on the performance by evaluating complete networks. Especially, from the operator perspective, system capacity and system coverage are very essential parameters of a cellular system so that there is a clear necessity of intensive system level investigations. Apart from delivering assessments on the performance of the diverse antenna array topologies, in the paper also different antenna array parameters, such as element spacing and beamwidth of the sector antennas, are optimized. Although we focus on the network level, fast channel fluctuations are taken into account by including them analytically into the signal-to-interference calculation.
Order, topology and preference
NASA Technical Reports Server (NTRS)
Sertel, M. R.
1971-01-01
Some standard order-related and topological notions, facts, and methods are brought to bear on central topics in the theory of preference and the theory of optimization. Consequences of connectivity are considered, especially from the viewpoint of normally preordered spaces. Examples are given showing how the theory of preference, or utility theory, can be applied to social analysis.
NASA Astrophysics Data System (ADS)
Elbanna, Ahmed; Peetz, Darin
Bone is classically considered to be a self-optimizing structure in accordance with Wolff's law. However, while the structure's ability to adapt to changing stress patterns has been well documented, whether it is fully optimal for compliance is less certain (Sigmund, 2002). Given the complexity of many biological systems, it is expected that this structure serves several purposes. We present a multi-objective topology optimization formulation for trabecular bone in the human body at two locations: the vertebrae and the femur. We account for the effect of different conflicting objectives such as maximization of stiffness, maximization of surface area, and minimization of buckling susceptibility. Our formulation enables us to determine the relative role of each of these objective in optimizing the structure. Moreover, it provides an opportunity to explore what structural features have to evolve to meet a certain objective requirements that may have been absent otherwise. For example, inclusion of stability considerations introduce numerous horizontal and diagonal members in the topology in the case of human vertebrae under vertical loading. However, the stability is found to play a lesser role in the case of the femur bone optimization. Our formulation enables investigation of bone adaptation at different locations of the body as well as under different loading and boundary conditions (e.g. healthy and diseased discs for the case of the spine). We discuss the implications of our findings on developing design rules for bio-inspired and bio-mimetic architectured materials. National Science Foundation: CMMI.
Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures
NASA Astrophysics Data System (ADS)
Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team
We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.
Default Cascades in Complex Networks: Topology and Systemic Risk
Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano
2013-01-01
The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only – but substantially – when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011. PMID:24067913
RED: a set of molecular descriptors based on Renyi entropy.
Delgado-Soler, Laura; Toral, Raul; Tomás, M Santos; Rubio-Martinez, Jaime
2009-11-01
New molecular descriptors, RED (Renyi entropy descriptors), based on the generalized entropies introduced by Renyi are presented. Topological descriptors based on molecular features have proven to be useful for describing molecular profiles. Renyi entropy is used as a variability measure to contract a feature-pair distribution composing the descriptor vector. The performance of RED descriptors was tested for the analysis of different sets of molecular distances, virtual screening, and pharmacological profiling. A free parameter of the Renyi entropy has been optimized for all the considered applications.
Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks
Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki
2018-01-01
Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. PMID:29642483
Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks.
Murakami, Masaya; Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki
2018-04-08
Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Chen, Minghua; Parekh, Abhay; Ramchandran, Kannan
2011-09-01
We design a distributed multi-channel P2P Video-on-Demand (VoD) system using "plug-and-play" helpers. Helpers are heterogenous "micro-servers" with limited storage, bandwidth and number of users they can serve simultaneously. Our proposed system has the following salient features: (1) it jointly optimizes over helper-user connection topology, video storage distribution and transmission bandwidth allocation; (2) it minimizes server load, and is adaptable to varying supply and demand patterns across multiple video channels irrespective of video popularity; and (3) it is fully distributed and requires little or no maintenance overhead. The combinatorial nature of the problem and the system demand for distributed algorithms makes the problem uniquely challenging. By utilizing Lagrangian decomposition and Markov chain approximation based arguments, we address this challenge by designing two distributed algorithms running in tandem: a primal-dual storage and bandwidth allocation algorithm and a "soft-worst-neighbor-choking" topology-building algorithm. Our scheme provably converges to a near-optimal solution, and is easy to implement in practice. Packet-level simulation results show that the proposed scheme achieves minimum sever load under highly heterogeneous combinations of supply and demand patterns, and is robust to system dynamics of user/helper churn, user/helper asynchrony, and random delays in the network.
Synchrony-optimized networks of Kuramoto oscillators with inertia
NASA Astrophysics Data System (ADS)
Pinto, Rafael S.; Saa, Alberto
2016-12-01
We investigate synchronization in networks of Kuramoto oscillators with inertia. More specifically, we introduce a rewiring algorithm consisting basically in a hill climb scheme in which the edges of the network are swapped in order to enhance its synchronization capacity. We show that the synchrony-optimized networks generated by our algorithm have some interesting topological and dynamical properties. In particular, they typically exhibit an anticipation of the synchronization onset and are more robust against certain types of perturbations. We consider synthetic random networks and also a network with a topology based on an approximated model of the (high voltage) power grid of Spain, since networks of Kuramoto oscillators with inertia have been used recently as simplified models for power grids, for which synchronization is obviously a crucial issue. Despite the extreme simplifications adopted in these models, our results, among others recently obtained in the literature, may provide interesting principles to guide the future growth and development of real-world grids, specially in the case of a change of the current paradigm of centralized towards distributed generation power grids.
NASA Astrophysics Data System (ADS)
Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.
1993-08-01
Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.
Analysis and topology optimization design of high-speed driving spindle
NASA Astrophysics Data System (ADS)
Wang, Zhilin; Yang, Hai
2018-04-01
The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.
Model-free learning on robot kinematic chains using a nested multi-agent topology
NASA Astrophysics Data System (ADS)
Karigiannis, John N.; Tzafestas, Costas S.
2016-11-01
This paper proposes a model-free learning scheme for the developmental acquisition of robot kinematic control and dexterous manipulation skills. The approach is based on a nested-hierarchical multi-agent architecture that intuitively encapsulates the topology of robot kinematic chains, where the activity of each independent degree-of-freedom (DOF) is finally mapped onto a distinct agent. Each one of those agents progressively evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a partial (local) view of the whole system topology, which is incrementally updated through a recursive communication process according to the nested-hierarchical topology. Learning is thus approached not through demonstration and training but through an autonomous self-exploration process. A fuzzy reinforcement learning scheme is employed within each agent to enable efficient exploration in a continuous state-action domain. This paper constitutes in fact a proof of concept, demonstrating that global dexterous manipulation skills can indeed evolve through such a distributed iterative learning of local agent sensorimotor mappings. The main motivation behind the development of such an incremental multi-agent topology is to enhance system modularity, to facilitate extensibility to more complex problem domains and to improve robustness with respect to structural variations including unpredictable internal failures. These attributes of the proposed system are assessed in this paper through numerical experiments in different robot manipulation task scenarios, involving both single and multi-robot kinematic chains. The generalisation capacity of the learning scheme is experimentally assessed and robustness properties of the multi-agent system are also evaluated with respect to unpredictable variations in the kinematic topology. Furthermore, these numerical experiments demonstrate the scalability properties of the proposed nested-hierarchical architecture, where new agents can be recursively added in the hierarchy to encapsulate individual active DOFs. The results presented in this paper demonstrate the feasibility of such a distributed multi-agent control framework, showing that the solutions which emerge are plausible and near-optimal. Numerical efficiency and computational cost issues are also discussed.
Gongerowska, Martyna; Gutkowski, Paweł; Zakrzewska-Czerwińska, Jolanta; Jakimowicz, Dagmara
2016-01-01
ABSTRACT Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective abilities to relax and compact DNA. Soil bacteria such as Streptomyces species, which grow as branched, multigenomic hyphae, are subject to environmental stresses that are associated with changes in chromosomal topology. The topological fluctuations modulate the transcriptional activity of a large number of genes and in Streptomyces are related to the production of antibiotics. To better understand the regulation of topological homeostasis in Streptomyces coelicolor, we investigated the interplay between the activities of the topoisomerase-encoding genes topA and gyrBA. We show that the expression of both genes is supercoiling sensitive. Remarkably, increased chromosomal supercoiling induces the topA promoter but only slightly influences gyrBA transcription, while DNA relaxation affects the topA promoter only marginally but strongly activates the gyrBA operon. Moreover, we showed that exposure to elevated temperatures induces rapid relaxation, which results in changes in the levels of both topoisomerases. We therefore propose a unique mechanism of S. coelicolor chromosomal topology maintenance based on the supercoiling-dependent stimulation, rather than repression, of the transcription of both topoisomerase genes. These findings provide important insight into the maintenance of topological homeostasis in an industrially important antibiotic producer. IMPORTANCE We describe the unique regulation of genes encoding two topoisomerases, topoisomerase I (TopA) and gyrase, in a model Streptomyces species. Our studies demonstrate the coordination of topoisomerase gene regulation, which is crucial for maintenance of topological homeostasis. Streptomyces species are producers of a plethora of biologically active secondary metabolites, including antibiotics, antitumor agents, and immunosuppressants. The significant regulatory factor controlling the secondary metabolism is the global chromosomal topology. Thus, the investigation of chromosomal topology homeostasis in Streptomyces strains is crucial for their use in industrial applications as producers of secondary metabolites. PMID:27551021
Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H
2016-07-01
Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.
NASA Astrophysics Data System (ADS)
Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos
2011-02-01
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.
2012-02-03
node to the analysis of eigenmodes (connected trees /networks) of disruption sequences. The identification of disruption eigenmodes is particularly...investment portfolio approach enables the identification of optimal SoS network topologies and provides a tool for acquisition professionals to...a program based on its ability to provide a new capability for a given cost, and not on its ability to meet specific performance requirements ( Spacy
Model-based occluded object recognition using Petri nets
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Hura, Gurdeep S.
1998-09-01
This paper discusses the use of Petri nets to model the process of the object matching between an image and a model under different 2D geometric transformations. This transformation finds its applications in sensor-based robot control, flexible manufacturing system and industrial inspection, etc. A description approach for object structure is presented by its topological structure relation called Point-Line Relation Structure (PLRS). It has been shown how Petri nets can be used to model the matching process, and an optimal or near optimal matching can be obtained by tracking the reachability graph of the net. The experiment result shows that object can be successfully identified and located under 2D transformation such as translations, rotations, scale changes and distortions due to object occluded partially.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei
2014-05-01
This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.
Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity
NASA Astrophysics Data System (ADS)
Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.
2018-05-01
The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.
Gaussian mass optimization for kernel PCA parameters
NASA Astrophysics Data System (ADS)
Liu, Yong; Wang, Zulin
2011-10-01
This paper proposes a novel kernel parameter optimization method based on Gaussian mass, which aims to overcome the current brute force parameter optimization method in a heuristic way. Generally speaking, the choice of kernel parameter should be tightly related to the target objects while the variance between the samples, the most commonly used kernel parameter, doesn't possess much features of the target, which gives birth to Gaussian mass. Gaussian mass defined in this paper has the property of the invariance of rotation and translation and is capable of depicting the edge, topology and shape information. Simulation results show that Gaussian mass leads a promising heuristic optimization boost up for kernel method. In MNIST handwriting database, the recognition rate improves by 1.6% compared with common kernel method without Gaussian mass optimization. Several promising other directions which Gaussian mass might help are also proposed at the end of the paper.
Li, Ruiying; Liu, Xiaoxi; Xie, Wei; Huang, Ning
2014-12-10
Sensor-deployment-based lifetime optimization is one of the most effective methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing the distance-sensitive energy consumption. In this paper, data retransmission, a major consumption factor that is usually neglected in the previous work, is considered. For a homogeneous WSN, monitoring a circular target area with a centered base station, a sensor deployment model based on regular hexagonal grids is analyzed. To maximize the WSN lifetime, optimization models for both uniform and non-uniform deployment schemes are proposed by constraining on coverage, connectivity and success transmission rate. Based on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model can be obtained through quantifying the energy consumption at each sensor location. The results of case studies show that it is meaningful to consider data retransmission in the lifetime optimization. In particular, our investigations indicate that, with the same lifetime requirement, the number of sensors needed in a non-uniform topology is much less than that in a uniform one. Finally, compared with a random scheme, simulation results further verify the advantage of our deployment model.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Hierarchical Winner-Take-All Particle Swarm Optimization Social Network for Neural Model Fitting
Coventry, Brandon S.; Parthasarathy, Aravindakshan; Sommer, Alexandra L.; Bartlett, Edward L.
2016-01-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models. PMID:27726048
Aerostructural Level Set Topology Optimization for a Common Research Model Wing
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2014-01-01
The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.
NASA Astrophysics Data System (ADS)
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
Level-Set Topology Optimization with Aeroelastic Constraints
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2015-01-01
Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.
Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0
NASA Astrophysics Data System (ADS)
Millán-Otoya, Jorge E.; Boettcher, Stefan
2014-03-01
Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3
Zhang, Xuejun; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
Noeske, Tobias; Trifanova, Dina; Kauss, Valerjans; Renner, Steffen; Parsons, Christopher G; Schneider, Gisbert; Weil, Tanja
2009-08-01
We report the identification of novel potent and selective metabotropic glutamate receptor 1 (mGluR1) antagonists by virtual screening and subsequent hit optimization. For ligand-based virtual screening, molecules were represented by a topological pharmacophore descriptor (CATS-2D) and clustered by a self-organizing map (SOM). The most promising compounds were tested in mGluR1 functional and binding assays. We identified a potent chemotype exhibiting selective antagonistic activity at mGluR1 (functional IC(50)=0.74+/-0.29 microM). Hit optimization yielded lead structure 16 with an affinity of K(i)=0.024+/-0.001 microM and greater than 1000-fold selectivity for mGluR1 versus mGluR5. Homology-based receptor modelling suggests a binding site compatible with previously reported mutation studies. Our study demonstrates the usefulness of ligand-based virtual screening for scaffold-hopping and rapid lead structure identification in early drug discovery projects.
Quantitative learning strategies based on word networks
NASA Astrophysics Data System (ADS)
Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng
2018-02-01
Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.
NASA Astrophysics Data System (ADS)
Jayaweera, H. M. P. C.; Muhtaroğlu, Ali
2016-11-01
A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation
Liu, Yang; Liu, Junfei
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.
Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Energy-Aware Topology Control Strategy for Human-Centric Wireless Sensor Networks
Meseguer, Roc; Molina, Carlos; Ochoa, Sergio F.; Santos, Rodrigo
2014-01-01
The adoption of mobile and ubiquitous solutions that involve participatory or opportunistic sensing increases every day. This situation has highlighted the relevance of optimizing the energy consumption of these solutions, because their operation depends on the devices' battery lifetimes. This article presents a study that intends to understand how the prediction of topology control messages in human-centric wireless sensor networks can be used to help reduce the energy consumption of the participating devices. In order to do that, five research questions have been defined and a study based on simulations was conducted to answer these questions. The obtained results help identify suitable mobile computing scenarios where the prediction of topology control messages can be used to save energy of the network nodes. These results also allow estimating the percentage of energy saving that can be expected, according to the features of the work scenario and the participants behavior. Designers of mobile collaborative applications that involve participatory or opportunistic sensing, can take advantage of these findings to increase the autonomy of their solutions. PMID:24514884
Generation of gear tooth surfaces by application of CNC machines
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Chen, N. X.
1994-01-01
This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.
Weight optimization of plane truss using genetic algorithm
NASA Astrophysics Data System (ADS)
Neeraja, D.; Kamireddy, Thejesh; Santosh Kumar, Potnuru; Simha Reddy, Vijay
2017-11-01
Optimization of structure on basis of weight has many practical benefits in every engineering field. The efficiency is proportionally related to its weight and hence weight optimization gains prime importance. Considering the field of civil engineering, weight optimized structural elements are economical and easier to transport to the site. In this study, genetic optimization algorithm for weight optimization of steel truss considering its shape, size and topology aspects has been developed in MATLAB. Material strength and Buckling stability have been adopted from IS 800-2007 code of construction steel. The constraints considered in the present study are fabrication, basic nodes, displacements, and compatibility. Genetic programming is a natural selection search technique intended to combine good solutions to a problem from many generations to improve the results. All solutions are generated randomly and represented individually by a binary string with similarities of natural chromosomes, and hence it is termed as genetic programming. The outcome of the study is a MATLAB program, which can optimise a steel truss and display the optimised topology along with element shapes, deflections, and stress results.
Computer-oriented synthesis of wide-band non-uniform negative resistance amplifiers
NASA Technical Reports Server (NTRS)
Branner, G. R.; Chan, S.-P.
1975-01-01
This paper presents a synthesis procedure which provides design values for broad-band amplifiers using non-uniform negative resistance devices. Employing a weighted least squares optimization scheme, the technique, based on an extension of procedures for uniform negative resistance devices, is capable of providing designs for a variety of matching network topologies. It also provides, for the first time, quantitative results for predicting the effects of parameter element variations on overall amplifier performance. The technique is also unique in that it employs exact partial derivatives for optimization and sensitivity computation. In comparison with conventional procedures, significantly improved broad-band designs are shown to result.
Aperiodic topological order in the domain configurations of functional materials
NASA Astrophysics Data System (ADS)
Huang, Fei-Ting; Cheong, Sang-Wook
2017-03-01
In numerous functional materials, such as steels, ferroelectrics and magnets, new functionalities can be achieved through the engineering of the domain structures, which are associated with the ordering of certain parameters within the material. The recent progress in technologies that enable imaging at atomic-scale spatial resolution has transformed our understanding of domain topology, revealing that, along with simple stripe-like or irregularly shaped domains, intriguing vortex-type topological domain configurations also exist. In this Review, we present a new classification scheme of 'Zm Zn domains with Zl vortices' for 2D macroscopic domain structures with m directional variants and n translational antiphases. This classification, together with the concepts of topological protection and topological charge conservation, can be applied to a wide range of materials, such as multiferroics, improper ferroelectrics, layered transition metal dichalcogenides and magnetic superconductors, as we discuss using selected examples. The resulting topological considerations provide a new basis for the understanding of the formation, kinetics, manipulation and property optimization of domains and domain boundaries in functional materials.
The impact of the topology on cascading failures in a power grid model
NASA Astrophysics Data System (ADS)
Koç, Yakup; Warnier, Martijn; Mieghem, Piet Van; Kooij, Robert E.; Brazier, Frances M. T.
2014-05-01
Cascading failures are one of the main reasons for large scale blackouts in power transmission grids. Secure electrical power supply requires, together with careful operation, a robust design of the electrical power grid topology. Currently, the impact of the topology on grid robustness is mainly assessed by purely topological approaches, that fail to capture the essence of electric power flow. This paper proposes a metric, the effective graph resistance, to relate the topology of a power grid to its robustness against cascading failures by deliberate attacks, while also taking the fundamental characteristics of the electric power grid into account such as power flow allocation according to Kirchhoff laws. Experimental verification on synthetic power systems shows that the proposed metric reflects the grid robustness accurately. The proposed metric is used to optimize a grid topology for a higher level of robustness. To demonstrate its applicability, the metric is applied on the IEEE 118 bus power system to improve its robustness against cascading failures.
Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks
Robinson, Y. Harold; Rajaram, M.
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966
NASA Technical Reports Server (NTRS)
Sensmeier, Mark D.; Samareh, Jamshid A.
2005-01-01
An approach is proposed for the application of rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process. This should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. A demonstration of this process is shown for two sample aircraft wing designs.
Robustness of Topological Superconductivity in Solid State Hybrid Structures
NASA Astrophysics Data System (ADS)
Sitthison, Piyapong
The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM (TI) states at the interface. In turn, this amplitude is strongly impacted by electrostatic effects. In addition, these effects control the value of the chemical potential in the nanowire (nanoribbon), as well as the strength of the Rashba-type spin-orbit coupling - two key parameters that determine the stability of the topological superconducting phase. To account for these critical effects, a numerically efficient Poisson-Schrodinger scheme is developed.
Does the choice of nucleotide substitution models matter topologically?
Hoff, Michael; Orf, Stefan; Riehm, Benedikt; Darriba, Diego; Stamatakis, Alexandros
2016-03-24
In the context of a master level programming practical at the computer science department of the Karlsruhe Institute of Technology, we developed and make available an open-source code for testing all 203 possible nucleotide substitution models in the Maximum Likelihood (ML) setting under the common Akaike, corrected Akaike, and Bayesian information criteria. We address the question if model selection matters topologically, that is, if conducting ML inferences under the optimal, instead of a standard General Time Reversible model, yields different tree topologies. We also assess, to which degree models selected and trees inferred under the three standard criteria (AIC, AICc, BIC) differ. Finally, we assess if the definition of the sample size (#sites versus #sites × #taxa) yields different models and, as a consequence, different tree topologies. We find that, all three factors (by order of impact: nucleotide model selection, information criterion used, sample size definition) can yield topologically substantially different final tree topologies (topological difference exceeding 10 %) for approximately 5 % of the tree inferences conducted on the 39 empirical datasets used in our study. We find that, using the best-fit nucleotide substitution model may change the final ML tree topology compared to an inference under a default GTR model. The effect is less pronounced when comparing distinct information criteria. Nonetheless, in some cases we did obtain substantial topological differences.
Shape Optimization by Bayesian-Validated Computer-Simulation Surrogates
NASA Technical Reports Server (NTRS)
Patera, Anthony T.
1997-01-01
A nonparametric-validated, surrogate approach to optimization has been applied to the computational optimization of eddy-promoter heat exchangers and to the experimental optimization of a multielement airfoil. In addition to the baseline surrogate framework, a surrogate-Pareto framework has been applied to the two-criteria, eddy-promoter design problem. The Pareto analysis improves the predictability of the surrogate results, preserves generality, and provides a means to rapidly determine design trade-offs. Significant contributions have been made in the geometric description used for the eddy-promoter inclusions as well as to the surrogate framework itself. A level-set based, geometric description has been developed to define the shape of the eddy-promoter inclusions. The level-set technique allows for topology changes (from single-body,eddy-promoter configurations to two-body configurations) without requiring any additional logic. The continuity of the output responses for input variations that cross the boundary between topologies has been demonstrated. Input-output continuity is required for the straightforward application of surrogate techniques in which simplified, interpolative models are fitted through a construction set of data. The surrogate framework developed previously has been extended in a number of ways. First, the formulation for a general, two-output, two-performance metric problem is presented. Surrogates are constructed and validated for the outputs. The performance metrics can be functions of both outputs, as well as explicitly of the inputs, and serve to characterize the design preferences. By segregating the outputs and the performance metrics, an additional level of flexibility is provided to the designer. The validated outputs can be used in future design studies and the error estimates provided by the output validation step still apply, and require no additional appeals to the expensive analysis. Second, a candidate-based a posteriori error analysis capability has been developed which provides probabilistic error estimates on the true performance for a design randomly selected near the surrogate-predicted optimal design.
Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
NASA Astrophysics Data System (ADS)
Kulli, V. R.; Stone, Branden; Wang, Shaohui; Wei, Bing
2017-05-01
Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.
2006-12-01
subsystem that drives the active materials to achieve the desired shape changes. As opposed to fixed wing structures in which the aerodynamic and...structures and aerodynamics occur in conjunction with the active material and electronic subsystem interactions that involve transfer of energy from a source...which the aerodynamic and structure integration for the entire wing is the most important interaction mechanism, in the case of a morphing wing
Evolving neural networks through augmenting topologies.
Stanley, Kenneth O; Miikkulainen, Risto
2002-01-01
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.
Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
Hartenfeller, Markus; Proschak, Ewgenij; Schüller, Andreas; Schneider, Gisbert
2008-07-01
We present a fast stochastic optimization algorithm for fragment-based molecular de novo design (COLIBREE, Combinatorial Library Breeding). The search strategy is based on a discrete version of particle swarm optimization. Molecules are represented by a scaffold, which remains constant during optimization, and variable linkers and side chains. Different linkers represent virtual chemical reactions. Side-chain building blocks were obtained from pseudo-retrosynthetic dissection of large compound databases. Here, ligand-based design was performed using chemically advanced template search (CATS) topological pharmacophore similarity to reference ligands as fitness function. A weighting scheme was included for particle swarm optimization-based molecular design, which permits the use of many reference ligands and allows for positive and negative design to be performed simultaneously. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor subtype-selective agonists. The results demonstrate the ability of the technique to cope with large combinatorial chemistry spaces and its applicability to focused library design. The technique was able to perform exploitation of a known scheme and at the same time explorative search for novel ligands within the framework of a given molecular core structure. It thereby represents a practical solution for compound screening in the early hit and lead finding phase of a drug discovery project.
NASA Astrophysics Data System (ADS)
Szczepanik, M.; Poteralski, A.
2016-11-01
The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
Roy, Dipankar; Pohl, Gabor; Ali-Torres, Jorge; Marianski, Mateusz; Dannenberg, J. J.
2012-01-01
We present a new classification of β-turns specific to antiparallel β-sheets based upon the topology of H-bond formation. This classification results from ONIOM calculations using B3LYP/D95** DFT and AM1 semiempirical calculations as the high and low levels respectively. We chose acetyl(Ala)6NH2 as a model system as it is the simplest all alanine system that can form all the H-bonds required for a β-turn in a sheet. Of the ten different conformation we have found, the most stable structures have C7 cyclic H-bonds in place of the C10 interactions specified in the classic definition. Also, the chiralities specified for the i+1st and i+2nd residues in the classic definition disappear when the structures are optimized using our techniques, as the energetic differences between the four diastereomers of each structure are not substantial for eight of the ten conformations. PMID:22731966
Roy, Dipankar; Pohl, Gabor; Ali-Torres, Jorge; Marianski, Mateusz; Dannenberg, J J
2012-07-10
We present a new classification of β-turns specific to antiparallel β-sheets based upon the topology of H-bond formation. This classification results from ONIOM calculations using B3LYP/D95** density functional theory and AM1 semiempirical calculations as the high and low levels, respectively. We chose acetyl(Ala)(6)NH(2) as a model system as it is the simplest all-alanine system that can form all the H-bonds required for a β-turn in a sheet. Of the 10 different conformations we have found, the most stable structures have C(7) cyclic H-bonds in place of the C(10) interactions specified in the classic definition. Also, the chiralities specified for residues i + 1 and i + 2 in the classic definition disappear when the structures are optimized using our techniques, as the energetic differences among the four diastereomers of each structure are not substantial for 8 of the 10 conformations.
Power Electronics for a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.
1997-01-01
A 0.3 kW Power Processing Unit (PPU) was designed, tested on resistive loads, and then integrated with a miniaturized arcjet. The main goal of the design was to minimize size and mass while maintaining reasonable efficiency. In order to obtain the desired reductions in mass, simple topologies and control methods were considered. The PPU design incorporates a 50 kHz, current-mode-control, pulse-width-modulated (PWM), push-pull topology. An input voltage of 28 +/- 4V was chosen for compatibility with typical unregulated low voltage busses anticipated for smallsats. An efficiency of 0.90 under nominal operating conditions was obtained. The component mass of the PPU was 0.475 kg and could be improved by optimization of the output filter design. The estimated mass for a flight PPU based on this design is less than a kilogram.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Modiano, David; Colella, Phillip
1994-01-01
A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.
Optimal design of a microgripper-type actuator based on AlN/Si heterogeneous bimorph
NASA Astrophysics Data System (ADS)
Ruiz, D.; Díaz-Molina, A.; Sigmund, O.; Donoso, A.; Bellido, J. C.; Sánchez-Rojas, J. L.
2017-05-01
This work presents a systematic procedure to design piezoelectrically actuated microgrippers. Topology optimization combined with optimal design of electrodes is used to maximize the displacement at the output port of the gripper. The fabrication at the microscale leads us to overcome an important issue: the difficulty of placing a piezoelectric film on both top and bottom of the host layer. Due to the non-symmetric lamination of the structure, an out-of-plane bending spoils the behaviour of the gripper. Suppression of this out-of-plane deformation is the main novelty introduced. In addition, a robust formulation approach is used in order to control the length scale in the whole domain and to reduce sensitivity of the designs to small manufacturing errors.
Continuum topology optimization considering uncertainties in load locations based on the cloud model
NASA Astrophysics Data System (ADS)
Liu, Jie; Wen, Guilin
2018-06-01
Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.
A coherent Ising machine for 2000-node optimization problems
NASA Astrophysics Data System (ADS)
Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki
2016-11-01
The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.
Evolutionary Optimization of Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.
2001-01-01
Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.
Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor.
Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining
2017-01-28
Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system.
Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor
Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining
2017-01-01
Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system. PMID:28134854
Geometric constraints for shape and topology optimization in architectural design
NASA Astrophysics Data System (ADS)
Dapogny, Charles; Faure, Alexis; Michailidis, Georgios; Allaire, Grégoire; Couvelas, Agnes; Estevez, Rafael
2017-06-01
This work proposes a shape and topology optimization framework oriented towards conceptual architectural design. A particular emphasis is put on the possibility for the user to interfere on the optimization process by supplying information about his personal taste. More precisely, we formulate three novel constraints on the geometry of shapes; while the first two are mainly related to aesthetics, the third one may also be used to handle several fabrication issues that are of special interest in the device of civil structures. The common mathematical ingredient to all three models is the signed distance function to a domain, and its sensitivity analysis with respect to perturbations of this domain; in the present work, this material is extended to the case where the ambient space is equipped with an anisotropic metric tensor. Numerical examples are discussed in two and three space dimensions.
NASA Astrophysics Data System (ADS)
Alegria Mira, Lara; Thrall, Ashley P.; De Temmerman, Niels
2016-02-01
Deployable scissor structures are well equipped for temporary and mobile applications since they are able to change their form and functionality. They are structural mechanisms that transform from a compact state to an expanded, fully deployed configuration. A barrier to the current design and reuse of scissor structures, however, is that they are traditionally designed for a single purpose. Alternatively, a universal scissor component (USC)-a generalized element which can achieve all traditional scissor types-introduces an opportunity for reuse in which the same component can be utilized for different configurations and spans. In this article, the USC is optimized for structural performance. First, an optimized length for the USC is determined based on a trade-off between component weight and structural performance (measured by deflections). Then, topology optimization, using the simulated annealing algorithm, is implemented to determine a minimum weight layout of beams within a single USC component.
Ołdziej, S; Czaplewski, C; Liwo, A; Chinchio, M; Nanias, M; Vila, J A; Khalili, M; Arnautova, Y A; Jagielska, A; Makowski, M; Schafroth, H D; Kaźmierkiewicz, R; Ripoll, D R; Pillardy, J; Saunders, J A; Kang, Y K; Gibson, K D; Scheraga, H A
2005-05-24
Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of alpha and alpha+beta proteins [60-70 residues with C(alpha) rms deviation (rmsd) <6 A]. However, for alpha+beta proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two alpha and three alpha+beta, with sizes of 53-235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue alpha+beta protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-A C(alpha) rmsd. So far this protein is the largest alpha+beta protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly alpha-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 A rmsd, except the 32 C-terminal residues, most of which form a beta-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction.
Liu, Xiao; Guan, Jianan; Lai, Guanghong; Wang, Ziming; Zhu, Jie; Cui, Suping; Lan, Mingzhang; Li, Huiqun
2017-10-15
A novel star-shaped polycarboxylate superplasticizer (SPCE) was synthesized through a simple two-step method. 1 H Nuclear Magnetic Resonance ( 1 H NMR) and Infrared Spectroscopy (IR) measurements were used for structural characterization. SPCE and comb-shaped polycarboxylate superplasticizer (CPCE) with same molecular weights were designed and synthesized. The cement paste containing SPCE exhibited better fluidity, fluidity retention, water reduction, 25% lower saturated dosage of PCE, 10% longer setting time, lower hydration heat, more delayed hydration heat evolution and lower amount of hydration products at early ages. Furthermore, the adsorption behavior of SPCE and CPCE in cement pastes and the zeta potential were investigated, and then the working mechanism of SPCE was theoretically explained. It is interesting that changing topological structure from comb-shape to star-shape can achieve the optimization of dispersion effect, and further improve the working effectiveness. The aims of this study are to provide a new avenue to synthesize superplasticizer with novel structure achieving the chemical diversity of superplasticizer structure, and to verify the contribution of optimizing molecular shape. This new type of superplasticizer can be used as a rheology modifying agent in fresh cement-based materials. Copyright © 2017 Elsevier Inc. All rights reserved.
Consensus-based distributed cooperative learning from closed-loop neural control systems.
Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang
2015-02-01
In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.
Novel design configurations for permanent magnet wind generators
NASA Astrophysics Data System (ADS)
Chen, Yicheng
2004-12-01
The aim of this research is to search for optimal designs of permanent magnet (PM) wind generators of different topologies. The dissertation deals with the development of analytical design equations and formulas for PM wind generators of different topologies, including equivalent magnetic circuit model for magnets, calculation of leakage flux, influence of d-q axis armature reaction, flux waveform analysis, as well as performance verification. 3-D and simplified 2-D finite element analysis is used to enhance the design precision, by which analytical formulas are modified. A new and improved formula is proposed for lamination loss calculations, based on a large experimental data set provided by steel manufacturers. The temperature stability of NdFeB magnets is analyzed and some proposals for eliminating irreversible demagnetization are presented. Two existing experimental machines are used to validate the design equations. The genetic algorithms are used to investigate the multi-objective design optimization of PM wind generators for a high efficiency and light-weight design. The reasoning behind the selection of the objective functions, design variables and constraints are given as guidance for the PM wind generator optimum design. The implementation of the genetic algorithm is also given. A comparison of PM wind generators of different topologies is presented. Conclusions are drawn for topology selections of PM wind generators. The group of soft magnetic composites (SMC) has recently been expanded by the introduction of new materials with significantly improved frequency properties. This has made SMC a viable alternative to steel laminations for a range of new applications, especially axial-flux wind generators. The isotropic nature of the SMC combined with the unique shaping possibilities opens up new design solutions for axial-flux wind generators. Through careful design, an axial-flux PM wind generator with SMC core is built and tested, demonstrating the advantages of better performance, reduced size and weight, fewer parts and lower cost.
Phase transitions in Pareto optimal complex networks
NASA Astrophysics Data System (ADS)
Seoane, Luís F.; Solé, Ricard
2015-09-01
The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.
Many-to-Many Multicast Routing Schemes under a Fixed Topology
Ding, Wei; Wang, Hongfa; Wei, Xuerui
2013-01-01
Many-to-many multicast routing can be extensively applied in computer or communication networks supporting various continuous multimedia applications. The paper focuses on the case where all users share a common communication channel while each user is both a sender and a receiver of messages in multicasting as well as an end user. In this case, the multicast tree appears as a terminal Steiner tree (TeST). The problem of finding a TeST with a quality-of-service (QoS) optimization is frequently NP-hard. However, we discover that it is a good idea to find a many-to-many multicast tree with QoS optimization under a fixed topology. In this paper, we are concerned with three kinds of QoS optimization objectives of multicast tree, that is, the minimum cost, minimum diameter, and maximum reliability. All of three optimization problems are distributed into two types, the centralized and decentralized version. This paper uses the dynamic programming method to devise an exact algorithm, respectively, for the centralized and decentralized versions of each optimization problem. PMID:23589706
2016-04-01
DEVELOPING TOPOLOGICAL INSULATOR FIBER BASED PHOTON PAIRS SOURCE FOR ULTRAFAST OPTOELECTRONIC APPLICATIONS NORTHWESTERN UNIVERSITY...REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) APRIL 2015 – DEC 2015 4. TITLE AND SUBTITLE DEVELOPING TOPOLOGICAL INSULATOR FIBER BASED...in developing a new source for the production of correlated/entangled photon pairs based on the unique nanolayer properties of topological insulator
NASA Astrophysics Data System (ADS)
Liang, Jinghua; Cheng, Long; Zhang, Jie; Liu, Huijun; Zhang, Zhenyu
2016-04-01
Using first-principles calculations and the Boltzmann theory, we explore the feasibility to maximize the thermoelectric figure of merit (ZT) of topological insulator Bi2Te3 films in the few-quintuple layer regime. We discover that the delicate competitions between the surface and bulk contributions, coupled with the overall quantum size effects, lead to a novel and generic non-monotonous dependence of ZT on the film thickness. In particular, when the system crosses into the topologically non-trivial regime upon increasing the film thickness, the much longer surface relaxation time associated with the robust nature of the topological surface states results in a maximal ZT value, which can be further optimized to ~2.0 under physically realistic conditions. We also reveal the appealing potential of bridging the long-standing ZT asymmetry of p- and n-type Bi2Te3 systems.Using first-principles calculations and the Boltzmann theory, we explore the feasibility to maximize the thermoelectric figure of merit (ZT) of topological insulator Bi2Te3 films in the few-quintuple layer regime. We discover that the delicate competitions between the surface and bulk contributions, coupled with the overall quantum size effects, lead to a novel and generic non-monotonous dependence of ZT on the film thickness. In particular, when the system crosses into the topologically non-trivial regime upon increasing the film thickness, the much longer surface relaxation time associated with the robust nature of the topological surface states results in a maximal ZT value, which can be further optimized to ~2.0 under physically realistic conditions. We also reveal the appealing potential of bridging the long-standing ZT asymmetry of p- and n-type Bi2Te3 systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00724d
Data Sciences Summer Institute Topology Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Seth
DSSI_TOPOPT is a 2D topology optimization code that designs stiff structures made of a single linear elastic material and void space. The code generates a finite element mesh of a rectangular design domain on which the user specifies displacement and load boundary conditions. The code iteratively designs a structure that minimizes the compliance (maximizes the stiffness) of the structure under the given loading, subject to an upper bound on the amount of material used. Depending on user options, the code can evaluate the performance of a user-designed structure, or create a design from scratch. Output includes the finite element mesh,more » design, and visualizations of the design.« less
Resiliently evolving supply-demand networks
NASA Astrophysics Data System (ADS)
Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.
2014-01-01
The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.
Solution of underdetermined systems of equations with gridded a priori constraints.
Stiros, Stathis C; Saltogianni, Vasso
2014-01-01
The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.
Enhanced collective influence: A paradigm to optimize network disruption
NASA Astrophysics Data System (ADS)
Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping
2017-04-01
The function of complex networks typically relies on the integrity of underlying structure. Sometimes, practical applications need to attack networks' function, namely inactivate and fragment networks' underlying structure. To effectively dismantle complex networks and regulate the function of them, a centrality measure, named CI (Morone and Makse, 2015), was proposed for node ranking. We observe that the performance of CI centrality in network disruption problem may deteriorate when it is used in networks with different topology properties. Specifically, the structural features of local network topology are overlooked in CI centrality, even though the local network topology of the nodes with a fixed CI value may have very different organization. To improve the ranking accuracy of CI, this paper proposes a variant ECI to CI by considering loop density and degree diversity of local network topology. And the proposed ECI centrality would degenerate into CI centrality with the reduction of the loop density and the degree diversity level. By comparing ECI with CI and classical centrality measures in both synthetic and real networks, the experimental results suggest that ECI can largely improve the performance of CI for network disruption. Based on the results, we analyze the correlation between the improvement and the properties of the networks. We find that the performance of ECI is positively correlated with assortative coefficient and community modularity and negatively correlated with degree inequality of networks, which can be used as guidance for practical applications.
NASA Astrophysics Data System (ADS)
Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun
2016-02-01
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices. Electronic supplementary information (ESI) available: Detailed computational method; structural data of T'' MoS2; DOS of the T'' MoS2 phase under different strains; orbital energy of T'' MoS2 under different strains; electronic structures for all other five MX2 in the T'' phase; edge states of T'' MoS2. See DOI: 10.1039/c5nr07715j
NASA Astrophysics Data System (ADS)
Wickenheiser, Adam; Garcia, Ephrahim
2010-04-01
In much of the vibration-based energy harvesting literature, devices are modeled, designed, and tested for dissipating energy across a resistive load at a single base excitation frequency. This paper presents several practical scenarios germane to tracking, sensing, and wireless communication on humans and land vehicles. Measured vibrational data from these platforms are used to provide a time-varying, broadband input to the energy harvesting system. Optimal power considerations are given for several circuit topologies, including a passive rectifier circuit and active, switching methods. Under various size and mass constraints, the optimal design is presented for two scenarios: walking and idling a car. The frequency response functions are given alongside time histories of the power harvested using the experimental base accelerations recorded. The issues involved in designing an energy harvester for practical (i.e. timevarying, non-sinusoidal) applications are discussed.
NASA Astrophysics Data System (ADS)
Dauphin, Alexandre; Tran, Duc-Thanh; Lewenstein, Maciej; Goldman, Nathan
2017-06-01
Topological band structures can be designed by subjecting lattice systems to time-periodic modulations, as was proposed for irradiated graphene, and recently demonstrated in two-dimensional (2D) ultracold gases and photonic crystals. However, changing the topological nature of Floquet Bloch bands from trivial to non-trivial, by progressively launching the time-modulation, is necessarily accompanied with gap-closing processes: this has important consequences for the loading of particles into a target Floquet band with non-trivial topology, and hence, on the subsequent measurements. In this work, we analyse how such loading sequences can be optimized in view of probing the topology of 2D Floquet bands through transport measurements. In particular, we demonstrate the robustness of center-of-mass responses, as compared to current responses, which present important irregularities due to an interplay between the micro-motion of the drive and inter-band interference effects. The results presented in this work illustrate how probing the center-of-mass displacement of atomic clouds offers a reliable method to detect the topology of Floquet bands, after realistic loading sequences.
Integrating genomics and proteomics data to predict drug effects using binary linear programming.
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be used to elucidate potential mechanisms of a compound's efficacy.
Householder transformations and optimal linear combinations
NASA Technical Reports Server (NTRS)
Decell, H. P., Jr.; Smiley, W., III
1974-01-01
Several theorems related to the Householder transformation and separability criteria are proven. Orthogonal transformations, topology, divergence, mathematical matrices, and group theory are discussed.
NASA Astrophysics Data System (ADS)
Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe
2018-05-01
In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.
Enabling Controlling Complex Networks with Local Topological Information.
Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene
2018-03-15
Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.
NASA Astrophysics Data System (ADS)
Radestock, Martin; Rose, Michael; Monner, Hans Peter
2017-04-01
In most aviation applications, a major cost benefit can be achieved by a reduction of the system weight. Often the acoustic properties of the fuselage structure are not in the focus of the primary design process, too. A final correction of poor acoustic properties is usually done using insulation mats in the chamber between the primary and secondary shell. It is plausible that a more sophisticated material distribution in that area can result in a substantially reduced weight. Topology optimization is a well-known approach to reduce material of compliant structures. In this paper an adaption of this method to acoustic problems is investigated. The gap full of insulation mats is suitably parameterized to achieve different material distributions. To find advantageous configurations, the objective in the underlying topology optimization is chosen to obtain good acoustic pressure patterns in the aircraft cabin. An important task in the optimization is an adequate Finite Element model of the system. This can usually not be obtained from commercially available programs due to the lack of special sensitivity data with respect to the design parameters. Therefore an appropriate implementation of the algorithm has been done, exploiting the vector and matrix capabilities in the MATLABQ environment. Finally some new aspects of the Finite Element implementation will also be presented, since they are interesting on its own and can be generalized to efficiently solve other partial differential equations as well.
Optimization of an electrokinetic mixer for microfluidic applications.
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P J
2012-06-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly.
Optimization of an electrokinetic mixer for microfluidic applications
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P. J.
2012-01-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly. PMID:22712034
NASA Astrophysics Data System (ADS)
Liu, Huijun; Liang, Jinghua; Cheng, Long; Zhang, Jie; Zhang, Zhenyu
Using first-principles calculations and Boltzmann theory, we explore the feasibility to maximize the thermoelectric figure of merit (ZT) of topological insulator Bi2Te3 films in the few-quintuple layer regime. We discover that the delicate competitions between the surface and bulk contributions, coupled with the overall quantum size effects, lead to a novel and generic non-monotonous dependence of ZT on the film thickness. In particular, when the system crosses into the topologically non-trivial regime upon increasing the film thickness, the much longer surface relaxation time associated with the robust nature of the topological surface states results in a maximal ZT value, which can be further optimized to ~2.0 under physically realistic conditions. We also reveal the appealing potential of bridging the long-standing ZT asymmetry of p- and n-type Bi2Te3 systems. These findings help to establish intricate connections between the thermoelectric materials and topological insulators.
A topology of mineralization and its meaning for prospecting
Neuerburg, G.J.
1982-01-01
Epigenetic mineral deposits are universal members of an orderly spatial and temporal arrangement of igneous rocks, endomorphic rocks, and hydrothermally altered rocks. The association and sequence of these rocks is invariant whereas the metric relations and configurations of the properties of these rocks are unlimited in variety. This characterization satisfies the doctrines of topology. Metric relations are statistical, and their modes are among the better guides to optimal areas for exploration. Metric configurations are graphically irregular and unpredictable mathematical surfaces like mountain topography. Each mineral edifice must be mapped to locate its mineral deposits. All measurements and observations are only positive or neutral for the occurrence of a mineral deposit. Effective prospecting is based on an increasing density of positive data with proximity to the mineral deposit. This means sampling for maximal numbers of positive data, pragmatically the highest ore-element assays at each site, by selecting rock showing maximal development of lode attributes.
Image segmentation based upon topological operators: real-time implementation case study
NASA Astrophysics Data System (ADS)
Mahmoudi, R.; Akil, M.
2009-02-01
In miscellaneous applications of image treatment, thinning and crest restoring present a lot of interests. Recommended algorithms for these procedures are those able to act directly over grayscales images while preserving topology. But their strong consummation in term of time remains the major disadvantage in their choice. In this paper we present an efficient hardware implementation on RISC processor of two powerful algorithms of thinning and crest restoring developed by our team. Proposed implementation enhances execution time. A chain of segmentation applied to medical imaging will serve as a concrete example to illustrate the improvements brought thanks to the optimization techniques in both algorithm and architectural levels. The particular use of the SSE instruction set relative to the X86_32 processors (PIV 3.06 GHz) will allow a best performance for real time processing: a cadency of 33 images (512*512) per second is assured.
Belaghzal, Houda; Dekker, Job; Gibcus, Johan H
2017-07-01
Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.
Skyrmions in magnetic multilayers
NASA Astrophysics Data System (ADS)
Jiang, Wanjun; Chen, Gong; Liu, Kai; Zang, Jiadong; te Velthuis, Suzanne G. E.; Hoffmann, Axel
2017-08-01
Symmetry breaking together with strong spin-orbit interaction gives rise to many exciting phenomena within condensed matter physics. A recent example is the existence of chiral spin textures, which are observed in magnetic systems lacking inversion symmetry. These chiral spin textures, including domain walls and magnetic skyrmions, are both fundamentally interesting and technologically promising. For example, they can be driven very efficiently by electrical currents, and exhibit many new physical properties determined by their real-space topological characteristics. Depending on the details of the competing interactions, these spin textures exist in different parameter spaces. However, the governing mechanism underlying their physical behaviors remains essentially the same. In this review article, the fundamental topological physics underlying these chiral spin textures, the key factors for materials optimization, and current developments and future challenges will be discussed. In the end, a few promising directions that will advance the development of skyrmion based spintronics will be highlighted.
NASA Astrophysics Data System (ADS)
Negi, Deepchand Singh; Pattamatta, Arvind
2015-04-01
The present study deals with shape optimization of dimples on the target surface in multi-jet impingement heat transfer. Bezier polynomial formulation is incorporated to generate profile shapes for the dimple profile generation and a multi-objective optimization is performed. The optimized dimple shape exhibits higher local Nusselt number values compared to the reference hemispherical dimpled plate optimized shape which can be used to alleviate local temperature hot spots on target surface.
Optimal Synthesis of Compliant Mechanisms using Subdivision and Commercial FEA (DETC2004-57497)
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Canfield, Stephen
2004-01-01
The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parameterization through control points and adding another step to the process, that of subdivision. The control points allow a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C(sup 2) continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of some traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parameterization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the proposed compliant mechanism design process and will demonstrate the procedure on several examples common in the literature.
Optimal control strategy for a novel computer virus propagation model on scale-free networks
NASA Astrophysics Data System (ADS)
Zhang, Chunming; Huang, Haitao
2016-06-01
This paper aims to study the combined impact of reinstalling system and network topology on the spread of computer viruses over the Internet. Based on scale-free network, this paper proposes a novel computer viruses propagation model-SLBOSmodel. A systematic analysis of this new model shows that the virus-free equilibrium is globally asymptotically stable when its spreading threshold is less than one; nevertheless, it is proved that the viral equilibrium is permanent if the spreading threshold is greater than one. Then, the impacts of different model parameters on spreading threshold are analyzed. Next, an optimally controlled SLBOS epidemic model on complex networks is also studied. We prove that there is an optimal control existing for the control problem. Some numerical simulations are finally given to illustrate the main results.
NASA Astrophysics Data System (ADS)
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Wang, Hao; Dong, Xinglong; Lin, Junzhong; ...
2018-05-01
As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr 6O 4(OH) 4(bptc) 3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr 6O 4(OH) 8(H 2O) 4(abtc) 2, ismore » capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.« less
NASA Astrophysics Data System (ADS)
Jukić, Marijana; Rastija, Vesna; Opačak-Bernardi, Teuta; Stolić, Ivana; Krstulović, Luka; Bajić, Miroslav; Glavaš-Obrovac, Ljubica
2017-04-01
The aim of this study was to evaluate nine newly synthesized amidine derivatives of 3,4- ethylenedioxythiophene (3,4-EDOT) for their cytotoxic activity against a panel of human cancer cell lines and to perform a quantitative structure-activity relationship (QSAR) analysis for the antitumor activity of a total of 27 3,4-ethylenedioxythiophene derivatives. Induction of apoptosis was investigated on the selected compounds, along with delivery options for the optimization of activity. The best obtained QSAR models include the following group of descriptors: BCUT, WHIM, 2D autocorrelations, 3D-MoRSE, GETAWAY descriptors, 2D frequency fingerprint and information indices. Obtained QSAR models should be relieved in elucidation of important physicochemical and structural requirements for this biological activity. Highly potent molecules have a symmetrical arrangement of substituents along the x axis, high frequency of distance between N and O atoms at topological distance 9, as well as between C and N atoms at topological distance 10, and more C atoms located at topological distances 6 and 3. Based on the conclusion given in the QSAR analysis, a new compound with possible great activity was proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Dong, Xinglong; Lin, Junzhong
As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr 6O 4(OH) 4(bptc) 3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr 6O 4(OH) 8(H 2O) 4(abtc) 2, ismore » capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.« less
Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG
NASA Astrophysics Data System (ADS)
Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu
2016-12-01
Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Katherine L.; Ambler, Catherine M.; Anderson, David R.
Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.
NASA Astrophysics Data System (ADS)
Shang, Zhen; Sui, Yun-Kang
2012-12-01
Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.
2012-03-22
the fraction of the design space to be filled with material (termed “volume fraction”), and any other desired design restrictions such as a ...topology problem is called a distributed parameter system because the design variables represent a field or continuum with infinite degrees of freedom... with the addition of a few solutions that were a combination of honeycomb and fiber cells. Unlike
Joint Optimal Placement and Energy Allocation of Underwater Sensors in a Tree Topology
2014-03-10
underwater acoustic sensor nodes with respect to the capacity of the wireless links between the... underwater acoustic sensor nodes with respect to the capacity of the wireless links between the nodes. We assumed that the energy consumption of...nodes’ optimal placements. We achieve the optimal placement of the underwater acoustic sensor nodes with respect to the capacity of the wireless
Optoelectronic devices, plasmonics, and photonics with topological insulators
NASA Astrophysics Data System (ADS)
Politano, Antonio; Viti, Leonardo; Vitiello, Miriam S.
2017-03-01
Topological insulators are innovative materials with semiconducting bulk together with surface states forming a Dirac cone, which ensure metallic conduction in the surface plane. Therefore, topological insulators represent an ideal platform for optoelectronics and photonics. The recent progress of science and technology based on topological insulators enables the exploitation of their huge application capabilities. Here, we review the recent achievements of optoelectronics, photonics, and plasmonics with topological insulators. Plasmonic devices and photodetectors based on topological insulators in a wide energy range, from terahertz to the ultraviolet, promise outstanding impact. Furthermore, the peculiarities, the range of applications, and the challenges of the emerging fields of topological photonics and thermo-plasmonics are discussed.
Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.
Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William
2017-02-03
Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Research on Robustness of Tree-based P2P Streaming
NASA Astrophysics Data System (ADS)
Chu, Chen; Yan, Jinyao; Ding, Kuangzheng; Wang, Xi
Research on P2P streaming media is a hot topic in the area of Internet technology. It has emerged as a promising technique. This new paradigm brings a number of unique advantages such as scalability, resilience and also effectiveness in coping with dynamics and heterogeneity. However, There are also many problems in P2P streaming media systems using traditional tree-based topology such as the bandwidth limits between parents and child nodes; node's joining or leaving has a great effect on robustness of tree-based topology. This paper will introduce a method of measuring the robustness of tree-based topology: using network measurement, we observe and record the bandwidth between all the nodes, analyses the correlation between all the sibling flows, measure the robustness of tree-based topology. And the result shows that in the Tree-based topology, the different links which have similar routing paths would share the bandwidth bottleneck, reduce the robustness of the Tree-based topology.
Permanent magnet design for magnetic heat pumps using total cost minimization
NASA Astrophysics Data System (ADS)
Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.
2017-11-01
The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.
Immersed Boundary Methods for Optimization of Strongly Coupled Fluid-Structure Systems
NASA Astrophysics Data System (ADS)
Jenkins, Nicholas J.
Conventional methods for design of tightly coupled multidisciplinary systems, such as fluid-structure interaction (FSI) problems, traditionally rely on manual revisions informed by a loosely coupled linearized analysis. These approaches are both inaccurate for a multitude of applications, and they require an intimate understanding of the assumptions and limitations of the procedure in order to soundly optimize the design. Computational optimization, in particular topology optimization, has been shown to yield remarkable results for problems in solid mechanics using density interpolations schemes. In the context of FSI, however, well defined boundaries play a key role in both the design problem and the mechanical model. Density methods neither accurately represent the material boundary, nor provide a suitable platform to apply appropriate interface conditions. This thesis presents a new framework for shape and topology optimization of FSI problems that uses for the design problem the Level Set method (LSM) to describe the geometry evolution in the optimization process. The Extended Finite Element method (XFEM) is combined with a fictitiously deforming fluid domain (stationary arbitrary Lagrangian-Eulerian method) to predict the FSI response. The novelty of the proposed approach lies in the fact that the XFEM explicitly captures the material boundary defined by the level set iso-surface. Moreover, the XFEM provides a means to discretize the governing equations, and weak immersed boundary conditions are applied with Nitsche's Method to couple the fields. The flow is predicted by the incompressible Navier-Stokes equations, and a finite-deformation solid model is developed and tested for both hyperelastic and linear elastic problems. Transient and stationary numerical examples are presented to validate the FSI model and numerical solver approach. Pertaining to the optimization of FSI problems, the parameters of the discretized level set function are defined as explicit functions of the optimization variables, and the parameteric optimization problem is solved by nonlinear programming methods. The gradients of the objective and constrains are computed by the adjoint method for the global monolithic fluid-solid system. Two types of design problems are explored for optimization of the fluid-structure response: 1) the internal structural topology is varied, preserving the fluid-solid interface geometry, and 2) the fluid-solid interface is manipulated directly, which leads to simultaneously configuring both internal structural topology and outer mold shape. The numerical results show that the LSM-XFEM approach is well suited for designing practical applications, while at the same time reducing the requirement on highly refined mesh resolution compared to traditional density methods. However, these results also emphasize the need for a more robust embedded boundary condition framework. Further, the LSM can exhibit greater dependence on initial design seeding, and can impede design convergence. In particular for the strongly coupled FSI analysis developed here, the thinning and eventual removal of structural members can cause jumps in the evolution of the optimization functions.
Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems
NASA Astrophysics Data System (ADS)
Hu, Hao
Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and spiral topologies or 3-D structures, lower the operating frequency of SCMR systems, thereby reducing their size. Finally, SCMR systems are discussed and designed for various applications, such as biomedical devices and simultaneous powering of multiple devices.
Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.
Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele
2018-01-01
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
NASA Astrophysics Data System (ADS)
Chen, Chunfeng; Liu, Hua; Fan, Ge
2005-02-01
In this paper we consider the problem of designing a network of optical cross-connects(OXCs) to provide end-to-end lightpath services to label switched routers (LSRs). Like some previous work, we select the number of OXCs as our objective. Compared with the previous studies, we take into account the fault-tolerant characteristic of logical topology. First of all, using a Prufer number randomly generated, we generate a tree. By adding some edges to the tree, we can obtain a physical topology which consists of a certain number of OXCs and fiber links connecting OXCs. It is notable that we for the first time limit the number of layers of the tree produced according to the method mentioned above. Then we design the logical topologies based on the physical topologies mentioned above. In principle, we will select the shortest path in addition to some consideration on the load balancing of links and the limitation owing to the SRLG. Notably, we implement the routing algorithm for the nodes in increasing order of the degree of the nodes. With regarding to the problem of the wavelength assignment, we adopt the heuristic algorithm of the graph coloring commonly used. It is clear our problem is computationally intractable especially when the scale of the network is large. We adopt the taboo search algorithm to find the near optimal solution to our objective. We present numerical results for up to 1000 LSRs and for a wide range of system parameters such as the number of wavelengths supported by each fiber link and traffic. The results indicate that it is possible to build large-scale optical networks with rich connectivity in a cost-effective manner, using relatively few but properly dimensioned OXCs.
Electrically tunable robust edge states in graphene-based topological photonic crystal slabs
NASA Astrophysics Data System (ADS)
Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu
2018-03-01
Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.
NASA Astrophysics Data System (ADS)
Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang
Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).
Topology optimization of embedded piezoelectric actuators considering control spillover effects
NASA Astrophysics Data System (ADS)
Gonçalves, Juliano F.; De Leon, Daniel M.; Perondi, Eduardo A.
2017-02-01
This article addresses the problem of active structural vibration control by means of embedded piezoelectric actuators. The topology optimization method using the solid isotropic material with penalization (SIMP) approach is employed in this work to find the optimum design of actuators taken into account the control spillover effects. A coupled finite element model of the structure is derived assuming a two-phase material and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The undesirable effects of the feedback control on the residual modes are limited by including a spillover constraint term containing the residual controllability Gramian eigenvalues. The optimization of the shape and placement of the conventionally embedded piezoelectric actuators are performed using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the additional constraint.
Statistics of optical vortex wander on propagation through atmospheric turbulence.
Gu, Yalong
2013-04-01
The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.
El-Kady, Ihab F.; Reinke, Charles M.
2017-07-18
The topology of the elements of a metamaterial can be engineered from its desired electromagnetic constitutive tensor using an inverse group theory method. Therefore, given a desired electromagnetic response and a generic metamaterial elemental design, group theory is applied to predict the various ways that the element can be arranged in three dimensions to produce the desired functionality. An optimizer can then be applied to an electromagnetic modeling tool to fine tune the values of the electromagnetic properties of the resulting metamaterial topology.
Wang, Xiaojian; Xu, Shanqing; Zhou, Shiwei; Xu, Wei; Leary, Martin; Choong, Peter; Qian, M; Brandt, Milan; Xie, Yi Min
2016-03-01
One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Topological properties of robust biological and computational networks
Navlakha, Saket; He, Xin; Faloutsos, Christos; Bar-Joseph, Ziv
2014-01-01
Network robustness is an important principle in biology and engineering. Previous studies of global networks have identified both redundancy and sparseness as topological properties used by robust networks. By focusing on molecular subnetworks, or modules, we show that module topology is tightly linked to the level of environmental variability (noise) the module expects to encounter. Modules internal to the cell that are less exposed to environmental noise are more connected and less robust than external modules. A similar design principle is used by several other biological networks. We propose a simple change to the evolutionary gene duplication model which gives rise to the rich range of module topologies observed within real networks. We apply these observations to evaluate and design communication networks that are specifically optimized for noisy or malicious environments. Combined, joint analysis of biological and computational networks leads to novel algorithms and insights benefiting both fields. PMID:24789562
Adiabatic photo-steering theory in topological insulators.
Inoue, Jun-Ichi
2014-12-01
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.
Adiabatic photo-steering theory in topological insulators
NASA Astrophysics Data System (ADS)
Inoue, Jun-ichi
2014-12-01
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.
Free-fermion descriptions of parafermion chains and string-net models
NASA Astrophysics Data System (ADS)
Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.
2018-03-01
Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.
Comparative genomics meets topology: a novel view on genome median and halving problems.
Alexeev, Nikita; Avdeyev, Pavel; Alekseyev, Max A
2016-11-11
Genome median and genome halving are combinatorial optimization problems that aim at reconstruction of ancestral genomes by minimizing the number of evolutionary events between them and genomes of the extant species. While these problems have been widely studied in past decades, their solutions are often either not efficient or not biologically adequate. These shortcomings have been recently addressed by restricting the problems solution space. We show that the restricted variants of genome median and halving problems are, in fact, closely related. We demonstrate that these problems have a neat topological interpretation in terms of embedded graphs and polygon gluings. We illustrate how such interpretation can lead to solutions to these problems in particular cases. This study provides an unexpected link between comparative genomics and topology, and demonstrates advantages of solving genome median and halving problems within the topological framework.
Luongo, Francisco J.; Zimmerman, Chris A.; Horn, Meryl E.
2016-01-01
Sequential patterns of prefrontal activity are believed to mediate important behaviors, e.g., working memory, but it remains unclear exactly how they are generated. In accordance with previous studies of cortical circuits, we found that prefrontal microcircuits in young adult mice spontaneously generate many more stereotyped sequences of activity than expected by chance. However, the key question of whether these sequences depend on a specific functional organization within the cortical microcircuit, or emerge simply as a by-product of random interactions between neurons, remains unanswered. We observed that correlations between prefrontal neurons do follow a specific functional organization—they have a small-world topology. However, until now it has not been possible to directly link small-world topologies to specific circuit functions, e.g., sequence generation. Therefore, we developed a novel analysis to address this issue. Specifically, we constructed surrogate data sets that have identical levels of network activity at every point in time but nevertheless represent various network topologies. We call this method shuffling activity to rearrange correlations (SHARC). We found that only surrogate data sets based on the actual small-world functional organization of prefrontal microcircuits were able to reproduce the levels of sequences observed in actual data. As expected, small-world data sets contained many more sequences than surrogate data sets with randomly arranged correlations. Surprisingly, small-world data sets also outperformed data sets in which correlations were maximally clustered. Thus the small-world functional organization of cortical microcircuits, which effectively balances the random and maximally clustered regimes, is optimal for producing stereotyped sequential patterns of activity. PMID:26888108
La conception, la modelisation et la simulation du systeme VSC-HVDC offshore
NASA Astrophysics Data System (ADS)
Benhalima, Seghir
Wind energy is recognized worldwide as a proven technology to meet the growing demands of green sustainable energy. To exploit this stochastic energy source and put together with the conventional energy sources without affecting the performance of existing electrical grids, several research projects have been achieved. In addition, at ocean level, wind energy has a great potential. It means that the production of this energy will increase in the world. The optimal extraction of this energy source needs to be connected to the grid via a voltage source converter which plays the role of interface. To minimise losses due to the transport of energy at very long distances, the technology called High Voltage Direct Current based on Voltage Source Converter (VSC-HVDC) is used. To achieve this goal, a new topology is designed with a new control algorithm based on control of power generated by the wind farm, the DC voltage regulation and the synchronization between wind farm and VSC-HVDC (based on NPC). The proposed topology and its control technique are validated using the "MATLAB/Simulink program". The results are promising, because the THD is less than 5% and the power factor is close to one.
Hayat, Maqsood; Tahir, Muhammad
2015-08-01
Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins.
Neural mechanism of optimal limb coordination in crustacean swimming
Zhang, Calvin; Guy, Robert D.; Mulloney, Brian; Zhang, Qinghai; Lewis, Timothy J.
2014-01-01
A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior. PMID:25201976
SpaRibs Geometry Parameterization for Wings with Multiple Sections using Single Design
NASA Technical Reports Server (NTRS)
De, Shuvodeep; Jrad, Mohamed; Locatelli, Davide; Kapania, Rakesh K.; Baker, Myles; Pak, Chan-Gi
2017-01-01
The SpaRibs topology of an aircraft wing has a significant effect on its structural behavior and stability as well as the flutter performance. The development of additive manufacturing techniques like Electron Beam Free Form Fabrication (EBF3) has made it feasible to manufacture aircraft wings with curvilinear spars, ribs (SpaRibs) and stiffeners. In this article a new global-local optimization framework for wing with multiple sections using curvilinear SpaRibs is described. A single design space is used to parameterize the SpaRibs geometry. This method has been implemented using MSC-PATRAN to create a broad range of SpaRibs topologies using limited number of parameters. It ensures C0 and C1 continuities in SpaRibs geometry at the junction of two wing sections with airfoil thickness gradient discontinuity as well as mesh continuity between all structural components. This method is advantageous in complex multi-disciplinary optimization due to its potential to reduce the number of design variables. For the global-local optimization the local panels are generated by an algorithm which is totally based on a set algebra on the connectivity matrix data. The great advantage of this method is that it is completely independent of the coordinates of the nodes of the finite element model. It is also independent of the order in which the elements are distributed in the FEM. The code is verified by optimizing of the CRM Baseline model at trim condition at Mach number equal to 0.85 for five different angle of attack (-2deg, 0deg,2deg,4deg and 6deg). The final weight of the wing is 19,090.61 lb. This value is comparable to that obtained by Qiang et al. 6 (19,269 lb).
Topology-dependent rationality and quantal response equilibria in structured populations
NASA Astrophysics Data System (ADS)
Roman, Sabin; Brede, Markus
2017-05-01
Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.
Topology-dependent rationality and quantal response equilibria in structured populations.
Roman, Sabin; Brede, Markus
2017-05-01
Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.
Xu, Yangli; Zhang, Dongyun; Zhou, Yan; Wang, Weidong; Cao, Xuanyang
2017-01-01
The combination of topology optimization (TOP) and selective laser melting (SLM) provides the possibility of fabricating the complex, lightweight and high performance geometries overcoming the traditional manufacturing “bottleneck”. This paper evaluates the biomechanical properties of porous structures with porosity from 40% to 80% and unit cell size from 2 to 8 mm, which are designed by TOP and manufactured by SLM. During manufacturability exploration, three typical structures including spiral structure, arched bridge structure and structures with thin walls and small holes are abstracted and investigated, analyzing their manufacturing limits and forming reason. The property tests show that dynamic elastic modulus and compressive strength of porous structures decreases with increases of porosity (constant unit cell size) or unit cell size (constant porosity). Based on the Gibson-Ashby model, three failure models are proposed to describe their compressive behavior, and the structural parameter λ is used to evaluate the stability of the porous structure. Finally, a numerical model for the correlation between porous structural parameters (unit cell size and porosity) and elastic modulus is established, which provides a theoretical reference for matching the elastic modulus of human bones from different age, gender and skeletal sites during innovative medical implant design and manufacturing. PMID:28880229
Xu, Yangli; Zhang, Dongyun; Zhou, Yan; Wang, Weidong; Cao, Xuanyang
2017-09-07
The combination of topology optimization (TOP) and selective laser melting (SLM) provides the possibility of fabricating the complex, lightweight and high performance geometries overcoming the traditional manufacturing "bottleneck". This paper evaluates the biomechanical properties of porous structures with porosity from 40% to 80% and unit cell size from 2 to 8 mm, which are designed by TOP and manufactured by SLM. During manufacturability exploration, three typical structures including spiral structure, arched bridge structure and structures with thin walls and small holes are abstracted and investigated, analyzing their manufacturing limits and forming reason. The property tests show that dynamic elastic modulus and compressive strength of porous structures decreases with increases of porosity (constant unit cell size) or unit cell size (constant porosity). Based on the Gibson-Ashby model, three failure models are proposed to describe their compressive behavior, and the structural parameter λ is used to evaluate the stability of the porous structure. Finally, a numerical model for the correlation between porous structural parameters (unit cell size and porosity) and elastic modulus is established, which provides a theoretical reference for matching the elastic modulus of human bones from different age, gender and skeletal sites during innovative medical implant design and manufacturing.
Characterizing the Elastic Behaviour of a Press Table through Topology Optimization
NASA Astrophysics Data System (ADS)
Pilthammar, J.; Sigvant, M.; Hansson, M.; Pálsson, E.; Rutgersson, W.
2017-09-01
Sheet metal forming in the car industry is a highly competitive area. The use of digital techniques and numerical methods are therefore of high interest for reduced costs and lead times. One method for reducing the try-out phase is virtual rework of die surfaces. The virtual rework is based on Finite Element (FE) simulations and can reduce and support manual rework. The elastic behaviour of dies and presses must be represented in a reliable way in FE-models to be able to perform virtual rework. CAD-models exists for nearly all dies today, but not for press lines. A full geometrical representation of presses will also yield very large FE- models. This paper will discuss and demonstrate a strategy for measuring and characterizing a press table for inclusion in FE-models. The measurements of the elastic press deformations is carried out with force transducers and an ARAMIS 3D optical measurement system. The press table is then inverse modelled by topology optimization using the recorded results as boundary conditions. Finally, the press table is coupled with a FE-model of a die to demonstrate its influence on the deformations. This indicates the importance of having a reliable representation of the press deformations during virtual rework.
MASTtreedist: visualization of tree space based on maximum agreement subtree.
Huang, Hong; Li, Yongji
2013-01-01
Phylogenetic tree construction process might produce many candidate trees as the "best estimates." As the number of constructed phylogenetic trees grows, the need to efficiently compare their topological or physical structures arises. One of the tree comparison's software tools, the Mesquite's Tree Set Viz module, allows the rapid and efficient visualization of the tree comparison distances using multidimensional scaling (MDS). Tree-distance measures, such as Robinson-Foulds (RF), for the topological distance among different trees have been implemented in Tree Set Viz. New and sophisticated measures such as Maximum Agreement Subtree (MAST) can be continuously built upon Tree Set Viz. MAST can detect the common substructures among trees and provide more precise information on the similarity of the trees, but it is NP-hard and difficult to implement. In this article, we present a practical tree-distance metric: MASTtreedist, a MAST-based comparison metric in Mesquite's Tree Set Viz module. In this metric, the efficient optimizations for the maximum weight clique problem are applied. The results suggest that the proposed method can efficiently compute the MAST distances among trees, and such tree topological differences can be translated as a scatter of points in two-dimensional (2D) space. We also provide statistical evaluation of provided measures with respect to RF-using experimental data sets. This new comparison module provides a new tree-tree pairwise comparison metric based on the differences of the number of MAST leaves among constructed phylogenetic trees. Such a new phylogenetic tree comparison metric improves the visualization of taxa differences by discriminating small divergences of subtree structures for phylogenetic tree reconstruction.
Optimizing Synchronization Stability of the Kuramoto Model in Complex Networks and Power Grids
NASA Astrophysics Data System (ADS)
Li, Bo; Wong, K. Y. Michael
Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial systems. For the Kuramoto model on general weighted networks, the synchronization stability, measured by the dominant Lyapunov exponent at the steady state, is shown to have intricate and nonlinear dependence on the network topology and the dynamical parameters. Specifically, the dominant Lyapunov exponent corresponds to the algebraic connectivity of a meta-graph whose edge weight depends nonlinearly on the steady states. In this study, we utilize the cut-set space (DC) approximation to estimate the nonlinear steady state and simplify the calculation of the stability measure, based on which we further derive efficient algorithms to optimize the synchronization stability. The properties of the optimized networks and application in power grid stability are also discussed. This work is supported by a Grant from the Research Grant Council of Hong Kong (Grant Numbers 605813 and 16322616).
Global optimization algorithm for heat exchanger networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesada, I.; Grossmann, I.E.
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem ismore » used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.« less
Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach
NASA Astrophysics Data System (ADS)
Pinto, Rafael S.; Saa, Alberto
2015-12-01
A recently proposed dimensional reduction approach for studying synchronization in the Kuramoto model is employed to build optimal network topologies to favor or to suppress synchronization. The approach is based in the introduction of a collective coordinate for the time evolution of the phase locked oscillators, in the spirit of the Ott-Antonsen ansatz. We show that the optimal synchronization of a Kuramoto network demands the maximization of the quadratic function ωTL ω , where ω stands for the vector of the natural frequencies of the oscillators and L for the network Laplacian matrix. Many recently obtained numerical results can be reobtained analytically and in a simpler way from our maximization condition. A computationally efficient hill climb rewiring algorithm is proposed to generate networks with optimal synchronization properties. Our approach can be easily adapted to the case of the Kuramoto models with both attractive and repulsive interactions, and again many recent numerical results can be rederived in a simpler and clearer analytical manner.
NASA Astrophysics Data System (ADS)
Karl, Florian; Zink, Roland
2016-04-01
The transformation of the energy sector towards decentralized renewable energies (RE) requires also storage systems to ensure security of supply. The new "Power to Mobility" (PtM) technology is one potential solution to use electrical overproduction to produce methane for i.e. gas vehicles. Motivated by these fact, the paper presents a methodology for a GIS-based temporal modelling of the power grid, to optimize the site planning process for the new PtM-technology. The modelling approach is based on a combination of the software QuantumGIS for the geographical and topological energy supply structure and OpenDSS for the net modelling. For a case study (work in progress) of the city of Straubing (Lower Bavaria) the parameters of the model are quantified. The presentation will discuss the methodology as well as the first results with a view to the application on a regional scale.
Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang
2017-10-31
The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.
Hormonal induction of transfected genes depends on DNA topology.
Piña, B; Haché, R J; Arnemann, J; Chalepakis, G; Slater, E P; Beato, M
1990-01-01
Plasmids containing the hormone regulatory element of mouse mammary tumor virus linked to the thymidine kinase promoter of herpes simplex virus and the reporter gene chloramphenicol acetyltransferase of Escherichia coli respond to glucocorticoids and progestins when transfected into appropriate cells. In the human mammary tumor cell line T47D, the response to progestins, but not to glucocorticoids, is highly dependent on the topology of the transfected DNA. Although negatively supercoiled plasmids respond optimally to the synthetic progestin R5020, their linearized counterparts exhibit markedly reduced progestin inducibility. This is not due to changes in the efficiency of DNA transfection, since the amount of DNA incorporated into the cell nucleus is not significantly dependent on the initial topology of the plasmids. In contrast, cotransfection experiments with glucocorticoid receptor cDNA in the same cell line show no significant influence of DNA topology on induction by dexamethasone. A similar result was obtained with fibroblasts that contain endogenous glucocorticoid receptors. When the distance between receptor-binding sites or between the binding sites and the promoter was increased, the dependence of progestin induction on DNA topology was more pronounced. In contrast to the original plasmid, these constructs also revealed a similar topological dependence for induction by glucocorticoids. The differential influence of DNA topology is not due to differences in the affinity of the two hormone receptors for DNA of various topologies, but probably reflects an influence of DNA topology on the interaction between different DNA-bound receptor molecules and between receptors and other transcription factors. Images PMID:2153920
Coordinated and uncoordinated optimization of networks
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-06-01
In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.
Rule-based topology system for spatial databases to validate complex geographic datasets
NASA Astrophysics Data System (ADS)
Martinez-Llario, J.; Coll, E.; Núñez-Andrés, M.; Femenia-Ribera, C.
2017-06-01
A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in spatial relationships among datasets is presented. This improved topology rule system is built over the spatial extension Jaspa. Both projects are open source, freely available software developed by the corresponding author of this paper. Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the topology rules are designed and performed in the spatial backend). If the topology rules are applied in the frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules, it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is performed in the spatial backend. The proposed topology system allows users to check the complex spatial relationships among features (from one or several spatial layers) that require some complex cartographic datasets, such as the data specifications proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.
Complete theory of symmetry-based indicators of band topology.
Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki
2017-06-30
The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.
Impulse-induced optimum signal amplification in scale-free networks.
Martínez, Pedro J; Chacón, Ricardo
2016-04-01
Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Sensmeier, mark D.; Stewart, Bret A.
2006-01-01
Algorithms for rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process have been developed. Application of these algorithms should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. Recent enhancements to this approach include the porting of the algorithms to a platform-independent software language Python, and modifications to specifically consider morphing aircraft-type configurations. Two sample cases which illustrate these recent developments are presented.
NASA Astrophysics Data System (ADS)
Amigo, R. C. R.; Vatanabe, S. L.; Silva, E. C. N.
2013-03-01
Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.
Strain-induced topological quantum phase transition in phosphorene oxide
NASA Astrophysics Data System (ADS)
Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun
Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x < 0.5, and then to decrease with x > 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.
Quantum entanglement properties of geometrical and topological quantum gates
NASA Astrophysics Data System (ADS)
Sezer, Hasan Cavit; Duy, Hoang Ngoc; Heydari, Hoshang
2011-03-01
In this paper we will investigate the action of holonomic and topological quantum gates on different classes of four qubit states. In particular, we review the construction of holonomic quantum gate based on geometric phase and topological quantum gate based on braid group. Then, we investigate the entanglement properties of three different classes of four-qubit states based on geometric invariants. The result shows that entanglement properties of the two most generic classes of four-qubit states can be controlled by holonomic and topological quantum gate..
NASA Astrophysics Data System (ADS)
Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.
2017-11-01
Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.
Topological Aspects of the FAITH Experiment
NASA Technical Reports Server (NTRS)
Tobak, Murray; Long, Kurtis
2010-01-01
This slide presentation reviews the following issues (1) What is relationship between surface pressure extrema and singular points? (2) Does every singular point in a pattern of skin friction lines occur at a surface pressure extremum? (and/or vice versa?) (3) Can this relationship be generalized to all geometries? (4) FAITH Project (5) Ongoing effort at NASA Ames Experimental AeroPhysics Branch (6) Multi-parameter wind tunnel investigation of flow around obstacle (7) Acquire data for CFD validation, optimization and (8) Relationship between FAITH and topology projects
Tan, X P; Tan, Y J; Chow, C S L; Tor, S B; Yeong, W Y
2017-07-01
Metallic cellular scaffold is one of the best choices for orthopaedic implants as a replacement of human body parts, which could improve life quality and increase longevity for the people needed. Unlike conventional methods of making cellular scaffolds, three-dimensional (3D) printing or additive manufacturing opens up new possibilities to fabricate those customisable intricate designs with highly interconnected pores. In the past decade, metallic powder-bed based 3D printing methods emerged and the techniques are becoming increasingly mature recently, where selective laser melting (SLM) and selective electron beam melting (SEBM) are the two representatives. Due to the advantages of good dimensional accuracy, high build resolution, clean build environment, saving materials, high customisability, etc., SLM and SEBM show huge potential in direct customisable manufacturing of metallic cellular scaffolds for orthopaedic implants. Ti-6Al-4V to date is still considered to be the optimal materials for producing orthopaedic implants due to its best combination of biocompatibility, corrosion resistance and mechanical properties. This paper presents a state-of-the-art overview mainly on manufacturing, topological design, mechanical properties and biocompatibility of cellular Ti-6Al-4V scaffolds via SLM and SEBM methods. Current manufacturing limitations, topological shortcomings, uncertainty of biocompatible test were sufficiently discussed herein. Future perspectives and recommendations were given at the end. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical examination of like-honeycomb structures
NASA Astrophysics Data System (ADS)
John, Małgorzata; John, Antoni; Skarka, Wojciech
2018-01-01
In the paper based on the analogy with the biological tissue of bones, it was decided to examine more homogenous structure and also a heterogeneous structure too. Here, a new approach is proposed based on results from literature obtained using topology optimization 2D and 3D structures like beam, girder and cantilever. Proposed model of structure is similar to spatial trusses with honeycomb-shape porous. Parameters varied not only uniformly throughout the volume of the sample, but also be modified depending on various factors. They underwent a change in cell dimensions, among other things, the thickness of the wall. The obtained results were compared with those obtained previously for homogeneous samples.
Collective Behaviors of Mobile Robots Beyond the Nearest Neighbor Rules With Switching Topology.
Ning, Boda; Han, Qing-Long; Zuo, Zongyu; Jin, Jiong; Zheng, Jinchuan
2018-05-01
This paper is concerned with the collective behaviors of robots beyond the nearest neighbor rules, i.e., dispersion and flocking, when robots interact with others by applying an acute angle test (AAT)-based interaction rule. Different from a conventional nearest neighbor rule or its variations, the AAT-based interaction rule allows interactions with some far-neighbors and excludes unnecessary nearest neighbors. The resulting dispersion and flocking hold the advantages of scalability, connectivity, robustness, and effective area coverage. For the dispersion, a spring-like controller is proposed to achieve collision-free coordination. With switching topology, a new fixed-time consensus-based energy function is developed to guarantee the system stability. An upper bound of settling time for energy consensus is obtained, and a uniform time interval is accordingly set so that energy distribution is conducted in a fair manner. For the flocking, based on a class of generalized potential functions taking nonsmooth switching into account, a new controller is proposed to ensure that the same velocity for all robots is eventually reached. A co-optimizing problem is further investigated to accomplish additional tasks, such as enhancing communication performance, while maintaining the collective behaviors of mobile robots. Simulation results are presented to show the effectiveness of the theoretical results.
NASA Astrophysics Data System (ADS)
Wang, Hong; Lu, Kaiyu; Pu, Ruiliang
2016-10-01
The Robinia pseudoacacia forest in the Yellow River delta of China has been planted since the 1970s, and a large area of dieback of the forest has occurred since the 1990s. To assess the condition of the R. pseudoacacia forest in three forest areas (i.e., Gudao, Machang, and Abandoned Yellow River) in the delta, we combined an estimation of scale parameters tool and geometry/topology assessment criteria to determine the optimal scale parameters, selected optimal predictive variables determined by stepwise discriminant analysis, and compared object-based image analysis (OBIA) and pixel-based approaches using IKONOS data. The experimental results showed that the optimal segmentation scale is 5 for both the Gudao and Machang forest areas, and 12 for the Abandoned Yellow River forest area. The results produced by the OBIA method were much better than those created by the pixel-based method. The overall accuracy of the OBIA method was 93.7% (versus 85.4% by the pixel-based) for Gudao, 89.0% (versus 72.7%) for Abandoned Yellow River, and 91.7% (versus 84.4%) for Machang. Our analysis results demonstrated that the OBIA method was an effective tool for rapidly mapping and assessing the health levels of forest.
Energy latency tradeoffs for medium access and sleep scheduling in wireless sensor networks
NASA Astrophysics Data System (ADS)
Gang, Lu
Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. The central thesis of this work is that energy efficient medium access and sleep scheduling mechanisms can be designed without necessarily sacrificing application-specific latency performance. We validate this thesis through results from four case studies that cover various aspects of medium access and sleep scheduling design in wireless sensor networks. Our first effort, DMAC, is to design an adaptive low latency and energy efficient MAC for data gathering to reduce the sleep latency. We propose staggered schedule, duty cycle adaptation, data prediction and the use of more-to-send packets to enable seamless packet forwarding under varying traffic load and channel contentions. Simulation and experimental results show significant energy savings and latency reduction while ensuring high data reliability. The second research effort, DESS, investigates the problem of designing sleep schedules in arbitrary network communication topologies to minimize the worst case end-to-end latency (referred to as delay diameter). We develop a novel graph-theoretical formulation, derive and analyze optimal solutions for the tree and ring topologies and heuristics for arbitrary topologies. The third study addresses the problem of minimum latency joint scheduling and routing (MLSR). By constructing a novel delay graph, the optimal joint scheduling and routing can be solved by M node-disjoint paths algorithm under multiple channel model. We further extended the algorithm to handle dynamic traffic changes and topology changes. A heuristic solution is proposed for MLSR under single channel interference. In the fourth study, EEJSPC, we first formulate a fundamental optimization problem that provides tunable energy-latency-throughput tradeoffs with joint scheduling and power control and present both exponential and polynomial complexity solutions. Then we investigate the problem of minimizing total transmission energy while satisfying transmission requests within a latency bound, and present an iterative approach which converges rapidly to the optimal parameter settings.
Design optimization of aircraft landing gear assembly under dynamic loading
NASA Astrophysics Data System (ADS)
Wong, Jonathan Y. B.
As development cycles and prototyping iterations begin to decrease in the aerospace industry, it is important to develop and improve practical methodologies to meet all design metrics. This research presents an efficient methodology that applies high-fidelity multi-disciplinary design optimization techniques to commercial landing gear assemblies, for weight reduction, cost savings, and structural performance dynamic loading. Specifically, a slave link subassembly was selected as the candidate to explore the feasibility of this methodology. The design optimization process utilized in this research was sectioned into three main stages: setup, optimization, and redesign. The first stage involved the creation and characterization of the models used throughout this research. The slave link assembly was modelled with a simplified landing gear test, replicating the behavior of the physical system. Through extensive review of the literature and collaboration with Safran Landing Systems, dynamic and structural behavior for the system were characterized and defined mathematically. Once defined, the characterized behaviors for the slave link assembly were then used to conduct a Multi-Body Dynamic (MBD) analysis to determine the dynamic and structural response of the system. These responses were then utilized in a topology optimization through the use of the Equivalent Static Load Method (ESLM). The results of the optimization were interpreted and later used to generate improved designs in terms of weight, cost, and structural performance under dynamic loading in stage three. The optimized designs were then validated using the model created for the MBD analysis of the baseline design. The design generation process employed two different approaches for post-processing the topology results produced. The first approach implemented a close replication of the topology results, resulting in a design with an overall peak stress increase of 74%, weight savings of 67%, and no apparent cost savings due to complex features present in the design. The second design approach focused on realizing reciprocating benefits for cost and weight savings. As a result, this design was able to achieve an overall peak stress increase of 6%, weight and cost savings of 36%, and 60%, respectively.
Robustness of mission plans for unmanned aircraft
NASA Astrophysics Data System (ADS)
Niendorf, Moritz
This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls, and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen
This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less
SiC-VJFETs power switching devices: an improved model and parameter optimization technique
NASA Astrophysics Data System (ADS)
Ben Salah, T.; Lahbib, Y.; Morel, H.
2009-12-01
Silicon carbide junction field effect transistor (SiC-JFETs) is a mature power switch newly applied in several industrial applications. SiC-JFETs are often simulated by Spice model in order to predict their electrical behaviour. Although such a model provides sufficient accuracy for some applications, this paper shows that it presents serious shortcomings in terms of the neglect of the body diode model, among many others in circuit model topology. Simulation correction is then mandatory and a new model should be proposed. Moreover, this paper gives an enhanced model based on experimental dc and ac data. New devices are added to the conventional circuit model giving accurate static and dynamic behaviour, an effect not accounted in the Spice model. The improved model is implemented into VHDL-AMS language and steady-state dynamic and transient responses are simulated for many SiC-VJFETs samples. Very simple and reliable optimization algorithm based on the optimization of a cost function is proposed to extract the JFET model parameters. The obtained parameters are verified by comparing errors between simulations results and experimental data.
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-01-01
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-09-14
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Peter
2016-07-26
This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy ofmore » the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.« less
Role-separating ordering in social dilemmas controlled by topological frustration
NASA Astrophysics Data System (ADS)
Amaral, Marco A.; Perc, Matjaž; Wardil, Lucas; Szolnoki, Attila; da Silva Júnior, Elton J.; da Silva, Jafferson K. L.
2017-03-01
``Three is a crowd" is an old proverb that applies as much to social interactions as it does to frustrated configurations in statistical physics models. Accordingly, social relations within a triangle deserve special attention. With this motivation, we explore the impact of topological frustration on the evolutionary dynamics of the snowdrift game on a triangular lattice. This topology provides an irreconcilable frustration, which prevents anticoordination of competing strategies that would be needed for an optimal outcome of the game. By using different strategy updating protocols, we observe complex spatial patterns in dependence on payoff values that are reminiscent to a honeycomb-like organization, which helps to minimize the negative consequence of the topological frustration. We relate the emergence of these patterns to the microscopic dynamics of the evolutionary process, both by means of mean-field approximations and Monte Carlo simulations. For comparison, we also consider the same evolutionary dynamics on the square lattice, where of course the topological frustration is absent. However, with the deletion of diagonal links of the triangular lattice, we can gradually bridge the gap to the square lattice. Interestingly, in this case the level of cooperation in the system is a direct indicator of the level of topological frustration, thus providing a method to determine frustration levels in an arbitrary interaction network.
Role-separating ordering in social dilemmas controlled by topological frustration.
Amaral, Marco A; Perc, Matjaž; Wardil, Lucas; Szolnoki, Attila; da Silva Júnior, Elton J; da Silva, Jafferson K L
2017-03-01
''Three is a crowd" is an old proverb that applies as much to social interactions as it does to frustrated configurations in statistical physics models. Accordingly, social relations within a triangle deserve special attention. With this motivation, we explore the impact of topological frustration on the evolutionary dynamics of the snowdrift game on a triangular lattice. This topology provides an irreconcilable frustration, which prevents anticoordination of competing strategies that would be needed for an optimal outcome of the game. By using different strategy updating protocols, we observe complex spatial patterns in dependence on payoff values that are reminiscent to a honeycomb-like organization, which helps to minimize the negative consequence of the topological frustration. We relate the emergence of these patterns to the microscopic dynamics of the evolutionary process, both by means of mean-field approximations and Monte Carlo simulations. For comparison, we also consider the same evolutionary dynamics on the square lattice, where of course the topological frustration is absent. However, with the deletion of diagonal links of the triangular lattice, we can gradually bridge the gap to the square lattice. Interestingly, in this case the level of cooperation in the system is a direct indicator of the level of topological frustration, thus providing a method to determine frustration levels in an arbitrary interaction network.
Constrained simultaneous multi-state reconfigurable wing structure configuration optimization
NASA Astrophysics Data System (ADS)
Snyder, Matthew
A reconfigurable aircraft is capable of in-flight shape change to increase mission performance or provide multi-mission capability. Reconfigurability has always been a consideration in aircraft design, from the Wright Flyer, to the F-14, and most recently the Lockheed-Martin folding wing concept. The Wright Flyer used wing-warping for roll control, the F-14 had a variable-sweep wing to improve supersonic flight capabilities, and the Lockheed-Martin folding wing demonstrated radical in-flight shape change. This dissertation will examine two questions that aircraft reconfigurability raises, especially as reconfiguration increases in complexity. First, is there an efficient method to develop a light weight structure which supports all the loads generated by each configuration? Second, can this method include the capability to propose a sub-structure topology that weighs less than other considered designs? The first question requires a method that will design and optimize multiple configurations of a reconfigurable aerostructure. Three options exist, this dissertation will show one is better than the others. Simultaneous optimization considers all configurations and their respective load cases and constraints at the same time. Another method is sequential optimization which considers each configuration of the vehicle one after the other - with the optimum design variable values from the first configuration becoming the lower bounds for subsequent configurations. This process repeats for each considered configuration and the lower bounds update as necessary. The third approach is aggregate combination — this method keeps the thickness or area of each member for the most critical configuration, the configuration that requires the largest cross-section. This research will show that simultaneous optimization produces a lower weight and different topology for the considered structures when compared to the sequential and aggregate techniques. To answer the second question, the developed optimization algorithm combines simultaneous optimization with a new method for determining the optimum location of the structural members of the sub-structure. The method proposed here considers an over-populated structural model, one in which there are initially more members than necessary. Using a unique iterative process, the optimization algorithm removes members from the design if they do not carry enough load to justify their presence. The initial set of members includes ribs, spars and a series of cross-members that diagonally connect the ribs and spars. The final result is a different structure, which is lower weight than one developed from sequential optimization or aggregate combination, and suggests the primary load paths. Chapter 1 contains background information on reconfigurable aircraft and a description of the new reconfigurable air vehicle being considered by the Air Vehicles Directorate of the Air Force Research Laboratory. This vehicle serves as a platform to test the proposed optimization process. Chapters 2 and 3 overview the optimization method and Chapter 4 provides some background analysis which is unique to this particular reconfigurable air vehicle. Chapter 5 contains the results of the optimizations and demonstrates how changing constraints or initial configuration impacts the final weight and topology of the wing structure. The final chapter contains conclusions and comments on some future work which would further enhance the effectiveness of the simultaneous reconfigurable structural topology optimization process developed and used in this dissertation.
A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks
Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza
2015-01-01
Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502
Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions
NASA Astrophysics Data System (ADS)
Deacon, R. S.; Wiedenmann, J.; Bocquillon, E.; Domínguez, F.; Klapwijk, T. M.; Leubner, P.; Brüne, C.; Hankiewicz, E. M.; Tarucha, S.; Ishibashi, K.; Buhmann, H.; Molenkamp, L. W.
2017-04-01
Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency fJ rather than conventional emission at fJ. Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency fJ/2 . The linewidths of emission lines indicate a coherence time of 0.3-4 ns for the fJ/2 line, much shorter than for the fJ line (3-4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.
High-resolution comparative modeling with RosettaCM.
Song, Yifan; DiMaio, Frank; Wang, Ray Yu-Ruei; Kim, David; Miles, Chris; Brunette, Tj; Thompson, James; Baker, David
2013-10-08
We describe an improved method for comparative modeling, RosettaCM, which optimizes a physically realistic all-atom energy function over the conformational space defined by homologous structures. Given a set of sequence alignments, RosettaCM assembles topologies by recombining aligned segments in Cartesian space and building unaligned regions de novo in torsion space. The junctions between segments are regularized using a loop closure method combining fragment superposition with gradient-based minimization. The energies of the resulting models are optimized by all-atom refinement, and the most representative low-energy model is selected. The CASP10 experiment suggests that RosettaCM yields models with more accurate side-chain and backbone conformations than other methods when the sequence identity to the templates is greater than ∼15%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mirroring co-evolving trees in the light of their topologies.
Hajirasouliha, Iman; Schönhuth, Alexander; de Juan, David; Valencia, Alfonso; Sahinalp, S Cenk
2012-05-01
Determining the interaction partners among protein/domain families poses hard computational problems, in particular in the presence of paralogous proteins. Available approaches aim to identify interaction partners among protein/domain families through maximizing the similarity between trimmed versions of their phylogenetic trees. Since maximization of any natural similarity score is computationally difficult, many approaches employ heuristics to evaluate the distance matrices corresponding to the tree topologies in question. In this article, we devise an efficient deterministic algorithm which directly maximizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal alignment of the two trees in question. Our algorithm is significantly faster than those methods based on distance matrix comparison: 1 min on a single processor versus 730 h on a supercomputer. Furthermore, we outperform the current state-of-the-art exhaustive search approach in terms of precision, while incurring acceptable losses in recall. A C implementation of the method demonstrated in this article is available at http://compbio.cs.sfu.ca/mirrort.htm
Nanosurface design of dental implants for improved cell growth and function
NASA Astrophysics Data System (ADS)
Pan, Hsu-An; Hung, Yao-Ching; Chiou, Jin-Chern; Tai, Shih-Ming; Chen, Hsin-Hung; Huang, G. Steven
2012-08-01
A strategy was proposed for the topological design of dental implants based on an in vitro survey of optimized nanodot structures. An in vitro survey was performed using nanodot arrays with dot diameters ranging from 10 to 200 nm. MG63 osteoblasts were seeded on nanodot arrays and cultured for 3 days. Cell number, percentage undergoing apoptotic-like cell death, cell adhesion and cytoskeletal organization were evaluated. Nanodots with a diameter of approximately 50 nm enhanced cell number by 44%, minimized apoptotic-like cell death to 2.7%, promoted a 30% increase in microfilament bundles and maximized cell adhesion with a 73% increase in focal adhesions. An enhancement of about 50% in mineralization was observed, determined by von Kossa staining and by Alizarin Red S staining. Therefore, we provide a complete range of nanosurfaces for growing osteoblasts to discriminate their nanoscale environment. Nanodot arrays present an opportunity to positively and negatively modulate cell behavior and maturation. Our results suggest a topological approach which is beneficial for the design of dental implants.
Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network
Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun
2017-01-01
Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links. PMID:28282899
Learning directed acyclic graphs from large-scale genomics data.
Nikolay, Fabio; Pesavento, Marius; Kritikos, George; Typas, Nassos
2017-09-20
In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.
Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.
Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun
2017-03-08
Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.
Additive manufacturing: Toward holistic design
Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; ...
2017-03-18
Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.
Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
NASA Astrophysics Data System (ADS)
Liu, Zhao; Jin, Yingdi; Yang, Yuchen; Wang, Z. F.; Yang, Jinlong
2018-02-01
We demonstrate that sp 2 based trigonal lattice can exhibit giant Rashba splitting and two large topological gaps simultaneously. First, an effective tight binding model is developed to describe the Rashba spin-orbit coupling (SOC) on a real surface and give a topological phase diagram based on two independent SOC parameters. Second, based on density functional theory calculations, it is proposed that Au/Si(111)-\\sqrt{3}× \\sqrt{3} surface with 1/3 monolayer Bi coverage is a good material candidate to realize both giant Rashba splitting and two large topological gaps. These results would inspire great research interests for searching two-dimensional topological insulator and manipulating Rashba spin splitting through surface alloy engineering.
NASA Astrophysics Data System (ADS)
Bailey, Brent Andrew
Structural designs by humans and nature are wholly distinct in their approaches. Engineers model components to verify that all mechanical requirements are satisfied before assembling a product. Nature, on the other hand; creates holistically: each part evolves in conjunction with the others. The present work is a synthesis of these two design approaches; namely, spatial models that evolve. Topology optimization determines the amount and distribution of material within a model; which corresponds to the optimal connectedness and shape of a structure. Smooth designs are obtained by using higher-order B-splines in the definition of the material distribution. Higher-fidelity is achieved using adaptive meshing techniques at the interface between solid and void. Nature is an exemplary basis for mass minimization, as processing material requires both resources and energy. Topological optimization techniques were originally formulated as the maximization of the structural stiffness subject to a volume constraint. This research inverts the optimization problem: the mass is minimized subject to deflection constraints. Active materials allow a structure to interact with its environment in a manner similar to muscles and sensory organs in animals. By specifying the material properties and design requirements, adaptive structures with integrated sensors and actuators can evolve.
NASA Astrophysics Data System (ADS)
Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene
2018-03-01
In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.
Mandala Networks: ultra-small-world and highly sparse graphs
Sampaio Filho, Cesar I. N.; Moreira, André A.; Andrade, Roberto F. S.; Herrmann, Hans J.; Andrade, José S.
2015-01-01
The increasing demands in security and reliability of infrastructures call for the optimal design of their embedded complex networks topologies. The following question then arises: what is the optimal layout to fulfill best all the demands? Here we present a general solution for this problem with scale-free networks, like the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes asymptotically invariant and the density of links goes to zero, making it ultra-small world and highly sparse, respectively. The first property is ideal for communication and navigation purposes, while the second is interesting economically. Finally, we show that some simple changes on the original network formulation can lead to an improved topology against malicious attacks. PMID:25765450
NASA Astrophysics Data System (ADS)
Aviles, Angelica I.; Widlak, Thomas; Casals, Alicia; Nillesen, Maartje M.; Ammari, Habib
2017-06-01
Cardiac motion estimation is an important diagnostic tool for detecting heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate cardiac motion using ultrafast ultrasound data. Our solution is based on a variational formulation characterized by the L 2-regularized class. Displacement is represented by a lattice of b-splines and we ensure robustness, in the sense of eliminating outliers, by applying a maximum likelihood type estimator. While this is an important part of our solution, the main object of this work is to combine low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows one to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. The low-rank constraint speeds up the convergence of the optimization problem while topology preservation ensures a more accurate displacement. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that exhibit motion.
Trust from the past: Bayesian Personalized Ranking based Link Prediction in Knowledge Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Baichuan; Choudhury, Sutanay; Al-Hasan, Mohammad
2016-02-01
Estimating the confidence for a link is a critical task for Knowledge Graph construction. Link prediction, or predicting the likelihood of a link in a knowledge graph based on prior state is a key research direction within this area. We propose a Latent Feature Embedding based link recommendation model for prediction task and utilize Bayesian Personalized Ranking based optimization technique for learning models for each predicate. Experimental results on large-scale knowledge bases such as YAGO2 show that our approach achieves substantially higher performance than several state-of-art approaches. Furthermore, we also study the performance of the link prediction algorithm in termsmore » of topological properties of the Knowledge Graph and present a linear regression model to reason about its expected level of accuracy.« less
Wang, Jing; Zhou, Quan; Lian, Biao; ...
2015-08-31
Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance willmore » be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e 2 /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Zhou, Quan; Lian, Biao
Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance willmore » be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e 2 /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.« less
Chen, Yuhan; Wang, Shengjun
2017-01-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases. PMID:28961235
Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C; Zhou, Changsong
2017-09-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases.
OPTIMAL NETWORK TOPOLOGY DESIGN
NASA Technical Reports Server (NTRS)
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
Formation of current singularity in a topologically constrained plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yao; Huang, Yi-Min; Qin, Hong
2016-02-01
Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranovmore » solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.« less
NASA Astrophysics Data System (ADS)
Alexeyev, C. N.; Lapin, B. P.; Yavorsky, M. A.
2018-01-01
We have studied the influence of a spacer introduced into a Bragg multihelicoidal fiber with a twist defect on the existence of defect-localized states. We have shown that in the presence of a Gaussian pump the energy of the electromagnetic field stored in topologically charged defect-localized modes essentially depends on the length of the spacer. We have demonstrated that by changing this length on the wavelength scale it is possible to strongly modulate such energy. This property can be used for generation and controlled emission of topologically charged light. We have also shown that if the value of an isotropic spacer’s refractive index deviates from the optimal value defined by the parameters of the multihelicoidal fiber parts the effect of localization disappears.
Intrinsic Topological Insulator Bi1.5Sb0.5Te3-xSex Thin Crystals
NASA Astrophysics Data System (ADS)
Wang, Wei; Li, Li; Zou, Wenqin; He, Liang; Song, Fengqi; Zhang, Rong; Wu, Xiaoshan; Zhang, Fengming
2015-01-01
The quaternary topological insulator (Bi,Sb)2(Te,Se)3 has demonstrated topological surface states with an insulating bulk. Scientists have identified an optimized composition of Bi1.5Sb0.5Te1.7Se1.3 with the highest resistivity reported. But the physics that drive to this composition remains unclear. Here we report the crystal structure and the magneto-transport properties of Bi1.5Sb0.5Te3-xSex (BSTS) series. A correlation between the structure and the physical properties has been revealed. We found out that within the rhombohedral structure, the composition with most Te substituting Se has the highest resistivity. On the other hand, segregation of other composition phases will introduce much higher bulk concentration.
Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond
2016-01-01
Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.
Topology-selective jamming of fully-connected, code-division random-access networks
NASA Technical Reports Server (NTRS)
Polydoros, Andreas; Cheng, Unjeng
1990-01-01
The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.
Altered Cerebral Blood Flow Covariance Network in Schizophrenia.
Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui
2016-01-01
Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.
Quench dynamics of the Josephson current in a topological Josephson junction
NASA Astrophysics Data System (ADS)
Sun, Dihao; Liu, Jie
2018-01-01
The 4 π -periodic Josephson effect is a distinguishing feature of a topological Josephson junction. However, stringent conditions make it hard to observe in experiments. In this work, we study the transient transport properties in a topological Josephson junction numerically. We show that the 4 π Josephson current can be sustained under nonequilibrium conditions. The properties of the Josephson current are analyzed for different conditions and three main regimes are identified. First, when both the superconducting wires of the Josephson junction lie in the topologically nontrivial region, a 4 π Josephson current can appear upon suddenly applying a dc voltage. Second, when one superconducting wire lies in the trivial region, while the other wire lies in the nontrivial region, the Josephson current is 2 π periodic but the component of the higher-order Josephson current increases. Third, when both wires lie in the trivial region, a stable 2 π Josephson current is observed. Most importantly, the fractional Josephson effect is fragile in the presence of disorder. Hence experiments should be designed carefully to eliminate the effect of disorder. These results could be helpful to optimize fine-tuning of the experimental parameters to observe the 4 π -periodic Josephson current in a topological Josephson junction.
Characterizing granular networks using topological metrics
NASA Astrophysics Data System (ADS)
Dijksman, Joshua A.; Kovalcinova, Lenka; Ren, Jie; Behringer, Robert P.; Kramar, Miroslav; Mischaikow, Konstantin; Kondic, Lou
2018-04-01
We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between microscales and macroscales. We report two main findings: (1) The number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress-tensor-derived measures and contact numbers depend in a universal manner on the fraction of nonrattler particles, fNR. (2) The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both fNR and topological metrics are useful measures to consider when quantifying the state of a granular system.
Comparative study on gene set and pathway topology-based enrichment methods.
Bayerlová, Michaela; Jung, Klaus; Kramer, Frank; Klemm, Florian; Bleckmann, Annalen; Beißbarth, Tim
2015-10-22
Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.
A proposal of optimal sampling design using a modularity strategy
NASA Astrophysics Data System (ADS)
Simone, A.; Giustolisi, O.; Laucelli, D. B.
2016-08-01
In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.
Minati, Ludovico; Cercignani, Mara; Chan, Dennis
2013-10-01
Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Segers, Laurent; Van Bavegem, David; De Winne, Sam; Braeken, An; Touhafi, Abdellah; Steenhaut, Kris
2015-01-01
This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.5 kHz and 26 kHz. This implementation enhances the possibilities for real-time, embedded and low-power tracking of several simultaneous transmitters. Due to the high degree of parallelism offered by field programmable gate arrays, up to four transmitters can be tracked simultaneously. The implementation requires at most 30% of the available logic gates of a Spartan-6 XC6SLX45 device and is evaluated on accuracy and precision through several ranging topologies. In the first topology, the distance between one transmitter and one receiver is evaluated. Afterwards, ranging analyses are applied between two simultaneous transmitters and one receiver. Ultimately, the position of the receiver against four transmitters using trilateration is also demonstrated. Results show enhanced distance measurements with distances ranging from a few centimeters up to 17 m, while keeping a centimeter-level accuracy. PMID:26263986
Hsu, Chih-Yuan; Pan, Zhen-Ming; Hu, Rei-Hsing; Chang, Chih-Chun; Cheng, Hsiao-Chun; Lin, Che; Chen, Bor-Sen
2015-01-01
In this study, robust biological filters with an external control to match a desired input/output (I/O) filtering response are engineered based on the well-characterized promoter-RBS libraries and a cascade gene circuit topology. In the field of synthetic biology, the biological filter system serves as a powerful detector or sensor to sense different molecular signals and produces a specific output response only if the concentration of the input molecular signal is higher or lower than a specified threshold. The proposed systematic design method of robust biological filters is summarized into three steps. Firstly, several well-characterized promoter-RBS libraries are established for biological filter design by identifying and collecting the quantitative and qualitative characteristics of their promoter-RBS components via nonlinear parameter estimation method. Then, the topology of synthetic biological filter is decomposed into three cascade gene regulatory modules, and an appropriate promoter-RBS library is selected for each module to achieve the desired I/O specification of a biological filter. Finally, based on the proposed systematic method, a robust externally tunable biological filter is engineered by searching the promoter-RBS component libraries and a control inducer concentration library to achieve the optimal reference match for the specified I/O filtering response.
KOSMOS: a universal morph server for nucleic acids, proteins and their complexes.
Seo, Sangjae; Kim, Moon Ki
2012-07-01
KOSMOS is the first online morph server to be able to address the structural dynamics of DNA/RNA, proteins and even their complexes, such as ribosomes. The key functions of KOSMOS are the harmonic and anharmonic analyses of macromolecules. In the harmonic analysis, normal mode analysis (NMA) based on an elastic network model (ENM) is performed, yielding vibrational modes and B-factor calculations, which provide insight into the potential biological functions of macromolecules based on their structural features. Anharmonic analysis involving elastic network interpolation (ENI) is used to generate plausible transition pathways between two given conformations by optimizing a topology-oriented cost function that guarantees a smooth transition without steric clashes. The quality of the computed pathways is evaluated based on their various facets, including topology, energy cost and compatibility with the NMA results. There are also two unique features of KOSMOS that distinguish it from other morph servers: (i) the versatility in the coarse-graining methods and (ii) the various connection rules in the ENM. The models enable us to analyze macromolecular dynamics with the maximum degrees of freedom by combining a variety of ENMs from full-atom to coarse-grained, backbone and hybrid models with one connection rule, such as distance-cutoff, number-cutoff or chemical-cutoff. KOSMOS is available at http://bioengineering.skku.ac.kr/kosmos.
Optimality of Thermal Expansion Bounds in Three Dimensions
Watts, Seth E.; Tortorelli, Daniel A.
2015-02-20
In this short note, we use topology optimization to design multi-phase isotropic three-dimensional composite materials with extremal combinations of isotropic thermal expansion and bulk modulus. In so doing, we provide evidence that the theoretical bounds for this combination of material properties are optimal. This has been shown in two dimensions, but not heretofore in three dimensions. Finally, we also show that restricting the design space by enforcing material symmetry by construction does not prevent one from obtaining extremal designs.
Node Redeployment Algorithm Based on Stratified Connected Tree for Underwater Sensor Networks
Liu, Jun; Jiang, Peng; Wu, Feng; Yu, Shanen; Song, Chunyue
2016-01-01
During the underwater sensor networks (UWSNs) operation, node drift with water environment causes network topology changes. Periodic node location examination and adjustment are needed to maintain good network monitoring quality as long as possible. In this paper, a node redeployment algorithm based on stratified connected tree for UWSNs is proposed. At every network adjustment moment, self-examination and adjustment on node locations are performed firstly. If a node is outside the monitored space, it returns to the last location recorded in its memory along straight line. Later, the network topology is stratified into a connected tree that takes the sink node as the root node by broadcasting ready information level by level, which can improve the network connectivity rate. Finally, with synthetically considering network coverage and connectivity rates, and node movement distance, the sink node performs centralized optimization on locations of leaf nodes in the stratified connected tree. Simulation results show that the proposed redeployment algorithm can not only keep the number of nodes in the monitored space as much as possible and maintain good network coverage and connectivity rates during network operation, but also reduce node movement distance during node redeployment and prolong the network lifetime. PMID:28029124
Calculation of the structure of carbon clusters based on fullerene-like C24 and C48 molecules
NASA Astrophysics Data System (ADS)
Krylova, K. A.; Baimova, Yu. A.; Dmitriev, S. V.; Mulyukov, R. R.
2016-02-01
Equilibrium structures obtained by linking with valence bonds the carbon carcasses of two fullerene-like molecules have been studied by molecular dynamics simulation. In free fullerene, carbon atoms form sp 2 hybridized bonds, but at places of links between fullerenes, sp 3 hybridized bonds are formed, which determines the changes in the properties of such structures. In the literature, the topology of diamond-like phases is described, but equilibrium clusters based on fullerene-like molecules are underexplored. The right angles between the C-C bonds are energetically unfavorable, and the reduction in the energy of clusters in the process of relaxation is connected with the optimization of valence angles, which leads to a reduction in the symmetry of clusters and, in a number of cases, even to disruption of some valence bonds. It is shown that different fashions of linking two fullerenes result in the formation of clusters with different structures and energies. Different initial conditions can lead to different configurations of clusters with the same topology. Among the analyzed clusters, a structure with the minimum potential energy per atom was found. The results of this work contribute to the study of the real structure of carbon clusters.
De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
Schneider, G; Lee, M L; Stahl, M; Schneider, P
2000-07-01
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.
Sanchon-Lopez, Beatriz; Everett, Jeremy R
2016-09-02
A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.
Sarkar, Sujit
2017-05-12
An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).
A topological hierarchy for functions on triangulated surfaces.
Bremer, Peer-Timo; Edelsbrunner, Herbert; Hamann, Bernd; Pascucci, Valerio
2004-01-01
We combine topological and geometric methods to construct a multiresolution representation for a function over a two-dimensional domain. In a preprocessing stage, we create the Morse-Smale complex of the function and progressively simplify its topology by cancelling pairs of critical points. Based on a simple notion of dependency among these cancellations, we construct a hierarchical data structure supporting traversal and reconstruction operations similarly to traditional geometry-based representations. We use this data structure to extract topologically valid approximations that satisfy error bounds provided at runtime.
Realizing topological edge states in a silicon nitride microring-based photonic integrated circuit.
Yin, Chenxuan; Chen, Yujie; Jiang, Xiaohui; Zhang, Yanfeng; Shao, Zengkai; Xu, Pengfei; Yu, Siyuan
2016-10-15
Topological edge states in a photonic integrated circuit based on the platform of silicon nitride are demonstrated with a two-dimensional coupled resonator optical waveguide array involving the synthetic magnetic field for photons at near-infrared wavelengths. Measurements indicate that the topological edge states can be observed at certain wavelengths, with light travelling around the boundary of the array. Combined with the induced disorders in fabrication near the edge, the system shows the defect immunity under the topological protection of edge states.
Spectrum-Based and Collaborative Network Topology Analysis and Visualization
ERIC Educational Resources Information Center
Hu, Xianlin
2013-01-01
Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…
Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, Brian
2013-01-01
The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.
van Strien, Maarten J
2017-07-01
Many landscape genetic studies aim to determine the effect of landscape on gene flow between populations. These studies frequently employ link-based methods that relate pairwise measures of historical gene flow to measures of the landscape and the geographical distance between populations. However, apart from landscape and distance, there is a third important factor that can influence historical gene flow, that is, population topology (i.e., the arrangement of populations throughout a landscape). As the population topology is determined in part by the landscape configuration, I argue that it should play a more prominent role in landscape genetics. Making use of existing literature and theoretical examples, I discuss how population topology can influence results in landscape genetic studies and how it can be taken into account to improve the accuracy of these results. In support of my arguments, I have performed a literature review of landscape genetic studies published during the first half of 2015 as well as several computer simulations of gene flow between populations. First, I argue why one should carefully consider which population pairs should be included in link-based analyses. Second, I discuss several ways in which the population topology can be incorporated in response and explanatory variables. Third, I outline why it is important to sample populations in such a way that a good representation of the population topology is obtained. Fourth, I discuss how statistical testing for link-based approaches could be influenced by the population topology. I conclude the article with six recommendations geared toward better incorporating population topology in link-based landscape genetic studies.
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
NASA Astrophysics Data System (ADS)
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
An ultra-low-power filtering technique for biomedical applications.
Zhang, Tan-Tan; Mak, Pui-In; Vai, Mang-I; Mak, Peng-Un; Wan, Feng; Martins, R P
2011-01-01
This paper describes an ultra-low-power filtering technique for biomedical applications designated as T-wave sensing in heart-activities detection systems. The topology is based on a source-follower-based Biquad operating in the sub-threshold region. With the intrinsic advantages of simplicity and high linearity of the source-follower, ultra-low-cutoff filtering can be achieved, simultaneously with ultra low power and good linearity. An 8(th)-order 2.4-Hz lowpass filter design example optimized in a 0.35-μm CMOS process was designed achieving over 85-dB dynamic range, 74-dB stopband attenuation and consuming only 0.36 nW at a 3-V supply.
Design and implementation considerations of a MSAT packet data network
NASA Technical Reports Server (NTRS)
Karam, Fouad G.; Hearn, Terry; Rohr, Doug; Guibord, Arthur F.
1993-01-01
The Mobile Data System, which is intended to provide for packet switched data services is currently under development. The system is based on a star network topology consisting of a centralized Data Hub (DH) serving a large number of mobile terminals. Through the Data Hub, end-to-end connections can be established between terrestrial users on public or private data networks and mobile users. The MDS network will be capable of offering a variety of services some of which are based on the standard X.25 network interface protocol, and others optimized for short messages and broadcast messages. A description of these services and the trade-offs in the DH design are presented.
Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming
Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less
Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn
Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming
2017-11-06
Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less
Edge states and topological phase transitions in chains of dielectric nanoparticles
Kruk, Sergey; Slobozhanyuk, Alexey; Denkova, Denitza; ...
2017-01-12
Recently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. Here, it is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.
Edge states and topological phase transitions in chains of dielectric nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruk, Sergey; Slobozhanyuk, Alexey; Denkova, Denitza
Recently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. Here, it is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.
Robust distributed control of spacecraft formation flying with adaptive network topology
NASA Astrophysics Data System (ADS)
Shasti, Behrouz; Alasty, Aria; Assadian, Nima
2017-07-01
In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.
NASA Astrophysics Data System (ADS)
Cogoni, Marco; Busonera, Giovanni; Anedda, Paolo; Zanetti, Gianluigi
2015-01-01
We generalize previous studies on critical phenomena in communication networks [1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random origin, destination and computational structure is distributed on a computational network, modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the global latency for an optimal to suboptimal resource assignment at a given time instant. By computing the two-point correlation function for the local overload, we study the behavior of the correlation distance (both for links and nodes) while approaching the congested phase: a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature Tc. The average latency trend of the system is predicted by averaging over several network traffic realizations while maintaining a spatially detailed information for each node: a sharp decrease of performance is found over Tc independently of the workload. The globally optimized computational resource allocation and network routing defines a baseline for a future comparison of the transition behavior with respect to existing routing strategies [3,4] for different network topologies.
Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials
NASA Astrophysics Data System (ADS)
Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.
2018-03-01
This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.
Topological Superconductivity on the Surface of Fe-Based Superconductors.
Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng
2016-07-22
As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.
Toward topology-based characterization of small-scale mixing in compressible turbulence
NASA Astrophysics Data System (ADS)
Suman, Sawan; Girimaji, Sharath
2011-11-01
Turbulent mixing rate at small scales of motion (molecular mixing) is governed by the steepness of the scalar-gradient field which in turn is dependent upon the prevailing velocity gradients. Thus motivated, we propose a velocity-gradient topology-based approach for characterizing small-scale mixing in compressible turbulence. We define a mixing efficiency metric that is dependent upon the topology of the solenoidal and dilatational deformation rates of a fluid element. The mixing characteristics of solenoidal and dilatational velocity fluctuations are clearly delineated. We validate this new approach by employing mixing data from direct numerical simulations (DNS) of compressible decaying turbulence with passive scalar. For each velocity-gradient topology, we compare the mixing efficiency predicted by the topology-based model with the corresponding conditional scalar variance obtained from DNS. The new mixing metric accurately distinguishes good and poor mixing topologies and indeed reasonably captures the numerical values. The results clearly demonstrate the viability of the proposed approach for characterizing and predicting mixing in compressible flows.
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
Modeling and dynamical topology properties of VANET based on complex networks theory
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jie
2015-01-01
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.
Modeling and dynamical topology properties of VANET based on complex networks theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com
2015-01-15
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.« less
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
NASA Astrophysics Data System (ADS)
Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix
2017-07-01
We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.
Foo, Brian; van der Schaar, Mihaela
2010-11-01
In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.
Topology-optimized silicon photonic wire mode (de)multiplexer
NASA Astrophysics Data System (ADS)
Frellsen, Louise F.; Frandsen, Lars H.; Ding, Yunhong; Elesin, Yuriy; Sigmund, Ole; Yvind, Kresten
2015-02-01
We have designed and for the first time experimentally verified a topology optimized mode (de)multiplexer, which demultiplexes the fundamental and the first order mode of a double mode photonic wire to two separate single mode waveguides (and multiplexes vice versa). The device has a footprint of ~4.4 μm x ~2.8 μm and was fabricated for different design resolutions and design threshold values to verify the robustness of the structure to fabrication tolerances. The multiplexing functionality was confirmed by recording mode profiles using an infrared camera and vertical grating couplers. All structures were experimentally found to maintain functionality throughout a 100 nm wavelength range limited by available laser sources and insertion losses were generally lower than 1.3 dB. The cross talk was around -12 dB and the extinction ratio was measured to be better than 8 dB.
Topology-dependent density optima for efficient simultaneous network exploration
NASA Astrophysics Data System (ADS)
Wilson, Daniel B.; Baker, Ruth E.; Woodhouse, Francis G.
2018-06-01
A random search process in a networked environment is governed by the time it takes to visit every node, termed the cover time. Often, a networked process does not proceed in isolation but competes with many instances of itself within the same environment. A key unanswered question is how to optimize this process: How many concurrent searchers can a topology support before the benefits of parallelism are outweighed by competition for space? Here, we introduce the searcher-averaged parallel cover time (APCT) to quantify these economies of scale. We show that the APCT of the networked symmetric exclusion process is optimized at a searcher density that is well predicted by the spectral gap. Furthermore, we find that nonequilibrium processes, realized through the addition of bias, can support significantly increased density optima. Our results suggest alternative hybrid strategies of serial and parallel search for efficient information gathering in social interaction and biological transport networks.
Quantifying similarity of pore-geometry in nanoporous materials
Lee, Yongjin; Barthel, Senja D.; Dłotko, Paweł; ...
2017-05-23
In most applications of nanoporous materials the pore structure is as important as the chemical composition as a determinant of performance. For example, one can alter performance in applications like carbon capture or methane storage by orders of magnitude by only modifying the pore structure. For these applications it is therefore important to identify the optimal pore geometry and use this information to find similar materials. But, the mathematical language and tools to identify materials with similar pore structures, but different composition, has been lacking. We develop a pore recognition approach to quantify similarity of pore structures and classify themmore » using topological data analysis. This then allows us to identify materials with similar pore geometries, and to screen for materials that are similar to given top-performing structures. Using methane storage as a case study, we also show that materials can be divided into topologically distinct classes requiring different optimization strategies.« less
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
NASA Astrophysics Data System (ADS)
Ortiz-Matos, L.; Aguila-Tellez, A.; Hincapié-Reyes, R. C.; González-Sanchez, J. W.
2017-07-01
In order to design electrification systems, recent mathematical models solve the problem of location, type of electrification components, and the design of possible distribution microgrids. However, due to the amount of points to be electrified increases, the solution to these models require high computational times, thereby becoming unviable practice models. This study posed a new heuristic method for the electrification of rural areas in order to solve the problem. This heuristic algorithm presents the deployment of rural electrification microgrids in the world, by finding routes for optimal placement lines and transformers in transmission and distribution microgrids. The challenge is to obtain a display with equity in losses, considering the capacity constraints of the devices and topology of the land at minimal economic cost. An optimal scenario ensures the electrification of all neighbourhoods to a minimum investment cost in terms of the distance between electric conductors and the amount of transformation devices.
Intelligent automated surface grid generation
NASA Technical Reports Server (NTRS)
Yao, Ke-Thia; Gelsey, Andrew
1995-01-01
The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
NASA Astrophysics Data System (ADS)
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
Optimizing Nutrient Uptake in Biological Transport Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Katifori, Eleni
2013-03-01
Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.
Wavelength routing beyond the standard graph coloring approach
NASA Astrophysics Data System (ADS)
Blankenhorn, Thomas
2004-04-01
When lightpaths are routed in the planning stage of transparent optical networks, the textbook approach is to use algorithms that try to minimize the overall number of wavelengths used in the . We demonstrate that this method cannot be expected to minimize actual costs when the marginal cost of instlling more wavelengths is a declining function of the number of wavelengths already installed, as is frequently the case. We further demonstrate how cost optimization can theoretically be improved with algorithms based on Prim"s algorithm. Finally, we test this theory with simulaion on a series of actual network topologies, which confirm the theoretical analysis.
Chacón, Ricardo
2008-12-01
Optimal energy amplification via autoresonance in dissipative systems subjected to separatrix crossings is discussed through the universal model of a damped driven pendulum. Analytical expressions of the autoresonance responses and forces as well as the associated adiabatic invariants for the phase space regions separated by the underlying separatrix are derived from the energy-based theory of autoresonance. Additionally, applications to a single Josephson junction, topological solitons in Frenkel-Kontorova chains, as well as to the three-wave problem in dissipative media are discussed in detail from the autoresonance analysis.
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-01-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network. PMID:28763014
Two Hop Adaptive Vector Based Quality Forwarding for Void Hole Avoidance in Underwater WSNs.
Javaid, Nadeem; Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil; Ilahi, Manzoor
2017-08-01
Underwater wireless sensor networks (UWSNs) facilitate a wide range of aquatic applications in various domains. However, the harsh underwater environment poses challenges like low bandwidth, long propagation delay, high bit error rate, high deployment cost, irregular topological structure, etc. Node mobility and the uneven distribution of sensor nodes create void holes in UWSNs. Void hole creation has become a critical issue in UWSNs, as it severely affects the network performance. Avoiding void hole creation benefits better coverage over an area, less energy consumption in the network and high throughput. For this purpose, minimization of void hole probability particularly in local sparse regions is focused on in this paper. The two-hop adaptive hop by hop vector-based forwarding (2hop-AHH-VBF) protocol aims to avoid the void hole with the help of two-hop neighbor node information. The other protocol, quality forwarding adaptive hop by hop vector-based forwarding (QF-AHH-VBF), selects an optimal forwarder based on the composite priority function. QF-AHH-VBF improves network good-put because of optimal forwarder selection. QF-AHH-VBF aims to reduce void hole probability by optimally selecting next hop forwarders. To attain better network performance, mathematical problem formulation based on linear programming is performed. Simulation results show that by opting these mechanisms, significant reduction in end-to-end delay and better throughput are achieved in the network.
Topological Galleries: A High Level User Interface for Topology Controlled Volume Rendering
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacCarthy, Brian; Carr, Hamish; Weber, Gunther H.
2011-06-30
Existing topological interfaces to volume rendering are limited by their reliance on sophisticated knowledge of topology by the user. We extend previous work by describing topological galleries, an interface for novice users that is based on the design galleries approach. We report three contributions: an interface based on hierarchical thumbnail galleries to display the containment relationships between topologically identifiable features, the use of the pruning hierarchy instead of branch decomposition for contour tree simplification, and drag-and-drop transfer function assignment for individual components. Initial results suggest that this approach suffers from limitations due to rapid drop-off of feature size in themore » pruning hierarchy. We explore these limitations by providing statistics of feature size as function of depth in the pruning hierarchy of the contour tree.« less
NASA Astrophysics Data System (ADS)
Georgiev, Lachezar S.
2006-12-01
We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .
Frequency Tuning of Vibration Absorber Using Topology Optimization
NASA Astrophysics Data System (ADS)
Harel, Swapnil Subhash
A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.
Discrete particle swarm optimization for identifying community structures in signed social networks.
Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng
2014-10-01
Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.